
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 126 (2024) 429–434

2212-8271 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 17th CIRP Conference on Intelligent Computation in Manufacturing Engineering 
(CIRP ICME‘23)
10.1016/j.procir.2024.08.391

17th CIRP Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME ‘23)

Keywords: tool wear; deep learning; industry 4.0, tool condition monitoring; ensemble learning

1. Introduction

Machining processes, such as milling, are widely used in
manufacturing to achieve highly accurate machine parts and 
good surface integrity [1]. To satisfy the quality requirements
of the finished piece, tool condition monitoring (TCM) systems 
are required to improve product quality, process dependability, 
and production efficiency [2]. The primary aim of TCM is to 
identify the appropriate time to replace cutting tools. Changing 
tools too soon disrupts production times, and too late can cause 
damage to equipment, machines, and workpieces. 

However, TCM of machining processes, and in particular 
deep learning (DL)-based TCM, is yet to fully reach the shop 
floor [2]. This is because DL models usually require big data 
for training, which is challenging in machining processes where 
data is generally not publicly available or is unlabelled [3].

Aiming to mitigate the problem of data availability, open-
access datasets have been published in the literature, such as the 
NASA Ames/UC Berkeley milling dataset [4]. As a result, 

several authors have proposed DL models trained with this 
dataset. 

Aghazadeh et al. (2018) implemented a convolutional neural 
network (CNN) model in combination with spectral subtraction 
of wavelet packets, using the current signals of the dataset,
achieving a root-mean-squared error (RMSE) of 0.088 mm [5].
More recently, Cai et al. (2020) presented a hybrid model based 
on long short-term memory (LSTM) networks. The model was
trained with all signals and cutting conditions of the dataset,
using 4 cases for testing and the remaining 12 for training and 
achieving a RMSE of 0.0456 mm. The LSTM layer was used 
for temporal encoding of features, and thereafter, a non-linear 
regression network combined the temporal features obtained 
from the LSTM with the cutting conditions to perform the 
predictions [6]. Another hybrid LSTM model, comprised of 
bidirectional LSTM and encoder-decoder LSTM layers, was
proposed by Kumar et al. (2022). The model used time and 
frequency features extracted from the vibration signals of the 
dataset, achieving a RMSE of 0.0364 mm [7]. Finally, Pillai and 
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Vadakkepat (2022) presented a temporal multivariate 3D 
convolutional network model, trained with 3D features from the 
signals obtained from kernel-based transformations, and 
achieving a RMSE of 0.0424 mm [8]. 

Although good performance has been obtained from the 
models in scientific experiments, the margin of error is still not 
acceptable for industrial implementations. Furthermore, the 
selection of signals from the dataset to be used as inputs 
requires a systematic approach. Therefore, the potential of 
applying DL to TCM requires further research, such as meta-
learning strategies that combine DL models with ensemble 
learning techniques [9].

In this paper, a novel meta-learning strategy based on deep 
ensemble learning (DEL) is proposed for tool wear monitoring. 
The strategy was compared with state-of-the-art DL models 
selected from recent literature, using the NASA Ames/UC 
Berkeley open-access dataset as input. As such, the contribution 
of this paper is twofold:

• Meta-learning strategy: A novel meta-learning strategy 
based on deep ensemble learning (DEL) compared against 
state-of-the-art DL models selected from recent literature, 
proving a superior prediction performance.

• An analysis of the signals from the NASA Ames/UC 
Berkeley dataset to identify ideal signals to be used as 
inputs for DL learning models. The signals are analysed, 
cleaned, and augmented. Then, four combinations of 
signals (all signals, current and acoustic emission signals, 
current signal, and vibration signal) are compared in 
relation to their effect on DL model performance.

The reminder of this paper is structured as follows. Section 
2 describes the open-access dataset used in this study. Section 
3 describes the methodology followed to implement the meta-
learning strategy. Thereafter, Section 4 presents results and 
discussion. Finally, Section 5 presents conclusions and outlook 
on future work.

2. Dataset description

The NASA Ames/UC Berkeley open-access dataset [4] was 
used in this study as input for training the meta-learning 
strategy based on DEL. The dataset encompasses 16 face 
milling experiments that were performed on a milling machine 
under varying cutting conditions. Three types of sensors, i.e., 
acoustic emission (AE) sensors, vibration sensors, and current 
sensors were employed to collect data with a sampling rate of 
250 Hz. Specifically, the sensors collected signals including
spindle motor current AC (smcAC), spindle motor current DC 
(smcDC), table vibration (vib_table), spindle vibration 
(vib_spindle), table AE (AE_table), and spindle AE 
(AE_spindle). In addition, the dataset was enriched with 
process information, such as case number, experimental run 
count, tool wear (VB), experiment duration, and cutting 
conditions. Cutting conditions included depth of cut (DOC), 
feed rate, and material type. 

A total of 167 runs were performed for approximately 36 s
each, containing 9000 measurement points per run. The number 
of runs per case varied according to the extent of VB assessed 

between runs at variable intervals. Specifically, VB was not 
recorded for all runs. Moreover, the degree of tool wear 
surpassed the manufacturer recommended VB limit in some 
cases. 

The experimental conditions of the cases are presented in 
Table 1, and include two values for DOC (1.5 and 0.25 mm), 
two values for feed rate (0.5 and 0.25 mm/rev), and two 
material types (1-cast iron and 2-stainless steel). The cutting 
tools used were KC710 inserts, the cutting speed was 200 
m/min (or 826 rev/min), and the workpiece size was 483 mm x 
178 mm x 51 mm. Eight combinations of cutting conditions 
were defined, and each combination was repeated a second time 
with a new set of cutting tools.

Table 1. Experimental conditions of the NASA Ames/UC Berkeley dataset.

Case DOC Feed 
rate

Material Case DOC Feed 
rate

Material

1 1.5 0.5 1 9 1.5 0.5 1

2 0.75 0.5 1 10 1.5 0.25 1

3 0.75 0.25 1 11 0.75 0.25 1

4 1.5 0.25 1 12 0.75 0.5 1

5 1.5 0.5 2 13 0.75 0.25 2

6 1.5 0.25 2 14 0.75 0.5 2

7 0.75 0.25 2 15 1.5 0.25 2

8 0.75 0.5 2 16 1.5 0.5 2

Pearson correlation coefficient was applied to the dataset, 
obtaining the correlations between the dataset features, and is 
depicted as a correlation matrix in Fig. 1. Of the signals, smcDC
reported the highest correlation with VB, and also presented a 
high correlation with AE signals. Fig. 2 illustrates the VB 
histogram of the dataset, in which an exponential distribution is
observed. VB progressed slowly in both the break-in and 
regular wear stages of the cutting tool. The VB curve increased 
exponentially in the high and critical wear stages, until the tool
was no longer usable.

Fig. 1. Correlation matrix of the NASA Ames/UC Berkeley dataset.
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Fig. 2. VB histogram of the NASA Ames/UC Berkeley dataset.

3. Methodology

The methodology to achieve TCM using the novel meta-
learning strategy was comprised of three steps. First, data pre-
processing was performed on the NASA Ames/UC Berkeley 
open-access dataset to clean and prepare it for training the DEL 
model. Second, machine learning (ML) models were developed 
and implemented as baseline models. Finally, the meta-learning 
strategy based on DEL was developed and implemented. 

3.1. Data pre-processing

The dataset containes measurements collected during entry, 
regular, and exit cuts of the experiments. In this study, the entry 
and exit cut portions of the signals were omitted, focusing only 
on the regular cut portion of the machining process.
Furthermore, since some cases did not record VB, linear 
interpolation was performed to use all data available. Thereafter, 
signals for each run were evaluated. Data acquired in eight runs
were corrupted or had undocumented events and were omitted 
in this study, resulting in 159 runs for training and testing. In 
addition, 22 runs had signals with noisy values, which could 
have a negative impact on the prediction capabilities of the 
meta-learning strategy. For predicting tool wear, the global 
behaviour of the signal is more important than localized events 
(e.g., chipping). Therefore, a moving average with size 20 was 
applied to average out the noisy values, while maintaining the 
global behaviour of the signals. The following are the two 
groups of runs that were treated:

• Omitted
○ Case 1 - Runs 16 and 17: VB lowers after run 15.
○ Case 2 - Run 5: Missing data in AE_table.
○ Case 2 - Run 6: Corrupt data in AE_spindle.
○ Case 7 - Run 4: Corrupt data in AE_table.
○ Case 8 - Run 3: Missing data in AE_table.
○ Case 12 - Run 1: Corrupt data in all signals
○ Case 12 - Run 12: Undocumented event in all signals.

• Noise
○ Case 3 - Run 9.
○ Case 7 - Run 8.

○ Case 8 - Run 4.
○ Case 10 - Runs 2 and 10.
○ Case 11 - Runs 10 and 21.
○ Case 12 - Runs 3 and 7.
○ Case 13 - Runs 3, 6, 8, 9, 13, and 14.
○ Case 14 - Runs 1, 2, 3, 6, and 10.
○ Case 15 - Runs 1, 2, 3, 4, 6, and 7.

3.2. Machine learning baseline models

Six ML models were trained with the input data as baseline 
models: (i) decision tree, (ii) random forest, (iii) support vector 
machine (SVM), (iv) gradient boosting, (v) XGBoost, and (vi) 
k-nearest neighbours (kNN). For the sake of brevity, detailed 
descriptions of the algorithms are omitted but can be found in 
[10,11].

The feature extraction methodology proposed in [12] was 
adopted to train the baseline ML models. Time domain, 
frequency domain, and time-frequency domain features were 
extracted, and are presented in Table 2, with a total of 54 
extracted features. A more detailed description of the extracted
features can be found in [12]. Afterwards, the features were 
normalized with z-normalization using the standard z-score,
calculated as z = (x - μ) / σ, where μ is the mean of the feature, 
x is the value of the feature, and σ is the standard deviation of 
the feature.

Table 2. Extracted features of the time, frequency, and time-frequency 
domains.

Domain Feature

Time RMS

Variance

Maximum

Kurtosis

Skewness

Peak-to-peak

Frequency Spectral skewness

Spectral kurtosis

Time-frequency Wavelet energy

Given the high quantity of features and the inherent high 
correlation among them, a dimensionality reduction approach 
was required. To this end, the principal component analysis
(PCA) technique was used [13]. The variance of the dataset that 
each component represents was analysed to determine the 
number of principal components to be chosen. At least 95% of 
variance was considered to properly represent the dataset [12].

3.3. Meta-learning strategy based on deep ensemble learning

Ensemble learning trains multiple ML or DL models, called 
base learners, to output several weak predictions from the same 
problem. The predictions are generally combined using voting 
and averaging mechanisms, which results in better performance 
than those of the models by themselves [14]. Recently, meta-
learning has been proposed for combining predictions, to 
improve the performance of ensemble learning. Meta-learning 
consists of learning from the outputs of each of the learners and 
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making predictions based on the outputs combined. Hence, well
performing base learners help offset those that perform badly 
for some problems, and vice versa for other problems. The most 
commonly used meta-learning strategy is stacked 
generalization (or stacking), which learns how to best combine 
the outputs of the base learners by using another ML or DL
model [15].

A heterogeneous DEL approach was implemented, 
comprised of LSTM, bidirectional gated recurrent unit 
(BiGRU), and CNN models as base learners. Moreover, a deep 
neural network (DNN) was used as meta-learner, combining the 
predictions from the base learners. 

First, the base learners were trained with the signals as input 
data. A DL stacking meta-learner was subsequently defined and 
trained, where the trained base learners were used as initial
layers. As a result, the weak predictions were the input features
of the meta-learner. Fig. 3 depicts the architecture of the meta-
learning model.

The model was evaluated using all available signals, owing 
to the benefits of sensor fusion [2]. Moreover, other 
combinations were explored as well. Fig. 1 shows that smcDC 
had the highest correlation to VB, followed by both AE signals. 
In general, AE signals have high accuracy and resolution and 
have proven to be reliable for detecting events in machining 
processes [1]. Therefore, a combination of smcDC with 
AE_table and AE_spindle signals was explored to evaluate the 
performance of the approach with less signals but with a 
relatively high correlation among them. The performance of the 
approach was compared with state-of-the-art DL models 

selected from recent literature [5–8]. Since some of the DL 
models were trained only with either the vibration or the current 
signals, the use of smcDC as single input, as well as vib_spindle,
were also explored for training the meta-learning strategy.
Consequently, four strategies for training meta-learning models 
with varied input data were explored: (i) all sensor signals, (ii) 
AE_table, AE_spindle and smcDC sensor signals, (iii) smcDC 
sensor signal, and (iv) vib_spindle sensor signal.

4. Results and discussion

Six ML baseline models and a meta-learning model based 
on DEL were trained and tested. For the baseline models, time, 
frequency, and time-frequency domain features were extracted
and z-normalized, for a total of 54 features (nine features per 
signal). PCA was selected for dimensionality reduction and the 
explained variance of the components is presented in Fig. 4. 

Fig. 3. Meta-learning model architecture.

Fig. 4. Explained variance of PCA of the NASA Ames/UC Berkeley dataset.
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The first 25 components were selected, as they represent 95% 
of the variance in the dataset.

Table 3 presents the hyperparameters of the baseline models, 
as well as performance metrics during testing. The 
hyperparameters were obtained using a randomized search 
cross validation method. Coefficient of determination (R2),
mean absolute error (MAE) and root-mean-squared error 
(RMSE) were chosen as performance metrics. The performance 
of the models is best when closest to one for R2 and closest to 
zero for MAE and RMSE. The best performing model was kNN, 
followed closely by XGBoost. However, the scores indicate 
that the models could have an error in average of 0.0739 mm in 
its prediction. In industrial scenarios, a maximum tool wear of 
0.3 mm is recommended by manufacturers. Thus, the error in 
the predictions represents a 25% of the industrial tool life and 
would not be acceptable in shop floors.

After training and testing the baseline models, the meta-
learning model based on DEL was implemented. As with the 
baseline models, the data was z-normalized. Furthermore, since 
DL models require big data, a sliding window approach was 
adopted to augment the dataset. The sliding window was of size 
250 (one second) and stride 25 (1/10 of a second), increasing 
the dataset size from 166 datapoints with a sequence length of 
5400, to 31323 datapoints with a sequence length of 250.

All strategies shared the same model hyperparameters. The 
LSTM, BiGRU, and DEL models were trained for 1000 epochs, 
with an early stop after 50 epochs without model improvement. 
The CNN model required more epochs to generalize knowledge, 
so 4000 epochs with an early stop after 200 epochs were defined. 
All models used the ADAM optimizer with a learning rate of 
0.0001 and RMSE as loss function. To avoid overfitting, a 
dropout of 10% and L2 regularization factor of 0.00001 were 
implemented. The dataset was split stochastically into 48% for 
training, 12% for validation, and 40% for testing. The split was 
made stochastically to account for the variability in cutting 
conditions and tools that may occur in industrial shop floors. 

The performance results of the meta-learning model grouped 
by input data strategies, as well as a comparison with state-of-
the-art DL models, is presented in Table 4. Results in the table 
prove the meta-learning strategy benefits, improving the quality 
of the predictions by combining the predictions of the base 
learners. For the base learners, the LSTM and BiGRU models 

performed better than the CNN model with combinations of 
signals. However, when using individual signals, the LSTM 
model was the worst predictor.

The model outperformed the results of the two reference 
models that used all signals in the dataset, with an RMSE of 
0.0145 mm and an R2 score of 0.9967. Moreover, it is shown 
that the LSTM and BiGRU base learners also outperformed the 
reference models with RMSE of 0.0207 and 0.0149 mm, 
respectively. Thus, the efficiency of the data cleaning and 
augmentation process before training DL models was proven. 

The performance results for the meta-learning model when 
trained with smcDC and AE signals showed a bigger margin of 
error with an RMSE of 0.0473 mm and an R2 score of 0.9660. 
Nevertheless, the model required less inputs and the results are 
comparable to the reference models that use all signals. Finally, 
the results when using individual signals were underperforming.
To achieve good results, the architecture of the models was 
expanded, adding two extra layers to the base learners. With 
smcDC, the model had an RMSE of 0.1699 mm and an R2 score 
of 0.5715, and, with vib_spindle, the model had an RMSE of

Table 3. Hyperparameters and performance metrics of baseline models.

Model Hyperparameters R2 RMSE MAE

Decision 
tree

Default parameters 0.7225 0.1371 0.0534

SVM C = 9.8143, ε = 0.0012, 
Kernel = RBF

0.8639 0.0961 0.0595

Random 
forest

Max. depth = 20, No. 
estimators = 437

0.8471 0.1018 0.0610

Gradient 
boosting

Learning rate = 0.0975, 
Max. depth = 13, No. 
estimators = 169

0.8570 0.0984 0.0623

XGBoost Learning rate = 0.0098, 
Max. depth = 12, No. 
estimators = 577, Min. 
child weight = 4

0.8952 0.0843 0.0478

kNN No. neighbours = 2, 
Weights = Distance

0.9195 0.0739 0.0224

Table 4. Performance results of the meta-learning model. Best performing models are highlighted in bold.

All signals DC and AE signals DC signal Vibration signals

Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

LSTM 0.9935 0.0207 0.006 0.9454 0.0601 0.0225 0.3606 0.2078 0.1435 0.4712 0.1910 0.1348

CNN 0.9611 0.0507 0.0308 0.8597 0.0963 0.0632 0.5114 0.1815 0.1119 0.5778 0.1707 0.1169

BiGRU 0.9966 0.0149 0.0042 0.9630 0.0494 0.0229 0.3650 0.2067 0.1433 0.7997 0.1176 0.0748

Meta-learning 0.9967 0.0145 0.0055 0.9660 0.0473 0.0220 0.5715 0.1699 0.1048 0.8072 0.1130 0.0714

CNN with spectral 
subtraction [5]

0.088

LSTM with 
process 
information [6]

0.0456 0.0322

Hybrid LSTM [7] 0.9837 0.0364 0.0258

TM3C-KT [8] 0.0424
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0.1130 mm and an R2 score of 0.8072. Consequently, further 
research efforts should be given to improve the performance of 
the meta-learning model when using individual signals.

Fig. 5 presents a comparison of the VB curve for both the 
ground truth values, as well as the predicted values of the meta-
learning model, when using all inputs. The data was ordered by 
ground truth value, as all cases and runs were augmented and 
shuffled stochastically during splitting. It may be observed that 
the model predicted values very close to the ground truth 
throughout the wear curve, proving the effectiveness and good 
performance of the approach when using sensor fusion.

5. Summary and conclusions

In this paper, a tool wear monitoring approach based on 
meta-learning using deep ensemble learning has been presented. 
The meta-learning approach is proposed for improving 
performance when predicting tool wear in machining. The 
approach uses deep ensemble learning to combine the outputs 
of multiple deep neural network models, i.e., LSTM, CNN, and 
BiGRU models, resulting in improved accuracy and robustness.

The meta-learning approach has been validated using the 
NASA Ames/UC Berkeley open access milling dataset, which 
was augmented and denoised. A combination of all the signals, 
smcDC and AE signals, and individual signals (smcDC and 
vib_table) were used for the validation tests. The best results 
were obtained when using all the signals, substantially 
outperforming state of the art DL-based reference models and 
proving the benefits of sensor fusion. Future work will involve 
investigating the ability of the meta-learning approach to detect 
tool wear in other machining datasets. Furthermore, data pre-
processing and feature extraction techniques, as well as DL 
model hyperparameter tuning and architectural changes, will be 

studied to improve the performance of the approach when using 
individual signals as inputs.
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