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A B S T R A C T

Chatter is a harmful self-excited vibration that commonly occurs during milling processes. Data-
driven chatter detection and prediction is critical to achieve high surface quality and process
efficiency. Most existing chatter detection approaches are based on external sensors, such as ac-
celerometers and microphones, which require installation of extra devices. Some recent studies
have proved the feasibility of online chatter detection using internal signals such as drive motor
current. This study aims to investigate the effectiveness of different internal signals extracted
from CNC system for chatter detection and compare them with external acceleration signals.
The external and internal signals are first compared with time–frequency analysis using Discrete
Fourier Transform and Ensemble Empirical Mode Decomposition approaches. Two chatter
detection methods are then presented based on manually and automatically extracted features
respectively. The first method uses two nonlinear dimensionless indicators, C0 complexity and
Power Spectral Entropy, of filtered signals. The second approach uses autoencoder for automatic
feature extraction and Support Vector Machine as classifier for chatter identification. A series
of milling experiments are conducted and chatters are intentionally created by changing the
milling process parameters. Multiple internal signals are collected using software provided by
the machine manufacturer. Results show that several internal CNC signals, such as the nominal
current signal and the actual torque signal, can achieve comparable performance to external
signals for chatter detection.

. Introduction

Chatter is a type of adverse self-excited vibration of the tool-workpiece couple that widely occurs in milling process. It is usually
enerated due to the dynamic flexibility of the elements involved in the machining process: the machine tool structure, the spindle,
he tool/toolholder, the fixture system or the workpiece to be machined itself. Chatter can damage the surface quality of the finished
orkpiece, and reduce the tool and spindle lifetime, thus decrease the overall productivity of the manufacturing system. Chatter
rediction, detection and suppression has been a critical task for machining-related research and industrial applications.

The most popular chatter detection methods are based on the frequency differences between stable and chatter processes. During
table milling processes, the vibrations and forces are periodic at the tooth passing frequency and its harmonics; whereas when
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chatter occurs, forced vibrations appear not only at the harmonics of the tooth passing frequency, but also at the vicinity of the
chattering natural frequency as well as the integer multiples of frequencies away from the chatter frequency [1]. The target of
chatter detection is to separate the extra vibrations caused by chatter from periodic vibrations caused by tooth passing. For this
target, it is necessary to capture different signals that can reflect the vibrations using robust and practical sensors.

Under the Industry 4.0 context, data-driven online chatter detection enabled by Industrial Internet of Things (IIoT) and machine
earning has been widely adopted in many intelligent manufacturing systems. Depending on the data sources, Aslan and Altintas
1] categorized data-driven online chatter detection approaches into direct and indirect approaches:

• The direct approaches detect chatter using signals that are directly generated by the vibrations of the tool-workpiece couple
without any filtering or transforming. These signals are usually gathered from external sensors installed directly on the
workpiece or cutting tool, such as accelerometers and dynamometers; or sensors placed close to the tool-workpiece couple
such as acoustic emission (AE) sensors.

• The indirect chatter detection approaches calculate or estimate the chatter vibration using signals that are not directly
generated by the vibrations of the tool-workpiece. These signals are usually collected from adjacent machine components
such as force signals from the tool holder or spindle; or from the machine control system such as the current signals from the
internal feed drive motor.

The main advantage of the direct approaches is that they are more sensitive and reliable since the signals can directly reflect the
haracteristics of the vibrations. The direct approaches have been widely applied during the past decades especially with the rapid
evelopment of machine learning in recent years. However, there are some drawbacks of these approaches limiting their applications.
irstly, it requires extra installation of sensors which increases cost and may cause inconvenience to the milling operations [2];
oreover, the signals need additional analog–digital converter in some cases which increases the complexity of the system [1]; in

ddition, the sensors placed near the workpiece, such as microphones and AE sensors, may include ambient noise from the machine
r other sources, and they may be amplified at certain frequencies during milling process, which can be classified as chatter, resulting
n false chatter alarms [3,4].

Some indirect chatter detection approaches use signals generated by a smart tool holder or spindle, which contains capacitive
ensors or force sensors [5,6]. These signals can be used for chatter detection based on the predefined structural dynamic models
etween the tool holder or spindle and the cutting tool tips. Although such approaches can provide accurate and reliable signals,
hey are usually expensive and may reduce the dynamic stiffness of the spindle [1]. To cope with the aforementioned drawbacks
aused by the installation of costly sensors and smart tool holders or spindles, the inherent signals from the machine control system,
uch as the drive motor current signal, have been attracting more attention recently as another promising data source for indirectly
hatter detection. Previous studies have verified the feasibility of chatter detection using current signals collected from spindle drive
otor and CNC system. More details of these studies are introduced in the next section.

The rest of the paper is organized as follows. Section 2 reviews some of the pertinent studies; Section 3 introduces the overall
ata analysis and chatter detection methods. Section 4 presents a case study, and demonstrates the chatter detection approaches
ogether with the performance evaluation results. Section 5 concludes the paper by summarizing the main contributions and existing
imitations.

. Related work

A recent study [7] reviewed the existing studies about chatter detection and the result shows that most of the studies are using
irect approaches based on external sensors. Among them accelerometer [8,9], dynamometer [10,11], microphone [12,13] are the
ost popular data sources. To capture more features of chatter, some studies [14,15] use multiple types sensors to collect different

ignals. Despite the high sensitivity and reliability, there are obvious disadvantages of these direct approaches. For example, force
ensors are usually bulky and expensive, and their installation range has limitations [16]; microphones are limited by installation
ocation, operating mode, and they are sensitive to environmental noise [17].

In addition to the external sensors, some integrated capacitive and force sensors in advanced machine components also provide
ignals for indirect chatter detection. A smart tool holder containing capacitive sensors was developed in [5], which enables four-
omponent cutting force measurement in milling process. A Spindle Integrated Force Sensor (SIFS) system was presented in [6] which
ntegrates Piezo-electric force sensors into the stationary spindle housing for cutting force measurement with dynamic compensation.
he collected force signals can be used for chatter detection based on the predefined structural dynamic models between the tool
older or spindle and the cutting tool tips. Although such approaches can provide accurate and reliable signals, they are usually
xpensive and may reduce the dynamic stiffness of the spindle [1].

To avoid the installation of costly sensors and smart components, some studies attempt to use signals from built-in machine
ools and control systems for chatter detection. Soliman and Ismail [18] explored the feasibility of using spindle drive current signal
o detect chatter of a vertical milling machine. They proved that drive current signals can transmit chatter frequencies reliably.
ocusing on the turning process, Liu et al. [2] used three current sensors to measure the three-phase current of feed motor in order
o detect chatter. Lamraoui et al. [19] presented a chatter detection approach for CNC milling process based on spindle motor
urrent signals collected from the electric cabinet with three hall-effect current clamps. The main limitation of these approaches is
he data acquisition method which still relies on additional sensors or equipment.

The inherent drive motor current signal has been attracting more attention in recent years since it avoids additional sensors
2

r equipment of the machining system. A disturbance observer theory–based method was proposed in [20,21]. A disturbance
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Table 1
Internal signals captured from Heidenhain TNC 640 CNC.

Signals Description Axis Frequency

a act Actual axis acceleration value [m∕s2] or [◦∕s2], calculated via the position encoder.
Actual spindle acceleration value [rpm∕s], calculated via the speed encoder.

X, Y, Z 1∕3 kHz

v act Actual axis feed rate [mm∕min] or [◦/min], calculated via the position encoder.
Actual spindle speed value [rpm], calculated via the speed encoder.

X, Y, Z 1∕3 kHz

s act Actual position [mm] or ◦ with respect to the machine coordinate system M-CS X, Y, Z 1∕3 kHz
M actual Actual torque value [N m] X, Y, Z, S1 10 kHz
I N int Integral-action component of nominal current value [A] X, Y, Z, S1 10 kHz

Accelerometer Acceleration [m∕s2] captured from external accelerometer installed to the workpiece X, Y, Z 3.24 kHz

observer enables using only the servo information of the spindle control system to detect cutting torque variations which cause the
chatter. Low-pass filters and case dependent band-pass filters are commonly used to process the captured information to identify the
chatter frequency. In order to define the band-pass frequency of the filters, manual intervention is needed to tune the parameters
of the filter according to the cutting conditions and structural frequencies of the machine tool and workpiece [1]. To address this
limitation, Aslan and Altintas [1] used the readily available CNC drive current commands to detect chatter based on the dynamics of
closed spindle velocity controller which is identified with available CNC functions and digital communication features. This method
requires a deep understanding of the spindle control system of the machine.

Modern CNC systems can provide rich information about the machining process parameters including the drive current and
orque. These signals can be extracted with customized software provided by the machine manufacturer. The aim of this paper
s to investigate the effectiveness of different internal signals extracted from CNC system for chatter detection, specifically for the
ool-workpiece couple chatter. The external accelerometer signals will be used as benchmark for comparison. Different from previous
tudy [1], this paper aims to avoid analyzing the structural characteristics of the machining system. It will enable data scientists
nd engineers to implement chatter detection systems even without deep knowledge of the CNC system.

. Methodology

The overall workflow of this study is illustrated in Fig. 1. Firstly, external acceleration signals and internal CNC signals are
athered from the milling machine and CNC system. Then, the time–frequency analysis is performed using Fast Fourier transform
FFT) and Ensemble Empirical Mode Decomposition (EEMD) approaches. Based on the preliminary analysis results, the obvious
nsignificant signals are removed and the selected signals are then used for chatter detection. Two chatter detection methods are
tilized based on manually extracted features and automatically extracted features respectively. The former method adopts two
ndicators for identifying chatter, namely the C0 complexity and Power Spectral Entropy (PSE); whereas the latter uses autoencoder
or feature extraction and Support Vector Machine (SVM) for chatter prediction. Finally, the performance of chatter detection
etween external and internal signals is compared. More details of each step are explained as follows.

.1. Data acquisition

The milling experiments in this study are conducted with a 5-axis Mikron MILL P800U milling machine manufactured by GF
achining Solutions.1 The control unit of the machine is Heidenhain TNC 640.2 Various signals can be extracted from the Heidenhain

CNC system using an accompanying software named TNCscope. These signals represent different perspectives about the milling
process on multiple axes such as feed rate, spindle position, motor current, torque and electric power etc. Among these signals, the
torque signal and the current signal that controls torque are most relevant to chatter vibrations according to the previous study [18].
They will be the main investigation targets in this paper. In addition, an external MONTRONIX PulseNG accelerometer is attached
to the workpiece to directly capture the acceleration signals of the workpiece vibrations, which will be used as benchmark for
evaluating the performance of internal signals for chatter detection.

Table 1 lists all the signals captured for this study including their description and sampling frequency. Each signal contains three
or four axes. The 𝑋, 𝑌 and 𝑍 axes are the Cartesian axes of the machine, which are related to the linear movement of the tool. The
S1 axis is the spindle of the machine related to the rotational axis of the tool. In addition, the main working plane is the X-Y plane,
which is perpendicular to the 𝑍 axis. The rotational axis of the spindle S1 is parallel to the 𝑍 axis. The depth of pass is given in
he 𝑍 axis during machining.

1 https://www.gfms.com/com/en/machines/milling/5-axis/mikron-mill-p-u-series.html
2 https://www.heidenhain.com/products/cnc-controls/tnc-640
3
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Fig. 1. Workflow for data acquisition and chatter detection.

3.2. Time–frequency analysis

The collected data during the milling process are time series with relatively high frequencies. It is difficult to understand
their characteristics directly from the original time domain. Moreover, chatter usually happens at certain frequencies. Therefore,
time–frequency analysis is an efficient approach to obtain the key characteristics of the signals.

Fourier analysis is a common approach to covert a time domain signal to a representation in the frequency domain. The discrete
Fourier transform (DFT) can decompose a sequence of data into a series of frequency components. FFT accelerates the DFT by
factorizing the DFT matrix into sparse factors containing mostly zeros [22]. In this study FFT is used to preliminarily explore the
frequency characteristics of the captured signals aiming to identify the chatter frequency ranges.

Empirical Mode Decomposition (EMD) is time–frequency analysis method that can decompose a signal into a set of physically
meaningful Intrinsic Mode Function (IMFs) and a residual trend. It is effective for decomposing nonlinear and non-stationary signals
since it does not require predefined base functions [23]. However, it suffers from the mode mixing problem which may result in
incorrect characteristic information of the signal [24]. The noise-assisted EEMD method was then proposed to address this problem
by utilizing the Gaussian white noise’s statistical property of uniform distribution to improve the distribution of extreme points in
original signal [8,25]. The theoretical foundation and algorithm of EEMD is introduced in [25,26]. In this study, an open source
program package named libeemd [27] is used to perform the EEMD algorithm.
4
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3.3. Chatter detection methods

Time–frequency analysis provides insights about the key characteristics of the signals in the frequency domain. To implement
hatter detection in real applications, it is necessary to extract the key features and represent them with certain indicators. These
eatures can be extracted manually with conventional approaches or automatically with different machine learning methods.

.3.1. Chatter detection based on conventional feature extraction
Two nonlinear dimensionless indicators, C0 complexity and PSE, were used in a previous study [8] and proved to be effective

or chatter detection. They can properly represent the signal features in time domain and frequency domain respectively.

C0 complexity. C0 complexity is a nonlinear complexity analysis method proposed by Fang et al. [28] and further explored and
ptimized by En-hua et al. [29] and Cai and Sun [30]. The main advantage of the C0 complexity method is that it enables a robust
stimation with small dataset and does not need coarse graining preprocessing [8]. The aim of the C0 complexity method is to

calculate the proportions of irregular random components in complex time series. It first removes the regular components from the
original signal and then calculate the energy ratio of random parts to the original signal. A larger C0 value represents a higher level
of complexity, meaning the signal is closer to random time series.

The calculation of the C0 complexity is based on FFT, making the computation fast. The key steps of the C0 complexity algorithm
are described as follows:

(1) For a time series 𝑥(𝑡), perform FFT and obtain the Fourier transformation: 𝐹 (𝑘) = 𝐹𝐹𝑇 (𝑥(𝑡)).
(2) Calculate the mean square value of 𝐹 (𝑘):

𝐺𝑁 = 1
𝑛

𝑛
∑

𝑗=1
∣ 𝐹 (𝑘) ∣2 (1)

where 𝑛 is the length of the time series 𝑥(𝑡).
(3) Input a parameter 𝑟(𝑟 > 1) and keep the spectrum components that are larger than 𝑟𝐺𝑁 unchanged, whereas replace the other

components with zero:

𝐹 (𝑘) =

{

𝐹 (𝑘) if |𝐹 (𝑘)|2 > 𝑟𝐺𝑁

0 if |𝐹 (𝑘)|2 ≤ 𝑟𝐺𝑁
(2)

where 𝑟(𝑟 > 1) is a given positive constant whose recommended range is 5 to 10 in practical applications.
(4) Calculate the inverse fast Fourier transform (IFFT) of 𝐹 (𝑘): �̃�(𝑡) = 𝐼𝐹𝐹𝑇 (𝐹 (𝑘)).
(5) Finally the C0 complexity is defined as:

𝐶0 =
∑𝑛

𝑡=1 ∣ 𝑥(𝑡) − �̃�(𝑡) ∣2
∑𝑛

𝑡=1 ∣ 𝑥(𝑡) ∣2
(3)

The range of C0 complexity value is a real number between zero and one. It is zero for a constant time series and approaching
to zero for a periodic signal. For a stochastic random time series with independent identical distribution and has finite four order
moment, the C0 value converges to one with a probability of one [30].

∙ Power spectral entropy. PSE is a quantitative information entropy that can quantify the spectral complexity of a signal and reflect
the uncertainty levels of information [31,32]. It is calculated based on the probability density function of the frequency components
of a signal [33]. The key calculation steps of the PSE algorithm [8] are explained as follows:

(1) For a time series 𝑥(𝑡), perform FFT and obtain the Fourier transformation 𝐹 (𝑘) = 𝐹𝐹𝑇 (𝑥(𝑡)).
(2) Calculate the power spectrum of the Fourier transformation:

𝑠(𝑓 ) = 1
2𝜋𝑛

∣ 𝐹 (𝑘) ∣2 (4)

where 𝑛 is the length of the time series 𝑥(𝑡).
(3) Estimate the probability density function of the power spectrum by normalization over all frequency components:

𝑃𝑖 =
𝑠(𝑓𝑖)

∑𝑛
𝑡=1 𝑠(𝑓𝑡)

; (𝑖 = 1, 2,… , 𝑛) (5)

where 𝑃𝑖 is the corresponding probability density of the frequency component 𝑓𝑖, and 𝑠(𝑓𝑖) is its spectral energy.
(4) Calculate the PSE and normalize it by the factor 𝑙𝑛(𝑛):

𝑃𝑆𝐸 =
−
∑𝑛

𝑡=1 𝑃𝑖 ⋅ 𝑙𝑛(𝑃𝑖)
𝑙𝑛(𝑛)

(6)

Similar to the C0 complexity, the range of PSE value is also between zero and one. A larger PSE represents a higher level of
uncertainty and the distribution of the frequency components is comparatively even, which means larger proportion of irregular
random components in the original signal.
5
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Fig. 2. Experiment setup and data acquisition workflow.

3.3.2. Chatter detection based on automatic feature extraction
The aforementioned conventional manual feature extraction requires profound understanding of the signals through time–

frequency analysis. it depends heavily on the experts’ domain knowledge. The quick development of machine learning technologies
enables automatic feature extraction using algorithms such as autoencoder.

∙ Autoencoder. An autoencoder is a special type of artificial neural network that can learn efficient representations of input
information. It is typically composed of an input layer, multiple hidden layers and an output layer. The first half of the network,
i.e. the encoder, compresses the input signal into a specified number of dimensions; and the second half, i.e. the decoder, attempts
to reconstruct the original signal based on the compressed data. During this encoding–decoding process, the network is trained
by reducing the insignificant information from the original signal. It has been widely used for dimensionality reduction and noise
removing in many domains. Some recent studies [15,34,35] have also applied it for chatter detection. The output of the encoding
layers of an autoencoder network, usually the middle hidden layer, represents the key features of the original signal. It makes
autoencoder an efficient approach for automatic feature extraction. These extracted features can be further used as input for
supervised learning with algorithms like SVM. An example of such combination for chatter detection was demonstrated in a previous
study [15]. The stacked-denoising autoencoder (SDAE) and Adaboost-SVM are used to analyze acceleration signals and achieved
promising results even considering samples with wrong labels. This study will follow a similar strategy by replacing the combination
of SDAE and Adaboost-SVM with conventional autoencoder and SVM considering the samples in this study are cleaned without
wrong labels.

4. Experiments and results

4.1. Experiment setup

A series of experiments are conducted using the aforementioned milling machine to capture the external and internal signals as
listed in Table 1. The material of the workpiece is AISI 1100 steel and the size is 80 mm × 80 mm. The dimension of the cutting
tool is 25 mm with two cutting edges. The model of the tool holder is Sandvik 490-025A20-08L with Sandvik 490R-08T304E-ML
2030 insert. Six face milling trials are conducted with constant cutting speed (𝑉 𝑐, 250 m∕min), spindle rotational speed (𝑛𝑡, 3200
rpm) and feed per tooth (𝑓𝑧, 0.14 mm∕z), while the cutting depths (𝑎𝑝) increases from 0.75 mm to 3.5 mm (0.75 mm, 1.50 mm,
2.00 mm, 2.50 mm, 3.00 mm, 3.50 mm). Each trial is executed with one pass producing a 25 mm× 80 mm slot. As shown in Fig. 3,
chatter started to appear at cutting depth 2.50 mm and getting more severe at 3.00 mm and 3.50 mm.

The internal CNC signals and external acceleration signals are collected as depicted in Fig. 2. The milling machine and its CNC
system are introduced in the Methodology section. The internal signals are first exported through the control system as TNCScope
Data Files (.sco), which are then transformed to CSV formats using the TNCScope software provided by Heidenhain. The external
acceleration signals are collected from the MONTRONIX PulseNG accelerometer which are attached to the workpiece. The signals
are extracted with the accompanying Montronix software and exported as CSV files. Both internal and external signals are finally
imported to RStudio for further analysis.

The roughness and waviness of the machined surfaces are measured using a Mitutoyo SJ 210 roughness tester. Three measure-
ments are performed for each of the machined surfaces. The measurement results are listed in Table 2. As depicted in Fig. 4, in
general no significant roughness variations in 𝑅𝑎, 𝑅𝑧, 𝑅𝑡 and 𝑅𝑚𝑎𝑥 are found between normal and chatter conditions, although the
roughness at lower cutting depths seems to be lower. The analysis of the waviness profile shows that chatter affects the waviness
parameters, increasing the values of 𝑊𝑎,𝑊𝑧,𝑊𝑡 and 𝑊𝑚𝑎𝑥 significantly.

4.2. Data analysis

The data collected from both the internal CNC system and the external accelerometer during the six machining trials are first
investigated in time and frequency domain following the workflow depicted in Fig. 1.
6
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Fig. 3. Milling surfaces without chatter (left) and with chatter (right).

Fig. 4. Roughness (𝑅𝑎 , 𝑅𝑧 , 𝑅𝑡, 𝑅𝑚𝑎𝑥) and waviness (𝑊𝑎 ,𝑊𝑧 ,𝑊𝑡, 𝑊𝑚𝑎𝑥) measurement results at different cutting depths.

Table 2
Roughness and waviness measurement results of machined surfaces with different cutting depths (Units: roughness: microns, waviness:
microns, cutting depth: mm).

AP 0.75 1.50 2.00 2.50 3.00 3.50

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

𝑅𝑎 0.83 0.03 0.93 0.02 0.54 0.02 0.55 0.03 0.64 0.04 0.60 0.02
𝑅𝑧 4.72 0.11 5.54 0.10 3.55 0.10 3.54 0.13 3.80 0.16 3.73 0.22
𝑅𝑡 6.69 0.20 7.40 0.47 5.26 0.27 5.22 0.13 5.72 0.71 5.00 0.37
𝑅𝑚𝑎𝑥 6.08 0.33 7.19 0.35 4.83 0.28 4.88 0.27 5.22 0.70 4.58 0.27

𝑊𝑎 0.26 0.00 0.28 0.03 0.22 0.02 0.33 0.04 0.94 0.24 0.83 0.13
𝑊𝑧 0.34 0.04 0.33 0.11 0.24 0.04 0.44 0.14 2.73 0.83 2.39 0.22
𝑊𝑡 1.54 0.05 1.46 0.09 1.44 0.18 1.73 0.12 4.02 1.03 3.67 0.72
𝑊𝑚𝑎𝑥 1.54 0.05 1.46 0.09 1.44 0.18 1.73 0.12 4.02 1.03 3.67 0.72

4.2.1. FFT analysis
Fig. 5 shows the comparison between normal and chatter cutting status of the external accelerometer signal on one of the three

axes. The time domain represents the raw data and the frequency domain represents the output of FFT. Significant difference can
be identified in the frequency domain as shown in Fig. 5. Extra frequency components appear near 1100 Hz and 1200 Hz, which
correspond to chatter frequencies. Similar pattern can be found in the other two accelerometer axes. This result agrees with previous
studies about chatter detection that are based on accelerometer signals.

The same analysis approach is applied to the internal signals. As shown in Fig. 6, no significant extra frequency components are
identified in the frequency domain with the default amplitude scale, which is different from the accelerometer signals. Similar results
can be found in other internal signals. In order to obtain more chatter-related details, the internal signals are further analyzed with
7



Mechanical Systems and Signal Processing 185 (2023) 109812X. Zheng et al.
Fig. 5. External accelerometer signal (𝑍-axis) in time domain and frequency domain. (a) normal cutting without chatter, depth of cut: 1.50 mm; (b) cutting
with chatter,depth of cut: 3.5 mm.

Fig. 6. Internal CNC signal (I-N-int-Z) in time domain and frequency domain. (a) normal cutting without chatter, depth of cut: 1.50 mm; (b) cutting with
chatter,depth of cut: 3.5 mm.

zoomed-in scale in the frequency domain around the chatter frequencies as identified in the accelerometer signal (approx. 1125 Hz
and 1230 Hz). The details of some exemplary signals (s-act-X, I-N-int-X, I-N-int-S1, M-actual-S1) are shown in Fig. 7. The results show
that extra frequency components corresponding to chatter appear in some of the internal signals such as I-N-int-S1, M-actual-S1 at a
much smaller scale than the accelerometer signals; whereas the other internal signals, such as s-act-X, I-N-int-X, are not affected by
the chatter vibrations. The possible reasons for this result include: firstly, the chatter vibrations are transmitted from the cutting tool
to the spindle drive motor through the machine’s structural component chain and servo amplifiers, which can reduce and distort
the vibration signals; secondly, limited by the bandwidth of the data acquisition software, the sampling frequency of some internal
8
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Fig. 7. Internal signals (s-act-X, I-N-int-X, I-N-int-S1, M-actual-S1) in frequency domain.(a) normal cutting without chatter, depth of cut: 1.50 mm; (b) cutting
with chatter,depth of cut: 3.5 mm.

signals (the a-act, v-act and s-act signals in Table 1) is lower than the frequency of chatter vibrations (333 Hz < 1125 Hz), making
them incapable of capturing the chatter characteristics.

Previous studies [1,6] have proposed to use a state observer to reduce the influence of the amplifiers and structural dynamic
modes and dynamically compensate the drive motor current signals. These approaches require deep knowledge about the machine
and controlling system, such as the control loop of the spindle drive and the related transfer function of the current loop. It increases
the difficulty of developing chatter detection applications. The preliminary frequency analysis, as shown in Fig. 7, implies the
potential of using the relevant internal signals directly for chatter detection without compensation. The following sections will
investigate their performance based on popular machine learning algorithms.

4.2.2. Band-pass filtering
The raw signal captured during milling processes contains mainly three types of components: the normal periodic components

caused by the rotation of the cutter, the abnormal chatter vibration components, and the stochastic perturbation components caused
by system noise and inhomogeneous material etc.[8]. The main challenge of chatter detection is to distinguish it from the periodic
components since their amplitudes are much higher than the noise components.

A comb filter was proved to be reliable for removing the periodic components by filtering out the spindle rotation frequency,
tooth passing frequency and their harmonics [8]. It performs well to the external acceleration signals where the chatter vibrations
are directly captured by the attached accelerometer. However, after tested in this study, the result is not significant when applying
such a comb filter to the internal signals, possibly due to the decrease of chatter amplitude during the signal transmitting from
cutting tool to drive motor. A band-pass filter is therefore applied to filter the raw signal in this study. As shown in Fig. 7, the
chatter vibration components are located around 1125 Hz and 1230 Hz in the frequency domain. This has been confirmed by both
external and internal signals. Therefore, a band-pass filter that passes frequencies between 1100 Hz and 1250 Hz can remove all
the periodic components.

4.2.3. EEMD decomposition
The filtered signals are then decomposed with the EEMD method aiming to identify the most sensitive IMFs which can reflect

the chatter information. As shown in Fig. 8, the information of external acceleration signals (𝑋, 𝑌 ,𝑍 axes) is heavily concentrated
9
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Fig. 8. Relative energy ratio of four IMFs of external accelerometer signals (𝑋, 𝑌 ,𝑍 axes from left to right) during six cutting depths.

Fig. 9. Relative energy ratio of four IMFs of internal signals during different cutting depths (solid red border: significant for chatter detection; dotted blue
border: possibly significant for chatter detection; no border: insignificant for chatter detection).

in IMF-1. The EEMD result indicates the significant difference between normal and chatter situations which can be used for chatter
detection. It is obvious that there is a huge jump of the relative energy ratio from normal situations (three left columns) to chatter
situations (three right columns).

Similar pattern occurs in EEMD results of some internal signals. As shown in Fig. 9, most of energy of internal signals is also
concentrated in the first IMF. Notable differences between normal and chatter situations can also be observed in some of the signals
(marked with solid red border), including I-N-int-Z, I-N-int-S1, M-actual-Y, M-actual-Z and M-actual-S1. Possible differences can be
seen on some other signals (marked with dotted blue border) including I-N-int-X and M-actual-X. They need to be further evaluated
to confirm their feasibility for chatter detection. The other internal signals do not show obvious differences between normal and
chatter situations, thus they are excluded in the following analysis. It is worth to mention that, all the signals related to 𝑎 − 𝑎𝑐𝑡,
𝑣 − 𝑎𝑐𝑡 and 𝑠 − 𝑎𝑐𝑡 (see Table 1) are insignificant for chatter identification. This result agrees with the previous FFT analysis result.
The details of every plot in Fig. 9 are provided in Appendix A.

4.3. Chatter detection

4.3.1. C0 complexity and Power Spectral Entropy
The frequency analysis and EEMD decomposition results indicate the possibility of chatter detection based on external signals

and some of the internal signals. However, these results are not suitable to be used directly for automatic chatter detection. To
cope with this problem, the C0 complexity and PSE of the IMF-1 component of possibles signals are calculated as key indicators
for chatter. Fig. 10 shows the C complexity values (solid yellow lines) and PSE values (dotted blue lines) of two signals (external
10
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Fig. 10. C0 complexity and Power Spectral Entropy of signals in one second: (a) external acceleration on 𝑍-axis signal; (b) internal I-N-int-S1 signal.

Table 3
C0 complexity of external and internal signals.

AP (mm) External signals Internal signals

Accelerometer I N int M actual

X Y Z X Y Z S1 X Y Z S1

0.75 0.256 0.239 0.195 0.643 0.632 0.628 0.493 0.640 0.617 0.642 0.513
1.50 0.225 0.223 0.184 0.644 0.624 0.636 0.497 0.645 0.619 0.643 0.530
2.00 0.272 0.238 0.160 0.650 0.622 0.631 0.511 0.631 0.609 0.628 0.498
2.50 0.120 0.132 0.092 0.546 0.600 0.332 0.272 0.601 0.421 0.462 0.447
3.00 0.109 0.133 0.088 0.553 0.617 0.365 0.289 0.613 0.440 0.479 0.394
3.50 0.102 0.140 0.087 0.583 0.601 0.415 0.326 0.602 0.460 0.440 0.392

Table 4
Power Spectral Entropy of external and internal signals.

AP (mm) External signals Internal signals

Accelerometer I N int M actual

X Y Z X Y Z S1 X Y Z S1

0.75 0.509 0.583 0.473 0.158 0.126 0.145 0.123 0.156 0.129 0.144 0.176
1.50 0.473 0.548 0.474 0.163 0.138 0.143 0.130 0.172 0.125 0.144 0.205
2.00 0.550 0.524 0.465 0.162 0.135 0.148 0.145 0.166 0.134 0.147 0.202
2.50 0.461 0.430 0.434 0.143 0.135 0.113 0.051 0.159 0.111 0.110 0.112
3.00 0.409 0.404 0.392 0.148 0.140 0.122 0.050 0.136 0.101 0.140 0.100
3.50 0.374 0.420 0.378 0.152 0.133 0.115 0.053 0.151 0.132 0.140 0.104

acceleration on 𝑍-axis signal and internal I-N-int-S1 signal). The complete results of the three external signals and eight internal
signals are listed in Table 3 (C0 complexity) and Table 4 (PSE).

As shown in Fig. 10, in general, the C0 complexity and PSE of normal situations (cutting depths 0.75, 1.50 and 2.00 mm) are
much larger than chatter situations (cutting depths 2.50, 3.00 and 3.50 mm). For the external acceleration signal (10-(a)), both C0
and PSE values decrease gradually from cutting depth 0.75 mm to 2.00 mm. Then a sharp decrease occurs from 2.00 mm to 2.5 mm,
when chatter appears. Then the C0 values decrease very slow with increasing cutting depths, while the SPE values decrease slightly
faster than C0 values. Similar results are obtained from the other two external signals (acceleration 𝑋 and 𝑌 axes), as demonstrated
in Tables 3 and 4. This result agrees with the previous study [8].

As to the internal signal (I-N-int-S1), a sharp decrease also occurs from 2.00 mm to 2.5 mm. The difference is that the C0 and
SPE values do not decrease inside normal situations (cutting depths 0.75, 1.50 and 2.00 mm) and chatter situations (cutting depths
2.50, 3.00 and 3.50 mm). There is even a slight increase. This might be caused by the band-pass filter, whereas the root cause need
to be further investigated. This phenomenon has no impact on chatter detection, but it creates difficulties for categorizing chatters
into different severity levels. As listed in Tables 3 and 4, similar patterns are observed from other internal signals such as I-N-int-Z,
I-N-int-S1, M-actual-Y, M-actual-Z and M-actual-S1, whereas the other signals such as I-N-int-X, I-N-int-Y and M-actual-X shows less
significant variations. This result agrees with the EEMD analysis result shown in Fig. 9.
11
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Fig. 11. Distribution of signal segments (length 0.5 s, without overlap) according to their C0 complexity and PSE values: (a) external acceleration on 𝑍-axis;
(b) internal I-N-int-S1 signal.

The calculation results can be explained by the physical meaning of C0 complexity and PSE indicators. The C0 complexity
represents the proportion of random components in a signal. As shown in Fig. 7, the filtered signals (between frequency 1100 Hz and
1250 Hz) consist of mainly stochastic noise during normal milling processes, thus the C0 values are relatively high. In contrast, during
the chatter situations, the filtered signals are dominated by the periodic chatter components (at approx. 1125 Hz and 1230 Hz),
whereas the proportion of random components decrease correspondingly. Therefore the C0 values drop significantly.

Similarly, the PSE indicator also reflects the uncertainty level of a signal. Higher PSE values represent higher levels of uncertainty
and the frequency components distribution of the signals are comparatively even. Therefore, the PSE values of filtered normal
situation signals, which contains mainly noises, are higher than the PSE values of chatter situations.

The aforementioned analysis result proves that the C0 complexity and PSE can be used as reliable indicators for chatter
identification. The combination of both indicators can differentiate chatter from stable situations which is further proved by applying
them to multiple signal segments. Fig. 11 shows the distribution of C0 and PSE values of some signal segments (acceleration 𝑍-axis
and I-N-int-S1) during the six cutting depths. The segments are obtained by cutting the original signal with a moving window (length
0.5 s, without overlap). Totally 15 segments are obtained for each signal during one cutting depth.

All the data analysis is conducted in the RStudio software on a computer equipped with Intel(R) Core(TM) i7-8565U CPU, 16 GB
RAM, and a 64-bit Window 11 operating system. The average computing time for the C0 complexity and PSE values of each external
acceleration signal segment (length 0.5 s) is 0.0134 (std. 0.0008) second. The average computing time for each internal CNC signal
segment (length 0.5 s) is 0.0709 (std. 0.0013) second. It is longer than the external signals because they contain more data due to
higher sampling frequency.

As shown in Fig. 11, there is a clear boundary between normal and chatter situations. The normal segments are located at the
bottom-left corner with smaller C0 and PSE values, and the chatter segments at the top-right corner with larger C0 and PSE values.
The internal I-N-int-S1 signals shows even better clustering performance with this approach than the external acceleration signal.
This result enables to define a threshold according to the C0 and PSE values to indicate the occurring of chatter.

The C0 and PSE calculation results of all the signals are presented in Appendix B. Similar to the above result, obvious boundaries
can be observed in all three external acceleration signals (Appendix B - Fig. 15) and some internal signals including I-N-int-Z,
I-N-int-S1, M-actual-Y, M-actual-Z and M-actual-S1 (Appendix B - Figs. 16 and 17), with a few mixed segments in some signals. In
general, the internal signals obtained equivalent performance for chatter detection to the external acceleration signals. No clear gaps
are found in the other internal signals, i.e. I-N-int-X, I-N-int-Y and M-actual-X. It means these signals are insignificant for chatter
detection.

4.3.2. Autoencoder
The C0 complexity and PSE approach relies on the data preprocessing, including the time–frequency analysis and filtering etc.

It requires deep understanding about the chatter characteristics in order to manually extract the proper features. Machine learning
algorithms such as autoencoder enables automatic feature extraction by training a neural network with historical data.

A five-layer autoencoder (number of node: 100-20-10-20-100) is built to extract features for chatter detection using the previous
signal segments (length 0.5 s, without overlap). The raw data of the captured signals are the input of the autoencoder, and the labels
are two-fold, i.e. ‘‘chatter’’ (cutting depth: 0.75, 1.5, 2.0 mm) and ‘‘normal’’ (cutting depth: 2.5, 3.0, 3.5 mm). The segments are
split to training and testing datasets. Two different splitting trials are tested to better evaluate the performance of different signals
for chatter detection.
12
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Fig. 12. Relative energy ratio of four IMFs of internal V-act signals during different cutting depths.

Table 5
Chatter prediction results based on different signals using SVM and features extracted by autoencoder (Accuracy: number of correctly
predicted samples divide total number of samples; Sensitivity: number of correctly predicted chatter samples divide total number of
chatter samples.).

External signals Internal signals

Accelerometer I N int M actual

X Y Z X Y Z S1 X Y Z S1

Chatter (3.0) 15 15 15 12 6 15 15 10 15 14 12
Normal (1.5) 15 15 15 10 10 13 15 9 11 14 15
Accuracy 1.00 1.00 1.00 0.73 0.53 0.93 1.00 0.63 0.87 0.93 0.90
Sensitivity 1.00 1.00 1.00 0.80 0.40 1.00 1.00 0.67 1.00 0.93 0.80

Chatter (2.5) 13 13 14 7 6 14 13 7 14 13 10
Normal (2.0) 15 15 15 15 8 11 15 11 11 11 15
Accuracy 0.93 0.93 0.97 0.73 0.47 0.83 0.93 0.60 0.83 0.80 0.83
Sensitivity 0.87 0.87 0.93 0.47 0.40 0.93 0.87 0.47 0.93 0.87 0.67

• For the first trial the segments belonging to cutting depth 1.5 mm (normal) and 3.0 mm (chatter) are taken out as testing data.
The former ones are captured during stable milling process which is still far from chatter appearance, whereas the latter ones
are captured when chatter already reach a comparatively high level. These two groups are expected easier to be distinguished.

• For the second trial, the segments of cutting depth 2.0 mm (normal) and 2.5 mm (chatter) are leave out for testing. These two
groups near the threshold when chatter started to occur. They are expected to be more difficult to be distinguished.

For each trial, the training samples are first used to train the autoencoder model (hyperbolic tangent activation function, 100
epochs). The ten features of the third layer are then extracted and used as input to train a SVM classifier. Finally, the trained SVM is
used to predict chatter with the testing samples. The prediction results of the three externals acceleration signals and eight internal
signals, including the insignificant ones according to C0 and PSE approach, are listed in Table 5.

As shown in Table 5, the external acceleration signals correctly classified all the 30 testing samples for the first trial (cutting
depth 1.5 and 3.0 mm); and misclassified two (𝑋 and 𝑌 axis) and one (𝑍 axis) chatter samples as normal for the second trial
((cutting depth 2.0 and 2.5 mm)), achieving 93% (87%) and 97% (93%) accuracy (sensitivity) respectively.
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Fig. 13. Relative energy ratio of four IMFs of internal I-N-int signals during different cutting depths (solid red border: significant for chatter detection; dotted
blue border: possibly significant for chatter detection; no border: insignificant for chatter detection).

As comparison, the internal signal I-N-int-S1 achieves equivalent performance as the external signals which correctly classified all
testing samples for the first trial and misclassified two samples for the second trial. The signals I-N-int-Z, M-actual-Y, M-actual-Z and
M-actual-S1 also obtained comparable performance achieving a minimum 87% (80%) accuracy (sensitivity) for the first trial and a
minimum 80% (67%) accuracy (sensitivity) for the second trial. This result agreed with the previous C0 and SPE calculation result,
and confirmed the capability of these signals for chatter detection. No significant performance obtained from the other internal
signals, i.e. I-N-int-X, I-N-int-Y and M-actual-X, meaning they are not suitable for chatter detection.

In terms of computing time, the training of corresponding autoencoder models takes longer time than the C0 and PSE approach,
whereas the prediction based on SVM takes negligible short time. In practical applications, the autoencoder models can be trained
off-line in advance. More specifically, for each external acceleration signal, the average time for training the autoencoder model is
30.6449 (std. 0.0651) seconds; for training the SVM model is 0.0060 (std. 0.0013) second, and for predicting 30 segments is 0.0042
(std. 0.0004) second. For each internal CNC signal, the average time for training the autoencoder model is 93.9254 (std. 2.3022)
seconds which is longer due to larger data size; for training the SVM model is 0.0053 (std. 0.0001) second, and for predicting 30
segments is 0.0046 (std. 0.0005) second. This result indicates that the autoencoder and SVM approach is much faster than the C0 and
PSE approach for on-line chatter detection once the autoencoder is pre-trained, making it more suitable for large scale production
scenarios.

4.3.3. Deep Convolution Neural Networks
The two approaches introduced above are among the most popular signal processing methods for chatter detection. These two

methods separate the feature extraction and chatter detection processes. Some recent studies use advanced algorithms such as deep
Convolution Neural Networks (CNN) [36,37] for chatter detection without separating it with the feature extraction process. Although
algorithms are not the main concern of this study, it is beneficial to explore the performance of the external and internal signals with
such an algorithm. For this purpose, a four-layer CNN model is created and the same data samples (15 segments for each signal)
are used for training and testing the model. The parameters of the model such as the number of nodes of each layer, dropout rate,
training epochs etc., are adjusted for different signals to obtain the optimal result.

The segments of cutting depth 2.0 mm (normal) and 2.5 mm (chatter) are used for testing at this stage since they are more
difficult to differentiate. The training and testing result of each signal is shown in Table 6. The training accuracy is achieved during
the training process of the model using the rest of the segments; and the testing accuracy and sensitivity are the prediction result
14
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Fig. 14. Relative energy ratio of four IMFs of internal M-actual signals during different cutting depths (solid red border: significant for chatter detection; dotted
blue border: possibly significant for chatter detection; no border: insignificant for chatter detection).

Table 6
Chatter prediction results based on different signals using Convolution Neural Networks (Accuracy: number of correctly predicted samples
divide total number of samples; Sensitivity: number of correctly predicted chatter samples divide total number of chatter samples.).

External signals Internal signals

Accelerometer I N int M actual

X Y Z X Y Z S1 X Y Z S1

Chatter (2.5) 10 10 12 5 7 12 9 5 4 4 6
Normal (2.0) 15 15 15 14 12 15 15 11 15 15 15
Training acc. 0.94 0.98 0.99 0.85 0.89 0.98 0.96 0.89 0.81 0.95 0.93
Testing acc. 0.83 0.83 0.90 0.63 0.63 0.90 0.80 0.53 0.63 0.63 0.70
Sensitivity 0.67 0.67 0.80 0.33 0.47 0.80 0.60 0.33 0.27 0.27 0.40

for normal (2.0 mm) and chatter (2.5 mm) situations. Due to limited number of training samples, both the internal and external
signals produced lower accuracy and sensitivity than the previous SVM method. The external 𝑍-axis acceleration signal and internal
signal I-N-int-Z obtained the best performance with 90% accuracy and 80% sensitivity. Different from the previous two methods,
the internal signal I-N-int-S1 produced relatively lower performance with 80% accuracy and 60% sensitivity, which is similar to
external acceleration X an Y signals. The performance of the rest internal signals is not as good as in the previous methods.

4.4. Discussion

The experiment results proved that internal CNC signals can achieve satisfying performance for chatter detection with both
conventional and automatic feature extraction methods. The internal signals have different levels of capabilities for chatter detection.
The CNC current signal I-N-int-S1 and I-N-int-Z achieved equivalent performance to the external acceleration signals. This agrees
with the fact that chatter vibrations has larger amplitude on the Z axis which is vertical to the machining plane. The torque signals
M-actual-Y, M-actual-Z and M-actual-S1 also obtained satisfying performance with the C0 and PSE approach, as well as autoencoder
and SVM approach, although they produced imperfect results with CNN method due to limited training dataset.

As a complement of this study, the CNN method was also explored preliminarily which produced lower performance for both
internal and external signals. The main reason is that the training dataset is too small. Only small amount of data samples are
15
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Fig. 15. Distribution of signal segments (length 0.5 s, without overlap) according to their C0 complexity and PSE values: external acceleration on 𝑋, 𝑌 and 𝑍
axis.

collected since the algorithm is not the main concern of this study. However, this primary exploration demonstrates the feasibility
of using internal signals for chatter detection with CNN method, since at least two of the internal signals, i.e. I-N-int-Z and I-N-int-S1,
achieved comparable results with external signals. In practical applications, the performance of internal signals can be significantly
improved by increasing the number of training samples and optimizing the parameters of the CNN models.

5. Conclusion

This paper investigated the effectiveness of multiple internal CNC system signals of a milling machine for tool-workpiece couple
chatter detection, and compared them with external acceleration signals captured directly from the workpiece. The FFT and EEMD
methods were used to explore the time–frequency characteristics of those signals. Two chatter detection approaches were verified
based on manually extracted features and automatic features extracted with the autoencoder algorithm. The CNN method was
also investigated as a complement. This study proved that the signals extracted from the inherent CNC system can be used to
replace external signals for online chatter detection. It could avoid the installation of extra devices thus to reduce cost and improve
production efficiency.

Due to limited resources, this paper could not cover all the aspects involved in chatter detection using internal signals. There
are still some problems remained to be addressed in future studies:
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Fig. 16. Distribution of signal segments (length 0.5 s, without overlap) according to their C0 complexity and Power Spectral Entropy values: internal I-N-int
signals.

• Only the cutting depth was changed during the experiments whereas the other cutting parameters remain the same such as
workpiece material, spindle speed and feed rate per tooth etc. These parameters might impact the performance of different
internal signals for chatter detection. More experiments need to be conducted in future to obtain a more comprehensive result.

• The spindle drive system and relevant control loop of the milling machine were not analyzed in this paper, which is essential
for explaining the performance of different signals. Such analysis need to be integrated in future studies. Similar experiments
can be conducted with other machines and CNC systems.

• In addition to accelerometer, there are many other sensors that are widely used, such as acoustic and force sensors. The internal
signals need to be compared with them to obtain a more reliable result.

• More advanced algorithms can be adopted to analyze the internal signals. It will require more complete experiments with
longer machining time and more changing variables to produce a large amount of data samples for training different models.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Xiaochen Zheng reports financial support was provided by European Union. Dimitris Kiritsis reports financial support was
provided by European Union. Pedro Arrazola reports financial support was provided by Basque Government. Daniel Echebarria
reports financial support was provided by Basque Government. Patxi Aristmuno reports financial support was provided by Basque
Government. Mikel Saez de Buruaga reports financial support was provided by Basque Government.
17



Mechanical Systems and Signal Processing 185 (2023) 109812X. Zheng et al.
Data availability

Data will be made available on request.

Acknowledgments

The authors hereby thank the EU H2020 project QU4LITY (GA:825030 - Digital Reality in Zero Defect Manufacturing) and the
Elkartek project INTOOL II (KK-2020/00103) for their financial support to this research work.

Appendix A. Relative energy ratio of four IMFs of internal signals during different cutting depths

See Figs. 12–14.

Appendix B. C𝟎 complexity and PSE values of different signal segments

See Figs. 15–17.

Fig. 17. Distribution of signal segments (length 0.5 s, without overlap) according to their C0 complexity and PSE values: internal M-actual signals.
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