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Abstract: Explainable Artificial Intelligence (XAI) has gained significant attention in recent years
due to concerns over the lack of interpretability of Deep Learning models, which hinders their
decision-making processes. To address this issue, counterfactual explanations have been proposed to
elucidate the reasoning behind a model’s decisions by providing what-if statements as explanations.
However, generating counterfactuals traditionally involves solving an optimization problem for
each input, making it impractical for real-time feedback. Moreover, counterfactuals must meet
specific criteria, including being user-driven, causing minimal changes, and staying within the data
distribution. To overcome these challenges, a novel model-agnostic approach called Real-Time Guided
Counterfactual Explanations (RTGCEx) is proposed. This approach utilizes autoencoders to generate
real-time counterfactual explanations that adhere to these criteria by optimizing a multiobjective loss
function. The performance of RTGCEx has been evaluated on two datasets: MNIST and Gearbox, a
synthetic time series dataset. The results demonstrate that RTGCEx outperforms traditional methods
in terms of speed and efficacy on MNIST, while also effectively identifying and rectifying anomalies
in the Gearbox dataset, highlighting its versatility across different scenarios.

Keywords: explainable AI; autoencoders; counterfactual explanations

1. Introduction

Recently, the field of Artificial Intelligence (AI) has witnessed significant progress
with the rise of Deep Learning (DL) techniques. These methods have shown great success
in various areas, but they also have limitations, particularly in terms of interpretability
and robustness. DL models tend to be complex, with millions of parameters, which can
make it challenging to understand the reasoning behind their predictions. Additionally,
these models are trained on historical data that may contain biases, resulting in unfair and
incorrect decisions. These limitations are especially problematic in industrial domains,
where a lack of trust in the models’ predictions can lead to the use of less effective but more
interpretable methods. To address these limitations, research in the area of Explainable
Artificial Intelligence (XAI) has gained traction recently. The goal of XAI is to find a
balance between model effectiveness and interpretability, allowing for understanding of
the decision-making processes of AI models.

In recent years, many methods have been proposed regarding the explainability of
ML models. Some of these methods use rules to explain other models and are called
rule-based methods, such as Anchors [1] or RuleFit [2]. In a different way, attribution-based
methods attempt to attribute an influence score to each input variable. These methods are
the most used ones in the XAI community, and the influence attributions can be computed
in many ways. One way uses perturbation-based methods, such as SHAP [3] or LIME [4],
which make small variations in the input variables of a model to see how the output varies.
Another way is by gradient-based methods, such as Integrated Gradients [5] for example,
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which compute the attributions as a function of the partial derivatives of the target with
respect to the input features.

Other methods for explaining model decisions utilize counterfactual explanations [6].
Counterfactual explanations are presented in the form of conditional statements, which aim
to answer the question “what would happen if. . . ?”. In the context of Machine Learning,
a counterfactual explanation describes the modifications that must be made to the input
of a model in order to alter its prediction. The properties of counterfactual explanations
may vary depending on the particular context in which they are employed [7]. In summary,
the following are the general properties that a counterfactual explanation should meet,
according to [7]:

• Data closeness: Given an input x, the counterfactual explanation xc f has to be a
minimal perturbation of x, i.e.,

x ≈ xc f . (1)

Related to data closeness [7] also mentions sparsity. However, this property can be a
challenge when working with continuous variables because it may not be possible to
find a parsimonious explanation by only modifying a few features.

• User-driven: The counterfactual explanation has to be user-driven, meaning that the
user can indicate whether the class yc f , to which a counterfactual xc f belongs, can be
specified. That is, given a black-box model f (·)

f (xc f ) = yc f . (2)

Otherwise, in multiclass problems, for example, the changes would only be directed
to the closest class, excluding explanations for other classes. Note that this property
also ensures the validity property of [7].

• Amortized inference: The counterfactual explanations have to be straightforward,
without solving an optimization problem for each input to be changed. In this way,
the explanation model should learn to predict the counterfactual. The algorithm needs
to quickly calculate a counterfactual for any new input x. Otherwise, the process of
generating explanations is time-consuming.

• Data manifold closeness: In addition to satisfying the property of data closeness,
a counterfactual instance has to be close to the distribution of the data (pdata), i.e., the
changes have to be realistic, i.e.,

xc f ∼ pdata. (3)

• Agnosticity: The generation of counterfactuals can be applied to any machine learning
model without relying on any prior knowledge or assumptions about the model.

• Black-box access: The generation of counterfactuals can be achieved with access to
only the predict function of the black-box model.

In order to fulfill all these properties, it is necessary to design an algorithm that
optimizes various aspects in the loss function. This loss function should penalize large
changes, out-of-distribution counterfactuals, and counterfactual explanations that do not
match the counterfactual label defined by the user. Thus, in this paper, we propose Real-
Time Guided Counterfactual Explanations (RTGCEx), a model-agnostic algorithm that is
capable of creating counterfactual explanations in real time through the use of autoencoders,
by optimizing a loss function that takes into account all these properties.

The paper is organized as follows: In Section 2, we review the related works in the
field. In Section 3, we present the proposed algorithm in detail. Section 4 describes the
experimental framework used to evaluate RTGCEx. In Section 5, we present and analyze
the results obtained from the experiments. Finally, in Section 6, we summarize the main
contributions of this work and discuss directions for future research.



Appl. Sci. 2023, 13, 2912 3 of 17

2. Related Work

The provision of counterfactual explanations in machine learning models is becoming
increasingly important in the field of XAI (eXplainable Artificial Intelligence) because it
resembles human reasoning, where we often use what-if statements when providing an
explanation for an event [8]. However, most classical methods for generating counterfactual
explanations involve solving an optimization problem for each input datum x to generate
the counterfactual explanation xc f , which can be time-consuming and result in explanations
that are not straightforward.

One of the first methods proposed for this purpose was CEM [9], which generates
minimal changes to an input that change the model prediction to its nearest class. Similarly,
Van Looveren et al. [10] introduced a term regarding class prototypes to speed up the
explanation process and allow for the specification of the target class. However, these
methods still involve solving optimization problems and thus, the explanations are not
straightforward. More recent proposed methods, such as PIECE [11], generate more
plausible counterfactual explanations and also produce semi-factual explanations, which
are the largest possible feature modifications made to the input without changing the
classification [12]. However, PIECE is only applicable for CNN-based models. Another
recent method, DiCE [13], generates a set of k different counterfactual explanations for each
input, but is limited to binary classification problems.

The limitations of these methods in terms of time-consuming and non-straightforward
explanations have led to the development of amortized inference methods, which consist of
models trained to generate counterfactual explanations instantaneously. These are typically
generative models, such as Generative Adversarial Networks (GANs) [14,15] or Variational
Autoencoders (VAEs) [16]. However, these methods also have their own limitations, such
as the difficulty of training GANs, instability or non-convergence [17], or the lower quality
reconstructions of VAEs. Recently, it has been proposed to use a simple AE to generate
counterfactual explanations. Balabsubramanian et al. [18] propose a simple method that
considers binary classification problems. In this method, the counterfactual explanations
are obtained by minimally changing the latent representation of the encoder so that the
prediction given by a classifier f (·) to the decoded sample reaches a predefined target
probability p. Additionally, most of these methods have focused on image or tabular data
rather than time series data.

3. Real-Time Guided Counterfactual Explanations

Real-Time Guided Counterfactual Explanations (RTGCEx) is a model-agnostic algo-
rithm that uses an autoencoder for generating real-time counterfactual explanations for a
given black-box model f (·).

In the RTGCEx framework, as depicted in Figure 1, the generation of counterfactual
explanations is achieved through the interaction of three components: a Generator (G),
an Autoencoder (AE), and a black-box model f (·). The black-box model f (·) can be any
machine learning model, as long as the predict function is accessible. As discussed in
Section 1, the counterfactual explanations produced by RTGCEx must satisfy certain criteria,
such as data closeness, closeness to the data distribution, and user-specified explanations,
among others. To ensure that these properties are upheld, given a trained black-box model
f (·), RTGCEx involves two phases of training:

Autoencoding phase:

Involves training an autoencoder by minimizing a loss function that measures the
distance between the original samples x ∈ D, where D denotes the dataset on which f (·)
has been trained, and their reconstructions x′.
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Counterfactual generation phase:

This phase involves training G to ensure the properties discussed in the previous
section, i.e.,

f (x) ≈ x, f (G(x)) = yc f and xc f ∼ ρdata. (4)

For this purpose, only the weights corresponding to G are trained, but the training
makes use of the capacities that f (·) has to classify the inputs and the capacities that AE
has to reconstruct the inputs that are similar to the ones learned during the training phase.
Training G involves minimizing the following loss function:

LG,f,AE(x, xc f , x′c f yc f , y′c f ) =α · LG(x, xc f )+

β · Lf (yc f , y′c f )+

γ · LAE(xc f , x′c f )

(5)

where α, β, γ > 0 are regularization coefficients. The first term, LG(x, xc f ), measures the
distance between x and the counterfactual sample xc f , which ensures that the changes are
minimal. The second term, Lf(yc f , y′c f ), measures the distance between the predefined
counterfactual class yc f and the prediction given by f (·) to xc f , i.e., y′c f , which ensures
that the input x is changed to the class yc f defined by the user. Finally, the third term,
LAE(xc f , x′c f ), is the reconstruction error of the counterfactual instance xc f when using the
AE. Because the AE has been trained with instances of the dataset D, the reconstruction
error will be smaller when xc f is similar to the samples used in training, so LAE(xc f , x′c f )
penalizes unrealistic changes of the input x, ensuring the data manifold closeness property.

RTGCEx: Real-Time Guided Counterfactual Explanations

GENERATOR

BLACK-BOX MODEL

AUTOENCODER

Figure 1. Real-Time Guided Counterfactual Explanations.

4. Experimental Framework

In this section, we present a description of the experimental setup. Below, we describe
the datasets used, the models employed, and the evaluation metrics.

4.1. Datasets
MNIST.

The MNIST [19] dataset is a widely-used dataset in the machine learning community,
specifically for the task of image classification. It consists of a total of 70,000 images,
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with 60,000 images being used for training and 10,000 images being used for testing.
Each image is a 28 × 28 pixel grayscale image of a handwritten digit, labeled with the
corresponding digit (from 0 to 9).

Gearbox.

The Gearbox dataset is obtained from a gearbox vibration simulator [20]. The simulator
generates vibration data for a gearbox with rotating axes that operate at a fixed speed.
The overall operation of the rotatory machine is illustrated in Figure 2. The simulator
considers an idealized gearbox in which the pinion is coupled to an input shaft connected
to the primary engine, while the gear is connected to an output shaft. The shafts are
supported by roller bearings located within the gearbox housing. The behavior of the
bearings and gearbox housing is monitored using two accelerometers, labeled A1 and
A2. In this research, we focus on analyzing the signals obtained from accelerometer A1,
which records the contributions of the two shafts, as well as the coupled gear. Depending
on the types of failures that can occur within the gearbox, these contributions can vary.
In particular, we focus on faults caused by a crack in the inner race of the bearing (as shown
in Figure 3). This type of fault generates high-frequency vibrations in the gearbox structure
between the bearing and the response transducer.

Figure 2. General scheme of the gearbox.

Figure 3. Inner race affected by a crack.



Appl. Sci. 2023, 13, 2912 6 of 17

4.2. Employed Models

As previously stated, RTGCEx consists of various sub-models. Here we present the
architectures used for each use case for these sub-models.

4.2.1. MNIST
Black-box model.

The black-box model f (·) used has the same architecture as the one used in [10]. That
is, the model consists of two convolutional layers with 32 and 64 2 × 2 filters, respectively,
with ReLU activation function. In addition, a 2 × 2 MaxPooling layer is applied after
each convolutional layer to reduce dimensionality and avoid overfitting. Dropout with a
fraction of 30% is applied during training. After the second MaxPooling layer, the output is
flattened to apply a fully connected layer with 256 units, ReLU activation function, and 50%
dropout. Finally, another fully connected layer with 10 units and a softmax activation
function is used for classification. For more details, see Figure 4.
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313628x28x1
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CONV, stride = 1 ReLU Flatten Dropout Maxpool 2x2 Softmax
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0.1

0

0
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0
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0
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Figure 4. Black-box model f (·) used in MNIST.

Autoencoder.

The encoder is composed of two convolutional layers with 32 and 64 2 × 2 filters,
respectively, with ReLU activation function. The output of the second convolutional layer
is flattened to feed a fully connected layer with 16 units, from which a 16-dimensional
latent vector z is obtained. Then, this vector is fed to a fully connected layer that transforms
the z vector into a vector of the same dimensionality as the flattened output of the second
convolutional layer. This vector is reshaped into a 7 × 7 × 64 tensor to initialize the
transposed convolutions. The decoder has three transpose convolution layers, with 64, 32,
and one 2× 2 filters, respectively. All the transpose convolutions are followed by a sigmoid
function. For more details, see Figure 5.

31363136

16

28x28x1
14x14x32

7x77x64 7x77x64

CONV, stride = 2 ReLU Flatten

z

Reshape Transpose CONV, stride = 2 Sigmoid

14x14x32
28x28x1

Fully Connected Network

Figure 5. AE used for ensuring data-manifold closeness.
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Generator.

The architecture of the generator closely resembles that of the AE (see Figure 5),
except that in this case the latent vector z is concatenated with the one-hot representation
of the class to which the input has to be changed, i.e., yc f .

4.2.2. Gearbox
Black-box model.

The proposed black-box model f (·) for the classification stage is illustrated in Figure 6.
This model is based on the anomaly detection model proposed by Cañizo et al. [21], which is
a combination of 1-Dimensional Convolutional Neural Networks (1D-CNN) with Recurrent
Neural Networks (RNNs). The architecture is designed to be valid for both multivariate
and univariate time series. The classificator f (·) is composed of three parts: the CNN
backbone, the RNN head, and the classification head.
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IF
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Figure 6. Proposed black-box model.

The CNN backbone, as shown in Figure 7, is composed of three convolutional
blocks, each containing 1D-CNNs with a ReLU activation function, Batch Normaliza-
tion, and Dropout regularization layers. The 1D-CNNs in the convolutional blocks are
composed of 128, 64, and 32 filters, respectively, with a kernel length of 5 and a stride
of 1. The proposed architecture processes the data in a window-based manner, whereby
the input data x ∈ RL are divided into a sequence of T windows x = (x1, . . . , xT) and
the convolutional blocks are applied to each window separately, resulting in a vector of
features Ft for each time window xt. These extracted features are the inputs of the RNN
head, which is composed of a Bi-LSTM layer that processes the features in chronological
order in both directions, allowing for the identification of hidden temporal patterns within
the extracted features. Finally, the last hidden state is input into a fully connected layer
with a sigmoid activation function, and the final output is computed as

y′ = sigmoid(WchT + bc) (6)

where Wc and bc are the weights and bias of the fully connected layer, respectively.
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Figure 7. Composition of the convolutional blocks of the CNN backbone.

Autoencoder.

The proposed Autoencoder (AE) is composed of a Bi-directional Long Short-Term
Memory (Bi-LSTM) network with 128 hidden units for both the encoder and the decoder.
The forward and backward hidden states of the encoder are concatenated to obtain the
hidden state representation he

t = [
−→
he

t,
←−
he

t], which contains the context information around
time step t = 1, . . . , T. The last hidden state he

T is used as the vector representation z ∈ Rdz ,
which contains the compressed information of the input sequence.

In a traditional sequence-to-sequence learning framework, the vector z is used by
the decoder to transform it back into a sequence x′ = (x′1, . . . , x′T) as close as possible
to the encoder input x = (x1, . . . , xT). However, when dealing with long sequences,
the latent representation z may not accurately capture all the information present in the
input. To address this issue, attention mechanisms have been introduced to allow the
decoder to focus on the most relevant encoder hidden states at each time step. In this work,
an attention mechanism is used, whereby the attention weights are computed with an
alignment score function. The attention weights at time-step t are calculated as:

αt,i =
exp

(
score

(
hd

t , he
i

))
∑T

j=1 exp(score
(

hd
t , he

j

)
)

, (7)

s.t score
(

hd
t , he

i

)
= (hd

t )
>Wahe

i , (8)

ct =
T

∑
i=1

αi,the
t (9)

where αt,i are the attention weights, which represent the importance that the input at
position i has had over the output at time-step t, ct is the context vector, which is the sum
of the hidden states weighted by the attention weights, and Wa is the weight matrix to be
learned. The final reconstruction of x′t at time-step t is given by:

x′t = sigmoid(Wb[ct, hd
t ]) (10)

where Wb is the weight matrix of a fully connected layer.

Generator.

For the generator to be able to make minimal changes in x that result in it being
classified as a predefined counterfactual class yc f , the generator must consider both the
time series data and the counterfactual class. To accomplish this, the proposed generator in
Figure 8 is structured similarly to the autoencoder (AE) used for ensuring data manifold
closeness, but with the added step of concatenating each input window xt with the coun-
terfactual class yc f so that the information of the counterfactual class is included in each of
the hidden states. That is, each input window xt now becomes [xt, yc f ].
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. . .. .
 .

Figure 8. Proposed generator.

4.3. Loss Functions

In both use cases, the optimization problem is similar, so the loss functions that we
used in both cases are almost the same. As previously described, the training process
consists of two phases:

• Autoencoding phase: In this stage, we optimize a loss function with the aim of
learning to reconstruct the inputs x from the training dataset. The loss function
employed for this purpose is the mean squared error (see Equation (11)):

LAE(x, x′) =
1
N

N

∑
i=1

(x(i) − x′(i))2 (11)

where N denotes the number of training samples.
• Counterfactual generation phase: During this phase, the weights of the autoen-

coder and the black-box model are maintained constant, and the generator is op-
timized to minimize a loss function that incorporates three distinct terms (as shown in
Equation (5)).

– Data closeness loss: This loss function has to minimize the distance between the
original samples x and counterfactuals xc f . Thus, we employ the mean squared
error in both use cases:

LG(xc f , x′c f ) =
1
N

N

∑
i=1

(x(i)c f − x′(i)c f )
2. (12)

– Validity loss: This loss function has to ensure that the class given by the black-box
model y′c f matches the counterfactual class defined by the user, i.e., f (xc f ) = yc f .
As the MNIST use case is a multiclass problem and the Gearbox use case is a
binary classification problem, we use different loss functions here.
On the one hand, for MNIST, we used the categorical cross-entropy loss:

L f (yc f , y′c f ) =
1
N

N

∑
i=1

C

∑
j=1

y(i)
c f ,j · log(y′(i)c f ,j) (13)

where y(i)
c f is the one-hot encoded ground truth label and C is the number

of classes.
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On the other hand, for the Gearbox use case, we used the binary cross-entropy
loss:

L f (yc f , y′c f ) =
1
N

N

∑
i=1

(y(i)
c f · log(y′(i)c f ) + (1− y(i)

c f ) · log(1− y′(i)c f )) (14)

where yc f is 0 for normal data and 1 for anomalous data.
– Data manifold closeness loss: This loss function ensures that the generated coun-

terfactuals are close to the data manifold. Thus, it has to minimize the distance
between the generated counterfactuals xc f and the reconstruction given by the
AE for the counterfactuals x’c f . Therefore, the loss used for this was the mean
squared error:

LAE(xc f , x′c f ) =
1
N

N

∑
i=1

(x(i)c f − x′(i)c f )
2. (15)

4.4. IM1 and IM2 Metrics

To assess the interpretability of the counterfactuals generated with each method, two
metrics proposed by Van Looveren et al. [10], IM1 and IM2, have been used. On the one
hand, IM1 measures the ratio between the reconstruction error of the counterfactual xc f
using an AE specifically trained with instances of the counterfactual class (AEyc f ) and using
another AE trained with instances of the original class (AEy).

IM1(AEyc f , AEy, xc f ) :=

∥∥∥xc f −AEyc f (xc f )
∥∥∥2

2∥∥∥xc f −AEy(xc f )
∥∥∥2

2
+ ε

(16)

A smaller value of IM1 means that the counterfactual instance is easier to reconstruct
with the AE trained only with instances of the class yc f than with the AE trained only with
instances of the original class t0. This means that the counterfactual instance is closer to
the data manifold of the yc f class instances than to those belonging to the original class
t0. On the other hand, IM2 measures how close the counterfactual instance is to the data
manifold. To do so, it compares the reconstructions of the counterfactual instances when
using an AE trained with instances of all classes (AE) and the AE trained with instances of
the counterfactual class (AEyc f ). To make the metric comparable across all classes, IM2 is
scaled with the L1 norm of xc f .

IM2(AEyc f , AE, xcf) :=

∥∥∥AEyc f (xc f )−AE(xc f )
∥∥∥2

2∥∥∥xc f

∥∥∥
1
+ ε

(17)

When the reconstruction of xc f by AE and by AEyc f is similar, IM2 is low. A lower value of
IM2 makes the counterfactual instance more interpretable, because the data distribution of
the counterfactual class yc f describes xc f equally well as the distribution over all classes.

5. Results and Discussion

This section analyzes the results obtained with RTGCEx in both the MNIST and
Gearbox datasets.

5.1. MNIST

In order to train a generator to produce counterfactual explanations, it is necessary to
first train both an autoencoder (AE) and a black-box model f (·). The proper functioning of
both the AE and the model f (·) is crucial for the generator to operate correctly. As depicted
in Table 1, the performance of both the autoencoder and the black-box models was evaluated
before training the generator. The autoencoder was evaluated using the mean squared error
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(MSE) on the test set, resulting in a value of 0.007. This suggests that the autoencoder is
capable of accurately reconstructing the input data. On the other hand, the black-box model
was evaluated using accuracy score, which resulted in a value of 0.991. This implies that
the black-box model is able to correctly classify the majority of the images in the test set.

Table 1. Results obtained for the AE in terms of MSE and for the black-box model in terms of accuracy.

Model AE Black-Box Model

Metric MSE Accuracy
Value 0.007 0.991

After training the generator, experiments were conducted to investigate the perfor-
mance of the proposed RTGCEx method in comparison with a classical method, Counter-
factual Prototype (CFPROTO). Additionally, the impact of the loss function was evaluated
by comparing RTGCEx with its variant without the use of the AE. The results of these exper-
iments are illustrated in Figure 9, which presents a selection of examples of the generated
counterfactual instances. The original instances, along with their corresponding labels, are
displayed in the first column, while the counterfactual instances generated by CFPROTO,
RTGCEx without AE, and RTGCEx are displayed in the second, third, and fourth columns,
respectively. The first row of the figure illustrates how each algorithm converts an original
instance of the digit 9 into a 4. In this example, CFPROTO makes minimal modifications to
a small part of the upper side of the 9 by removing a few pixels. On the other hand, RTGCEx
without AE and RTGCEx make larger changes, but the final result appears more similar
to a 4 compared with the counterfactual generated by CFPROTO. Similarly, in the second
example, an 8 is converted into a 3, and it is observed that the counterfactual instances
generated by RTGCEx without AE and RTGCEx are clearer than the one generated by
CFPROTO. In the third example, a 7 is converted to a 9, and all methods produce counter-
factual instances that closely resemble a 9, although the instance generated by CFPROTO
may be more realistic. Lastly, in the fourth example, a 6 is changed to a 0 by removing the
pixels of the lower circle of the 6 and adding new pixels to join the upper part, creating a
complete circle.

The effectiveness of the proposed RTGCEx and RTGCEx without AE models were
evaluated by generating counterfactual instances for each test sample. In order to ensure
a fair comparison, the nearest prototype class yc f was first generated using CFPROTO,
and then instances of the same class were generated using RTGCEx and RTGCEx without
AE. The results of the evaluation are presented in Table 2, which shows the mean and
interquartile range (IQR) of each method in terms of the metrics IM1, IM2, and speed.
Following the criteria established for evaluation in [10], we multiplied the IM2 metric by 10.

In terms of IM1, both CFPROTO and RTGCEx performed better than RTGCEx without
AE. The results of CFPROTO and RTGCEx were similar, but CFPROTO had less variability,
with an IQR of 0.39, compared with 0.58 for RTGCEx. For IM2, RTGCEx outperformed
the other two algorithms. When comparing CFPROTO with RTGCEx without AE, it was
found that the mean of the values obtained with RTGCEx without AE was 0.08 points
lower than that of the values obtained with CFPROTO, and the variability was also lower.
The RTGCEx without AE results were significantly improved by introducing a term that
penalizes out-of-distribution changes, resulting in a decrease in mean IM2 values from 1.12
to 0.91 and a decrease in variability.

In terms of computational efficiency, CFPROTO took 17.40 s per iteration with a
variability of 0.09 s, while RTGCEx without AE and RTGCEx took 0.14 s per iteration with
a variability of 0.01 s. It should be noted that RTGCEx without AE and RTGCEx have the
same architecture and thus take the same amount of time at inference.
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Table 2. Summary of the results obtained in test for each method. Best results are highlighted in
bold.

Method IM1 IM2 (×10) Speed (s/it)
Mean IQR Mean IQR Mean IQR

CFPROTO 1.20 0.39 1.20 0.83 17.40 0.09
RTGCEx wo AE 1.40 0.63 1.12 0.74 0.14 0.01
RTGCEx 1.21 0.58 0.91 0.63 0.14 0.01

Original, 9

Original, 8

Original, 7

Original, 6

CFPROTO, 4

CFPROTO, 3

CFPROTO, 9

CFPROTO, 0 RTGCEx wo  AE, 0

RTGCEx wo  AE, 9

RTGCEx wo  AE, 3

RTGCEx wo  AE, 4 RTGCEx,  4

RTGCEx,  3

RTGCEx,  3

RTGCEx,  0

Figure 9. Examples of original and counterfactual instances generated with CFPROTO, RTGCEx
without AE, and RTGCEx.

In this research, the comparison of models is conducted by examining the distribution
of IM1 and IM2 values, rather than using statistical tests on large samples. This approach is
deemed more appropriate because the use of statistical tests on large samples can lead to
p-values that are extremely small, which can result in the conclusion of support for results
that have little practical significance [22]. We have a test set with 10,000 instances, and the
distribution of the IM1 and IM2 values obtained from each method are shown in Figure 10.
These distributions support the conclusions drawn from Table 2. Specifically, the means of
IM1 values for CFPROTO and RTGCEx are similar, while those of RTGCEx without AE
and RTGCEx have more variability. Additionally, the mean and variability of IM2 values is
lower when using RTGCEx compared with the other methods.

Furthermore, these distributions allow for the drawing of numerical conclusions
regarding the comparison of the models, such as the probability that a counterfactual
instance will have lower values in terms of IM1 or IM2 when using one method versus
another. These comparisons are shown in Table 3. For example, the value of 0.66 in the
first row and second column of the table indicates that there is a probability of 0.66 that the
IM1 value of an instance generated by CFPROTO will be less than an instance generated
by RTGCEx without AE. Additionally, we can see that RTGCEx improves drastically over
RTGCEx without AE, as an instance generated by RTGCEx has a probability of having
lower IM1 and IM2 of about 0.75 compared with one generated with RTGCEx without AE.
When comparing RTGCEx with CFPROTO, in terms of IM2, the probability of obtaining
better counterfactual instances with RTGCEx is 0.62 with respect to CFPROTO. As for IM1,
CFPROTO and RTGCEx have the same probability that the value will be lower using one
method or the other.
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Figure 10. Distribution plots for each method in terms of IM1 and IM2 (×10) metrics. The dashed
lines represent the mean. (a) IM1 distribution plots. (b) IM2 (×10) distribution plots.

Table 3. This table represents the probabilities that a counterfactual instance has a lower IM1 or IM2
depending on the method used.

Method CFPROTO RTGCEx wo AE RTGCEx
IM1 IM2 IM1 IM2 IM1 IM2

CFPROTO - 0.66 0.53 0.50 0.38
RTGCEx wo AE 0.34 0.47 - 0.26 0.24
RTGCEx 0.50 0.62 0.74 0.76 -

Upon analyzing the metrics used to measure the interpretability of counterfactual
instances, we have found that IM1 does not always accurately reflect the interpretability of
the instances. In some cases, a lower value of IM1 does not necessarily indicate that the
counterfactual instances are more interpretable. To illustrate this point, we present two
examples of counterfactual instances generated using CFPROTO and RTGCEx in Figure 11.

From the visual representation, it can be observed that the instances generated using
CFPROTO appear to be less realistic than those generated using RTGCEx. This is reflected
in the value of IM2, as instances generated by CFPROTO have a higher value of IM2
than those generated by RTGCEx. However, it is also worth noting that even though
the instances generated by CFPROTO are not as realistic, in this case, their IM1 value
is significantly lower than that of RTGCEx. In [23], the authors also found that two
counterfactuals that were supposed to be similarly realistic exhibited a significant difference
in the IM1 metric, with one having a notably smaller value than the other. This discrepancy
highlights the limitations of using IM1 as the sole metric to measure the interpretability of
counterfactual instances.

CFPROTO, y_cf = 9 
IM1 = 1.19, IM2 = 0.16

RTGCEx, y_cf = 9 
IM1 = 1.57, IM2 = 0.07

CFPROTO, y_cf = 5 
IM1 = 0.84, IM2 = 0.18

RTGCEx, y_cf = 5 
IM1 = 1.67, IM2 = 0.12Original, 6

Original, 4

Figure 11. Examples of two counterfactual instances generated by CFPROTO and RTGCEx, where
IM2 is lower when using RTGCEx, and IM1 is higher.
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5.2. Gearbox

In order to evaluate the performance of the AE and the function f (·), experimental
analysis was conducted. The results of these experiments are presented in Table 4.

For the autoencoder, we employed the mean squared error (MSE) metric to evaluate
its performance. The low MSE values obtained suggest that the autoencoder is able
to accurately reconstruct the input samples. In addition, for the black-box model, we
employed three commonly used metrics in anomaly detection (precision, recall and F1
score) to evaluate its performance. Our results show that the black-box model was able to
effectively detect all anomalies while maintaining a high level of precision.

Table 4. Results obtained with the autoencoder and the black-box model f (·).

Model AE Black-Box Model

Metric MSE P R F1
Value 2.301× 10−4 0.973 1 0.986

In this use case, the generator can be utilized for two distinct purposes: first, it
can be employed for identifying and rectifying anomalies by providing the user with an
understanding of typical behavior and facilitating the correction of deviances. Secondly, it
can be utilized for the generation of anomalous data, by introducing unusual patterns to
otherwise standard instances.

Figure 12 illustrates the utilization of RTGCEx for addressing anomalies. The input
to the model is a simulation that contains anomalies caused by a crack in the inner race.
These anomalies occur periodically as the bearing passes through the crack, and they are
correctly identified by f (·) with a label of 1. In this scenario, RTGCEx can be employed to
determine the minimal modifications necessary to the anomalous simulation for it to be
classified as normal by f (·). In the figure, the red signal represents the anomalous journey
and the green signal represents the signal generated by RTGCEx. Upon closer examination,
it can be observed that RTGCEx focuses on altering the areas where the anomalies appear,
as indicated by the red shaded area.

0 1000 2000 3000 4000

Time

Zoom

Original
Counterfactual

Figure 12. An anomalous sample and the counterfactual explanation for showing normal behavior.

As previously mentioned, in addition to its use for identifying and rectifying anoma-
lies, RTGCEx can also be utilized as a generator of anomalous data. Figure 13 provides
an example of this application. The figure shows an input representing a non-anomalous
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journey of the gearbox, represented in red, and the changes that would need to be made,
represented in green, to create an anomalous journey. It can be observed that RTGCEx
has introduced several anomalies in the input data, highlighted by the red shaded areas,
simulating the behavior that the accelerometer would have should cracks form in the inner
race. This capability allows for the creation of anomalous data for understanding unusual
behaviors or to create anomalous data in unbalanced scenarios, for example.

0 1000 2000 3000 4000

Original

Counterfactual
Original

Time

Zoom

Figure 13. A normal sample and the counterfactual explanation for introducing anomalies.

To measure the validity of the generated counterfactuals and the influence that each
term of the loss function has on the final result, in Table 5, we measured the interpretability
based on the three terms of the loss function of Equations (12), (14) and (15). In this table,
each row corresponds to the results obtained according to which terms were used in the
loss function, i.e.,

RTGCEx wo LAE : L = α · LG(x, xc f ) + β · LD(yc f , y′c f )

RTGCEx wo LG : L = β · Lf(yc f , y′c f ) + γ · LAE(xc f , x′c f )

RTGCEx : L = α · LG(x, xc f ) + β · Lf(yc f , y′c f ) + γ · LAE(xc f , x′c f )

(18)

Table 5. Mean values obtained for each loss function in test data using the three variations of the
losses optimized in RTGCEx.

Method Closeness Loss Counterfactual Loss Data Manifold Loss Speed (s)
One Sample Test Data

RTGCEx wo LAE 3.23× 10−4 4.91× 10−7 1.60× 10−4

0.062± 0.091 5.46RTGCEx wo LG 0.056 4.18× 10−7 2.32× 10−4

RTGCEx 3.59× 10−4 5.83× 10−7 1.29× 10−4

This table presents the results of an evaluation of each term’s impact in the RTGCEx
algorithm’s loss function on counterfactual generation. The results demonstrate that the
term which ensures data similarity (represented by LG) is crucial for generating counterfac-
tual explanations that are highly similar to the input data and involve minimal changes.
Removal of this term from the loss function leads to counterfactuals that are dissimilar
to the input data and involve significant changes. The numerical analysis clearly shows
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this, as the closeness loss increases from 3.59× 10−4 to 0.056, and the data manifold loss
increases from 1.29× 10−4 to 2.32× 10−4 upon removal of this term. Inclusion of this term
in the loss function results in small values in data closeness loss, specifically 3.23× 10−4

for RTGCEx without LAE and 3.59× 10−4 for RTGCEx, indicating that the generated coun-
terfactuals involve minor modifications to the input data. Furthermore, the value of the
data manifold loss is low for RTGCEx and also when LAE is removed, indicating that the
changes made are logical in both cases. The counterfactual loss is not significantly different
across all methods, as the class of the counterfactual instances matches the intended class
in all cases.

The amortized inference requirement is particularly important in anomaly detec-
tion [24], as a quick response is often required when an anomaly occurs. Therefore, the table
also shows the average time it takes for the model to generate explanations for a single
instance and for the entire test dataset (2020 instances). All methods take the same amount
of time, as the generator used to generate the explanations has the same architecture in
all three cases. For a single explanation, the generator takes on average 0.062 s with a
variation of 0.091 s, while generating explanations for the whole test set takes 5.46 s. This
demonstrates that the proposed method provides counterfactual explanations in real time,
satisfying the amortized inference property.

6. Conclusions

In this study, we propose RTGCEx, a real-time, model-agnostic method for generating
user-driven counterfactual explanations. The proposed method employs autoencoders
trained with a multiobjective loss function to generate valid and data-close counterfactuals
that align with the user’s desired outcome. The effectiveness of RTGCEx is demonstrated in
different domains with different data types. Specifically, our results on the MNIST dataset
show that RTGCEx outperforms classical methods in terms of both speed and efficacy,
achieving lower IM2 values while maintaining similar IM1 values in significantly less time.
We also observed that IM1 does not always accurately reflect the interpretability of the
generated instances, as instances with lower values of IM1 were sometimes less realistic.
Additionally, the results of our tests on the Gearbox dataset demonstrate that RTGCEx is
effective for identifying and rectifying anomalies, achieving low values in all terms of the
loss function and satisfying the desired properties.
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