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A B S T R A C T

In the growing wind energy sector, as in other high investment sectors, the need to make assets profitable
has put the spotlight on maintenance. Efficient solutions which leverage from condition or performance
based maintenance policies have been proposed during the last decades, but the proposed methods generally
focus on individual components or stand for specific application areas. This paper aims to contribute to the
development of performance based maintenance strategies within the wind energy sector by providing a
condition monitoring based generic methodology for wind turbine performance assessment at system level.
The proposed methodology is based on the detection of critical periods in which low performance is detected
repeatedly. Multiple machine learning methods and models are applied to assess the wind turbine performance.
This methodology has been applied in a case study with SCADA data of eight wind turbines. An analyst could
benefit from the implementation of the methodology and the easy-to-interpret results shown in the proposed
control chart, especially in cases in which there is less know-how about which variables have higher impact
on systems performance.
1. Introduction

In the face of economic downturn, current global competition and
increasing demands from stakeholders, there is a distinct need to
improve manufacturing performance [1] and, in general, the perfor-
mance of assets and processes. Due to the need to meet demanding
requirements related to efficiency and effectiveness, the maintenance
has stand out and it is no longer considered a necessary evil but
a fundamental activity for the fulfillment of the strategic objectives
of organizations [2]. The definition of operation and maintenance
(O&M) strategies has even greater relevance in sectors in which large
investments are required, such as wind industry.

The urgent need to switch from traditional energy sources to renew-
ables has put the spotlight on the latter [3]. Wind power is recognized
as one of the most attractive renewable energy sources, and it is
expected to be the supplier of more than one-third of total electricity
demand by 2050, leading the way in the transformation of the global
electricity sector among with solar photovoltaic [4]. The decrease in the
levelized cost of energy (LCOE), which reduced by 35% between 2010
and 2018 in the case of wind energy, promotes this transformation [4].
O&M costs are the main contributors to the variable costs of wind
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power plants, and they constitute a sizeable share of the total annual
costs [5]. Off-shore wind farms are particularly difficult to maintain
and faults lead to higher downtimes due to the challenging ambient
conditions [6]. Therefore, the economic viability of wind farms depend
on the success of the long term O&M [7], which should ensure system’s
reliability by performing sufficient maintenance actions, but also seek
optimizing costs [8]. In a greater scale, the efficiency and effectiveness
of the wind industry, as well as its leadership in the competence
among other energy sources, depend on the reliability, availability,
maintainability and safety of wind turbines (WTs) [9].

1.1. Performance-based maintenance

Maintenance can be classified as preventive maintenance (PM) and
corrective maintenance (CM) [10]. Predetermined maintenance is the
PM carried out in accordance with established intervals [10]. Although
predetermined maintenance is based on statistical analysis of failure
characteristics of equipment [11], this type of maintenance requires
relatively predictable patterns of failure, which are harder to identify
due to the complexity of newer equipment of the last decades [12].
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Nomenclature

𝛽𝑝,𝑞 Weight of the 𝑝th eigenvector for the 𝑞th
variable in 𝑉

𝛩 Set of centroids for the operating regimes
𝜃𝑘,𝑚 Measure of the 𝑘th centroid of 𝛩 for the 𝑚th

variable in 𝐶
𝛩⃗𝑘 𝑘th centroid in 𝛩
𝐵⃗𝑝 𝑝th eigenvector in 𝐵
𝐵⃗𝑝 𝑝th eigenvector in 𝐵
𝐶𝑚 𝑚th variable in 𝐶
𝑓𝑘 Vector of 𝐸𝑘 frequencies obtained for each

of the unique values in 𝑊⃗𝑘
𝐻⃗𝑘 Vector of cumulative relative contributions

to the KPI of each of the unique values in
𝑊⃗𝑘

ℎ⃗𝑘 Vector of relative contributions to the KPI
done by each of the unique values in 𝑊⃗𝑘

𝑃 𝑗 Vector of probabilities for transitions from
𝐺𝑖 to each of the operating regimes

𝑉𝑝 𝑝th variable in 𝑉
𝑊⃗𝑘 Vector of 𝐸𝑘 unique values of the KPI

obtained in the 𝑘th operating regime
𝑋⃗𝑛 𝑛th variable in 𝑋
𝑌 KPI
𝑌𝑡ℎ𝑟 The set of thresholds indicating lowest ac-

cepted values for the KPI in each operating
regime

𝐵 Set of 𝑃 eigenvectors
𝐶 Set of variables after dimensionality reduc-

tion
𝑐𝑚 𝑚th record in 𝐶
𝑐𝑗,𝑚 Value for the 𝑗th record of the 𝑚th principal

component
𝑑 Width of the time window in which critical

records are assessed
𝐸𝑘 Amount of unique values identified for the

KPI in the 𝑘th operating regime
𝑓𝑘,𝑒 Relative frequency obtained
𝐺 Set of operating regimes
𝐺𝑖 In a transition between operating regimes,

the old operating regime
𝑔𝑗 Operating regime assigned to the 𝑗th record
𝐺𝑙 In a transition between operating regimes,

the new operating regime
𝐻𝑘,𝑒 Cumulative relative contribution to the KPI

done by the 𝑒th unique value in the 𝑘th
operating regime

ℎ𝑘,𝑒 Relative contributions to the KPI done by
the 𝑒th unique value of the 𝑘th operating
regime

𝐻𝑘,𝑞 The value of the cumulative contribution to
the KPI done by the first 𝑞 unique values. It
is used to set the threshold 𝑦𝑡ℎ𝑟,𝑘

𝐽 Number of records of the original data
𝐾 Number of operating regimes
𝑘 Operating regime indicator between 1 and

𝐾 for operating regimes in 𝐺
𝑀 Amount of principal components selected

and amount of variables of 𝐶
𝑚 Principal component indicator between 1

and M, for principal components in 𝐶
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𝑁 Number of variables of the original data
𝑃 Number of variables of 𝑉
𝑝𝑗𝑖,𝑙 The probability at time 𝑗 to make a transi-

tion from the 𝑖th operating regime in 𝐺, to
the 𝑙th operating regime in 𝐺.

𝑅𝑗 Amount of critical records within the time
window of the 𝑗th record

𝑅𝑡ℎ𝑟 Threshold indicating the maximum amount
of critical records accepted within the time
window for a record

𝑆 Covariance matrix of 𝑉
𝑆𝑝 Covariance matrix of 𝑉
𝑡1 Threshold for the minimum probability re-

quired for the validation of the transition
between operating regimes

𝑇𝑘 Transition matrix composed by the prob-
abilities for transitions between operating
regimes in 𝐺

𝑉 Set of variables which feed the model
𝑣𝑗,𝑝 The value of the 𝑝th variable in 𝑉 for the

𝑗th record
𝑤𝑘,𝑒 𝑒th unique value in the 𝑘th operating

regime
𝑋 Original set of variables
𝑥𝑗,𝑛 Value for the 𝑗th record of the 𝑛th variable
𝑦𝑗 Value of the KPI for the 𝑗th record
𝑦𝑡ℎ𝑟,𝑘 The lowest accepted value for the KPI for

value in the 𝑘th operating regime

Besides, as it does not look after current equipment condition, some
maintenance actions turn to be unnecessary and lead to higher main-
tenance costs.

Condition based maintenance (CBM) is the type of PM in which
current equipment condition is monitored based on the premise posed
by Bloch and Geitner [13] that certain signals may warn about imme-
diate failures. Due to the benefits regarding failure detection at early
stages and prevention of further deterioration, condition monitoring
become increasingly important during the last decades [2]. Through
the detection of degradation and deviations from a supposed normal be-
havior, CBM intends to anticipate maintenance actions to failures [14].
CBM involves a first process of diagnostics, in which faults are de-
tected, isolated and identified, and a second process of prognostics,
in which the impending failures and the remaining useful life are
forecasted [15]. CBM can significantly reduce both the economic losses
caused by system breakdown and the costs attributed to unnecessary
repair and replacement of components [15], which is an advantage
with respect to predetermined maintenance and CM, as maintenance
actions are better planed and performed only when necessary [16].

The aforementioned types of maintenance are aimed at minimizing
opportunity costs, as well as others such as replacement or repair costs.
However, by focusing more in the first type of costs, it is interesting to
study the impact of failures that do not involve a loss of functionality.
Note that failures are detected when the components do not fulfill the
required functions, which may be related to performance-based criteria.
In fact, even if the system remains functional, under-performance can
lead to considerable opportunity costs. Performance-based maintenance
lies on the detection of instants when the system productivity differs
from what is expected [17]. This type of criterion proposes a new
approach that contrasts with the traditional view in which failure is
described as a binary event. The present research is set in this context
and aims to move forward in the performance based maintenance in
the wind energy sector.
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1.2. Related works

In the wind industry, the performance evaluation of WTs involves
the estimation of the health state of a WT in comparison to a known
or validated normal condition state [18]. However, there is still no
consensus within the wind industry on the definition of key perfor-
mance indicators (KPIs) during the O&M phase of WTs [19]. Some
authors [20] claimed that monitoring WT performance is the main
feature characterizing WT overall operation, also based on the fact that
component malfunction may degrade the energy conversion efficiency,
leading to performance deviations. The work of Kusiak et al. [21],
which reviewed various approaches to condition and performance
monitoring of WT components, concluded that research in WT con-
dition monitoring focused more on individual components [22,23],
and suggested that research on models for monitoring WT systems is
needed. Gao and Liu [24] classified condition monitoring methods
into model-based [25], signal-based [26], knowledge-based [27] and
hybrid ones [28], and also provided a list of typical faults in WTs.
Faults on blades and rotors, gearbox, generator, bearings, main shaft
and hydraulic systems were among the most typical ones. Monitoring
of the components housed in the nacelle is the most well-developed and
market-penetrating type of WT monitoring [29]. Wymore et al. [29]
provided a survey on existing monitoring systems and concluded that it
is necessary to make a challenging transition from simple instrumenta-
tion system to a useful health monitoring system with easy-to-interpret
results. The recent developments in sensors and signal processing
systems, big data management, machine learning (ML) and improve-
ments in computational capabilities have opened up opportunities for
integrated and in-depth condition monitoring analytics, facilitating
robust decision-making [30].

A literature review has been done and some aspects regarding the
aforementioned topics are highlighted in the following lines. Most ML-
driven condition monitoring models use SCADA (Supervisory Control
And Data Acquisition) systems as data source [30]. Mérigaud and
Ringwood [6] stated that SCADA system’s outputs may not allow
accurate damage detection or severity assessment, but can evidence the
presence of faults. This system provides large volumes of data through
operational data, availability data and alarm system data, which is
integrated with maintenance logs and work orders to create complete
databases. Major efforts have been made to drive the automation of
data collection, but as stated by Leahy et al. [31], still most of cases
require a significant amount of transformation or manual data entry
before being useful, and some analysis cannot be done due to issues
related to data quality.

Due to the high amount of variables and size of the databases,
analyzing relationships among them can be hard [32]. Besides, not all
data provided by SCADA systems are of interest for condition moni-
toring purposes [33] and data captured through sensing systems are
typically not direct indicators of failure occurrence, so the processing
of measurements is necessary in most of the cases [34].

Marti-Puig et al. [32] reviewed feature selection algorithms for
WT failure prediction, and compared their performance against the
method proposed for automatic feature selection [32]. In addition,
Stetco et al. [30] referred to the need to combine and reduce the
amount of the selected variables, which is performed by means of
dimensionality reduction techniques as auto-encoders or principal com-
ponent analysis (PCA), although other authors also included polyno-
mial feature generation [35].

Condition monitoring solutions seek the definition of validated
state, which can be obtained through classification-based or regression-
based approaches. The first ones determine, for each instant, if the
WT is or not operating normally by means of ML classifiers. For such
purpose, classification-based models find relationships between each
of the predefined categories and the explanatory features. Categories
can be set in different levels of granularity, from generic ‘‘faulty’’
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and ‘‘healthy’’ to deeper states associated to specific failure modes.
As stated by Stetco et al. [30], this process can be time consuming,
error prone and likely to result in unbalanced number of classes. These
three issues were addressed by Leahy et al. [35], and a framework
was presented for the identification of faulty operation based on alarm
combinations, classification of data as healthy or pre-fault, and real
time fault prediction. In this case, support vector machines and decision
trees were the best performing classification algorithms, but others such
as artificial neuronal networks [23,36,37] or Bayesian classification
models [38] are also found in literature.

Alternatively, regression-based approaches focus on modeling the
normal behavior to predict numeric outputs. The difficulty in iden-
tifying nominal operating periods was mentioned in [31]. Authors
noted that filtering abnormal periods through alarms and fault logs
or statistical methods requires significant processing, and claimed that
such efforts could be avoided through improved turbine data. Korkos
et al. [39] developed a method for fault detection in the hydraulic
pitch system using adaptative neuro fuzzy inference system. Great
efforts were required for the pre-processing and labeling the data,
including the definition of boundaries based on the power curve. The
use of power curves stands out in literature for performance monitoring
purposes. In [30] parametric and non-parametric modeling techniques
were distinguished for power curves, but a deeper survey was provided
by Lydia et al. [40], focusing on each modeling technique. Huang
et al. [41] proposed a WT health assessment framework based on
power analysis through ideal power curve estimation. In this case, K-
means and density-based clustering methods were applied for outlier
elimination, obtaining better results by the latter. Power curves are also
used for segmenting normal behavior in [42]. Xu et al. [42] proposed
an adaptive fault detection scheme based on normal behavior model-
ing through power curves and random forest, and adaptive residual
monitoring by means of cumulative sum control chart.

Several of the reviewed works considered failures as a binary
state [35], or were developed for specific failure modes [22,23,26,27,
39]. Other proposals [24,25] considered the performance of the system,
but finally transformed it to a binary output. In this paper, a new
methodology which considers the performance of the WT at system
level is proposed, as an alternative to existing ones [18,20,33,42].
In the proposals for WT condition monitoring and fault detection of
Schlenchtingen et al. [33] and Xu et al. [42], as well as in the proposal
based on high frequency SCADA data of Gonzalez et al. [20], normal
and abnormal behaviors are distinguished, but no operating regimes
are considered within normal behavior. In contrast, Lapira et al. [18]
proposes a framework that utilizes multi-regime modeling approach to
consider the dynamic working conditions of WTs. However, the operat-
ing regimes are implicitly identified by the employed models, whereas
in the proposed methodology they are identified explicitly. Besides, in
the proposed methodology the probability to switch between operating
regimes is analyzed, and, in order to handle uncertainties, transitions
between regimes with low probabilities are identified.

From the methodological point of view, the main contribution of
this paper is the way in which performance is assessed, explicitly
identifying operating regimes, analyzing the probability to switch be-
tween operating regimes and identifying transitions between operating
regimes with low probabilities to handle uncertainty. ML methods
that are well known in literature have been employed to evaluate the
suitability of the methodology by implementing it in the case study,
but identifying the best ML methods for the implementation of the
methodology in the case study is considered for further research.

1.3. Motivating industry problem

Existing maintenance policies consider the failure as a binary state,
which has led to the development of failure detection methods for
individual components of the system, complicating the assessment and
the maintenance decision making process. In contrast, the need to

define maintenance policies which consider the non-binary failures and
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the degradation of performance has been stated in literature. This pro-
moted the development of the proposed methodology, which considers
the WT as a unique system for performance assessment and relies on
ML models. The novelty of the work resides in the manner in which
performance assessment is proposed in the methodology, taking into
account the degradation of the WTs systems as a unit. The methodology
can support the definition of performance based maintenance strate-
gies, which can be combined with traditional maintenance strategies
based on individual component failures.

The implementation of this methodology in offshore case studies
is of great interest. This lies in the fact that preventive maintenance
interventions are performed less frequently and require more planning
in offshore wind farms. Therefore, opportunity costs related to WTs
that do not produce at top performance have more impact in this
case. However, the methodology is also applicable to onshore WTs,
in which the higher frequency of maintenance actions leads to higher
reliability of the components of the systems and higher performance.
From this point of view, onshore scenarios are more challenging for the
implementation of the proposed methodology. That is why, even if the
methodology was thought to be implemented in offshore wind farms,
real data about 8 onshore WTs was used in the case study presented
in this paper. It is expected that, if the methodology is capable of
providing good results in this case study, it can be effectively extended
to offshore scenarios.

Analysts facing the practice application of the proposed methodol-
ogy can benefit from the high interpretability of the results. Besides, it
can be adapted to different risk levels to be assumed while detecting
low performance intervals in new practice applications, by modifying
the criteria to identify them.

The proposed methodology is described in Section 2, and its im-
plementation in the case study, as well as the results, are shown in
Section 3. Finally, Section 4 summarizes the conclusions about the
methodology and gives some future lines worth of further research.

2. Methodology for anomaly detection in WTs

The aforementioned motivation promoted the development of the
performance based maintenance methodology presented in this pa-
per. This approach is based on the detection of critical periods in
which, through condition monitoring, low performance is detected
repeatedly. It is composed by two modules preceded by historical data
pre-processing. The first module is oriented towards system perfor-
mance characterization based on historical data and the second one to
the system performance assessment based on real time measurements.
Proved and widely used algorithms and techniques were selected for
the implementation of the methodology in the case study.

Based on historical data of the set of variables obtained by the
condition monitoring system, and once it is adequately cleaned, it is
intended to define a series of operating status or operating regimes of
the WTs. Each of these operating regimes is related to a range of power
output and a minimum acceptable value based on the aforementioned
range, which is compared to the real output once the current operating
regime is identified in real time. Besides, the identification of the
transitions between operating regimes within the historical data allows
to test if it is likely to switch from the previous operating regime to the
currently identified one.

The proposed methodology is graphically shown in Fig. 1. As it can
bee seen in the figure, the methodology consists on various steps split
in the following modules:

• Previous step of pre-processing: A previous process involving
data cleaning issues is required for the implementation of the
methodology. It is common to have problems regarding missing
data or quality of the data.
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• First module: The information provided by some of the mea-
sured variables is used in order to define operating regimes with
different production outputs. Then, the transitions between the
operating regimes are analyzed.

• Second module: Based on the information provided by the vari-
ables, the operating regime corresponding to the current time
is identified, and it is validated depending on the likelihood
to switch from the previous operating regime to the new one.
Finally, the real power output is compared to the minimum
acceptable one, and instants with low performance are identified.
The methodology proposes a time window frame for the identifi-
cation of critical periods in which low performance is identified
repeatedly.

2.1. Proposed methodology

The methodology is based on the historical data study. These are
set by the variables 𝑋 = (𝑋⃗1, 𝑋⃗2,… 𝑋⃗𝑁 ), having for each variable
the 𝑥𝑗 measurements recorded in 𝐽 temporally equidistant instants
𝑗 = (1, 2,… , 𝐽 ). Thus, 𝑥𝑗,𝑛 indicates the measurement of the 𝑗th record
for the 𝑛th variable 𝑋⃗𝑛 being 𝑛 = (1, 2,… , 𝑁) and 𝑁 total amount
of variables. By the methodology, it is intended to identify, among
the totality of variables 𝑋, the subset of variables 𝑉 which feeds the
model, so that 𝑉 ⊂ 𝑋, where 𝑉 = (𝑉1, 𝑉2,…𝑉𝑃 ) and 𝑃 < 𝑁 . The
𝑗th record is defined as 𝑣𝑗 and the 𝑝th variable of the subset as 𝑉𝑝
from which 𝑣𝑗,𝑝 measurements are obtained. For the dimensionality
reduction, 𝑀 principal components are selected in order to form the
new data 𝐶 = (𝐶1, 𝐶2,…𝐶𝑀 ), where 𝑐𝑗 stands for the 𝑗th record and 𝐶𝑚
for the 𝑚th variable, being 𝑚 = (1, 2,… ,𝑀). In this way, 𝑐𝑗,𝑚 represents
the 𝑗th measurement of the 𝑚th new variable. Based on these new
variables, the 𝐾 operating regimes 𝐺 = {𝐺1, 𝐺2,… , 𝐺𝐾} are defined.
Besides, the operating regime of each 𝑗th record is set as 𝑔𝑗 ∈ 𝐺,
and for the transitions between operating regimes, leaving regimes and
arrival regimes are defined as 𝐺𝑖 ∈ 𝐺 and 𝐺𝑙 ∈ 𝐺 respectively, as
well as the threshold 𝑡1 establishing the minimum likelihood to validate
the transitions. Finally, the KPI 𝑌 and its value for each record 𝑦𝑗 are
defined. The lowest accepted value for the KPI in each operating regime
is also set as a threshold vector 𝑌𝑡ℎ𝑟 = (𝑦𝑡ℎ𝑟,1, 𝑦𝑡ℎ𝑟,2,… , 𝑦𝑡ℎ𝑟,𝐾 ).

Similar to the proposals of some of the reviewed works, a time-
window based framework for performance assessment is proposed. The
𝑟𝑗 value indicates for the 𝑗th record if it is a critical record or not. 𝑅𝑗
stands for the sum of critical records within the time lapse correspond-
ing to the last 𝑑 records. Low performance periods are defined when
𝑅𝑗 exceeds the threshold 𝑅𝑡ℎ𝑟.

2.1.1. Previous process
The efficacy of the model depends on both the quality of the

collected data and the goodness with which the selected KPI represents
the real performance of the system. Therefore, it is necessary to carry
out a prior process which has been also represented in Fig. 1, oriented
to the identification of the appropriate KPIs for the specific application
environment, as well as to the preprocessing of the historical data.

2.1.2. First module: Performance characterization
The first module is aimed at describing a range of minimum accept-

able values for the selected KPI by means of descriptive statistics, taking
into account the conditions in which the system is operating. For such
purpose, the subset of explanatory variables 𝑉 ⊂ 𝑋 is defined, and
then, the dimensionality of 𝑉 is reduced to obtain 𝐶. The operating
regimes 𝐺 are defined based on the information of 𝐶 and one of the
operating regimes is assigned to each record. After these three steps,
two parallel processes are carried out as shown in Fig. 1. On the one
hand, and based on the values of the KPI for the records of the different
operating regimes, a set of minimum acceptable values 𝑌𝑡ℎ𝑟 is defined
for the KPI.The criteria for the definition of the minimum acceptable
values depends on the specific case and the type of KPI. On the other,
the transition sequence is evaluated and the probability of operating in
a current regime is defined taking into account the operating regime of

the previous record.
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Fig. 1. Process of the proposed methodology.
2.1.3. Second module: Performance assessment
The second module is oriented towards performance assessment.

For each new register 𝑥𝑗 , the subset of measurements 𝑣𝑗 corresponding
to explanatory variables are selected, normalized and transformed to
obtain 𝑐𝑗 . Based on these values, the operating regime 𝑔𝑗 is assigned.
As it might be seen in Fig. 1, the model training criteria is used to
perform these three steps. The register is validated or not based on
the likelihood to change from the previous operating regime 𝐺𝑖 and
𝐺𝑙 = 𝑔𝑗 . If the new register is accepted, then its measure for the KPI
is compared against the minimum acceptable value for the current
operating regime 𝑦𝑡ℎ𝑟,𝑔𝑗 . Both the likelihood to switch from previous
to current operation regime 𝑝𝑗𝑖,𝑙 and the minimum acceptable value for
the assigned operating regime are previously calculated as shown in
Fig. 1. As a result of the process, the new register is classified as either
not measured, not conclusive, validated or critical.

The proposed methodology is not only oriented to the classification
of instants and detection of critical values, but to the evaluation of their
cumulative frequency. For each record, as it may be seen in Eq. (1),
𝑅𝑗 stands for the cumulative frequency of critical records within the
time lapse defined by the 𝑑 previous records of the corresponding time
interval. If 𝑅𝑗 exceeds 𝑅𝑡ℎ𝑟, then a critical period of low performance
is detected.

𝑅𝑗 =
𝑗
∑

𝑧=𝑗−𝑑
𝑟𝑧 (1)

where

𝑟𝑧 =

{

1, if 𝑦𝑗 < 𝑦𝑡ℎ𝑟,𝑔𝑗
0, if 𝑦𝑗 ≥ 𝑦𝑡ℎ𝑟,𝑔𝑗

(2)

It is important to note that a good balance on the definition of 𝑑
and 𝑅 for the time window framework allows avoiding the effect
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𝑡ℎ𝑟
of punctual performance losses on the identification of false positives,
as well as problems related to wrong or missing values. On the one
hand, time windows with small 𝑑 are more likely to obtain more false
positives, whereas too large 𝑑 can lead to less faithful representations
of the current performance. On the other hand, lower 𝑅𝑡ℎ𝑟 can drive
to false positives, and higher ones to false negatives. The balance
between these two values needs to be assessed based on the specific
considerations of the case study, and the performance of the rest of the
methods used in previous steps of the methodology.

2.2. Methods for the implementation of the methodology

Next, the methods that have been used in this research work to im-
plement the methodology will be described. PCA and K-means are well
known unsupervised methods that have been used in literature for fea-
ture selection, dimensionality reduction and clustering purposes. They
were considered appropriate for the implementation of the method-
ology in the case study as they provide simple and straightforward
results.

2.2.1. Principal component analysis
Dealing with high volumes of multivariate data makes it difficult to

obtain and interpret information. Dimensionality reduction techniques,
such as PCA, facilitate this task. By means of this technique, an original
set of variables is reduced to a set of principal components defined by
linear combinations. Let the original variables be 𝑉 = (𝑉1, 𝑉2,…𝑉𝑃 ),
where 𝑉𝑝 stands for the 𝑝th variable, being 𝑝 = (1, 2,… , 𝑃 ), and 𝑣𝑗 the
𝑗th record, where 𝑗 = (1, 2,… , 𝐽 ). This way, the measure of the 𝑗th
record for the 𝑝th variable is defined as 𝑣𝑗,𝑝. Let the first principal
component be defined by the linear combination in Eq. (3), where
𝐵⃗ = (𝛽 , 𝛽 ,… , 𝛽 ) stands for the set of weights of the first principal
1 1,1 1,2 1,𝑃
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component, and 𝛽1,𝑝 is the weight for the 𝑝th variable in the first
principal component.
𝑃
∑

𝑝=1
𝑉𝑝𝛽1,𝑝 = 𝑉 𝐵⃗1 ∀ (𝐵⃗1 = 𝛽1,1, 𝛽1,2,… , 𝛽1,𝑃 ) (3)

It is crucial that, when dimensionality reduction is done, most of
the information of the original variables is captured. Variance is the
characteristic of the data which provides the information, so in order
to minimize the loss of information, the variance of the principal com-
ponents calculated must be maximized. To this aim, the optimization
of the function 𝑣𝑎𝑟(𝑉 𝐵⃗1) = 𝐵⃗′

1𝑆𝐵⃗1 is posed, where 𝑆 represents the
covariance matrix of 𝑉 . The constraint given by 𝐵⃗1𝐵⃗′

1 = 1 is also set to
void the increase in the variance as a consequence of the increase in
he coefficients of the linear combination. The problem is solved using
he Lagrange multiplier method. Eq. (4) is optimized deriving for 𝐵1
nd equaling 0, from which, applying the Roché-Frobenius theorem,
q. (5) is obtained.

(𝐵1) = 𝑉 𝐵⃗1 − 𝜆1(𝐵⃗1𝐵⃗
′
1 − 1) (4)

𝑆 − 𝜆1𝐼)𝐵⃗1 = 0
|𝑆 − 𝜆1𝐼| = 0

(5)

Therefore, 𝜆1 is the eigenvalue for 𝑆, and its eigenvector is obtained
applying Eq. (5). Note that Eq. (5) stands the same when values
multiply by −1, so the sings of the coefficients of the eigenvectors, or
weights of the variables in the linear combinations, are arbitrary.

From Eq. (5), 𝑆𝐵⃗1 = 𝜆1𝐼𝐵⃗1 can be deduced, and therefore, as shown
in Eq. (6), the variance of each principal component is given by the
eigenvalue of the corresponding linear combination.

𝑣𝑎𝑟(𝑉 𝐵⃗1) = 𝐵⃗′
1𝑆𝐵⃗1 = 𝐵⃗′

1𝜆1𝐵⃗1 = 𝜆1 (6)

The next eigenvalues and eigenvectors are set by adding constraints
related to the linear independence among previous eigenvectors. For a
set of data with 𝑃 variables, with a 𝑆𝑝 matrix of covariance, 𝑃 eigenval-
ues (𝜆1, 𝜆2,… , 𝜆𝑃 ) are obtained, with their corresponding eigenvectors
𝐵 = (𝐵⃗1, 𝐵⃗2,… , 𝐵⃗𝑃 ).

At this point, it is important to consider the trace of the covariance
matrix 𝑡𝑟(𝑆) from two different points of view. On the one hand, as
the diagonal values of the covariance matrix are the variances of the
original variables, 𝑡𝑟(𝑆) = ∑𝑃

𝑝=1 𝑣𝑎𝑟(𝑉𝑝). On the other hand, by applying
the spectral decomposition to the covariance matrix, Eq. (7) is posed,
where 𝛬 is a diagonal matrix composed by the eigenvalues of the
covariance matrix and 𝐵 is the orthonormal matrix composed by the
eigenvectors of 𝑆𝑝. From these two statements, it can be deduced that
the sum of the variances of the variables in the original data 𝑉 equals
the sum of the eigenvalues of 𝑆𝑝 and the sum of the variances of the
principal components, as shown in Eq. (8). Further explanation about
this method and the mathematical properties can be found in the work
of Jolliffe [43].

𝑡𝑟(𝑆) = 𝑡𝑟(𝐵𝛬𝐵′) = 𝑡𝑟(𝐵′𝐵𝛬) =
𝑝
∑

𝑝=1
𝜆𝑝 (7)

𝑝
∑

𝑝=1
𝜆𝑝 =

𝑃
∑

𝑝=1
𝑣𝑎𝑟(𝑉𝑝) =

𝑃
∑

𝑝=1
𝑣𝑎𝑟(𝑉 𝐵⃗1) (8)

Therefore, the percentage of information of original data captured
by each eigenvector can be measured by the relative value of the
eigenvalue. Eq. (9) gives the percentage variance captured by the 𝑚th
principal component.

𝜆𝑚
∑𝑃

𝑝=1 𝜆𝑝
⋅ 100 (9)

or dimensionality reduction the principal components defined by the
igenvectors corresponding to the highest eigenvalues are selected.
rdering the eigenvalues decreasingly allows to calculate the amount of
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nformation captured by the first 𝑀 principal components by Eq. (10).
The 𝑀 number of principal components to be kept in further analysis
is defined so that an acceptable percentage of variance of the original
data is preserved. The new set of data 𝐶 = (𝐶1, 𝐶2,…𝐶𝑀 ) is obtained
by Eq. (11).
∑𝑀

𝑝=1 𝜆𝑝
∑𝑃

𝑝=1 𝜆𝑝
⋅ 100 (10)

𝐶𝑚 = 𝑉 𝐵⃗𝑚 ∀𝑚 ∈ (1,𝑀) (11)

Prior to the application of PCA, normalizing data is highly recom-
mended in order to avoid the effect of the difference among mag-
nitudes. Once PCA is applied, the coefficients of each variable in
the eigenvectors indicate their weight in the principal components.
By means of biplots it is possible to represent this information in a
easy-to-interpret way.

2.2.2. K-means clustering
K-means is a clustering method belonging to unsupervised ML. It

is generally accepted and easy to implement and understand, which
widespreads its use in the literature. Morissette and Chartier [44]
explain the method and present the most common algorithms. K-means
method consists on assigning one of a known number of clusters to
each observation by iterative relocation of centroids. The objective is
to group similar observations within each cluster and set clusters of
different characteristics regarding the data variables.

The method takes as input the data set and the number of clusters.
Let the set of data be 𝐶 = (𝐶1, 𝐶2,…𝐶𝑀 ) where 𝐶𝑚 stands for the 𝑚th
variable and (𝑐1, 𝑐2,… , 𝑐𝐽 ) for the records measured in 𝑗 = (1, 2,… , 𝐽 )
instants, being 𝑐𝑗,𝑚 the measure of the 𝑚th variable for the 𝑗th record.
Based on the similarities with regard to the set of variables 𝐶, the 𝐽
records are clustered in 𝐾 number of groups 𝐺 = {𝐺1, 𝐺2,… , 𝐺𝐾}. For
this purpose, a set of centroids 𝛩 = (𝛩⃗1, 𝛩⃗2,… 𝛩⃗𝐾 ) is located randomly,
and each one is linked to a group of 𝐺. This way, 𝛩𝑘 represents the 𝑘th
centroid and it is defined by a set of measures 𝛩𝑘 = (𝜃𝑘,1, 𝜃𝑘,2,… 𝜃𝑘,𝑀 )
related to the variables. Then, one of the groups is assigned to each
record, and the centers are calculated again. This process is repeated
until shutdown criteria related to number of iterations, number of
reassigned cases or improvement in the last iterations are met.

2.2.3. Markov chain
Discrete time Markov chains are used for representing stochastic

processes in which the likelihood that certain event 𝑔𝑗 happens at time
𝑗 depends on the previous one 𝑔𝑗−1. Let a set of events be defined by a
discrete variable with 𝐾 states 𝐺 = {𝐺1, 𝐺2,… , 𝐺𝐾}, so the likelihood
in the time 𝑗 to move from 𝑔𝑗−1 = 𝐺𝑖 to 𝑔𝑗 = 𝐺𝑙 is given by Eq. (12).

𝑝(𝑗)𝑖,𝑙 = 𝑃 (𝑔𝑗 = 𝐺𝑙|𝑔𝑗−1 = 𝐺𝑖) ∀ 𝑖, 𝑙 = (1, 2,… , 𝐾) (12)

Time homogeneous Markov chains pose the specific case in which
this likelihood remains constant in time 𝑝(𝑗−1)𝑖,𝑙 = 𝑝(𝑗)𝑖,𝑙 ∀ 𝑗 ∈ (1, 𝐽 ).
By calculating this probability for all the combinations of 𝑖 and 𝑙 the
transition matrix 𝑇𝐾 shown in Eq. (13) is obtained, in which each 𝑝𝑖,𝑙
stands for the probability to move from the 𝑖th state to the 𝑙th. Note
hat, as each time a state is leaved another one arises, the sum of the
robabilities in each row is equal to 1, which means ∑𝐾

𝑙=1 𝑝𝑖,𝑙 = 1 ∀ 𝑖 ∈
1, 𝐾}.

𝐾 =

⎡

⎢

⎢

⎢

⎣

𝑝1,1 … 𝑝1,𝐾
⋮ ⋱ ⋮

𝑝𝐾,1 … 𝑝𝐾,𝐾

⎤

⎥

⎥

⎥

⎦

(13)

Taking into account the initial probability row vector 𝑃 (0) = (𝑝(0)1 …
𝑝(0)𝐾 ) and the transition matrix 𝑇𝐾 , the likelihood to achieve each of
the 𝐺𝑙 states at time 𝑗 = 1 can be calculated by 𝑃 (1) = 𝑃 (0) ⋅ 𝑇𝐾 . The
generalization for any 𝑗th time is given by Eq. (14).

⃗(𝑗) ⃗(𝑗−1) ⃗(𝑗−2) 2 ⃗(0) 𝑗
𝑃 = 𝑃 ⋅ 𝑇𝐾 = 𝑃 ⋅ 𝑇𝐾 = ⋯ = 𝑃 ⋅ 𝑇𝐾 (14)
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Table 1
Positioning of the case study according to criteria in [3].

Criteria Description Present research positioning

System configuration The type of wind power asset and the level of system modeling 3 MW WT at WT level.

Decision-making
attribute

Planning horizon, the decision-maker and the availability of field
data

Finite time horizon of 3 years considering time as discrete-time states of
10 min.

The decision-maker are considered to be the wind farm owners and
operators or independent service providers.
Supplementary and production data through operational SCADA data.

System failure modeling Include the type of damage/failure and the failure modeling
approach

Minor failures are considered with degradation model from statistical
inference.

Optimization model Optimality criterion and the solution technique Out of scope.

Maintenance strategy The maintenance policy and the effectiveness of the repair actions Out of scope.
a
h
b

p
m
a
c
w
r
p
w
T
p

3

a

3. Case study

This section presents and describes the case study in which the
methodology is implemented. In order to introduce it, it was classified
according to the framework proposed by Shafiee and Sørensen [3]
which presented several criteria to classify case studies related to the
wind energy sector. The features of the case study corresponding to
each of the criteria defined by Shafiee and Sørensen [3] can be found
in the Table 1.

The case study is related to the wind energy sector and aims
for performance loss detection in WTs. As the modeling relies on
supplementary and production data containing operational variables
measured by SCADA systems, having access to this data is a necessary
feature of the decision makers. Consequently, wind farm owners and
operators are considered to be the decision makers, even if independent
service providers might also be considered in case SCADA data were
available. A planning horizon length of three years was considered
for the case study, with discrete-time states of 10 min. Regarding
the system failure modeling, minor failures causing performance loss
are detected in the case study through degradation models based on
statistical inference.

This proposal would allow the implementation of performance
based maintenance policies with minimum production loss optimiza-
tion criterion. However, the case study is focused on the previous
phase of modeling the system behavior. Therefore, as the optimization
framework is out of the scope, so is the definition of maintenance
policies and effectiveness (see Table 1).

The details about the development of the case study are grouped,
and those regarding to data description, followed strategies and
anomaly detection are given in the following subsections, as well as
the results of the case study. Finally, a display is proposed for the
visualization of the results of the performance evaluation.

3.1. Data description

In the case study, real data about eight 3 MW WTs was available. It
consisted on ten-minute operational data recorded by SCADA systems
during more than two years. No information about availability or alarm
system data was available, as well as other interesting information
regarding installation aging or maintenance background. A set of 23
variables 𝑋 = (𝑋⃗1, 𝑋⃗2,… 𝑋⃗23) about operational data corresponding
o external or internal variables were measured, but their meaning
as not taken into account in order to maintain the holistic point
f view of the methodology and avoid hasty conclusions. Table 2
rovides a descriptive summary of the quantitative variables composing
he data. Another variable corresponding to the time stamp of each
ecord was available, with format 𝑦𝑦𝑦𝑦 − 𝑚𝑚 − 𝑑𝑑 ℎℎ ∶ 𝑚𝑚 ∶ 𝑠𝑠. The
ariable indicating the power generation within the last 10 min was
elected as target KPI 𝑌 . A subset of 8 explanatory variables 𝑉 was
efined attending to correlations among variables and power output,
s well as their weights in the principal components. From each high-
orrelated group of variables of 𝑋, one of the variables was selected
287
s representative of the group, and the representative variables with
igher weights in the two first principal components were selected to
e included in 𝑉 .

Data preprocessing was principally oriented towards solving format
roblems, ordering data temporally and adding empty instances for
issing values. Negative power outputs were reset to 0 and some

nomalous measures were identified and removed, but in depth data
leaning was difficult because labeling the data was not possible. Data
as split, and the first year of data composed by more than 52 000

ecords was set as historical data. This approach ensures that the
ossible seasonality-related differences in the behavior of the systems
ill not affect the model training and posterior anomaly detection [45].
he remaining records, which were around 60 000, were used for
erformance evaluation.

.2. Training strategies

Once the subset of explanatory variables was selected, PCA was
pplied in order to reduce the dimensionality of 𝑉 . The weights of the

explanatory variables for the first principal components were similar in
some of the WTs, and identifying these similarities led to the definition
of three strategies for the implementation of the methodology: training
by WT, training by group and unique training.

1. Training by WT consist in characterizing the performance of
each WT and using this information as a reference for its per-
formance assessment.

2. Training by group consist in using data of all WTs within
a group for performance characterization, which is taken into
account for performance assessment of each WT in the group.

3. Unique training consist in characterizing the performance
based on the whole set of WTs and assessing the performance
of each WT.

The methodology has been implemented through the three strategies
in order evaluate which one provides most accurate results. Note that,
even if the size of the training data sets employed for performance
characterization varies, the explanatory variables comprising 𝑉 are the
same.

3.3. Approach for anomaly detection in WTs

Despite the different strategies being used for the training of the
models, the process for anomaly detection remains the same. The
training records were normalized to avoid the effect of the difference
among magnitudes when PCA was applied. The amount of principal
components kept was set in two (𝑀 = 2) based on the results obtained
with this configuration of the parameter in one of the WTs. Other
advantages related to the ease to represent results were also considered.
The operating regimes were defined by the K-means method, using the
Hartigan and Wong [46] algorithm and the euclidean distance. The
elbow method showed that a number of 𝐾 = 5 operating regimes
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Table 2
Description of the quantitative variables composing the data.
Variable Min. 1stQu. Median Mean 3rdQu. Max.

w −69.00 0.00 284.00 683.20 1027.00 3060.00
0.00 2906.00 5124.00 5636.00 7790.00 41 385.00
0.00 4072.00 5810.00 6625.00 8457.00 41 385.00
−195.60 33.00 1188.50 1027.50 1693.10 1803.80
0.00 0.00 9390.00 8086.00 13 311.00 14 214.00
0.00 127.70 226.60 204.90 282.70 360.00
0.00 41.55 45.51 42.30 49.74 850.00
0.00 44.28 47.87 45.42 52.38 850.00
0.00 57.65 62.04 61.82 68.15 129.43
0.00 57.63 62.19 61.95 68.41 129.48
0.00 57.52 61.97 61.70 68.05 130.28
0.00 40.06 46.03 43.63 51.14 67.45
0.00 38.57 43.56 41.29 47.94 66.05
0 43.19 51.47 48.28 57.54 586.86
0 43.16 51.26 48.6 59.24 155.24
0 41.87 49.14 46.43 56 584.34
−128.8 41.72 48.19 45.29 53.49 784.61
0 41.29 47.71 44.81 52.99 511.96
−7.739 41.135 46.596 44.055 51.672 484.959
−200.95 0 0 24.4 85.93 180.28
−184.87 0 0 24.41 85.92 217.26
−295.25 0 0 24.39 85.92 275.05
defined as 𝐺 = {𝐴,𝐵, 𝐶,𝐷,𝐸} was appropriate in all the WTs of the
individual training, all the groups of the group training and the unique
training.

Transition matrices were calculated for each training by analyzing
the transition sequence among the defined operating regimes. The
threshold to validate transitions was established in 𝑡1 = 0.1, which

eans that records corresponding to transitions with less than such
robability to occur will be considered not concluent.

The thresholds 𝑌𝑡ℎ𝑟 have been set based on the values for the KPI of
ach operating regime. Let 𝑊⃗𝑘 be the vector of length 𝐸𝑘 of unique val-
es of the power measures corresponding to the 𝑘th operating regime
⃗ 𝑘 = (𝑤𝑘,1, 𝑤𝑘,2,… , 𝑤𝑘,𝐸𝑘

). Another vector 𝑓𝑘 stands for the frequencies
f each of the unique values of the 𝑘th regime 𝑓𝑘 = (𝑓𝑘,1, 𝑓𝑘,2,… , 𝑓𝑘,𝐸𝑘

).
herefore, a new vector of percentages of power of the group provided
y each unique value ℎ⃗𝑘 = (ℎ𝑘,1, ℎ𝑘,2,… , ℎ𝑘,𝐸𝑘

) can be calculated as
hown in Eq. (15). Finally, the unique values are sorted increasingly
nd the cumulative percentage of power provided by the first 𝑞 values is
alculated by Eq. (16), from which the vector of cumulative percentage
f power provided to the group 𝐻⃗𝑘 = (𝐻𝑘,1,𝐻𝑘,2,… ,𝐻𝑘,𝐸𝑘

) is obtained.
n the case study, the unique value of power corresponding to the
𝑘,𝑞 = 0.02 is set as threshold 𝑦𝑡ℎ𝑟,𝑘, which means that the records

ssigned to the 𝑗th operating regime corresponding to values that do
ot achieve this threshold will be classified as critical. Prior to this
rocess, the distribution of unique values of power of each group is
nalyzed, and outliers are rejected by statistical criteria in an iterative
rocess. The results provided by the methodology with 𝐻𝑘,𝑞 = 0.02,
𝑘,𝑞 = 0.03, 𝐻𝑘,𝑞 = 0.05 and 𝐻𝑘,𝑞 = 0.1 were compared, and 𝐻𝑘,𝑞 = 0.02

gave the best results attending to the amount of alarms detected in
each WT and the capacity to detect differences among WTs with less
overfitting than other thresholds.

ℎ𝑘,𝑒 =
𝑤𝑘,𝑒𝑓𝑘,𝑒

∑𝐸𝑘
𝑒=1 𝑤𝑘,𝑒𝑓𝑘,𝑒

∀ 𝑘 ∈ {1, 2,… , 𝐾} (15)

𝐻𝑘,𝑞 =
∑𝑞

𝑒=1 𝑤𝑘,𝑒𝑓𝑘,𝑒
∑𝐸𝑘

𝑒=1 𝑤𝑘,𝑒𝑓𝑘,𝑒
∀ 𝑘 ∈ {1, 2,… , 𝐾} (16)

The performance assessment is carried out individually although
ifferent strategies are used for training. In the case study, 59 840
ecords were used as new records. From each new record 𝑥𝐽+1, the
easures corresponding to the subset of variables 𝑉 was selected

nd normalized taking into account the centers an deviations of the
erformance characterization phase. Then the values are transformed
o data in the principal components PC1 and PC2 to obtain 𝑐 , by
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𝐽+1
multiplying the normalized values of the new register by the eigen-
vectors corresponding to each principal component, as may be seen
in Eq. (11). Then, the operating regime whose centroid is the nearest
to those measures is assigned to the new record as set by Eq. (17).

𝑔𝑗 = min
𝑘∈ (1,𝐾)

‖𝑐𝑗 − 𝜃𝑘‖ = min
𝑘∈ (1,𝐾)

√

√

√

√

𝑀
∑

𝑚=1

(

𝑐𝑗,𝑚 − 𝜃𝑘,𝑚
)2 (17)

As it may be seen in Fig. 1, once the cluster is assigned for the new
record, if the likelihood to change from 𝐺𝑖 = 𝑔(𝑗−1) to 𝐺𝑙 = 𝑔𝑗
exceeds the threshold 𝑡1 = 0.1, the transition is accepted. Finally, the
value obtained for the power of the new record 𝑦𝑗 is compared to the
minimum threshold for the assigned group 𝑦𝑡ℎ𝑟,𝐺𝑗

. The records with
power below their corresponding thresholds will be considered critical,
and the remaining ones validated.

3.4. Results

The amount of alarms and their duration are evaluated for the three
strategies in order to assess which one performs best. These indicators
depend on the definition of thresholds for each regime, which depend
on the definition of operating regimes. Two types of scenarios are
obtained regarding performance characterization processes. In some of
them, the percentage of variance captured by the principal components
is higher than in others, which directly affects the distribution of
records on the principal components.

As it might be seen in Fig. 2, in the cases with lower percentage
of variance, the records with higher power are not split from oth-
ers (see Fig. 2(a)), and they are classified in the same regimes (see
Fig. 2(b)). Therefore, wider and more similar distributions are obtained
for the power values of the regimes in these scenarios, and the defined
thresholds are lower and more similar among different regimes on each
training of the model as shown in Table 3.

In the opposite scenario shown in Fig. 3, a higher percentage of
variance is captured by the principal components, leading to a better
segregation of records with different power output (see Fig. 3(a))
and larger power differences among different operating regimes (see
Fig. 3(b)). As the power distributions differ more for the distinct
operating regimes in these scenarios, so they do the thresholds obtained
for each regime (see Table 3).

As it may be seen in Table 3, this occurred for the three strategies.
Besides, the transition sequence analysis proved that it is more likely to
switch operating regimes in the cases with less percentage of variance
captured.
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Fig. 2. Scenario with low percentage of variance.
Fig. 3. Scenario with high percentage of variance.
Table 3
Percentage of variance captured by principal components and thresholds for each training.

% of variance regime A regime B regime C regime D regime E

WT 1 34% 70 W 404 W 0 W 0 W 169 W
WT 2 60% 1449 W 0 W 0 W 458 W 59 W
WT 3 56% 0 W 0 W 715 W 81 W 0 W
WT 4 58% 0 W 1224 W 0 W 99 W 0 W
WT 5 34% 342 W 0 W 220 W 0 W 69 W
WT 6 34% 0 W 0 W 191 W 407 W 80 W
WT 7 35% 0 W 207 W 0 W 78 W 370 W
WT 8 60% 70 W 571 W 921 W 0 W 0 W
Group 1 59% 0 W 0 W 81 W 765 W 0 W
Group 2 33% 0 W 170 W 100 W 0 W 368 W
Unique 39% 234 W 0 W 118 W 0 W 76 W
It is expected that the distributions for the power values for each
operating regime will be different, since these operating regimes were
set according to explanatory variables that condition the power output.
Moreover, it is expected that these operating regimes are stable, be-
cause records were measured within ten-minute intervals in which it is
not expected to obtain great differences regarding the set of explanatory
variables. According to the obtained results, the percentage of variance
captured by the principal components has more effect on the efficacy
of the implementation of the methodology than the employed strategy.
In the cases with low percentage of variance captured, the clusters
obtained from the combination of PCA and K-means do not match the
real operating regimes, while in the rest, a better definition of operating
regimes was possible. In the case study, the 60% of the information of
the subset of explanatory variables was enough to enable the operating
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regime identification. It is a remarkable result since several of the
initial 23 variables were rejected and the dimensionality of the eight
explanatory ones was reduced to only two principal components.

However, a series of limitations were identified regarding the case
study. Some of them are related to the problem statement through
the implementation of PCA and Markov chains. The PCA poses the
hypothesis of lineality among variables, and the use of Markov chains
assumes that the likelihood to operate in a certain regime depends only
on the previous one. Besides, as homogeneous Markov chains were
used, it is assumed that the likelihood of switching operating regimes
remains constant over time. This is a high simplification of the problem,
in which external and internal variables of WTs are involved. Some
other limitations were related to the characteristics of the case study,
which were mainly related to the lack of data and information. As only
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Fig. 4. Example of the proposed display.
operational data was available, labeling the data was no possible, and
there was no option to validate the obtained results.

3.5. From model results to decision making

In the case study, the frequency of critical values is evaluated in a
time window of 𝑑 = 18 records, which corresponds to 3 h. The threshold
for the cumulative frequency of critical values is set in 𝑅𝑡ℎ𝑟 = 12, which
means that if 12 of the last 18 records are classified as critical, then a
critical period is detected, and an alarm is activated.

In order to support the maintenance decision making, a display
panel is proposed to visualize the information provided by the results
of the methodology. For each WT, the results obtained for the instants
within the last 48 h are shown in Fig. 4. The cumulative frequency of
critical, accepted, not conclusive or not measured values for the three
hours prior to those instants is shown. An alarm message is also shown
when the threshold is met.

This display eases the decision making process through easy-to-
interpret visualizations of the performance of the whole WT system
during the last 48 h. Summarizing and simplifying the obtained results
is a key factor which can help to introduce this type of analysis on
industry, since it allows the reduction of reaction times for decision
making.

4. Concluding remarks

In this paper, a methodology focused on WT performance assess-
ment at system level is proposed, which contributes to the growing field
of performance based maintenance by providing a new approach based
on condition monitoring from the perspective of non binary failures.
The methodology was implemented in a case study in which two years
of real SCADA data about eight WTs were used aiming to characterize
and assess the performance of the assets. Three different strategies were
employed, and performance characterization was performed consider-
ing historical data for each turbine separately in the first one, groups
of turbines in the second one and the complete set of turbines in the
third one. However, the results showed that the characteristics of the
data had more effect on the goodness of performance characterization
than the followed strategy in the case study.
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The selection of explanatory variables and the reduction of the
dimensionality of the data bases was performed by means of PCA.
Combining correlation analysis and PCA proved to be a simple but
effective method while selecting explanatory variables. In the case
study, the amount of variables introduced to the model reduced to one
third of the original amount, which also impacts in the efficiency of
the model in computational terms. This method also gave good results
on the posterior reduction of the dimensionality, which proved to be
a crucial part of the methodology, as better defined operating regimes
were obtained when the ability of the principal components to explain
the data variability increased. K-means was used for the identification
of operating regimes, but the effectiveness of this method was condi-
tioned by the previous step. Results showed that the performance of
the PCA and K-means for the identification of operating regimes had
more effect than the strategy used on the accuracy of the results. The
implementation of the first module from a strict data based approach
provides an alternative for the cases in which there is not enough
information about the variables or there is less know-how about the
application field.

The holistic point of view of the methodology and the combination
of tools and methods employed in the case study eases the interpreta-
tion of what each result implies. The time window framework proposed
for the second module provides an easy to interpret summary of all the
obtained results, which, combined with the proposed display for the
visualization of these results, eases the maintenance decision making.
Since no in-deep knowledge about the model is required to interpret the
results, the display allows bringing the methodology closer to industrial
environments as a simple tool for WT performance monitoring.

The case study was generally limited by the information available
for the research. The existence of alarm data or maintenance logs would
have allowed the validation of the results by checking which of the
identified anomalies really correspond to WT performance losses prior
to failures. In such cases, it would have been possible to analyze how
maintenance policies based on the proposed methodology could enable
the anticipation of maintenance activities to these failures. Moreover,
accessing more information about the WTs would give some insights
into the causes of the differences among WTs, leading to the definition
of new strategies based on industrial and empirical knowledge of the
implementation of the methodology. However, despite the limitations
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caused by the lack of information, the implementation of the methodol-
ogy in the case study proved its capability to identify operating regimes.
Identifying operating regimes allows the definition of well studied
performance based maintenance policies as it integrates information
about the operational context of the WTs from a more realistic and
data-based perspective.

From this point of view, this case study is a previous step to greater
ones. Building maintenance policies based on the implementation of the
methodology and analyzing their performance would be interesting, as
well as comparing it with the results provided by other existing policies.
To this aim, it is needed more information about the WTs, their histor-
ical information and the cost structures. Accessing to this information
would also allow the definition of more consistent strategies and the
validation of the results of the new case studies.

From the data analytic perspective, some other techniques and
methods could be considered for the identification of operating regimes
and transition validation in further case studies, in order to avoid the
assumptions of the one presented here. The methods employed for
the newer case studies depend on their specific characteristics and
must give logical solutions to the different challenges faced during the
implementation of the methodology.

This methodology is thought to be implemented in offshore wind
farms, and the results obtained in the onshore case study of this paper
gives hope that the methodology can also be implemented offshore
cases, as onshore scenarios may be more challenging. Besides, it would
be interesting to evaluate how this methodology can be implemented in
other sectors. Market competitors could benefit from the application of
performance based maintenance policies on systems with high energy
consumption, obtaining more efficient processes. Besides, it might also
be useful in processes in which many factors affect the performance of
the systems, even if in such cases there is not much knowledge about
which of the factors have more effect. However, it must be reasonable
to make the assumption that those systems operate under different
conditions which will characterize the operating regimes.
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