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Abstract—This work presents a predictive energy management 

strategy for self-consumption in tertiary buildings. The self-

consumption is composed of a photovoltaic generation and a 

battery. The energy management strategy is composed of a 

forecast module, high-level strategy and real-time adaptative 

control. Due to the daily forecast, significant data was available 

24 hours in advance, allowing the energy management strategy to 

take advantage. The high-level strategy defines the battery's 

operation mode for each hour of the day. The real-time adaptative 

control corrects the possible errors with instant measurements 

and generates real-time battery commands and its operation 

mode. With this approach, a reduction of 16.17 % of the electric 

bill was obtained by comparing it to a scenario without a battery 

and its correspondent strategy. The development was integrated 

and validated in a test bench, obtaining a 60.43 % grid 

independence increase. 

Keywords—Self-consumption, tertiary building, school, energy 

storage system, adaptative control, regression tree.  

I. INTRODUCTION  

The amount of electricity consumed by the commercial and 
public services sector in 2019 was about 29 % at the European 
level generating 4.6 % of the CO2 [1]. To combat these issues, 
in 2018, the European Renewable Energy Directive (RED II) 
fixed for 2030 a 32 % renewable energies target to achieve 
climate neutrality in 2050 [2]. Spain started new strategic 
frameworks; [3] and [4], fixing the objective to install more 
than 122 GW of renewable generation, where 32 % will be solar 
photovoltaic. In this part, the photovoltaic self-consumption 
must play an essential role; it must address at least 9 GW of 
installed power. In this framework, law 7/2021 [5] raises energy 
and climate objectives for 2030 and 2050 to the legal level to 
boost the population taking part in it. Moreover, Royal Decree 
477/2021 [6] gives subsidies, in concrete, to self-consumption 
and energy storage, oriented to the economic sector as well as 
to the residential, public, and tertiary sectors. 

A self-consumption installation is made up of one or more 
renewable generation installations and by the consumer 
member, in which both generation and consumption must be 
close [4]. Introducing self-consumption benefits by reducing a) 
electricity demand, b) grid consumption, c) electricity bill, and 
d) power losses in the transmission and distribution lines [7]. 
This offers consumers more control and awareness over their 
consumption and reduces the effect of the variability of fossil 
fuel prices [4]. However, renewable energies concern people 
because they are intermittent resources. Predictions are used to 
cope with this problem, particularly statistical and artificial 
intelligent approaches like linear regression models, fuzzy 
systems, and artificial neural networks, among others [8]. Apart 
from that, consumption and electricity price predictions must 
be considered to create a correct energy management system. 
In these fields, regression trees are commonly used machine 
learning techniques due to their simplicity and accuracy [8], [9]. 

As previously mentioned, self-consumption is a crucial 
element in reaching climate neutrality. Consequently, this paper 
presents the design, development and validation of a predictive 
energy management strategy (EMS) for self-consumption in 
tertiary buildings, scoped as a school in this research. The 
school’s self-consumption is composed of photovoltaic 
generation, solar panels on the roof and an energy storage 
system that is integrated via a converter. The scenario that had 
been validated was composed of a lithium-ion battery module 
and three converters connected to the grid of 8 kW each, 
changing from constant current to triphasic alternating current. 
The developed EMS consists of three blocks; the first one 
generates daily forecasts (solar irradiance, power consumption 
and electricity price) using regression tree algorithms. Then, the 
second one generates high-level operation commands based on 
the previous predicted data. The last one provides the final 
operation commands by a real-time adaptative control module. 
Finally, the main results obtained in the simulations and in the 
experimental validation are presented in this work, also making 
an economic balance. 
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This paper is structured as follows: Section II describes the 
case study of the present work, continued by the parameter 
modelling in Section III. Afterwards, in Section IV the 
proposed design of the predictive energy management strategy 
is explained. Consequently, in Section V, the used test bench 
for the battery integration, and in Section VI, the obtained 
results and the related discussion are shown. The paper finishes 
summarising the main conclusions in Section VII. 

II. CASE STUDY 

The work is based on a school's predictive EMS for self-
consumption. The school is located in Usurbil (Spain) and has 
a photovoltaic generation installation. Due to that, the aim of 
the school is to increase the self-consumption of specific loads 
by integrating an energy storage system (ESS), concretely a 
battery. The named loads are heating, ventilation and air 
cooling (HVAC). As it is a specific part of the consumption of 
the school, the HVAC consumption value could be treated as a 
domestic consumption value. That is why it is assumed that the 
school has contracted a 2.0TD tariff (Spanish domestic 
electricity tariff in 2022, BOE-A-2021-21208) with a 
contracted power of 10 kW [10]. 

The configuration of the whole installation is shown in Fig. 
1. The photovoltaic installation (PV installation) is composed 
of 32 panels, being 10 kW in total installed power. The battery 
integrated (ESS system) has lithium-ion chemistry, with 360 
Ah, 48 V and 17.2 kWh characteristics. There will be used three 
converters to change direct current to alternating current, each 
one of 8 kW.  

III. MODELLING 

This section presents the used equations for modelling the 
parameters of PV generation, consumption and battery State of 
Charge (SOC). These equations were integrated into MATLAB 
to generate generation, consumption and battery SOC values. 

A. PV generation 

The power generated by a solar photovoltaic panel (𝑃PV in 
[W]) is calculated by the expression that involves the installed 
power (𝑃inst in [W]), the instantaneous irradiance (𝐺inc in 
[W/m2]), the panel temperature and power coefficient (𝛿 in 
[%/ºC]) and the cell temperature (𝑇cell [ºC]), as it is shown in 
(1). 

𝑃PV = 𝑃𝑖𝑛𝑠𝑡  (
𝐺inc

1000
 (1 + 𝛿 (𝑇cell − 25))) 

(1) 

The irradiance data is obtained from the database available 
in Euskalmet of the meteorological station of Lasarte [11], the 

nearest location to Usurbil. Considering that there is no 
database available of the temperature of the cells, this one was 
calculated with the following expression (2) 

𝑇cell = 𝑇amb + 𝐺inc  (
𝑁𝑂𝐶𝑇 − 20

800
 ) 

(2) 

where the ambient temperature (𝑇amb in [ºC]) is also taken 

from the same database as the irradiance, and the Normal 

Operating Cell Temperature is panel technical data (NOCT in 

[ºC]). 

B. Consumption 

Consumption profiles were obtained from the database of 
IKERLAN, where there was available a consumption profile of 
a school of Gipuzkoa, previously employed in [12]. This profile 
was scaled in this work because only specific loads were 
considered for the self-consumption schema, as it was 
mentioned in the case study. 

C. Battery SOC 

The battery SOC is calculated by the Coulomb Counting 
algorithm, which is employed to emulate the battery. The SOC 
in [%] is calculated between the initial SOC and the percentage 
of the capacity charged or discharged respect the nominal 
capacity, as is shown in (3). This is calculated by integrating the 
current across the battery (𝐼bat in [A]) over the time (from t0 to 
t) respect the rated capacity (𝑄rated in [Ah]) [13]. Converter 
efficiency is neglected in this work. 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) +
∫ 𝐼bat 𝑑𝑡

𝑡

𝑡0

𝑄rated

 100 

(3) 

IV. ENERGY MANAGEMENT STRATEGY DESIGN 

EMSs are essential to avoid energy wastage in self-
consumption installations. To have a higher self-consumption 
percentage, meaning a reduction in the electric bill, ESSs are 
integrated. Besides, adding an ESS increases the complexity 
and difficulty of EMS. 

In this section, the designed EMS is explained, which was 
composed of three blocks, as shown in Fig. 2. The first one 
generated daily forecasts (solar radiation, power consumption 
and electricity price) based on regression trees algorithms. The 
output will be a daily forecast with a one-hour time step. Then, 
the second one, called high-level operation, generated 
commands based on the previous predicted data at the same 
time step. The last one provided the final operation commands 
by a real-time adaptative control module. 

A. Forecasts 

The forecast module was used to obtain a more efficient and 
accurate EMS. As mentioned before, integrating a battery into 
the self-consumption installation adds complexity. In this way, 
forecasting the key factors (solar generation, load consumption 
and electricity price) allowed the EMS to anticipate the 
tendencies of the day.  

The selected forecasting technique, based on historical data, 
was the regression tree, which is a machine learning method. 

 
Fig. 1: Installation main configuration 

 

 



 

As aforementioned, thanks to their simplicity and accuracy, 
regression trees are widely used for trend analysis [8], [9]. 
Regression Trees are decision trees with the particularity that 
they predict continuous outputs instead of discrete outputs. 
There are different decision tree models, a) fine tree, b) medium 
tree, c) coarse tree, d) optimisable tree and e) ensemble models. 
This last one combines various decision trees resulting in a 
technique with a better forecasting performance [8]. Here two 
types exist, the boosting and the bagging models.[8] 

In this work, the selection and the design of the Regression 
Trees were made through the Regression Learner App of 
MATLAB [14]. This tool enables to train and validate the 
mentioned models quickly for later to be compared with their 
validation errors. Once selected, the best regression model was 
exported to the workspace.  

1) Solar irradiance: The dependency of photovoltaic 

generation on weather becomes an intermittent energy 

resource. The solar irradiance is proportional to the power 

generation, as seen in (1); thus, solar irradiance was predicted. 

All mentioned models were trained in the Regression Learner 

App with historical data (from 2019 and 2020 years). The input 

parameters of the model were the temperature, humidity, wind 

speed, precipitation, irradiance, previous day irradiance, hour, 

day, month and year. The best performance was obtained with 

the bagging module, and consequently, this model was the 

selected one. 

2) School consumption: The same process was proceeded 

to predict school consumption, but in this case, the historical 

data and the module's inputs changed. The historical data was 

from 2017, and the input necessaries for the model are the 

temperature, consumption, minute, hour, day, month, 

weekday, weekend and if it is a holiday. In this case, the fine 

tree performed best. Consequently, the selected module was 

the fine tree.  

3) Electricity price: In this case, the historical data for 

2021 was obtained from the database of OMIE, the Iberian 

Peninsula electricity market operator [15]. The input data was 

composed of the price, previous day price, hour, day, month 

and year. Likewise, in solar irradiance, the bagging tree 

obtained the best performance, resulting again in the best 

option. 

B. High-level operation commands generator 

Once the forecast of the day was done, the high-level 
operation command generator generated three arrays, a) 
inverter power command, b) operating mode, and c) the 
necessary energy stored in the battery for each hour of the 
predicted day. These commands were the result of a rule-based 

strategy whose inputs were the predicted data and the initial 
SOC of the battery. The necessary energy stored (𝐸n in Wh) 
was calculated by adding the energy difference between the 
generation (𝐸gen in Wh) and consumption (𝐸cons in Wh), when 

the generation was lower than the consumption and the 
electricity price (𝑃𝑉𝑃𝐶 in €) was higher than the average 
(𝑃𝑉𝑃𝐶mean in €), as shown in (4). 

𝐸n(𝑡) = 𝐸cons(𝑡) − 𝐸gen(𝑡)  

(𝑖𝑓 𝐸gen < 𝐸cons & 𝑃𝑉𝑃𝐶(𝑡) > 𝑃𝑉𝑃𝐶mean) 

(4) 

The aim of the strategy was to reduce the electricity bill by 
taking advantage of the battery and the predictions. As the 
trends of the day were known, the strategy ensured that the 
battery would be charged with the necessary energy to avoid 
consuming electricity from the grid when the prices were high. 

To achieve the mentioned objective, six operating modes 
were defined, as represented the Fig. 3, 1) stand-by mode, 2) 
charging the battery and 3) discharging the battery, and 4), 5) 
and 6) are the same as the previous three but assuring that the 
battery must store the necessary energy. The if-then rules to 
define the operating mode depended principally on the 
difference between generation and consumption, the battery 
SOC level, and the electricity price level. Also, it must be 
mentioned that in this work, it had been contemplated the ability 
to charge the battery from the generation, from the grid or both 
in the charging modes (2 and 5). Likewise, in the discharge 
modes (3 and 6), the battery can be discharged to the 
consumption, the grid or both. 

The peculiarity of the operation modes with the necessity of 
energy stored in the battery (4, 5 and 6) was that, as the strategy 
had identified the high electricity price time period, the battery 
is charged from the solar generation and/or from the grid in 
periods of low electricity price. For example, being the 𝐸BT the 
available energy in the battery in (Wh), in the case that the 
battery is charged (𝐸BT > 𝐸n), the energy generation is 
analysed. If the generation is not sufficient to supply the 
consumption and, in the next three hours, is going to need 𝐸n, 
the battery will be discharged until the aforementioned 𝐸n limit. 

 

Fig. 2: Energy Management Strategy main diagram 

Fig. 3: Operation modes of the EMS 

 



 

In the strategy, some limits were defined to make sure that 
the battery was operating at the levels that the fabricant 
recommended. In this way, the degradation of the battery will 
be lower, and the battery life will be longer. Therefore, battery 
charging and discharging powers (𝑃cha and 𝑃dcha, both in W) 
are limited to 𝑃cha,max and 𝑃dcha,max due to the current limits, 

as in (5) and (6), and the maximum and minimum SOC, as in 
(7).  

𝑃cha(𝑡) ≤ 𝑃cha,max  (5) 

𝑃dcha(𝑡) ≤ 𝑃dcha,max (6) 

𝑆𝑂𝐶min(𝑡) ≤ 𝑆𝑂𝐶 (𝑡) ≤ 𝑆𝑂𝐶max (7) 

Grid power limits were also integrated, being, in this study, 
the contracted power (𝑃contr in W), summarized in (8) and (9). 

|𝑃cons (𝑡)| ≤ |𝑃contr| (8) 

|𝑃PV (𝑡)| ≤ |𝑃contr| (9) 

C. Real-Time adaptative control 

Finally, the role of the Real-Time adaptative control was to 
correct the operation mode and the converter command in case 
the predictions had an error. This was made with real-time 
measurements of the power generation, power consumption, 
electricity price, battery SOC and predicted converter 
command, operation mode and needed energy stored in the 
battery.  

The control was based on correcting the operation mode and 
checking that real-time conditions were the specified ones in 
each operation mode. For each case another rule-based strategy, 
based on the previously mentioned strategy (not setting the 
needed energy stored aside) was integrated. Consequently, the 
outputs of the real-time control module were the real converter 
command and the operation mode, being the result of the 
instantaneous measurements. 

V. SCALED TEST BENCH 

The experimental validation of the previous scenario was 
carried out with a scaled test bench, see Fig. 4. The hardware 
consisted of: a) an LFP chemistry battery of 48 V, 180 Ah and 
8.64 kWh characteristics, b) three DC/AC converters, each of 8 
kW and, c) the necessary communication devices for the 
control. The software in the computer embraced a) the 
communications for the control of the devices and b) the main 
program, where both were developed in LabVIEW. 

The main program allows the fast validation of the EMS. It 
simulates one day in 144 seconds. Meanwhile, the control of 
the converters and the battery monitorization is done in real-
time (with an execution rate of one second). 

VI. RESULTS AND DISCUSSION 

The proposed scenario and EMS were simulated and 
validated in MATLAB and also validated experimentally on the 
test bench. Two different scenarios were simulated: the first one 
of a one-day operation to validate the correct energy flow and 
the second one, the 2021 whole-year simulation to obtain 
economic results. 

For the energy flow simulation, the 23rd of March 2022 data 
was employed. The generation profile introduced was collected 
and scaled from the real database available in IKERLAN. The 
consumption, as previously mentioned, was from a previous 
study [12]. Lastly, the SOC of the battery was calculated in the 
way explained in Section III.C. 

Fig. 5 depicts the power flow, where the blue line is the solar 
power generation, the red line is the power consumption, the 
yellow one is the converter power flow which is the battery 
power flow and the purple line is the amount of power 
consumed from the grid. Furthermore, Fig. 6 presents the SOC 
and electricity prices during the simulated scenario, being the 

 

 

 
Fig. 4: Battery integration for self-consumption test bench 

Fig. 5: Power flow of the scenario on 23/03/2022 

Fig. 6: The a) battery SOC and b) electricity price of 23/03/2022 



 

a) graph the battery SOC and in graph b) the blue lines are the 
PVPC and PVPC average and the red ones the pool and pool 
average prices. As it is shown, until the electricity price is 
decreased to a low value (0.9 𝑃𝑉𝑃𝐶mean) the battery is 
discharging to the consumption. After that, the battery 
operation changes to stand-by and the grid feeds the 
consumption due to the low price. At 6 a.m., it can be seen how 
the battery was charged because of the 𝐸n due to the high prices 
that come after. Whereas the generation is increasing, it can be 
seen how the battery demand is getting lower. Meanwhile, as it 
is coming again the high price period, the battery is charged 
from the grid with low prices. Finally, the battery supplies the 
consumption until it is discharged. Throughout the simulation 
could be validated that the grid did not surpass the contracted 
power and the battery never exceeded its maximum power, 
respecting the power limits (Pcha,max and Pdcha,max). 

To evaluate the economic side, the presented approach was 
simulated and the electricity bill was calculated where the 
energy surpluses were paid with the pool price. This electricity 
bill was compared to a scenario without a battery nor its 
correspondent EMS. The reduction of the electric bill was 
obtained with the presented approach with respect to the actual 
self-consumption installation (just PV installation). Fig. 7 
shows the 2021 electric bills for both self-consumption 
installation (Self-consumption PV) and the self-consumption 
installation with the battery and the EMS (Self-consumption 
PV, battery as BT and EMS). 

Comparing the annual, it was seen that the average 
percentage reduced due to the battery and the EMS was around 
11 %, calculated employing (10). This means a direct reduction 
of 864.7 € of the total 2021 electric bill. It was remarkable that 
the higher reduction obtained was in July with 16.17 %. In 
summer, weather conditions are better, meaning a higher solar 
production, and due to summer break in Spain (schools are 
closed), the consumption was the stand-by power. 

𝐴𝑛𝑛𝑢𝑎𝑙𝑅𝐸𝐷𝑈𝐶𝑇 =
∑(𝐵𝑖𝑙𝑙EMS − 𝐵𝑖𝑙𝑙PV)

∑ 𝐵𝑖𝑙𝑙PV

 100% 
(10) 

Where 𝐴𝑛𝑛𝑢𝑎𝑙𝑅𝐸𝐷𝑈𝐶𝑇  is in (%), the 𝐵𝑖𝑙𝑙EMS is the electric 
bill of the scenario with self-consumption with the battery and 
the EMS (in €) and the 𝐵𝑖𝑙𝑙PV is the electric bill of the scenario 
with self-consumption with only photovoltaic generation (in €). 

Moreover, the experimental validation was carried out in 
the test bench presented in Section V. Four different days were 
validated, obtaining a correct operation of the designed 
predictive EMS. All the power limits were correctly respected 
and the power flow and operation modes were well defined. 
Apart from that, in the validation of 19/03/2022 (weekend, 
having idle power consumption), the level of independence 
from the grid of the self-consumption installation with PV 
generation was 38.54 %. Comparing that same scenario with 
battery and EMS integration, 61.83 % was obtained, resulting 
in an increase of 60.43 %. 

Both simulation results and experimental validation prove 
that the integrated EMS algorithm reduces the electric bill and 
ensures that the energy flows correctly in each operating mode, 
decreasing grid energy consumption in expensive periods. 
Finally, the amortisation of the battery integration installation 

was ten and a half years, calculating a minimum battery life of 
eleven and a half years. Thereby resulting in interest the battery 
integration with a predictive EMS into the previously set self-
consumption installation, obtaining at least one year of direct 
savings. 

VII. CONCLUSIONS AND FUTURE LINES 

In this work, a predictive EMS for self-consumption in 
tertiary buildings, a concrete case of a school, was presented. 
This scenario was validated in the scenario mentioned in the 
case study. For the validation via simulation, two different 
simulations were made, the first one on the 23rd of March 2021 
and the second one on the whole 2021 year. 

The results obtained showed that, firstly, all the operation 
modes were defined and operated correctly, respecting all the 
grid and battery constraints. It was concluded that the real-time 
control module in the EMS was essential due to the forecast 
errors.  

Due to the forecast stage, the day generation, consumption 
and price tendencies were obtained. Forecasts together with 
EMS resulted in the reduction of the electric bills, concluding 
that all the parts of the EMS are necessary. In terms of economic 
results, up to a 16.17 % decrease in the electric bill was 
obtained, demonstrating the importance and necessity of a 
correct EMS. The lowest electric bill was obtained in summer 
because it is the season with the highest irradiance in this 
location, the northern hemisphere.  

It must be mentioned that the integration of the EMS in the 
test bench with the battery was successfully carried out, 
obtaining higher independence from the grid. Concluding that 
could be integrated into a self-consumption installation for 
residential buildings. 

It is to mention that in this study, the battery degradation 
model was neglected, so, with time, the battery operation range 
will be decreased, and this error will be corrected. In ongoing 
research, additional SOC limitations are going to be studied. 
Restricting the operation range of the battery to maintain a 
SOCaverage will prolong battery life. However, the impact of 
integrating this limitation must be reviewed and evaluated. 
Finally, a collective self-consumption scenario will be 
considered for the next studies.  

 
Fig. 7: Electric bills of 2021 
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