

biblioteka@mondragon.edu

This is an Accepted Manuscript version of the following article, accepted for publication
in:

O. Somarriba, L. C. Perez Ramos, U. Zurutuza and R. Uribeetxeberria, "Dynamic DNS
Request Monitoring of Android Applications via Networking," 2018 IEEE 38th
Central America and Panama Convention (CONCAPAN XXXVIII), 2018, pp. 1-6.

DOI: https://doi.org/10.1109/CONCAPAN.2018.8596558

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

https://doi.org/10.1109/CONCAPAN.2018.8596558

Dynamic DNS Request Monitoring of Android
Applications via networking

Oscar Somarriba†
Department of Electronics and Computer Science

Mondragon University
Mondragon, Spain

oscar.somarriba@alumni.mondragon.edu

Luis Carlos Perez Ramos
ICT Research Program

National University of Engineering (UNI)
Managua, Nicaragua

l.c.perezramos@gmail.com

Urko Zurutuza
Dept. of Electronics and Computer Science

Mondragon University
Mondragon, Spain

uzurutuza@mondragon.edu

Roberto Uribeetxeberria
Dept. of Electronics and Computer Science

Mondragon University
Mondragon, Spain

ruribeetxeberria@mondragon.edu

Abstract—Smart devices are very popular and are becoming
ubiquitous in the modern society, with Android OS as the most
widespread operating system on current smartphones/tablets.
However, malicious applications is one of the major concerns
and fast growing security menaces facing the use of Internet in
the Android platform, today. So, we need techniques and methods
to address the massive malware attacks. One of the most relevant
techniques to disclose sensitive behavior of Android applications
during their runtime execution is Dynamic Analysis. Here we
proposed a malware detection tool, termed as Network Sentinel,
that it can be used for Dynamic DNS request Monitoring of
Apps via networking. The main motivation for this work, it is
extensively abuse of the DNS by malevolent communities in order
to provide Internet connection within malicious networks and
botnets. Finally, the experimental results obtained are promising
by allowing us to capture the DNS queries requested by the
smartphones to remote servers from the collected network traces
at very low battery usage.

Index Terms—Smart devices, Android, Android Malware,
Dynamic Analysis, Dynamic DNS request Monitoring, network-
based analysis

I. INTRODUCTION
In the last years, mobile devices with Android operating

systems (OS) are widely being used, and now we observe the
explosive growth of smart devices in the world due to rapid
development of ubiquitous networking and wireless commu-
nications. According to forecasts [1], in 2018 the number of
smartphones in the world will be over 50% of the total number
of phones. Meanwhile, the increasing number of malicious
applications (commonly referred to as malware) targeting
Android smart devices raises the demand for analyzing them
to find where the malware is triggered when user interacts with
them. Of course, the outgrowth of mobile smart devices have
also been supported by the enhancement of the OS technology

upholding them. Therefore, the malware targeting smartphones
has developed rapidly due to the popularity of Android OS,
which has led to an astronomical increase in the spreading of
this kind of malicious programs. Moreover, since mobile users
increasingly rely on unofficial or third-party repositories in
order to freely install paid Android applications (Apps), lots of
security and privacy problems are generated. This raises strong
security and privacy issues for both to users and operators [2].
So, logging information from Apps destined for smartphones is
becoming essential for evaluating the security of an application
or generating test cases for it.

Malware detection is a complex and sophisticated process
pulling together monitoring, analysis and identification tasks.
With the rise of a new and sophistication generation of
smart malicious Apps, mobile malware detection faces several
challenges. As it is proposed in [3], a challenging issue would
be applying scalable technologies for efficient monitoring and
analysis of mobile security events. On the other hand, the next
generation of mobile malware detection systems will combine
heterogeneous sources such as: malware analysis, anomaly
detection, network analysis, log analysis, Distributed Denial
of Service (DDOS) detection, among others to allow real
time monitoring. Therefore, MMD (Mining Massive Data) or
Big Data are part of the solution to tackle the current smart
malware.

In the literature, existing malware detection (MD) tech-
niques for smart devices comprise two opposite approaches,
namely, static analysis and dynamic analysis (DA). This
classification depends on how the code of the application is
analyzed. The static case or code analysis means the attempt to
identify malicious features, harmful strings or blocks of code,
or suspicions code segments without executing Apps. How-
ever, the static methods suffer from the inherent constraints
of static code analysis (e.g., this approach cannot detect
zero-day vulnerabilities, obfuscation and evasion techniques).
However, many attacks could happen after an App is installed

†This author has double affiliation. ICT Research Program. UNI, National
University of Engineering. PO Box 5595. Managua, Nicaragua. Email: os-
car.somarriba@fec.uni.edu.ni.

or executed. So, the latter case (DA) focuses on collecting
information about the behavior of the App under analysis
during its runtime execution. This type of detection method
is also effective in discovering obfuscation and encrypted
versions of malware, which is very useful in practical use.
Hence, we focus on the dynamic detection of malware.

Of course, the first task in detecting network attacks and
instructions is to collect security-related data. This paper pro-
poses and evaluate one method of capturing network packets
from Apps with emphasis on the DNS queries, in particular the
URL (Uniform Resource Locator) requests, done by the smart
devices to remote machine, this is crucial in order to moni-
toring the Android malware. Since most of the Android based
malware communicate with some remote servers (command
and control center) either for getting instructions as it does
in a botnet or to send data/information stolen from device to
the attacker. Here we present a malware detection method for
Android using network traffic analysis, some kind of Android
packet sniffer. As it stated in [4]: ”A packet analyzer (also
known as a packet sniffer) is a computer program or piece of
computer hardware that can intercept and log traffic that passes
over a digital network or part of a network”. To the best of our
knowledge, this first non-rooted ”sniffer” publicly available
for the Android ecosystem with capabilities to capture the
URLs invoked by Apps in an easy manner. Furthermore, this
method could be combined with machine learning techniques
in order to design a network behavior analysis engine which
able to monitor network patterns from packets and captures
malevolent traffic at the network level, see for instance the
work by Bae et al. [5], dissimilar to our approach they rooted
the smartphones in theirs study.

In our experiments, we use the MalGenome dataset [6] in
order to generate network traffic so that to evaluate malware
behavior. Besides, most of the malware we examine use DNS
in order to obtain as well the URLs of their command and
control servers. Then, the problem of determining the DNS
queries done by the malware through devices without modi-
fying the firmware or rooting smartphone, is very important
and it poses a big challenge. From traces we generated from
Apps under test, we can extract malicious URLs invoked by
the malware.

A. Problem definition

The problem to solve is how to capture network traffic from
the smartphone without rooting or jail-breaking the phone. In
our case, we are interested in identifying the URLs invoked
through the DNS queries required by the Android malware,
without altering the firmware or rooting the intelligent device.
Here, we focus on Dynamic DNS request monitoring of
Android Applications by capturing network traces from the
smartphones.

So, at present, there is the challenge of developing a plat-
form with scalable and efficient capability for the monitoring
and analysis of security events that can compromise mobile
devices or pose threats that affect the infrastructure operator.
The management of the detection and reaction to new threats

and their mass spread due to the ubiquity of the underlying
communications network, will be done by extending security
event management capabilities for the monitoring, detection,
characterization, and mitigation of threats to mobile devices,
as well as creating an early warning system for operators. In
particular, this research will address part of this challenge,
showing how to obtain the traces of network traffic from
targeted App(s) at the mobile device under the restrictions
mentioned above.

The main contribution of this paper, is the method descrip-
tion and the proposed malware detection tool (Android sniffer)
for Dynamic DNS request Monitoring of Android Applications
via networking without rooting or modified the phone under
trial.

The rest of the paper is organized as follows: Section II dis-
cusses the related works. Section III presents the description of
the method proposed here based on a VPN-solution to capture
the network packets, in particular the DNS queries requested
by the Apps to remote machines. Section IV evaluates the
performance of the proposed method. Later, in Section V, we
discuss some open issues. Finally, Section VI presents the
remarking conclusions of this work.

II. RELATED WORK

In this section, we introduce some previous works in this
topic. The analysis and detection of Android malware has been
a hot theme of research in the last years. Several concepts and
techniques have been proposed to counter the growing amount
and sophistication of this malware.

There are several ways to dynamically intercept-
ing/obtaining the network packets transmitted by the
mobile smart devices to remote servers, among others,
namely: i) By using a proxy [7], ii) By utilizing an Android
network log monitor [5], or packet analyzers (sniffer) such
as tPacketCapture Pro [8] & MalDetec [9] based on virtual
Private Networks (VPN) approaches, iii) By modification and
customization of the Android OS as in [10], iv) By hooking
function calls, such as library APIs, (e.g., OpenConnection
method), and v) By exploiting the Logcat tool from Android
OS such as the tool dubbed Logdog, where Logcat is the
command to view and filter information from the Android
logging system [11].

In [10], Rughani customized source code of Android OS
available at AOSP (https://source.android.com/). The cus-
tomization includes modifying code in needed files and re-
building the code to make custom OS. Afterwards, the author
utilizes a python script that captures and intercepts logs.
It then extracts IP Address/URLs from the logs and puts
them in a file. After extracting information, it compares the
extracted information with existing blacklisted IP Address
(which are downloaded from openbl.org automatically by the
script). As the last step, the script creates result file containing
suspicious IP Addresses (if any found). Collected information
is not restricted. Unlike the work in [10], with the ”approach”
presented in this paper, we can obtain the URLs consulted
by the smartphone, without modifying the firmware of the

Android OS and making use of the DA provided by our non-
rooted Android sniffer.

In the approach by Bae et al. [5], they minimize the use of
high overhead functions & replace them to lightweigt features
(e.g., function call monitoring). They have leveraged those
features instead of using high overhead operations. First, the
monitor the network connections including the DNS queries
requested by using an Android network log monitor. It is
probably that malevolent Apps are trying to connect to some
mistrusted remote servers, for example C&C machines with
bad reputation. As a good rule of thumb for malware detection,
we can watch whom, an App connects to, we can infer its
malevolent behavior. Our approach is difference from the
authors in [5], in that they need to root the smartphones while
we are able to utilize our Android sniffer based on VPN-
solution without root privileges as it is described in Section III.

Alternatively, in general, method hooking is a technique
used to intercept the call of a certain method at runtime to
change the behavior of the calling application. By dynamically
(it is used for mechanisms that can dynamically apply a
hook at runtime) intercepting function calls frameworks can
analyze both single calls and sequences of calls to reconstruct
behaviors for semantic representations, or monitor the function
calls for misuse. Function hooks can also be used to trigger
additional analyses. For instance, if a function was hooked and
triggered, parameter analysis could then be applied to retrieve
the parameter values of when the function was invoked. The
analysis framework InDroid [12] inserted function call stubs
at the start of each opcodes interpretation code in order to
monitor bytecode execution and analyze Android behaviors.
While it does require modifications to the Dalvik VM and it
does not work on Android 5.0 (e.g., with ART), the method
requires relatively light modifications and has been used on
Android versions 4.0-4.2. However, InDroid requires to root
the smartphone, which it is not necessary in our case. Dy-
namic hooking happens in volatile memory only. Furthermore,
in [13], Brandolini designed and implemented a security
library for Android applications exploiting the hooking of
Java and native functions to enable runtime analysis. The
library verifies if the application shows compliance to some
of the most important security protocols and it tries to detect
unwanted activities based on the Dalvik compiler. Testing of
the library shows that it successfully intercepts the targeted
functions, thus allowing to block the application malicious
behaviour. He also assesses the feasibility of an automatic
tool that uses reverse engineering to decompile the Android
application, inject his library and recompile the security-
enhanced App. A similar method hooking for Dynamic DNS
request monitoring has been addressed in [14], with the Dalvik
compiler.

On the other hand, of course, we could try to install a limited
version of Wireshark [15] for Android, which allows us to
identify the URLs invoked by means of the DNS queries from
the phone, but this would imply ”rooting” the smart device;
which is not acceptable for practical purposes in our case,
since mobile operators could not maintain the guarantees of

their users and also taking into account the fact that most
of the Android users do not jailbreak their smartphones [9].
A very similar case to Wireshark is the tooltcpdump [16]
because it also requires rooting the smart device. We have
also done tests with tPacketCapture Pro [8] that allows the
capture of Internet traffic back and forth on the smartphone
without rooting privileges, but it has severed restrictions to
show the DNS queries made by the Android phone. Also
tcpdump requires ”rooting” the smart mobile device. Another
possibility found in the literature survey is Logdog [11], which
has been developed to detect botnets for smartphones using log
analysis techniques. Again, Logdog is based on a collection
of Android logs called Logcat and it is necessary to get the
permission of superuser (root user) of the OS, to be able to
operate with this App on the smart device. Which is out of
the scope or restrictions required in this work.

Moreover, as aforementioned Android 5.0 introduced the
new ahead- of-time compiling Android runtime termed ART.
So, it is needed an advanced instrumentation approaches based
on the new virtual machine ART which are addressed in [17]–
[20].

In the forthcoming section, among the above approaches for
sake of simplicity, we choose as used method for Dynamic
DNS request monitoring of Apps the VPN-solution [8], [21]
targeting Android versions using ART.

III. IMPLEMENTATION OF THE DYNAMIC DNS REQUEST
MONITORING METHOD VIA NETWORKING

Although there are proposals that aim to control network
traffic in smart devices [21], [22], current smartphones do
not usually give importance to network requests and what
they could represent to them in terms of mobile security.
Also, ordinary users must resort to sophisticated systems and
maintenance techniques to ensure that their smart devices are
not infected with some malware. Therefore, it is of great value
and importance to develop an application that can track and
monitor network traffic in a more automated way and that
performs the majority of actions necessary to give the state of
reliability of the equipment to the user. In this way we can
benefit both common users and some more advanced users
who need specific administrative tools in their smart devices,
some as developers or students of networks can make use of
the application to help them understand how packets travel
through the network .

So, the main goal here is develop an App that manages to
keep track of network packets or network traces in order to
ensure the degree of reliability of the applications installed in
the smart device and avoid or warn possible malware problems
associated with communication with malicious servers in the
network. We have developed an App that can track the access
to the network that other Apps can make, whether the user
has proof of these accesses or not, capture DNS requests on
the smartphone to a remote online server and create a check
that defines to the user whether or not there is some unwanted
access by the installed applications.

Let us describe the basics of the proposed method, where
we develop a simple sniffer based on the Android Studio IDE
version 2.3. Our application stars gathering the network traffic
of the targeted App or Apps at the smartphone, through the
creation of a local virtual private network (VPN), See Fig-
ures 1 and 2. We then need to use VpnService to redirect all the
device’s network traffic through our application. Of course, we
can only capture DNS traffic from the App or Apps under test.
Afterwards, the network traffic captured and all requests that
exist within the device and are thus packaged it into PCAP files
(this is an interface of a programming application for packet
capture). Thereafter, the jNetPcap library is utilized; which
is an open source Java library, used in order to capture and
decode network packets. And, it uses native implementations
to provide optimum packet decoding performance. In Figure 1,
we have a diagram showing how the VpnService is called from
Main Activity of the Android programming and its services that
this utilized.

By doing so, the obtained IP traffic or URLs in the network
traces can be checked through a blacklist server, and know if
there is any malicious behavior on the device. Consequently,
it is possible to define/declare which application under test is
not suitable to use or uninstall. Note that Network Sentinel
runs in its entirety on the local smart device and traffic is
not routed through a remote VPN server. This is the basics
of the proposed malware detection tool for Dynamic DNS
request monitoring that works with the ART compiler. And,
we named as to Network Sentinel which needs at least the
Android version number 5.0 (code name Lollipop) to work
properly.

Of course, VPN approaches [8], [21] have suggested in
the literature to provide secured communications in Android
ecosystems. For instance, PrivacyGuard [21], an open-source
VPN-based platform for intercepting the network traffic of
Apps. This Android application also requires neither root per-
missions nor any knowledge about VPN technology from its
users. Thus, we implemented Network Sentinel on the Android
platform by also taking advantage of the VpnService class
provided by the Android SDK. PrivacyGuard is an App that
alerts you when one of our Apps leaks sensitive information to
a remote server, which has a little bit different of our scope of
the proposed method presented here. Furthermore, we tested
the paid App tPacketCapture Pro [8], but we did not succeed
to get or capture any URLs at all. So, this was one of the
reasons to develop Network Sentinel in order to fulfill this gap
in the arsenal of the tools publically available for the Android
analysis, in particular for Dynamic DNS request monitoring
of Android malware. In Figure 3, it can be seen the icon on
the Network Sentinel as it depicted in the platform of Google
play. This Android ”sniffer” is available through Google Play
Store, at the web link 1.

IV. EXPERIMENTAL RESULTS

In order to evaluate our approach (Android sniffer), we con-
duct several experiments with the two smartphones, Xiaomi

1https://play.google.com/store/search?q=Network%20Sentinel&c=appstext

Fig. 1: The diagram of use and implementation of the capture
service of the VPN at the smart device.

Fig. 2: Schema handling of packets via VPN (Virtual Private
Network) from Android smartphone or Tablet. The main con-
figuration of our Android sniffer is shown, capturing packets
through a protected data tunnel.

Redmi 3S Prime and Samsung Galaxy Grand Prime. First of
all, we validate the network traces (benign Apps and malware)
provided by our tool. Second, we carry out interceptions of
URLs by applying Dynamic DNS request monitoring of the
App under test combined with existing blacklisted IP address
of malicious Domain Name available in Internet, to detect the
presence of malware. And third, we address the consumption
of resources of the Android ”sniffer”, mainly through the
power consumption of the device regarding the battery usage.

A. The capture of the DNS network packets

We first present the main menu of the Network Sentinel
as can be shown in Figure 4. Here we star by choosing the
configuration of the dynamic monitoring, e.g. we can select
the App under examination (we can also monitor several Apps,
if we want to do that) and the type of capture of the network
traces. So far, the menu of Network Sentinel is available

Fig. 3: The Android sniffer termed Network Sentinel is avail-
able at Google Play Store.

Fig. 4: The main menu of Network Sentinel available at Google
Play Store.

in Spanish language, however future versions are going to
migrated to a full version in English language. For instance,
in this case, ”INICIAR CAPTURA” translated into English
is ”Star Capture”, and ”SELECCIONAR APLICACIONES”
means in English ”Choose the App or Apps to monitor”. It
is important to mentioned that the Network Sentinel provides
information about the protocols in use in real-time, not the
raw data. After obtaining the network traces, the results are
being automatically saved in a file on the smartphone (Android
sdcard) with an extension PCAP. We validate Network Sentinel
by comparison its results against similar monitoring using the
network protocol Wireshark [15] in an ad hoc set up with
the smartphone Samsung Grand Prime rooted. We tested 10
benign Apps (they were taken from Google Play Store) and
10 malicious software.

B. The Maliciousness of the Android application (App)

Figure 5 depicted the functional block diagram employed
the feature of inspecting the threat of the App under ex-
amination in Network Sentinel, utilizing blacklisted service
provided by Internet. We can further extend the malware
analysis selecting the option ”Usar Servidor DNS” in the
configuration menu of Network Sentinel, here we can either

choose one of two possibilities namely, Web of Trust (WoT)
or Safe Browsing.

Fig. 5: Functional diagram of the developed App. Config-
uration of the structure of the App and connection to the
blacklisted service.

Fig. 6: Outcome of the queries to the blacklisted service WoT.

In Figure 6, it is shown the monitoring results using the
WoT, we reach this feature in Network Sentinel by using the
PCAP Analisis, in particular with the option THREAT. Usually,
a web site in red color could imply a suspicious or malicious
URL.

C. Battery Usage with Network Sentinel working

Application performance is always a trouble for the every-
one developing Apps. Here we review the battery usage of the
Network Sentinel by utilizing the tools Batterystats and Battery
Historian. Batterystats takes data from our smart device bout
battery. On the other hand, Battery Historian converts this data
to HTML format to be able to see it on Browser. Batterystats
is a part of Android framework and Battery Historian is
on Github as opensource at https://github.com/google/battery-
historian.

The step by step procedure how we use Batterystats is de-
scribed at the web site: https://medium.com/@elifbon/android-
application-performance-step-4-battery-b1f88d096b1e.

During the experiments using Batterystats & Battery His-
torian we ”play” with the App under test for about 15-20
minutes. The typical outcome of the battery usage during the

Fig. 7: Table of the battery usage with the smart device Xiaomi
Redmi 3S, in particular the org.nucleo.ami.networksentinel
(Ranking 4 in the Table has as Battery Percentage Con-
sumed, 0.05%).

trials was roughly an average of 0.05%, as it is shown in the
Table below 7, an excerpt of the Battery Historian tool.

V. OPEN RESEARCH TOPICS

According to the above mentioned, we envisage a number of
open issues in this research field, i.e., Dynamic DNS request
monitoring of Android malware. First of all, we would like
to compare two methods that are interesting to this research,
namely: i) method1 (Dynamic DNS request monitoring of
Android malware via networking) proposed here as Network
Sentinel, and ii) method2 (Dynamic DNS request monitoring
of Android malware via instrumentation or hooking) as the one
in [14]. Second, the proposed method2 aforementioned utilizes
as compiler Dalvik in contract with presented method1, which
it has as compiler ART. So, we need to update the method2
in [14] by using the Android runtime instrumentation toolkit
ARTIST proposed in [19]. Third, CPU utilization and battery
usage shall be the most common critical issues regarding the
application performance in our future study cases.

VI. CONCLUSION

This paper gave an introduction to a simple Android ”snif-
fer” designed and implemented on a VPN-approach inside
the smart device as a method for Dynamic DNS request
monitoring of Apps via networking. It is has been written
in java programming language, under the umbrella of the
Android Studio IDE. We dubbed this method as Network Sen-
tinel. We conduct several experiments with Network Sentinel
with real smartphones without jailbreaking them. The results
of intercepting or capturing the URLs from DNS queries
requested from the smartphones to remote servers have been
validated. For users of the Network Sentinel, the graphical
interface provides an easy and intuitive manner of using it,
at very low battery usage. This tool is publically available
at the Android distribution platform, Google Play Store, thus
the research community can take advantage of it and give us
further feedback about its performance.

REFERENCES

[1] J. K. Lee, “Research framework for ais grand vision of the bright ict
initiative,” MIS Quarterly, vol. 39, no. 2, 2015.

[2] O. Somarriba, U. Zurutuza, R. Uribeetxeberria, L. Delosières, and
S. Nadjm-Tehrani, “Detection and visualization of android malware
behavior,” Journal of Electrical and Computer Engineering, vol. 2016,
2016.

[3] E. Markatos and D. Balzarotti, “The red book. the syssec roadmap for
systems security research, the syssec consortium, 2013.”

[4] U. Banerjee, A. Vashishtha, and M. Saxena, “Evaluation of the capabili-
ties of wireshark as a tool for intrusion detection,” International Journal
of computer applications, vol. 6, no. 7, 2010.

[5] C. Bae and S. Shin, “A collaborative approach on host and network level
android malware detection,” Security and Communication Networks,
vol. 9, no. 18, pp. 5639–5650, 2016.

[6] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 95–109.

[7] S. Garg, S. K. Peddoju, and A. K. Sarje, “Network-based detection of
android malicious apps,” International Journal of Information Security,
pp. 1–16, 2016.

[8] Taosoftware, “tpacketcapture is the software that can capture
communication packets on non-rooted device,” Online:
http://www.taosoftware.co.jp/en/android/packetcapture/, 2015.

[9] N. Trivedi and M. L. Das, “Maldetec: A non-root approach for dynamic
malware detection in android,” in International Conference on Informa-
tion Systems Security. Springer, 2017, pp. 231–240.

[10] P. H. Rughani, “Detecting blacklisted ip access from android phone,”
Indian Journal of Science and Technology, vol. 9, no. 48, 2016.

[11] D. A. Girei, M. A. Shah, and M. B. Shahid, “An enhanced botnet de-
tection technique for mobile devices using log analysis,” in Automation
and Computing (ICAC), 2016 22nd International Conference on. IEEE,
2016, pp. 450–455.

[12] J. Li, W. Yang, J. Shu, Y. Zhang, and D. Gu, “Indroid: An automated
online analysis framework for android applications,” Crisis Intervention
Team (CIT), 2014.

[13] F. A. Brandolini, “Hooking java methods and native functions to enhance
android applications security,” Ph.D. dissertation.

[14] O. Somarriba, “Detecting blacklisted urls from unmodified and non-
rooted android devices,” in Central America and Panama Convention
(CONCAPAN XXXVll), 2017 IEEE 37th. IEEE, 2017, pp. 1–6.

[15] Wireshark, “Wireshark: A network protocol analyzer for unix and
windows.”

[16] V. Jacobson, C. Leres, and S. McCanne, “Tcpdump public repository,”
Web page at http://www. tcpdump. org, 2003.

[17] M. Wißfeld, “Arthook: Callee-side method hook injection on the new
android runtime art,” Ph.D. dissertation, Saarland University, 2015.

[18] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S. Weis-
gerber, “Artist: The android runtime instrumentation and security
toolkit,” in Security and Privacy (EuroS&P), 2017 IEEE European
Symposium on. IEEE, 2017, pp. 481–495.

[19] L. Dresel, M. Protsenko, and T. Müller, “Artist: the android runtime
instrumentation toolkit,” in Availability, Reliability and Security (ARES),
2016 11th International Conference on. IEEE, 2016, pp. 107–116.

[20] V. Costamagna and C. Zheng, “Artdroid: A virtual-method hooking
framework on android art runtime.” in IMPS@ ESSoS, 2016, pp. 20–28.

[21] Y. Song and U. Hengartner, “Privacyguard: A vpn-based platform to
detect information leakage on android devices,” in Proceedings of the 5th
Annual ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices. ACM, 2015, pp. 15–26.

[22] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,
and Y. Elovici, “Mobile malware detection through analysis of deviations
in application network behavior,” Computers & Security, vol. 43, pp. 1–
18, 2014.

	Portada AAM IEEE.pdf
	Dynamic DNS Request Monitoring of Android.pdf

