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Abstract—Nowadays, with the predominance of smart devices
such as smartphones, mobile malware attacks have increasingly
proliferated. There is an urgent need of detecting potential
malicious behaviors so as to hinder them. Furthermore, Android
malware is one of the major security issues and fast growing
threats facing the Internet in the mobile arena. At the same
time, DNS (Domain Name System) is widely misused by mis-
creants in order to provide Internet connection within malicious
networks. Here, we propose an infrastructure for monitoring
the Android applications in a platform-independent manner,
introducing hooks in order to trace restricted API calls used at
runtime of the application. These traces are collected at a central
server were the application behavior filtering, string matching,
and visualization takes place. From these traces we can extract
malicious URLs and correlate them with DNS service network
traffic, enabling us to find presence of malware running at the
network level.

Index Terms—Android malware, API calls, Dynamic behavior
analysis, DNS queries, and Collaborative framework.

I. INTRODUCTION

Android has become one of the dominant mobile
operating systems. Thus, smart devices running Android
Operating System (OS) represent an overwhelming majority
of smartphones. In general, it is also the first targeted
platform greatly impaired by malware writers pursuing
to take the control, with well over a million of Android
applications (apps), over the world. Due to the popularity
of Android smartphones, its apps' security is a serious issue
concerning more than 80% of smartphones users and the
malware targeting smartphones has rocketed over the last
few years [1]. The security issues of Android platform
have recently drawn the attention of attackers seeking to
exploit its vulnerabilities, and these concerns are being
tackled both in academia and industry. The current security
applications also scan apps for malware detection according to
a malware signature database. This approach requires frequent
network communication and support of up-to-date malware
database, while almost certainly missing new malware or
zero-day attack (which is an undisclosed computer-software
vulnerability that hackers can exploit) samples. Furthermore,
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Android OS puts some limitations on apps for security
reasons, in order to avoid easily gathering traces without
reshaping the firmware or rooting the smartphone. Even so,
we need to collect traces from apps on a large scale, herein
this will be done under two constraints aforementioned above.
Without these restrictions the warranty of the smart device
may be invalidated or the Android phone will be further
exposed to malware attacks. Furthermore, this paper extends
the infrastructure proposed in [2], collecting the application
traces using the hooks, and uploading the traces to a remote
server for observation and analysis.

Many security mechanisms were proposed to detect mobile
malware and protect targets from attacks. In general, most
of these mechanisms are based on analyzing app elements
such as permissions, the used application programming
interface (API) function calls, the employed system calls,
or its bytecode. Such mechanisms employ various detection
techniques such as static dissection, dynamic analysis (DA),
and cloud based analysis. In the static analysis, there is attempt
to identify the malicious code by decompiling/disassembling
the app and searching for suspicious strings or block of code.
The DA implies the execution of the app performed through
instrumenting or virtual machine monitoring to observe
its behavior. In the cloud based approach, the app will be
executed and dissected on a remote server.

Mobile devices have become major targets for smart
malware due to their heavy network activity, including the
Internet access. So, Domain Name System (DNS) is one of
the key elements of the Internet that facilitates associating
a domain name and hosting IP address. Besides, the DNS
scheme is a query/reply based protocol where the authenticity
of the response is not confirmed or confirmed by approaches
that can be thwarted easily. However, in addition to the crucial
role in functioning of the Internet, DNS is extensively misused
by malware developers. Thus, the aggressors rely on DNS
to provide adjustable and resilient communication between
compromised client machines and malicious infrastructure.
However, it is worth noting that we do not address or detect
malicious DNS in this work, which is DNS traffic corrupted
for illicit and malevolent reasons. In fact, we only take



advantage of DNS to find malware without having to monitor
all smartphones in a system.

This work focuses on monitoring Android applications' sus-
picious behavior at runtime, in particular adding to the app
traces (described in [2]) the DNS queries to the remote
servers done by the smart device. Later, we correlate these en-
hanced app traces with DNS traces taken from network traffic
of the mobile infrastructure. Thus, we propose a platform-
independent behavior monitoring infrastructure composed of
five elements with the capacity of instrumenting DNS methods
based on the hooking library named Android Dynamic Binary
Instrumentation (ADBI) [3]: (i) an Android application that
guides the user in selecting, instrumenting and monitoring
of the application to be examined, (ii) an embedded client
that is inserted in each application to be monitored, (iii) a
cloud service that collects the app traces, (iv) a DNS service
that provides data logs of the network-service traffic, (v) and
finally an Elasticsearch [4] cluster including a visualization
component that can generate dashboards of the top-ranking
classification of malicious URLs based on Kibana (part of the
Elastic Stack, it is an analytics and visualization platform that
builds on Elasticsearch (ES) to give us a better understanding
of the data). In addition, the DNS network-service send flow
data (DNS logs) to the tool dubbed Logstash (an agent and
server-side data pipeline processing that receives it, parses it
and later sends the indexes into ES). An Overview of the
monitoring system is shown in Fig.1. See further details about
our infrastructure in Section III.

A. Problem Statement

This work aims to deal with the sophisticated and emerging
threat of the Android malware in mobile ecosystems. We
develop techniques to systematically explore and monitor the
app traces generated from the execution of instrumented apps,
thereafter they are sent to the cloud service in order to support
the malware detection. Much of the research work surrounding
mobile malware has been centered on either the in-depth
analysis of malicious apps (host level) or the network-based
approach (network level). Thus, developing a collaborative
framework between the aforementioned approaches seem to
be the next step, and it can increase the chance of malware
detection. The main goal of this research is to explore, design
and develop techniques that can be used to detect malicious
mobile behavior from massive sets of heterogeneous sources.
In particular, the DNS traffic activity produced by mobile
malware will be inspected and correlated with device-related
activity.

B. Contribution and Outline

The contributions of this paper are (1) extending the sys-
tem for Android platforms described in [2] composed of an
implementation on the smartphone side and on the remote
server side. Herein, we focused on capturing requested URL
for detecting malicious transactions initiated by an app running

Fig. 1: Proposed approach.

on the Android phone; and (2) evaluation of combining and
correlate the following two approaches: top-down detection by
identifying malware domains using DNS network traffic and
bottom-top detection using the classical DA on a number of
apps to pinpoint the malware. The remainder of the paper is
structured as follows: Section II discussed the related work.
Section III reviews the research methodology. Section IV eval-
uates the performance of the monitoring system. Limitations
and Conclusions are presented in Section V and Section VI,
respectively

II. RELATED WORK

Since most of the Android malware resort to communicate
with some remote server (e.g., a botnet master machine), there
is the crucial need to detect fraudulent or malevolent operation
with help of a collaborative malware analysis framework
between the smart device and the network traffic involved.
Besides, usually the malware analysis comprises the process
of studying code and to obtain information about the behavior
and functionality of the malware in its environment. After-
ward, the results of the analysis will be used as an input to the
Malware Detection (MD). The type of analysis for identifying
malicious applications in Android platform can be classified
as follows, namely: Host-based Analysis and Network-based
Analysis. The so-called smart malware in current smartphones
and tablets have mushroomed over the last few years, which
is supported by sophisticated techniques intentionally designed
to master security architectures in use by such devices. Let us
review some of these approaches:

A. Host-based Android MD

Lu et al. in [5] describe a static tool that aim to de-
tect Inter-Component Communication vulnerabilities (ICC)
by analyzing the app bytecode. Another static approaches
such as Drebin [6], and DroidMat [7], use learning-based
or machine-learning (ML) systems to detect anomalies by
considering permissions, APIs and bytecode instructions. For
instance, DroidMat, is a tool that extracts its information
from static feature-based mechanism as the bytecode. Next,
applies k-means and expectation-maximization (EM) cluster-
ing algorithms to classify the app as malware or benign. It



detects Android malware using feature-based mechanism for
characterizing the app through static information. Since [5]-
[7] utilize static methods, they undergo from the inherent
limitations of static analysis, e.g., they are unable to detect
obfuscation techniques. Also, the network behavior-based mal-
ware detection for Android malware in smart devices got little
attention with these approaches. Regarding the DA, we first
consider virtual monitoring machines that analyze the systems
calls to detect malicious behavior such as Crowdroid [8] and
CopperDroid [9]. Alternatively, we then consider DA that can
be carried out by instrumenting the Android OS, such as: [2]
and TaintDroid [10], among others. Unlike [8]- [10], our
framework targets at detecting attacks both at the host and
network levels, and we do not need to root or to change the
firmware the smart device, since we introduce hooks to trace
API calls at the application level of the Android stack, so it
is not necessary to invoke system calls at the kernel level that
require rooting the smart device.

B. Network-based Android MD

Other approaches explicitly analyze network traffic for
different goals. In [11], they address the network-based
malware detection mechanisms for Android-based attacks,
and they use MalGenome [12] dataset in their research. So, the
authors used four different traffic categories (network traces),
namely based on: DNS-based features, HTTP-based features,
Origin-destination based features and TCP-based features.
This trait analysis is used to train a detection app model for
classification of apps based on ML algorithms. Furthermore,
in CREDROID [13], it has been proposed an Android malware
detection by network traffic analysis capturing packets in a
remote server using the protocol analyzer WireShark [14].
They also introduced the reputation score of the URL. With
all of this, the authors proposed a method which identifies
malicious apps on the basis of their DNS queries and APK
score computation through Virustotal [15], as well as the
data it transmits to remote server by performing the in-depth
analysis of network traffic logs in offline mode. Unlike [11]
and [13], we profile only gathering the network traffic of app
under test at the smartphone side. Regarding the host-based
analysis, even though Android smartphones have attracted
the users community for their feature rich apps to use with
various applications like chatting, browsing, mailing, etc.;
including a heavy activity use in the Internet. Most of the
published approaches do not integrate the network traffic
dimension at the device side into the analysis. Unlike the
component-application analysis, we include the DNS traffic in
our approach. So, to attain the goal of detecting the malware,
we propose a dynamic inspection combining with DNS logs
at the Android phone (app traces) and the network operator
infrastructure levels.

Our proposed infrastructure is related to some of the
research work mentioned above and employs similar traits
for identifying malicious applications, such as API calls,
DNS queries, and DA. However, our approach is different

from aforementioned approaches in the following aspects.
Firstly, we have a runtime malware detection (dynamic
analysis) but abstain from reshaping the firmware or rooting
the smart device as it is done by [8]- [10]. Also, the DNS
queries of apps under test are captured at the smart device,
but not on a remote server using Wireshark as it is done
in [11] and [13]. Secondly, we combine in a collaborative
or integrated environment the bottom-top analysis (host
level) with top-down approach (DNS network service) in an
easy-to-follow manner in the cloud service and ES cluster.
Thirdly, moreover, we are able to monitor in real time not
just the DSN queries for a particular app to be monitored, but
we are able to focus on intercepting malicious URLs at DSN
network service affecting others smart devices. Our platform
is more dynamic and collaborative than other approaches
mentioned above.

Our results are shown in a dashboard that visually render
existing malicious URLs in the system enabling to warning
a potential mobile operator about their presence in its traffic
network. Noting that a mobile operator can easily or indirectly
detect another infected devices that had not installed the
monitoring application. This is due to they behave in the same
manner, by doing the same DNS queries than the monitored
devices. This is certainly a very valuable benefit, because we
do not need to monitor all the smart devices at the same time.
Since we collect the used URLs on the Android device instead
of on a remote server or gateway, we shorten the time to
detect malware as it is suggested in the hybrid analysis method
dubbed NeseDroid [16].

III. RESEARCH METHODOLOGY

Hence the whole process is divided into four phases. First
of all, the first phase implies the generation of the app traces,
data collection and the analysis and monitoring of network
traffic. Actually, the app traces are, in this particular case, the
malware traces with the plus in this approach that we are able
to capture the DNS queries done by the app under test, if any.
The second phase includes the log aggregation and transport
of data generated, the extraction of URLs from app traces and
DNS network-service traces are done with the help of Python-
language scripts. The third phase is the search and analytics
task. And, the fourth phase is the visualization component of
the system. The rest of the process is outlined in subsections
that follows.

A. Introduction to the Malware Dataset

First let us to introduce the employed Malware Dataset. In
our experiments we are using the MalGenome dataset [12],
which it has 1260 Android application package (apks). So
according to our approach we need to ”capture” the network
traffic from 100 malware samples of these applications (apk
files). It should be mentioned that there are malicious apps
that are not generating network traffic, therefore these cases
are not taken into account or ignore in our analysis.



B. Data Generation

Here we are interested in the data sources that will feed
into our platform, namely: the app traces from smart devices
conveying information about the DNS queries done by one
app under test; and the traces of the DNS network-service in
the mobile infrastructure, in particular the DNS logs from its
DNS servers. To achieve our objective, we utilize the Android
OS Version 4.3. In order to collect data at the smart device
level, we need to setup an experimental testbed with multiple
virtual machines (VM) which used VMWare WorkStation 12
and VirtualBox 5.0.28, respectively; to create a controlled
environments. Afterwards, we use the Eclipse emulator on a
host a machine which is employed for running the Android
application; and we then run various tools to process the
malicious apps under analysis, in particular in the Virtualbox
VM we run the Elastic Stack [4]. Let us introduce the first
data source, the processing of the traffic generated by the
smartphones in the VMWare VM. Thereafter, we store some
privacy data (e.g., contacts information, images, and some
downloaded files) to the emulator, the next step performed
is to capture the DNS queries of the samples from each
MalGenome family in use. Samples from each of the malware
family were executed on emulation environment for a short
and fixed amount of time (10 mins). We expect some of
samples to communicate to the remote server, since each
sample itself is a malware. To separate network traffics of
the smart devices, virtual machine is left idle for around
5 minutes between running and terminating of applications
after the network traces from the app under examination
are captured and saved. After the traces have been collected
from an application, it is uninstalled and Eclipse emulator is
rebooted. It is important to mention that the aforementioned
procedure, it is just to check out which malware samples
are connecting with remote servers. Regarding the second
data source, for sake of simplicity, in this work we only
consider two samples of DNS network-service logs (each file
has around 30 MB in size, which are currently available for
our experiments) provide by one mobile operator in 2015 and
2016. DNS records contain valuable information about domain
names and associated IPs that clients query, whether mobile
or not. It will therefore contain malicious URL records that
could make mobile Apps malware.

C. Analysis and Monitoring of Mobile Traffic

The objective of this task will be to review and evaluate
relevant sources of information security in the mobile network
and to show how they could be used to detect subscriber
security events in the network. It is important noting that we
run Python scripts at the VMs and QPython scripts at the
Emulator or the smartphone. First of all, we can query the
app traces database using a Python script written to extract
the involved URLs. So here we focus on detecting malicious
URLs. And we then rely upon various third party APIs.
With the help of these APIs such as URLVoid [17] and/or

Fig. 2: Correlation of the used URLs from app traces with
DNS logs.

Web of Trust [18]. These are free services that analyze a
website through multiple blacklist engines or monitors and
online reputation tools to facilitate the detection of fraudulent
and malevolent websites. In the case of unavailability of
the malware blacklist systems aforementioned, alternatively,
selected features employed by the work of EXPOSURE [19]
as it is suggested in [20] can be used to grade reputation of
domains, where they use a host domain reputation analysis
engine based on Support Vector Machine (SVM) classifier.
For training the model, they collected two kind of sample
domains (benign and malicious) from the local DNS server
on their campus from July to August in 2013.

D. Log aggregation and transport

This task will focus on the description of the agent respon-
sible for collecting and storing information on DNS network-
service logs. For data collection, the data will be used in text
format from the DNS Servers, and data from the instrumen-
tation collected in a well-structured relational database of the
apps. The collection of the logs of the DNS network service
will be indexed through Logstash [4]. This tool, designed to
collect and add events and logs created on multiple devices and
services, sends information from DNS network-service logs to
a system that indexes content for durable storage. Here, the
main idea is to be able to have a telemetry correlator that will
provide the analysis and correlation of all device telemetry data
with all the sources that will be available to the system. Thus,
on the other hand, when malware is executed, malicious URL
queries will be logged, and sent to a SQL database (DDBB)
to the server. For further details, see Figures 1 and 2.

E. Search and Analytics

In this task the correlation of the monitored events in the
previous task has to be carried out. Here the utilized strategy
is to index the content of data collection in order to develop
a pattern matching system, in particular we do that with
the DNS network-service logs that are expected to be huge
amount of data. Thereafter, we proceed with the extraction of
the malicious URLs include in the app traces of a particular
sample of malware in use. So, we are able to identify another



smart devices who are running the same malicious URLs
previously executed. Next, the following step is conducting
a search of malicious URLs on the aforementioned content
indexing built in with ES. By the way, here ES has been used
as a method of content indexing. ES is a Lucene-based search
server [4]. Also, our system is designed with an easy-to-use
web interface supported by a Python script and ES to make it
simple to search and perform various forms of analysis on the
apps and their traces, as well as the DNS network-service logs
from network infrastructure of the mobile operator. In our case,
we search for pattern matching in strings for those common
malicious URLs found both in the traces of the smart devices
and in the DNS network-service records (logs) extracted in
the network traffic of the mobile operator, see Fig. 2.

F. Visualization

The visualization of anomalous behavior is the last compo-
nent of the proposed architecture. In order to performance a
visual analysis of the platform. So, we use the Elastic stack,
which is a versatile collection of open source software tools
that make gathering insights from data easier [4]. Formerly
referred to as the ELK stack (in reference to ES, Logstash,
and Kibana). In particular, Kibana is a browser-based or web-
interface visualization frontend for ES. It enables users to
easily consume data in aggregate that would otherwise be
difficult to process; making logs, metrics, and unstructured
data searchable and more usable for humans. So because
Kibana persists most of its data within ES, managing Kibana
dashboards and visualizations is a similar exercise as managing
other indexes in ES. Charts, graphs, and other visualizations sit
atop ES APIs which can be easily inspected for closer analysis
or use in other systems.

IV. EXPERIMENTAL RESULTS

To evaluate our framework, in this section we show
the visualization results of the process of monitoring the
malware behavior. Firstly, we assume that we have already
instrumented and monitoring and running, one of malware
samples that it does DNS queries, and we let it runs for a long
time. By the way, from the 100 sample families explored, only
63 of them have connections with at least one remote server.
We then proceed to apply the pattern matching in strings by
using Python-language scripts developed for this purpose (see
Fig. 2). Moreover, two programs written in Python language
are used. The first Python script extracts one malicious URL
upon the time from the MySQL database with the app traces,
and then it connects with ES to look up through the whole
indexed DNS records within it. For instance, if we search
for the particular URL, s0.2mdn.net. The Python program
obtained automatically this value from malware traces stored
in the MySQL database in the service cloud. In Fig. 3, it is
shown one of the DNS logs obtained after the processing
(indexing) with the tool Logstash and stored in ES. Also,
in this Fig. 3, we can appreciate the several fields that can
be utilized to look up for a precise information, in our case
we search for the field tagged ”URL”. In Table I, we can

see the possibility of finding more malware not only in the
smartphone under examination, but in other smart devices
that are concurrently using the same malicious URLs and are
also being detected in the DSN network-service traffic, so we
can do a decisions correlation.

The second Python script allows us to do pattern matching
in strings using a well-known algorithm (or KMP algo-
rithm) [21]. This is done in order to compare the Elasticsearch
processing against the KMP algorithm. In other words, the
malicious URLs stored in the MySQL database in the cloud
service are also read with a second Python script. Thereafter,
we run the KMP algorithm, to conduct a pattern matching in
strings, searching directly inside the DNS log in ES to look
for the URLs (string) under examination. Comparison of the
searching time on malicious URLs inside the indexed DNS log
in ES using the first Python script are faster by approximately
five times in average in 10000 trials, versus the searching time
of using the second Python script.

V. LIMITATIONS

It is very-well known, there is no prefect detection system
without limitations. In this work, we only consider URL/DNS
traffic, however current applications and malware as well are
using DNS tunneling techniques and HTT traffic so, taking
into consideration the current communication landscape this
proposal will be only covering partially the current malware.
In addition to this, malware using certificate pinning will be
totally able to evade our system. Also, working with sandboxes
in DA instead of real Android phone could be a drawback
since malware can detect the use of emulators as is discussed
in [22]. For instance, most of the current mobile malware,
specially bankers make use of geo-location techniques in order
to prevent it being execute in sandboxes so this is one of the
vectors the system must consider. Therefore, these issues will
be addressed in future work.

VI. CONCLUSIONS

In this paper, we propose a collaborative framework for
Android MD that allows to find events correlation among
common malicious URLs from the app traces in the smart
device and the DNS network-service logs from the mobile
operator. This can be used to pinpoint the malware attacks
in several unmonitored smartphones in the wireless cellular
system. This platform provides a visualization component
using the tool dubbed Kibana from the Elastic Stack, in
particular the malicious URLs corresponding to malware be-
haviors are highlighted. Our infrastructure is composed of
several components namely, the embedded client, the app
that collects the network traffic of the application under
examination, Python-language scripts that allow processing of
the malicious URLs at the servers that gather the app traces
and DNS logs, and the search and analytics cluster (Elastic
Stack). So, any Android application (up to 19 API level) can be
monitored without rooting the phone or changing its firmware.
Further improvements on the visualization quality and the user



Fig. 3: Indexed DNS log after being processed by Logstash tool and stored in the ES, and it is shown using the tool for
searching and data visualization called Kibana. The queried URL is s0.2mdn.net.

interface are possible, but the design and implementation of
our platform demonstrated to be promising.

TABLE I: MALICIOUS URLs AFFECTING SEVERAL
SMART DEVICES

Malicious URLs from smartphones No. of times in the DNS logs
S0.2mdn.net 2161

alog.umeng.com 1630
thepiratebay.org 1024
servegame.com 288

pm-m.d.chango.com 30
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