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The stability of thermocapillary/buoyant flows is affected by a remote thermal source. We present a nonlinear two-
phase computational study of convection in a liquid bridge that develops under the action of Marangoni and buoyancy
forces, as well as under the influence of distant thermal disturbances. The gas phase (air) occupies a typical annular
container holding a liquid bridge (n-decane, Pr=14), and the disturbances are locally imposed in the form of hot/cold
spots on the outer wall of the container. The hydrothermal wave instability and pattern selection have been explored
for two temperature differences AT by varying the intensity of thermal source Hy over a wide range. Not far from the
critical point, in all the cases, the instability emerges in the form of a standing wave, but the azimuthal wavenumber
depends on whether the external perturbation is caused by cooling (m=2) or by heating (m=1). Further into supercritical
area, 45% above the threshold, in the region with thermal perturbations —200 < Hy < 50, the flow pattern comprises,
but is not limited to, a hydrothermal traveling wave with the azimuthal wavenumber m=2. For hotter perturbations, the
instability develops either in the form of traveling or standing waves, depending on H, with the prevailing mode m=1,

but with a strong presence of other modes.

I. INTRODUCTION

Multiphase systems including gas-liquid interfaces in con-
tact with solids appear in various industrial applications. Tem-
perature gradients along the interface cause variations of sur-
face tension resulting in tangential stresses which can drive
bulk flow motion. This effect of thermocapillary flow is very
important in many scientific studies and technological imple-
mentations such as crystal growth!-2, welding?, combustion®,
thermal energy storage>® and liquids handling in microsys-

tems7 .

Interest in the study of thermocapillary convection in a lig-
uid bridge was initially associated with the process of crys-
tal growth, when the liquid bridge began to be considered in
experimental configurations of half-zone models® in order to
simplify the problem. In this model, the liquid bridge is a
droplet of fluid suspended between two concentric disks main-
tained at different temperatures 7j,,; and T,,;4. At a small tem-
perature difference, AT = Tj,o; — To014, the flow is a steady ax-
isymmetric toroidal vortex. When the temperature difference
AT exceeds the critical value AT, hydrothermal instability
sets in as a result of a Hopf bifurcation and causes an os-
cillatory flow as the first or secondary instability depending
on Prandtl number? !>, The stability of the flow in a ther-
mocapillary liquid bridge (LB) is a complex problem, and the
emergence and evolution of hydrothermal waves were initially
studied in a one-phase approximation in different geometries
and aspect ratios 1319,

Experimental evidence for the important role of heat trans-
fer through the liquid—gas interface in the stability of the ther-
mocapillary flow in LB has been reported since the 1980s.
A series of experiments were carried out in Earth?*2% and
orbital?*?%?7 laboratories monitoring the ambient conditions
around a liquid bridge, which indicated that heat exchange be-
tween the liquid and the ambient gas is an important factor that
affects the mechanisms of instability. Subsequent numerical
studies employed single-phase 3D numerical simulations us-
ing Newton’s law to take into account a heat transfer through
the interface. The different temperature conditions in the gas
phase were considered?®-3!: the constant temperature equal
either to 7,4 or T, or the linear distribution.

The flow in the surrounding gas is driven by the liquid
shear. Even though the gas/liquid viscosity ratio is low, the
gas motion changes the temperature distribution near the inter-
face. Thus, consideration of the two-phase problem brings nu-
merical predictions closer to experimental observations3>33.
Particular attention to the role of viscous shear was given in
the numerical analysis by Shevtsova et al.>* considering ax-
isymmetric flows in LB at relatively high velocities of the am-
bient gas flow. The moving gas with various temperatures and
velocities provides the possibility to influence non-linear dy-
namics of the system and control the onset of hydrothermal
waves. It motivated the preparation of the forthcoming orbital
experiment JEREMI®>3¢ and activated two-phase simulations
with moving gas3’-3°.

Still, comparison of two-phase simulation for intricate ther-
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FIG. 1. Sketch of the geometry.

mocapillary flow with experimental observations, as a rule,
provides qualitative agreement, and quantitative agreement
requires the adjustment of the parameters. For instance, re-
cent very accurate but complicated experiments in a liquid
bridge with a coaxial gas flow required a shift of AT by 4K
to get an excellent agreement of nonlinear dynamics compar-
ing with simulations®’. Surely, the numerical model is ideal
and does not take into account imperfections of experimental
arrangement, for example, small non-flatness of supporting
disks*3. A two-dimensional axisymmetric motion equivalent
to a Marangoni convection at AT = 0.2K was observed in a
liquid bridge experiment without obvious driving force*’. The
great interest presents the analysis of thermal disturbances,
which can be created by a working camera, laser, etc. In this
context, the present study is aimed at understanding the in-
fluence of a remote thermal impact on the dynamics of hy-
drothermal waves in the liquid bridge surrounded by gas.

The paper is organized as follows. The two-phase math-
ematical model with appropriate boundary conditions is for-
mulated in Sec. II. Section III includes detailed analysis of
hydrothermal instability for two values of AT at different dis-
tance from the critical point. For each AT, we examine the
evolution and properties of hydrothermal waves, while inten-
sity of the thermal disturbances varies over a wide range from
cold to hot. The section is ended by a short overview of the
results. Concluding remarks are presented in Sec. IV.

II. PROBLEM FORMULATION
A. Geometry

We study the two-phase thermocapillary flow in a liquid
bridge in the geometry similar to that employed in 343637,
where focus was placed on non-linear dynamics and flow pat-
terns. The sketch of the three-dimensional model is shown in
Fig. 1. The system consists of two co-axial cylinders. The
inner cylinder is surrounded by a long tube. The space be-
tween the inner cylinder and the external tube is filled initially
motionless gas. The inner cylinder consist of two solid rods
of the radius Ryp=3.0mm and a liquid bridge between them
of the height d =3.0mm, which is kept in its position by
the surface tension force. The radius of the external tube is
R,;=5 mm. Each rod has the length 4.5 mm, while the thick-
ness of the heating/cooling parts of the rods is #=1.5 mm. The
total length of the system is L=12 mm. The length of the inert
part of the rod below (above) the cold (hot) disk is 4;,=0.5(L-
d-2h)=3mm.

B. Governing equations

Both the liquid and the gas are considered as Newtonian
fluids with the linear temperature-dependent density p and the
surface tension ¢. Viscosity U is taken at mean temperature,
To =298 K, and considered as a constant in this study because
the variation of AT is not very large. The working fluids are
n-decane and air, the physical properties of which are given in
Table I.

The purpose of the study is to investigate the effect of
thermal perturbations on the outer wall on flow dynamics.
The problem is treated in the framework of the Boussinesq
approximation such that density variations are only taken
into account in the buoyancy body-force term. The three-
dimensional dynamics of the system in the geometry of Fig. 1
is described by the momentum, heat transfer and continuity
equations for incompressible Newtonian fluids in liquid and
gas phases as:

AV +(V-V)V =

1 .
—;Vp+vV2V—§ﬁT(T—To)+§, (D

0
oT+V - -VT = yV°T, )
V-V=0, 3)

where V and p denote the velocity and pressure fields, 7T is
the temperature, v = 1t /pg is the kinematic viscosity, y is the
thermal diffusivity and g is the gravity vector. Since the equa-
tions for liquid and gas are identical, the superscripts "I" (lig-
uid) and "g" (gas) are dropped in the formulation.

C. The initial and boundary conditions

In the considered case of n-decane the static Bond num-
ber is relatively small, Boy = pgd2 /0=2.7, and the effect of
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TABLE I. Physical properties of n-decane and nitrogen at 298 K: the dynamic viscosity u, the thermal diffusivity y, the thermal conductivity
k, the density p, the thermal expansion 7 = —(1/pg)dp/dT, the Prandtl number Pr = v/y. The surface tension is 6=23.83 (293 K) mN/m.

The thermal characteristic time of liquid is 7., = d%/x ~ 107s.

fluid u X k p Br/10~3 Pr or =—do/dT

(Pa-s) m?%s)  (WmK) kgm’) (1/K) (N/mK)
n-decane  84.70-10~> 8.45-1078 0.135  726.27 1.06 138 1.18-1077
air 1.79-1075 2241075 0.025 1225 3.17 071

static deformation will not be considered. According to the
perturbation expansion shown by Montanero et al.*! for small
Bond numbers, for short liquid bridges there is a partial mu-
tual cancellation of a linear and a sinusoidal perturbation of
opposite signs, both proportional to the static Bond number.
Due to this cancellation, the maximum free surface deforma-
tion of first order in the Bond number is approximately given
by |R — Ro|max/Ro =~ 0.0084T Bog,. For the unit aspect ratio I
it provides static deformation of 0.0068 mm for a liquid bridge
of Ry=3 mm and can be neglected.

1) The boundary conditions on the free surface r = R be-

tween the liquid and gas are:
(a) the balance of viscous and thermocapillary forces is

c Jdo

@”i - Txl “)

[P P i = (Shme—S§ ) =
where Sy = S = u(dVi/dx, + Vi /dx;) is the viscous stress
tensor, Z is the curvature, and the unit normal vector 7 is di-
rected out of the liquid. Since the interface shape is fixed, the
normal projection of Eq. (4) is not considered. The tangential
projections of Eq. (4) define the driving thermocapillary force
in axial and azimuthal directions, j=1,2

/.8 n—1/.88.n=—-1/.Vo (5)
(b) The tangential velocities of the liquid and gas are equal.
v =VE (©)

(¢) The kinematic condition at the non-deformable interface
provides V., =0.

(d) The heat fluxes and temperatures of the liquid and gas
are equal; here k is the thermal conductivity

k' 9,T' = k& 9,T¢, T =78, (7

2) The lateral surfaces of the rods, which are in contact
with gas, are thermally insulated and no-slip conditions are
imposed:

when 0 <z < hy;
T =0

(L_hin) <z<IL
and  VE(r=Ry)=0 (®)

3) The small parts of the rods (thickness /) at the bottom and
top, respectively, are kept at constant temperatures

T=Ty—AT/2 and T =Ty+AT/2 )

FIG. 2. Thermal boundary condition on the external wall. The
max/min temperature of the spot is located at mid-height. The wall
thickness is not taken into account in the model. The liquid bridge
inside this tube is not shown.

4) The most of the external tube is thermally insulated, and
no-slip conditions are imposed for velocity, at r = R,;;:

0,T =0, V&8=0 when 0<z<L. (10)
In order to study the influence of an inhomogeneous ther-
mal environment, on the outer wall a temperature perturbation
is introduced in the region centered at the point with coordi-
nates: (x = Ry, y =0, 7 = z), where z,.=6.0 mm. Then tem-
perature boundary conditions will be written in the form:

a2

1
anT = *Hf'exp(_ﬁ)v

= 5 (1n

where value Hy is measured in W/m? and defines intensity
of external heat impact; this is a parameter of the problem, the
constant A = v/2.5- 10~ m is responsible for the width of a
thermal spot, the variable a = /(z — z.)? +y?* is measured in
m. An example of the boundary condition for positive Hy is
shown in Fig. 2.

Calculation of integrated power of this type of external tem-
perature impact on the external wall gives linear dependency
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of value Hy with coefficient k, = 0.01325. So, for example, in
case of Hy =200 W/m? it gives external heat impact which is
equal to 2.65 mW.

5) The bottom and top sides of the external tube are ther-
mally insulated and zero velocity is imposed.

8ZT5':0, ‘7g:0 when Z:O, R0<r<R0ut (12)

9.T¢ =0, V8=0 when z=L, Ry<r<Rou (13)

As an initial condition, zero velocity field and mean tempera-
ture have been chosen to calculate a steady state. The steady
state computed on the same mesh without adding noise was
used as initial conditions for time-dependent simulations.

D. Numerical method

Governing equations (1)-(3) with boundary conditions (5)-
(13) are solved in dimensional variables using the commercial
software ANSYS Fluent 17.2. The solution was obtained for
each phase separately, taking into account the boundary con-
ditions at the interface. In order to satisfy the conditions at
the interface very accurately, an iterative procedure developed
earlier and implemented by means of a user-defined function
was used?*.

Computations in multi-domains require a complicated com-
putational mesh, which was generated by the commercial code
GAMBIT. A non-uniform grid was chosen for a space dis-
cretization as follows. In the azimuthal direction, Ny = 40 for
all the mesh parts. In the liquid domain, N, = 60 with stretch
factor 0.973 near the cold and hot corners. In the radial di-
rection, N, = 40, the denser mesh was near the interface with
stretch factor 0.97, and a sparse mesh was near the axis with
stretch factor 1.03. In the gas domain, the mesh is divided into
five parts: an interfacial part, two parts of the length 4 adjacent
to the hot and cold disks and two parts of the length 4;, adja-
cent to the rods. The cells number for the interfacial part of
the gas phase is the same as for the liquid phase. The problem
was solved using dimensional variables (X, y, z), and the vari-
ables were transformed accordingly. Numerical convergence
was previously tested>>3437 for a similar configuration, and
we take these results as a reference for validation of the code.

I1l.  RESULTS

The flow in liquid is induced by thermocapillary stresses
due to the temperature gradient along the interface. In the
steady state, liquid moves from the hot to the cold side along
the interface, and the flow pattern consists of one vortex with
a center shifted to the hot side. The flow in the gas is driven
by the liquid shear. Above the critical value, AT, ~7K, the
topology of the flow and temperature fields changes, because
an oscillatory instability emerges.

To reveal the non-linear dynamics of flow patterns in a lig-
uid bridge under local thermal action on the outer wall, nu-
merical results are presented for two temperature differences
between the rods: AT = 8.6 and 10K for various values of

Hy. These values of AT above the threshold are chosen at
different distances from the critical point in order to analyse
nonlinear dynamics of the system under local heat impact in
the oscillatory state and disclose various modes of instability.

A. Pattern selection near the threshold of instability for AT
= 8.6 K.

We start investigation of the system dynamics by consid-
ering the case with AT = 8.6 K which is slightly above the
critical value AT;,. We expect oscillatory periodic behaviour
for all the considered values of Hy.

First, we investigate the reference case, when the system
does not include thermal impact on the external wall, i.e., the
tube is thermally insulated. The results of non-linear simula-
tions for this case are shown in panels (a), (d), (g) in Fig. 3.
The flow structure of the two-phase system is illustrated by
the snapshots of the temperature field. The 3-D isosurface of
the mean temperature in the liquid (T = 298 K) is embedded
in the general temperature field, see panel (a). Around it, the
temperature level lines present distribution of the temperature
in plane xz for the gas and liquid phases. This image provides
overall information about the two-phase temperature distribu-
tion, but does not specify the non-linear dynamics. The set
of six green snapshots in the top view in panel (d) presents
time behavior of the hydrothermal wave over an oscillation
period. Two petals of the temperature pattern take on oppo-
site phases after half a period, and then return to their original
form, which illustrates the features of a standing wave with a
dominant azimuthal wave number m=2. These snapshots de-
fine the dominant wave, however, rather often instability exists
in the form of mixed modes, which needs further study.

The post-processing approach which has been described
previously>*37 is applied here to precisely define the proper-
ties of hydrothermal waves in a three-dimensional flow. In the
supercritical region, the time-periodic solution has the form

F= i i Fnn(r,2) exp(im + inox), (14)

M—=—ocop—=—00

where f_m,_n = f*mﬂ, and n is the number of the combina-
tional Fourier harmonic for the component with wave number
m. To examine the properties of a hydrothermal wave F,, with
a given azimuthal number m, Eq. (14) is written in the more
compact form

[ agk

F:

m

Fn(r,z,t)exp(im@). (15)

In this study, the non-axisymmetric part of the solution, f,
is defined by subtracting the steady-state solution Fy;cqq, Ob-
tained on the same mesh:

f(ro,2,t) = F(r,0,2,1) — Fyeaay (16)
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For a chosen value of z = 7, we define
Ro 2 - .
(1) = / F(ro.z0e " rdrdg =
o Jo

/f(r., ¢,z,t)cos(m@)rdrd — i/f(r7 0,z,t)sin(m@)rdrdd =
Re|Fy(t)] — ilm[Fy (1)) (17)

where f can be any of (V,P,T); we select f to be associated
with the temperature of the liquid. Thus, Re(F,) and Im(F,,)
are the real and imaginary parts of the oscillatory contribution
in 3D flow’742.

The map of phase trajectories in Fig. 3(g) supports the
previous observation about the dominant standing wave with
mode m=2. In addition, the presence of an axially running
wave with m=0 can be seen as a line along the negative axis of
Re(F;,;). The predominance of the hydrothermal wave m = 2
with presence of a much weaker mode m=0 explains the per-
fect symmetry of the patterns in the top view.

Next we examine the case when the external heating with
the intensity corresponding to Hy = 200 is imposed on the
lateral wall. The results for this case are given in panels (b),
(e) and (h) of Fig. 3. The position and intensity of the hot
spot are visible on the right side wall in the general view of
the temperature field in panel (b). The hottest temperature of
the spot is not fixed in the boundary condition, see Eq. (11),
and all 3D isosurfaces correspond to 7=298 K in this figure
for interconnection. Since the number of temperature levels
is the same in all three cases, and the level lines are chosen
between the maximum and minimum values, the isosurfaces
have different colors.

As expected, the 3-D isosurface exhibits a look different
from the reference case, for example, its right lateral profile
exhibits the predetermined direction towards the hot spot. The
temporal behavior in three-dimensional space is very different
from the reference case and can be seen in Fig.3b (multimedia
view) for H;=200. The main characteristics of the hydrother-
mal wave can be revealed by tracing the six top view images in
panel (e). The sequence of snapshots clearly demonstrates that
the pattern is rebuilding towards the hot spot. This means that
external thermal perturbation is responsible for the flow topol-
ogy. The patterns indicates the presence of a wave with the az-
imuthal mode m=1, which is influenced by other modes. The
phase trajectories in panel (h) detail all available modes: actu-
ally, an axially running wave m=0 dominates, then a standing
wave with m=1 with presence of m=2 and m=3 modes. In-
deed, mentioned above movie presents the main motion from
bottom up, but with a tilt towards the hot spot, which changes
over time. Also the 4th and 5th snapshots in panel (e) exhibit
the features of symmetry typical for m=0.

Another pattern selection occurs in the case of a cooling
perturbation on the outer wall. The results for this case are
presented in panels (c), (f) and (i) in Fig. 3 for the cooling in-
tensity Hy = -200. The location of the cold spot is visible in
the general view of the temperature field. The right profile of
the 3D isosurface is repelling from the cold region. The time
evolution of the isosurface reveals some features of a stand-
ing wave with m=2. The sequence of the snapshots in the top
view in Fig 3f (multimedia view) illustrates a strong impact

of cooling on the temperature pattern. The typical pattern of
a standing wave with m=2 has a dumbbell shape, which re-
verses its slope every half period, as shown by the 1st and
4th snapshots in panel (d). In the case of a cooled perturba-
tion, there is a time moment when the pattern has a dumbbell
shape, see the 2nd shot in panel (f). The pattern then deforms,
trying to bounce off the cold side (shots 3 and 4 ) and finally
elongates in such a way as to have less contact towards the
cooling disturbance (shots 5 and 6 ). Analysis of the flow dy-
namics with phase trajectories in Fig. 3(i) demonstrates that a
standing wave m=2 dominates with a considerable presence of
m=3. Other modes, such as m=0 and m=1, are only marginal.

Comparison of patterns and phase trajectories for various
thermal perturbations makes it possible to highlight several
observations. A standing wave with mode m=2 dominates
strongly in the reference case (Hy=0), and this is the usual be-
havior just above the threshold. The flow with mixed modes or
a traveling wave emerges further from the critical point. Ev-
idently, thermal perturbations trigger other modes even near
the critical point, and it seems that the effect of heating ap-
pears to be stronger than that of cooling. At Hy=-200 the dom-
inant mode remains the same as in the reference case, m=2,
although with a strong presence of m=3, while at Hy=200 the
dominant mode is m=0 and essential contribution of m=1.

A spectral analysis of the liquid bridge flow under various
thermal perturbations is presented in Fig. 4. The figure in-
cludes a larger range of Hy than that explored in Fig. 3. The
dominant oscillation frequency and its two first harmonics for
all the cases are gathered in Fig. 4(a). The selected Fourier
spectra for Hy=-200 and H ;=200 are shown in panels (b) and
(c), respectively. In the reference case, only the dominant fre-
quency f=1.52 Hz is important, while all harmonics are neg-
ligible. On a cursory inspection, the lower frequencies for
negative Hy appear to be smaller than for Hy=0 despite the
assumed identical wavenumber m=2.

The Fourier spectrum in panel (b) for Hy=-200 clarifies this
discrepancy. The most powerful frequency is the second one,
f2=1.68 Hz, which has approximately the same value as Hy=0
and presumably corresponds to m=2. The dynamics of f, in
the negative H region indicates that it tends to the frequency
of the reference case when Hy — 0. There is no visible cor-
relation between the reference frequency and frequencies in
the positive region of Hy in panel (a). The Fourier spectrum at
H =200 in panel (c) provides f1=1.00 Hz and f>=2.00 Hz with
approximately equal power. Recall that underlying modes are
different from other cases, i.e., m=0 and m=1, which also em-
phasizes that each mode can have a certain frequency. Fur-
thermore, there is no smooth transition to reference case when
Hy — 0 from the right. Again, this spectral analysis demon-
strates the important influence of occasional thermal perturba-
tions on the occurrence of oscillatory states.

Originally, the remote thermal perturbations influence the
steady state. The presence of perturbations affects the
Marangoni force, which is maximal near hot and cold sup-
ports, where the temperature gradients are greatest. The ther-
mal impact occurs through the heat transfer by conduction and
by convection in gas phase. Thermal conduction from the hot
spot located in the middle of the interface reduces temperature
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FIG. 3. Results for AT = 8.6K for different temperature impact on the external wall. The upper raw illustrates general temperature field
with embedded 3D isosurface 7=298 K. The physical meaning of this isosurface is as follows: below this isosurface the liquid is colder than
T=298 K, and above is hotter. The position of the hot/cold external perturbation is shown by the red/blue circle. The structure of the flow
field is illustrated by arrows. The sequence of the six snapshots in a row presents the top view of the 3D temperature field. The panels (a,d,g)

correspond to thermally insulated wall Hy =0 while (b,i,h) correspond to heating with Hy = 200 and 3D isosurface in panel (b) is given in
multimedia view; panels (c.f,i) corresponds to cooling with Hy = -200 and the top view of panel (f) is given in multimedia view.
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FIG. 4. Spectral analysis of the flow at different thermal perturbations on the external wall near the threshold of instability, AT = 8.6 K. (a)
Comparison of dominant oscillation frequency and its harmonics at different Hy; the colors correspond to: red - the main frequency, blue - the
first harmonic, green - the second harmonic. Fourier spectrum for the (b) Hy = -200 and (c) Hy = 200.

gradient at the upper part and, hence, the interface velocity,
which otherwise highest there. Consequently, it will slightly
increase the interface velocity at the bottom part. It can be
seen in Fig.3b that the lengths of the velocity vectors on the
right side of the interface are smaller than those on the left.
Situation is reversed in the case of the cold perturbations. The
interface velocity rises due to a larger temperature gradient.
This is well illustrated by the velocity vectors along the inter-
face in Fig. 3c. We hypothesize that the critical temperature
difference can increase in the case of hot perturbations and
decrease in the case of cold perturbations, since the motion
in liquid is responsible for the instability. However, a deeper
analysis of the instability threshold is beyond the scope of this
article.

The heat transfer by convection is associated with the role
of gravity. The velocity vectors on 3D images in Fig.3 illus-
trate the role of gravity. In the reference case, the flow in
gas is caused only by the liquid shear, and one vortex flow in
the gas is directed upward near the outer wall. In the case of
hot perturbation (b), shear and buoyancy act in the same di-
rection. Consequently, the gas flow near the wall is stronger
than in the reference case. This gas flow entails the hot region
upward. In the case of a cold disturbance (c), the shear and
buoyancy act in opposite direction, the gas velocity near outer
wall decreases sharply. Since buoyancy is more efficient, the
cold gas area moves downward.

B. Pattern selection at AT = 10K.

At some distance above the critical point, the flow usually
develops as a combination of several modes and the pattern
becomes more complex. Here we consider the characteris-
tics of the oscillatory regime at AT = 10 K. As in the previous
section for smaller AT, we start exploring the reference case
H¢=0. The results are summarized in panels (a), (d) and (g) in
Fig. 5. The global view of the temperature field in panel (a) il-
lustrates the perfect symmetry of the temperature in gas phase
from both sides of liquid. The shape of the 3D isosurface is
slightly helical, which is a remarkable feature of the classical
traveling wave. The sequence of six shots in panel (d) reveals
its topology. A pattern with two not very pronounced petals
rotates around the center, forming a m=2 traveling wave. As
a rule, the phase trajectory of a traveling wave is a circle, but

in the considered case it has the shape of a donut. When two
modes m=2 and m=0 are present, a bimodal oscillatory flow
leads to a 3D torus with a superposition of two motions. A fast
cyclic motion is performed around the center along a large-
size ellipse. The axis of this ellipse slowly rotates with a low
frequency. The visible trajectory in the form of donuts is the
projection of a torus onto the plane. It is important to note
that the low frequency arises as a result of the nonlinear inter-
action of waves m=0 and m=2. This particular case has been
previously described in detail®3.

The composition of Fig. 5 is different from that of Fig. 3.
Along with the reference case, two cases of perturbations by
heating of different intensity are examined. The effect of cool-
ing will be discussed separately. Let us first consider the
smaller heating, Hy = 100, for which the results are shown in
panels (b), (e), and (h). The 3D isosurface reveals a weak he-
lical feature indicative of a traveling wave, although the action
of the hot spot breaks the symmetry in xz plane. The sequence
of snapshots in panel (e) confirms that oscillatory state is a
traveling wave, presumably with presence of the m=1 mode.
The phase trajectories shown in Fig. 5(h) represent a rather
intricate picture with three traveling waves and m=0. Obvi-
ously, among the traveling waves, the m=1 mode dominates
which is coherent with the dynamics of the snapshots in panel
(e). The contribution of the remaining modes m=0, 2 and 3 is
approximately equivalent and much weaker than that of m=1.

It is clear that the oscillations depend on the interaction be-
tween the sensitivity of the thermocapillary surface and the
intensity of the hot/cold spot. Panels (c), (f) and (i) in Fig. 5
illustrate the results for the external localized heating at Hy =
200. Unexpectedly, the increase of the external heating leads
to simplification of the system dynamics. The 3D isosurface
in panel (c) at AT=10 K looks similar as at a smaller tempera-
ture difference AT = 8.6 K in Fig. 3(b). The sequence of snap-
shots in panel (f) is also quite similar to that one in Fig. 3(e).
The phase trajectories in panel (i) also underline the similarity
with Fig. 3(h). The non-linear dynamics is governed by the
dominant m=0 mode, which is an axially running wave, with
visible presence of m=1 and smaller contribution of m=2 and
3. The spectral analysis in Fig. 6(a) illustrates one dominant
frequency, and its value, f=1.07 Hz, is slightly higher (by 7%)
than at AT =8.6K

Next we consider the effect of perturbations by cooling at
AT = 10K. The results for different cooling intensities, Hy
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FIG. 5. Topology of the temperature field at AT = 10.0K under different thermal action on the lateral wall: panels (a,d,g) correspond
to thermally insulated wall H ' =0; (b,i,h) to low heating H = 100, (c.f,i) to higher heating H = 200. The upper row illustrates overall
temperature field with embedded 3D isosurface corresponding to 7=298 K. The sequence of the six snapshots in a row presents the top view

of the 3D temperature field. The low row shows the phase trajectories.

= -100 and Hy = -200, are summarised in Fig. 7. Both 3D
isosurfaces for T7=298 K, shown in panels (a) and (b), look
somewhat similar and sophisticated. The helical feature of
the three-dimensional figures indicates a traveling wave. The
snapshots in panels (c) and (d) reveal rotation of the 3D pat-

terns for both Hy. However, despite the similar boundary con-
ditions, the hydrothermal wave at H=-100 travels in counter-
clockwise direction, see in Fig.7c (multimedia view), while
a wave at Hy=-200 travels in clockwise direction, see Fig.7d
(multimedia view). The change in the wave traveling direction
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FIG. 6. Spectral analysis of the flow at different thermal perturbations on the external wall near the threshold of instability, AT = 10K. (a)

Fourier spectrum for the (a) Hy =200, (b) Hy =-100 and (c) Hy = -200.

is enigmatic: in the reference case (Hy = 0), the hydrothermal
wave rotates clockwise, when the outer wall cools down to a
level corresponding to Hy = -100, it changes direction; how-
ever, at deeper cooling, Hy = -200, the hydrothermal wave ro-
tates clockwise again. Despite the different directions of trav-
eling waves, the phase trajectories at Hy = 0 and Hy = -100
illustrate the donut topology associated with quasi-periodic
motion forming a torus in three-dimensional phase space. As
discussed above, the torus is the result of bimodal oscillations
formed by the m=0 and m=2 modes. Indeed, the Fourier spec-
trum at Hy=-100 in Fig. 6(b) displays two very close frequen-
cies f1 and f> associated with the m=0 and m=2 modes, and a
very low frequency (f=0.051 Hz). Again, the low frequency
responsible for the torus formation arises as a result of the
nonlinear interaction of waves m=0 and m=2.

Another interesting aspect is observed in Fig. 7(f) for Hy =
—200. It illustrates that the phase trajectories of the m=2 mode
are not closed. This suggests that the center of the cycle is
continuously shifted. An explanation follows from the pres-
ence of the mode m=0 which shifts the center of the phase
plane and provides filling between the two cycles. Unlike the
case Hy = -100, the frequencies fi and f; in Fig. 6(c) are not
so close to form the low frequency which would be responsi-
ble for the torus formation, compare the spectral behavior of
panels (b) and (c) in Fig. 6.

The analysis above with more complicated patterns and
phase trajectories at AT=10K emphasizes that the temper-
ature perturbations of the outer wall by the cooling in the
system at a certain distance above the critical point is much
stronger than in its vicinity.

C. Overview of the hydrothermal stability under action of
thermal disturbances on the outer wall

Figure 8 summarizes, in terms of intensity of thermal dis-
turbances Hy and applied thermal stress AT, different ways
that a liquid bridge responds to the thermal perturbations on
the outer wall. At AT=8.6K (~ 15% above critical point),
this diagram of hydrothermal wave properties immediately
reveals (panel a) that standing waves (blue symbols) are the
most common modes of instability. For cooling perturbations
(Hy <0), as well as in the thermally isolated case, the instabil-
ity develops with the azimuthal wave number m=2. When the
surrounding tube is subjected to thermal perturbation by heat-

ing, a mode transition occurs and the standing wave changes
its symmetry to m=1. Summing up, this suggests that hy-
drothermal instability near the threshold emerges in the form
of a standing wave, but the critical wavenumber depends on
the thermal perturbation.

At AT=10K (~ 45% above critical point), a traveling wave
with m=2 dominates in the region with thermal perturbations
—200 < Hy < 50. In addition, the phase trajectories form a
kind of donut, but they are winding around a circle, not closed.
This suggests that the trajectories are projections of a multi-
dimensional torus on a plane®®. At higher positive Hy, the
instability manifests itself as an alternation of traveling and
standing waves with the dominant m=1 mode but with a strong
presence of other modes.

The explanation of the appearance and disappearance of a
quasi-periodic torus topology can be explained by the spectral
analysis of temperature fluctuations in a liquid bridge. In all
the cases where torus is formed, the m=2 mode co-exists with
the m=0 mode leading to Fourier spectrum with multiple fre-
quencies, see Fig. 6(b,c). If the interaction of these modes
leads to a very low frequency (panel b), then a torus with
closed trajectories forms, if the resulting frequency is higher,
then the trajectories are winding.

Let us briefly discuss the change in the heat flux across the
interface. The local heat flux through the unit of the free sur-
face area at r = Ry is defined as

g=—ko,T (18)

The negative sign shows that the heat flux moves from higher
temperature regions to lower temperature regions. The net
flux through the unit of the free surface can be defined as g =
Ja(2)dz.

Fig. 8(b) shows a dependence of a net heat flux g through
the liquid-gas interface on heat impact on the external wall for
various temperature differences AT between rods. In absence
of any impact (Hy = 0) the liquid bridge is warmer than the
ambient gas and it emits the heat. It is obvious that this heat
emission is growing with temperature difference increase. In
presence of local heating of the external wall, the ambient gas
becomes warmer, so the heat flux through the interface is lin-
early decreasing when the value of Hy becomes larger. In the
opposite case, when the system is subjected to a local cooling,
the heat flux is growing for the negative values of Hy.
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IV. CONCLUSIONS

In this work, the effect of a remote heat/cold source on the
instability dynamics of a liquid bridge surrounded by a gas is
numerically studied. The hydrothermal wave instability was
explored for two temperature differences AT by varying the
intensity of thermal perturbations over a wide range. As a
main result, thermal perturbations of the remote wall have a
strong influence on the nonlinear dynamics of the flow, even

though the gas with low heat conductivity is located between
the liquid bridge interface and the outer wall.

Not far from the critical point, at AT = 8.6K (~ 15%
higher), a striking difference was observed between the effect
of warm and cold configurations. In the reference case Hy=0,
corresponding to a thermally insulated system, the instability
manifests itself as a standing wave with m=2. At the locally
cooled external wall, Hy < 0, the dominant mode remains the
same as in the reference case, m=2, but the temperature pattern
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FIG. 8. Overview of the hydrothermal instability observed in a liquid bridge under the influence of external thermal perturbations. (a)
Properties of hydrothermal waves; (b) the net heat flux g through the interface of the liquid bridge.

is greatly different. Thermal perturbations trigger secondary
standing waves with different modes, which complicates the
flow pattern.

Further to supercritical region, AT = 10K (~ 45% higher),
the non-linear dynamics becomes more complex. A traveling
wave with m=2 dominates in the region with thermal pertur-
bations —200 < Hy < 50. The first remarkable feature of the
instability in this region is that the traveling wave changes the
direction of rotation depending on Hf. In the reference case
(Hy = 0), the hydrothermal wave rotates clockwise, at Hy =
-100 it changes direction to counterclockwise, and at deeper
cooling, Hy = -200, the hydrothermal wave rotates clockwise
again. is an observation and we do not insist that the Hy
value is responsible for this. We recall that no perturbations
are introduced into the numerical scheme, and all non-steady
simulations start with a 2D steady state obtained on the same
mesh. The oscillatory solution in all the cases includes several
azimuthal modes, and the phase trajectories show that they
do not rotate in the same direction. In particular, for Hy=0
and Hy=-200 the trajectories of all modes are wound clock-
wise with time, and for Hy=-100 the m=2,3 modes are wound
counter clockwise while m=1 clockwise. The global rotation
of the three-dimensional pattern depends on the direction of
the dominant mode, while its topology depends on the mutual
direction of the various modes.

Another remarkable feature is that the phase trajectories
form a kind of donut, representing projections of a three-
dimensional torus in the phase space. The torus originates
from two hydrothermal waves with distinct (close) frequen-
cies. In the case of hot perturbations, Hy > 0, the change in
oscillatory state occurs more distinctly. The preferred modes
are m=0 (axially traveling wave) and m=1 (a standing wave),
and their dominance alternates with a change in Hy.

The developed analysis allowed us to explore in detail the
effect of thermal disturbances at distant walls on the nonlinear
flow dynamics, thus providing valuable information how im-
portant to control the surrounding conditions. The presence of
external local sources should be carefully taken into account
in the experimental setup and industry.
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