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Abstract—The intermittent nature of renewable energy sources
(RESs) hamper their integration to the grid. The stochastic and
rapid-changing operation of RES technologies impact on power
equipment reliability. Transformers are key integrative assets of
the power grid and it is crucial to monitor their health for
the reliable integration of RESs. Existing models to transformer
lifetime estimation are based on point forecasts or steady-state
models. In this context, this paper presents a novel hybrid
transformer prognostics framework for enhanced probabilistic
predictions in RES applications. To this end, physics-based
transient thermal models and probabilistic forecasting models
are integrated using an error-correction configuration. The ther-
mal prediction model is then embedded within a probabilistic
prognostics framework to integrate forecasting estimates within
the lifetime model, propagate associated uncertainties and predict
the transformer remaining useful life with prediction intervals.
Prediction intervals vary for each prediction according to the
propagated uncertainty and they inform about the confidence of
the model in the predictions. The proposed approach is tested and
validated with a floating solar power plant case study. Results
show that, from the insulation degradation perspective, there
may be room to extend the transformer useful life beyond initial
lifetime assumptions.

Index Terms—Distribution transformers, prognostics, hybrid
model, probabilistic forecasting, uncertainty.

I. INTRODUCTION

THE reliable operation and integration of renewable en-

ergy sources (RESs) to the power grid is crucial [1].

However, complex and intermittent RES dependencies on

weather conditions, operation dynamics, such as fast-switching

transient events, and ever-dominant power-electronics reliabil-

ity complicates the efficient and reliable operation of RESs

and associated power equipment [2].

Prognostics and health management (PHM) is at the hearth

of condition monitoring technology, where datasets and engi-

neering knowledge cooperate to develop anomaly detection,

diagnostics and prognostics solutions [3]. Failure prognostics

aims to predict the remaining useful life (RUL) of assets to

assist asset-management teams in condition-based monitoring

and maintenance activities and is the focus of this work [3].
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Transformers are key components for the efficient operation

of power and energy systems, and it is crucial to monitor

their health for the reliable integration of RESs to the grid

[4]. The degradation mechanisms of transformer subsystems

are complex, surrounded by uncertainty, and in some cases,

not directly measurable [5]. This is the case of the insulation

degradation, which is one of the major transformer failure

cause [6]. The main factor that affects insulation degradation

is the hottest-spot temperature (HST) [7]. The transformer

insulation heat is distributed over different surface areas.

This complicates the temperature estimation process, which

is often estimated from indirect measurements. The HST may

be combined with other parameters which can accelerate the

transformer insulation ageing rate. For example, the presence

of moisture under high loading can lead to bubble formation

and potential catastrophic failure [8].

HST estimation models have been integrated with trans-

former lifetime models to predict the transformer RUL. These

models, specified as deterministic and steady-state models,

have been used for transformer prognostics predictions in

distribution networks [9], [10], electric vehicles [11], photo-

voltaic (PV) generation [12], [13], [14], [15], wind energy

[16], nuclear power plants [17], [18] and smart grid infras-

tructure [19]. However, these formulations do not integrate

uncertainties present in the lifetime prediction [9], [10], [11],

[12], [13], [14], [15], [16], [19], and result in point forecasts,

i.e. RUL forecasts assume a deterministic relation between

measurements, models and predictions. Uncertainty modelling

is crucial for transformer RUL estimation and the uncertainty

will only increase with the increasing amount of RESs.

In order to properly propagate uncertainty, it is necessary

to model and propagate predictions as full probability density

function (PDF) of plausible values of the estimated parameter

consistent with the underlying modelled process. In this con-

text, probabilistic forecasting approaches are gaining traction

with predictive monitoring solutions [20], [21]. Bracale et al.

presented a dynamic thermal rating (DTR) approach, which

uses probabilistic forecasting estimates to predict ambient

temperature and load, and calculate the maximum hourly

transformer load that does not pass a given HST threshold

[20]. This approach is continued in [21] with a probabilistic

transformer risk management tool, which based on DTR

threshold criteria determines if an alarm will be activated.

These methods implement probabilistic forecasting models

for transformer DTR applications, but they do not focus on



       

uncertainty modelling, propagation and RUL estimation.

Furthermore, it can be observed that health-state estimation 
methods focus on steady-state assessments with an hour-based 
temporal resolution, assuming constant health-state degrada-

tion between samples [11], [13], [14], [16], [17], [18], [19],

[20], [21]. However, with the intermittency of RESs, this 
assumption may not adhere to real operation and degradation 
conditions of RESs and it may be beneficial to adopt thermal 
models which depart from steady-state operation [22]. Given 
the costs of power interruptions that may cause transformer 
outages, asset management teams should rely upon informative 
and accurate predictive distributions.

Recent prognostics developments focus on data-driven 
methods, which can generate accurate RUL predictions [23]. 
However, their ability to account for uncertainties is limited 
[3]. In this context, novel hybrid configurations have emerged 
combining physics and data-driven models [24], [25], which 
obtain accurate and explainable prediction results. Accord-

ingly, this research aims to contribute in the development of 
novel hybrid transformer prognostics solutions.

To the best of the authors’ knowledge, probabilistic fore-

casting models along with physics-based thermal models have 
not been integrated with prognostics models, and accordingly, 
the main contribution of this paper is the development of a 
novel hybrid transformer prognostics model.

The model integrates physics-based and probabilistic fore-

casting models in a error-correction configuration adapted 
for transformers operated in RES applications. The approach 
is embedded in a probabilistic RUL estimation framework 
to integrate the hybrid forecasting estimates in the lifetime 
model and propagate associated uncertainties. The integration 
of uncertainty enables designing a prognostics approach which 
provides uncertainty bounds according to the model confi-

dence. The approach is tested and validated with distribution 
transformer data operated on a floating solar power plant.

The proposed approach departs from previous work [17],

[18], focused on steady-state modelling in nuclear power 
plants, through the integration of probabilistic forecasting 
and transient thermal models in the probabilistic prognostics 
framework. The approach informs asset-management teams on 
how they can improve transformer lifetime prediction prac-

tice by accurately considering uncertainty and fast-switching 
events coming from RESs, and hints for evaluating the influ-

ence of sampling rates on forecasting estimates.

The rest of this paper is organized as follows. Section II 
defines the transformer thermal and lifetime modelling. Sec-

tion III presents the methodology, Section IV applies the 
approach to case study, and Section VII draws conclusions.

II. EMPIRICAL BACKGROUND

The insulation is the most critical part of the transformer 
which can cause its failure [6]. The winding hottest-spot 
temperature (HST) determines the insulation ageing, and ac-

cordingly, insulation health can be monitored through the HST. 
Moving beyond steady-state estimations, this work focuses on 
transient thermal modelling and lifetime estimation [6].

A. Transient thermal model

Differential equations are used to estimate the transformer

transient HST defined as follows:

ΘH(t) = ΘTO(t) +∆ΘH(t) (1)

where ∆ΘH(t) is the HST rise over top-oil temperature (TOT)

and ΘTO(t) is the TOT. The TOT is defined as follows:

∆ΘTO,R(
1 +K(t)2R

1 +R
)x = k11τ TO

dΘTO(t)

dt
+ΘTO(t)−ΘA(t) (2)

where K(t) = i(t)/ir, i(t) being the load at instant t and ir

the rated load, R is the ratio of load losses to no-load losses,

x is the oil exponent constant, which models the exponential

power of total losses with respect to TOT heating, τTO is the

oil time constant, ∆ΘTO,R is the TOT rise at rated load, k11 is

a thermal constant determined through experimentation, and

ΘA(t) is the ambient temperature.

The HST rise is calculated as:

∆ΘH(t) = ∆ΘH1(t)−∆ΘH2(t) (3)

where ∆ΘH1 (t) models the oil heating without HST variations:

k21∆ΘH,RK(t)y = k22τw
∆ΘH1(t)

dt
+∆ΘH1(t) (4)

∆ΘH2(t) models the HST variations:

(k21 − 1)∆ΘH,RK(t)y = (τ TO/k22)
∆ΘH2(t)

dt
+∆ΘH2(t) (5)

where τw is the winding time constant, ∆ΘH,R is the HST

rise at rated load, y is the winding exponent constant, which

models the loading exponential power with the heating of the

windings, k21 and k22 are the transformer thermal constants.

Fig. 1 synthesizes the transformer thermal model, where s
is the Laplace variable. Constants k11, k21, k22, τO, τw, are

determined through a heat-run test, and x, y are determined

through extended thermal experiments.

Fig. 1: Transient thermal model — adapted from [6].

Assuming d/dt is a small time difference, differential

equations can be turned into difference equations, so that it

is feasible to estimate the transient thermal values. The TOT

in (2) is calculated follows [6]:

ΘTO(t) = DΘ
TO
(t) + ΘTO(t− 1)

DΘTO(t) =
∆t

k11τTO

[

∆ΘH,R

(
1 +K(t)2R

1 +R

)x

+ΘA(t)−ΘTO(t−1)

]

(6)

where D denotes a difference operation of the associated

variable within the period ∆t. Similarly, (4) and (5) can be

rewritten as follows:



Fig. 2: Conceptual diagram of the hybrid probabilistic prognostics estimation framework.

∆ΘHi(t) = D∆ΘHi(t) + ∆ΘHi(t− 1) (7)

for i={1,2}, where

D∆ΘH1(t) =
∆t

k22τw
[k21∆ΘH,RK(t)y −∆ΘH1(t− 1)]

D∆ΘH2(t) =
k22∆t

τ TO

[(k21 − 1)∆ΘH,RK(t)y−∆ΘH2(t−1)]
(8)

Finally, assuming steady-state initial conditions, time-

derivatives in (2), (4), and (5) are null, and the initial con-

ditions are defined as follows:

ΘH(0) = ΘTO(0)+k21∆ΘH,RK(0)y−(k21−1)∆ΘH,RK(0)y

ΘTO(0) = ΘA(0) + ∆ΘTO,R

(
1 +K(0)2R

1 +R

)x
(9)

∆t should be as small as possible, and never greater than

the half of the smaller time constant.

B. Lifetime model

The IEC 60076-7 standard defines insulation paper aging

acceleration factor at time t, FAA(t), as [6]:

F AA(t) = 2(98−ΘH(t))/6
(10)

The RUL at t, RUL(t), can be obtained by turning (10)

into a Markovian relation model:

RUL(t)=RUL(t−∆t)−F AA(t)=RUL(t−∆t)−2(98−ΘH (t))/6

(11)

The lifetime model starts from the initial RUL estimate,

RUL0, which is iteratively re-calculated and updated to model

the latest RUL estimate.

III. HYBRID PROBABILISTIC PROGNOSTICS FRAMEWORK

Fig. 2 shows the conceptual block-diagram of the developed

hybrid probabilistic transformer prognostics framework, based

on the thermal and lifetime modelling processes described in

Section II with the integration of probabilistic forecasting and

lifetime estimation stages. The focus of the proposed method

is on the distribution transformers that are used to connect

RESs and the grid.

The hybrid probabilistic thermal modelling block receives

and processes transformer ageing variables and integrates

physics-based analytic models and data-driven error-correction

models, including different sources of uncertainty. At the

prediction time instant, tp, this block estimates the PDF

of the HST, ˆpdf(t)ΘH , and it will input the probabilistic

lifetime modelling phase along with different sources of

uncertainty, including the initial health state and the process

degradation uncertainty. The final outcome of the hybrid

probabilistic framework will be the PDF of the transformer

RUL, ˆpdf(t)RUL.

A. Hybrid Probabilistic Thermal Modelling

Fig. 3 shows the hybrid thermal modelling approach.

Fig. 3: Hybrid-probabilistic transient thermal modelling.

The transient thermal model estimates the deterministic

HST using physics-based difference equations (cf. Section II).

This estimate is corrected with a data-driven probabilistic

error-correction phase through the probabilistic estimation of

the physics-based model error:

ˆpdfΘH
(t) = Θ̂TO(t) + ˆpdfeΘTO

(t) + ∆ΘH(t) (12)

where, ∆ΘH(t) is the HST rise over TOT [cf. (8)], Θ̂TO(t) is

the physics-based TOT estimate, and ˆpdfeΘTO
(t) is the PDF

of the residual error, which is estimated using probabilistic

forecasting methods through the function fML(.):

ˆpdfeΘTO
(t) = fML(f1(t− k), . . . , fN (t− k)) (13)

where 〈f1(t − k), . . . , fN (t − k)〉 denotes the set of features

obtained at the time instant t− k, that best represent the error

estimate at instant t.

The probabilistic forecasting stage focuses on one-step

ahead predictions. Owing to the lack of monitored HST data,

the data-driven error correction phase focuses on the TOT

estimate and for the HST estimation physics-based equations

are employed. In order to train the probabilistic forecasting

model, the historic TOT time-series must be first estimated

through the physics-based difference equations and compute

the error (cf. Section II).
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1) Probabilistic Forecasting Models: The probabilistic 
thermal modelling phase aims to predict the HST under 
uncertainty. This is performed in two connected steps (i) TOT 
prediction via probabilistic forecasting models and (ii) HST 
estimation via experimental models. The uncertainty associ-

ated with the TOT prediction is modelled with pd̂f(t)ΘTO , 
which is propagated to estimate the PDF of the HST pd̂f(t)ΘH 
through (12). Among forecasting models that integrate uncer-

tainties and produce a PDF for each prediction estimate, this 
paper focuses on Quantile Regression Forest (QRF), Quantile 
Gradient Boosting (QGB) and Quantile Regression (QR) [26].

QRF are based on Random Forests (RF) with a powerful 
predictive performance [27]. A RF grows an ensemble of 
regression trees using N independent observations {y, xi}i=1, 
where y is the TOT prediction error, eΘTO (t), xi ∈ X are 
the error prediction variables, 〈f1(t − k), . . . , fN (t − k)〉, 
and N is the length of training data. QRFs draw prediction 
intervals from RF predictions. The prediction becomes a 
conditional distribution function F (y|X = xi), i.e. probability 
of the predicted TOT error value y, given the error prediction 
variables X , which is approximated by the weighted mean of 
xi over the observations:

F̂ (y|X = xi) =
N∑

i=1

wi(xi)1{y<yi} (14)

where wi(xi) = K−1
∑K

k=1
wi(xiθk) is the weighted vector

and 1{.} is an indicator function.

The φ-quantile, qφ(xi) = φ, is defined such that the prob-

ability of y < qφ(xi) = φ. That is, a quantile of order φ is

a value where the distribution function crosses φ. Quantiles

provide a complete distribution information of y as a function

of explanatory features X . For example, for a feature set,

X , and target variable y, 80% prediction intervals (PI) are

estimated as:

PI(X) = [q0.1(y|x = X), q0.9(y|x = X)] (15)

Fig. 4 shows a distribution function example, including

quantiles, where the interval [a, c] covers 80% PI.

1

q0.9=0.9

q0.1=0.1

0.5

F(x)

x
b c da

Fig. 4: Cumulative distribution function (CDF) and quantiles.

Using quantiles and interpolation methods it is possible to

build a CDF. In this case the monotonic piecewise interpolation

method was used [28] — see example in Fig. 11.

QRF is implemented in the skgarden Python package.

Model tuning has been done from a predefined grid of param-

eters including the minimum number of samples required to

split an internal node (min samples split), minimum number

of samples required to be at a leaf node (min samples leaf)

and number of trees (n estimators). These parameters aim

at preventing overfitting and were considered as follows:

min samples split=[5, 10, 20], min samples leaf=[1, 2, 5]

and n estimators=[10, 100, 1000, 2000].

QGB are based on boosting methods that sequentially

combine an ensemble of weak learners as a weighted sum

of base-learner models to reduce the ensemble error [29]:

ŷt = FN (xt) + εt =
N∑

n=1

fn(xt) + εt (16)

where FN (xt) is the ensemble of N regression trees, each

fn(xt) is a regression tree and εt is an error term. The new

regression tree fn+1(xt) for the quantile loss function L(.) is

estimated as follows:

argmin
fn+1

∑

t

L(yt, FN (xt) + fn+1(xt)) (17)

This optimization is solved through the steepest descent

algorithm [29], where each fn(xt) is designed to be maximally

correlated FN (xt). The implementation of the quantile loss

function enables the probabilistic prediction [30].

QGB is implemented in the sklearn Python package.

Model tuning has been done by adjusting the learning rate,

which controls the contribution of each regression tree (learn-

ing rate), the number of boosting iterations which defines the

number of base learners in the final model (n estimators)

and maximum depth of the individual regression estimators

(max dept). These parameters have been evaluated from a

predefined grid of parameters: learning rate=[0.01, 0.05, 0.1],

n estimators=[100, 250, 500] and max depth=[2, 5, 8].

QR is an extension of linear regression (LR) models, which

assume a linear model as follows [31]:

ŷt = β0 + β1X1 + β2X2 + . . .+ βKXK + ε (18)

where ŷ is the response variable and X = {X1, . . . , XK}
is the set of explanatory variables and ε is the error often

represented as zero-mean Gaussian variable.

Prediction errors in the LR model are denoted residuals, and

the ordinary least square minimization procedure is used to

find the optimal parameters β of the LR model that minimize

the squared sum of residuals. Instead of focusing on the mean

value as in LR estimate, QR generates quantiles of the target

value [32]. The QR model of the quantile φ is:

Qφ(ŷt) = β0(φ) + β1(φ)X1 + . . .+ βK(φ)XK + ε (19)

where it can be observed that β coefficients are functions of

a quantile value, which are determined through minimization

of the mean absolute deviation (MAD):

MAD =
1

N

N∑

i=1

ρφ(yt − β0(φ)+ β1(φ)X1 + . . .+ βK(φ)XK + ε)

(20)

where ρφ is a function which weights the loss function

according to the weight of the quantile.

QR is implemented in the statsmodel Python package,

solved through iterative weighted least squares, Epanechnikov

kernel, robust standard errors and Hall-Sheather bandwidth

selection, maximum iterations=1e5 and tolerance error=1e-3.



2) Preprocessing & Feature Extraction: Data preprocessing

steps are comprised of filtering and normalization. Outliers

and invalid sensor readings caused by unknown phenomena,

i.e. missing-at-random, are pre-processed with classical impu-

tation approaches using a rolling window mean value.

Feature selection has been driven by the analytics relation

between the TOT and explanatory variables, including lagged

signals due to the oil constant propagation τTO. From (2) it

is observed that TOT is related with the ambient temperature

and input load. As the transformer is operated in a RES plant,

the influence of the natural resource on the generated energy

is also relevant, and potentially helpful for TOT forecasting.

Assuming that the transformer is operated in a PV plant, the

power generated by a PV module can be defined as [33]:

P (t) = ηAR(t)sin(α) (21)

where η is the efficiency, α is the PV module angle, A is the

module area [m2] and R(t) is the solar irradiance [W/m2].

Accordingly, the solar irradiance is included as an explana-

tory variable, which is obtained from the numerical weather

predictions (NWPs) produced by the European Centre for

Medium-Range Weather Forecasts [34]. NWPs are based on

a set of mathematical equations, which describe the physical

state and dynamic motion of the atmosphere [34]. The most

up-to-date solar irradiance estimate at instant t is used, R̂(t).

The remainder of features are one step lagged signals,

〈θA(t − 1), i(t − 1)〉, oil constant lagged load and ambient

temperature signals 〈i(t − τTO), θA(t − τTO)〉, and finally,

the cross-correlation between load and TOT, and ambient

temperature and TOT has been analysed. The cross-correlation

finds the empirical lag between signals, τX , in which the

correlation between the analysed signals is maximum 〈i(t −
τX), θA(t−τX)〉. The set of extracted features are finally post-

processed to create different predictive models and select the

optimal model structure (see Sec. V-A).

3) Performance Metrics: The main criteria to evaluate

the probabilistic forecasts has been the continuously ranked

probability score (CRPS). From the probabilistic forecast PDF,

f(z), with its cumulative distribution function (CDF), F (z),
and observation y, the CRPS(F, y) is defined as [35]:

CRPS(F, y) =

∫

R

(F (z)− 1{y ≤ z})2 dz (22)

where 1{y ≤ z} is the indicator function, which is one if

y ≤ z and zero otherwise.

The CRPS calculates the discrepancy between the forecast

CDF and the empirical CDF of the observation 1{y ≤ z}
which is considered as a step function because the observations

y are deterministic values. The CRPS is a better suited metric

for categorizing the predictive power of probabilistic models

that generate a PDF as a prediction because it quantifies the

error of each probabilistic value with respect to the observation

[35]. Other metrics, such as the mean average error (MAE),

are based on deterministic point estimate error values and,

thus, they have to quantify the MAE value for every quantile

to have an overall idea of the predictive power.

B. Probabilistic Lifetime Modelling

1) Sources of Uncertainty: The transformer hottest-spot

temperature is estimated from indirect measurements, which

may include measurement errors. This is captured through

the probabilistic thermal model in (12). Furthermore, the

insulation degradation model may be inaccurate due to the

empiric-process based specification [cf. (11)], along with

the initial insulation estimate. Integrating these sources of

uncertainty into the lifetime model results in:

RUL(t)=RUL(t−∆t)+ωRULt-∆t −2

(

98−pdfΘH
(t)

)

/6+ωt (23)

where ωRULt-∆t denotes the uncertainty of the RUL estimate at

t−∆t, ωt is the variability of the degradation trajectory and

pdfΘH
(t) is defined in (12). The initial error estimate, ωRUL0

,

will be iteratively propagated via (23).

By checking deterministic lifetime formulation (11) with

(23), one can infer that HST and RUL estimates are influenced

by different sources of uncertainty.

2) Probabilistic Lifetime Framework: The goal of this

phase is the transformer RUL estimation under uncertainty. To

this end, hybrid probabilistic forecasting model results from

the thermal modelling phase are connected with experimental

degradation equations. This is achieved through a Particle Fil-

tering (PF), which is a tracking approach for state-estimation

under uncertainty using Bayesian inference [36].

Let k be a discrete time-step, k ∈ N, PF diagnoses the

transformer health state xk through a iterative combination

of the health degradation model f(·) and its influencing

measurements h(·):

xk = f(xk-1, υk-1)

zk = h(xk, ϕk)
(24)

where xk is the transformer RUL at the discrete time instant

k, f(·) is the insulation degradation [cf. (23)], υk is the

degradation uncertainty vector υk = 〈ωk, ωRULk
〉, zk is the

HST at time instant k, h(·) is the HST estimation function

that correlates transformer health measurements with the RUL

estimate, and ϕk is the measurement uncertainty vector.

The HST model integrates load measurement errors, proba-

bilistic distribution of the TOT forecasting estimate including

uncertainties along with transformer design parameters, and it

estimates the PDF of the HST, ˆpdf(t)ΘHk
.

The insulation degradation function in (23) integrates the

process noise ωk and calculates the insulation RUL from the

HST and initial health state, which is then iteratively updated.

Fig. 5 shows the probabilistic lifetime modelling approach.
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Fig. 5: Probabilistic lifetime modelling.

At a time k−1, assuming that the prior PDF, p(xk-1|z0:k-1),
is available, the one-step ahead prediction is estimated from:



p(xk|z0:k-1) =

∫

p(xk|xk-1)p(xk-1|z0:k-1)dxk-1 (25)

where p(xk|xk-1) is the state-evolution defined in (24). Using

the Bayes rule, when a new observation is collected at k, zk,

an updated state-estimate can be obtained [36]:

p(xk|z0:k) = p(xk|z0:k-1)p(zk|xk)/p(zk|z0:k-1) (26)

The PDF p(xk|z0:k) models the solid insulation state xk

given measurements zk up to k, which is synthesized in the

recursive filtering expression:

p(xk|z0:k) = p(zk|xk)
︸ ︷︷ ︸

Likelihood

∫

p(xk|xk-1)
︸ ︷︷ ︸

Transition

p(xk-1|z0:k-1)
︸ ︷︷ ︸

Filtering

dxk-1 (27)

The resolution of (27) is obtained through the PF approach

via prediction, update and resampling steps [36], which has

been adapted to include probabilistic forecasting estimates of

the measurement function.

In order to model the initial transformer health state at k=0,

Np random samples, known as particles, are drawn {xi
k=0}

Np

i=1

from the initial transformer insulation health-state conditions.

Without loss of generality, throughout this work Np=5000
particles have been used achieving an acceptable trade-off

between computational cost and variance [37].

Prediction. Transformer degradation-state samples are esti-

mated from p(xk|z0:k-1). This is achieved through the insula-

tion degradation model (24) integrating sources of uncertainty

drawn from the corresponding probability density function.

The result of the prediction step are a set of health-state

samples xi
k which are realizations of the predicted distribution.

In order to draw particles from the predicted HST,
ˆpdf(t)

ΘHk
, the inverse sampling method is applied. Let

ˆF (t)
ΘHk

be the cumulative distribution function inferred from

the probabilistic forecasting model, rΘH the random variable

drawn from the uniform distribution rΘH ∼ U([0, 1]), then

the inverse sampling method applies the relation F̂−1

ΘH
(rΘH ) =

Θ̂H .

Update. For new observations at instant k, zk, particle

weights are assigned estimating their probability:

wi
k = p(zk|x

i
k)/

Np
∑

j=1

p(zk|x
j
k) (28)

Resampling. In order to avoid the concentration of weights

on one particle, known as weight degeneracy [36], a resam-

pling threshold is defined: N e = 1/
∑Np

i=1 w
i
k. Particles are

resampled if N e < N p/2 [36].

The PDF, p(xk|z0:k), analytically defined in (27), is now

inferred from the weighted particles {xi
k, w

i
k}

Np

i=1.

IV. CASE STUDY

Sierra Brava is a grid-connected floating PV plant operated

by Acciona with the objective of evaluating the performance

and operation and maintenance (O&M) costs. Floating PV

plants shows an improved performance due to the decreased

ambient temperature, high solar irradiation and less shading

[38]. These factors, along with the reuse of existing grid

connections, may compensate the initial installation costs.

The installation is located close to the southern shore of

the Sierra Brava reservoir (Cáceres, Spain). Fig. 6 shows the

layout configuration. Designed to cover around 12000 m2,

the installation consists of 5 floating systems with different

configuration (orientation, inclination). Each system has 600

PV panels with an estimated capacity of 1.125 MW peak.

Fig. 6: Sierra Brava floating solar PV configuration.

Monitored data includes minutely sampled 63 days from

30/05/2021 to 31/07/2021. After cleaning and preprocessing,

results in 60 days (86400 samples per variable). In addition to

transformer-specific monitored variables, solar irradiance data

has been extracted from meteorological databases [34].

The focus of the case study is on the O&M evaluation of the

distribution transformer located in the transformation centre.

Table I displays the transformer nameplate rating values.

TABLE I: Transformer parameter values.

Parameter Value
Rating [kVA], V1/V2 1100, 22000/400

R=Load losses/No load losses [W] 9800/842
∆ΘH,R,∆ΘTO,R [◦C] 15.1, 54.26

k11, k21, k22 0.75, 2.32, 2.05
τ0, τw [min.] 266.8, 9.75

A. Transformer heat-run tests

A short-circuit heat-run test was carried out to determine

the transformer top-oil and winding temperature rise [39]. A

voltage test is performed so that measured active power is

equal to the total losses and held constant until reaching the

steady-state. Next, the load is reduced to the rated current and

the winding resistance is measured as the transformer cools

down to determine the average winding temperature. After

this process, thermal parameters k11, τ0, k21, k22 and τw are

determined through the following functions [6]:

f1(t) =1− e
− t

k11τ0 (29a)

f2(t) =k21
(

1−e
− t

(k22 ·τw)

)

− (k21−1)
(

1−e
− t

(τ0 / k22)

)

(29b)

with the robust optimization problem defined as:



argmin
k11,τ0

{

n−1∑

i=0

ρ

((

f1(ti, k11, τ0)−
ΘTOi −ΘAi

∆ΘTO,R

)2
)

}, (30a)

argmin
k21,k22,τw

{

n−1∑

i=0

ρ̃

((

f2(ti,k21,k22,τw,τ
∗
0 )−

ΘHi−ΘTOi

∆ΘH,R

)2
)

}

(30b)

where the loss functions ρ and ρ̃, are used to smooth the effect

of outliers via least square error.

The trust-region-reflective algorithm is used for robust non-

linear optimization [40], with initial values and parameter

bounds in agreement with [6] and a tolerance of 10−8 for

convergence. Using the resulting optimal oil time constant,

τ∗0 , thermal parameters k21, k22, τw are fitted to the winding

temperature rise according to f2 in (29b). Results are given in

Table I and the fitting is shown in Fig. 7.

Fig. 7: Heat-run test based thermal parameter fitting.

Thermal parameters of the HST have been collected through

experimental heat-run tests. However, note that the monitored

HST was not available.

V. NUMERICAL APPLICATIONS

A. Hybrid Probabilistic Thermal Modelling

The accuracy of the transient thermal model is enhanced

via probabilistic forecasting and dynamic error-correction. The

dataset has been divided into training and testing sets, with

a proportion of 70% and 30%, respectively. The training

set has been used for feature selection and hyper-parameters

tuning via 3-fold cross validation, and the testing set has been

reserved to examine the predictive capacity on unseen data.

Fig. 8 shows the monitored variables and the solar irradiation

obtained from ERA5 [34]. Vertical dashed line divides the

series data into train and test sets.

For the feature selection process, different models have been

designed including different signals as shown in Table II.

Monitored signals, i(t− 1), θA(t− 1), NWP solar irradiation,

R̂(t) and oil constant lagged load, i(t − τTO) signals have

been considered across all the models, and combinations of

oil constant lagged ambient temperature and cross-correlation

lagged signals, i(t− τX), θA(t− τX), have been analysed.

The predictive power of the models have been analysed for

different folds of the training set and evaluated through the

mean CRPS, as shown in Fig. 9. For each model configuration

Fig. 8: Sierra Brava monitored time-series

.

TABLE II: Analysed models in the feature selection process.

Feature
Model Number

1 2 3 4 5 6 7 8
i(t− 1)
θA(t− 1)

R̂(t)
i(t− τTO)
θA(t−τTO) × × × ×
i(t− τX) × × × ×
θA(t− τX) × × × ×

in Table II, two model types have been tested: (i) hybrid

configurations (H) using QRF, QGB and QR probabilistic

forecasting models as error-correction models and (ii) data-

driven (DD) configurations without error-correction directly

using QRF, QGB and QR as probabilistic forecasting models.

From Fig. 9 it can be observed that the performance of the

hybrid models is superior to data-driven predictive models.

Among the tested models, features in the sixth model config-

uration obtain the best mean result for the hybrid approaches,

and the fifth and seventh model configurations for data-driven

approaches, which are selected for subsequent modelling

stages. Finally, it can be observed that the performance trends

of QRF and QGB models are similar.

The cross-validation process implements iterative training

and validation procedure on the set of parameters defined in

the grid-search strategy (cf. Section III-A1), and reports the

best model based on the loss function. The parameter-tuning



Fig. 9: Feature selection performance results

.

process has been implemented individually for each quantile

prediction model including 99%, 95%, 90%, 50%, 10%, 5%

and 1% prediction quantiles.

Table III displays probabilistic forecasting error results

for probabilistic forecasting models including hybrid con-

figurations, data-driven configurations and the analytic IEC

model. Probabilistic prediction models have been evaluated

with CRPS and MAE metrics, using the median probabilis-

tic prediction values to infer the MAE, i.e. 50% prediction

quantile. As for the IEC model, which provides deterministic

point estimates, it is not possible to estimate CRPS values,

and testing set prediction results have been directly used to

estimate the top-oil temperature and the associated MAE.

TABLE III: TOT forecasting error results for various methods.

Method CRPS MAE
H-QGB 0.19±0.13 0.41±0.3
H-QR 0.25±0.16 0.53±0.38

H-QRF 0.26±0.22 0.51±0.39
DD-QGB 0.59±0.37 1.06±0.81
DD-QRF 0.83±0.95 1.43±1.77
DD-QR 0.97±0.39 1.5±1.13

IEC 2.56

From Table III it can be observed that the best probabilistic

forecasting configuration is the hybrid configuration using the

QGB as the probabilistic error-correction model. The perfor-

mance evaluation metric for probabilistic forecasting models

is the CRPS. However, even using the MAE with median

probabilistic prediction values, results are still coherent. The

performance of data-driven configurations drops compared

with error-correction models. Finally, the analytic IEC model

shows deterministic TOT estimates, which performs worse due

to the lack of statistical learning and adaptation steps.

After selecting the best method, additional quantile models

have been tuned and inferred for the H-QGB model to obtain

a more accurate representation of the underlying distribution.

Fig. 10a shows the probabilistic forecasting estimates with

95% prediction intervals for the best hybrid-configuration,

i.e. 18 days of testing (25920 minutes). Fig. 10b shows the

corresponding CRPS and MAE results, calculated with the

median and 95% prediction interval.

Fig. 10 shows that the hybrid prediction model confidence

bounds are within the measured TOT values, which confirms

(a) Probabilistic TOT forecasting results.

(b) Error scores: CRPS & MAE (median ± 95% PI).

Fig. 10: One-step ahead probabilistic prediction results.

that effectively corrects the analytic model predictions.

Probabilistic predictions take the form shown in Fig. 11,

with a probability value assigned to each error prediction

value, with the median probabilistic prediction error of -5◦C,

and 95% prediction interval limits within -5.76◦C to -4.3◦C.

Fig. 11: Probabilistic error prediction results (1000-th sample).

Probabilistic error distributions vary for each prediction



according to the propagated uncertainty. Predicted error distri-

bution informs about the model confidence on the predictions. 
This information is connected with probabilistic lifetime esti-

mation models to predict the RUL (cf. Section V-B).

B. Prognostics modelling

Taking the H-QGB prediction model, two transformer

degradation scenarios have been analysed:

(#1) Deterministic RUL model in (11), using measured TOT

and load data and HST calculated via (1);

(#2) Application of the framework in Fig. 2, with probabilistic

RUL model in (23), one-step ahead transient probabilistic

TOT forecasting results and HST calculated via (12)

In both scenarios, an initial lifetime of 262800 hours is

assumed (30 years) with a variance of 1 hour, RUL0 =
N(262800, 1), and process degradation uncertainty of wk =
N(0, 1) [6]. So as to evaluate the likely future degradation

under these scenarios, the monitored operation profile of one

week has been repeated over 6 months (cf. Fig. 12).

Fig. 12: Operational load profiles for one week.

Accordingly, Fig. 13 shows the obtained prognostics results

using the operational data and reference load A in Fig. 12.

Fig. 13: Prognostics predictions for different configurations.

The degradation after 6 months of operation (4032 hours)

is mild with a maximum likelihood value of 262790 hours

and 95% prediction intervals of [262788.9, 262791.1] hours

in #2 and 262789.1 hours in #1. The difference between both

configurations is on the uncertainty information propagated by

#2, which informs about the likelihood and confidence of the

predicted RUL values (cf. load A in Fig. 14).

So as to test the model with other operation contexts, two

different loading profiles have been analysed (cf. load B and

C, Fig. 12). Fig. 14 shows the obtained PDF results.

Fig. 14: PDF of RUL estimates for different operation profiles

.

The maximum likelihood RUL after 6 months is 262786

hours and 262781 hours for load B and C respectively,

and 95% prediction intervals within [262787, 262784.9] and

[262781.9, 262779.8] hours, respectively, which suggests that

the dependency on the solar energy generation leads to an

intermittent and mild insulation degradation and there may be

room for increasing the ageing limit of transformers.

C. Analysis of Sampling Rates

In order to evaluate the influence of signals with different

sampling rates, the H-QGB model has been tested with chang-

ing sampling rates of the monitored signals. Table IV shows

the probabilistic forecasting error results.

TABLE IV: TOT forecasting error for various sampling rates.

Sampling Rate CRPS MAE
1 min. 0.19±0.13 0.41±0.3
5 min. 0.2±0.13 0.4±0.3

10 min. 0.2±0.14 0.41±0.32
30 min. 0.21±0.17 0.43±0.31
60 min. 0.25±0.19 0.48±0.38

It can be observed that changing the sampling rate of the

monitored signals affects the precision of the probabilistic

model. That is, the higher the sampling rate, the lower the error

score. This is in line with the thermal difference equations and

parameters, which lose precision at lower sampling rates, and

better capture the changing dynamics with higher sampling

rate signals.

VI. DISCUSSION

A comprehensive transformer prognostics framework is

shown in this paper. However, before drawing definitive con-

clusions about the influence of RES on transformer RUL, fur-

ther work is necessary testing the approach for other periods,

and possibly monitoring additional degradation factors.



The proposed analysis suggests worst-case operation and 
degradation context which drive transformer O&M strategies. 
Transformer degradation has been evaluated for the warmest 
period of the year and load profiles which can emerge from 
extreme meteorological conditions (cf. Fig. 12) have been also 
analysed to evaluate the effect on transformer RUL estimation. 
However, in order to generalize the influence of RES on the 
transformer degradation, a larger dataset covering different 
seasons and a few years of operation may be needed.

With a larger dataset, it may be possible to infer seasonality 
patterns so as to build error-correction approaches adapted to 
each period including summer, winter and shoulder seasons 
of spring and fall. The same model design procedure would 
be applied with appropriate feature-selection adjusted to each 
season, e.g. the influence of the solar irradiance and PV 
conversion efficiency may change between different seasons, 
as well as the empirical cross-correlation lags between the 
analysed signals.

Additionally, the degradation rate and RUL estimations have 
been obtained from the influence of the HST on the insulation 
ageing. However, there are other factors, such as moisture, 
which can also accelerate the insulation ageing rate [8], [15]. 
Accordingly, obtained results must be interpreted with care, 
recognising that synergistic degradation effects may also play 
a part.

Finally, probabilistic forecasting models have been used 
due to their ability to convey uncertainty information in the 
predicted estimate. There are black-box deterministic estimates 
[3], mostly based on deep-learning modelling strategies, e.g.

[23]. However, although they may accurately estimate the 
predicted value, the uncertainty value is lost. Accordingly, this 
may limit the applicability and potential of the proposed ap-

proach, and precisely, this is the main novelty of the proposed 
framework. Without probabilistic estimates, it is possible to 
rely on already existing prognostics frameworks [17].

The dropout mechanism of deep-learning models, which 
was originally introduced to avoid overfitting, has been ex-

tended to capture uncertainty through Monte Carlo simulations 
and variational inference [41]. Recent probabilistic extensions 
of deep-learning models open the way to enhance the robust-

ness of deep-learning predictions including uncertainties [42],

[43]. The introduction of additional parameters may result in 
deep-learning architectures that require more time to converge 
[41]. The integration and comparison of the proposed hybrid 
approach with probabilistic deep-learning models is part of the 
future work of the authors.

VII. CONCLUSIONS

The operation and integration of RES with traditional 
power equipment creates novel operation and degradation 
scenarios, including fast-switching events and strong weather-

dependency, which impact on the reliability of power assets. 
Focusing on transformers, key assets for RES integration, 
their reliability should be modelled with appropriate health-

monitoring methodologies suited for their operation with RES. 
In this context, this paper has proposed a hybrid prognostics 

framework for the health assessment of transformers operated

with RES. The approach combines physics-based modelling

with probabilistic forecasting in a error-correcting configura-

tion, and this is embedded in a probabilistic lifetime frame-

work to predict the transformer RUL with prediction intervals.

Prediction intervals vary for each prediction according to the

propagated uncertainty and they inform about the confidence

of the model in the predictions.

The approach is applicable to oil-immersed distribution

transformers that are used to connect RESs and the grid. How-

ever, it may be necessary to adapt the probabilistic forecasting

stage, with an application-specific feature selection. Results

obtained from the application to a floating photovoltaic power

plant, demonstrate that the proposed approach adapts physics-

based methodologies to the RES context through a data-driven

probabilistic forecasting strategy.

Prognostics results have shown that the transformer insu-

lation degradation is mild due to the intermittency of the

generated energy. This suggests that there may be room to

extend the operation condition beyond the initially assumed

lifetime and flexibility to increase power production for future

integration. However, obtained degradation results should be

complemented with other degradation-influencing variables,

such as moisture, so as to obtain a more complete picture

of the insulation health.

Analysis of the sampling rate of monitored signals indicate

that a decrease in the sampling rate affects the prediction per-

formance, due to the loss-of-information in-between samples,

and therefore, it suggests that it is important to accurately

capture transformer ageing variables and model degradation

dynamics.

The proposed approach assists operation management deci-

sions by better understanding likely transformer degradation

in RESs from the insulation degradation perspective.
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