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Li-ion Battery-based Hybrid Diesel-Electric
Railway Vehicle: In-depth Life Cycle Cost Analysis

Josu Olmos, Iñigo Gandiaga, Dimas Lopez, Xabier Larrea, Txomin Nieva and Iosu Aizpuru

Abstract—In this study, the life cycle costs of railway projects
involving hybrid diesel-electric vehicles are analysed. Specifically,
the analysis focuses on the comparison of 3 lithium-ion battery
technologies (NMC, LTO and LFP) and 8 energy management
strategies (including rule-based and optimization-based strate-
gies). In order to develop this analysis, a methodology that
returns the life cycle cost of each proposed case is presented.
The methodology includes the optimization of the diesel generator
and lithium-ion battery sizing. A scenario based on a real railway
line is introduced, and the obtained results are compared to a
traditional diesel-electric railway vehicle to develop a techno-
economical discussion. The best lithium-ion battery technologies
are found to be LTO and NMC, and the most appropriated strat-
egy a state-machine controller optimised by a genetic algorithm
approach. The best case obtains a life cycle cost reduction of the
4.0% and diesel savings of the 13.7% compared to a traditional
diesel-electric railway vehicle. The proposed analysis is claimed
to be potentially helpful for the cost-optimal design and operation
definition of powertrains for hybrid railway vehicles.

Index Terms—Energy management, life cycle cost analysis,
optimization, lithium batteries, railway engineering.

I. INTRODUCTION

RAILWAY is an essential transportation mode in nowa-
days society, both for passenger and goods [1]. Consider-

ing that the relation between the produced CO2 emissions and
the carried passenger activity is lower than in road transport,
this sector becomes an important stakeholder in the path
towards transport decarbonisation [2]. Even if electrified rail
vehicles have been deployed for many decades, diesel power-
trains remain the preferred option in many railway networks,
especially in track sections where the electrification is barely
cost-efficient (e.g. in low-traffic networks [3]). For instance,
in Europe the 40% of the routes are not electrified yet [4], and
the rate is even lower in Asia or America [5]. Consequently,
it is crucial to search for cleaner alternatives in this sector.
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In this context, the interest of the railway industry on
integrating low-polluting technologies such as the Lithium-
ion Battery (LIB) and the Fuel Cell (FC) has increased in the
last years [6]–[8]. FCs have become a relevant option given
the zero-emission nature of the hydrogen when obtained from
renewable sources [9]. However, its cost is still roughly com-
petitive compared to its diesel counterpart [10]. Besides, LIBs
price decrease and energy/power densities increase has pushed
its integration in a variety of electric vehicle applications
[11], [12]. However, these improvements are not yet enough
for railway vehicles solely powered by LIBs, specially when
envisaged for large-range lines [13]. Regarding the current
disadvantages of these low-emission solutions, hybrid railway
vehicles combining a diesel generator and a LIB emerge as an
alternative solution for the short and mid-term future.

When dealing with hybrid topologies, the definition of the
power split ratio between the different power sources has
a strong impact on the Life Cycle Costs (LCC) [14]. As
that is one of its main tasks, the relevance of the Energy
Management Strategy (EMS) can not be dismissed. EMSs
for hybrid vehicles are typically divided into rule-based and
optimization-based strategies [15]. Rule-based strategies are
usually developed based on heuristics or human experience,
and therefore they are causal and easy to deploy on-line.
However, they do not ensure an optimal performance. They
can be classified into Deterministic Rule-Based (DRB) and
Fuzzy Rule-Based (FRB) strategies. DRB strategies for hybrid
diesel railway vehicles have been widely proposed in the
literature, including power follower [16], state-machine [17]–
[19] and frequency management [3], [20] approaches. FRB
strategies for hybrid diesel railway vehicles have also been
proposed [21]. Regarding optimization strategies, they are
based on solving the optimal power split between the power
sources by means of an optimization algorithm. In Global
Optimization (GOP) strategies, the optimization is developed
off-line based on a pre-defined or predicted drive cycle, while
in Real Time Optimization (RTOP) strategies the optimization
is developed on-line. Proposed GOP strategies for hybrid
diesel railway vehicles include approaches based on dynamic
programming [18], [22], Pontryagin’s minimum principle [17],
non-linear programming [23] and genetic algorithm [24].
RTOP strategies such as equivalent consumption minimization
or model predictive control have been proposed for other
hybrid railway topologies such as FC vehicles [25], [26].

The problem of designing an optimal EMS is closed-
coupled with solving the optimal sizing of the powertrain
sources, as the optimal power split may vary with the hy-
bridization level [6], [17], [20]. Besides, another issue that
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cannot be ignored when dealing with the integration of LIBs
is the definition of its chemistry. The active materials and
fabrication processes followed in the production of LIBs affect
in their techno-economical characteristics, for instance voltage,
internal resistance, lifetime, energy density and cost [27].
Therefore, the suitability of each LIB technology may vary
depending on the requirements and use of the vehicle.

It can be concluded that when trying to reduce the LCC of
hybrid diesel railway vehicles, the effect of the EMS, the LIB
technology and the size of the powertrain elements cannot
be neglected. Moreover, due to the identified interrelations,
they should be considered in an integrated manner. Some
publications have recently developed LCC analyses to reduce
the cost of this application [28]–[32]. Depature and Letrouvé
[28] compare the economic valorisation of a traditional diesel-
electric train, a full battery train, a hydrogen train and a
hybrid diesel train. They conclude that the hybrid option
involves the lowest overall cost, even if it requires a higher
acquisition cost compared to the traditional diesel-electric
option. Besides, Cipek et al. [29] size the battery system of
a hybrid diesel locomotive, and its performance is compared
against a traditional diesel locomotive. They conclude that
thanks to the hybridisation, the final cost can be reduced a
14%. Giglioli et al. [30] compare different topologies of a
hybrid railway vehicle against a traditional diesel vehicle. They
propose different sizes for the battery-based storage, and the
results show that a payback time of 2 years can be obtained
with some of the proposed hybrid options. Finally, Meinert et
al. [31], [32] find that the cost of a hybrid railway vehicle can
be 15% lower than in a traditional diesel vehicle. Different
storage technologies are proposed and techno-economically
compared. The conclusions highlight that from an economic
outlook, integrating LIB technology is the best solution.

The reviewed publications [3], [16]–[24], [28]–[32], even
if they partially consider some of the variables identified
as crucial for the cost-efficiency of hybrid vehicles, lack of
a comprehensive LCC analysis that considers integrally the
effect of the EMS, LIB technology, and size of the powertrain
sources. In this regard, the novelty of this study lies on
the development of a LCC analysis where the influence of
different EMSs and LIB technologies is examined for hybrid
diesel-electric railway vehicles. For each analysed combination
of EMS and LIB technology, the cost-optimal diesel generator
and LIB sizes are calculated. The proposed optimization
approach considers the lifespan of the LIB, calculated by
means of a chemistry-dependant empirical degradation model.
The proposed analysis is claimed to be potentially helpful for
the cost-optimal design (technologies and size selection) and
operation definition (EMS) of powertrains for hybrid diesel-
electric railway vehicles.

The remainder of the paper is organized as follows. First,
the models and scenario used to develop the LCC analysis are
presented in Section II. Then, Section III presents the details
of the different cases evaluated in the LCC sensitivity analysis
(i.e. considered LIB technologies and EMSs). Section IV and
Section V introduce the approaches that allow obtaining the
optimal LCC value of each case being analysed, what is done
by means of an optimization that returns the cost-optimal size

of the powertrain elements. Finally, the obtained results are
presented and techno-economically evaluated in Section VI,
and the main conclusions are overviewed in Section VII.

II. POWERTRAIN MODELLING

This study is focused on the railway topology denoted as
bi-mode battery-based Hybrid Diesel-Electric Multiple Unit
(H-DEMU). The H-DEMU can drive powered by a catenary, a
diesel generator (genset) or a LIB. Fig. 1 shows the powertrain
of the H-DEMU, which just adds a LIB compared to a
traditional bi-mode Diesel-Electric Multiple Unit (DEMU).
Table I shows representative parameters of the considered H-
DEMU: the CIVITY vehicle manufactured by CAF [33].

In order to develop the LCC analysis proposed in this
paper, the powertrain depicted in Fig. 1 has been modelled
in MATLAB. A backward simulation model of quasi-static
nature has been implemented, which is further detailed in the
following subsections. Considering the scope of the current
paper, a simulation step of ∆t = 1s has been defined [14].
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Fig. 1. H-DEMU and DEMU architectures (with and without LIB).

TABLE I
H-DEMU PARAMETERS: CAF’S CIVITY [33]

Parameter Value Parameter Value
Weight [tones] 124 Max. speed [km/h] 210
Length [m] 86 Traction power at wheel [kW] 4,400

A. Driving model

The input for the simulation model consists on the power
profile demanded by the traction motors (Ptr) and the auxil-
iaries converter (Paux), and is defined as Pdem:

Pdem = Ptr + Paux (1)

Fig. 2a shows the Pdem profile considered in the current
study, which has been provided by CAF Power and Automa-
tion. Pdem > 0 represents traction demand (i.e. power has
to be provided by the powertrain sources), while Pdem < 0
represents regenerated power. The depicted profile corresponds
to the round trip route of the ”A Coruña - A Coruña”
circle railway line, which is located in the region of Galicia
(Spain). The longitudinal dynamics and the traction model
used to extract the power profile are not shown to ensure
confidentiality. As a reference, Fig. 2b shows the speed profile
that corresponds to the Pdem profile.
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Fig. 2. Driving profile of ”A Coruña - A Coruña” line: a) Pdem b) Speed.

B. Power split model
As depicted in Fig. 2, the considered railway line consists

on electrified (E = 1) and non-electrified (E = 0) sections. As
in the non-electrified section the catenary is not available, the
genset and LIB are in charge of satisfying Pdem. Besides, in
the electrified section the genset is switched off, and therefore
Pdem is divided into the catenary and LIB. In both scenarios
braking resistors are activated only when regenerated power
cannot be absorbed by the on-board sources:

Pdem(n) =

{
Pgen(n) + PLIB(n) + Pr(n) for E = 0

Pcat(n) + PLIB(n) + Pr(n) for E = 1
(2)

being Pgen the power provided by the genset, PLIB the power
given or received by the LIB, Pcat the power provided by the
catenary, Pr the power burned in the braking resistors, and n
the current time step.

In both track sections, the EMS is in charge of splitting the
demand between the two sources. In this paper, different EMSs
are proposed and evaluated for the non-electrified section.
More detail about these EMSs is given in Section III-B. Be-
sides, in the case of the electrified section a simple rule-based
strategy is proposed. In order to reduce the LIB degradation,
the catenary gives all the traction demand (Pdem > 0), while
the LIB is charged with the regenerative power (Pdem < 0).
Additionally, if this energy is not enough for the LIB to recover
its initial State-of-Charge (SOC) at the end of the trip, the
catenary provides additional power to charge the LIB.

C. Genset model
The genset model returns the diesel consumption (lf ) for

each time step, based on the required Pgen and the effi-
ciency curve depicted in Fig. 3. The curve has been obtained
extracting an optimal path from the efficiency map of the
genset [14]. As further explained in Section IV and V, in this
paper different genset sizes are evaluated. For each size, the
efficiency curve is proportionally scaled.

D. LIB model
The LIB model is based on an equivalent circuit composed

of an open-circuit voltage source (Voc) connected in series with
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Fig. 3. Genset efficiency curve.

an internal resistance (Rint). Both Voc and Rint are defined
as non-linear functions of the SOC [14]. At each discrete time
step n, the LIB current (ILIB) and SOC are calculated:

ILIB(n) =
Voc(n)−

√
Voc(n)− 4 ·Rint(n) · PLIB(n)

2 ·Rint(n)
(3)

SOC(n) = SOC(n− 1)−
(
ILIB(n) ·

∆t

Q

)
· 100 (4)

being Q the current battery capacity.
In the used commitment, a positive ILIB denotes that the

LIB is discharging. ILIB is limited depending on the maxi-
mum charge and discharge C-rates (Cch and Cdch), defined
as C = ILIB/Q. Besides, Q can be updated at any time of
the LIB lifetime based on its State-of-Health (SOH), which is
defined as SOH = Q/Q0 (Q0 refers to the initial or nominal
LIB capacity). All the introduced LIB parameters may vary
depending on the chemistry and size being analysed, as it is
further detailed in Sections III, IV, and V.

E. Catenary model

Being the scope of this study the analysis of the non-
electrified section, the AC catenary is modelled as a linear sys-
tem in which the electricity consumption (ecat) is calculated
based on an average transmission efficiency factor (γ = 90%):

ecat(n) =
Pcat(n) ·∆t

γ
(5)

F. Converters model

As the scope of this study is more oriented to the power
and energy analysis of the H-DEMU operation, the converters
of the powertrain are modelled with a fixed average efficiency
value (ηconv = 95%).

III. OVERVIEW OF SENSITIVITY ANALYSIS

As introduced in previous sections, the main contribution
of this paper consists on evaluating the influence of different
LIB technologies and EMSs on the LCC of H-DEMUs. This
approach is developed by means of a sensitivity analysis, in
which the LCC variation when using different LIB technolo-
gies and EMSs is calculated. In the following paragraphs, the
analysed LIB technologies and EMSs are introduced.
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A. LIB Technologies

Different LIB technologies exist depending on the deployed
anode and cathode material. In the current study the fol-
lowing chemistries are considered (cathode/anode): Lithium
Iron Phosphate/Graphite (LFP/G), Lithium Nickel Manganese
Cobalt Oxide/Graphite (NMC/G) and Lithium NMC/Titanate
(NMC/LTO). For the sake of simplicity, in the remainder
these technologies will be referred as LFP, NMC and LTO,
respectively. As Table II outlines, the characteristics of these
chemistries may differ (LIB lifespans come from [34]), what
evidences the importance of the proposed approach.

TABLE II
PARAMETERS OF CONSIDERED LIB CHEMISTRIES (CELL-LEVEL)

LFP NMC LTO
Nominal capacity [Ah] 28 46 23
Nominal cell voltage [V] 3.2 3.7 2.3
Max. Cch / Cdch [C] 4.0 / 6.5 3.0 / 5.0 4.0 / 4.5
Calendar Life [years] 10 15 20
Cycle Life (@80%DOD) [cycles] 4,400 4,800 24,200
Specific Energy (@pack-level) [Wh/kg] 48.0 86.9 53.3
Energy Density (@pack-level) [Wh/L] 81.1 122.2 52.8

B. Energy Management Strategies

In the present study 4 DRB, one FRB and 3 GOP strategies
are proposed, which are presented in the following paragraphs.
It is worth to point out that the rule based strategies have
been designed considering the efficiency curve of the genset
(Fig. 3), specifically the operation points Pgen1 (low limit of
middle efficiency zone), Pgen2 (low limit of high efficiency
zone), Pgen−eff (point of maximum efficiency) and Pgen−max

(maximum power point). Besides, for all strategies the LIB
operation window is defined between 20-90% SOC (SOCmin

and SOCmax values, respectively).
1) DRB – Power Follower (PF): In this approach a constant

Pgen is defined for the genset. Therefore, the LIB works as a
buffer, giving or absorbing power depending on the difference
between the genset reference and the instantaneous demand
(Fig. 4a). In case the LIB cannot provide the required power
peak, the genset works at maximum load. Besides, if the LIB
cannot absorb all the peak, the working point of the genset is
reduced. Depending on where is the genset reference fixed, the
strategy will be oriented to sustain or deplete the LIB charge.
In this study, Pgen−eff is defined as the genset reference,
allowing a high efficiency genset operation and defining a
strategy more oriented to sustain the LIB charge.

2) DRB – Improved Power Follower for Charge Sustaining
(IPF-CS): This approach is partially based on the PF strategy.
In this case, the genset operation is extended to more points,
but maintaining them on the high efficiency zone (right part
of Fig. 3). Indeed, the efficiency loss when turning from
Pgen−eff to Pgen2 or Pgen−max is almost negligible. As Fig.
4b shows, the genset works at full load when the demand
is higher than Pgen−max, and on Pgen2 in the rest of cases
(except if that involves overcharging the LIB, in that case the
genset is allowed to work on the middle efficiency zone).

3) DRB – Improved Power Follower for Charge Depleting
(IPF-CD): This strategy is an extension of IPF-CS, but in this
case the genset is allowed to work in normal conditions on
the middle efficiency zone (central part of Fig. 3). Therefore,
as Fig. 4c shows, when the demand is lower than Pgen2, the
genset works at Pgen1. Compared to IPF-CS, this strategy asks
more energy to the LIB, so it may realize a deeper cycle.
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Fig. 4. DRB strategies: a) Power Follower b) Improved Power Follower for
Charge Sustaining c) Improved Power Follower for Charge Depleting

4) DRB – State Machine (SM): In order to combine the
characteristics and avoid the disadvantages of IPF-CS and IPF-
CD strategies (high diesel use and fast discharge of the LIB,
respectively), a strategy based on a state machine controller is
proposed. Depending on the SOC of the LIB, three different
states are defined: at high SOC, IPF-CD strategy is deployed
to exploit the available energy on the LIB; at middle SOC,
IPF-CS strategy is deployed to maintain the charge of the
LIB; and at low SOC, the genset works at full load in order
to recover the charge and avoid a full discharge of the LIB.
Fig. 5 shows the working principle of the SM strategy. Values
SOCSM1 to SOCSM4 are defined as 50%, 60%, 70% and
80%, respectively.

Current Battery SOC (%)

SOCmin SOCmaxSOCSM1 SOCSM2 SOCSM3 SOCSM4
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 S
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te
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Fig. 5. Working principle of State Machine strategy.

5) FRB – Fuzzy Logic-based Strategy (FL): The proposed
strategy is based on the FL controller developed by López-
Ibarra et al. for a plug-in hybrid bus [35], which has been
adapted for the current application. Fig. 6 depicts the designed
membership functions for the three control variables: SOC
of the LIB, power demand (Pdem), and genset power in the
previous time step (Pgen). 4 membership functions are defined
for SOC variable (VL: Very Low, L: Low, M: Middle, and
H: High) according to the thresholds SOCFL1, SOCFL2 and
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SOCFL3 (defined as 30%, 42.5% and 67.5%, respectively).
Regarding Pdem, the membership functions are designed to
represent a negative demand for regenerative braking (N:
Negative), a low demand value required by the auxiliaries
(VL), a demand lower than 1/3 of the power peak (L), a
demand lower than 2/3 of the peak (M) and a demand around
the peak (H). Finally, for Pgen 5 membership functions are
defined, which represent an idle operation (VL), an operation
on the low efficiency zone (L), middle efficiency zone (M),
high efficiency zone (H) and around the maximum load (VH:
Very High). Fig. 7 summarizes the set of rules defined for
the controller. As seen, the output variable is the power of
the genset in the current time step, so it involves the same
membership functions as in Fig. 6c.
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6) GOP – Optimized State Machine (GA-SM): In this case,
the SM strategy introduced in point (4) is optimized by means
of a Genetic Algorithm (GA) optimization approach. Specifi-
cally, the SOC thresholds SOCSM1, SOCSM2, SOCSM3 and
SOCSM4 (Fig. 5) are set as optimization variables, instead of
being defined based on previous experience (as done in SM

strategy). Further information regarding the GA optimization
is given in Section IV.

7) GOP – Optimized Fuzzy Logic-based Strategy (GA-FL):
In this approach, the FL strategy introduced in point (5) is
optimized by means of a GA optimization approach. Thresh-
olds SOCFL1, SOCFL2 and SOCFL3 are set as optimization
variables (Fig. 6a). Further information is given in Section IV.

8) GOP – Dynamic Programing (DP): This global opti-
mization is based on an algorithm that calculates the optimal
split factor (in terms of fuel consumption) between the genset
and LIB for each time step, based on Bellman’s optimality
principle. The resulting operation is characterized by frequent
switches in the power split factor, what further complicates
its on-line implementation. Therefore, DP is commonly used
just as baseline for benchmarking other EMSs [22]. The
optimization problem is based on the following cost function:

J =

N−1∑
n=0

lf
(
U(n)

)
·∆t (6)

where lf refers to the fuel mass consumption at each time step
∆t, determined by the power split factor U , within the route
length N . The DP algorithm integrated in the current study is
based on the function developed in [36].

IV. OPTIMIZATION METHODOLOGY

As previously explained, for each case of the sensitivity
analysis the cost-optimal combination of genset and LIB size
is calculated. This section presents the methodology followed
to develop this optimization.

In order to understand the methodology, Fig. 8 shows an
overview of the process followed for the development of the
sensitivity analysis. The aim is to obtain the LCC value of
each case to be analysed (k ∈ kmax). At each k a certain
combination of LIB technology and EMS is evaluated. The
LCC of each case k is obtained by means of an optimization
that returns the cost-optimal combination of installed LIB
modules (nLIB) and number of gensets (ngen). Additionally,
the initial SOC value of the LIB (SOCini) is also optimised, as
it is understood to be a key variable for the EMS performance.

The deployed optimization methodology differs depending
on the strategy being analysed. On the one hand, when
analysing rule-based and DP strategies, an exhaustive search
is proposed to solve the optimization. On the other hand, in
the case of GA-SM and GA-FL strategies, the parameters
related to the EMS are also optimised (see Section III-B). Due
to the increased number of variables, the implementation of
an exhaustive search becomes impracticable. Therefore, a GA
based optimization approach is proposed. In the following sub-
sections the two optimization methodologies are introduced.

A. Optimization Approach A: Exhaustive Search

The optimization by exhaustive search consists on an itera-
tive sequence composed of four steps, in which all the range of
feasible solutions (j ∈ jmax) is assessed one by one. The main
steps are depicted in Fig. 9 and further detailed in Section V.
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Case k of Sensitivity Analysis

Best LCC value for k

k includes:
- LIB technology
- EMS

k = k + 1

N

Y
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Finalization

Initialization Section III

Section V

Exhaustive Search
Optimization
(DRB + DP)

Genetic Algorithm
Optimization

(GA-SM + GA-FL)

Optimization steps Optimization steps

Section IV

Fig. 8. Overview of sensitivity analysis, including two optimization ap-
proaches to obtain the LCC values: exhaustive search and genetic algorithms.

Case k of Sensitivity Analysis

Variables Parametrization (j)

H-DEMU Simulation

Technical
Evaluation
Fullfilled?

Economic Evaluation (LCC)

j = j + 1

j = jmax ?

N

Best LCC value for k

j includes:
- n_LIB
- n_gen
- SOC_ini

Y

N

Y

- Power Requirement
- LIB Energy Balance
- Re-simulation at EOL

Fig. 9. Optimization by exhaustive search (DRB and DP strategies).

B. Optimization Approach B: Genetic Algorithm

The GA is a heuristic optimization solving method based on
the concept of natural selection [14]. The algorithm repeatedly
modifies a population of individuals (i). Each i includes a
certain combination of optimization variables. At each step,
the GA selects the best individuals from the current population
to be parents and uses them to produce children, trying to
keep the best features for the next generation (X). In short, it
consists of an iterative process through several phases, as Fig.
10 shows: (1) a random initial population of Ni individuals
is generated, (2) each individual is evaluated according to a
fitness function, which in the current approach is the LCC
value (the main steps for its calculation are detailed in Section
V), (3) the best individuals are selected to join the next
generation, and (4) new individuals are generated by means of
crossover and mutation approaches. Steps (2)-(4) are repeated
until a desired number of generations (NX ) is reached.

V. LCC CALCULATION APPROACH

In this section the main steps of the optimization approaches
presented in Section IV are explained in detail. Indeed, these
steps are followed to obtain the LCC value or optimization
cost function of each case being evaluated by the algorithm
(either exhaustive search or GA). Variables Parametrization in
Fig. 9 and Individual i in Fig. 10 are in fact the same step, so
they are introduced together.

Case k of Sensitivity Analysis

Individual i

H-DEMU Simulation

Technical
Evaluation
Fullfilled?

Economic Evaluation (LCC)

i = Ni ?

N

Best LCC value for k

i includes:
- n_LIB
- n_gen
- SOC_ini
- SM/FL parameters

Y

X = X + 1

N

Y

- Power Requirement
- LIB Energy Balance
- Re-simulation at EOL

Generation X

X = NX ?

N

Selection,
Crossover
& Mutation

i = i + 1

High LCC
value

(1)

(2)
(3)

(4)

Fig. 10. Optimization by Genetic Algorithm (GA-SM and GA-FL strategies).

A. Variables/Individuals Parametrization

Table III shows the bounds of the variables that compose
j and i (due to their similarities, SOCx values of GA-SM
and GA-FL strategies are represented as a single variable).
NLIB and Ngen define the maximum number of LIB modules
and gensets, respectively. Each LIB module is constructed
connecting cells in series and parallel to reach a nominal
energy of 20 kWh, and each genset has a nominal power of 500
kW. Due to space limitations on the H-DEMU, NLIB changes
with respect to Ngen (i.e. if more gensets are integrated, less
space is available for the LIB modules). In addition, NLIB

also varies with respect to the LIB technology, as the energy
densities differ (Table II). Fig. 11 shows the relation between
NLIB and Ngen for the three LIB chemistries. It is also worth
to point out that SOCini is a continuous variable in the GA
approach, and an integer variable in the exhaustive search
(steps of 10% SOC are defined to reduce computation time).

TABLE III
OPTIMIZATION VARIABLES AND DEFINED BOUNDS

Variable Bounds Optimization Approach
nLIB(j/i) ∈ {0, 1, ... NLIB} [-] Exhaustive Search, GA
ngen(j/i) ∈ {0, 1, ... Ngen} [-] Exhaustive Search, GA

SOCini(j/i) ∈ {20 − 90} [%] Exhaustive Search, GA
SOCSMX(i) ∈ {20 − 90} [%] GA (only in GA-SM)
SOCFLX(i) ∈ {20 − 90} [%] GA (only in GA-FL)

0 1 2 3 4
Ngen (-)

0

20

40

60

LTO
NMC
LFP

N
LI

B
 (
-)

Fig. 11. Relation between Ngen and NLIB for LTO, NMC and LFP.
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B. H-DEMU Simulation Model

The performance of the H-DEMU is evaluated by means of
the simulation model introduced in Section II. It is worth to
mention that at this step, LIB characteristics (Q and Rint) are
set at Beginning-of-Life (BOL) values (nominal values).

C. Technical Evaluation

Simulation results are technically evaluated considering
aspects of power requirement (demand must be fulfilled at
each time step) and LIB energy balance (SOCend ≥ SOCini).
The second constraint is necessary so the results of a single
simulation can be extrapolated to the whole H-DEMU life
(which is required for the economic evaluation step). Then, the
simulation is repeated with the LIB characteristics set at End-
of-Life (EOL) values (Q at 80% and Rint at 150% of the BOL
or nominal values). Iteration j or individual i is considered
feasible and its LCC is calculated only if the technical aspects
are met in both simulations (BOL and EOL).

D. Economic Evaluation (LCC Model)

The cost model returns the LCC value of each feasible
solution, which corresponds to the minimization function of
both optimization approaches. The model considers the costs
of the whole H-DEMU lifetime, divided into acquisition
(Cacq), operation (Cop) and maintenance costs (Cmaint):

LCC(i/j) = Cacq(i/j) + Cop(i/j) + Cmaint (7)

1) Acquisition Cost (Cacq): The first term includes the
initial costs of the LIB, genset and the rest of the train.

Cacq(i/j) = Ctr + cLIB · nLIB(i/j) + cgen · ngen(i/j) (8)

being Ctr the cost of the train without LIB and genset, cLIB

the referential cost per module of the LIB technology, and
cgen the referential cost of a single genset.

2) Operation Cost (Cop): This term includes the costs
related to the diesel fuel consumption (Cf ), electricity con-
sumption from catenary (Ccat) and LIB replacements (Crepl):

Cop(i/j) = Cf (i/j) + Ccat(i/j) + Crepl(i/j) (9)

On the one hand, the costs related to the fuel and electricity
use are calculated annualizing the daily consumptions:

Cf (i/j) =

Y∑
y=1

(
Lf (i/j) · cf

)
· top · (1 + I)−y (10)

Ccat(i/j) =

Y∑
y=1

(
Ecat(i/j) · ccat

)
· top · (1 + I)−y (11)

being Lf the daily diesel consumption, cf the referential fuel
cost, Ecat the daily electricity consumption, ccat the referential
electricity cost, top the number of operation days per year, I
the discount rate, y the current year, and Y the service life.
To calculate Lf and Ecat, a number of round trips per day is
defined according to the H-DEMU daily operation time (tday).

On the other hand, the cost related to the LIB replacements
is obtained as follows:

Crepl(i/j) =

R(i/j)∑
r=1

cLIB · nLIB(i/j) · (1 + I)−r·yr(i/j)

(12)

being R the total LIB replacements, yr the estimated LIB
lifetime, and r the number of the current LIB replacement.

The value yr is obtained based on the empirical degradation
model developed by Olmos et al. in [27]. The LIB lifespan is
typically defined as the moment when the SOH drops to the
80%, i.e. the LIB has lost 20% of its initial capacity (Q0).
The capacity loss is caused by the cycling ageing (produced
by the use of the LIB) and the calendar ageing (produced
inevitably by the course of time) [27]. Therefore, the capacity
decay (∆SOH) can be divided into the cycling capacity loss
(∆SOHcyc) and calendar capacity loss (∆SOHcal):

∆SOH(FEC, t) = ∆SOHcyc(FEC) + ∆SOHcal(t) (13)

∆SOHcal is defined as a linear capacity decay over time t
(following calendar life data given in Table II) and ∆SOHcyc

is defined as a power-based capacity decay over FEC (number
of full equivalent cycles), as depicted in (14):

∆SOHcyc = δ · FECα (14)

being δ the degradation rate and α the degradation rate factor.
Value δ is affected by the typical cycling degradation fac-

tors: temperature (T ), depth-of-discharge (DOD), charge and
discharge currents (Cch and Cdch) and middle SOC (mSOC).
According to [27], δ can be deduced by (15):

δ =β · exp
(
k1 ·

T − k2
T

+ k3 ·DOD + k4 · Cch + k5 · Cdch

)
·
[
1 + k6 ·mSOC ·

(
1− mSOC

k7

)]
(15)

where β, k1, k2, k3, k4, k5 and k7 are the parameters relating
the degradation rate and the degradation factors. Authors in
[27] obtain all the parameters of (14) and (15) for LFP and
NMC chemistries. Additionally, parameters for LTO have been
obtained following the same methodology and data provided
in that publication. All the parameters are given in Table IV.

TABLE IV
PARAMETERS FOR CHEMISTRY DEPENDANT DEGRADATION MODEL [27].

α β k1 k2 k3 k4 k5 k6 k7

LTO 0.80 0.0032 16.8 293 -0.005 0.01 0.01 0 0
NMC 0.92 0.0017 21.7 293 0.022 0.26 0.16 -0.02 42
LFP 0.87 0.0034 5.88 293 -0.005 0.10 0.30 0.05 42

In order to obtain the value yr, equations (13)-(15) are
called repeatedly until ∆SOH equals 20%. This requires to
extract variables FEC, T , DOD, Cch, Cdch and mSOC from
the cycle realized by the LIB at each simulation time step.
Cch and Cdch are directly related to ILIB , FEC is obtained
by the Coulomb counting method (integration of ILIB over
t), and DOD and mSOC are obtained by the Rainflow
algorithm. This algorithm, depicted in Fig. 12, analyses the
SOC profile from simulation and extracts all the realized
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cycles (for further information see [14]). A constant T of 20ºC
is defined assuming a correct operation of the cooling system.

Time (s)
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%
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SOC profile Discharge DOD Charge DOD
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Fig. 12. Rainflow algorithm working principle [14].

3) Maintenance Cost (Cmaint): This term includes the
costs related to the maintenance of the H-DEMU. An average
value for the cost per year is defined and then annualized.

Cmaint =

Y∑
y=1

cmaint · (1 + I)−y (16)

being cmaint the average maintenance cost in a year.

VI. RESULTS AND DISCUSSION

In this section the results of the sensitivity analysis are
presented, and a discussion is carried out focusing on the
sizing, LIB technologies and strategies comparison. Table
V shows the considered economic parameters, which have
been defined following previous literature [4], [5], [37], [38].
Parameters without a reference refer to own assumptions. The
obtained results are presented in Fig. 13 and Table VI. On
the one hand, Fig. 13 shows the LCC of each proposed case,
divided into the terms of Eq. (7) and Eq. (9). On the other
hand, Table VI further extends these results, showing the
LCC, diesel consumption (Lf ), optimal sizing values (nLIB

and ngen), LIB lifespan estimation (yr) and number of LIB
replacements (R) of each case. LCC and Lf are given in per
unit (p.u.) values in relation to the results of a DEMU, which
was simulated in the same route and conditions. The most
relevant values are highlighted.

TABLE V
CONSIDERED ECONOMIC PARAMETERS

Parameter Value Ref. Parameter Value Ref.
tday [h/day] 15 - cLIB - LTO [C/kWh] 1500 [37]
top [days/year] 320 - cLIB - NMC [C/kWh] 800 [37]
Y [years] 30 - cLIB - LFP [C/kWh] 1200 [5]
I [%] 2.5 - cf [C/L] 1.1 [38]
cgen [C/kW] 500 [5] ccat [C/kWh] 0.06 [4]

In the following subsections, in order to ease the analysis
of the obtained results, the discussion is divided into the com-
parison of LIB technologies, the comparison of the different
strategies, and the analysis of the optimal sizing results.

A. Analysis of LIB technologies

The first conclusion when looking to the obtained re-
sults is that when hybridizing a traditional DEMU the cost-
effectiveness depends on the integrated LIB technology. In

TABLE VI
SUMMARY OF RESULTS

EMS LIB
LCC
[p.u.]

L f
[p.u.]

n gen
[kW]

n LIB
[kWh]

y r
[years]

R
[-]

DEMU - 1 1 2000 - - -

PF
LTO 0.996 0.965 1000 280 10.29 2
NMC 1.016 0.993 1500 280 5.32 5
LFP 1.052 0.990 1500 200 2.38 12

IPF-CS
LTO 0.965 0.884 1000 300 12.55 2
NMC 0.973 0.884 1000 480 7.91 3
LFP 1.009 0.971 1500 200 4.83 6

IPF-CD
LTO N.f.s. N.f.s. N.f.s. N.f.s. N.f.s. N.f.s.
NMC N.f.s. N.f.s. N.f.s. N.f.s. N.f.s. N.f.s.
LFP N.f.s. N.f.s. N.f.s. N.f.s. N.f.s. N.f.s.

SM
LTO 0.970 0.881 1000 360 13.24 2
NMC 0.971 0.869 1000 540 8.58 3
LFP 1.013 0.934 1500 200 3.25 9

FL
LTO 0.967 0.868 1000 360 12.14 2
NMC 0.976 0.896 1500 300 6.49 4
LFP 1.054 0.851 1000 400 2.61 11

GA-SM
LTO 0.960 0.863 1000 320 12.67 2
NMC 0.966 0.848 1000 580 8.81 3
LFP 1.003 0.949 1500 200 4.42 6

GA-FL
LTO 0.967 0.874 1000 340 12.34 2
NMC 0.972 0.857 1000 600 8.59 3
LFP 1.033 0.943 1500 180 3.10 13

DP
LTO 0.948 0.813 1000 360 11.75 2
NMC 0.953 0.743 1000 600 6.13 4
LFP 1.043 0.792 1000 400 2.45 12

general, LTO and NMC technologies obtain a LCC lower than
the traditional DEMU, with a maximum reduction of the 5.2%
and 4.7%, respectively. However, LFP is not able to improve
the result of the DEMU in any case, what demonstrates that
it is not an appropriate technology to be integrated in the
proposed application, at least from the LCC point of view. The
main cause is the shorter life of this technology compared to
NMC and LTO. As it can be seen in Table VI, LFP batteries
always require more than 6 replacements, and in some cases
that value is even doubled. When looking to Fig. 13, it can be
also checked that the cost related to the LIB replacements is
too high in many LFP cases (e.g. in PF, FL, GA-FL and DP).
And even in the cases when the strategy is able to reduce the
degradation (e.g. in IPF-CS, SM and GA-SM), it involves a
high diesel consumption compared to the other technologies,
what inevitably makes the LCC be always high.

Related to the results of NMC and LTO, it can be stated
that in general the difference between both technologies is
low. However, the results of LTO are always better: the LCC
is 2.0% lower in PF, 0.8% lower in IPF-CS, 0.1% lower in
SM, 0.9% lower in FL, 0.6% lower in GA-SM, and 0.5% lower
in GA-FL and DP. Even if in general NMC obtains a lower
diesel use (as it can integrate a bigger LIB), the final cost is
compensated in LTO due to the lower replacements cost.

Therefore, two conclusions have been obtained when look-
ing to the results of the LIB technologies. On the one hand,
it has been highlighted that LTO and NMC are the most
appropriated technologies for the proposed scenario, with LTO
obtaining slightly better results. On the other hand, it has been
concluded that when comparing the results of the different
technologies, the cost of the required replacements becomes
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Fig. 13. LCC Results for the different EMS and LIB technologies.

the most important term of the LCC.

B. Analysis of EMSs

Simulation results of some representative cases are shown
in Fig. 14 to ease the discussions of this section. Indeed, the
SOC profile is depicted for SM, GA-SM and DP strategies.

At a first look to the results (Fig. 13 and Table VI), it can
be checked that in IPF-CD strategy no feasible solutions are
obtained. The reason is that the technical evaluation is not
fulfilled in any combination of genset and LIB sizes, due to a
fast discharge of the LIB. Therefore, a bigger genset or LIB
would be required in order to make IPF-CD a feasible strategy.
Anyway, this EMS becomes a good option when appropriately
combined with IPF-CS (what is done in SM and GA-SM
strategies), as it is discussed below.
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Fig. 14. SOC in representative cases: (a) for LTO technology (b) for NMC
technology. Numeric points represent diesel consumptions (Lf , in p.u.).

DP is the EMS that obtains the best result with LTO and
NMC technologies, as it is able to reduce the LCC of a
traditional DEMU up to 5.2% and 4.7%, respectively. As
the optimised variable is the fuel use, DP is also the EMS
with lowest diesel consumption: compared to the DEMU,
reductions of the 18.7% (LTO), 25.7% (NMC) and 20.8%

(LFP) are achieved. The simulation results depicted in Fig. 14
show a relation between a higher depth of discharge realized
by the LIB and a lower diesel use, what demonstrates the
importance of designing strategies focused on depleting the
charge of the LIB. As DP strategy is hardly applicable in
real operation, the obtained results are used to evaluate the
performance of the remainder strategies.

Regarding the optimization strategies that can be deployed
in a real application, GA-SM obtains the best results. Focusing
on the best LIB technologies (LTO and NMC), GA-SM
reduces the LCC of a traditional DEMU around 3.6-4.0%,
and it is just a 1.3-1.4% ahead of the results of DP strategy.
Compared to the other GA-based strategy (GA-FL), the LCC
is improved a 0.7% in both cases of NMC and LTO. The SOC
profiles of GA-SM strategy depicted in Fig. 14 show that, even
if a good result is obtained compared to other EMSs, there is
still room to design a control policy that can get closer to the
optimal SOC trajectory proposed by DP, specially in the case
of NMC technology.

Focusing on the rule-based strategies, IPF-CS and SM
obtain the best results. Considering that SM strategy was
designed to be more complete than IPF-CS (SOC adaptive
strategy), it might have obtained a better result. However, SM
only improves the results of IPF-CS in the case of NMC
technology (0.2% lower, while in LTO and LFP the LCC
is 0.5% and 0.4% higher). This demonstrates the importance
of correctly designing the SOC thresholds in SM strategy,
which should be adapted to the specific characteristics of
each scenario. When optimizing these thresholds (as done
in GA-SM), the results of SM are improved a 1.1% (LTO),
0.5% (NMC) and 1.0% (LFP). Therefore, the obtained results
highlight the importance of deploying a GA approach for
improving the performance of the rule-based SM strategy. Fig.
14 also helps to understand how the improvements proposed
by the GA optimization change the control policy, as the SOC
profiles of SM and GA-SM strategies are depicted together.

Regarding FL strategy, it can not improve the results of most
of the rule-based strategies. Compared to IPF-CS, the LCC is
0.2% (LTO), 0.5% (NMC) and 4.0% (LFP) higher. The result
is specially poor in LFP technology, as the strategy is not able
to control the degradation of the LIB. The results demonstrate
that not always a more complicated strategy obtains a better
result. Even if with the GA optimization the performance is
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improved compared to the original FL strategy (0.4% in NMC
and 2% in LFP, with no improvement in LTO), it cannot
outperform the result of GA-SM strategy, as it was previously
outlined. Hence, it is concluded that the philosophy proposed
in SM is more appropriated than the one proposed in FL.

The strategy with the worst result is found to be PF, which
can barely improve the LCC of the traditional DEMU. The
main reason is found to be that, compared to the traditional
DEMU, similar diesel consumption values are obtained. While
in the case with the lowest fuel use (DP with NMC) the diesel
reduction is 25.7%, in the cases of PF strategy the reduction
just reaches the 3.5% (LTO), 0.7% (NMC), and 1.0% (LFP). It
is worth to highlight that, as it was previously outlined, when
a strategy is able to reduce the diesel use, a better result is
obtained (as long as the degradation is adequately controlled).

In conclusion, it can be stated that optimization strategies
obtain the best results. Considering that DP is hardly ap-
plicable in a real application, GA-SM is found to be the
most appropriated option, obtaining a 3.4-4.0% LCC reduction
compared the traditional DEMU when integrating NMC and
LTO technologies. Besides, it has been found that when
comparing EMSs, the diesel consumption and LIB degradation
become the most important terms of the LCC. Finally, the
importance of developing a GA optimization approach for
obtaining a cost-optimal strategy has also been highlighted.

C. Analysis of Optimal Sizing Results

The analysis of the sizing results for the proposed scenario
unveils that the optimal genset sizes are always around 1000-
1500 kW (i.e. 2-3 gensets). In short, in LTO technology the
optimal size is always 1000 kW, in NMC the option of 1500
kW is only proposed in PF and FL strategies, and in LFP
the option of 1000 kW is only proposed in FL and DP
strategies. Therefore, considering that LTO and NMC are the
technologies that obtain the best results, and that in FL and
PF strategies NMC does not obtain a good LCC, it can be
concluded that the option of 1000 kW is the most appropriated
one for the proposed scenario.

Regarding the installed LIB energy, the results show that
in general the optimal solutions are close to the maximum
allowable values (Fig. 11). In LTO technology, excluding the
result of PF strategy, the optimal LIB sizes are around 300-
360 kWh (being the maximum allowable 360 kWh). In NMC
technology, in the cases of a big genset (1500 kW) the optimal
LIB sizes are between 280-300 kWh (being the maximum
allowable 300 kWh), while in the cases of a small genset
(1000 kW) the optimal sizes are around 480-600 kWh (being
the maximum allowable 600 kWh). Finally, in LFP technology,
except in the case of GA-FL (180 kWh), the optimal LIB size
is always the maximum allowable energy (200 kWh in the
cases of the big genset, and 400 kWh in the cases of the small
genset). It is also found that in the cases with lowest diesel
use (e.g. in DP strategy), the optimal LIB sizes coincide with
the maximum allowable energy values.

In conclusion, it can be stated that in the proposed scenario,
as long as an appropriate LIB technology is selected and an
adequate strategy is designed, the optimal sizing results are

close to a genset of 1000 kW and the maximum allowable
LIB size (360 kWh in LTO, 600 kWh in NMC and 400 kWh
in LFP). The results enforce the idea that as much energy is
harnessed from the LIB (both by integrating big LIB systems
and designing strategies oriented to deplete its charge), a better
LCC is obtained.

VII. CONCLUSIONS

This paper has analysed the influence of the EMS, the LIB
technology and the size of the power sources on the LCC of
railway projects involving H-DEMUs. A sensitivity analysis
composed of 24 cases has been proposed, focused on 8 EMSs
(including rule-based and optimization-based strategies) and 3
LIB technologies (NMC, LTO and LFP). In order to develop
the analysis, a methodology has been presented, which returns
the LCC value and the optimal genset and LIB sizes for
each case of the sensitivity analysis. The methodology has
been implemented in a scenario based on a real railway
line. This approach is found to be potentially helpful for
the cost-optimal design (technologies and size selection) and
operation definition (EMS) of powertrains for hybrid diesel-
electric railway vehicles.

The techno-economical analysis of the results has lead
to several conclusions. Regarding the analysis of the LIB
technologies, LTO and NMC have been found to be the
most appropriated options for the proposed application, thanks
to their lower replacement costs compared to LFP. Besides,
the analysis of the EMSs has highlighted the importance of
implementing GA optimization approaches that improve the
performance of typical rule-based strategies. GA-SM has been
found to be the most appropriate strategy for the proposed
application, obtaining a LCC reduction around the 3.4-4.0%
compared to a traditional DEMU. Anyway, it has been iden-
tified that further improvements can be potentially obtained if
a rule-based strategy is designed focused on replicating the
optimal control policy proposed by the DP approach. Finally,
regarding the sizes of the power sources, it has been found
that the optimal design is close to a genset of 1000 kW
and the maximum allowable LIB size (which depends on the
LIB technology). In short, the analysis has highlighted the
importance of harnessing as much energy as possible from
the LIB, both by integrating big battery systems (e.g. in NMC
chemistry) or by designing strategies oriented to deplete its
charge (e.g. in LTO chemistry).

Future developments and improvements of this work may
consider rule-based strategies designed with the aim of repli-
cating the optimal control policies proposed by the DP ap-
proach. An extension of the LCC analysis in order to consider
scenarios with different characteristics is also proposed, in
order to extend the obtained conclusions to more case studies.
Finally, this study can be replicated with other topologies such
as the FC-based railway vehicle.
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Iñigo Gandiaga received a Diploma in Physics from
the University of the Basque Country, UPV/EHU
(Spain) in 2010. He joined the Energy Business Unit
of IKERLAN Technology Research Centre (BRTA)
in 2010. His research interests include from the
lifetime estimation and sizing studies of different
electrochemical energy storage technologies (EDLC,
Li-ion and NiMH) for heavy duty transport and sta-
tionary applications, to SOC/SOH estimation algo-
rithms for lithium-ion Battery Management Systems.
He has been coordinator of various research projects

with different industrial partners such as CAF or General Electric.

Dimas Lopez received a B.Sc. in Electronic Engi-
neering from the University of the Basque Country,
UPV/EHU (Spain) in 2000, a M.Sc. in Electronic
Engineering from the University of Navarra - TEC-
NUN (Spain) in 2003 and a Ph.D. in Mechanical
Engineering from the same institution in 2010. He
joined CAF P&A in 2011 as SW Engineer in
the early projects of catenary-free tramways. He
currently works as an ESS Product Development
Manager for rolling stock vehicles combining dif-
ferent disciplines including SW, power electronics

or electromechanics.

Xabier Larrea holds a B.Sc. in Electronic Engineer-
ing from the University of Mondragon, MU (Spain),
a M.Sc. in Electrical&Electronics Engineering from
Ecole Polytechnique Fédérale de Lausanne (Switzer-
land) and an Executive MBA from Deusto Business
School (Spain). He joined CAF P&A in 2010 as
a project manager for locomotive and catenary-free
tramway projects. He is currently Technical Manager
of ESS products and is responsible of the develop-
ment and life cycle management of ESS products
for different rolling stock vehicles.

Txomin Nieva received a Diploma in System En-
gineering from the University of Mondragon, MU
(Spain) in 1997 and a Ph.D. in Computer Science
from the Ecole Polytechnique Fédérale de Lausanne
(Switzerland) in 2001. In 2004 he joined the CAF
Group. Currently, he is the Chief Technology Officer
(CTO) of CAF’s subsidiary company CAF P&A,
where he moved to in 2007. He leads a large group
of research engineers in power electronics, elec-
tromechanical design, control electronics and SW
areas. He is responsible for developing new products

for propulsion systems, control & communication systems and ESS.

Iosu Aizpuru received the B.Sc, M.Sc. and PhD
in electrical engineering from the University of
Mondragon (MU), Spain, in 2006, 2009 and 2015
respectively. He is currently a researcher and lecturer
in the Department of Electronics, Faculty of Engi-
neering. His current research interests include power
electronics modelling, energy storage modelling and
control of energy storage systems via power elec-
tronic converters. He has participated in various re-
search projects in the fields of traction and stationary
systems for railway applications, renewable energy

applications and energy storage applications for traction, on-grid and off-grid
systems.


	Portada AAM IEEE.pdf
	FINAL VERSION.pdf

