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DC-Link Sensor Fault Detection and Isolation for
Railway Traction Drives

Jon del Olmo, Fernando Garramiola, Javier Poza, Txomin Nieva, Leire Aldasoro, Gaizka Almandoz

Abstract—This article presents the design and the implemen-
tation of a fault detection and isolation strategy for sensors
in variable speed drives. Electric drives use several current
and voltage sensors for control and protection. The principal
objective of the strategy is to detect faults in DC-Link sensors,
since the conclusion of a preliminary study showed that in some
applications many functionalities depend on it. Although it was
mainly designed for DC-Link sensors, thanks to the FDI structure
presented here, the algorithm is able to detect faults in other
sensors. The strategy is based on state observers and has been
validated through real time simulations in a Hardware-in-the-
Loop platform. The principal components of the platform are an
OPAL-RT real time simulator and a commercial traction control
unit.

Index Terms—DC-Link Sensor, Fault Detection, State Ob-
server, Variable Speed Drive, Traction Application

I. INTRODUCTION

In the field of electric drives, Fault Detection and Isolation
(FDI) techniques have attracted significant interest over the last
decades. With the aim to improve reliability, availability and
maintainability, different types of FDI strategies for sensors
have been proposed. Most of the work has been developed in
the field of current and speed sensor fault detection. Several
authors have explored model-based techniques such as state
observers [1]–[3] and parity equations [4]-[5] for current
sensor fault detection. Moreover, many state observers were
designed for sensorless control and speed sensor diagnostics
[6]–[9], from electric vehicles to railway traction. Signal based
techniques are another alternative for sensor FDI. In [10] an
approach to detect current sensor faults in PMSG drives for
wind energy conversion is presented. The algorithm only uses
current measurements to identify disconnections, as opposed
to the conventional model-based solutions. In [11]–[13] current
sensor faults are identified analysing current measurements in
the dq rotating synchronous reference frame.

Apart from current and speed sensor faults, Direct Current
(DC) bus voltage sensor FDI has also been studied. In [14]
and [15] a FDI strategy based on state observers is devel-
oped for DC-Link sensor faults in a single-phase rectifier
for railway traction. The model includes the input filter, the
rectifier and the DC-Link voltage to calculate an estimation
and reconfigure the system if a fault is detected. A completely
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Fig. 1. Electric drive

different approach is the one presented in [16], where the
comparation between the input power and the mechanical
output power is the residual calculated for FDI. These methods
were specifically designed for DC-Link sensor faults. There
are other algorithms that include indirect strategies for DC
bus voltage sensor fault detection. [17] and [2] present the
development of a Kalman Filter and an adaptive observer
respectively. Using the model of the motor and the inverter,
they estimate stator currents and mechanical speed. Indirectly,
analysing the flags that the FDI strategy activates, they are
able to isolate DC bus sensor malfunctions.

Among all the sensors installed in electric drives, current
and speed sensor faults are the ones that attracted more
attention. Even though it is not so obvious, DC-Link sensor
faults can equally lead to an emergency stop, for example in
railway traction applications. In this kind of electric drives,
DC-Link voltage measurements are essential to control regen-
erative braking, detect pantograph detachments and protect the
system against over-voltages. Apart from the aforementioned
publications, few authors have addressed this problem directly.
Therefore, the objective of our study was the development and
validation of a DC bus voltage sensor FDI strategy. A state
observer-based algorithm that takes the model of the input LC
filter as a reference was designed. The strategy is based on
a bank of observers that estimates the DC bus voltage and
catenary current.

II. SYSTEM DESCRIPTION AND MODELLING

The diagnostic scheme presented here was designed for a
three-phase electric drive supplied by a DC voltage source (see
figure 1). For the design of the FDI strategy only the input
filter, the DC bus and the braking chopper are considered.
Stator phase current sensors and bus voltage sensors are used
for control and protection purposes. Catenary voltage and
current and crowbar current sensors are used exclusively for
protection purposes in railway traction applications.

The model of the input circuit is described by equations (1)
and (2):
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where xT =
[
icat vbus1

]
, uT =

[
vcat iinv icrw

]
and

yT =
[
icat vbus

]
.

The current of the DC side of the inverter (iinv) is estimated
using the phase currents and the IGBT state signals as follows:

iinv = iu · S1 + iv · S3 + iw · S5 (3)

where S1, S3 and S5 are the switching states of the upper side
semiconductors and iw is the current of the third phase.

III. SENSOR FAULT DETECTION AND ISOLATION STRATEGY

A. Fault detection structure

As it is shown in figure 2, the FDI process has three steps:
feature generation, fault detection and fault isolation. In the
first step features that could indicate the existence of a fault
are generated. In this case, a bank of two observers estimates
the state variables of the system. Both observers are based on
the model of the input filter and estimate the bus voltage and
the input current. To estimate both state variables, the same
observer structure (figure 3) is executed twice using only the
measurement of the catenary current (icat) or the measurement
of the DC bus voltage (vbus) and their respective configuration.

Once the estimations are generated the fault detection is ex-
ecuted. Firstly, each estimation is compared to a measurement
to obtain the residuals (4)-(7). Subscripts indicate the variable
and the superscripts the observer used for the estimation.

rcatcat = icat − îcatcat (4)

rcatbus = vbus − v̂catbus (5)

rbuscat = icat − îbuscat (6)

rbusbus = vbus − v̂busbus (7)

After the residuals are calculated, the fault detection algorithm
decides which fault flags (f ) to activate. In real applications,
residuals can not be directly used as fault indicators, since
they can be corrupted by noise or affected by operation point
changes. Therefore, thresholds should be selected carefully
[14] [18]. To avoid false alarms, flags are activated only when
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Fig. 2. FDI process flow chart

TABLE I
FAULT ISOLATION LOGIC

Faulty sensor vbus icat vcat iu, iv , icrw

fcat
cat 0 1 1 0

fcat
bus 1 1 1 0

fbus
cat 1 1 1 1

fbus
bus 1 0 1 0

its corresponding residual exceeds a limit for at least the time
specified by Tfault. This parameter is defined as:

Tfault = kf · h (8)

where kf is the number of samples and h is the sampling
period.

The value of kf will establish the sensitivity of the algo-
rithm. If kf is too large, the false alarm rate will be low,
because the FDI strategy will not be disturbed by noise or
operation point changes. However, the sensitivity will get
worse and it may not detect some faults. If kf is to small,
false alarms will increase but the system will be very sensitive
to any change in the residuals.

Finally, the identification of faults is performed. Each type
of fault makes the group of residuals and flags react in a
different way. Following an isolation logic (see table I) the
specific fault can be identified. This logic was deduced during
the design stage of the algorithm and corroborated by the
experimental results (see section IV).

B. Observer design

For the estimation of icat and vbus two Luenberger state
observers [19], [20] were used. These observers, previously
presented in figure 3, are described by equations (9) and (10).

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t)− ŷ(t)) (9)

ŷ(t) = Cx̂(t) + Du(t) (10)

Thanks to the feedback matrix L one can change the dynamics
of the system to minimise the estimation error. Parameter
uncertainties and modelling errors make the use of an open
loop configuration troublesome, so the measurements are fed-
back using matrix L. The dynamics in closed loop are defined
by matrix A−LC. In this case, taking into account that only
one measurement is used per observer in the feedback, the
feedback matrices are:

Lcat =
[
l(1, cat)l(2, cat)

]T
Lbus =

[
l(1, bus)l(2, bus)

]T

B

∫
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+
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Fig. 3. Observer based on the measurement of icat



The closed loop poles are obtained solving equation 11. It is
worth mentioning that the output matrix C is modified to only
consider the elements related to the measurement used in the
feedback.

det(sI−A+LcatC) =

[
s− a11 + lcat1 −a12
−a21 + lcat2 s− a22

]
= 0 (11)

where

a11 = −RF + RCB

LF
, a12 = − 1

LF
, a21 = − 1

CB
, a22 = 0

As a result, closed loop poles are obtained:

pcl1,2 =
a11 + a22 − lcat1

2

±1

2

√
(lcat1 − a11 − a22)2 − 4(a22(a11 − l1) + aa12(l2 − a21))

The values for the matrix components l1 and l2 are calcu-
lated once the poles in closed loop are chosen. These poles
are fixed using parameters n and m that relate open loop poles
with closed loop poles as follows:

{
n ·R{pol1,2} = R{pcl1,2}
m · I{pol1,2} = I{pcl1,2}

(12)

The closed loop values should stablish a faster system dynamic
than the open loop poles. In this regard, it must be pointed
out that a balance has to be found between the dynamic
of the observer and its sensitivity to noise. If the observer
is too fast it will track measurement noise rather than the
variable [19]. Moreover, taking into account that this is a
FDI application, observer dynamics will also affect the way
residuals respond to faults. The DC-bus voltage-based observer
is designed following the same steps, taking vbus as output
variable.

C. Observer stability and robustness

One of the weaknesses of model-based detection methods
is parameter uncertainty. State observers are based on nominal
models and it is supposed that parameters such as filter capac-
ity and inductance do not change. Nevertheless, faults or wear
could modify their values deteriorating the performance of
the observers. Some authors have designed adaptive observers
to solve this problem. In any case, it is worth mentioning
that the selection of the input filter as the system for state
estimation partly helps avoid this problem. Filter inductance
and capacitor parameters tend to change less with different
operation points compared to motor parameters. Moreover, it is
easier to foresee parameter variations in these components than
in induction motors, where many variables (current, saturation,
temperature, . . . ) have to be analysed. This is one of the
reasons why this approach was selected over the solutions
analysed in section I, where the model of the motor is the
main tool to detect faults in sensors.

In order to check the stability and robustness of the ob-
servers, the same closed loop configuration has been tested
for different CB and LF values. These parameters have been
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Fig. 4. Open loop and closed loop poles with variable CB
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Fig. 5. Open loop and closed loop poles with variable LF

modified from 50% to 150% of their nominal value. Figures
4 and 5 show the poles in closed and open loop for different
parameter values. As it can be seen both observers are stable.
For Metallized Polypropylene Film (MPPF) capacitors, a 2%
loss of capacitance is usually considered as the threshold to
replace them. Therefore it will be unusual to find capacitors
with a capacitance variation greater than that.

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been validated in a Hardware-
in-the-Loop (HIL) platform consisting of an OPAL-RT real
time simulator and a Traction Control Unit (TCU) developed
by CAF Power & Automation. The model of the traction drive
is executed in the OPAL-RT real time simulator, while the
control and the proposed FDI algorithm run in the TCU.

The model of the electric drive has been implemented and
simulated in the real time simulator using Matlab/Simulink.
The model also includes a fault injection block for sensors.
This block allows testing the response of the system to faults
such as offset, gain and disconnection. The parameters of the
system are: vcat = 750V , LF = 3mH , RF = 64mΩ and
RCB = 1.68mΩ. It is considered that only one sensor can
fail at a time.

The threshold values selected for the residuals in the ex-
perimental tests are 10 A for current residuals (rcatcat , rbuscat )
and 20 V for voltage residuals (rcatbus, rbusbus). These are the
minimum values to avoid false alarms in fault-free operation
taking into account the overall working conditions. These
conclusions were drawn from several HIL experimental tests
done to characterize the effects of the faults. In a practical
implementation these threshold values could be increased in
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Fig. 6. Measurement and estimation of icat with icat-based observer
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Fig. 7. Measurement and estimation of vbus with icat-based observer
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Fig. 8. Measurement and estimation of icat with vbus-based observer

order to allow higher error levels in the sensors before an error
flag is activated.

A. Fault free observer response

Before analysing the FDI system response to faults, its
behaviour under healthy conditions was assessed. To this end,
each residual was monitored to see the performance of the
observer during transient and steady states. The aim of these
simulations was to verify that the residuals are below the
thresholds when there is no fault. Figures 6-9 show the esti-
mations during transients in the catenary current and DC-Link
voltage. Residuals are also presented. Threshold values for
each residual were selected taking into account experimental
simulations and the required sensitivity for the algorithm.
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Fig. 9. Measurement and estimation of vbus with vbus-based observer
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Fig. 10. Measurement and estimation of icat with icat-based observer. vbus
sensor fault
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Fig. 11. Measurement and estimation of vbus with icat-based observer. vbus
sensor fault

B. Observer response to DC-Link sensor faults

In order to see the response of the FDI strategy to DC bus
voltage sensor faults, gain (higher and lower measurement)
and disconnection faults were simulated. The response of the
bank of observers in all three cases is the same. In figures
10 and 11 can be seen that the residual rcatcat does not change
as a consequence of a 20% gain reduction fault, while rcatbus

exceeds the threshold. The residuals generated with the vbus-
based observer estimations are also higher than the limits. It
was concluded from HIL simulations that the strategy is also
sensitive to incipient DC-Link sensor faults.
C. Observer response to catenary current sensor faults

Even thought the main objective was not to detect faults in
icat sensors, thanks to the state-observer structure there will
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Fig. 12. Measurement and estimation of icat with vbus-based observer. icat
sensor fault
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Fig. 13. Measurement and estimation of vbus with vbus-based observer. icat
sensor fault

always be a healthy icat estimation available. Figures 12 and
13 present the response of the observers to a 20% reduction in
the sensor gain. It can be seen that the rbusbus residual is below
the limits, therefore it can be distinguished from the previous
fault.
D. Observer response to faults in other sensors

The model used for the estimation of vbus and icat has as
inputs icrw, vcat and iinv . iinv is estimated using phase current
measurements. In order to identify effectively vbus and icat
sensor faults, the faults in the rest of the sensors should activate
another combination of flags. As an example, the effect of a
20% gain reduction in phase u current sensor is shown in
figures 14-17. The rest of the faults (in vcat and icrw sensors)
were also simulated to define the fault isolation logic, but more
detailed results are not shown due to lack of space.
E. Fault isolation logic

As it has been said before, faults in vbus and icat activate a
unique flag combination. This is also the case of the catenary
voltage sensor faults. However, there is no direct way to
distinguish among phase current sensor faults and braking
chopper sensor faults. Both events activate the same flag
combination and it is not possible to isolate the fault. This
fact does not cause any problem in a real railway application
because there are operation modes where the braking chopper
is not activated for a long time. In these operation modes,
phase current sensor faults can be detected directly. If these
phase current sensors are healthy but the flag is activated, a
chopper current sensor fault is diagnosed.
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Fig. 14. Measurement and estimation of icat with icat-based observer. iu
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Fig. 15. Measurement and estimation of vbus with icat-based observer. iu
sensor fault
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Fig. 16. Measurement and estimation of icat with vbus-based observer. iu
sensor fault

V. CONCLUSIONS

This paper has presented the development of a state
observer-based sensor FDI strategy for electric drives. Com-
paring to other strategies that model the electric motor, the
approach described in this article uses the model of the
input filter to estimate catenary current and DC-Link voltage.
Hence, a greater level of immunity to parameter variation is
achieved since capacitor and inductance parameters tend to
change less than motor parameters. It has been shown that the
strategy can effectively detect and isolate faults in the catenary
current sensor and the DC-Link voltage sensor. In addition, the
strategy has the ability to effectively isolate other sensor faults
(vcat, iu, iv , icrw). Moreover, thanks to the bank of observers,
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Fig. 17. Measurement and estimation of vbus with vbus-based observer. iu
sensor fault

there is always one estimation available for reconfiguration.

REFERENCES

[1] S. Bennett, R. Patton, S. Daley, and D. Newon, “Torque and flux
estimation for a rail traction system in the presence of intermittent sensor
faults,” UKACC International Conference on Control, vol. 1, no. 427,
pp. 72–77, 1996.

[2] T. A. Najafabadi, F. R. Salmasi, and P. Jabehdar-maralani, “Detection
and Isolation of Speed- , DC-Link Voltage- , and Current-Sensor Faults
Based on an Adaptive Observer in Induction-Motor Drives,” IEEE
Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1662–1672,
2011.

[3] I. Jlassi, J. O. Estima, S. Khojet El Khil, N. M. Bellaaj, and A. J. M.
Cardoso, “A Robust Observer-Based Method for IGBTs and Current
Sensors Fault Diagnosis in Voltage-Source Inverters of PMSM Drives,”
IEEE Transactions on Industry Applications, vol. pp, no. 99, pp. 1–1,
2016.

[4] H. Berriri, M. W. Naouar, and I. Slama-Belkhodja, “Easy and fast
sensor fault detection and isolation algorithm for electrical drives,” IEEE
Transactions on Power Electronics, vol. 27, no. 2, pp. 490–499, 2012.

[5] B. H. Lee, N. J. Jeon, and H. C. Lee, “Current Sensor Fault Detection
and Isolation of the driving motor for an In-wheel Motor Drive Vehicle,”
in International Conference on Control, Automation and Systems, 2011,
pp. 486–491.

[6] S. Fan and J. Zou, “Sensor Fault detection and fault tolerant control of
induction motor drivers for electric vehicles,” in 7th International Power
Electronics and Motion Control Conference, 2012, pp. 1306–1309.

[7] T. Achour and M. Pietrzak-David, “Service continuity of an IM
distributed railway traction with a speed sensor fault,” in European
Conference on Power Electronics and Applications (EPE), Achour2011,
2011, pp. 1–8.

[8] J. Guzinski, M. Diguet, Z. Krzeminski, A. Lewicki, and H. Abu-
rub, “Application of Speed and Load Torque Observers in High-Speed
Train Drive for Diagnostic Purposes,” IEEE Transactions on Industrial
Electronics, vol. 56, no. 1, pp. 248–256, 2009.

[9] Z. Peroutka, K. Zeman, F. Krus, and F. Kosta, “New Generation of
Trams with Gearless Wheel PMSM Drives: From Simple Diagnostics to
Sensorless Control,” in 14th International Power Electronics and Motion
Control Conference (EPE-PEMC), 2010.

[10] N. M. A. Freire, J. O. Estima, and A. J. M. Cardoso, “A new approach
for current sensor fault diagnosis in PMSG drives for wind energy con-
version systems,” IEEE Transactions on Industry Applications, vol. 50,
no. 2, pp. 1206–1214, 2014.

[11] D. Diallo, S. Member, and S. Diao, “Current Sensor Fault Estimation in
the ( d , q ) rotating synchronous frame,” in IEEE Industrial Electronics
Society Conference (IECON ), 2016, pp. 0–5.

[12] D.-W. C. D.-W. Chung and S.-K. S. S.-K. Sul, “Analysis and compensa-
tion of current measurement error in vector-controlled AC motor drives,”
IEEE Transactions on Industry Applications, vol. 34, no. 2, 1998.

[13] H.-s. Jung, J.-m. Kim, C. Kim, and C. Choi, “Diminution of Current
Measurement Error For Vector Controlled AC Motor Drives,” in IEEE
Transactions on Industry Applications, 2005, pp. 551–557.

[14] A. B. Youssef, S. K. El Khil, and I. Slama-Belkhodja, “State Observer-
Based Sensor Fault Detection and Isolation, and Fault Tolerant Control
of a Single-Phase PWM Rectifier for Electric Railway Traction,” IEEE
Transactions on Power Electronics, vol. 28, no. 12, pp. 5842–5853,
2013.

[15] A. Ben Youssef, S. K. E. Khil, and I. Slama-Belkhodja, “DC Bus Sensor
Fault Tolerant Control of Single Phase PWM Rectifer for Electrical
Traction,” in 8th Internationl Multi-Conference on Systems, Signals &
Devices, 2011, pp. 1–6.

[16] Y. S. Jeong, S. K. Sul, S. E. Schulz, and N. R. Patel, “Fault detection
and fault-tolerant control of interior permanent-magnet motor drive
system for electric vehicle,” IEEE Transactions on Industry Applications,
vol. 41, no. 1, pp. 46–51, 2005.

[17] G. H. Foo, X. Zhang, and D. M. Vilathgamuwa, “A Sensor Fault Detec-
tion and Isolation Method in Interior Permanent-Magnet Synchronous
Motor Drives Based on an Extended Kalman Filter,” IEEE Transactions
on Industrial Electronics, vol. 60, no. 8, pp. 3485–3495, 2013.

[18] S. M. Jung, J. S. Park, H. W. Kim, K. Y. Cho, and M. J. Youn, “An
MRAS-based diagnosis of open-circuit fault in PWM voltage-source
inverters for PM synchronous motor drive systems,” IEEE Transactions
on Power Electronics, vol. 28, no. 5, pp. 2514–2526, 2013.

[19] M. Fadali and A. Visioli, Digital control engineering: analysis and
design. Academic press, 2012.

[20] G. Ellis, Observers in control systems: a practical guide. Academic
press, 2002.

VI. BIOGRAPHIES

Jon del Olmo was born in Oiartzun, Spain in 1988. He received the B.S. and
M.S. degrees in Electronics Engineering from the University of Mondragón,
Mondragón, Spain, in 2009 and 2012, where he is currently working toward
the PhD. degree in the Department of Electronics, Faculty of Engineering.
His current research interests include electric drives, fault detection and
diagnostics.

Fernando Garramiola was born in Eibar, Spain in 1975. He received the B.S.
and M.S. degrees in Electrical Engineering from the University of Mondragón
University, Mondragón, Spain, in 1997 and 1999, and the MPhil degree in
Electrical Engineering from Heriot-Watt University, Edinburgh, UK, in 2001.
Since 2010, he is with the Electronics and Informatics Department, Faculty of
Engineering, University of Mondragón. His current research interests include
electric drives, maintenance and model-based fault diagnosis.

Javier Poza was born in Bergara, Spain, in June 1975. He received the B.S.
and M.S. degrees in Electrical Engineering from the University of Mondragón,
Mondragón, Spain, in 1997 and 1999, and the Ph.D. degree in Electrical
Engineering from the INP, Grenoble, France. Since 2003, he is with the
Department of Electronics, Faculty of Engineering, University of Mondragón,
where he is currently an Associate Professor. His current research interests
include electrical machine design, modelling, and control. He has participated
in various research projects in the fields of wind energy systems, lift drives,
electric vehicles and railway traction.

Txomin Nieva was born in San Sebastian, Spain in 1972. He received a
Computer Science Engineering degree in 1997 and a System Engineering
degree in 1998 from the University of Mondragón, Spain, and a PhD in
Computer Science from the EPFL, Switzerland, in 2001. Currently he is
working as Technical Director of CAF Power Automation. His research areas
are in power electronics in general and electrical traction systems in particular.

Gaizka Almandoz was born in Arantza, Spain, in March 1979. He received
the B.S. and Ph.D. degrees in Electrical Engineering at the University of
Mondragón, Mondragón, Spain, in 2003 and 2008, respectively. Since 2003,
he is with the Department of Electronics, Faculty of Engineering, University of
Mondragón, where he is currently an Associate Professor. His current research
interests include electrical machine design, modelling, and control. He has
participated in various research projects in the fields of wind energy systems,
lift drives, and railway traction.

Leire Aldasoro was born in a town near San Sebastian, Spain in 1981. She
received the Industrial Engineering degree in 2005 from the University of
Navarra (Tecnun). After working on the first traction system developed by
CAF in its research and development area, currently she is the responsible of
the Power Electronics Product Development group in CAF Power Automation.
Her research area is electrical traction systems in general, focused on systems
control algorithms


	Portada AAM IEEE.pdf
	WEMDCD final.pdf

