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Abstract—In this article a general analytical model for the 
analysis of permanent magnet synchronous machines with static 
eccentricity is presented. The model is a continuation of [1] and it 
is based on Fourier time-space series formulated in 2-D 
coordinates. The results of the model are corroborated by 
simulations of finite element method over two different machines. 
The results of the model show a good agreement with the results 
obtained from simulations.  

 
Index Terms—Finite element method; Fourier time-space series; 
Permanent-magnet synchronous machine; Static Eccentricity 

I. INTRODUCTION 
HE main reason for breakdown in electric machines is the 
incorrect setting of the machines in the application [2]–[4] 
and as it is stated in [2] a lot of these faults can be avoided 

just by oversizing the machines. For instance, it is preferable 
to oversize the machines thermally which work in hot 
environments than design them to work near their thermic 
limit. On the other hand, in [2]–[9] it is illustrated that faults 
occurred in rotors and bearings, which are inherent to the 
machines, compute more than fifty percent of all faults in 
electric machines, see the Fig. 1. In [10]–[13] it is explained 
that eccentricities appear in the machines due to inevitable 
mechanical tolerances, in either bearing or couplings, and 
bending of the rotor, among others. These eccentricities can be 
classified as static, dynamic and mixed [14]–[17]. The static 
eccentricity appears when the rotating point of the rotor is the 
centre of the rotor but it is not aligned with the centre of the 
stator. It is known as dynamic eccentricity when the rotating 
point of the rotor is not aligned with its own centre, but it is 
aligned with the centre of the stator. Finally, mixed 
eccentricity takes place when the previously described two 
eccentricities are combined. In this case, the rotating point of 
the rotor is not aligned with the centre of the rotor nor with the 
centre of the stator. These eccentricities are shown in the Fig. 
2. Regardless of the type of eccentricity, the misalignment 
between the stator and the rotor generates a non-uniform 
length of the air-gap [7]. This non-uniform length creates 
unbalanced flux densities originating unbalanced normal 
forces which tend to bend the shaft with positive feedback 
behaviour [10], [11]. That is the reason why, an early 
detection of eccentricity faults can avoid expensive reparations 
[4]. 
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In this article an analytical model for the analysis of 
superficial permanent magnet synchronous machines 
(PMSMs) with static eccentricity is presented. The model is a 
continuation of [1] and it is based on Fourier time-space series 
formulated in 2-D coordinates. Besides, the equations of the 
model only use design parameters of the machine. Using this 
model, it can be established the harmonic orders of the 
magnetic flux densities. Thus, through the checks in the 
machine, eccentricities can be detected in early stages 
avoiding expensive reparations in the electrical machines. 
The presented model has been validated by simulations of 
finite element method (FEM) over the two machines which are 
described in Table I. 

 
a) 

 
b) 

Fig. 1. Location of the faults in electric machines. a) IEEE study and b) EPRI 
study. [4] 
 

   
a) b) c) 

Fig. 2. Types of eccentricity. a) Static; b) Dynamic and c) Mixed. The red 
shaft represents the rotation axis. 
 

TABLE I 
PRINCIPAL CHARACTERISTICS OF SIMULATED MACHINES. 

Machine Number of 
slots 

Number of pole 
pair 

Number of 
winding layers 

Qs48p8 48 8 1 
Qs36p15 36 15 2 
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II. ANALYTICAL MODEL 
In this section it is explained the proposed analytical model. 

This model is based on Fourier time-space series and it has 
been developed in five steps. In the first two steps the 
computation of flux densities created by magnets and coils in 
a slotless machine is addressed. In the next two steps, effects 
due to slots and eccentricity are included in the computation of 
magnetic flux densities. Finally, both flux densities are 
superimposed in order to obtain the overall flux density at load 
conditions with eccentricity. Since this model is based on [1], 
a previous article, only the necessary mathematical 
expressions will be stated.  

A. Magnetic Flux Density Created by Magnets in a Slotless 
Machine  
In PMSMs the time-space distribution of the flux density 

created by magnets can be represented by Fourier series, (1).  
 

𝐵𝐵𝑔𝑔𝑚𝑚(𝑡𝑡,𝜃𝜃) = � 𝐵𝐵𝑔𝑔𝑔𝑔𝑚𝑚������⃗ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑔𝑔(𝜑𝜑𝑚𝑚+Ω𝑚𝑚𝑡𝑡−𝜃𝜃)
𝑔𝑔=+∞

𝑔𝑔=−∞

 (1) 

 
Where 𝐵𝐵𝑔𝑔𝑔𝑔𝑚𝑚������⃗  are the coefficients of the Fourier series, 𝑝𝑝 is the 

number of pole pairs, 𝑛𝑛 is the order of the harmonic, 𝜑𝜑𝑚𝑚 is the 
initial position of the magnets and 𝛺𝛺𝑚𝑚 is the mechanical 
speed. As it is explained in [1] the coefficients of the Fourier 
series are computed taking into account the fringing effect. 
Including this effect more realistic spatial distribution of the 
flux density is obtained and in this way the accuracy of the 
results is increased. In this article, the fringing coefficient is 
parameterized as a function of different dimensions of the 
machine so as to find a physical meaning, [18]–[20].  

B. Magnetic Flux Density Created by Coils in a Slotless 
Machine  

Magnetic flux density created by coils in the air-gap is 
calculated by (2). 

 

𝐵𝐵𝑔𝑔𝑎𝑎(𝑡𝑡, 𝜃𝜃) = 𝜇𝜇0 ⋅
𝐹𝐹𝑀𝑀𝑀𝑀(𝑡𝑡,𝜃𝜃)

𝑔𝑔 + ℎ𝑚𝑚
𝜇𝜇𝑟𝑟𝑚𝑚

 (2) 

 
𝑔𝑔 represents the length of the air-gap, 𝜇𝜇0 the permeance of 

the air, 𝜇𝜇𝑟𝑟𝑚𝑚 the relative permeability of the magnets, ℎ𝑚𝑚 the 
height of the magnets and 𝐹𝐹𝑀𝑀𝑀𝑀 the magnetomotive force 
created by the coils in the air-gap. The distribution of the 
stator coils must be known to calculate the 𝐹𝐹𝑀𝑀𝑀𝑀. This 
distribution is defined as the variation of the magnetomotive 
force per unit of current in the air-gap and it can be obtained 
applying the well-known star of slots method. Once the 
physical distribution of the conductors is known, Fig. 3, the 
magnetomotive force per current unit can be computed by (3). 

 

𝐹𝐹𝑎𝑎(𝜃𝜃) = � 𝐹𝐹𝑎𝑎𝑔𝑔������⃗ 𝑒𝑒−𝑗𝑗𝑔𝑔𝑡𝑡𝑝𝑝𝜃𝜃
𝑔𝑔=+∞

𝑔𝑔=−∞

 (3) 
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a) b) 

Fig. 3. Star of slots of the analysed machines a) Qs48p8 and b) Qs36p15. 
Where 𝐹𝐹𝑎𝑎𝑔𝑔������⃗  are coefficients of the Fourier series and 𝑡𝑡𝑗𝑗 is the 

periodicity of the stator winding, which is defined as the 
greatest common divisor between the number of slots, 𝑄𝑄𝑠𝑠, and 
𝑝𝑝. Then the magnetomotive force per current of each phase is 
multiplied by the current of its phase (4) and finally the 
magnetomotive force of all phases is summed (5). 

 

𝐹𝐹𝑀𝑀𝑀𝑀𝑎𝑎(𝑡𝑡,𝜃𝜃) = 𝐹𝐹𝑎𝑎(𝜃𝜃) ⋅ 𝑖𝑖𝐴𝐴(𝑡𝑡) (4) 

𝐹𝐹𝑀𝑀𝑀𝑀(𝑡𝑡,𝜃𝜃) = 𝐹𝐹𝑀𝑀𝑀𝑀𝑎𝑎(𝑡𝑡,𝜃𝜃) + 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡,𝜃𝜃) + 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡,𝜃𝜃) 
(5) 

 
Finally (2) is applied in order to compute the flux density 

produced by coils. It is important to note that the phase 
difference between magnetomotive forces of different phases 
is the same as between currents, 2π/3 radians. That is the 
reason why (6) can be obtained from (5).  

 

𝐹𝐹𝑀𝑀𝑀𝑀(𝑡𝑡, 𝜃𝜃) = � 𝐹𝐹𝑎𝑎𝑔𝑔������⃗ 𝑑𝑑𝑔𝑔𝑒𝑒−𝑗𝑗𝑔𝑔𝑡𝑡𝑝𝑝𝜃𝜃𝑖𝑖𝑒𝑒𝑗𝑗𝑊𝑊𝑒𝑒𝑡𝑡
𝑔𝑔=+∞

𝑔𝑔=−∞

 

𝑑𝑑𝑔𝑔 =  �1 + 2 cos�
2𝜋𝜋
3

(𝑛𝑛 − 1)�� 

(6) 

 
Analyzing (6) it can be deduced that in a three-phase 

machine the overall 𝐹𝐹𝑀𝑀𝑀𝑀 does not have harmonics multiples of 
3.  

C. Effects of Slots and Static Eccentricity 
As it is stated in [1] to include the variation of the 

permeance due to the slots in the model, first of all, the 
permeance of a slot must be computed. This effect is obtained 
in [18], [21] through a conformal transformation from Z to W 
plane, but this calculus was firstly introduced by Zhu in [22]. 
 When the variation of the permeance of a slot is obtained, 
the variation for whole machine can be reconstructed with (7). 
 

(𝜃𝜃) = 𝜆𝜆0 + �𝜆𝜆𝑔𝑔����⃗ 𝑐𝑐𝑐𝑐𝑐𝑐�𝑄𝑄𝑠𝑠𝑛𝑛(𝛩𝛩𝑠𝑠 − 𝜃𝜃)�
+∞

𝑔𝑔=1

 (7) 

 
Where 𝜆𝜆0 is the mean value of the variation of the 

permeance, 𝜆𝜆𝑔𝑔 are the coefficients of the Fourier series and 𝛩𝛩𝑠𝑠 
is the initial angle position of the slot. When it is needed to 
analyse the machine without the slots effect, 𝜆𝜆0 = 1 and 𝜆𝜆𝑔𝑔 = 0 



  

must be set. On the other hand, to represent the flux density in 
slotted machines, (1) and (7) must be multiplied. 

To include the static eccentricity in the model firstly, the 
effect of the static eccentricity must be defined, (8).  

 

Δ𝜖𝜖(𝜃𝜃) = 1 + � Δ𝑒𝑒−𝑗𝑗𝑗𝑗𝜃𝜃
𝑗𝑗=1

𝑗𝑗=−1

 (8) 

 
Where Δ is the variation of the length of the air-gap due to 

the eccentricity and it can be calculated by (9). 
 

Δ =
𝜖𝜖

𝑔𝑔 + ℎ𝑚𝑚
𝜇𝜇𝑟𝑟𝑚𝑚

 (9) 

 
𝜖𝜖 is the distance between the axis of the stator and the rotor, 

Fig. 4. Once the eccentricity is modelled, the magnetic flux 
densities must be multiplied by it, see (10) for the magnetic 
flux density created by magnets and (11) for the magnetic flux 
density created by stator coils. In this case, the machine also 
can be analysed with and without eccentricity. To remove the 
effect of the eccentricity, the next parameter must be set: 𝜖𝜖 =
0, so Δ𝜖𝜖(𝜃𝜃) = 1. This define the length of the air-gap as a 
constant which does not depend on the position of the rotor.  

Os

Or
ε

 
Fig. 4. Distance between the axis of the stator and the rotor [14]. 

 
𝐵𝐵𝑔𝑔𝜖𝜖𝑚𝑚(𝑡𝑡,𝜃𝜃) = 𝐵𝐵𝑔𝑔𝑚𝑚(𝑡𝑡,𝜃𝜃) ⋅ Δ𝜖𝜖(𝜃𝜃) =  

� 𝐵𝐵𝑔𝑔𝑔𝑔𝑚𝑚������⃗ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑔𝑔(𝜑𝜑𝑚𝑚+Ω𝑚𝑚𝑡𝑡−𝜃𝜃)
𝑔𝑔=+∞

𝑔𝑔=−∞

 

+ � � Δ𝐵𝐵𝑔𝑔𝑔𝑔𝑚𝑚������⃗ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑔𝑔(𝜑𝜑𝑚𝑚+Ω𝑚𝑚𝑡𝑡)
𝑗𝑗=1

𝑗𝑗=−1

𝑒𝑒−𝑗𝑗𝑗𝑗𝜃𝜃�𝑔𝑔+
𝑣𝑣
𝑝𝑝�

𝑔𝑔=+∞

𝑔𝑔=−∞

 

(10) 

 
𝐵𝐵𝑔𝑔𝜖𝜖𝑀𝑀 (𝑡𝑡,𝜃𝜃) = 𝐵𝐵𝑔𝑔𝑀𝑀(𝑡𝑡,𝜃𝜃) ⋅ Δ𝜖𝜖(𝜃𝜃) =  

�
𝜇𝜇0 ⋅ 𝐹𝐹𝑎𝑎𝑔𝑔������⃗ ⋅ 𝑑𝑑𝑔𝑔
𝑔𝑔 + ℎ𝑚𝑚

𝜇𝜇𝑟𝑟𝑚𝑚

𝑒𝑒−𝑗𝑗𝑔𝑔𝑗𝑗
𝑡𝑡𝑝𝑝𝜃𝜃
𝑝𝑝  𝑖𝑖𝑒𝑒𝑗𝑗𝑊𝑊𝑒𝑒𝑡𝑡

𝑔𝑔=+∞

𝑔𝑔=−∞

 

+ � � Δ
𝜇𝜇0 ⋅ 𝐹𝐹𝑎𝑎𝑔𝑔������⃗ ⋅ 𝑑𝑑𝑔𝑔
𝑔𝑔 + ℎ𝑚𝑚

𝜇𝜇𝑟𝑟𝑚𝑚

𝑒𝑒−𝑗𝑗𝑗𝑗θ�𝑔𝑔
𝑡𝑡𝑝𝑝
𝑝𝑝 +

𝑣𝑣
𝑝𝑝�𝑖𝑖𝑒𝑒𝑗𝑗𝑊𝑊𝑒𝑒𝑡𝑡

𝑗𝑗=1

𝑗𝑗=−1

𝑔𝑔=+∞

𝑔𝑔=−∞

 

(11) 

 
From (10) and (11) it can be deduced the Table II and the 

Table III. The Table II represents the relationship between the 
harmonics of the flux density created by the magnets in a 
machine with and without a static eccentricity. On the other 

hand, in the Table III the relationship between harmonics of 
the flux density created by stator coils in a machine with and 
without static eccentricity are represented. From the Table II 
and the Table III can be deduced that the unique way to 
modify the order of the harmonics generated by the static 
eccentricity is changing the number of pole pairs of the 
machines. 

TABLE II 
RELATIONSHIP BETWEEN HARMONICS OF THE FLUX DENSITY CREATED BY 

MAGNETS IN A MACHINE WITH AND WITHOUT STATIC ECCENTRICITY. A) 
TEMPORAL DISTRIBUTION AND B) SPATIAL DISTRIBUTION 

A) 
HARMONICS OF THE MAGNETIC FLUX 

DENSITY WITHOUT ECCENTRICITY 
HARMONICS OF THE MAGNETIC FLUX 

DENSITY WITH ECCENTRICITY 
n εm=±n 

±1 ±1 
±3 ±3 
±5 ±5 
±7 ±7 
±9 ±9 

 

 
B) 

Harmonics of the 
magnetic flux density 
without eccentricity 

Harmonics of the static 
eccentricity 

Harmonics of the 
magnetic flux density 

due to eccentricity 
n v/p εm=±n±v/p 

±1 ±1/p ±1±1/p 
±3 ±1/p ±3±1/p 
±5 ±1/p ±5±1/p 
±7 ±1/p ±7±1/p 
±9 ±1/p ±9±1/p 

 

 
TABLE III 

RELATIONSHIP BETWEEN HARMONICS OF THE FLUX DENSITY CREATED BY 
STATOR COILS IN A MACHINE WITH AND WITHOUT STATIC ECCENTRICITY. A) 

TEMPORAL DISTRIBUTION AND B) SPATIAL DISTRIBUTION 
A) 

HARMONICS OF THE MAGNETIC FLUX 
DENSITY WITHOUT ECCENTRICITY 

HARMONICS OF THE MAGNETIC FLUX 
DENSITY WITH ECCENTRICITY 

k εm=±n 
±1 ±1 
±5 ±5 
±7 ±7 
±11 ±11 
±13 ±13 

 

 
B) 

Harmonics of the 
magnetic flux density 
without eccentricity 

Harmonics of the static 
eccentricity 

Harmonics of the 
magnetic flux density 

due to eccentricity 
n∙tp/p v/p εm=±n∙tp/p±v/p 

±1∙tp/p ±1/p ±1∙tp/p ±1/p 
±5∙tp/p ±1/p ±5∙tp/p ±1/p 
±7∙tp/p ±1/p ±7∙tp/p ±1/p 
±11∙tp/p ±1/p ±11∙tp/p ±1/p 
±13∙tp/p ±1/p ±13∙tp/p ±1/p 

 

III. VALIDATION 
The results of the developed analytical model are 

corroborated by FEM software, specifically by Flux-
CEDRAT®. The comparison has been realized with the two 
machines of the Table I. One of these machines is an integer 
machine (Qs48p8) and the other one is a fractional machine 
(Qs36p15). The grade of the static eccentricity, 𝑒𝑒, in both 
machines is 30% which has been calculated by (12). 

 

𝜖𝜖 = 𝑔𝑔 ⋅ 𝑒𝑒 (12) 

 



  

 
a) 

 
b) 

Fig. 5. Temporal distributions of the magnetic flux density in the air-gap of 
the Qs48p8 at open circuit condition with a 30% of static eccentricity. a) 
Temporal waves and b) Spectrums.  

 
a) 

 
b) 

Fig. 6. Temporal distributions of the magnetic flux density in the air-gap of 
the Qs48p8 at load condition with a 30% of static eccentricity. a) Temporal 
waves and b) Spectrums.  

 

 
a) 

 
b) 

Fig. 7. Temporal distributions of the magnetic flux density in the air-gap of 
the Qs36p15 at open circuit condition with a 30% of static eccentricity. a) 
Temporal waves and b) Spectrums.  
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a) 

 
b) 

Fig. 8. Temporal distributions of the magnetic flux density in the air-gap of 
the Qs36p15 at load condition with a 30% of static eccentricity. a) Temporal 
waves and b) Spectrums.  

From the Fig. 5 to the Fig. 8 the waves and spectrums of the 
temporal distributions of the magnetic flux density in the air-
gap are shown. As it has been explained in section II.C and it 
can be corroborated in these figures, the static eccentricity 
does not create new harmonics in the temporal distribution. In 
addition, all harmonics are integer and odd, despite of the 
topology of the machine, integer or fractional. However, it can 
be seen that depending on the position in which the path is 
collocated, the amplitude of the wave and harmonics change, 
see Fig. 5 and Fig. 7, such as it can be deduced from (10)  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 9. Spatial distributions of the magnetic flux density in the air-gap of the 
Qs48p8 machine at open circuit condition with a 30% of static eccentricity .a) 
Spatial waves in a slotless machine b) Spectrums in a slotless machine; c) 
Spatial waves in a slotted machine and d) Spectrums in a slotted machine.  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 10. Spatial distributions of the magnetic flux density in the air-gap of the 
Qs36p15 machine at open circuit condition with a 30% of static eccentricity 
.a) Spatial waves in a slotless machine b) Spectrums in a slotless machine; c) 
Spatial waves in a slotted machine and d) Spectrums in a slotted machine. 

In the Fig. 9 and the Fig. 10 the waves and spectrums of the 
spatial distributions of the magnetic flux density in the air-gap 
are illustrated. In this case, in the Fig. 9-b and the Fig. 10-b it 
can be corroborated that static eccentricity creates new 
harmonics. As it has been explained in section II.C these new 
harmonics appear in both sides of the principal harmonic. That 
is the reason why there are not only odd and integer 
harmonics. However, in the Fig. 9-d and the Fig. 10-d there 
are more harmonics. These harmonics are created by the slots 
of the machine and that is why they are related to the number 
of slots of the machine.  

IV. CONCLUSIONS 

This article presents an analytical model for the analysis of 
PMSMs with static eccentricity. The model is based on 
Fourier time-space series formulated in 2-D coordinates. This 
model can be used to represent the magnetic flux density 
created in a machine at open circuit and load operation 
conditions with and without slots and static eccentricity. 

Two machines are studied by FEM software, concretely 
with Flux-CEDRAT®, to corroborate the results of the 
analytical model. The types of machines that have been 
considered are: a fractional machine with 36 slots in the stator 
and 30 poles in the rotor, and an integer machine with 48 slots 
in the stator and 16 poles in the rotor. The obtained results for 
magnetic flux densities demonstrated that magnitudes and 
frequencies of main harmonics are computed with rather good 
accuracy. So, it can be affirmed that the model shows a good 
agreement with the FEM results especially in the identification 
of the harmonics.  

The main advantages of the model compared to the FEM 
simulations are the rapidity of the calculations and the easiness 
to relate components of the flux density to design variables. 
That is why, using the proposed model, an identification of the 
harmonics of the magnetic flux density in the air-gap with 
static eccentricity can be done easily and in a quickly way.  

Further work will be needed to include into the model the 
dynamic eccentricity effect. A part from that, a prototype will 
be built in order to validate the model experimentally. 
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