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Mikel Cañizo1, and Aitziber Iglesias1

1 IK4-Ikerlan Research Center, P. J.M. Arizmendiarrieta, 2 20500 Arrasate, Spain
{xdecarlos,strujillo,aperkaz,mcanizo,aiglesias}@ikerlan.es

2 Mondragon Unibertsitatea, Goiru 2, 20500 Arrasate, Spain
gsagardui@mondragon.edu

Abstract. Large models are increasingly used in Model Driven Devel-
opment. Different studies have proved that XMI (default persistence in
Eclipse Modelling Framework) has some limitations when operating with
large models. To overcome them, recent approaches have used databases
for the persistence of models. EDBM (Embedded DataBase for Models)
is an approach for persisting models in an embedded relational database,
providing scalable querying mechanism by runtime translation of model-
level queries to SQL. In this paper, we present an evaluation of EDBM in
terms of scalability with existing approaches. GraBaTs 2009 case study
(models from 8.8MB to 646MB) is used for evaluation. EDBM is 70%
faster than the compared approaches to persist XMI GraBats models
into databases and executes the GraBats query faster, as well as having
a low memory usage. These results indicate that an embedded relational
database, combined with an scalable query mechanism provides a promis-
ing alternative for persisting and querying large models.

Keywords:Model-Driven Development, Large-Scale Models, Persistence,
Query, Runtime Translation, Evaluation

1 Introduction

Automatizing and optimizing development processes is crucial to reduce develop-
ment efforts and time to market of industrial projects, which are the main drivers
of competitiveness. Model Driven Development (MDD) promises improvements
in the development process through an intensive use of abstractions, specified
by models. Models are considered first class entities during the development
process, so that engineers may use them for different purposes such as code and
documentation generation. Operating with models requires querying, editing and
transforming them.

Eclipse Modelling Framework (EMF) is a mature and a widely used mod-
elling framework provided within the Eclipse IDE, and XML Metadata Inter-
change (XMI) is the default mechanism to persist models. However, XMI entails
memory and execution problems as the size of the model increases [1,2]. Thus,
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in industrial domains (e.g. windpower or railway) where systems can comprise
a large number of elements such as sensors, actuators and control units, using
XMI is not an option. Consequently, effectively supporting such domains re-
quires using additional persistence mechanisms. Recent approaches opt for the
use of databases to persist and operate with models, for example Morsa [2] or
Neo4Emf[1]. In previous works [3][4], we have presented Embedded DataBase for
Models (EDBM), an alternative persistence mechanism for EMF models based
on an embedded relational database. Model operations are also provided through
an scalable solution to query them based on a runtime translation.

In this paper, we briefly introduce EDBM and evaluate it comparing with
other persistence mechanisms. While technical description of our approach has
been previously presented [4], this paper contributes with a detailed evaluation
which validates its usefulness and scalability. The approach is evaluated using
models of different sizes (from 8.8MB, containing 14 Java classes and 70447
model elements, to 646MB, containing 5984 Java classes and 4961779 model ele-
ments) extracted from the GraBaTs 2009 case study [5]. The experiments show
that EDBM is able to query persisted models maintaining low memory footprint
but also taking a reasonable execution time. We compare results (storage size,
insertion time, memory usage and execution time) of our approach with XMI
and other database-based persistence solutions.

The rest of the paper is organised as follows: Section 2 describes some back-
ground and motivation of this work. Section 3 reviews related work, and com-
pares it with EDBM. Then, the approach is presented in Section 4 and it is
evaluated in Section 5. This paper ends with conclusions and future work in
Section 6.

2 Background and Motivation

In EMF, models are persisted by default using XMI, an XML-based information
persistence format standardised by the OMG. Before operating with models,
all the information persisted in the file has to be loaded in memory. Once the
model is in memory, information is operated: editing, querying, generating code,
executing transformations, etc. If the model is modified, information in memory
has to be stored again in the XMI file. However, transferring the information from
physical file to memory and vice-versa entails problems with large models [6].
To overcome these problems, most recent approaches opt to leverage database
capabilities. Morsa[2], Neo4EMF[1], MongoEMF[7] or EMF Fragments[8] use
databases for model persistence. Each approach provides useful mechanisms for
operating with large-scale models: partial load of the information, loading the
information on-demand, caching, etc.

The aforementioned approaches, fully delegate the physical storage of infor-
mation in models to the underlying database management system. This moti-
vates us to explore different alternatives for providing an efficient model persis-
tence mechanism that could act as a drop-in replacement for XMI when working
with large models. Besides persistence, scalability should also be provided when
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operating models (e.g. querying, editing or executing transformations). Our aim
is to provide a mechanism that supports (i) leverage database capabilities but
using a file-level persistence mechanism; and (ii) operating models at a mean-
ingful level of abstraction without needing to fully load them into memory. In
this sense, our solution aims to provide a scalable mechanism for persisting and
querying large-scale models. EDBM uses Epsilon Object Language (EOL), a
model-level language that supports querying models, but can also be used to
edit and transform models.

3 Related Work

We have classified the related approaches into two different groups: (i) model
persistence and (ii) model query languages.

3.1 Model Persistence

Model persistence using relational and non-relational database management sys-
tems allows to load models on-demand, overcoming the memory problems of
XMI. CDO[9] provides a repository, where models can be persisted using differ-
ent database management systems (NoSQL and RDBMS). It also offers other
features such as multi-user access, collaboration and concurrent model access
of the repository or mechanisms for querying persisted models. Besides mod-
els, other information (metamodels, history) is also persisted together within
the database, to provide model version control and sharing. However, scalabil-
ity seems not to be the design goal of CDO [6]. Teneo[10] uses a relational
database for persistence of models. It supports mapping between EMF objects
and a relational database. The database schema can be metamodel-independent
or metamodel-specific. Schemas are customized through metamodel annotations.
Different evaluations show that Teneo does not scale well [11].

In a similar vein, Morsa[2] provides large-scale model persistence using Mon-
goDB, a document-based NoSQL database back-end. The approach provides on-
demand loading mechanisms and cache replacement policies that can be chosen
by the end-user. This allows working with large models with a low memory foot-
print. Neo4EMF[1] is based on a transactional property-graph NoSQL database
back-end (Neo4J). The approach supports the mapping between EMF models
and Neo4J graphs. Neo4EMF provides different strategies for on-demand load-
ing. Mongo EMF[7] is based on the document-based MongoDB. This approach
provides an extensible and flexible framework based on OSGi declarative ser-
vices. EMF Fragments[8] is a framework for persisting model fragments, and
can be used with different NoSQL back-ends such as MongoDB, HBase or with
distributed file systems. Each fragment contains different model elements and
relations, and the fragmentation strategy is specified by the users at the meta-
model level. Then, for querying models, only required fragments are loaded in
memory. The Mondo Project[12] aims to provide an scalable MDD environ-
ment, which includes persistence mechanisms based on databases. In [11], the
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authors present two prototypes that use a NoSQL database for persistence of
models (Neo4J and OrientDB) and compares benchmark of these prototypes
with benchmarks obtained from models persisted in a XMI file and in a rela-
tional database. In [13], the authors present a framework and a methodology
for benchmarking persistence of models on different NoSQL stores. To the best
of our knowledge, approaches based on different NoSQL back-ends (suitable for
distributed databases and large quantities of data (a.k.a. Big Data)) overcome
the memory problems of XMI while relational database approaches already have
scalability problems. We opt for a persistence based approach on a relational
and embedded database, since it facilitates integration of the persistence at the
same-level of XMI (file-level) but leveraging the capabilities of a database. Ad-
ditionally, we base our work on the hypothesis that using a relational embedded
database with a metamodel-agnostic data schema overcomes the memory prob-
lems of XMI. On the contrary to other relational database proposals we persist
a single model in the database.

3.2 Model Query Languages

Languages for querying models are useful when specifying rules that obtain
elements from models (e.g. all elements satisfying a condition). Some approaches
provide model-level languages closer to modelling engineers: Object Constraint
Language (OCL), EMF Query[14], IncQuery[15] or EOL[16]. EOL also provides
support for specifying query expressions to modify models.

Other approaches propose persistence specific and dependent languages that
leverage capabilities of the persistence (optimising queries): COCL (a.k.a. CDO-
OCL3), for models persisted using CDO; MorsaQL [2] for models persisted using
Morsa; database specific languages such as SQL or Cypher. In [2], the authors
describe benchmarks of different query languages (OCL, MorsaQL, EMF Query,
etc.) executed over models persisted using XMI, Morsa and CDO.

There are also some proposals to generate persistence level queries from
model-level queries. In [17], the authors describe an approach focused on gener-
ating MySQL code from a given OCL expressions. An approach to generate SQL
queries from OCL invariants is presented in [18]. In [19], the authors describe
an approach that generates views using OCL constraints, and then uses them to
check the integrity of the persisted data. This approach has been implemented in
OCL2SQL4, a tool that generates SQL queries from OCL constraints. A similar
approach for integrity checking is proposed in [20]. Another approach described
in [21] details a method that executes queries in persistence-level (SPARQL) and
the results are the input of model-level queries (OCL).

EDBM provides a solution able to query models using a model-level query
language (EOL) with the efficiency of SQL to query models persisted in a
database . While existing approaches translate OCL constraints into SQL queries
at compile-time, our approach generates SQL queries from OCL-like expressions

3 More info at “https://wiki.eclipse.org/CDOQuery OCL”
4 Read more at “http://dresden-ocl.sourceforge.net/usage/ocl22sql/”
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at runtime. We have based our work on [22], which describes an approach where
EOL is used to query large datasets stored on relational databases composed by
one table. While in this approach naive translation provided by Epsilon Model
Connectivity Layer (EMC) is used to query information persisted in a single-
table database, EDBM-Query provides custom translations of SQL queries that
leverage persistence capabilities when querying models persisted in an embedded
database.

4 Embedded DataBase for Models (EDBM)

Embedded DataBase for Models (EDBM) is an approach that is focused on
the scalable persistence of models, but also on the scalable operation of models
through a querying mechanism that leverage database capabilities.

4.1 EDBM: Scalable Persistence

EDBM follows the main principle of using an embedded relational database for
persisting the models. In this sense, a survey has been performed to identify
systems that provide support for embedded relational databases in Java. The
survey revealed that currently, SQLite5 and H26 are the most mature options.
After performing some preliminary tests and consulting existing benchmarks7,
we concluded that H2 has a better performance profile.

The approach uses a metamodel-agnostic schema for model persistence. This
way, EDBM supports the persistence of models that conform to arbitrary meta-
models and does not require to modify the schema when the domain metamodel
evolves (only stored information has to be updated). Figure 1a illustrates the
metamodel-agnostic schema used by EDBM and it is described next:

– Metamodel information: Class and Feature tables are used to store each
meta-class and each structural feature existing in the domain metamodel.
With these tables, the approach is able to know metamodel-related infor-
mation, but using a domain-agnostic data schema. An unique id (ClassID,
FeatureID) is used to identify classes and features.

– Model elements: Object table is used to persist all the elements of the
model. An unique id (ObjectID) and the id of the meta-class (ClassID) is
stored for each model element.

– Structural features: AttributeValue and ReferenceValue tables are used
to store feature values of each model element. ObjectID and FeatureID are
used to identify each value (Value column). In case of attributes, the value
contains a primitive value. And in case of references, id of the referenced
value and its meta-class id are stored (Value and ClassID columns).

5 https://sqlite.org
6 http://www.h2database.com
7 SQLite vs. H2 comparative at “http://tinyurl.com/puxdllm”
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(a) (b)

Fig. 1: (a) Database-schema of EDBM, and (b) overview of the approach.

4.2 EDBM: Scalable Model-Level Query

Using EDBM, models are persisted in an embedded relational database. In this
case, leveraging SQL is more efficient than naive iteration. However, model-
level queries are focused on interaction with models (and are closer to modelling
engineers). Being so, use of model-level queries is more appropriate than exposing
modelling engineers to the database directly with a persistence-level language
(SQL).

EDBM allows to execute queries expressed in a model-level query language
(EOL) and translate then in runtime to a persistence-level query language (SQL).
Reasons for EOL[16] selection include: (i) it is an OCL-based language that
also provides features of imperative languages such as the use of variables on
the queries, query expressions for model modification and the specification of
query expression chains; and (ii)it is the base of other model-specific languages
like Epsilon Transformation Language (ETL) or Epsilon Generation Language
(EGL) for model-to-model or model-to-text transformations, etc.

EOL and SQL are query languages that do not have direct mapping, since
EOL provides constructs that are not provided by SQL (e.g. variables). In this
situation, translation from EOL to SQL can be performed in two ways: at
compilation-time or at runtime. Compilation-time translation requires perform-
ing a static analysis of the queries and reordering them before the translation.
By contrast, if the translation is performed at runtime, query expressions are
translated one by one, and they are executed against the database only when
the results are required by a following expression. Therefore, we have opted to
execute translation at runtime.

Figure 1b illustrates an overview of EDBM. As shown in the figure, EOL
Module is the responsible for parsing and executing queries expressed using



205

xabier de carlos, goiuria sagardui, salvador trujillo, alain perkaz, mikel cañizo, aitziber iglesias 
evaluating embedded relational databases for large model persistence and query

XXI Jornadas de Ingeniería del Software
 y Bases de Datos, pp. 199-212

© Ediciones Universidad de Salamanca

Table 1: Execution environment of each evaluation.

NoSQL Eval[11] Morsa Eval[2] EDBM Eval

Processor Intel Core I5-2300
@ 2.80 GHz

Intel Core I7-260
@ 3.70 GHz

Intel Core I7-3520M
@ 2.90 GHz

Physical Memory 8GB 8GB 8GB
Operative System Windows 7

(64-Bit)
Fedora Core 17
(64-Bit)

Windows 7 SP1
(64-Bit)

JVM Java SE v1.6.0 OpenJDK JVM 1.7 Java SE v1.8.0
Eval. Persistence XMI, CDO,

Neo4J, OrientDB
XMI, CDO, Morsa XMI, EDBM

Eval. Query Leng. EOL Plain EMF, OCL,
COCL, EMFQuery,
IncQuery, MorsaQL

Plain EMF, EOL

Query Repetitions 20 2 100

EOL and the EMC provides different interfaces that make possible to connect
and communicate with the EOL Module. In this sense, EDBM implements such
interfaces to provide the connection with the EOL queries. To be able to connect
and execute queries against the database, EDBM uses the JDBC driver of H2.
More details of how each artifact is used during the translation, and sample
translation and execution of an EOL query had been provided in a previous paper
[4]. At this point of development, EDBM supports translation of read-only EOL
expressions (e.g. queries containing query expressions such as selects, collects,
etc.). However, we are already working to add the support for expressions that
modify models (e.g. query expressions for creating new element instances) in a
future prototype of the approach.

5 Evaluation

This section presents the evaluation of persistence and query mechanisms pro-
vided by EDBM. The GraBaTs 2009 case study [5] has been selected, since it is
widely used to evaluate model persistence and querying approaches.

The GraBaTs models 8 have been persisted using EDBM. These models spec-
ify source code of different Java packages and conform to the JDTAST meta-
model which contains abstractions of the Java source code. The size of models
ranges from 8.8MB, containing 14 java classes and 70447 model elements (set0),
to 646MB, containing 5984 java classes and 4961779 model elements (set4).

We have evaluated EDBM and XMI applying the GraBaTs query to the
models. GraBaTs query returns all the singleton classes of a model. The query
has been expressed using EOL for EDBM, and EOL and Plain EMF for XMI.

To compare EDBM with existing approaches we have used the results of
NoSQL Eval [11] and Morsa Eval [2], where alternative mechanisms for per-
sisting and querying large-models are evaluated. Table 1 illustrates the exe-
cution environment of such studies. NoSQL Eval evaluates XMI, CDO, Neo4J

8 More information and resources available at “http://www.emn.fr/z-
info/atlanmod/index.php/GraBaTs 2009 Case Study”
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Table 2: Time required to insert XMI model into database and storage size.

XMI Neo4J[11] OrientDB[11] CDO (H2)[11] Morsa[2] EDBM

Set0
Insertion time - 12.4 19.6 11.8 - 9.2
Storage size 8.8 29.4 53.6 26 - 36

Set1
Insertion time - 32.5 57.1 19.2 - 24.6
Storage size 27 85.9 134 67 - 102

Set2
Insertion time - 499.1 590.1 778.5 - 247.2
Storage size 271 794 1197 539 - 643

Set3
Insertion time - 2210 2245 - - 647.9
Storage size 598 1750 2591 - - 1526

Set4
Insertion time - 2432 2397 - - 746.7
Storage size 646 1890 2789 - - 1659

and OrientDB and Morsa Eval evaluates XMI, CDO and Morsa. In case of the
evaluation of the querying mechanisms, while NoSQL Eval only evaluates the
approaches using EOL query language, Morsa Eval performs evaluations com-
bining approaches with different query languages (Plain EMF, OCL, COCL,
EMFQuery, IncQuery and MorsaQL).

5.1 EDBM-Persistence

Two measures have been used for persistence evaluation: (i) time taken to insert
each model from XMI to the database (in seconds, s); and (ii) storage size of the
models persisted in the databases (in Megabytes, MB). Results are the average
duration of the repetitions made for each model insertion (Table 1 describes
number of repetitions that have been performed on each case).

Table 2 describes the insertion time and storage size values obtained from
EDBM and compares them with the values obtained at NoSQL Eval [11]. Morsa-
Eval [2] does not contain insertion time and storage size values for Morsa, con-
sequently these values have been omitted.

CDO fails to insert largest models (set3 and set4). Insertion time is similar for
all NoSQL based options (Neo4J- and OrientDB-based prototypes) and it rounds
2400 seconds on the largest model (set4). Storage size is around 0.5 times bigger
using OrientDB-based prototype than using the Neo4J-based prototype. EDBM
performs insertion faster than other approaches, and specially for large models.
Insertion times on the largest models (set3 and set4) is around 70% faster than in
NoSQL approaches. In terms of storage size, models persisted using EDBM are
between 2 and 4 times bigger than the models persisted using XMI but similar
to the Neo4J-based prototype.

5.2 EDBM-Query

Query mechanisms have been evaluated using two measurements (executed 100
times each): (i) execution time to return the results of a query (in milliseconds,
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XMI+EMF XMI+EOL EDBM

Set0
Time 3419 4462 182
Mem (max) 155 175 159
Mem (avg) 122 155 158

Set1
Time 4888 5382 232
Mem (max) 226 305 159
Mem (avg) 200 297 156

Set2
Time 20584 26517 1430
Mem (max) 1161 1138 299
Mem (avg) 1051 1110 265

Set3
Time 72052 50951 2907
Mem (max) 2398 2342 318
Mem (avg) 2297 2289 315

Set4
Time 112406 59722 4021
Mem (max) 2807 2508 345
Mem (avg) 2626 2456 322

Table 3: Time (ms) and memory (MB) results
obtained from GraBaTs query execution.

XMI+EMF XMI+EOL

Set0 97 74
Set1 99 89
Set2 477 782
Set3 2218 4034
Set4 1090 4339

Table 4: Execution time
(ms) to query models that
are previously loaded.

ms); and (ii) memory usage (in Megabytes, MB). In the case of EDBM, mem-
ory values include: memory used by the embedded database + memory used by
the JVM instance. We provide results from: (a) XMI persistence with the query
expressed using Plain EMF; (b) XMI persistence with the query expressed us-
ing EOL; and (c) EDBM persistence with the query expressed using EOL and
runtime query translation.

Execution Time. As is shown in Figure 2a, the size of the model has a great
impact over the time required to execute the GraBaTs query if XMI is used.
However, results are different depending on whether Plain EMF or EOL has
been used to express the query, having greater impact when using Plain EMF
(querying the smallest model takes around 3.5 seconds while more than 110 sec-
onds are required for the largest model). XMI+EOL requires around 60 seconds
to execute the query over set4, half the time required by XMI+Plain EMF. Table
4 illustrates execution time (in milliseconds) for XMI if the model is previously
loaded in memory. In this conditions, XMI+EMF is the fastest option. EDBM,
scales better than XMI in terms of execution time: the execution time goes from
182 milliseconds for set0 to 4 seconds for set4. Also, the required execution time
grows slower than using XMI. Even comparing with XMI+EMF when mod-
els are loaded in memory, the difference is small (3 seconds) and better than
XMI+EOL.

Memory Usage. As shown in Figure 2b, memory usage is similar in all three
options (155-175 MB) for set0. In case of set1, the maximum memory require-
ment increases for both XMI-based options (an increase of 71MB for XMI+EMF
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(a) Execution time. (b) Memory usage.

Fig. 2: Execution time and memory usage for GraBaTs query in XMI and EDBM

and 130MB for XMI+EOL). The model size has higher impact on memory usage
in set2 when XMI is used and it is increased in both cases near 1.1GB. By con-
trast, memory usage impact is lower if EDBM is used and it increases 140MB.
In set3, while memory usage is duplicated respect to set2 when XMI is used
(using around 2.3GB), EDBM only requires 318MB. The trend is similar in set4
where XMI+EMF and XMI+EOL both require more than 2.4GB and EDBM
only uses 345MB. Memory usage increase is similar on both XMI-based options,
they do not scale well in terms of memory. However, EDBM does not require
upfront memory loading, and consequently it scales better than XMI (increasing
from 159MB on set0 to 345MB on set4).

5.3 EDBM vs. Database Persistence Approaches

Results provided by NoSQL Eval[11] and Morsa Eval[2] have been used to com-
pare EDBM performance. As Table 1 describes, different combinations of per-
sistence and query approaches have been evaluated on each study. To facilitate
comprehension only the most scalable combinations have been selected: Neo4J-
based prototype +EOL and OrientDB-based prototype+EOL from NoSQL Eval
and Morsa+MorsaQL from Morsa Eval. Since CDO also uses H2 for persistence,
we have decided to include it in the comparison. We have used the results of CDO
provided by Morsa Eval.

It is important to note that the execution environment is not the same in
all cases. We have not been able to reproduce the evaluation of NoSQL Eval
and Morsa Eval. Consequently, results of evaluation obtained for such studies
are used to compare existing approaches with EDBM. We use these values as a
reference to analyse the trend and scalability of our approach.

Figure 3 illustrates time versus memory for each model. We have used the av-
erage value of the time measures and the maximum value for the memory usage.
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(a) Set0 (b) Set1 (c) Set2

(d) Set3 (e) Set4

Fig. 3: Relation of execution time and memory usage results.

It is important to remark that in EDBM 100 executions have been performed,
while 20 and 2 have been made in NoSQL Eval and Morsa Eval respectively.

Figure 3a illustrates the time versus memory results for set0. Except EDBM
the rest of the approaches use a low amount of memory (between 10-17MB).
Neo4J-based prototype is the fastest approach (110ms) having also one of the
lowest footprints in memory usage (15MB). In case of Morsa, although memory
usage is low (13MB), requires more time than the other options (870ms). In
EDBM the memory usage is higher (182MB), but regarding execution time it is
placed second (182ms).

Figure 3b illustrates the values for set1. EDBM continues being the approach
with the highest memory usage (159MB), but it is also the fastest approach
(232ms). Neo4J-based prototype requires the lowest memory amount (18MB)
being the second fastest (620ms). CDO is the approach that requires most time
(1427ms).

As Figure 3c illustrates set2, Morsa is the approach less memory requirements
(81MB), but the slowest (30872ms). EDBM is the fastest one (1430ms) and it
is followed by Neo4J-based prototype (3100ms). Although the memory usage
continues being higher in EDBM (299MB), in this case, the difference is lower
compared to the others.

Results of set3 are illustrated on Figure 3d. Morsa continues being the ap-
proach with lowest memory usage value (182MB), but now is followed by EDBM
(318MB). EDBM is the fastest one (2907ms), followed by Neo4J-based proto-
type (6710ms). The OrientDB-based prototype is the approach that uses more
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(a) execution time (b) memory usage

Fig. 4: Result comparison in different approaches.

memory (2229MB) and the execution time is 24410ms. CDO values have been
omitted since the insertion for set3 failed.

Finally, Figure 3e illustrates the results of set4, very similar to the previous
one. In terms of memory the best option is Morsa (180MB), but with a high ex-
ecution time (51322ms). In terms of time EDBM is the best option with 4021ms
and a low memory (345MB).

EDBM is one of the fastest approaches for the five models. However, it is
the approach using more memory from set0 to set2. The situation changes in
set3 and set4, where it becomes one of the approaches using less memory. These
results indicate that EDBM provides an scalable alternative for the persistence
and query of large models.

This comparative is more a reference-guide, since execution environments
vary. To be able to equally compare, we have standardised the results comparing
them with the result of the XMI persistence on each approach. Figure 4 shows:
(i) how many times faster is the approach respect to XMI of its related study;
and (ii) how much percentage of the memory uses each approach respect to
XMI. As Figure 4a illustrates, EDBM and Neo4J-based approach provide more
scalability in terms of time to execute the GraBaTs query. Regarding memory,
Figure 4b shows that Morsa is the option that scales better. Concerning EDBM,
while memory usage is higher in the small models, it scales better as model size
increases.

5.4 Threats to Validity

The obtained memory and execution time results, show that our approach is
promising in terms of scalability comparing to XMI. Moreover, results indicate
that EDBM provides similar scalability to other existing approaches when large
models are persisted and queried. However, it has the highest memory usage
with smallest models, but still acceptable (e.g. 299MB for set2).
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The comparison includes values extracted from different studies, and even
if it is useful as reference-guide, executing all the approaches using the same
execution environment is more appropriate. Regarding the evaluation, we have
selected the GraBaTs 2009 case study, since it is widely used to evaluate the
scalability of similar approaches. But using a real industrial domain with real
use cases would be more realistic. We plan to perform this task in a future work.

6 Conclusions and Future Work

In this paper, we have evaluated EDBM, an approach for persisting and query-
ing large-scale models. The evaluation is based on the GraBaTs 2009 case study,
where large models and a complex query are used to evaluate approaches. Re-
sults of the performed evaluations show that (i) EDBM is able to persist large
models using a metamodel-agnostic embedded relational database; (ii) runtime
translation of EOL queries to SQL, providing a scalable solution to query models
persisted in an embedded relational database. We have compared the evaluation
results of EDBM, with the results of other existing approaches. These results
show that our approach is promising in terms of scalability in contrast to XMI
and other persistence approaches.

For future work, we plan to add support for translating model modifications
by using EOL. Moreover, we plan to evaluate this approach using an indus-
trial case study. Although EDBM is focused on scalable persistence and query,
providing version-control and integration with existing modelling editors is also
planed for a future version [23].
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