

biblioteka@mondragon.edu

Beamurgia, M., Basagoiti, R., Rodríguez, I. et al. A modified genetic algorithm applied
to the elevator dispatching problem. Soft Comput 20, 3595–3609 (2016).

This version of the article has been accepted for publication, after peer review (when
applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version
of Record and does not reflect post-acceptance improvements, or any corrections. The
Version of Record is available online at:

https://doi.org/10.1007/s00500-015-1718-1

https://doi.org/10.1007/s00500-015-1718-1

1

Authors and affiliations:

M Beamurgia1, R Basagoiti1, I Rodríguez2 and V Rodriguez 2

(1) University of Mondragon, Department of Electronics and Computing

(2) University of Navarra, Faculty of Economics and Business Science

Title: A Modified Genetic Algorithm Applied to the Elevator Dispatching

Problem

Abstract: Reduction of passenger waiting time in a multiple elevator system

is an important goal in the lift industry. Genetic algorithms have been applied

to the dispatching problem in vertical transportation. In this paper, we present

an approach based on a genetic algorithm (GA) with several relevant

adjustments to adapt this type of algorithm to this problem. The algorithm

serves calls currently registered in the system to create a dispatch plan, under

the assumption that just one passenger has made each call (i.e., without

passenger forecasting). We develop and investigate various versions of the

GA incorporating one or more adjustments in this research area. The

algorithms were implemented and evaluated using ELEVATE, for two

different building configurations, in terms of incoming, outgoing and

interfloor profiles. To compare results, one factor ANOVA tests were applied

to passenger waiting times. The performance of the basic GA was

significantly improved upon by making these adjustments. These adjustments

turn out to be essential for a successful implementation of a genetic algorithm

in the dispatching problem.

2

Keywords: elevator dispatching problem, genetic algorithm, adjustments

Practical application: A genetic algorithm can be used to solve the elevator

dispatching problem. Adjustments can optimize the solution. The current

paper lists and describes possible adjustments, and evaluates their effects on

performance in isolation and in combination.

1 Literature review

An important concern for lift producers is reduction of user waiting time when

a system has more than one lift and in the recent years this problem has

become an active research topic in both academia and industry. Most

published studies aim to optimize the performance of the controller or

Elevator Group Control System.

Artificial intelligence control methods can be used to find a reasonable

solution to the optimization problem in an appropriate time. Other approaches

are genetic algorithms (GAs), neural networks for the passenger arrival

prediction and fuzzy logic for the implementation of fuzzy rule sets for

recognizing traffic patterns.

An artificial neural network (ANN) in the elevator group control can be used

to learn dynamically the behaviour of the elevator system and predict the next

stopping floor on the basis of the previous pattern of demand. Imrak (1)

determine the next stopping floor (NSF) with an ANN and shorten waiting

time by forecasting car position and using call distribution laws. However,

the ANN needs to know the number of passenger and also the traffic profile

3

pattern has to be available. In (2), Imrak uses the NSF to shorten waiting time

by assigning one of the lifts to a new landing call and by taking into account

mean waiting time of waiting passengers, travel time, and the number of

passengers waiting on each floor. This system has no requirement to predefine

traffics events. Echavarria (3) improves the lift call time responsiveness by

approximating the lift call pattern through association of time of day with

specific call allocations.

Fuzzy logic has been used to analyse the passenger behaviour, and the

controller adapts itself to the situation of the predominant traffic pattern (4).

Siikonen (5) use fuzzy logic for traffic pattern recognition. Kim (6) use a

multiple objective system in which the assignment method is based on fuzzy

theory, classification of passenger traffic and the system manager’s

requirements. Depending on traffic demand, the priority of objectives can be

modified, assigning more importance to a certain criteria, Kim use three

criteria: the waiting time of the passengers, the percentage of passengers with

a long wait and the run count used for the power consumption of the system.

Mateus (7) takes into account all available information: the fuzzy logic can

be used to assign cars to the landing calls according to which criteria are given

more importance.

Other authors have used bio-inspired techniques to deal with the dispatching

problem. Cortés (8) uses a viral system algorithm that is based on a virus

4

infection analogy. In his work, he compares this approach to genetic and tabu

search algorithms.

2 Related work

GAs have been used to minimize the average waiting time of passengers

whilst recognizing that long waiting times are not acceptable. Alander (8)

uses a GA and explains that from each floor there can be two calls, one

upwards and the other downwards. Each call is weighted according to what

type of traffic it involves. Cortés (9) compares the conventional algorithms

with the GAs. Cortes uses a landing call strategy to identify the

“chromosomes” of individuals in the population: each individual is associated

with upwards landing calls, followed by downwards landing calls. The

objective function used is focused in time, and returns the expected time.

Cortes (10) uses GAs to reallocate lifts to calls if necessary. Cortes ((9), (10))

uses a replacement rule in which the probability of replacement for a given

individual is inversely proportional to the individual’s fitness.

GAs have also been used to resolve one level of the elevator dispatching

problem when the problem has been divided into two levels. Sorsa (11) uses

a two level approach in which the first level is dealt with by a GA and the

second one is dealt with by a heuristic algorithm. The heuristic algorithm

selects the nearest call to the elevator with respect to its travelling direction.

The GA is based on a database of the passenger information, which is used to

improve subsequent solutions if that state of the system appears again. The

5

objective function is to minimize travelling time, which is separated into three

components: the call time, the waiting time and the journey time.

GAs can also be used to optimize two objectives simultaneously: the first

objective being minimization of the passenger waiting time and the second

being minimization of energy consumption. These two objectives work

against each other and so the system has to decide when to prioritize one

objective over the other. Tyni (12) proposes a way of prioritization of each

objective depending on the different type of traffic at a given moment. Tyni

uses a PI-controller (Proportional and time-Integral terms) to provide a

specified service level in terms of average call time. Tartan et al. (13) also

uses genetic algorithms but considers not only the waiting time but also the

journey time of the passenger as one of the optimization criteria. Liu (14)

applies a particle swarm optimization algorithm and a GA to obtain a

combined control method.

The GA developed in this paper, is based on the work done by Sorsa (11), it

solves the first optimization level (the assignment of cars to landing calls),

but it assumes that one landing call represents one passenger. Building traffic

patterns change in real time and we decided to analyse a system where it is

assumed that exactly one passenger is behind one landing call. Further

versions will analyse the system with more complex passenger traffic

modules. This assumption simplifies management of lift capacity. The

algorithm reallocates landing calls each time it is run (typically in cycles of

6

milliseconds), which allows the algorithm to improve the assignment in real

time according to the current state of the system thereby making the GA more

flexible and robust against abrupt changes in traffic patterns.

We develop a basic GA and four different adjustments: the first and the

second adjustments help the GA in the generation of the first population of

individuals (i.e. potential routes), the third one uses the best individual or

solution of the previous cycle for the current cycle, and the fourth one adds

penalties to individuals according to their waiting times. We also use an

analysis of variance (ANOVA) to quantitatively evaluate the impact of these

adjustments on the raw genetic. The modified version of the raw GA, that

incorporates all these adjustments, outperforms the results for different traffic

configurations.

The paper is organized as follows. Section 3 contains a description of the

problem. Section 4 presents the mathematical model of the dispatching

problem. Section 5 describes the genetic algorithm applied to solve the

dispatching problem. Section 6 presents simulation results. Finally,

conclusions are made and discussed in Section 7.

3 Description of the problem

Lift buttons send passenger requests to the lift control system. The control

system collects all the requests at every time interval and then decides which

7

lift will pick up which passenger. The control system has to respond to all the

requests, minimizing passenger waiting time. Following Siikonen (15),

landing calls (that come from outside the lift), can be initially allocated to one

lift but then reallocated to another. Only when a lift is stopping at a floor to

receive a passenger can reallocation be disabled for that call. Otherwise, as

this is a dynamic and a real-time problem, reallocation is continuously

applied.

The optimization problem is treated as a case of the Traveling Salesman

Problem (TSP), as suggested in (11). The TSP typically considers a salesman

who needs to travel around various cities, visiting each city only once with

the shortest travelled distance. In the current work, we model the vertical

transportation scenario as a Multiple Salesman Problem where a lift (the

salesman) visits each landing (city) to answer requests registered on buttons

in two directions, up and down. In this implementation, up or down requests

from the same landing or floor can be considered akin to different cities. A

requested call is only assigned to a lift once. To create routes for a given lift,

Closs rules (see below) are applied to rule out certain possibilities, and the

load of the lift is continuously controlled. Therefore, a lift can skip one

landing call if the lift is full, and return and answer it later.

The control system has been developed in two levels. At the upper level, the

control system tells the different lifts what they have to do (go up or down),

evaluating the overall performance of the whole lift system. At the lower

8

level, the control system makes decisions taking into account all the landing

calls of each lift.

There are two types of call: the landing call, which is made by a passenger on

a floor outside the lift (in a conventional button panel, with up and down

button), and the car call which is made by a passenger inside the lift (typically

with a button for each destination floor).

Different traffic can be observed. An incoming flow occurs when most of the

passengers are coming into the building. The outgoing flow is associated with

net efflux. The interfloor flow is that related to people that moving inside the

building from one floor to another. Traditionally, landing call traffic is

categorized into four basic types: the normal traffic, an up peak, a down peak,

and peak of two directions.

The process of assignation must take into account some explicit constraints.

A lift can only be assigned to a single request at a time. For this paper some

general conditions and assumptions have been made: behind each call there

is only one passenger; car calls have priority over landing calls; current

landing calls and car calls are registered from the moment, the time stamp, at

which they are created; the source floor of landing calls is registered as is the

required direction (up/down) of travel; the destination floor of car calls is

registered; when a lift is stopping at a floor in order to receive a passenger,

the corresponding call will disappear from the list of landing calls for

allocation/reallocation, but any existing destination floor for that lift will be

9

maintained. In addition, we adopt certain management criteria: a lift will

attend the nearest call that fulfils all the requirements: and, if a lift has stopped

and has no assigned direction, it will attend to the passenger with the longest

waiting time. Finally, our model applies certain protocols: for each landing

call, a fictitious car call is created, which is then deleted when the landing call

disappears: and if a lift is not full, only the first landing call of the route of the

highest-priority individual is assigned to the lift.

The system also follows Closs rules (16):

● A car may not stop at a floor where no passenger enters or exits

● A car may not pass a floor at which a passenger wishes to exit

● A passenger may not enter a car carrying passengers and traveling in

the reverse direction to his required direction of travel

● The lift cannot change the direction if at least one passenger is inside.

The dispatcher algorithm needs the following constant information for each

global lift:

● Maximum capacity

● Maximum velocity

● Maximum acceleration

● Maximum jerk

● Door open time

● Door open time while passengers entering and/or leaving the lift

10

● Door close time

● Floors where the lift can move

Similarly, the following variable information is registered for each lift each

time the optimization procedure starts: the number of passengers currently

being carried, velocity, acceleration, jerk, position, current floor, direction,

destination floor, quickest stop floor position, stopping in a floor, door status,

and travel status.

4 Mathematical Model

The mathematical model in this section is oriented to the implementation of

the genetic algorithm that we explain in section 5. This model shows the

procedure for the calculation of the main variable related to the fitness

function of the individuals of the GA. The main variable considered for each

individual is the sum of the estimated waiting times for every passenger in

the system. The estimated waiting time (EWT) of a passenger is the estimated

time in seconds that the passenger will wait after he pushes the button in the

floor. Waiting times larger than 30 seconds are usually considered as long and

undesirable for this type of service (17).

The individuals of the GA are assignments of landing calls to the lifts. Many

assignments involve the generation of routes for the lifts. The routes are used

to estimate the waiting time of the passengers assigned to a lift, and involve

11

the estimated time that the elevators need to arrive to the passengers’ floors

and open the doors.

4.1 Description of the model

Indices:

I: set of lifts 𝐼𝐼 ∈ { 1, 2, . . . ,𝑛𝑛 }
i: index of lifts 𝑖𝑖 ∈ 𝐼𝐼
m: number of floors
L: set of landing calls 𝐿𝐿 ⊆ { 1, 2, . . . ,𝑚𝑚 }
Lc,i: Set of landing calls associated with lift i 𝐿𝐿𝐿𝐿 ⊆ 𝐿𝐿
∑𝐼𝐼𝑖𝑖=1 𝐿𝐿𝐿𝐿, 𝑖𝑖=L
j: index of landing calls 𝑗𝑗 ∈ 𝐿𝐿𝐿𝐿

H: set of individuals (Note that the term individual refers to a GA entity, not
a passenger, as is explained below.)
h: index of individual ℎ ∈ 𝐻𝐻
k: index of the winner individual 𝑘𝑘 ∈ 𝐻𝐻

Parameters:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,𝑗𝑗: Time needed to move the lift i from one landing call j to landing
call j+1 considering the time associated with the car call of individual h
𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗: Door open time for lift i in the j-th landing call of individual h
𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗: Door open time while passengers entering and/or leaving for the i-
th lift in the j-th landing call of individual h
𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗: Door close time for the i-th lift in the j-th landing call of individual
h

Variables:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖: The door status (open or closed) for the lift i, at the time when
the algorithm is called to obtain a route.

4.2 The model

The main objective of the model is to minimize the estimated waiting time of

all passengers. To estimate the waiting time for an individual, an optimal

12

route for each lift is estimated. Once a route has been decided upon, Eq. 1 is

used to calculate 𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗, the estimated waiting time of each landing call j,

attended by the i-th lift according to the solution for the individual h. Note

that to attend the landing call j, first the i-th lift needs to close the doors if

they are open (𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗); second, to cover the distance from its position to the

floor of the passenger (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,𝑗𝑗);third, to open the doors when arrives to

the floor (𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗) and finally, the passenger might wait some passengers to

leave before entering into the lift (𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗).

To calculate the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,𝑗𝑗 of the i-th lift, we have applied some equations

related to the lift kinematics, described in Peters (18). These equations use the

maximum acceleration and the jerk (rate of change of acceleration) values

constrained by human comfort criteria.

𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗 = 𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,𝑗𝑗 + 𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗 + 𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗 (1)

With Eq. 2, the estimated waiting time of all the landing calls of the system

are taken into account according to the scheduling of the individual h of the

GA.

𝐸𝐸𝐸𝐸𝐸𝐸ℎ = ∑𝐼𝐼𝑖𝑖=1 ∑𝐿𝐿𝐿𝐿,𝑖𝑖−1
𝑗𝑗=1 𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗 (2)

13

In Eq. 3, the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 represents the GA winner individual, i.e., the

individual whose request is associated with the best calculated solution that

will determine the next set of lift movements.

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = (𝐸𝐸𝐸𝐸𝐸𝐸ℎ) (3)

When j is equal to zero, the initial state of the 𝑖𝑖𝑡𝑡ℎ lift with the following values
of the parameters are assumed.

𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,0 = {𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 }

𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,0 = 0

𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,0 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,0

= 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

5 Genetic algorithm

The Elevator Group Control algorithm has been implemented using GAs. The

loop is closed after each run. In this way the tool is dynamic but does not

involve reconsideration of how to improve the dynamic call allocation. Lift

states are simulated during allocation and future costs of the system are

estimated. The algorithm assumes that there is only one passenger for each

14

button push. This will not reflect reality when, for example, two or more

passengers arrive simultaneously at a landing and call the lift.

The GA is solved as a two level optimization problem. The first level deals

with the assignment of all passenger requests to the various lifts. The GA is

used to optimize this assignment. The second level is carried out as a

Travelling Salesman Problem (TSP) in which the routes of each lift are

optimized.

5.1 First Level

A GA (19) is used with the following steps: initialization, evaluation of the

population, selection, and, reproduction (crossover and mutation).

● Initialization

Individuals are coded considering all the requested landing calls when the

system calls the algorithm. Note that, in the context of the GA, the term

individual refers not to a passenger but rather to a possible scheduling by

which to respond to landing calls. Thus, the length of the array holding an

individual will be the number of landing calls that have to be attended. The

landing calls are put in ascending order with respect to the floor where they

have been requested. For example, for a building with six floors and two lifts

in which four different passengers have called a lift on floors 1, 3 and 5, the

individuals of the GA should be arrays of four elements (one for each call).

Figure 1 shows this process of coding the individuals of the GA. The first

individual is formed assigning the first call of floor 1 to the lift A, the second

15

call of floor 3 to the lift B, the third call of floor 5 upwards to the lift A and

the fourth downwards to lift B. In each floor we consider there is a two button

panel for the passenger to decide his travelling direction, upwards or

downwards. In case both buttons are pushed, two different landing calls are

registered from the same floor, and two different lifts could be assigned.

Therefore, in this example, two different genes are created in the individual.

Which lift is assigned to which request is random for a given individual;

however, each request will be assigned once and once only for one individual.

In this way, all possible assignments (polymorphisms or genes) are made

available in the starting population.

● Evaluation

The fitness of each individual is calculated as the inverse of the square of the

sum of all the expected waiting times of all the landing calls of the system, as

shown in Eq. 2. For optimization with a GA, maximization, as opposed to

minimization, of a fitness function is recommended (19). Then, the fitness of

the individual h, is calculated as in eq. 4:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ = 1
𝐸𝐸𝐸𝐸𝐸𝐸ℎ

= 1

�∑𝐼𝐼𝑖𝑖=1 ∑𝐿𝐿𝐿𝐿,𝑖𝑖−1
𝑗𝑗=1 𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗�

2 (4)

16

Figure 2 shows how the fitness value of the best individual increases iteration

by iteration in one single run, as the individuals of the GA evolve to better

solutions.

● Selection

The probability of selection 𝑝𝑝𝑝𝑝ℎ of individual h in the population formed by

N individuals is computed according to the relation of its fitness to the overall

population fitness:

𝑝𝑝𝑝𝑝ℎ = 𝑓𝑓ℎ
∑𝑁𝑁𝑗𝑗=1 𝑓𝑓𝑗𝑗

 (5)

where, 0 ≤ 𝑝𝑝𝑝𝑝ℎ ≤ 1.

Once the probabilities have been computed a roulette-wheel selection method

is used to choose which individuals to cross.

Using Eq. 5, a proportion (𝑝𝑝𝑝𝑝ℎ) of the wheel (the overall population fitness)

is assigned to each of the possible individuals. The higher the fitness of an

individual, the larger its “segment” of the “roulette wheel”, and thus the

greater the probability 𝑝𝑝𝑝𝑝ℎ it has of being selected. The selection process is

analogous to spinning a roulette wheel and seeing where the ball rests. The

implementation of this process is completely described in(19).

● Reproduction

Once selection has been made, a new population resulting from crossover and

mutation applied to the selected individuals is created. The GA is elitist in its

reproduction strategy, i.e., the winner individual from the previous population

17

evaluated is added to the new population created. Therefore, the fitness of the

best individual of the new population will always be the same as or better than

that in the old population.

Selected individuals are first subjected to crossover. Two different individuals

are selected, and by crossover another two new individuals are created. The

crossover operation is applied according to a certain crossover probability.

Crossover is what makes the GA succeed, and in this sense is the most critical

part of the GA.

Crossover operation: Certain elements (landing calls in individual arrays)

that are common to both parents are inherited by children, while other

elements are randomly adopted. In Fig. 3 there are 5 landing calls, for 3 lifts,

A, B and C; the parent individuals have two lifts in common (one in the 2nd

call and the other in the 4th call) which the children inherit; the other elements

are selected randomly.

Mutation operation: After crossover, selected individuals are subjected to

mutation according to a certain mutation probability. An element (a landing

call) of an individual is selected and changed randomly, i.e. the lift assigned

to the call is changed. In Fig. 4 there are 5 landing calls, for 3 lifts, A, B and

C; a mutation occurs in the 3rd call, where lift C replaces lift B.

By crossing and mutation a new population with new individuals is created.

Then, the same processes of selection and reproduction are repeated until a

target value of fitness is achieved or until the algorithm has undertaken a

18

given maximum limit of iterations. In the lift dispatching problem, an optimal

individual has to be found, and thus a decision reached before the next time

the system calls the algorithm.

In addition, all of the individuals of the GA population are feasible, as there

always exist lift routes for any assignment of a set of landing calls to a set of

lifts. This exists regardless of the number of stops or number of changes of

direction the lifts have to complete.

5.2 Second level

This level optimizes the route of each lift. At the first level the landing call

assignment is made, and then at the second level the optimum route that

minimizes the average waiting time is created.

To minimize the average waiting time, all the possible routes are evaluated.

Possible routes are created on the basis of the landing calls assigned to the

lift. It is necessary to take into consideration all the features of the lift: its

situation, the number of passengers being carried, the car call, the landing

call, its direction, etc. We considered and implemented some additional

assumptions (apart from the Closs rules) for this dynamic system:

● A car call has higher priority than a landing call, if there is no call

from a floor the lift does not have to stop on that floor.

● If the lift is moving when the algorithm is called, then the lift’s

destination floor at that moment can be regarded as defined and as a

restriction.

19

● The time to the destination floor is calculated and then the possible

floors to stop at subsequently are those where landing calls have been

made and those indicated by car calls from within the lift.

● From the possible stops, that closest to the lift is identified. If there is

enough space to carry a new passenger in the car, the closest call will

be selected as the next destination. If there is not space, the car call

with the shortest distance will be the selected (i.e. any landing calls

are ignored). Figure 5 shows these possibilities for a car with capacity

for five passengers. In the left building there is a lift with five

passengers and another passenger has made a landing call from the

third floor. The closest call is the landing call, but, because the car is

full, the car call for the fourth floor is selected as the next destination.

The lift on the right of Fig.5 has only four passengers, and the third

floor is selected as the next destination.

● Once a stop has been selected, all the calls for that floor are attached

to the route. For example, two passengers may make the same car call

and a landing call may coincide with a car call. In this way, one stop

may serve more than one passenger.

The above process for selecting the next destination is iterated until there are

not more calls to be attended. All the calls will then be in the route, and the

sum of the waiting time of all the passengers for that route moving in that lift

is calculated according to Eq. 2.

20

6 Simulation

To simulate different configurations and obtain performance indicators, we

used Elevate, the well-known vertical transport simulation software mainly

based on Dr. Peter’ developments, and released from Peters Research Ltd. (a

detailed description can be found in (20) and at https://www.peters-

research.com)

We selected two different configurations shown in Table 1. The second

configuration is the most challenging one. The parameters for the simulations

are the default ones in Elevate. The GA was implemented using Elevate 8’s

option to insert external code in C (according to the manual (21)). Intensity

was determined by a step profile with a minimum demand of 11% and a

maximum demand of 13% of the population per 5 minutes. Profiles used

were, outgoing, incoming and interfloor.

On the other hand, we analysed the performance of the raw GA in a static

situation; for a set of landing calls, we ran the algorithm to solve the

assignment trying to find the optimal solution. The simulation involved a

building of 20 floors with 4 lifts, with 5 landing calls, 2 upwards and 3

downwards. In this situation, there are 4^5 possible solutions (i.e., 1024). We

found the optimal solution and then we ran the GA with different

combinations of number of individuals and iterations from 5 to 30. Figure 6

shows the differences between the average waiting time of the passengers for

the different GA configurations and the real optimal solution. The more

https://www.peters-research.com/
https://www.peters-research.com/

21

individuals and iterations, the best performance of the GA, as expected.

However, due to the software and hardware constraints we used ten

individuals and ten iterations for the real implementation. The crossover and

mutation probability was set as 0.8 and 0.1 respectively. The crossover

probability was quite high as we wanted the GA to evolve fast taking to

account for the decision time available. The issue of the dispatching problem

has to be solved in less than half a second (Sorsa(11), Siikonen(15)). As the

time to solve the problem is limited, these values were experimentally

determined by the decision time made available by the system processor

constraints. Consequently, the values are strongly dependent on the hardware

and software limitations of the system in which the GA could be

implemented.

6.1 Adjustments to the GA

We evaluated several modifications to the basic GA described above. The

adjustments, which can be activated and deactivated, are described below:

● Stability (S): Two adjustments involve the concept of stability (S).

The first adjustment prevents reassignment of a landing call that is

assigned to a lift that is already in the process of stopping to attend

that call, as suggested in (15). This modification avoids the creation

of individuals with abnormally high waiting times due to such tardy

reassignment. The second adjustment fixes the assignment of a

landing call to an empty lift as soon as that lift has started moving to

22

attend the call. Thus, such a landing call cannot be reassigned (i.e.,

this “gene” of the individual is fixed). This modification prevents

empty lifts from changing direction. The adjustments are applied

when car load is less than 80% maximum capacity.

● Seeding (Sd): This adjustment improves creation of the initial

population of individuals each time the system calls the GA algorithm.

One of the individuals of the population is formed using topological

criteria (22), by assigning landing calls to the nearest lifts that satisfy

all the requirements and assumptions explained in section 4. In this

way the adjustment provides the GA with a reasonable preliminary

solution so that the algorithm can evolve to better solutions faster.

● Last best individual (LBI): Through this adjustment, each time the

system calls the algorithm, a modified version of the best individual

that was obtained in the previous call is included in the initial

population of individuals. The previous best individual is modified by

deleting any attended calls and adding assignments for any new

landing calls randomly. This adjustment allows the GA to reach

convergence to a better solution faster.

● Penalization (P and P3): Excessively long passengers waiting times

should be avoided. This problem can be tackled with constrained

optimization (23). Equation 5 shows the modification, addition of a

23

penalty term, to for the evaluation of individuals. Equation 6 expresses

the objective function that has to be minimized, the Estimated Waiting

Time with Penalty (EWTP).

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 𝐸𝐸𝐸𝐸𝐸𝐸ℎ + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ

 (5)

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ) (6)

Two different penalization strategies have been implemented. First, a

death penalty, P, that adds a big term to the fitness function for any

individuals with a passenger waiting time bigger than a fixed amount

(30 seconds as a threshold), as shown in Eq. 7. When using P

penalization, the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ term of Eq. 5, takes the value of

the 𝑃𝑃ℎ, as defined in Eq. 7:

𝑃𝑃ℎ = �1000 ∗ 𝐼𝐼 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗 > 30 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �

 (7)

The value 1000 was selected as an arbitrary value higher than any of

the passengers’ longest waiting times observed in the simulation for

any of the algorithms tested. As the EWT is the sum of the waiting

times for the passengers for all the lifts, we penalize the GA

individuals with estimated waiting times bigger than 30 seconds

proportionally to the number of cabs in the installation, I. Then the

24

penalization term depends on the number of lifts in the buildings. In

addition, 30 seconds is the threshold value that the average waiting

time should not exceed (17).

The second penalization strategy uses a dynamic penalty involving

consideration of the average real waiting time (RWT). RWT is the

average waiting time for current passengers calculated from the time

that they pressed a call button. If the EWT of an individual is smaller

than a certain reference value, the penalty P3 is zero, see Eq. 8.

Otherwise, P3 is calculated as the square of the difference between the

individual’s EWT and the reference value. The reference value is

computed as the higher of RWT and a threshold value (30 seconds in

this study). The penalty is calculated for each lift i and for all landing

calls, and so, under this penalization strategy, the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ term

of Eq. 5, is given by:

𝑃𝑃3ℎ = ∑𝐼𝐼
𝑖𝑖=1 ∑𝐿𝐿𝐿𝐿,𝑖𝑖

𝑗𝑗=1 𝑚𝑚𝑚𝑚𝑚𝑚 (0, �𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗 − (𝑅𝑅𝑅𝑅𝑅𝑅, 30) �)2 (8)

The inclusion of these penalties in GA fitness calculation precludes

evolution of individuals with long estimated waiting times.

6.2 Statistical analysis

We analysed the GA and the effects of the adjustments in two phases:

1. Individual effects over the GA. First of all, to compare the effects

over the GA planning tool of the adjustments commented before, six

25

different versions of the GA were considered: GA without any

adjustment, GA using the last best individual technique (GA+LBI),

GA with seeding (GA+Sd), GA with dynamic penalization (GA+P3),

GA with stability (GA+S) and GA with all adjustments

(GA+LBI+Sd+S+P3=GA+ALL). These algorithms were applied to

the building configuration 1, C1 (6 cars and 12 floors) under three

different passenger profiles: outgoing, incoming and interfloor. Each

tested profile had 400 landing calls to attend to. The resulting waiting

times of the different GA versions were compared using a one factor

ANOVA test. The results were compared using a one factor ANOVA

test. Distributions of the passengers waiting times were also presents

in histograms for visual comparison.

2. Combined effects over the GA. Six different combinations of

adjustments were also evaluated with a more challenging building

configuration (C2). The traffic profile applied was interfloor so that

the raw planning algorithm would not be influenced by its lack of a

module to predict the number of passengers behind each call. The

adjustment combinations were: GA+S, GA+S+P, GA+S+P3,

GA+S+LBI+Sd, GA+S+LBI+Sd+P, and, GA+S+LBI+Sd+P3. We

ran ten different simulations on the same configuration for each of the

different versions of the GA. The number of landing calls was 350 per

26

simulation. The resulting waiting times of the different GA versions

over the 10 simulations were compared using a one factor ANOVA

test.

6.3 Comparison with other algorithms

We compared the best version of the GA with combined effects to two well-

known commercial algorithms available on ELEVATE based on rules, called

group collective (GC) and estimated time of arrival (ETA).

The pre-stage Elevator Group Control System (EGCS) presented in this paper

(i.e., the modified version of the GA) could improve by using additional

passenger traffic modules to handle high demanding system configurations as

up-peak (i.e., most of the passengers entering the building) or down-peak (i.e.,

most of the passengers leaving the building). Under the assumption that one

request corresponds to exactly one passenger, we have compared the GA with

all the adjustments to GC and ETA algorithms for 3 different step profiles

with increasing handling capacity (HC) from 11 to 13, being the theoretical

HC 10%. The tested profiles were STEP1 (45% Incoming-45% Outgoing-

10% interfloor), STEP2 (0% Incoming-100% Outgoing-0% interfloor) and

STEP3 (80% Incoming-15% Outgoing-5% interfloor). All of them were for

building configuration C2.

27

7 Results

7.1 Individual effects

Tables 2, 3 and 4 show for outgoing, incoming and interfloor passenger

profiles, respectively, the mean and standard deviation of the passenger

waiting times for basic GA, GA with one adjustment, and GA+ALL. Relative

to the other algorithms, GA+S and GA+ALL had significantly lower means

and standard deviations (p<0.05) (Table 2). The stability adjustment was the

most effective single adjustment for decreasing the average waiting time of

passengers.

GA+ALL had the lowest means and standard deviations with all passenger

profiles and was significantly better than even GA+S (p<0.05) with the

outgoing passenger profile (Table 2).

Results for outgoing, incoming and interfloor traffic profiles were similar

(Tables 2, 3 and 4): GA+P3, GA+S and GA+ALL performed better than the

other algorithms. The stability and the penalization factor P3 adjustments

were those that most effectively reduced waiting time.

In order to visualize the impact of each of the adjustments on passenger

waiting time, Figs 7, 8 and 9 show the results of one specific execution of

each adjustment in a histogram. With the GA+ALL algorithm waiting times

are more condensed around shorter waits.

28

7.2 Combined effects

Ten different simulations on the same configuration were run for each of the

different versions of the GA. Table 5 shows the mean and standard deviation

of waiting time for the six different algorithms considered. Significant

differences in paired test were found between GA+S+LBI+Sd,

GA+S+LBI+Sd+P, GA+S+LBI+Sd+P3 on the lower performance side and

GA+S, GA+S+P and GA+S+P3 on the higher performance side. These

differences can be considered to define, in terms of performance at

minimizing waiting times, two groups of algorithms for this interfloor traffic.

GA+S+P and GA+S+LBI+Sd+P3 presented the lowest values of mean and

standard deviation of waiting times.

Table 6 shows the results for the ten different executions of each of the six

versions of the algorithm; GA+S+LBI+Sd+P3 achieved lower minimum and

maximum waiting times.

7.3 Comparison with other algorithms

Table 7 shows the results of the comparison of the algorithms GA+ALL, GC

and ETA. The table shows the changes in % (with respect to arbitrary values)

of the mean and the range of the interval of 10 trials for the average and

longest values of several time measures related to the simulation of the

29

performance of the system (waiting time, transit time and time to destination).

On the one hand, negative % values of the table signify improvements in the

mean or range of the measurements with respect to the reference values. O,

and on the other hand, positive % values denote decline. The GA+ALL shows

the best results in terms of transit time (TT) and most of the times for the

longest waiting times (LWT), highlighting the power of genetic algorithm as

elevator car routers.

8 Discussion and conclusions

The current work evaluates, for different building and traffic flow

configurations, several techniques relevant to a successful implementation of

a genetic algorithm in the dispatching problem for vertical transportation.

The different techniques or adjustments have been investigated in isolation of

each other and in various combinations. The stability adjustment was the most

effective single adjustment for decreasing the average waiting time of

passengers, whilst the P3 penalization adjustment also gave significant

benefits. The best performance was obtained when all the presented

adjustments were applied to the basic GA.

30

In addition, this algorithm was compared to two commercial ones. Our

algorithm led to better results in terms of longest waiting times and transit

times, highlighting the power of genetic algorithms as elevator car routers.

Further research is required to develop, implement and evaluate a module to

estimate the number of passengers per call. Such a module, which might be

based on records of passenger movements, is needed confirm adequate

performance of the GA with outgoing and incoming passenger profiles.

The study uses the one factor ANOVA test to compare techniques; this test

might be used to select which version of the algorithm is most appropriate.

All of the techniques proposed here can be readily implemented in

commercial software to improve the performance of GAs.

9 References
 (1) Imrak CE, Özkirim M. Neural Networks application in the next stopping
floor problem of elevator systems. Journal of Engineering and Natural
Sciences 2004.

(2) Imrak CE, Özkirim M. Determination of the next stopping floor in
elevator traffic control by means of neural networks. Journal of Electrical and
Electronics Engineering 2006;6(1):27-33.

(3) Echavarria J, Frenz CM. Improving Elevator Call Time Responsiveness
via an Artificial Neural Network Mechanism. IEEE Long Island 2009.

(4) Cortés P, Fernández JR, Guadix J, Muñuzuri J. Fuzzy Logic Based
Controller for Peak Traffic Detection in Elevator Systems. Journal of
Computational and Theoretical Nanoscience 2012;9(2):310-318.

(5) Siikonen M. Elevator Group Control with Artificial Intelligence. 1997.

(6) Kim CB, Seong KA, Lee-Kwang H, Kim JO. Design and Implementation
of a Fuzzy Elevator Group Control System. IEEE Transactions on Systems
Man and Cybernetics Part A-Systems and Humans 1998;28(3):277-287.

31

(7) Rosso Mateus AE, Soriano JJ. System of Intelligent Control for a Group
of Elevators. 2008;18(2):117.

(8) Alander JT, Ylinen J, Tyni T. Optimizing elevator control parameters.
Proceedings of the Second Finnish Workshop on Genetic Algorithms and
Their Applications (FWGA) 1994.

(9) Cortes P, Larraneta J, Onieva L. A genetic algorithm for controlling
elevator group systems. Artificial Neural Nets Problem Solving Methods
2003;2687:313-320.

(10) Cortés P, Larrañeta J, Onieva L. Genetic algorithm for controllers in
elevator groups: analysis and simulation during lunchpeak traffic. Applied
Soft Computing 2004;4(2):159-174.

(11) Sorsa JS, Ehtamo H, Siikonen M, Tyni T, Ylinen J. The Elevator
Dispatching Problem. Transportation Science 2009.

(12) Tyni T, Ylinen J. Evolutionary bi-objective optimisation in the elevator
car routing problem. European Journal of Operational Research
2006;169(3):960-977.

(13) Tartan, E.O., Erdem, H., Berkol, A.Optimization of waiting and journey
time in group elevator system using genetic algorithm(2014) INISTA 2014 -
IEEE International Symposium on Innovations in Intelligent Systems and
Applications, Proceedings, art. no. 6873645, pp. 361-367.

(14) Liu, J., Bai, Z.L., Gu, M.H., Zhang, X., Zhang, R. The research of multi-
car elevator control method based on PSO-GA (2014) Applied Mechanics
and Materials, 556-562, pp. 2418-2421.

(15) Marja-Liisa Siikonen. Planning and Control Models for Elevators in
High-Rise Buildings. Helsinki University of Technology, Systems Analysis
Laboratory, Research Reports A68 ; 1997.

(16) Closs GD. The Computer Control of Passenger Traffic in Large Lift
Systems. PhD Thesis. University of Manchester Institute of Science and
Technology, 1970.

(17) J. Sorsa, M-L. Siikonen, H. Ehtamo. Optimal control of double-deck
elevator group using genetic algorithm International Transactions in
Operational Research, Vol. 10 (2003), pp. 103-114

(18) R.D. Peters. Ideal Lift Kinematics Complete Equations for Plotting
Optimum Motion. Elevator Technology 6, proc. of ELEVCON 1995, pp. 165

32

(19) Goldberg D. Genetic Algorithms in Search, Optimization, and Machine
Learning. : Addison-Wesley Professional; 1989.

(20) Caporale RS. Elevateâ„¢ Traffic Analysis Software (Eliminating the
Guesswork). Elevator World 2000 2013;48(6):118-124.

(21) http://www.peters-
research.com/index.php?option=com_content&view=article&id=96&Itemid
=91

(22) Elbaum R. and Sidi M. Topological Design of Local-Area Networks
Using Genetic Algorithms. [EEE/ACM Transactions on Networking
1996;(4).

(23) Kuri-Morales A, Gutiérrez-García J, Sucar L, Battistutti O. Penalty
Function Methods for Constrained Optimization with Genetic Algorithms: A
Statistical Analysis. 2002.

10 APPENDIX A: LIST OF ACRONYMS

ANN: Artificial Neural Networks.

ANOVA: Analysis of Variance.

ATT: Average Transit Time.

ATTD: Average Time to Destination.

AWT: Average Waiting Time.

C1: Building configuration (6 cars, 12 floors, average population/ floors for

populated Floors, car capacity (Kg) 1600) , 400 landing calls to be attended.

C2: Building configuration (6 cars, 32 floors, average population/ floors for

populated floors, car capacity (Kg) 850), 350 landing calls to be attended.

EGCS: Elevator Group Control System.

ELEVATE: simulation software for vertical transportation.

http://www.elevateconsulting.co.uk/

33

ETA: Estimated Time Arrival. A rule based dispatching algorithm.

EWT: Estimated Waiting Time.

GA: Genetic Algorithm.

GA+ALL: The algorithm GA with all the next adjustments LbI+Sd+S+P3.

GA+ALL= GA with all adjustments (GA+LBI+Sd+S+P3).

GA+LBI: The GA algorithm with the Last Best Individual adjustment.

GA+P: The GA algorithm with the P penalty adjustment.

GA+P3: The GA algorithm with the P3 penalty adjustment.

GA+S: The GA algorithm with the stability adjustment.

GA+S+LBI+Sd+P= The GA algorithm with the S, the LBI, the Sd and the P

adjustments.

GA+S+LBI+Sd+P3= The GA algorithm with the S, the LBI, the Sd.and the

P3 adjustments.

GA+S+LBI+Sd= The GA algorithm with the S stability, the LBI and the Sd

adjustments.

GA+S+P= The GA algorithm with the S and the P adjustments.

GA+S+P3= The GA algorithm with the S and the P3 adjustments.

GA+Sd: The GA algorithm with the Seeding adjustment.

GC: Group Collective, a rule Based dispatching algorithm.

HC: Handling Capacity, a percentage of the population of the building in a

vertical transportation system that the system can move in up-peak mode in a

5 minutes period.

34

LBI: Last Best Individual adjustment.

LTT: Longest Transit Time.

LTTD: Longest Time to Destination.

LWT: Longest Waiting Time.

NSF: Next Stopping Floor.

P: Penalization.

P3: P3 Penalization

RWT: Real Waiting Time. The average of the real waiting times for the

passengers already in the system. The real waiting time of passengers in the

system is the waiting time from the moment they press the button until the

lift’s arrival in the simulation.

S: Stability adjustment.

Sd: Seeding adjustment.

STEP1: Mixed passenger profiles where 45% of the landing calls were for

incoming, 45% were for outgoing and 10% were for interfloor with increasing

handling capacity from 11% to 13%.

STEP2: Mixed passenger profiles where 0% of the landing calls were for

incoming, 100% were for outgoing and 0% were for interfloor with increasing

handling capacity from 11% to 13%.

STEP3: Mixed passenger profiles where 80% of the landing calls were for

incoming, 15% were for outgoing and 5% were for interfloor, with increasing

handling capacity from 11% to 13%.

35

TSP: Travelling Salesman Problem.

36

11 Figure Captions

Figure 1. Coding of the individuals of the GA based on the request calls

Figure 2. Obtaining a better fitness value iteration by iteration on a single run.

Figure 3. Crossover operation example

Figure 4. Mutation operation example

Figure 5. Example of how to choose a call depending on the capacity of the

lift car.

Figure 6. Differences between the average waiting time of the optimal

solution and the average waiting time of different GAs with 5-30 individuals

and 5-30 iterations.

Figure 7. Histogram of passenger waiting time for the outgoing passenger

profile in C1 configuration for different adjustments.

Figure 8. Histogram of passenger waiting time for the incoming passenger

profile in C1 configuration for different adjustments.

Figure 9. Histogram of passenger waiting time for the interfloor traffic profile

in C1 configuration for different adjustments

	Portada AAM Springer.pdf
	A Modified Genetic Algorithm Applied to the Elevator Dispatching Problem_definitive review.pdf
	1 Literature review
	2 Related work
	3 Description of the problem
	4 Mathematical Model
	4.1 Description of the model
	4.2 The model

	5 Genetic algorithm
	5.1 First Level
	● Initialization
	● Evaluation
	● Selection
	● Reproduction

	5.2 Second level

	6 Simulation
	6.1 Adjustments to the GA
	6.2 Statistical analysis
	6.3 Comparison with other algorithms

	7 Results
	7.1 Individual effects
	7.2 Combined effects
	7.3 Comparison with other algorithms

	8 Discussion and conclusions
	9 References
	10 APPENDIX A: LIST OF ACRONYMS
	11 Figure Captions

