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Title: A Modified Genetic Algorithm Applied to the Elevator Dispatching 

Problem 

Abstract: Reduction of passenger waiting time in a multiple elevator system 

is an important goal in the lift industry. Genetic algorithms have been applied 

to the dispatching problem in vertical transportation. In this paper, we present 

an approach based on a genetic algorithm (GA) with several relevant 

adjustments to adapt this type of algorithm to this problem. The algorithm 

serves calls currently registered in the system to create a dispatch plan, under 

the assumption that just one passenger has made each call (i.e., without 

passenger forecasting). We develop and investigate various versions of the 

GA incorporating one or more adjustments in this research area. The 

algorithms were implemented and evaluated using ELEVATE, for two 

different building configurations, in terms of incoming, outgoing and 

interfloor profiles. To compare results, one factor ANOVA tests were applied 

to passenger waiting times. The performance of the basic GA was 

significantly improved upon by making these adjustments. These adjustments 

turn out to be essential for a successful implementation of a genetic algorithm 

in the dispatching problem. 
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Practical application: A genetic algorithm can be used to solve the elevator 

dispatching problem. Adjustments can optimize the solution. The current 

paper lists and describes possible adjustments, and evaluates their effects on 

performance in isolation and in combination. 

1  Literature review 

An important concern for lift producers is reduction of user waiting time when 

a system has more than one lift and in the recent years this problem has 

become an active research topic in both academia and industry. Most 

published studies aim to optimize the performance of the controller or 

Elevator Group Control System.   

Artificial intelligence control methods can be used to find a reasonable 

solution to the optimization problem in an appropriate time. Other approaches 

are genetic algorithms (GAs), neural networks for the passenger arrival 

prediction and fuzzy logic for the implementation of fuzzy rule sets for 

recognizing traffic patterns. 

An artificial neural network (ANN) in the elevator group control can be used 

to learn dynamically the behaviour of the elevator system and predict the next 

stopping floor on the basis of the previous pattern of demand. Imrak (1) 

determine the next stopping floor (NSF) with an ANN and shorten waiting 

time by forecasting car position and using call distribution laws. However, 

the ANN needs to know the number of passenger and also the traffic profile 
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pattern has to be available.  In (2), Imrak uses the NSF to shorten waiting time 

by assigning one of the lifts to a new landing call and by taking into account 

mean waiting time of waiting passengers, travel time, and the number of 

passengers waiting on each floor. This system has no requirement to predefine 

traffics events. Echavarria (3) improves the lift call time responsiveness by 

approximating the lift call pattern through association of time of day with 

specific call allocations. 

Fuzzy logic has been used to analyse the passenger behaviour, and the 

controller adapts itself to the situation of the predominant traffic pattern (4). 

Siikonen (5) use fuzzy logic for traffic pattern recognition. Kim (6) use a 

multiple objective system in which the assignment method is based on fuzzy 

theory, classification of passenger traffic and the system manager’s 

requirements. Depending on traffic demand, the priority of objectives can be 

modified, assigning more importance to a certain criteria, Kim use three 

criteria: the waiting time of the passengers, the percentage of passengers with 

a long wait and the run count used for the power consumption of the system. 

Mateus (7) takes into account all available information: the fuzzy logic can 

be used to assign cars to the landing calls according to which criteria are given 

more importance.  

Other authors have used bio-inspired techniques to deal with the dispatching 

problem. Cortés (8) uses a viral system algorithm that is based on a virus 
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infection analogy. In his work, he compares this approach to genetic and tabu 

search algorithms. 

2 Related work 

GAs have been used to minimize the average waiting time of passengers 

whilst recognizing that long waiting times are not acceptable. Alander (8) 

uses a GA and explains that from each floor there can be two calls, one 

upwards and the other downwards. Each call is weighted according to what 

type of traffic it involves. Cortés (9) compares the conventional algorithms 

with the GAs. Cortes uses a landing call strategy to identify the 

“chromosomes” of individuals in the population: each individual is associated 

with upwards landing calls, followed by downwards landing calls. The 

objective function used is focused in time, and returns the expected time. 

Cortes (10) uses GAs to reallocate lifts to calls if necessary. Cortes ((9), (10)) 

uses a replacement rule in which the probability of replacement for a given 

individual is inversely proportional to the individual’s fitness.  

GAs have also been used to resolve one level of the elevator dispatching 

problem when the problem has been divided into two levels. Sorsa (11) uses 

a two level approach in which the first level is dealt with by a GA and the 

second one is dealt with by a heuristic algorithm. The heuristic algorithm 

selects the nearest call to the elevator with respect to its travelling direction. 

The GA is based on a database of the passenger information, which is used to 

improve subsequent solutions if that state of the system appears again. The 
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objective function is to minimize travelling time, which is separated into three 

components: the call time, the waiting time and the journey time. 

GAs can also be used to optimize two objectives simultaneously: the first 

objective being minimization of the passenger waiting time and the second 

being minimization of energy consumption. These two objectives work 

against each other and so the system has to decide when to prioritize one 

objective over the other. Tyni (12) proposes a way of prioritization of each 

objective depending on the different type of traffic at a given moment. Tyni 

uses a PI-controller (Proportional and time-Integral terms) to provide a 

specified service level in terms of average call time. Tartan et al. (13) also 

uses genetic algorithms but considers not only the waiting time but also the 

journey time of the passenger as one of the optimization criteria. Liu (14) 

applies a particle swarm optimization algorithm and a GA to obtain a 

combined control method. 

The GA developed in this paper, is based on the work done by Sorsa (11), it 

solves the first optimization level (the assignment of cars to landing calls), 

but it assumes that one landing call represents one passenger. Building traffic 

patterns change in real time and we decided to analyse a system where it is 

assumed that exactly one passenger is behind one landing call. Further 

versions will analyse the system with more complex passenger traffic 

modules. This assumption simplifies management of lift capacity. The 

algorithm reallocates landing calls each time it is run (typically in cycles of 
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milliseconds), which allows the algorithm to improve the assignment in real 

time according to the current state of the system thereby making the GA more 

flexible and robust against abrupt changes in traffic patterns. 

We develop a basic GA and four different adjustments: the first and the 

second adjustments help the GA in the generation of the first population of 

individuals (i.e. potential routes), the third one uses the best individual or 

solution of the previous cycle for the current cycle, and the fourth one adds 

penalties to individuals according to their waiting times. We also use an 

analysis of variance (ANOVA) to quantitatively evaluate the impact of these 

adjustments on the raw genetic. The modified version of the raw GA, that 

incorporates all these adjustments, outperforms the results for different traffic 

configurations. 

The paper is organized as follows. Section 3 contains a description of the 

problem. Section 4 presents the mathematical model of the dispatching 

problem. Section 5 describes the genetic algorithm applied to solve the 

dispatching problem. Section 6 presents simulation results. Finally, 

conclusions are made and discussed in Section 7.  

 

3 Description of the problem 

Lift buttons send passenger requests to the lift control system. The control 

system collects all the requests at every time interval and then decides which 
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lift will pick up which passenger. The control system has to respond to all the 

requests, minimizing passenger waiting time. Following Siikonen (15), 

landing calls (that come from outside the lift), can be initially allocated to one 

lift but then reallocated to another. Only when a lift is stopping at a floor to 

receive a passenger can reallocation be disabled for that call. Otherwise, as 

this is a dynamic and a real-time problem, reallocation is continuously 

applied.  

The optimization problem is treated as a case of the Traveling Salesman 

Problem (TSP), as suggested in (11). The TSP typically considers a salesman 

who needs to travel around various cities, visiting each city only once with 

the shortest travelled distance. In the current work, we model the vertical 

transportation scenario as a Multiple Salesman Problem where a lift (the 

salesman) visits each landing (city) to answer requests registered on buttons 

in two directions, up and down. In this implementation, up or down requests 

from the same landing or floor can be considered akin to different cities. A 

requested call is only assigned to a lift once. To create routes for a given lift, 

Closs rules (see below) are applied to rule out certain possibilities, and the 

load of the lift is continuously controlled. Therefore, a lift can skip one 

landing call if the lift is full, and return and answer it later. 

The control system has been developed in two levels. At the upper level, the 

control system tells the different lifts what they have to do (go up or down), 

evaluating the overall performance of the whole lift system.  At the lower 
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level, the control system makes decisions taking into account all the landing 

calls of each lift. 

There are two types of call: the landing call, which is made by a passenger on 

a floor outside the lift (in a conventional button panel, with up and down 

button), and the car call which is made by a passenger inside the lift (typically 

with a button for each destination floor). 

Different traffic can be observed. An incoming flow occurs when most of the 

passengers are coming into the building. The outgoing flow is associated with 

net efflux. The interfloor flow is that related to people that moving inside the 

building from one floor to another. Traditionally, landing call traffic is 

categorized into four basic types: the normal traffic, an up peak, a down peak, 

and peak of two directions.  

The process of assignation must take into account some explicit constraints. 

A lift can only be assigned to a single request at a time. For this paper some 

general conditions and assumptions have been made: behind each call there 

is only one passenger; car calls have priority over landing calls; current 

landing calls and car calls are  registered from the moment, the time stamp, at 

which they are created; the source floor of landing calls is registered as is the 

required direction (up/down) of travel; the destination floor of car calls is 

registered; when a lift is stopping at a floor in order to receive a passenger, 

the corresponding call will disappear from the list of landing calls for 

allocation/reallocation, but any existing destination floor for that lift will be 
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maintained. In addition, we adopt certain management criteria: a lift will 

attend the nearest call that fulfils all the requirements: and, if a lift has stopped 

and has no assigned direction, it will attend to the passenger with the longest 

waiting time. Finally, our model applies certain protocols: for each landing 

call, a fictitious car call is created, which is then deleted when the landing call 

disappears: and if a lift is not full, only the first landing call of the route of the 

highest-priority individual is assigned to the lift. 

The system also follows Closs rules (16): 

● A car may not stop at a floor where no passenger enters or exits 

● A car may not pass a floor at which a passenger wishes to exit 

● A passenger may not enter a car carrying passengers and traveling in 

the reverse direction to his required direction of travel 

● The lift cannot change the direction if at least one passenger is inside. 

The dispatcher algorithm needs the following constant information for each 

global lift: 

● Maximum capacity 

● Maximum velocity 

● Maximum acceleration 

● Maximum jerk 

● Door open time 

● Door open time while passengers entering and/or leaving the lift 
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● Door close time 

● Floors where the lift can move 

Similarly, the following variable information is registered for each lift each 

time the optimization procedure starts: the number of passengers currently 

being carried, velocity, acceleration, jerk, position, current floor, direction, 

destination floor, quickest stop floor position, stopping in a floor, door status, 

and travel status.  

4 Mathematical Model 
 

The mathematical model in this section is oriented to the implementation of 

the genetic algorithm that we explain in section 5. This model shows the 

procedure for the calculation of the main variable related to the fitness 

function of the individuals of the GA. The main variable considered for each 

individual is the sum of the estimated waiting times for every passenger in 

the system. The estimated waiting time (EWT) of a passenger is the estimated 

time in seconds that the passenger will wait after he pushes the button in the 

floor. Waiting times larger than 30 seconds are usually considered as long and 

undesirable for this type of service (17). 

The individuals of the GA are assignments of landing calls to the lifts. Many 

assignments involve the generation of routes for the lifts. The routes are used 

to estimate the waiting time of the passengers assigned to a lift, and involve 
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the estimated time that the elevators need to arrive to the passengers’ floors 

and open the doors. 

4.1 Description of the model 

Indices: 
 
I: set of lifts    𝐼𝐼 ∈ { 1, 2, . . . ,𝑛𝑛 }  
i: index of lifts    𝑖𝑖  ∈   𝐼𝐼  
m: number of floors 
L: set of landing calls      𝐿𝐿 ⊆   { 1, 2, . . . ,𝑚𝑚 } 
Lc,i: Set of landing calls associated with lift i  𝐿𝐿𝐿𝐿 ⊆   𝐿𝐿   
∑𝐼𝐼𝑖𝑖=1 𝐿𝐿𝐿𝐿, 𝑖𝑖=L 
j: index of landing calls  𝑗𝑗 ∈   𝐿𝐿𝐿𝐿  
 
H: set of individuals (Note that the term individual refers to a GA entity, not 
a passenger, as is explained below.)    
h: index of individual   ℎ ∈   𝐻𝐻  
k: index of the winner individual 𝑘𝑘 ∈   𝐻𝐻  
 
 
Parameters: 
 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,𝑗𝑗: Time needed to move the lift i from one landing call j to landing 
call j+1 considering the time associated with the car call of individual h 
𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗: Door open time for lift i in the j-th landing call of individual h 
𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗: Door open time while passengers entering and/or leaving for the i-
th lift in the j-th landing call of individual h 
𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗: Door close time for the i-th lift in the j-th landing call of individual 
h 
 
 
Variables: 
 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖: The door status (open or closed) for the lift i, at the time when 
the algorithm is called to obtain a route. 

4.2 The model 

The main objective of the model is to minimize the estimated waiting time of 

all passengers. To estimate the waiting time for an individual, an optimal 
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route for each lift is estimated. Once a route has been decided upon, Eq. 1 is 

used to calculate 𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗, the estimated waiting time of each landing call j, 

attended by the i-th lift according to the solution for the individual h. Note 

that to attend the landing call j, first the i-th lift needs to close the doors if 

they are open (𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗); second, to cover the distance from its position to the 

floor of the passenger (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,𝑗𝑗);third, to open the doors when arrives to 

the floor (𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗) and finally, the passenger might wait some passengers to 

leave before entering into the lift (𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗).  

To calculate the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,𝑗𝑗 of the i-th lift, we have applied some equations 

related to the lift kinematics, described in Peters (18). These equations use the 

maximum acceleration and the jerk (rate of change of acceleration) values 

constrained by human comfort criteria. 

 

𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗 =  𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,𝑗𝑗 + 𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗 +  𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,𝑗𝑗                          (1) 

 

With Eq. 2, the estimated waiting time of all the landing calls of the system 

are taken into account according to the scheduling of the individual h of the 

GA.  

 

𝐸𝐸𝐸𝐸𝐸𝐸ℎ =  ∑𝐼𝐼𝑖𝑖=1 ∑𝐿𝐿𝐿𝐿,𝑖𝑖−1
𝑗𝑗=1 𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗                 (2) 
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In Eq. 3, the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 represents the GA winner individual, i.e., the 

individual whose request is associated with the best calculated solution that 

will determine the next set of lift movements.  

 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = (𝐸𝐸𝐸𝐸𝐸𝐸ℎ)               (3) 

 

When j is equal to zero, the initial state of the 𝑖𝑖𝑡𝑡ℎ lift with the following values 
of the parameters are assumed. 

𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,0 =  {𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 }   

𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,0 = 0  

𝐷𝐷𝐷𝐷𝐷𝐷ℎ,𝑖𝑖,0 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑖𝑖,0

= 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

 

 

5 Genetic algorithm 

The Elevator Group Control algorithm has been implemented using GAs. The 

loop is closed after each run. In this way the tool is dynamic but does not 

involve reconsideration of how to improve the dynamic call allocation. Lift 

states are simulated during allocation and future costs of the system are 

estimated. The algorithm assumes that there is only one passenger for each 
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button push. This will not reflect reality when, for example, two or more 

passengers arrive simultaneously at a landing and call the lift.  

The GA is solved as a two level optimization problem. The first level deals 

with the assignment of all passenger requests to the various lifts. The GA is 

used to optimize this assignment. The second level is carried out as a 

Travelling Salesman Problem (TSP) in which the routes of each lift are 

optimized. 

5.1  First Level 

A  GA (19) is used with the following steps: initialization, evaluation of the 

population, selection, and, reproduction (crossover and mutation). 

● Initialization 

Individuals are coded considering all the requested landing calls when the 

system calls the algorithm. Note that, in the context of the GA, the term 

individual refers not to a passenger but rather to a possible scheduling by 

which to respond to landing calls. Thus, the length of the array holding an 

individual will be the number of landing calls that have to be attended. The 

landing calls are put in ascending order with respect to the floor where they 

have been requested. For example, for a building with six floors and two lifts 

in which four different passengers have called a lift on floors 1, 3 and 5, the 

individuals of the GA should be arrays of four elements (one for each call). 

Figure 1 shows this process of coding the individuals of the GA. The first 

individual is formed assigning the first call of floor 1 to the lift A, the second 
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call of floor 3 to the lift B, the third call of floor 5 upwards to the lift A and 

the fourth downwards to lift B. In each floor we consider there is a two button 

panel for the passenger to decide his travelling direction, upwards or 

downwards. In case both buttons are pushed, two different landing calls are 

registered from the same floor, and two different lifts could be assigned. 

Therefore, in this example, two different genes are created in the individual. 

Which lift is assigned to which request is random for a given individual; 

however, each request will be assigned once and once only for one individual. 

In this way, all possible assignments (polymorphisms or genes) are made 

available in the starting population.   

● Evaluation 

The fitness of each individual is calculated as the inverse of the square of the 

sum of all the expected waiting times of all the landing calls of the system, as 

shown in Eq. 2. For optimization with a GA, maximization, as opposed to 

minimization, of a fitness function is recommended (19). Then, the fitness of 

the individual h, is calculated as in eq. 4: 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ = 1
𝐸𝐸𝐸𝐸𝐸𝐸ℎ

= 1

�∑𝐼𝐼𝑖𝑖=1 ∑𝐿𝐿𝐿𝐿,𝑖𝑖−1
𝑗𝑗=1 𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗�

2   (4) 
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Figure 2 shows how the fitness value of the best individual increases iteration 

by iteration in one single run, as the individuals of the GA evolve to better 

solutions.  

● Selection 

The probability of selection 𝑝𝑝𝑝𝑝ℎ of individual h in the population formed by 

N individuals is computed according to the relation of its fitness to the overall 

population fitness: 

𝑝𝑝𝑝𝑝ℎ =  𝑓𝑓ℎ
∑𝑁𝑁𝑗𝑗=1 𝑓𝑓𝑗𝑗

      (5) 

where, 0 ≤ 𝑝𝑝𝑝𝑝ℎ ≤ 1. 

Once the probabilities have been computed a roulette-wheel selection method 

is used to choose which individuals to cross. 

Using Eq. 5, a proportion (𝑝𝑝𝑝𝑝ℎ) of the wheel (the overall population fitness) 

is assigned to each of the possible individuals. The higher the fitness of an 

individual, the larger its “segment” of the “roulette wheel”, and thus the 

greater the probability 𝑝𝑝𝑝𝑝ℎ it has of being selected. The selection process is 

analogous to spinning a roulette wheel and seeing where the ball rests. The 

implementation of this process is completely described in(19). 

● Reproduction 

Once selection has been made, a new population resulting from crossover and 

mutation applied to the selected individuals is created. The GA is elitist in its 

reproduction strategy, i.e., the winner individual from the previous population 
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evaluated is added to the new population created. Therefore, the fitness of the 

best individual of the new population will always be the same as or better than 

that in the old population.  

Selected individuals are first subjected to crossover. Two different individuals 

are selected, and by crossover another two new individuals are created. The 

crossover operation is applied according to a certain crossover probability. 

Crossover is what makes the GA succeed, and in this sense is the most critical 

part of the GA. 

Crossover operation: Certain elements (landing calls in individual arrays) 

that are common to both parents are inherited by children, while other 

elements are randomly adopted. In Fig. 3 there are 5 landing calls, for 3 lifts, 

A, B and C; the parent individuals have two lifts in common (one in the 2nd 

call and the other in the 4th call) which the children inherit; the other elements 

are selected randomly. 

Mutation operation: After crossover, selected individuals are subjected to 

mutation according to a certain mutation probability. An element (a landing 

call) of an individual is selected and changed randomly, i.e. the lift assigned 

to the call is changed. In Fig. 4 there are 5 landing calls, for 3 lifts, A, B and 

C; a mutation occurs in the 3rd call, where lift C replaces lift B. 

By crossing and mutation a new population with new individuals is created. 

Then, the same processes of selection and reproduction are repeated until a 

target value of fitness is achieved or until the algorithm has undertaken a 
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given maximum limit of iterations. In the lift dispatching problem, an optimal 

individual has to be found, and thus a decision reached before the next time 

the system calls the algorithm. 

In addition, all of the individuals of the GA population are feasible, as there 

always exist lift routes for any assignment of a set of landing calls to a set of 

lifts. This exists regardless of the number of stops or number of changes of 

direction the lifts have to complete. 

5.2 Second level 

This level optimizes the route of each lift. At the first level the landing call 

assignment is made, and then at the second level the optimum route that 

minimizes the average waiting time is created. 

To minimize the average waiting time, all the possible routes are evaluated.  

Possible routes are created on the basis of the landing calls assigned to the 

lift. It is necessary to take into consideration all the features of the lift: its 

situation, the number of passengers being carried, the car call, the landing 

call, its direction, etc. We considered and implemented some additional 

assumptions (apart from the Closs rules) for this dynamic system: 

● A car call has higher priority than a landing call, if there is no call 

from a floor the lift does not have to stop on that floor. 

● If the lift is moving when the algorithm is called, then the lift’s 

destination floor at that moment can be regarded as defined and as a 

restriction.  
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● The time to the destination floor is calculated and then the possible 

floors to stop at subsequently are those where landing calls have been 

made and those indicated by car calls from within the lift.  

● From the possible stops, that closest to the lift is identified. If there is 

enough space to carry a new passenger in the car, the closest call will 

be selected as the next destination. If there is not space, the car call 

with the shortest distance will be the selected (i.e. any landing calls 

are ignored). Figure 5 shows these possibilities for a car with capacity 

for five passengers. In the left building there is a lift with five 

passengers and another passenger has made a landing call from the 

third floor. The closest call is the landing call, but, because the car is 

full, the car call for the fourth floor is selected as the next destination. 

The lift on the right of Fig.5 has only four passengers, and the third 

floor is selected as the next destination. 

● Once a stop has been selected, all the calls for that floor are attached 

to the route. For example, two passengers may make the same car call 

and a landing call may coincide with a car call. In this way, one stop 

may serve more than one passenger. 

The above process for selecting the next destination is iterated until there are 

not more calls to be attended. All the calls will then be in the route, and the 

sum of the waiting time of all the passengers for that route moving in that lift 

is calculated according to Eq. 2. 
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6 Simulation 

To simulate different configurations and obtain performance indicators, we 

used Elevate, the well-known vertical transport simulation software mainly 

based on Dr. Peter’ developments, and released from Peters Research Ltd. (a 

detailed description can be found in (20) and at https://www.peters-

research.com)   

We selected two different configurations shown in Table 1. The second 

configuration is the most challenging one. The parameters for the simulations 

are the default ones in Elevate. The GA was implemented using Elevate 8’s 

option to insert external code in C (according to the manual (21)). Intensity 

was determined by a step profile with a minimum demand of 11% and a 

maximum demand of 13% of the population per 5 minutes. Profiles used 

were, outgoing, incoming and interfloor. 

On the other hand, we analysed the performance of the raw GA in a static 

situation; for a set of landing calls, we ran the algorithm to solve the 

assignment trying to find the optimal solution. The simulation involved a 

building of 20 floors with 4 lifts, with 5 landing calls, 2 upwards and 3 

downwards. In this situation, there are 4^5 possible solutions (i.e., 1024). We 

found the optimal solution and then we ran the GA with different 

combinations of number of individuals and iterations from 5 to 30. Figure 6 

shows the differences between the average waiting time of the passengers for 

the different GA configurations and the real optimal solution. The more 

https://www.peters-research.com/
https://www.peters-research.com/
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individuals and iterations, the best performance of the GA, as expected. 

However, due to the software and hardware constraints we used ten 

individuals and ten iterations for the real implementation. The crossover and 

mutation probability was set as 0.8 and 0.1 respectively. The crossover 

probability was quite high as we wanted the GA to evolve fast taking to 

account for the decision time available. The issue of the dispatching problem 

has to be solved in less than half a second (Sorsa(11), Siikonen(15)). As the 

time to solve the problem is limited, these values were experimentally 

determined by the decision time made available by the system processor 

constraints. Consequently, the values are strongly dependent on the hardware 

and software limitations of the system in which the GA could be 

implemented. 

6.1 Adjustments to the GA 

We evaluated several modifications to the basic GA described above. The 

adjustments, which can be activated and deactivated, are described below: 

● Stability (S): Two adjustments involve the concept of stability (S). 

The first adjustment prevents reassignment of a landing call that is 

assigned to a lift that is already in the process of stopping to attend 

that call, as suggested in (15). This modification avoids the creation 

of individuals with abnormally high waiting times due to such tardy 

reassignment. The second adjustment fixes the assignment of a 

landing call to an empty lift as soon as that lift has started moving to 
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attend the call. Thus, such a landing call cannot be reassigned (i.e., 

this “gene” of the individual is fixed). This modification prevents 

empty lifts from changing direction. The adjustments are applied 

when car load is less than 80% maximum capacity. 

● Seeding (Sd): This adjustment improves creation of the initial 

population of individuals each time the system calls the GA algorithm. 

One of the individuals of the population is formed using topological 

criteria (22), by assigning landing calls to the nearest lifts that satisfy 

all the requirements and assumptions explained in section 4. In this 

way the adjustment provides the GA with a reasonable preliminary 

solution so that the algorithm can evolve to better solutions faster.  

● Last best individual (LBI): Through this adjustment, each time the 

system calls the algorithm, a modified version of the best individual 

that was obtained in the previous call is included in the initial 

population of individuals. The previous best individual is modified by 

deleting any attended calls and adding assignments for any new 

landing calls randomly. This adjustment allows the GA to reach 

convergence to a better solution faster. 

● Penalization (P and P3): Excessively long passengers waiting times 

should be avoided. This problem can be tackled with constrained 

optimization (23). Equation 5 shows the modification, addition of a 
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penalty term, to for the evaluation of individuals. Equation 6 expresses 

the objective function that has to be minimized, the Estimated Waiting 

Time with Penalty (EWTP). 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ =  𝐸𝐸𝐸𝐸𝐸𝐸ℎ +  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ       

 (5) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ)                 (6) 

Two different penalization strategies have been implemented. First, a 

death penalty, P, that adds a big term to the fitness function for any 

individuals with a passenger waiting time bigger than a fixed amount 

(30 seconds as a threshold), as shown in Eq. 7. When using P 

penalization, the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ term of Eq. 5, takes the value of 

the 𝑃𝑃ℎ, as defined in Eq. 7: 

𝑃𝑃ℎ =  �1000 ∗ 𝐼𝐼 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎  𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗 > 30 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �    

  (7)  

The value 1000 was selected as an arbitrary value higher than any of 

the passengers’ longest waiting times observed in the simulation for 

any of the algorithms tested. As the EWT is the sum of the waiting 

times for the passengers for all the lifts, we penalize the GA 

individuals with estimated waiting times bigger than 30 seconds 

proportionally to the number of cabs in the installation, I. Then the 
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penalization term depends on the number of lifts in the buildings. In 

addition, 30 seconds is the threshold value that the average waiting 

time should not exceed (17). 

The second penalization strategy uses a dynamic penalty involving 

consideration of the average real waiting time (RWT). RWT is the 

average waiting time for current passengers calculated from the time 

that they pressed a call button. If the EWT of an individual is smaller 

than a certain reference value, the penalty P3 is zero, see Eq. 8. 

Otherwise, P3 is calculated as the square of the difference between the 

individual’s EWT and the reference value. The reference value is 

computed as the higher of RWT and a threshold value (30 seconds in 

this study). The penalty is calculated for each lift i and for all landing 

calls, and so, under this penalization strategy, the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ term 

of Eq. 5, is given by: 

𝑃𝑃3ℎ =  ∑𝐼𝐼
𝑖𝑖=1 ∑𝐿𝐿𝐿𝐿,𝑖𝑖

𝑗𝑗=1 𝑚𝑚𝑚𝑚𝑚𝑚 (0, �𝐸𝐸𝐸𝐸𝐸𝐸ℎ,𝑖𝑖,𝑗𝑗 − (𝑅𝑅𝑅𝑅𝑅𝑅, 30) �)2         (8) 

The inclusion of these penalties in GA fitness calculation precludes 

evolution of individuals with long estimated waiting times. 

6.2 Statistical analysis 

We analysed the GA and the effects of the adjustments in two phases: 

1. Individual effects over the GA. First of all, to compare the effects 

over the GA planning tool of the adjustments commented before, six 
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different versions of the GA were considered: GA without any 

adjustment, GA using the last best individual technique (GA+LBI), 

GA with seeding (GA+Sd), GA with dynamic penalization (GA+P3), 

GA with stability (GA+S) and GA with all adjustments 

(GA+LBI+Sd+S+P3=GA+ALL). These algorithms were applied to 

the building configuration 1, C1 (6 cars and 12 floors) under three 

different passenger profiles: outgoing, incoming and interfloor. Each 

tested profile had 400 landing calls to attend to. The resulting waiting 

times of the different GA versions were compared using a one factor 

ANOVA test. The results were compared using a one factor ANOVA 

test. Distributions of the passengers waiting times were also presents 

in histograms for visual comparison. 

 

2. Combined effects over the GA. Six different combinations of 

adjustments were also evaluated with a more challenging building 

configuration (C2). The traffic profile applied was interfloor so that 

the raw planning algorithm would not be influenced by its lack of a 

module to predict the number of passengers behind each call. The 

adjustment combinations were: GA+S, GA+S+P, GA+S+P3, 

GA+S+LBI+Sd, GA+S+LBI+Sd+P, and, GA+S+LBI+Sd+P3. We 

ran ten different simulations on the same configuration for each of the 

different versions of the GA. The number of landing calls was 350 per 
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simulation. The resulting waiting times of the different GA versions 

over the 10 simulations were compared using a one factor ANOVA 

test.  

6.3  Comparison with other algorithms 

We compared the best version of the GA with combined effects to two well-

known commercial algorithms available on ELEVATE based on rules, called 

group collective (GC) and estimated time of arrival (ETA). 

The pre-stage Elevator Group Control System (EGCS) presented in this paper 

(i.e., the modified version of the GA) could improve by using additional 

passenger traffic modules to handle high demanding system configurations as 

up-peak (i.e., most of the passengers entering the building) or down-peak (i.e., 

most of the passengers leaving the building). Under the assumption that one 

request corresponds to exactly one passenger, we have compared the GA with 

all the adjustments to GC and ETA algorithms for 3 different step profiles 

with increasing handling capacity (HC) from 11 to 13, being the theoretical 

HC 10%. The tested profiles were STEP1 (45% Incoming-45% Outgoing-

10% interfloor), STEP2 (0% Incoming-100% Outgoing-0% interfloor) and 

STEP3 (80% Incoming-15% Outgoing-5% interfloor). All of them were for 

building configuration C2. 
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7 Results 

7.1 Individual effects 

Tables 2, 3 and 4 show for outgoing, incoming and interfloor passenger 

profiles, respectively, the mean and standard deviation of the passenger 

waiting times for basic GA, GA with one adjustment, and GA+ALL. Relative 

to the other algorithms, GA+S and GA+ALL had significantly lower means 

and standard deviations (p<0.05) (Table 2). The stability adjustment was the 

most effective single adjustment for decreasing the average waiting time of 

passengers. 

GA+ALL had the lowest means and standard deviations with all passenger 

profiles and was significantly better than even GA+S (p<0.05) with the 

outgoing passenger profile (Table 2). 

Results for outgoing, incoming and interfloor traffic profiles were similar 

(Tables 2, 3 and 4): GA+P3, GA+S and GA+ALL performed better than the 

other algorithms. The stability and the penalization factor P3 adjustments 

were those that most effectively reduced waiting time. 

In order to visualize the impact of each of the adjustments on passenger 

waiting time, Figs 7, 8 and 9 show the results of one specific execution of 

each adjustment in a histogram. With the GA+ALL algorithm waiting times 

are more condensed around shorter waits.  
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7.2 Combined effects 

Ten different simulations on the same configuration were run for each of the 

different versions of the GA. Table 5 shows the mean and standard deviation 

of waiting time for the six different algorithms considered. Significant 

differences in paired test were found between GA+S+LBI+Sd, 

GA+S+LBI+Sd+P, GA+S+LBI+Sd+P3 on the lower performance side and 

GA+S, GA+S+P and GA+S+P3 on the higher performance side. These 

differences can be considered to define, in terms of performance at 

minimizing waiting times, two groups of algorithms for this interfloor traffic. 

GA+S+P and GA+S+LBI+Sd+P3 presented the lowest values of mean and 

standard deviation of waiting times. 

Table 6 shows the results for the ten different executions of each of the six 

versions of the algorithm; GA+S+LBI+Sd+P3 achieved lower minimum and 

maximum waiting times. 

 

 

 

7.3 Comparison with other algorithms 

Table 7 shows the results of the comparison of the algorithms GA+ALL, GC 

and ETA. The table shows the changes in % (with respect to arbitrary values) 

of the mean and the range of the interval of 10 trials for the average and 

longest values of several time measures related to the simulation of the 
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performance of the system (waiting time, transit time and time to destination). 

On the one hand, negative % values of the table signify improvements in the 

mean or range of the measurements with respect to the reference values. O, 

and on the other hand, positive % values denote decline. The GA+ALL shows 

the best results in terms of transit time (TT) and most of the times for the 

longest waiting times (LWT), highlighting the power of genetic algorithm as 

elevator car routers. 

 

 

8 Discussion and conclusions 
 

The current work evaluates, for different building and traffic flow 

configurations, several techniques relevant to a successful implementation of 

a genetic algorithm in the dispatching problem for vertical transportation. 

The different techniques or adjustments have been investigated in isolation of 

each other and in various combinations. The stability adjustment was the most 

effective single adjustment for decreasing the average waiting time of 

passengers, whilst the P3 penalization adjustment also gave significant 

benefits. The best performance was obtained when all the presented 

adjustments were applied to the basic GA.  
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In addition, this algorithm was compared to two commercial ones. Our 

algorithm led to better results in terms of longest waiting times and transit 

times, highlighting the power of genetic algorithms as elevator car routers. 

Further research is required to develop, implement and evaluate a module to 

estimate the number of passengers per call. Such a module, which might be 

based on records of passenger movements, is needed confirm adequate 

performance of the GA with outgoing and incoming passenger profiles. 

The study uses the one factor ANOVA test to compare techniques; this test 

might be used to select which version of the algorithm is most appropriate. 

All of the techniques proposed here can be readily implemented in 

commercial software to improve the performance of GAs. 
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10 APPENDIX A: LIST OF ACRONYMS 
 
ANN: Artificial Neural Networks. 

ANOVA: Analysis of Variance. 

ATT: Average Transit Time. 

ATTD: Average Time to Destination. 

AWT: Average Waiting Time. 

C1: Building configuration (6 cars, 12 floors, average population/ floors for 

populated Floors, car capacity (Kg) 1600) , 400 landing calls to be attended. 

C2: Building configuration (6 cars, 32 floors, average population/ floors for 

populated floors, car capacity (Kg) 850), 350 landing calls to be attended. 

EGCS: Elevator Group Control System. 

ELEVATE: simulation software for vertical transportation. 

http://www.elevateconsulting.co.uk/ 
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ETA: Estimated Time Arrival. A rule based dispatching algorithm. 

EWT: Estimated Waiting Time. 

GA: Genetic Algorithm. 

GA+ALL: The algorithm GA with all the next adjustments LbI+Sd+S+P3. 

GA+ALL= GA with all adjustments (GA+LBI+Sd+S+P3).  

GA+LBI: The GA algorithm with the Last Best Individual adjustment. 

GA+P: The GA algorithm with the P penalty adjustment. 

GA+P3: The GA algorithm with the P3 penalty adjustment. 

GA+S: The GA algorithm with the stability adjustment. 

GA+S+LBI+Sd+P= The GA algorithm with the S, the LBI, the Sd and the P 

adjustments. 

GA+S+LBI+Sd+P3= The GA algorithm with the S, the LBI, the Sd.and the 

P3 adjustments. 

GA+S+LBI+Sd= The GA algorithm with the S stability, the LBI and the Sd 

adjustments. 

GA+S+P= The GA algorithm with the S and the P adjustments. 

GA+S+P3= The GA algorithm with the S and the P3 adjustments. 

GA+Sd: The GA algorithm with the Seeding adjustment. 

GC: Group Collective, a rule Based dispatching algorithm. 

HC: Handling Capacity, a percentage of the population of the building in a 

vertical transportation system that the system can move in up-peak mode in a 

5 minutes period. 
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LBI: Last Best Individual adjustment. 

LTT: Longest Transit Time. 

LTTD: Longest Time to Destination. 

LWT: Longest Waiting Time. 

NSF: Next Stopping Floor. 

P: Penalization. 

P3: P3 Penalization 

RWT: Real Waiting Time. The average of the real waiting times for the 

passengers already in the system. The real waiting time of passengers in the 

system is the waiting time from the moment they press the button until the 

lift’s arrival in the simulation. 

S: Stability adjustment. 

Sd: Seeding adjustment. 

STEP1: Mixed passenger profiles where 45% of the landing calls were for 

incoming, 45% were for outgoing and 10% were for interfloor with increasing 

handling capacity from 11% to 13%. 

STEP2: Mixed passenger profiles where 0% of the landing calls were for 

incoming, 100% were for outgoing and 0% were for interfloor with increasing 

handling capacity from 11% to 13%. 

STEP3: Mixed passenger profiles where 80% of the landing calls were for 

incoming, 15% were for outgoing and 5% were for interfloor, with increasing 

handling capacity from 11% to 13%. 
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TSP: Travelling Salesman Problem. 
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11 Figure Captions 
 

Figure 1. Coding of the individuals of the GA based on the request calls 

Figure 2. Obtaining a better fitness value iteration by iteration on a single run. 

Figure 3. Crossover operation example 

Figure 4. Mutation operation example 

Figure 5. Example of how to choose a call depending on the capacity of the 

lift car. 

Figure 6. Differences between the average waiting time of the optimal 

solution and the average waiting time of different GAs with 5-30 individuals 

and 5-30 iterations. 

Figure 7. Histogram of passenger waiting time for the outgoing passenger 

profile in C1 configuration for different adjustments. 

Figure 8. Histogram of passenger waiting time for the incoming passenger 

profile in C1 configuration for different adjustments. 

Figure 9. Histogram of passenger waiting time for the interfloor traffic profile 

in C1 configuration for different adjustments 
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