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Abstract

Marine Renewable Energy (MRE) systems are designed to maximise energy generation and
ensure survivability. The traditional design process is based on pure environmental con-
ditions, tends to be too conservative and limits the decision-making options. This paper
presents a preliminary study on a novel risk-index combining the probabilistic occurrence
matrix of sea-states with a consequence matrix. The stochastic direct sampling method is
used for the quantification of occurrence matrices and consequences are estimated for fa-
tigue effects and extreme loads. The paper shows a comparison of three design points (DPs)
with increasing conservatism selected using metocean data for the period 1990-2000: high-
and medium-risk DPs based on the novel risk index, and a low-risk DP obtained from a
traditional PCA-based environmental contour. These DPs are compared to metocean data
collected via in-situ measurements for the period 2000-2020, where the designed MRE sys-
tem is supposed to operate. Results show that the low-risk DP overestimates the design Hs

by 50%, while the high-risk DP underestimates it by 20%. The former would result in signif-
icant over-costs, while the later would very likely lead to catastrophic damages. The design
Hs suggested by the medium-risk DP matches with the maximum Hs measured between
2000-2020, showing its suitability.

Keywords: Marine Renewable Energy Design, Risk Index, Re-analysis
metocean data, Environmental contours, Fatigue and Extreme loads.

1. Introduction

Considering the ever-increasing worldwide energy demand and the undeniable environ-2

mental impact associated with the combustion of fossil fuels exposed in IPCC (2018), the
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energy transition towards a zero-emission energy system is one of the most crucial challenges4

of the mankind this century. In this transition, marine renewable energies can play a crucial
role, e.g. IRENA (2019) estimates that installed offshore wind capacity is expected to multi-6

ply by 30, and this will require a massive change of scale for the sector in less than 30 years,
at a speed unparalleled by the past development of other energy technologies. This rapid8

development of the sector leads to a proliferation of new opportunities and major challenges
for the design of next generation cost-effective Marine Renewable Energy (MRE) systems.10

Besides the economical perspective, the combination of a highly dynamic and harsh
offshore environment (Adedipe et al. (2016)), ever-increasing rotor sizes and resulting loads12

(IRENA (2019)), and more powerful and frequent extreme events (Penalba et al. (2018))
makes the design of new solutions crucial for the MRE sector. In this sense, it is necessary to14

undertake the accurate characterisation of environmental conditions and evaluation of their
impact on the different marine structures, which usually relies on pre-established design16

criteria included in various marine industry standards and guidelines, such as ISO (2015);
DNV-GL (2017); NORSOK (2017) or IEC (2019).18

These industry standards are generally based on joint metocean environment descriptions
enabled by the availability of hindcast data. The metocean information of the last few20

decades is used to extract indicators for the determination of critical environmental loads,
which enables the structure damage assessment during diverse conditions, from fatigue loads22

to extreme load rupture failures. However, the inference of these indicators is surrounded
by different sources of uncertainty and this can result in overdesigned structures in order to24

avoid unexpected situations.
One of the most relevant and up-to-date industry standards in this specific case is IEC26

(2019), where design requirements for marine energy systems are detailed. The design
process for MRE systems is defined as an iterative process where risk assessment plays28

an important role. The objective of the risk assessment is to provide further information
about the previously mentioned uncertainties. In fact, the standard recommends defining30

consequences for different failures and combining them with the probability of the event or
failure.32

Hence, environmental conditions are divided into operational and extreme, defining a
threshold wave height for each case. Once all relevant environmental conditions are de-34

termined, design load cases for each set of conditions are defined in order to evaluate the
damage associated to each case: normal, extreme, abnormal, and transport and erection36

design categories, all purely based on environmental conditions. In addition, a set of limit
states, e.g. ultimate limit state or fatigue limit state, are defined as limiting thresholds38

beyond which the MRE system fails to satisfy design requirements. In order to minimise the
impact of the different sources of uncertainty, partial safety factors are suggested for each40

loading category, which intend to achieve a target safety level. However, these safety factors
often add up to the already conservative techniques to estimate the extreme environmental42

conditions, resulting in significant over-engineering exercises.
If a MRE structures proofs to fulfil all the requirements, it is considered acceptable,44

leading to the beginning of the development stage.
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1.1. Environmental contour modelling46

One of the most popular approaches for the determination of extreme conditions oriented
to the design of marine structures is the use of environmental contours. These contours define48

the boundary of sea-state conditions within a return period based on past metocean data.
That way, the extreme structural loading and response analysis on the marine structure are50

limited to the sea-states lying on the contour, which significantly reduces the number of
cases to be studied. In addition, this approach is particularly appealing due to its lack of52

dependency on any specific structure. Indeed, these environmental contours are included
in most of the industry standards and guidelines ISO (2015); DNV-GL (2017); NORSOK54

(2017).
However, environmental contours provide just an approximation of the expected extreme56

events and, thus, should be used with care. Ross et al. (2020) review different techniques for
the development of environmental contours, and suggest the potential applications of these58

contours and how to sensibly use them for each application.
In the environmental contour generation process, the first step is modelling the joint prob-60

ability distribution of metocean variables that define the sea-state. The literature presents
a number of different models which can be classified into two main groups: parametric and62

non-parametric models. For non-parametric models the kernel distribution is used, typically
a multi-variate normal density function, where the maximum likelihood estimation method64

is used to fit the required kernel parameters. Although suitable for the description of the
main body of a distribution, the description of distribution tails is highly sensitive to the66

kernel model parameters. Therefore, these parameters must be determined carefully. An
example of this method is shown by Haselsteiner et al. (2017a) for the determination of68

extreme wind loads for an offshore wind turbine.
Similarly, parametric models can be used for the description of the contours. Copula70

models, considering that sea-states are defined as the combination of peak periods (Tp)
and significant wave heights (Hs), allow for the definition of an inter-dependence between72

{Tp, Hs} to describe the joint density distribution. The estimation of the copula model
requires fitting the marginal distributions of Tp and Hs, and estimating the tail of these74

marginal distributions via extreme values models. Copulas have been widely used in the
literature for diverse applications where different copula families have been suggested, e.g.76

Gaussian or ’max-stable’, being the last model the most suited one for the description of the
boundaries of metocean characteristics, as stated by Gudendorf and Segers (2010). More78

related to offshore engineering applications, Vanem (2016) demonstrates the need for asym-
metric distributions in copula models, which are later used, for example, in Fazeres-Ferradosa80

et al. (2018) for the design of metocean data for offshore wind farms. An alternative to
copula models are the hierarchical conditional models, where the dependence {Tp, Hs} is82

represented as a product of densities. This partition allows for the use of simple distribution
forms, such as the Weibull distribution presented in Bitner-Gregersen and Haver (1989). The84

combination of copulas and hierarchical representations is also suggested by Yu et al. (2014).
Finally, conditional extreme models have also been suggested in the literature due to the86

need for determining boundaries of conditional distributions under different characteristics,
as in Jonathan et al. (2010).88
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The different joint probability distributions of metocean variables are then used to esti-
mate the environmental contours. These contours limit the extreme conditions that marine90

structures are likely to encounter within a pre-determined return period. The most signif-
icant method for the offshore engineering field is the inverse first-order reliability method92

(IFORM) that generates isodensity contours with a determined non-exceedance probability
based on a hierarchical model, as suggested by Winterstein et al. (1993). Recently, this94

method has been generalised to include more appropriate elliptical contours by Lutes and
Winterstein (2014) and extended from first- to second-order contours in Chai and Leira96

(2018).
Joint exceedance contours are also well-known approaches in ocean engineering, which98

represent a domain with an exceedance probability defined as a function of the return period
by Gouldby et al. (2017). An issue of the IFORM method is that the probabilistic interpre-100

tation differs between the Gaussian and environmental spaces. In order to preserve the same
statistical properties, a direct sampling (DS) method is suggested in Huseby et al. (2015),102

which has later been extended to 3-dimensional contours in Vanem (2017). Alternatively,
Jonathan et al. (2014) proposes a method to generate joint exceedance contours where the104

pre-defined probability value is constant throughout the whole contour. One last approach
that enables the definition of probabilistic contours via joint probability density functions106

is a method where isodensity contours are pre-defined. These isodensity contours can easily
be associated to an exceedance probability, as demonstrated by Haselsteiner et al. (2017b).108

All the statistical methods reviewed in this section provide a region where a MRE sys-
tem where the system is likely to operate within a determined return period. However, each110

method can define a significantly different region, suggesting different Hs and Tp limits for
the design of the MRE systems. The most suitable statistical method is demonstrated to112

vary with the geographical location of the area of study. Neary et al. (2020) study four
different areas in the US, including data from 39 locations from all US coastal regions, and114

conclude that considering geographical variations in the wave resource is essential for an ad-
equate selection of the contour method. As a basis for an objective and automated contour116

method selection, Neary et al. (2020) suggest that the most relevant geographical factor to
be considered are the weather pattern (frequency and strength of seasonal storms) and local118

bathymetry (special interest is shown in shallow water areas). Hiles et al. (2019) also high-
light the impact of geographical characteristics in the estimation of extreme events, where120

different statistically homogeneous regions were identified throughout the British Columbia,
Washington and Oregon coasts. Authors also suggest the impact of the bathymetry on the122

development of extreme waves, with Hs limit varying from 17 m on highly exposed locations
to 3.4 m at more sheltered locations. Overall, the authors conclude that different contours124

match well for Tp < 20s, while discrepancies arise for Tp > 20s. Similarly, the shape of the
contour is shown to stretch upwards with higher mean Hs values.126

1.2. Design criteria from contours

Regardless of the method used for its definition, environmental contours are modelled128

with the aim of estimating the extreme environmental loads that marine structures should be
able to withstand within a pre-determined return period. In fact, the main motivation for the130
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use of environmental contours in the design of marine structures is the determination of the
most restrictive environmental conditions in a computationally efficient manner. That way,132

the response of the marine structure is estimated only for the extreme conditions determined
by the contour, which significantly reduces the computational burden. The evaluation of the134

response has been carried out using diverse numerical and experimental approaches (see Coe
et al. (2018)), which must be transformed into a domain of structural failure probability.136

The most basic approaches estimate the response of the structure as a function of the
different environmental conditions via an accurately fitted statistical model, as in Gouldby138

et al. (2017). More complex procedures include reliability models that incorporate structural
failure probability functions based on the exceedance of a given structural resistance.140

The traditional process for marine structures is a semi-automatised process where the
characteristics of the metocean conditions in a given location directly determine the design142

characteristics of the structure, as illustrated in Figure 1. First, data collected via in-situ
measurements or hindcast climate models are used for the characterisation of metocean con-144

ditions, determining the operational [Xoper(Tp, Hs)] and extreme environmental conditions
[Xextr(Tp, Hs)]. Marine renewable energy systems are usually designed to produce under146

the operational mode and stop operating to reduce potential structural damages under sur-
vival mode, as illustrated in Figure 1. Thus, the response of the structure for operational148

[R|Xoper(Tp, Hs)] and extreme conditions [R|Xextr(Tp, Hs)] is evaluated, which are used to
estimate the fatigue loads and extreme mechanical rupture loads, respectively. Finally, the150

design of the structure at different critical points is determined in order to withstand these
loads. The extreme loads are the most critical events, which are typically based on environ-152

mental contours.

Resource
characterisation

Load
characterisation

Structural
design

Oper. conditions
Xoper(Tp, Hs)

Extr. conditions
Xextr(Tp, Hs)

Fatigue
loads

Mechanical
rupture load

Response
prediction

Oper. response
R|Xoper(Tp, Hs)

Extr. response
R|Xextr(Tp, Hs)

Figure 1: Traditional design workflow.

As a consequence, although post-processed via numerical response predictors, one can154

say that the decisions on the final design of marine structures are adopted solely based
on pure metocean data from the contours. Furthermore, environmental contours include156
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the boundary of the probabilistic analysis, but ignores the likelihood of these conditions
and their consequences, hindering more advanced decision-making processes that may help158

preventing unintentional design conservatism.
In this context, the present paper presents a novel approach that combines the probability160

of extreme metocean conditions and the consequences on the structure to define a preliminary
risk index to assist in the design of MRE systems.162

The remainder of the paper is organized as follows. Section 2 presents the proposed risk
index methodology, Section 3 defines the Case Study, Section 4 presents the results, Section164

5 provides a discussion on the risk index and the main future lines to further develop this
risk index, and Section 6 draws the main conclusions of the study.166

2. Methodology

The proposed risk index (R) is defined as the combination of the resource occurrence168

matrix (X ) and the consequence matrix (C) which are defined independently and specifically
for each location and MRE system, respectively. Figure 2 shows the proposed risk index170

approach.

Datasets
Fit distribution

(MLE est.)

joint
PDF

environmental

contour

Post
processing

Occurrence
Matrix (X )

Direct sampling

[Hsi, Tpi]
N
i=1

Consequence
Matrix (C)

Risk Analysis Risk Index (R)

Engineering

Criteria

- Site-specifics

- FMEA

- Standards
- Risk Strategy

PDF (Tp)

PDF (Hs)

Figure 2: Risk Index definition flow chart.

The occurrence matrix defines the occurrence probability of a given sea-state within a172

given return period (Tr). The consequence matrix quantifies the consequence criticality of
the marine structure for each sea-state based on design criteria of industry standards and174

expert knowledge elicitation methods, such as failure modes and effects analysis (FMEA).
Both the inference of the occurrence matrix and the definition of the consequence matrix176

follow a systematic approach described in Section 2.1 and Section 2.2, respectively. Note
that this paper presents a preliminary risk analysis framework that may be further com-178

plemented in future implementations. Refer to Section 5 for more insights on the potential
improvements.180

2.1. Future occurrence matrix determination

The occurrence matrix is inferred from the environmental contour, which defines the joint182

probability distribution of the pair {Tp, Hs} conditioned on extreme events for a given return
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period. In turn, the environmental contour is defined using historical metocean data, which184

needs to be adequately organised as a joint {Tp, Hs} probability density function (PDF).

2.1.1. Historical data186

Historical metocean data for specific locations is usually provided by national or interna-
tional oceanographic agencies, such as the NOAA (2021) National Oceanic and Atmospheric188

Agency in the Unites States or Puertos del Estado (2021) in Spain, which own sensing equip-
ment in the areas of interest and in-house numerical models calibrated against these mea-190

surements. Hence, historical metocean data from different sources is typically employed,
collected via either in-situ measurements as in Ruggiero et al. (2010), satellite altimeter192

measurements (see Young et al. (2011)), or atmospheric re-analyses of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) as suggested by Bertin et al. (2013);194

Zheng et al. (2014); Reguero et al. (2015). In fact, the combination of measurements and
re-analysis methods is also a typical procedure. For example, Ulazia et al. (2017); Penalba196

et al. (2018) use in-situ measurements, which serve as validation/calibration datasets for
re-analysis datasets.198

In the present paper, two different re-analysis datasets are used:

� ERA5 is the latest global re-analysis of the ECMWF that covers the period from200

1979 to the present (to be extended shortly) with a significant spatial and temporal
resolution, 30 km and 1 hour, respectively. Stefanakos (2019) has recently proved that202

ERA5 improves its previous versions developed by the ECMWF.

� SIMAR is an ensemble of modelling metocean data created upon a high-resolution nu-204

merical model by the Spanish Oceanographic Agency Puertos del Estado, which covers
the coast along the Iberian Peninsula between 1958-2020 with a temporal resolution206

of 1 hour.

In addition, buoy-measurements provided by the Spanish Oceanographic Agency Puertos208

del Estado are used for the validation of the data from re-analyses. This validation is later
shown in Section 3.1 using three statistical metrics (root mean square difference (RMSD),210

Pearson correlation coefficient and standard deviation) visualised through Taylor diagrams.

2.1.2. Environmental contours212

The PDFs of a set of K data samples of wave height, H = {h1, . . . , hK}, and wave period,
T = {t1, . . . , tK}, are fitted through the Maximum Likelihood Estimation (MLE) algorithm.214

The MLE estimates the best fitted parameters for the selected parametric distributions. In
this case, the three-parameter Weibull PDF is used for the wave height, as suggested by216

Haselsteiner and Thoben (2020):

fH(h) = (
β

α
)(
h− ψ
α

)β−1exp(−((h− ψ)/α)β) (1)

where ψ is the location parameter, α is the scale parameter and β is the shape parameter.218
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The PDF of the wave period is defined as a conditional distribution dependent on the
PDF created for the wave height in (1). To this end, the log-normal distribution is fitted:220

fT |H(t|h) =
1

tσ
√

2π
exp(−(ln(t)− µ)2

2σ2
) (2)

where µ is the expected value and σ is the standard deviation. The dependence between
H and T is modelled by defining the expected value and the standard deviation in (2) as a222

function of H:

µ(h) = E(ln(T )|H = h) (3)

σ(h) = SD(ln(T )|H = h) (4)

This dependency structure enables the integration of the both PDFs. The MLE algo-224

rithm estimates the optimal distribution parameters that minimize the error for the provided
input data.226

The joint PDF describes the joint probability of occurrence of wave height and period
through the combination of (1) and (2):228

fT,H(t, h) = fH(h)fT |H(t|h) (5)

By making use of environmental contour techniques it is possible to draw bounds on
extreme events using various methods. This research focuses on the use of Monte Carlo230

methods to infer environmental contours through the DS approach presented in Bang Huseby
et al. (2013) for the determination of the future occurrence matrix.232

2.1.3. Direct sampling occurrence

The Monte Carlo sampling approach enables the probabilistic inference of N random234

variables of the pair {Tpi , Hsi}Ni=1 from the parametric distributions learned from data for a
given return period and conditioned on extreme events Bang Huseby et al. (2013). Every236

random variable pair {Tpi , Hsi} is located in the 2-dimensional occurrence map and their
occurrence counters are increased. This procedure is repeated for a high-number of trials238

(N=1e6 in this paper), and by the law of big numbers, the mean values of each of the points
in the occurrence map indicate the probabilistic occurrence index for each pair of {Hsi , Tpi}.240

The occurrence matrix has been implemented using the ViroCon library in Python, as in
Haselsteiner et al. (2019).242

2.2. Consequence matrix determination

Environmental loads on marine structures can cause different damages ranging from mi-244

nor fatigue degradation events to spontaneous and dramatic rupture of a component or part
of the structure. These consequences are directly related to the environmental conditions246

and, thus, it should be possible to quantify the consequence for each sea-state based on the
input load and the corresponding mechanical degradation effect. Ideally, this quantifica-248

tion should be supported by a FMEA that elicits expert knowledge to (i) identify failure
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cause-consequence relationships, (ii) develop experimental campaigns and (iii) implement250

numerical simulations.
If potential damages are divided into two main groups as in Coe et al. (2018), i.e. fatigue252

effects and extreme loads, consequences can also be quantified based on the criticality of
these effects. For example, in the case of fatigue effects, loads are relatively low, but lead to254

structural damages due to cumulative effects. These cumulative effects are usually illustrated
by means of stress-life (S-N ) curves that depend on the load amplitude (see Figure 3 (a)),256

which is directly related to the wave height as in DNV-GL (2014). Therefore, it can be
assumed that the impact of fatigue loads increases with wave height. However, this increase258

is not linear, meaning that the consequence criticality increases faster than the wave height
(as an inverted S-N curve), as represented in Figure 3 (b).260

a) A typical S-N curve for cumulative fatigue effects
Coe et al. (2018).
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b) Consequences as a function of Hs.

Figure 3: Illustration of consequence variations.

Extreme loads may not be relevant for the analysis of the fatigue effects, but they are
critical for the design of a marine structure. Therefore, the consequence criticality increases262

significantly in the extreme load zone, as illustrated in Figure 3 (b).
Hence, the preliminary consequence matrix defined in the present study (see Section 3.2)264
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follows the trend outlined in Figure 3 (b) where only the impact of wave height is considered
for the sake of simplicity. However, for a precise qualitative and quantitative analysis of266

the environmental consequences, relevant improvements should be incorporated into this
preliminary consequence matrix. On the one hand, the impact of wave period must be268

included, since wave period is demonstrated to be a relevant parameter of environmental
loading on marine structures. On the other hand, the consequence criticality should be270

defined upon an exhaustive reliability analysis, where a probabilistic analysis is considered for
fatigue damage quantification, as by Horn and Leira (2019). Therefore, future developments272

of the risk index approach should include the effect of wave periods.

2.3. Risk index quantification274

Once the occurrence and the consequence matrices are defined, the risk index can be
calculated as follows,276

R(Tp, Hs) = X(Tp, Hs)× C(Tp, Hs), (6)

where the dimensions of R are identical to X and C, and indicates the risk of each pair of
{Tpi, Hsi} with respect to the structural integrity of the MRE system. High risk index values278

represent design requirements that should be considered, while low risk values represent
requirements that could be neglected.280

Hence, this risk index provides a deeper understanding of the design requirements by
combining probabilistic environmental conditions of a given location within a selected return282

period with the potential consequences of each sea-state. Accordingly, the risk index will be
able to:284

i. warn the decision-makers of an area of low consequence criticality that, combined with
high occurrence probability, should be considered on the design of the MRE system.286

ii. dissuade the decision-makers from considering exaggerated design requirements that
lead to excessively conservative design decisions.288

3. Case study

For a preliminary analysis of the methodology presented in Section 2, a potential location290

for a MRE farm is considered in the Bay of Biscay. The necessary metocean data collected
from in-situ measurements and atmospheric re-analyses are presented in Section 3.1, while292

a preliminary consequence matrix is created in Section 3.2.

3.1. Resource characterisation294

The definition of the occurrence matrix requires a precise characterisation of the resource
at the selected location, illustrated in Figure 4 (a). The three sets of metocean data described296

in Section 2.1.1 are compared in order to select the most appropriate one to build the
occurrence matrix.298
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a) Geographical location of the different datasets.

b) Tp Taylor diagram. c) Hs Taylor diagram. d) WEF Taylor diagram.

Figure 4: Metocean re-analysis data validation against the BV-buoy.

Table 1 presents the characteristics of each dataset, including the precise geographical
location, period of time covered by the dataset, and mean Tp, Hs and wave energy flux300

(WEF), assuming that WEF is calculated combining Hs and energetic period (Te) as follows,

WEF = 0.49 H2
s Te, (7)

where302

Te = α Tp, (8)

and α = 0.9, as suggested in Tucker and Pitt (2001).
The data collected with the in-situ wave-measuring buoy Bilbao-Vizcaya that belongs304

to Puertos del Estado (BV-buoy) is considered as the ground-truth reference benchmark
to compare and validate the other two datasets. To this end, the closest gridpoints of the306

SIMAR model (ID 3155039) and the ERA5 reanalysis are studied, which are 1.11 km and
1.37 km away from the BV-buoy, respectively.308
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Table 1: Resource characteristics of the different datasets.

Dataset
Position
(lon,lat)

Distance
to buoy

Time
Period

Tp
(1990-2020)

Hs

(1990-2020)
WEF

(1990-2020)
BV-buoy (-3.04◦, 43.64◦) - 1990-2020 9.65 1.93 25.5
SIMAR

(3155039)
(-3.04◦, 43.63◦) 1.11 km 1958-2020 10.23 1.73 25.3

ERA5 (-3.05◦, 43.63◦) 1.37 km 1979-2020 10.93 1.63 19.7

Although each datasets covers a different time period, the mean Tp, Hs and WEF values
for each dataset presented in Table 1 correspond to the same time period (1990-2020), so310

that the results are comparable. Otherwise, the long-term variations of the wave conditions
may bias the comparison.312

In fact, Ulazia et al. (2017), Reguero et al. (2019) and Ulazia et al. (2020), among
others, have demonstrated significant variations of the metocean conditions during the last314

decades, meaning that mean metocean parameters can significantly vary depending on the
time interval considered in the analysis. In any case, the mean WEF lies between 18 and 25316

kW/m for all the different datasets, which also matches with other values presented in the
literature for the same area, such as Ulazia et al. (2017); Reguero et al. (2019); Ulazia et al.318

(2020).
Using the same time period for the three datasets, i.e. 1990-2020, results are comparable320

and conclusions on the suitability of each dataset can be drawn. On the one hand, SIMAR
and ERA5 datasets overestimate Tp and underestimate Hs and WEF . It should be noted322

that the underestimation of the Hs and WEF variables is a common issue for re-analysis
datasets and wave models. Between the two datasets, the ERA5 re-analysis shows a poorer324

performance, especially for the WEF variable, which is particularly poor at extreme events.
In contrast, the SIMAR model shows relatively good agreement with in-situ measurements.326

In fact, the SIMAR model is specifically designed to accurately characterise the metocean
conditions along the cost of the Iberian peninsula, while ERA5 is a global model.328

Figures 4 (b)-(d) illustrate the Taylor diagrams for Tp, Hs and WEF, respectively, where
the coherency and correlation between the different datasets can be confirmed. As a conse-330

quence, the SIMAR and ERA5 are considered to be validated against buoy measurements.
In the following, the SIMAR model is selected for the calculation of the occurrence332

matrix, because it covers the longest period of time and provides the best approximation to
the buoy measurements.334

3.2. A preliminary consequence matrix

In order to cover the main application sectors of the novel risk index presented in this336

paper, the consequence matrices for two reference MRE systems are suggested: The Cor-
power (2021) wave energy converter (WEC) and a generic floating offshore wind turbine338

(FOWT). In both cases, the consequence criticality curve illustrated in Figure 3 (b) under-
pins the consequence matrix, using the threshold between operational and survival modes340
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illustrated in Figure 1 as a reference to define the limit between the fatigue zone and the
extreme loading zone.342

This threshold for the Corpower WEC is set to Hs > 10 m in De Andres et al. (2016),
while Hs > 4 m is suggested for FOWTs in Moore et al. (2018). However, Collu and Borg344

(2016) states that the latter threshold is rather related to the maximum roll/pitch inclination
angle of FOWTs, which prevents the system to operate correctly beyond 10◦ of inclination.346

Therefore, even if the power production is suspended when Hs >4 m, the extreme loading
zone does not begin immediately after, resulting in a second zone of fatigue loads as a348

consequence of triggering the survival mode. In addition, the more aggressive operation of
WECs caused by energy maximising control strategies (see Penalba and Ringwood (2019))350

leads to higher fatigue loads on the structure and mooring lines due to slamming effects and
higher motion amplitudes respectively. In turn, this situation results in a higher consequence352

criticality for the same Hs value. Therefore, the consequence criticality curves will diverge
slightly for WECs and FOWTs. In any case, it should be noted that, ideally, a consequence354

matrix should be defined for each component, such as mooring lines, converter or platform
structure, and power take-off elements and turbine blades.356

The definition of the consequence criticality based on an inverted S-N curve, illustrated
in Figure 3, is employed for the two MRE systems, as depicted in Figure 5 (a). Both the358

impact of fatigue effects (given as number of cycles before failure) and the consequence
criticality are shown together in order to show their relationship. The initial number of360

cycles considered for WECs and FOWTs (5 × 106 and 6 × 106, respectively) are based on
the standards defined in DNV-GL (2014), although this difference is indistinguishable in the362

consequence criticality due to the logarithmic scale. Therefore, a detail of the consequence
criticality curves is shown for the region between 8-12s, where differences are most relevant.364

Neglecting the impact of wave period on the criticality, the consequence matrices for
WECs and FOWTs are shown in Figure 5 (b), where differences in lower Hs values are366

clearer, while the criticality is identical for higher Hs values. In order to obtain a risk index
matrix in combination with the normalised occurrence matrix, the consequence criticality368

matrices are multiplied by the total number of sea-states (each sea-state being 1 hour long)
considered along the standard MRE plant’s lifetime of 20 years.370

4. Results

After the definition of metocean data and the consequence matrix, the the different risk372

index matrices can be computed in order to determine the environmental characteristics
to be employed in the design process. The analysis carried out in this section considers374

the decision-making instant in 2000 in order to design the MRE system to be deployed in
the period between 2000-2020. This analysis permits defining training and testing datasets376

using different time intervals of historical metocean data between 1960-2000 provided by the
SIMAR model, as well as the validation of design decisions for the period 2000-2020.378

The historical time intervals are defined based on standards and recommendations of the
different international organisations. The International Organization for Standardization380

(ISO) ISO (2015) suggests a historical record that covers the 25% of the return period of
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Figure 5: Consequence vectors (a) and matrices (b) for WECs and FOWTs.

interest, which corresponds to 5, 12.5 and 25 years for return periods of 20, 50 and 100382

years, respectively. In contrast, the Institute of Marine Engineering, Science & Technology
(IMAREST) IMAREST (2018) recommends a longer period, preferably with over 30 years384

of metocean data, in order to accurately characterise extreme events. With respect to the
return period recommended by these organisations, generally, IEC (2013) adheres to a 50-386

year return period for extreme design conditions, while API (1997) standards assume a
25-year, 50-year, or 100-year return periods for extreme events.388

Hence, in order to cover the whole range of different recommendations and study the
sensitivity of the risk index to both amount of historical input wave data and return period,390

three historical data intervals (10, 20 and 40 years going backwards from 2000) and three
return periods (20-, 50- and 100-year) are studied, as schematically illustrated in Figure 6.392

For the sake of simplicity, full results are only shown for the case where 10 years of
historical metocean data is considered including the three return periods, synthesizing the394

sensitivity of the amount of input data later in this section.
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Figure 6: Analysed scenarios from the considered actual instant in year 2000.

As an illustrative example Figure 7 shows joint {Tp, Hs} re-analysis data for the period396

1990-2000, and the environmental contour and joint {Tp, Hs} random variables estimated via
DS for the period 2000-2020 with a return period of 50 years. Note that the re-analysis data398

points and DS-based random variables do not match because the DS contour is conditioned
on a return period of 50 years, and DS-based random variables represent the whole range of400

values learned from the conditioned distribution. Due to the lack of physics-based modelling
concepts, unlikely events may arise from the DS contour such as high-period estimations402

(above 30s), inferred from the low likelihood part of the learned probability distribution
conditioned on a 50-year return period. This limitation may be addressed in future research404

through a fusion of physics-based and data-driven contour methods.

Figure 7: Environmental contour and estimated sea-states obtained via direct sampling for the period
2000-2020 for a return period of 50 years.

The novel methodology based on the risk index requires to compute the occurrence matrix406
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for each return period, providing the information about extremes and the probability to
encounter different sea-states. Figures 8 (a-c) show the DS-based future occurrence matrices408

given in percentage for the 20-, 50- and 100-years return periods, respectively. The most
frequent sea-states are identical for the three cases, while the boundary of the occurrence410

area extends towards higher Hs and Tp values as return period increases, being the increase of
the maximum Hs the most relevant for the design decision-making. Maximum Hs increases412

from 11.5 m for a return period of 20 years to 14 m with return periods of 50 and 100 years.
Figures 8 (d-f) and (g-i) illustrate the risk index matrices for FOWTs and WECs, re-414

spectively, which are generated following the method described in Section 2. In addition,
similarly to the future occurrence matrices, the risk matrix is computed for the three return416

periods. These matrices are normalised with respect to the maximum risk value obtained
in all the different simulations, so that a normalised risk index between 0 and 1 can be418

defined in order to easily identify the most critical areas for the design of MRE systems.
The colour-code used in Figure 8 illustrates the highest risk in red, while the risk decreases420

as the colour turns blue.
All the risk index matrices illustrated in Figure 8 show very similar results with a repeated422

double peak pattern. The first peak is a smooth plateau-ish peak that appears in the
high-occurrence area and corresponds to the most critical fatigue effects. In contrast, the424

second peak consists of a set of isolated peaks that correspond to unusual but devastating
extreme events. That is exactly why, despite the very low occurrence of these extreme426

events, maximum risk index values (RMAX) appear in the area of the second set of peaks.
Differences between the type of MRE system are minor, but show a higher criticality of428

WECs due to their greater motion that results in more intense fatigue effects and extreme
loads, as defined in Figure 5. These differences become more relevant when the return period430

varies, with RMAX moving towards higher Hs, as expected. However, following the trend of
the DS-based future occurrence matrices, variations of RMAX between Tr = 50 and Tr = 100432

appear to be significantly lower, although the area with a high risk is extended considerably
from Tr = 50 to Tr = 100.434

The same analysis is carried out for the three different time intervals of historical meto-
cean data, using metocean data between 1980-2000 and 1960-2000 as inputs data for the436

computation of the risk index matrices. In parallel, environmental contours based on the
principal components analysis (PCA) are also analysed. The PCA approach is selected be-438

cause it is expected to provide more realistic representations of environmental contours under
the extreme sea-state conditions, despite its higher sensitivity to the distribution fitting of440

the components, as stated in Eckert-Gallup et al. (2016); Wrang et al. (2021). However,
future extensions of the proposed risk-index will also consider benchmarking the risk index442

against different environmental contour methods. Figure 9 illustrates the Hs corresponding
to the RMAX for all the cases analysed with the novel risk-index-based method.444

Preliminary results show a low sensitivity of the risk-index-based method to the incor-
poration of different historical metocean data intervals. This lack of variation with respect446

to data intervals is particularly relevant for high return periods. However, inconsistent fluc-
tuations of RMAX at lower return periods indicate that the data processing methods may448

need to be revised, specially when handling very large datasets such as the metocean data
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a) Future occurrence matrix
(Tr = 20).

b) Future occurrence matrix
(Tr = 50).

c) Future occurrence matrix
(Tr = 100).

d) FOWT risk-index (Tr = 20.) e) FOWT risk-index (Tr = 50). f) FOWT risk-index (Tr = 100).

g) WEC risk-index (Tr = 20). h) WEC risk-index (Tr = 50). i) WEC risk-index (Tr = 100).

Figure 8: Future occurrence matrix (a-c), and risk index matrices for FOWTs (d-f) and WECs (g-i).
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Figure 9: Hs for the RMAX and maximum Hs for PCA-based environmental contours for the WEC case.

for the period 1960-2000.450

The assumption of considering only metocean data for the period previous to 2000 allows
for the assessment of the potential design points (DPs) by comparing them with the real452

resource characteristics measured during the virtual lifetime of the MRE system designed in
2000. Hence, this assessment is carried out for three potential DPs that consider different454

levels of conservativism for the design of a WEC, as highlighted in Figure 9: a high-risk
DP based on the RMAX computed using a decade of historical data between 1990-2000456

and Tr = 20 years, a medium-risk DP based on the RMAX using two decades of historical
data between 1980-2000 and Tr = 50 years, and a highly conservative low-risk DP obtained458

from a pure PCA-based environmental contour using Tr = 50 years. Table 2 describes
the maximum Hs (HMAX

s ) considered in each case as the design reference to compute the460

maximum expected loads and define the structure that can survive these loads. Note that
historical input data used for each DP is selected based on the recommendations by ISO462

(2015).
The metocean conditions for the period between 2000-2020, where the MRE plant de-464

ployed in 2000 would harvest energy, are provided by in-situ measurements of the BV-buoy.
The boundary of these in-situ measurements is represented by green markers and a blue466

line, from where the maximum Hs value can be extracted (HMAX∗
s = 14.1m). This HMAX∗

s

is used as a reference value for the comparison of the different DPs. In addition, Figure 10468

illustrates the joint Tp − Hs data in red dots and the boundary corresponding to the pe-
riod between 1990-2000, the environmental boundaries computed using this metocean data470
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Table 2: Design point characteristics.

DP HMAX
s ∆Hs

Return
period

Method

High-risk 11.5 -2.54 (-18.1%) 20-years Risk-index
Medium-risk 13.8 0.16 (1.13%) 50-years Risk-index

Low-risk 20.9 6.86 (48.9%) 50-years PCA env. contour

with 20-, 50- and 100-years return periods, and the Hs limits of the three potential DPs.
In principle, the three DPs described in Table 2 exceed significantly the maximum Hs of472

the period between 1990-2020, while the three environmental contours almost double that
maximum value. However, models such as SIMAR and re-analysis data, in general, tend to474

underestimate extreme wave heights, as demonstrated by Campos et al. (2018), Rogowski
et al. (2021) and de Alfonso et al. (2021), which studied, respectively, the South Atlantic476

Ocean, the North Atlantic Ocean and the Mediterranean coast. These underestimation
needs to be carefully considered when computing either the risk index or environmental478

contour approaches to determine the design point for WECs and FOWTs.

Figure 10: Historical joint Tp −Hs data, PCA-based environmental contours with Tr = 20, Tr = 50 and
Tr = 100 for the period between1990-2000, the boundary of measured metocean data for the period 2000-
2020, and the limiting Hs corresponding to the low-, medium- and high-risk DPs.

Figure 10 also shows the boundary of the measurements corresponding to the period480

2000-2020 where the MRE plant designed following the different DPs is supposed to oper-
ate. This boundary extends well beyond the limits of the boundary corresponding to the482

period 1990-2000, meaning that the metocean conditions where the MRE plant operates are
significantly harsher than the conditions used for the design. Therefore, it is shown that the484

high-risk DP underestimates the Hs design limit in about 2.5 m and 18%, resulting in an
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insufficient DP. The decision of taking that high risk would very likely result in catastrophic486

consequences for the MRE plant. In contrast, the low-risk DP would overestimate in 6.86
m and almost 50% the Hs design limit, resulting in an unnecessarily overdesigned marine488

structure leading to considerable over-costs. Finally, the medium-risk DP appears to provide
the most appropriate Hs design limit that would result in an excellent compromise between490

ensuring survivability and reducing costs.

5. Discussion492

Traditional MRE design methods solely based on environmental conditions may result
in excessive conservatism due to the uncertainty of future metocean conditions, which are494

predicted via statistical and probabilistic methods. These methods, included in the most
common industry standards, are based on the use of environmental contours that define496

the boundary of likely environmental conditions within a return period. The aim of this
approach is the determination of the most extreme conditions that a marine structure should498

withstand within the lifespan of the device. Although different mathematical methods can
be used for the determination of these contours, all are based upon pure metocean data,500

neglecting the likelihood of the most restrictive conditions and the consequences of these
conditions. This may limit the decision-making process of design engineers by directly502

designing marine structures to survive to the most demanding metocean conditions identified
in the environmental contours.504

The novel risk-index-based method suggested in the present study aims to progress in
two directions related to the design of MRE systems. On the one hand, the probabilistic506

estimation of the future metocean conditions. On the other hand, the determination of
the structural consequences for each environmental condition, including fatigue effects and508

extreme mechanical rupture. That way, the risk index developed in this paper provides a
more comprehensive information for the decision-making process, allowing engineers to take510

different levels of risk depending on the adopted strategy.
However, the proposed method may require further developments to be used in real512

design scenarios including the future resource characterisation and mechanical consequences.
Similarly, an exhaustive analysis of the different sources of uncertainty may be important to514

improve the robustness of the method and adopt sensible decisions. Therefore, the results
shown in the present paper should not be taken as final absolute results, but rather as516

figurative results that show the weak points of the traditional methods solely based on
environmental conditions.518

In this direction, these are some areas for potential improvement. On the one hand,
improvements should arrive from a better characterisation of the future metocean condi-520

tions, including its non-stationarity. The more frequent and more powerful extreme events
expected in the future could be incorporated, since any MRE system designed now will522

have to operate in and survive to future environmental conditions. To that end, first, the
long-term wave trends observed in the literature and the impact of climate change should524

be identified appropriately, particularly on the enhancement of extreme events. Ensemble
models that are able to assimilate long historical datasets and project assimilated historical526
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trends into the future are highly valuable numerical tools. However, given the well-known
inclination of wave models to underestimate extreme events, these models and re-analysis528

datasets should be carefully downscaled against in-situ measurements in order to minimise
the uncertainty. Alternatively, long-term metocean data can be forecasted via Machine-530

Learning techniques once the most important characteristics of the historical dataset are
carefully extracted, as suggested by A. Martinez-Perurena (2021).532

On the other hand, an accurate determination of structural consequences must include
all the most relevant effects that can damage marine structures. These effects include fa-534

tigue loads that should be accounted for via a stochastic analysis where the impact of wave
period is crucial. Fatigue effects should be computed for the most frequent environmental536

conditions, combining the loads with the occurrence probability in order to compute their
final impact. These effects can be computed with relatively simple numerical model, pri-538

oritising the computational burden over the simulation fidelity. In contrast, the impact of
extreme events requires high-fidelity models, regardless of their computational requirements,540

where the highly-nonlinear breaking waves and green-water effects can be captured. Once
the loads for the different effects are determined, the consequence of these loads must be542

quantified. To that end, a systematic procedure should be defined, defining the metric for
the quantification, e.g. the inverse of the remaining cycles, and the mathematical framework544

to accumulate the impact of the different effects.
It should be noted that the presented risk index has been demonstrated here for offline546

MRE plant design decisions. However, it may be extended to an on-line risk monitor applied
to other MRE-related applications such as maintenance operations.548

6. Conclusions

The structural design of Marine Renewable Energy (MRE) systems must be optimised to550

maximise energy generation across a wide range of operational regions, ensure survivability
under extreme events, and minimize costs. However, these requirements are often conflicting552

because surviving extreme events requires overdesigned structures that increase substantially
their cost. In order to find a suitable compromise between survivability and cost, the precise554

characterisation of the metocean conditions and environmental loads is essential
However, the traditional design process solely based on environmental conditions tends556

to be too conservative and it lacks of flexibility for decision-making in the design process.
Namely, extreme conditions are determined via probabilistic environmental contours for the558

determination of the most demanding loading conditions and accordingly, the MRE structure
is designed. Due to the inherent conservatism of environmental contours, this design process560

results in excessively overdesigned and expensive structures.
In order to provide a deeper understanding of the design requirements, the present pa-562

per presents a preliminary study on a novel risk-index that combines a more appropriate
probabilistic characterisation of the future metocean conditions and the consequences of the564

different metocean conditions on MRE structures. This way, the suggested risk index will
provide the design engineers with comprehensive information about the design requirements566

by (i) warning them of an area of low-consequence criticality, but relatively high risk due to
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fatigue effects and (ii) dissuading design engineers from considering excessively conservative568

design.
The paper demonstrates the excessive conservatism of traditional design procedures via570

a comparative study of three design points (DPs) with increasing conservatism (high-risk
DP based on the risk index, medium-risk DP based on the risk index, and low-risk DP572

based on a PCA-based environmental contour). The environmental-contour-based approach
is demonstrated to overestimate the maximum Hs condition for the design by 50%, which574

would result in a significant over-costs of the MRE structure. In contrast, the flexibility
provided by the novel risk-index approach enables design engineers to decide the level of576

risk they would like to take. The high-risk DP, for example, is shown to underestimate the
design Hs, which would have been exceeded in real life in about 20%, very likely resulting578

in catastrophic damages on the structure. However, a more conservative decision, i.e. the
medium-risk DP, would very precisely identify the maximum Hs value for the design, which580

would result in an excellent compromise between economical and technical aspects.
The marine resource is highly variable in multiple time-scales and it should be noted that582

different sources of uncertainties are present in the process. In fact, modelling and post-
processing different sources of uncertainty may enhance the decision-making process and this584

is one of the areas for further development. In any case, although the risk-index approach
suggested in this study still requires further development, the authors believe that it can586

assist in the decision-making process when designing MRE structures, avoiding excessive
conservatism and achieving technically functional and economically attractive designs.588
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