
 
biblioteka@mondragon.edu 

 

 

 

 

 

 

This is an Accepted Manuscript version of the following article, accepted for 
publication in: 

A. Gartziandia et al., "Microservices for Continuous Deployment, Monitoring and 
Validation in Cyber-Physical Systems: an Industrial Case Study for Elevators Systems," 
2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-
C), 2021, pp. 46-53, doi: 10.1109/ICSA-C52384.2021.00014.. 

DOI: https://doi.org/10.1109/ICSA-C52384.2021.00014 

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 



Microservices for Continuous Deployment,
Monitoring and Validation in Cyber-Physical

Systems: an Industrial Case Study for Elevators
Systems

Aitor Gartziandia∗, Jon Ayerdi†, Aitor Arrieta†, Shaukat Ali‡, Tao Yue‡, Aitor Agirre∗,
Goiuria Sagardui† and Maite Arratibel §

Ikerlan∗, Mondragon University †, Simula Research Laboratory ‡, Orona§
∗{agarciandia, aagirre}@ikerlan.es, †{jayerdi,aarrieta,gsagardui}@mondragon.edu,

‡{shaukat, tao}@simula.no, §marratibel@orona-group.com

Abstract—Cyber-Physical Systems (CPSs) are systems that
integrate digital cyber computations with physical processes. The
software embedded in CPSs has a long life-cycle, requiring con-
stant evolution to support new requirements, bug fixes, and deal
with hardware obsolescence. To date, the development of software
for CPSs is fragmented, which makes it extremely expensive.
This could be substantially enhanced by tightly connecting the
development and operation phases, as is done in other software
engineering domains (e.g., web engineering through DevOps).
Nevertheless, there are still complex issues that make it difficult to
use DevOps techniques in the CPS domain, such as those related
to hardware-software co-design. To pave the way towards DevOps
in the CPS domain, in this paper we instantiate part of the
reference architecture presented in the H2020 Adeptness project,
which is based on microservices that allow for the continuous
deployment, monitoring and validation of CPSs. To this end, we
elaborate a systematic methodology that considers as input both
domain expertise and a previously defined taxonomy for DevOps
in the CPS domain. We obtain a generic microservice template
that can be used in any kind of CPS. In addition, we instantiate
this architecture in the context of an industrial case study from
the elevation domain.

Index Terms—Microservices, DevOps, Cyber-Physical Systems

I. INTRODUCTION

Cyber-Physical Systems integrate digital cyber computa-
tions with physical processes [14]. These systems are inher-
ently complex, and their lifecycle can last up to 30 years in
sectors such as railway or elevation [6]. In these systems, an
increasing trend is to implement most of the functionalities
through software. During the life-cycle of these systems, the
software continuously evolves due to hardware obsolescence,
requirement changes, vulnerabilities, bug corrections, etc.
Consequently, this evolution requires reliable and automatic
engineering methods for developing and operating CPSs.

With existing engineering practices for CPS, releasing and
deploying new software versions is a time-consuming and
error-prone activity. This is mainly due to the impossibility of
thoroughly testing the software in a real environment. Further-
more, the deployment process itself is complex, as it is highly

important to ensure that the CPS will be in a safe state when
the software is updated. Besides, these systems often operate in
dynamic and uncertain environment, what makes appropriate
self-healing and recovery mechanisms necessary. These prob-
lems can be partially solved by implementing design-operation
continuum methods for the software development life-cycle,
instead of relying on traditional software development methods
(e.g., the V model). Nevertheless, to achieve this in the CPS
domain, radically new solutions to overcome the limitations
of today’s CPS development processes need to be adopted.

As an alternative, in the context of the Adeptness H2020
project [1] a reference architecture was proposed to enable
Design-Operation Continuum activities in CPSs. The contri-
bution of this paper is instantiating this architecture in an
industrial case study from the elevation domain. A system
of elevators is a complex CPS where all the aforementioned
problems frequently arise. By using this architecture, we
foresee significant enhancements in the software development,
significantly reducing the software development cost while
increasing its quality.

The rest of the paper is structured as follows. Section II
presents the industrial case study in which we applied the
architecture and the problems that they face. We explain the
methodology for developing the architecture in Section III.
Section IV presents the architecture based on microservice.
Section V presents the prototypical implementation and a
qualitative evaluation. We position our paper with the state-
of-the-art in Section VI. Lastly, we conclude the paper and
discuss the future avenues in Section VII.

II. CASE STUDY AND PROBLEM REPRESENTATION

Orona is a company dedicated to the designing, manufac-
turing, installing, and maintaining elevators, escalators and
moving ramps. Elevator installations are complex CPSs that
provide service to the passengers, considering the passengers’
active passenger calls and the elevators’ status. An overview
the different elements of the CPS are depicted in Figure 1.



Fig. 1: Overview of the architecture of the Elevators installation

User interfaces allow passengers to introduce calls to the
system in different ways. Conventional user interfaces consist
solely on Up and Down call buttons, where only the floor
on which the passenger is located and the direction of the
journey are provided. Inside the elevator, the call panel allows
introducing the destination floor of the passenger. On the other
hand, destination input devices allow passengers to introduce
the destination floor when making a call and then, passengers
receive information about which elevator is going to attend
them. The elevator call panel inside the elevator is not required
in this case. There are also signalling panels indicating the
current floor of the elevator and the expected journey. The
interaction with the passenger can be extended with access
control systems as well.

Each elevator is managed by a controller, which is responsi-
ble for the vertical and horizontal (doors control) movements
of the elevator. When an elevator receives a landing or a car
call (i.e., a call from inside the cabin), the controller decides
the order of the stops and the opening and closing of the doors
in each floor to attend all the calls by considering different in-
formation, including traveling direction, floor position, already
assigned calls, etc. This information flows from one device to
another through a (vertical) CAN bus.

The traffic master is the component that coordinates the user
interfaces with the lift controller. It receives the information
from access control devices through Ethernet and checks
whether a passenger has the right to issue a particular call. It
receives the passenger call from the landing call panels through
the (horizontal) CAN bus, and the information of the status,
position, etc, from each lift controller. With this information,
the traffic master decides which is the best elevator to attend

every call, considering different criteria, such as minimising
the Average Waiting Time (AWT), the Journey Time (JT) or
energy consumption1. Finally, the traffic master notifies the lift
controller about the assigned call and indicates the assigned
lift to the passengers.

This architecture does not provide support for design-
operation continuum methods. When the traffic study is per-
formed, there is usually a lack of real and precise data
to adequately configure the system. In operation, automatic
feedback mechanisms to improve the configuration and detect
problems or unknown conditions are lacking. Consequently,
when problems or unknown conditions arise in an installation
(e.g., degradation in the AWT), the building owner is responsi-
ble for communicating the problem to Orona. Validation and
deployment of the system are also semi-manual. Regarding
validation, information from the operation is not accessible, so
it is not possible to reproduce real situations in the laboratory,
and the decision of whether a test case has succeeded or not is
manual. Regarding deployment, the maintainer is responsible
for configuring and updating new versions in the installation,
which is also a manual process. In this paper, we present the
extension of the architecture to support automatic deployment,
continuous monitoring, and validation.

III. ARCHITECTURE DEVELOPMENT METHODOLOGY

Before designing the architecture, we defined a methodol-
ogy that would enable defining the architecture systematically,
considering the benefits of microservice architectures over

1The AWT is the average time that passengers wait until they enter in the
lift. The JT is the average time that passengers wait to reach their destination.
Both metrics are used to measure the performance of elevators systems.



Fig. 2: Methodology for developing the microservices-based architecture and its instantiation to the Elevation domain

monolithic applications [18] and the need for domain aware-
ness when developing an architecture [12]. The architecture
development methodology is shown in Figure 2, and it consists
of a total of six main steps:

• Use-case definition: First, there was a need to define the
use-case scenarios that Orona wanted to handle. To this
end, a domain expert defined a set of use-case scenarios,
which can be found in [3].

• Stakeholder requirements: With these use-case scenarios,
the stakeholder’s requirements were elicited. A total of 56
requirements were elicited by an elevation domain expert,
which are accessible in [2].

• DevOps toolchain requirements elicitation: By having as
input a set of stakeholder requirements and a DevOps
taxonomy for CPSs, developed in our previous work
[6], two types of requirements were elicited: system
requirements, which are those specific requirements from
the overall architecture needed to satisfy the stakeholder
requirements and subsystem requirements, which are
those requirements specific to the subsystems (explained
in the following section of the paper) necessary to satisfy
system requirements. All these requirements along with
the test cases that will be executed to validate them can
be found in [2].

• Requirements analysis and microservice identification:
With the elicited requirements, a first analysis was per-
formed by a system architect, and a series of microser-
vices were identified.

• Interface identification: For each microservice, the dif-
ferent interfaces were defined and integrated with the
Adepteness microservice template, which is available for
both C and Python.

• Instantiation: The last step referred to the instantiation
and integration of all these templates.

IV. ARCHITECTURE BASED ON MICROSERVICES

The HORIZON2020 Adeptness project [1] has proposed
a microservice based architecture that will allow DevOps
practices to be adopted in the context of CPSs. Microservices

permit building a flexible architecture where services can be
reused in different life-cycle stages and hardware, seamlessly
deploying new services to all the installations and scaling the
system. Each microservice within the proposed architecture
shall be responsible for a specific well-defined function in the
life-cycle of a new software release, and shall provide different
lightweight communication mechanisms. Each microservice
will provide both synchronous (i.e., HTTP) and asynchronous
(i.e., MQTT) communication, offering common interfaces for
every microservice within the system and custom interfaces
for microservices with specific roles.

A. Common interfaces

All microservices within the architecture provide a set of ba-
sic asynchronous and synchronous communication endpoints,
regardless to the role of the microservice. These endpoints
offer basic information about the execution status, health and
performance. The synchronous interfaces allow other services
to request microservices’ health status, while asynchronous
interfaces allow microservices to publish relevant data without
knowing the receiver of the messages. The following interfaces
are provided by the template developed within the HORI-
ZON2020 Adeptness project [1].

1) Synchronous communication:

• /adms/v1/ping [GET]: Ping service to check that the
service is alive. Returns an empty 200 response if the
microservice is working correctly.

• /adms/v1/info [GET]: Provides basic information about
the microservice. It returns a JSON object containing
the microservice ID and microservice role within the
architecture.

• /adms/v1/performance [GET]: Provides CPU and mem-
ory usage metrics. It returns a JSON object containing
the free and allocated memory and the CPU usage.

• /adms/v1/status [GET, PUT]: Permits getting or changing
the execution status of the microservice. GET calls to this
endpoint will return a JSON object containing the status
of the microservice. Changes to the microservice status
will be performed by sending a JSON object with the



Fig. 3: Overall overview of the microservice-based architecture

desired state. The possible states for the microservice are
”Ready” and ”Running”.

2) Asynchronous communication:

• /adms/v1/discovery [PUB]: On microservice launch, the
microservice publishes a hello message in this topic
including the identifier, microservice role and its MQTT
and REST endpoints, defined as a JSON object.

B. Architecture – Instantiation in the use-case

In Figure 3 we present the instantiation of the Adeptness
microservice architecture for ORONA. In particular, we pro-
vide microservices for continuous deployment, monitoring and
validation, recovery and uncertainty detection.

The main subsystems composing the architecture for
ORONA are the following:

1) Automation server: The automation server is in charge
of the orchestration of the tasks to be performed by the differ-
ent subsystems. It interacts with the source code repositories
to monitor any changes on the deployment, monitoring or
validation plans. When a new plan is updated, the automation
server performs the actions to generate the required artifacts,
stores the generated Docker images in the Docker registry and
pushes the configurations or plans to each subsystem.

2) Deployment subsystem: The deployment subsystem is
responsible for downloading, and eventually decompressing
and executing, the different microservices and artifacts needed
to perform the validation in each of the targets or edge nodes.
The deployment subsystem executes a deployment plan and
must be aware of the status of the deployment in each node.
The plan contains the information regarding the components
to be deployed, the repository where they are located in, and
the node(s) where they should be deployed. The deployment
subsystem is capable of deploying two different types of
components, containerized microservices and generic files, and
it is composed of two different microservices:

• Deployment orchestrator: The deployment orchestrator
receives the deployment plan from the automation server
and parses the plan in order to execute it. There is only
one instance of this microservice within the architecture
and it is usually located in the cloud. The orchestrator
sends the deployment instructions to the deployment
agents installed in each node by MQTT.

• Deployment agent: The deployment agents must be in-
stalled in each edge node to perform the actual de-
ployment of the necessary artifacts. Since there are two
different types of components that may be deployed, two
types of deployment agents have been designed: a docker-



compose based deployer to deploy docker containers, and
a generic deployer to deploy any kind of file, e.g. an
executable file, a library, or a zip file. In the latter case,
the deployer can perform the actual deployment of the zip
file, decompress it, and execute the selected executable
file.

3) Monitoring subsystem: The monitoring subsystem sup-
ports the configuration of the monitors according to a moni-
toring plan. This plan specifies the source (physical interfaces,
file system, ...) to obtain the data from as well as the value
extraction mechanism. This subsystem provides access to
telemetry data retrieved from different sources so that other
subsystems can subscribe to this data and use it to take
decisions. This subsystem consists of two microservices:

• Monitoring orchestrator: This microservice, deployed in
the cloud, handles the parsing of the monitoring plan sent
from the automation server, and configures all the mon-
itoring agents indicated in the plan accordingly through
their HTTP API. The plan specifies the parameters that
each monitoring agent needs to specify the actual data
source connection parameters (e.g., the CAN baud rate)
and the variables to monitor.

• Monitoring agents: The monitoring agents, deployed at
the edge nodes, are responsible for reading the opera-
tional variables from the different sources and publishing
them asynchronously. The monitoring agents can be
configured through a common HTTP API, which allows
the specification of the variables to be monitored (name
and needed parameters to obtain the data) and optionally,
the configuration of subscriptions. The concept of sub-
scription is similar to OPC-UA, i.e., a group of variables
that are notified asynchronously as events, with the same
publishing rate. In this sense, a service (e.g., an oracle)
that needs to be notified about the changes of a set
of variables can configure a subscription, specifying the
publishing rate for those variables.
There are specific monitoring agents for different data
sources. In the case of Orona, two different monitoring
agents are used:

– CAN monitor: The CAN monitor allows the mon-
itoring of the operational variables shared through
a CAN field-bus, which may be configured through
an HTTP API. For each variable to be monitored,
three parameters must be configured: (1) the name
of the variable, (2) the identifier of the CAN frame
where the variable is published, and (3) the mask
to be applied to the frame to actually read the
variable. Then, when the monitor starts, it begins to
publish the variables asynchronously through MQTT,
following the standardized senML2 payload format.

– Instrumented code monitor: This is a special monitor
type that supports the monitoring of variables that are
not exported in any field bus but are needed by the
oracles to raise a verdict, for instance, the internal

2https://tools.ietf.org/html/rfc8428

variables of the traffic algorithm that are usually
inspected in debugging mode. To do so, a library
which publishes code variables through MQTT has
been developed. The developer can use it to publish
the internal code variables needed by the oracles into
the MQTT broker, in the same senML format used
by the rest of the monitors.

4) Continuous Validation subsystem: The continuous val-
idation subsystem supports verification and validation activi-
ties at Model-in-the-Loop (MiL), Software-in-the-Loop (SiL),
Hardware-in-the-Loop (HiL), and Operation. At the MiL test
level, the software that controls the physical part of the CPS
is a model. At the SiL test leve, this model is replaced by
executable software. At the HiL test level, the software is
integrated with the real-time infrastructure (e.g., real target
processor and operating system) and the physical part emu-
lated within a real-time test bench. For the SiL level, Orona
uses Elevate, a domain specific simulator for validation. At
the HiL level, a hybrid infrastructure where some components
are real and others virtual is used. At this test level, the tests
are performed in real-time, using all the real infrastructure,
including real communication buses and a real-time operating
system. The main microservices used for the continuous
validation subsystem for Orona’s case are the following:

• Validation orchestrator microservice: Located in the
cloud, the validation orchestrator manages the execution
of a validation plan by communicating with the valida-
tion agents. A validation plan can require validations at
different test levels.

• Validation agents for SiL, HiL and Operation: these
microservices launch validations at the SiL and HiL
test environments, as well as in production installations.
For the execution of a validation, child test oracles that
provide the verdict are activated. Validation agents in SiL
and HiL also manage the tools required for simulating test
inputs. When an oracle provides a verdict, it notifies the
validation orchestrator microservice.

• Oracle microservice: This microservice encompasses a
set of test oracles that validate that the CPS behaves
as expected. Many of these test oracles are based on
domain-specific Quality-of-Service (QoS) measures that
are collected from the monitoring microservices. Among
these QoS measures, for the elevation domain, the most
important ones are the Average Waiting Time (AWT), the
Journey Time (JT) and the energy consumption. Each
of these test oracles provide a verdict that indicates to
which extent the CPS behaves as expected. Different test
oracles have been developed, such as those based on
metamorphic relations for the SiL and HiL test levels
[7], and some based on machine-learning that predict the
maximum AWT and JT a system of elevators should have
at each moment.

• Uncertainty detection microservice: This microservice
supports the automated detection of unforeseen situations
in the different life-cycle stages of CPSoS using data



Fig. 4: Overview of the validation process at SiL level of the prototype

from both operation (e.g., live data) and design time (e.g.,
test logs) with passive and active machine learning tech-
niques. This service supports the validation microservice
with uncertainty related test oracles that will be learned
from data. Various uncertainties exist in the elevator
use case, such as (1) Passenger data: Examples include
when a passenger arrives at which floor? How much a
passenger weighs? (2) Environment: Examples include
delays in hardware such as motor delay and levelling
delay; (3) Outputs/Quality of Lift Services: Examples
include uncertainties in waiting and transit times.

• External tool microservices for SiL and HiL test levels:
This microservice allows launching domain-specific tools
required to handle the execution of tests. Two external
tool microservices have been instantiated for testing
Orona’s dispatching algorithm: (1) Elevate (a domain
specific simulation tool) that is used for SiL validations
and (2) a CAN Bus frames injector for HiL validations.

V. PROTOTYPE IMPLEMENTATION AND PRELIMINARY
EVALUATION

To analyse the benefits of the architecture, a preliminary
prototype of the architecture for SiL validation in Orona has
been developed3, by setting a pipeline structure in Jenkins.
This pipeline starts with the deployment of the components
from a deployment plan. If the deployment is successful, the
pipeline continues by configuring and starting the monitors,
and finally the validation microservices are configured and
executed to obtain a verdict. A Docker image for each mi-
croservice has been built and pushed to a Docker registry,
particularly to the Gitlab container registry.

The deployment pipeline is continuously querying the
repositories for changes in the deployment plan, and whenever
a change is detected, the deployment pipeline is launched.
The deployment pipeline launches a slave agent that logins to

3A video of the prototype is available at https://youtu.be/uoq9n9k4kgc

the Gitlab container registry and fetches the latest versions
of the docker images for the specified components. These
images are then started and configured to forward different
ports on the slave agent node. The deployment pipeline waits
for readiness of every launched microservice by calling to their
/adms/v1/ping REST endpoint. The deployment plan consists
of a JSON formatted file where each node, identified by its
IP address, is assigned one or several components. When the
microservices are ready, the monitoring pipeline is called as a
build step, or in case of failure, docker containers are stopped
and cleaned.

The monitoring pipeline configures the monitoring mi-
croservice, by setting the output topic where different values
will be published through the HTTP API. When the mi-
croservice is ready, the publication of values starts through
another call to the HTTP API. If every call succeeds, the
validation pipeline is launched as a build step. As in the
previous pipeline, on failure, the environment is cleaned and
docker containers stopped.

Similar to the monitoring pipeline, the validation pipeline
sets up the validation microservice by setting up the input topic
where the monitoring microservice is leaving its values, and
the conditions that will be evaluated to raise a verdict for the
evaluation. After the microservice is configured and started,
the validation takes place and the pipeline continuously polls
the microservice for a verdict. If the verdict has been marked
as passed, the pipeline will succeed, and will fail otherwise.
Figure 4 shows an overview of the process.

Table I shows a qualitative overview of the benefits that the
proposed architecture can bring during the DevOps activities
in Orona. At the deployment level, the automation of the tasks
that Jenkins brings reduces effort and saves time for developers
by reducing the manual tasks, such as executable generation
and deployment for different stages. At the monitoring level,
the architecture allows continuously monitoring data from the
different sources at all stages, gaining more understanding of
the system while reducing the effort. Finally, at the validation



TABLE I: Expected benefits of the architecture in the Deployment, Monitoring and Validation activities for different life-cycle
stages in Orona

DEVOPS ACTIVITIES CURRENT PROCESS WITH MICROSERVICE
ARCHITECTURE EXPECTED BENEFITS

Deployment
(SiL) Generate the dll for the domain spe-
cific simulator

(SiL) Copy files for the simulator

(HiL) Compile for the target

(HiL) Deploy in the target

Manual compilation &
copy Jenkins pipeline

Not dependence on devel-
oper

Automatic trigger of the
compilation and deploy

(Operation) Deploy in the real installation Manual deployment by
the maintainers

Remotely and automati-
cally deploy a new soft-
ware release

Effort saving by automat-
ically deploy a new soft-
ware version. Control over
the configuration of the re-
lease

Monitoring

(SiL) Traces of the simulation tools

(SiL, HiL, Operation) Traces in the code

(HiL, Operation) Monitor the communica-
tion buses

Traces are recorded in a
txt file

Data provided by the sim-
ulator in excel and word

CAN frames recorded on
demand

Data from the code, the
simulators and the com-
munication buses will be
published by MQTT

Effort saving in analysis
of problems in installa-
tions

Continuous remote moni-
toring

Validation

(SiL, HiL) Define test cases: Unitary and
QOS (i.e. AWT)

Unitary test cases manu-
ally defined

QoS test cases from theo-
retical profiles

Unitary test cases manu-
ally defined

Automatic profiles from
real data of installations.

Test cases defined from
real profiles more likely to
reproduce real problems

(SiL/HiL/Operation) Execute the validations
Manual configuration of
installations

Manual trigger in SiL/HiL

Manual validation in oper-
ation by the maintainer

Set of available configura-
tions for SiL/HiL

Automatic

Jenkins pipeline for
SiL/HiL

Continuous validation in
operation

Effort saving by automati-
cally validate software re-
lease

Increase the number of
bug detected by continu-
ously validate the software
even in operation

(SiL/HiL/Operation) Decide the verdict for
the validation Manual Reusable oracles

Increase the number of
bugs detected

Minimise dependency on
individuals

(SiL/HiL/Operation) Locate a bug Visual inspection of logs

Manual Debugging

Automatically reproduce a
scenario in the laboratory
using the information of
the monitoring subsystem

Increase the number of
bugs detected

Effort saving in analysing
problems in installations

level, continuously validating the system in an automated
manner for all stages increases the number of bugs detected
while reducing the time to prepare the validation infrastructure.

VI. RELATED WORK

Microservice-based architectures are spreading in the In-
ternet of Things (IoT) and CPS domains due to the high
suitability of this paradigm for these fields, as they share
some goals (e.g., lightweight communication, independent
deployable software, etc.) [9].

Thramboulidis et al. [21] and Alam et al., applied
microservice-based architectures to exploit its benefits in CPSs
involved in industrial use cases. Specifically, Thramboulidis
et al., [21] proposed a framework which uses model-driven

engineering to semi automate the use of microservices on
manufacturing systems, remarking the flexibility of such an
architecture for plant processes. In [5], the authors combined
Docker and microservices using a distributed and modular
architecture to execute Industrial IoT (IIoT) applications,
showing its validity for deployments on time-sensitive sce-
narios. These works propose developing microservice-based
applications for CPSs, but do not use microservice-based
solutions in the development process tasks.

As mentioned, the development of CPSs has typically suf-
fered from long development life-cycles [4]. DevOps practices
are now gaining attention in the CPS domain, and many works
are focusing on applying different techniques such as Model-
Driven Engineering [10] or Digital Twins [22] to ease and



enhance DevOps activities on CPSs. Many tools focus on
specific life-cycle stages of CPSs, such as deployment [19]
[11] [20], monitoring [17] [23] or validation [8] [15], but do
not have whole life-cycle management capabilities, requiring
the use of multiple tools to handle all life-cycle phases.

There are also some works which exploit the benefits of
microservices to perform DevOps activities. [13] proposed
applying the microservice design principles for software de-
ployment and [16] presented a monitoring tool based on
microservices, but these works focus on cloud infrastructures
management, rather than CPSs.

VII. CONCLUSION AND FUTURE WORK

In this work, we have instantiated part of the reference
architecture presented in the H2020 Adeptness project for the
Orona use case, and a prototype of the architecture for SiL
validation has been developed.

Automation of DevOps activities has paramount relevance
specially in CPSs, where the life-cycles are so long and the
development tasks so fragmented, that easing and speeding
these tasks may have a huge impact. For instance, automating
software deployment can reduce maintenance effort in de-
ploying the software in each device manually and continuous
monitoring and validation may be helpful for understanding
the system behaviour at run-time. esides, a microservice-based
architecture offers high flexibility, simplifying the architec-
ture’s adaptation to different life-cycle stages, and allows
scaling the solution to large-scale systems.

In the future, we plan to continue extending the architecture
to support Orona’s development activities in all life-cycle
stages. We also plan on including additional mechanisms to
ensure correct software deployment, such as applying Machine
Learning techniques to detect performance problems in new
software releases.

ACKNOWLEDGMENT

This publication is part of a project that has received
funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 871319.
This work has been partially supported by the Basque Gov-
ernment through the Elkartek program under the DIGITAL
project (Grant agreement no.KK/2019-00095). Aitor Arrieta
and Goiuria Sagardui are part of the Software and Sys-
tems Engineering research group of Mondragon Unibertsitatea
(IT1326-19), supported by the Department of Education, Uni-
versities and Research of the Basque Country.

REFERENCES

[1] Adeptness project webpage: https://www.adeptness.eu/.
[2] Requirements-and-validation-tests – https://adeptness.eu/wp-

content/uploads/2020/09/D1.1-ANNEX-A-Requirements-and-
validation-tests.pdf.

[3] Requirements-and-validation-tests – https://adeptness.eu/wp-
content/uploads/2020/11/D1.1-REQUIREMENTSv1.1.pdf.

[4] Pekka Abrahamsson, Goetz Botterweck, Hadi Ghanbari, Martin Gilje
Jaatun, Petri Kettunen, Tommi J. Mikkonen, Anila Mjeda, Jürgen
Münch, Anh Nguyen Duc, Barbara Russo, and Xiaofeng Wang. Towards
a Secure DevOps Approach for Cyber-Physical Systems. International
Journal of Systems and Software Security and Protection, 11(2):38–57,
2020.

[5] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen.
Orchestration of microservices for iot using docker and edge computing.
IEEE Communications Magazine, 56(9):118–123, 2018.

[6] Jon Ayerdi, Aitor Garciandia, Aitor Arrieta, Wasif Afzal, Eduard Enoiu,
Aitor Agirre, Goiuria Sagardui, Maite Arratibel, and Ola Sellin. Towards
a taxonomy for eliciting design-operation continuum requirements of
cyber-physical systems. In 2020 IEEE 28th International Requirements
Engineering Conference (RE), pages 280–290. IEEE, 2020.

[7] Jon Ayerdi, Sergio Segura, Aitor Arrieta, Goiuria SagarduiMaite Arrati-
bel, and Maite Arratibel. Qos-aware metamorphic testing: An elevation
case study. In 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), pages 104–114. IEEE, 2020.

[8] Sreram Balasubramaniyan, Seshadhri Srinivasan, Furio Buonopane,
B. Subathra, Jüri Vain, and Srini Ramaswamy. Design and verification of
Cyber-Physical Systems using TrueTime, evolutionary optimization and
UPPAAL. Microprocessors and Microsystems, 42(2016):37–48, 2016.

[9] Bjorn Butzin, Frank Golatowski, and Dirk Timmermann. Microservices
approach for the internet of things. IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA, 2016-
November, 2016.

[10] Benoı̂t Combemale and M. Wimmer. Towards a model-based devops
for cyber-physical systems. In DEVOPS, 2019.

[11] Nicolas Ferry, Phu Nguyen, Hui Song, Pierre Emmanuel Novac,
Stephane Lavirotte, Jean Yves Tigli, and Arnor Solberg. GeneSIS:
Continuous orchestration and deployment of smart IoT systems. In
Proceedings - International Computer Software and Applications Con-
ference, volume 1, pages 870–875. IEEE Computer Society, jul 2019.

[12] Javad Ghofrani and D. Lübke. Challenges of microservices architecture:
A survey on the state of the practice. In ZEUS, 2018.

[13] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven
design for cloud infrastructure DevOps. Proceedings - 2016 IEEE
International Conference on Cloud Engineering, IC2E 2016: Co-located
with the 1st IEEE International Conference on Internet-of-Things Design
and Implementation, IoTDI 2016, pages 202–211, 2016.

[14] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Mit Press, 2016.

[15] Elena Markoska and Sanja Lazarova-Molnar. Towards smart buildings
performance testing as a service. 2018 3rd International Conference on
Fog and Mobile Edge Computing, FMEC 2018, pages 277–282, 2018.

[16] Marco Miglierina and Damian A. Tamburri. Towards omnia: A mon-
itoring factory for quality-aware devops. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering
Companion, ICPE ’17 Companion, page 145–150, New York, NY, USA,
2017. Association for Computing Machinery.

[17] K. Monisha and M. Rajasekhara Babu. A novel framework for healthcare
monitoring system through cyber-physical system. Springer Singapore,
2019.

[18] R. O’Connor, Peter Elger, and Paul M. Clarke. Continuous software
engineering—a microservices architecture perspective. Journal of Soft-
ware: Evolution and Process, 29, 2017.

[19] Nenad Petrovic and Milorad Tosic. SMADA-Fog: Semantic model
driven approach to deployment and adaptivity in fog computing. Simu-
lation Modelling Practice and Theory, 2019.

[20] Luis F Rivera, Norha M Villegas, Gabriel Tamura, Miguel Jiménez,
and Hausi A Müller. UML-driven Automated Software Deployment.
Proceedings of the 28th Annual International Conference on Computer
Science and Software Engineering, pages 257–268, 2018.

[21] K. Thramboulidis, D. C. Vachtsevanou, and A. Solanos. Cyber-physical
microservices: An iot-based framework for manufacturing systems. In
2018 IEEE Industrial Cyber-Physical Systems (ICPS), pages 232–239,
2018.

[22] Miriam Ugarte Querejeta, Leire Etxeberria, and Goiuria Sagardui. To-
wards a devops approach in cyber physical production systems using
digital twins. In Computer Safety, Reliability, and Security. SAFECOMP
2020 Workshops, pages 205–216. Springer International Publishing,
2020.

[23] Michael Vierhauser, Jane Cleland-Huang, Sean Bayley, Thomas Kris-
mayer, Rick Rabiser, and Pau Grünbacher. Monitoring CPS at runtime
- A case study in the UAV domain. Proceedings - 44th Euromicro
Conference on Software Engineering and Advanced Applications, SEAA
2018, pages 73–80, 2018.


	Portada AAM IEEE.pdf
	MicroservicesForContinuousDeploymentMonitoringAndValidationInCyberPhysical.pdf

