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Abstract

Spherical gear couplings are machine elements that enable power transmission between highly misaligned shafts. The
highly crowned tooth surfaces and the presence of undercut sections, have been a matter of disagreement between
existing geometry generation methods available in the scientific literature. The main reason for this, are the geometry
variations which arise in the generated parts, and consequently, the effect of such variations on the contact point loca-
tion and clearance distribution. In this paper the influence of the main design parameters of spherical gear couplings
(namely, the crowning ratio, the pitch diameter, the pressure angle, etc.), on the geometrical properties of the gear
tooth surfaces are investigated. An algorithm to calculate the maximum misalignment angle is proposed, which is
one of the most crucial design parameters. It shows that the values obtained with models existing in the literature
are not applicable to highly crowned spherical gear couplings. Finally, design criteria are described to help the de-
signer choose proper spherical gear coupling tooth geometry parameters to fit in a certain space and achieve a given
maximum misalignment angle without further geometrical issues (undercut or pointed teeth).
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Nomenclature

ap parabola coefficient for profile crowning
b hub face width
Chβ amount of longitudinal crowning in the hub
Dext, h external diameter of the hob
hha hub addendum coefficient
hh f hub dedendum coefficient
j clearance
k clearance factor
mn normal module
Nw number of threads of the hob
rc hub crowning radius
rp hub pitch radius
rp,w hob pitch radius
rt hub tooth transverse crowning radius
rβ tool path radius
sc sleeve space width
sw hob displacement during hub generation
tc hub tooth width
u profile surface parameter
v lead surface parameter
xsleeve profile shift coefficient of the sleeve
z number of teeth of the hub
α pressure angle
γ misalignment angle
∆hw vertical displacement of the hob during generation
∆γ misalignment angle variation
ε crowning ratio
λw hob lead angle
µ angle along hob tool path
ρhf hub root radius coefficient
Σc rack-cutter tooth surface
Σh generated hub tooth surface
Σw generating hob-thread tooth surface
ϕw hob rotation during hub generation
ψh generation parameter of the hub
ψw generation parameter of the hob

1. Introduction

Gear couplings are widely used to transmit power between shafts due to their high power density compared to
other non-splined connections and their capacity to accommodate axial, radial or angular misalignments [1]. Usually,
they are employed in applications where, due to the working conditions, slight misalignment occurs between the
axes [2] or manufacturing uncertainties exist [3]. In contrast, spherical gear couplings are specially designed to
transmit power between highly misaligned shafts, γ ∈ R : 3◦ ≤ γ ≤ 10◦. They are composed of a highly crowned
toothed hub (external part) and a commonly straight [4, 5] sleeve (internal part), both of which have the same number
of teeth, as it can be seen in Fig. 1.

Spherical gear couplings are used in heavy duty, high torque applications [6], such as in sheet metal rolling
mills [7], where due to the small roller size, working conditions of up to 7◦ misalignment angle can be found [8]. In
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these applications, the large longitudinal crowning of spherical gear couplings, enables a favorable contact pattern [6].
In addition, it balances the clearance between the tooth surfaces to prevent interference between the teeth [3].

To attain the tooth geometry which enables the described working kinematics, hubs are manufactured by hobbing.
Generation by a disc is also mentioned in the literature [4, 5], however this process is never used to generate suffi-
cient crowning to withstand such high misalignment angles (above 3◦). The tooth geometry of the gear coupling is
obtained from the combination of the cutter tooth geometry and the kinematics of the machining process. Most of
the mathematical approaches existing in the literature simplify the hobbing process, modeling only its central cutting
edge [5, 9, 10, 11]. However, these methods do not consider the threaded surface of the hob (a set of cutting edges
distributed along its thread) during the generation. Thus, even if they may be accurate enough for tooth geometries
with small amounts of crowning, they present strong deviations when generating highly crowned spherical hub tooth
surfaces, as shown by the authors in [12].

g = [3º - 10º]

sleeve

hub

Figure 1: Spherical gear coupling: highly crowned hub and straight sleeve.

In accordance with design criteria and assuming that misalignment is an unavoidable condition, many studies
have focused on different aspects of the operating conditions of gear couplings. Alfares et al. [3] showed that the main
factors influencing the clearance distribution were the misalignment angle, the tooth surface longitudinal crowning,
and the tooth angular position. Hong et al. [13] analyzed the effect of variable clearance distribution due to indexing
errors, revealing that tighter manufacturing tolerances exhibit more favorable load sharing characteristics. From this
and other similar studies, it has been shown that the contact position moves farther away from the middle section to the
edge as misalignment increases, generating undesired load concentrations. For this reason, the main objective of the
crowned surface is to prevent edge contact and to center the contact between the hub and the sleeve [3, 14, 15]. This
is achieved by tooth surface geometry upgrades. For instance, early studies [14], propose the Vari-Crown geometry,
which increases the contact area significantly, by means of a variable crowning radius along the face width, with the
maximum radii being at the load angle. More recently, Guan et al. [15] introduced a novel crown gear coupling, which
contains profile crowning in the teeth, together with longitudinal crowning, to center the point of contact. In fact, due
to the issues caused by load concentrations in gear couplings, design standards, such as AGMA 945-1-B20 [16, 17],
limit the tooth surface geometry up to the point where undercutting sections exist [18]. Therefore, geometries with
undercutting singularities are discarded in the design phase of spherical gear couplings.

Previous works have provided a great insight into the performance of gear couplings, however they have been
mainly focused on small misalignment angles (γ ≪ 3◦). Very few papers can be found concerning high misalignment
angle applications. Herbstritt and Paluh [19] correlated numerical models with experimental tests showing a consid-
erable effect of the misalignment angle (3◦) on tooth bending stresses. Moreover, Ulacia et al. [8] compared tooth root
bending fatigue life of spherical couplings at 7◦ with the stress value obtained with a measured tooth geometry finite
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element model. All these works have shown the impact of the tooth geometry on tooth stresses and the life of gear cou-
plings, however to the best of the authors knowledge, no design guidelines exist for high misalignment applications.
Moreover, the existing standards, DIN 5466 [20], ISO 4156 [17], AGMA 6123-B06 [21] and AGMA 945-1-B20 [16]
are mainly focused on small misalignments, and spherical gear couplings for high misalignment applications are
referred to as special cases.

Therefore, this paper presents a comprehensive approach to determine the influence of the main design parameters
of spherical gear couplings on the achievable misalignment angle, to help manufacturers and designers in a first
approach of the design phase. To this end, the main goals of this research are:

(1) Propose an algorithm to determine the maximum misalignment angle in spherical gear couplings based on the
generated geometry, and compare them with the results obtained with existing analytical methods from the
literature.

(2) Apply the mathematical generation model of spherical gear couplings proposed in [12] to investigate the influ-
ence of the main design parameters on the hub tooth surface geometry and achievable maximum misalignment
angle.

(3) Determine the preliminary design space which fulfills the required maximum misalignment angle and available
space of the application. This will provide the designer with spherical gear coupling geometries, preventing as
much as possible tooth surface geometry issues, such as undercutting or tip pointing.

2. Mathematical model to generate spherical hub tooth surfaces

The mathematical hobbing of spherical gear couplings manufacturing process is considered here. Throughout this
process, the hob follows a circular feeding motion, where the center distance between the gear and the hob varies
continuously. The maximum value of the center distance is equal to the sum of the gear couplings rp and hobs rh

pitch radii (Fig. 2). The spherical hub tooth surfaces are generated considering the hob thread surface as a set of
cutting edges acting at the same time during the generation process, as explained in [12]. Figure 2 shows a schematic
representation of the complete generation process, where the hob thread surface is determined prior to the generation
of the hub with the hob.

The generating rack cutter profile is defined in coordinate system S a as:

ra(u) = [u 0 0 1]T (1)

where u is the surface parameter in the profile direction.
To prevent edge contact at the tips of the hub and sleeve teeth in presence of a high misalignment angle, profile

crowning is required and ra(u) vector is obtained as:

ra(u) = [u apu2 0 1]T (2)

where ap is a parabola coefficient, and in this work takes a value of ap = 0.001 mm−1.
The rack cutter generating tooth surface Σc is represented in coordinate system S c as:

rc(u, v) =Mcb(v) Mba ra(u) (3)

where matrix Mcb and Mba are coordinate transformation matrix and v is the other surface parameter in the feed
direction.

The rack cutter tooth proportions for gear couplings in this research are defined in accordance to the pressure angle
value as shown in Table 1.

Coordinate transformation (4) from system S c to system S w and consideration of the meshing equation (5) allows
the determination of the hob thread surface Σw from the rack-cutter tooth surface Σc:

rw(u, v, ψw) = Mwm(ψw) Mmc rc(u, v) (4)

f1(u, v, ψw) =

Å
∂rw

∂u
×
∂rw

∂v

ã
·
∂rw

∂ψw
= 0 (5)
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Figure 2: Derivation of the hub tooth surface Σh, with the prior determination of the hob thread surface Σw.

Table 1: Hub tooth proportion coefficients in accordance with ISO 4156 [17] and Beckmann [22].
Parameter Values
Pressure angle, α 20◦ 30◦ 37.5◦ 45◦

Addendum coeff., hha 0.50 0.50 0.45 0.40
Deddendum coeff., hh f 0.90 0.90 0.70 0.60
Root radius coeff., ρh f 0.40 0.40 0.30 0.25

Here, ψw is the generation parameter for the hob thread surface and matrices Mwm and Mmc are the coordinate trans-
formation matrix.

The external diameter Dext, h of the hob thread Σw is based on the geometry of the hub that will be generated.
Standard AGMA 1102-A03 [23] defines the external diameter in terms of the generated hub geometry modulus as
shown in Table 2. The rest of the tool parameters, such as, the lead angle are defined depending on it.

Table 2: Hob external diameter Dext, h definition in terms of the module in accordance with AGMA 1102-A03 [23].
mn 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0
Dext, h 32 50 55 65 75 85 95 105 120 130

Coordinate transformation (6) from system S w to system S h and consideration of a double-enveloping process [24]
with two independent parameters of generation ϕw and sw (7, 8) enables to determine the hub tooth surface Σh by the
rotation of the hob thread surface along a curved tool path:

rh,a(u, v, ψw, sw, ϕw) =Mhp(sw, ϕw) Mpw rw(u, v, ψw) (6)
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f2(u, v, sw, ϕw) =

Å
∂rh,a

∂u
×
∂rh,a

∂v

ã
·
∂rh,a

∂ϕw
= 0 (7)

f3(u, v, sw, ϕw) =

Å
∂rh,a

∂u
×
∂rh,a

∂v

ã
·
∂rh,a

∂sw
= 0 (8)

Here, Mhp and Mpw are given by:

Mhp ·Mpw =


cosψh sinψh 0 0
− sinψh cosψh 0 rp,h + rp,w − ∆hw

0 0 1 sw

0 0 0 1

 ·


cosψw sin λw − sin λw sinψw cos λw 0
− sinψw − cosψw 0 0

cos λw cosψw − cos λw sinψw − sin λw 0
0 0 0 1

 (9)

where rp,h is the hub pitch radius, ψh = ϕw · (Nw/z) is the rotation of the hub during generation, and Nw and z represent
the number of threads in the hob and the number of teeth in the hub respectively. ∆hw = rβ−

»
r2
β − s2

w determines the
plunging of the hob when a circular tool path of radius rβ is applied. Indeed, ∆hw will vary depending on the tool path
function used.

The simultaneous consideration of equation (6) and equations of meshing (5, 7, 8) enables the hub tooth surface
to be generated from the rack cutter surface and hob tooth surface definition.

The generation of the fillet hub tooth surface Σh,f can be obtained following a similar approach to the one described
along this section, but it is omitted here for the purpose of simplicity. Moreover, the sleeve generation model is based
on involute tooth surfaces and point contact is assumed between hub and sleeve tooth surfaces, due to the double
crowned tooth surfaces of the hub. The detailed information of the computerized generation of highly crowned
spherical gear couplings and all the coordinate transformation matrix can be found in [12].

3. Determination of the maximum misalignment angle

3.1. Crowning radius rc and misalignment angle γ relationship
It has been shown that most of the research in the literature is focused on small misalignment angles and that

works referring to misalignment angles above 3◦ are rare. Moreover, references [22, 25, 26] do mention the existence
of gear couplings for larger misalignment angles, but recommend design guidelines only for γ ≤ 1.5◦. At the same
time, they note that designs for misalignment angles above 1.5◦ are special cases, and deviate from the generalities
discussed for small misalignment designs.

The amount of longitudinal crowning (Chβ) (Fig. 3(b)) is a key parameter to determine the maximum misalignment
angle in several works [2, 3, 27]. However, it is not straightforward to obtain in highly crowned spherical hubs, due to
the small tool path radius used in their manufacturing [12]. For this reason, a more suitable parameter related to the
manufacturing process should be used to determine the maximum misalignment angle. A more appropriate parameter
for this purpose is the crowning radius rc. This is related to the generated hub geometry and the manufacturing
tool path radius, as can be observed in Fig. 3(a). This figure also illustrates the relationship between the pitch radius rp,
the hob pitch radius rp,w, crowning radius rc, and tool path radius rβ, all defined in the pitch-plane of the hub. For a
given hub and hob pitch radius, the tool path variation will require a direct change of the crowning radius rc, and in
consequence, in the amount of longitudinal crowning Chβ generated. At the same time, Chβ will involve a modification
of the maximum attainable misalignment angle γmax.

Nevertheless, there are few references that analytically calculate the maximum misalignment angle of spherical
gear couplings. This may be due to the predominant use of gear couplings in applications working at small misalign-
ment angles, where the major objective of the crowned surface is the prevention of edge contact and the centering of
the contact between the hub and the sleeve.

Among the equations found to define the maximum misalignment angle, those including mathematical simpli-
fications related to small misalignment angles were disregarded [27]. Relevant equations for this analysis include
equations that consider tooth design parameters, such as the crowning radius and the module and the clearance value,
among others. Thus, the most relevant references that could be applied to high misalignment cases are equations (10,
11) from Beckmann [22] and Guo et al. [2], respectively. It should also be noted that these equations were only used
in small misalignments, below 1.5◦. All in all, it can be observed that eqn. (10) is in terms of the clearance value
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Figure 3: (a) Definition of characteristic radii in highly crowned hub generation, and (b) pitch-plane of the hub teeth with relevant parameters for
the definition of the maximum misalignment angle.

between the hub and sleeve, while eqn. (11) does not consider it, and in contrast, includes among its variables the gear
coupling face width b.

γ = arccos
Å

1 −
2kmn tan(α)

4rc − πmntan(α)

ã
(10)

γ = arcsin
Å

b
tan(α)

2rc

ã
(11)

Moreover, a dimensionless parameter relating the generated geometry (rp) with the hobbing process (rc) (see
eqn. (12)) is proposed in the literature [22, 26]. This coefficient, named the crowning ratio ε, relates the gear cou-
pling size (the pitch radius rp) and the crowning radius rc, and thus is employed in this work to generate equiva-
lent/comparable geometries in terms of the size and amount of crowning.

ε = rc/rp (12)

To calculate the maximum misalignment angle, a clearance value between the hub and sleeve has to be defined.
This is defined following [22], and is proportional to the module as shown in eqn. (13).

j = k · mn (13)

In this research, no profile shift coefficient is employed in the hub, to ensure that this parameter has no influence
on the results. In contrast, to ensure the clearance value between the hub and the sleeve, the profile shift coefficient
calculated with eqn. (14) is entirety applied to the sleeve.

xsleeve =
j/2

mn sin(α)
=

k
2 sin(α)

(14)
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3.2. Algorithm to determine the maximum misalignment angle γmax

To define the maximum applicable misalignment angle of the generated hub, Fig. 4(a) depicts a fixed coordinate
system S f where the hub and sleeve tooth surface models are assembled. The system S h is rigidly connected to the
hub and mounted in the system S f , enabling a misalignment angle around the axis y f , which coincides with the axis yh.
Both models are held at rest without load and no rotation is imposed on either of them. The standard AGMA 6123-
B06 [21] and Guo et al. [2] use the jam angle to determine the geometrical maximum misalignment angle. This is
defined as, the angle at which both sides of the hub tooth surfaces contact the sleeve and, therefore, the component
becomes blocked. This can be observed in Fig. 3(b), where the maximum misalignment angle is defined in such an
angle where contact exists in both sides of the hub tooth surfaces. Thus, a designer must ensure that the jam angle is
greater or equal to the misalignment expected during operation. To determine the maximum misalignment angle, a
clockwise and counterclockwise angle is applied to consider tooth geometry variations [12] which can occur due to
the lead angle (twist effect) [28].
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Figure 4: Maximum misalignment angle determination: (a) Coordinate systems for the positioning of the gear coupling with shaft misalignment γ,
and (b) simplification of the teeth and contact in pure tilting position at 0◦.

The following algorithm, divided into 5 steps, is applied to determine the contact point between the pair of teeth
located in the tilting position (Fig. 4(b)) and deduce the maximum misalignment angle of the spherical gear coupling.
The tooth in the tilting position is considered to be critical, as it is the first which comes into contact [3, 12, 22].

Step 1 The tooth of the hub whose symmetry axis is perpendicular to the misalignment plane, in the tilting posi-
tion, is selected. A counter-clockwise rotation of the hub is considered to find the misalignment angle γ.
Assuming, for the purpose of simplicity, that (uh, vh) are the surface parameters of surface Σh, the following
coordinate transformation (15) allows the surface Σh to be represented in the system S f :

r(hub)
f (uh, vh, γ) =Mfhrh(uh, vh) (15)

8



Here, Mfh is given by:

Mfh =


cos γ 0 ± sin γ 0

0 1 0 0
∓ sin γ 0 cos γ 0

0 0 0 1

 (16)

where γ is the angle of misalignment and the upper and lower signs are applied to a clockwise and a coun-
terclockwise rotation, respectively. The variables (uh, vh, γ) are the unknowns for the sought-for contact
point.

Step 2 The unit normal to surface Σh at the sought-for contact point can be obtained in the system S f as:

n(hub)
f (uh, vh, γ) = Lfh

∂rh

∂uh
×
∂rh

∂vh∣∣∣∣∣∂rh

∂uh
×
∂rh

∂vh

∣∣∣∣∣ (17)

where the matrix Lfh is of 3× 3 order and can be determined from the matrix Mfh by removing the last row
and the last column.

Step 3 The tooth surface of the sleeve Σg comes into contact with the surface Σh, defined by surface parame-
ters (ug, vg), for the purpose of simplicity. As the sleeve is held at rest, surface Σg is represented in the
system S f as:

r(sleeve)
f (ug, vg) = rg(ug, vg) (18)

where (ug, vg) are the unknowns of the sought-for contact point.

In the same way, the unit normal to surface Σg at the sought-for contact point is obtained in the system S f as:

n(sleeve)
f (ug, vg) =

∂rg

∂ug
×
∂rg

∂vg∣∣∣∣∣∣∂rg

∂ug
×
∂rg

∂vg

∣∣∣∣∣∣
(19)

Step 4 A system of five independent scalar equations with the unknowns { uh, vh, γ, ug, vg } is defined as:

r(hub)
f (uh, vh, γ) = r(sleeve)

f (ug, vg) (20)

n(hub)
f (uh, vh, γ) = n(sleeve)

f (ug, vg) (21)

In fact, eqn. (21) represents only two independent scalar equations since |n(hub)
f | = |n(sleeve)

f | = 1.

Step 5 Steps 1 to 4 are repeated for a clockwise rotation. That way, the geometry deviations related the twist-effect
are also considered [12, 28]. The smallest value of both is established to be the maximum misalignment
angle of the gear coupling.

4. Conditions of existence for spherical gear couplings working in high misalignment applications

In the following subsections, three tooth surface geometry existence conditions are presented to evaluate the
quality of the generated hub tooth surfaces. The first two, pointed teeth and undercut, are commonly used for gears
and are taken into account in gear coupling standards [16, 17] while the third, is a new parameter proposed for highly
crowned spherical gear couplings.
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4.1. Pointed teeth

Figure 5 shows the definition of the tip width (st) of the spherical hub tooth surfaces, where the tooth flanks are
discretized into m × n points. m represents the number of points across the tooth profile direction and n the number
of points along the face width direction of the hub flank. As shown in Fig. 5, a point in the addendum edge and the
front side of the tooth is defined as (1, 1) and a point at the root and back side is defined as (m, n).

For spherical crowned hubs, apart from the geometry parameters (dp, α, etc.) of the generated hub, the crowning
radius plays a significant role in the tip width (Fig. 6(a)). Similar to the general rule specified for cylindrical gears,
ISO 4156 [17] states the following equation (22) for the tip thickness limit.

st, n ≥ 0.25 · mn (22)

Tip width st, n refers to the distance between right side irs and left side ils top points of each n section, which can
be represented as:

st,n =
»

(xi, rs − xi, ls)2 + (yi, rs − yi, ls)2 + (zi, rs − zi, ls)2 (23)

where (xi, rs, yi, rs, zi, rs) and (xi, ls, yi, ls, zi, ls) denote the coordinates of points irs and ils in the fixed coordinate system S f .
The range for index i goes from 1 to n. The right and left side profiles are limited to the positive and negative side of
the S h coordinate system, respectively, to prevent crossover.

4.2. Undercut profiles

Using the algorithm described in [12] the undercutting and only-fillet regions can be detected and the length of
the face width at which they appear can be determined. Indeed, when tangency no longer exists between the active
profile Σh, a and the fillet Σh, f , a singularity occurs and the profiles are undercut (Fig. 6(a)).

4.3. Useful flank

The relative slenderness of the gear coupling is called the aspect ratio. It is a dimensionless coefficient which
relates the face width b and the pitch diameter dp of the gear coupling; that is to say, the stiffness of the teeth of
the hub. For this reason, in the gear coupling standard DIN 5466 [20], it is used for the calculation of the bending
moment, torsional moment, and surface maximum pressure, among other strength parameters.

However, for highly crowned spherical hubs, the length of the hub b is not equivalent to the length of the active
profile bflank as shown in Fig. 6(b). Indeed, sections with only-fillet profiles might occur as was presented in [12].
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Moreover, AGMA 945-1-B20 [16] defines the concept of the axial engagement length, referring to the bcontact in
Fig. 6(b), and recommends this distance to be as great as possible to reduce contact, shear and bending stresses. Thus,
in this study, with the purpose of comparing different geometries and determining whether they are geometrically
more appropriate to withstand a given misalignment, two dimensionless parameters are defined:

• The flank ratio: bflank/dp

• The useful flank ratio: buseful/dp

The lengths are indicated in Fig. 6(b), where bflank corresponds to the length of the face width containing an active
profile, and buseful to the length of the active profile without undercut or pointed teeth.

Between two equivalent geometries, that with the largest value of useful flank ratio should be chosen, as it will
provide better contact surface and stiffness to the gear coupling. In the same way, a hub with the same aspect ratio,
flank ratio and useful flank ratio that fulfills the design criteria will be the ideal geometry for the target application.

5. Definition of the cases of study

In this study two types of analysis were done: (a) a comparison of the method to calculate the misalignment angle
with scientific literature models, and (b) influence of geometry variables.

5.1. Comparison with the scientific literature models

To analyze how maximum misalignment angle is determined in the scientific literature and compare it with the
model proposed here, four gear coupling geometries from the literature (L) and four representative case studies (CS)
were defined as shown in Table 3. This table contains all the design characteristics, along with the maximum mis-
alignment angle for which the different literature models (L) were analyzed in the literature, and the maximum mis-
alignment angle of the proposed case studies (CS), calculated with the model in Section 2.

On the one hand, the literature models (L) chosen are considered as references that have recently worked in
misaligned crowned gear couplings. The first is a straight gear hub L1 defined by Xiao et al. 2022 [29], while the
rest are geometries with larger crowning ratios: L2 by Hong et al. 2015 [30], L3 by Guo et al. 2016 [2] and L4
from Guan et al. 2021 [31]. It should be pointed out that L1 is a straight gear coupling which consequently will
exhibit edge contact when misalignment is present, unlike the rest of the cases analyzed here.

On the other hand, the case studies (CS) were chosen to clearly show the differences between equations (10,11)
and the proposed model, considering the influence of the crowning ratio and the size. CS1 and CS2 represent relatively
high crowning ratio geometries in the context of the present study, but low within the scientific literature. In contrast,
CS3 and CS4 are highly crowned hubs (small crowning ratio). Moreover, CS2 and CS4 refer to small pitch diameter
gear couplings, while CS1 and CS3 represent big diameters. Thus, these four cases are selected to showcase the
influence of the crowning ratio on the calculated misalignment angle.
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Table 3: Gear coupling geometry parameters for misalignment angle comparison.
Parameter L1 L2 L3 L4 CS1 CS2 CS3 CS4
dp [mm] 75 79 1016 120 99 51 99 51
mn [mm] 2.50 3.175 10.16 3 3 3 3 3
z [-] 30 25 100 40 33 17 33 17
α [◦] 20 30 20 20 30 30 30 30
b/dp 0.367 0.625 0.125 0.150 0.30 0.30 0.30 0.30
j [mm] 0.50 0.62 0.64 0.71 0.71 0.71 0.71 0.71
ε [-] ∞ 62.99 3.94 1.67 1.00 1.00 0.40 0.40
γmax [◦] 0.20 0.06 0.80 0.80 4.50 4.75 2.94 7.90
Tool path shape Circular
Dext, h [mm] f (mn) acc. to AGMA 1102-A03 [23] (Table 2)

5.2. Definition of reference geometries and variables considered

The investigation was carried out on the basis of a reference hub geometry, which was chosen as a representa-
tive case for the scope of this research: small and highly crowned geometry suitable for a high misalignment angle
application. In this study, a total of 11, 480 geometries were generated.

The range of values selected together with the reference value for each design variable were determined in regards
to the following considerations and are shown in Table 4 (underlined values correspond to the reference values):

• Number of teeth, z or associated module mn.
No reference value was selected.
Range: 0.5-10, taken from the standard ISO 4156 [17], where a minimum of 6 teeth and a maximum of 100 is
recommended.

• Crowning ratio, ε.
No reference value was selected.
Range: ε ≤ 1.0, as they are special cases in the existing literature [22, 25], and have not been previously studied.
In this analysis crowning ratios below this limit were chosen, with the minimum mathematical limit of ε = 0.4.

• Pressure angle, α.
Reference value: 30◦, because it is the most used in gear coupling applications [16, 20, 22].
Range: defined from the standard ISO 4156 [17], and additionally a 20◦ pressure angle was considered, as it is
a reference in load capacity calculations of gears and is also one of the most used in gear couplings [22].

• Aspect ratio, b/dp.
Reference value: 0.30, as it is suggested for gear couplings working in high misalignment angle applications in
the specialized literature [22, 32, 33].
Range: selected in accordance to literature recommendations: b/dp = 0.15, for the purpose of comparison;
b/dp = 0.60, reference value for the standard DIN 5466 [20]; and, b/dp = 0.90, since it is recommended
that the length must be less than the gear pitch diameter to prevent torsional twist concentrations in external
gears [34].

• Pitch diameter, dp.
Reference value: 50 mm, for being an appropriate size for the current analysis.
Range: 36-400 mm, so that a wide range of sizes is covered, and general conclusions can be drawn.

• Clearance factor, k
Reference value: 0.07, since it is the highest value from the range recommended [22], and a bigger clearance
will enable a higher misalignment angle.
Range: 0.04-0.08, to analyze a wider range than the one recommended in literature [22], which at the same
time, gives no guidelines to choose an appropriate value.
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Table 4: Definition of the design variables for the research case studies.
Parameter Values considered
mn [mm] 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0
ε [-] 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
α [◦] 20, 30, 37.5, 45
b/dp [-] 0.15, 0.30, 0.60, 0.90
dp [mm] 36, 50, 100, 200, 400
k [-] 0.04, 0.05, 0.06, 0.07, 0.08

Additionally, to generate these geometries a circular tool path was used, as it is the most commonly used in gear
couplings [5, 11, 27]. Here, the tool path radius rβ was defined based on the crowning ratio ε, the pitch radius rp and
the hob pitch radius rp w (see Fig. 3(a)), as:

rβ = ε · rp + rp w (24)

In all the cases, a spherical gear blank was employed to generate the different geometries, with an external radius
equivalent to the tip radius of the hub. This geometry was selected to prevent interference in misaligned applications
when rotating relative to the pivoting position of the gear coupling [35].

6. Results

The geometries were generated following the model described in Section 2. The geometrical properties were ver-
ified according to the conditions of existence in Section 4, and the achievable maximum misalignment was calculated
with the proposed algorithm in Section 3.2.

In the following sections the effect of the design parameters on the maximum misalignment angle and geometry
characteristics is analyzed.

6.1. Maximum misalignment angle: literature comparison
First, the misalignment value obtained with equations (10, 11) from the literature was compared with the model

proposed in Section 3.2. To this end, the equations were applied to gear coupling geometries from the literature (L)
and some representative case studies (CS) to determine the maximum misalignment angle. All the geometry properties
are summarized in Table 3.

Figure 7 shows the results of the models ordered from the highest to the lowest crowning ratio value ε, together
with the geometry generated by the model summarized in Section 2.

The straight gear coupling L1 has the highest ε value, with an infinite crowning radius. It can be seen that there
is disparity between the results obtained with the different equations. Indeed, due to the infinite value of the crowning
radius rc, the equations give a null misalignment angle. By contrast, the proposed model gives a γ ≈ 0.2◦ due to the
consideration of the tooth geometry and the existing clearance in the gear coupling. Even though, this would not be
an appropriate working angle due to the stress concentration resulting from edge contact [29]. Thus, it can be said
that the equations are not suitable to analyze straight gear couplings with a an infinite crowning radius rc.

In the case of L2, L3 and L4 geometries, all equations present similar results. These geometries have a high value
crowning radius rc, and thus a small amount of longitudinal crowning Chβ. Moreover, it can be seen that the pitch
diameter does not have a significant effect on the results for cases L2 and L3. However, differences can be perceived
with eqn. (11) in L4, which is a relatively small gear coupling with a low crowning ratio.

This observation is reinforced by the results obtained with CS1 and CS2, where it can be seen that for relatively
small pitch diameters and ε = 1.0 the values obtained with eqn. (11) differ to a greater extent.

The lowest ε value in this analysis corresponds to the case studies CS3 and CS4, where deviations are more
noticeable. Differences with eqn. (11) are even greater than for the previous cases, due to the lower crowning ratios.
Indeed, a lower crowning ratio (ε) means a smaller crowning radius (rc) and thus, a higher amount of crowning (Chβ).

The figure clearly shows that eqn. (10), gives similar results to the proposed model for the literature cases (L1,
L2, L3, L4) and the case studies with a high crowning ratio (CS1, CS2). However, for the case studies with a smaller
crowning ratio (CS3, CS4) differences increase. The deviations are particularly visible in CS3, where due to the
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Figure 7: Maximum misalignment angle calculated according to the literature and the proposed model applied to the geometries defined in Table 3.

bigger pitch diameter, the face width of the hub is increased to keep a constant aspect ratio. This feature causes the
maximum misalignment angle to decrease, which is not considered in eqn. (10).

Hence, it is shown that either the crowning ratio or the pitch diameter have an impact on the calculated misalign-
ment angle value. This demonstrates the need for a more in-depth analysis to determine the influence of gear coupling
design variables, which is developed in the subsequent sections.

6.2. Influence of the module and number of teeth

To analyze the influence of the design variables in terms of the number of teeth z and the crowning ratio ε, every
geometry for each number of teeth and crowning ratio was generated for the corresponding pitch diameter.

In this case the analyzed geometries were generated with the following parameters:

• Constant parameters: dp = 50 mm, α = 30◦, b/dp = 0.3, and k = 0.07.
• Variable parameters: mn and ε.

Figure 8 shows the maximum misalignment angle achieved with each of the hub geometries generated according
to Table 4. Black points in Fig. 8, illustrate the geometries obtained with the reference value of ε = 0.4, while the
rest of the points with a constant number of teeth represent the geometries generated with the same parameters, but a
different crowning ratio value.

It can be seen that the maximum misalignment angle decreases for a constant pitch diameter as the number of teeth
increases (or module decreases), regardless of the crowning ratio. However, the crowning ratio has a higher influence
on geometries with low numbers of teeth. The maximum misalignment angle (γmax = 11.5◦) may be reached with a
z = 6 and ε = 0.4 hub geometry. Moreover, the maximum variation observed due to the change in the number of teeth
is of ∆γ = 9.19◦, which corresponds to an effect of 79.91%.

Moreover, the figure shows two areas, corresponding to the geometries that do and do not verify the conditions
of existence, proposed in Section 4. Each region is delimited by a convex hull, which refers to the smallest convex
polygon that includes all the points in a 2D space. Here, this is determined by Andrew’s monotone chain convex hull
algorithm [36].

A representative hub tooth geometry corresponding to each of the zones can be seen on the right side of Fig 8.
The zone that fulfills the conditions of existence (so-called Verified) covers the lower part of the graph (striped zone),
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where the smallest misalignment angles are achieved. The hub geometries in this zone do not have any undercut
sections nor pointed teeth issues. It should also be noted that this area can be further extended to lower misalignment
values with higher crowning ratios (ε > 1.0), however these common geometries are out of the scope of this research.

On the left of the figure, where the highest misalignment angles are achieved, undercut sections (▲) prevail. More-
over, if a misalignment angle above 6◦ is required, undercut sections will be unavoidable, and thus it is necessary to
generate and control the geometry of the undercut sections properly by using the tooth generation procedure described
in [12].

Concerning the pointed teeth zone (■), the figure shows that it appears in geometries with higher numbers of teeth.
It can also be found, in small numbers of teeth for very high misalignment angles, which require large longitudinal
crowning.

Finally, with regard to the useful flank, Fig. 8 depicts the limit (straight and thick line) at which the useful flank
length is smaller than the flank length (which is equal to the face width of the hub). This limit coincides with the
lower limit at which undercut and pointed teeth start, confirming that the geometries inside the Verified region are
the most appropriate from the point of view of stiffness or larger contact surface (the aspect ratio is equivalent to the
useful flank ratio). Indeed, once the hub geometry presents singularities, the length of the useful profile buseful starts to
decrease. In cases with a large number of teeth, the limiting line that defines the misalignment angle from which the
flank length is smaller than the face width hub (bflank < b) is denoted with a dashed and dotted line. The geometries
above this boundary are the ones with the smallest useful flank ratios.

6.3. Influence of the crowning ratio ε

The geometries analyzed herein were generated with the same parameters from the precedent section:

• Constant parameters: dp = 50 mm, α = 30◦, b/dp = 0.3, and k = 0.07.
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• Variable parameters: mn and ε.

Related to the results presented above, Fig. 9 shows the influence of the crowning ratio on the maximum misalign-
ment angle. In addition to the maximum misalignment angle represented with the contour plot, the hub geometries in
each zone of the figure are also displayed to graphically illustrate the influence of the design variables on the generated
tooth geometry.
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Figure 9: Maximum misalignment angle in terms of the crowning ratio and the number of teeth for dp = 50 mm, α = 30◦, and b/dp = 0.3
geometries. Dashed line (−−) represent the undercut condition, while the dotted line (· ·) the pointed teeth, and the dashed and dotted line (− ·) the
limit where the flank length is shorter than the face width.

It can be seen that as the number of teeth and the crowning ratio increases, the maximum misalignment angle
decreases. Even if a decrease of the crowning ratio presents a direct increase of the misalignment angle, it will not
increase with the same amount for all geometries. Moreover, the misalignment angle evolution decreases as the
number of teeth increases, for the same crowning ratio variation. For instance, a decrease from ε = 1.0 (geometry E)
to ε = 0.4 (geometry F) of two geometries with z = 6, results in an increase of the maximum misalignment angle
of ∆γ = 4.03◦. However, for the same pitch diameter in two geometries with z = 100 (G and H), the same crowning
ratio variation (∆ε = 0.6) only produces an increase of the misalignment angle of ∆γ = 0.86◦. The maximum variation
observed due to the change in the crowning ratio is of ∆γ = 4.03◦, which corresponds to an effect of 35.04%.

The conditions of existence are represented in Fig. 9 with the undercut boundary as a dashed line, and the pointed
teeth boundary as a dotted line. The small number of teeth (high module) geometries are more likely to have under-
cutting sections, while geometries with a higher number of teeth (small module) present pointed teeth. This result is
consistent with the gear literature [37]. Furthermore, these results clearly show that to achieve a high misalignment
angle the presence of undercut is mandatory.

Concerning the flank length, the geometries inside the non-shaded region (e.g. geometries A and G) contain hubs
with a useful flank buseful equivalent to the flank length bflank and face width b of the hub. Below this boundary, the
useful flank is shorter than the flank length. For smaller crowning ratios and at high numbers of teeth, with a dashed
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and dotted line, the flank length is shorter than the face width (e.g. geometry H), thus more flexible geometries are
obtained.

6.4. Influence of the pressure angle α
Here, geometries were generated with the corresponding parameters:

• Constant parameters: dp = 50 mm, b/dp = 0.3, and k = 0.07.
• Variable parameters: α, mn and ε.

Figure 10 depicts the influence of the pressure angle on the maximum misalignment angle. The four graphs in
the figure represent the maximum misalignment angle for each pressure angle in terms of the number of teeth, and a
representation of Bx geometry is also depicted.
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Figure 10: Maximum misalignment angle for different pressure angles for dp = 50 mm and b/dp = 0.3 geometries. Dashed line (−−) represent
the undercut condition, while the dotted line (· ·) the pointed teeth limit.

Figure 10 shows a decrease of the maximum misalignment angle as the number of teeth increases, regardless of
the pressure angle. Moreover, it can be observed that for the same geometry with the same parameters, the achievable
maximum misalignment angle increases as the pressure angle increases. For instance, geometry B20 attains a maxi-
mum misalignment of γ = 4.95◦ for α = 20◦, while it increases up to γ = 8.78◦ in geometry B45 for α = 45◦. Further-
more, the influence of the number of teeth increases as the pressure angle increases; i.e. for a geometry of α = 20◦

and ε = 0.4, a change of the number of teeth can vary the maximum misalignment angle as much as ∆γ = 5.84◦,
whereas for a α = 45◦ and ε = 0.4, it may vary up to ∆γ = 15.53◦. The maximum misalignment angle (γmax = 20.36◦)
may be reached with a z = 6 and α = 45◦ hub geometry. Moreover, the maximum variation observed due to the change
in the pressure angle is of ∆γ = 12.56◦, which corresponds to an effect of 61.69%.

Concerning the conditions of existence, the results show that as the pressure angle increases the pointed teeth
region increases, while the undercutting region is reduced to small number of teeth geometries.
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It should also be noted, that if very high misalignment angles need to be achieved undercutting is necessary, for
all pressure angles. Nevertheless, for high misalignment angles between 3-10◦ it can be seen that geometries with low
numbers of teeth and a large pressure angle (37.5◦ or 45◦) can prevent undercut sections.

Figure 11 illustrates the useful flank, undercut and pointed teeth limits in terms of the crowning ratio and number
of teeth. Figure 11(a) shows how the useful flank region increases towards the bottom left corner, as the pressure angle
increases, making it clear that a higher pressure angle with low number of teeth provide a more suitable gear hub from
the geometrical point of view. Figure 11(b) and (c) present similar trends: the undercut region is reduced when the
pressure angle increases, and at the same time, the pointed teeth area is enlarged when the pressure angle increases.

6.5. Influence of the aspect ratio b/dp

To analyze the influence of the varying face width, these geometry parameters were used:

• Constant parameters: dp = 50 mm, α = 30◦, and k = 0.07.
• Variable parameters: b/dp, mn and ε.

Figure 12 shows the maximum misalignment in terms of the number of teeth, together with the representation of
the geometry Bx according to the aspect ratio. It can be seen, that an enlargement of the face width does not affect the
achievable misalignment angle, except for small numerical deviations, even though there is a severe increase of the
pointed teeth region. The maximum variation observed due to the change in the aspect ratio is of ∆γ = 0.05◦, which
corresponds to an effect of only 0.56%.

Figure 13 depicts that a value of the aspect ratio b/dp > 0.6 adversely affects the geometrical properties in small
pitch diameters, due to the excessive pointed teeth. Moreover, no apparent increase in the misalignment angle is
observed.

Concerning lower aspect ratio values (b/dp = 0.15 − 0.3), a stress analysis is required, as the achievable misalign-
ment angle will remain constant for small pitch diameter geometries.
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6.6. Influence of the pitch diameter dp

To this point, the influence of the design variables has been analyzed considering a constant space constraint, that
is, a constant pitch diameter of dp = 50 mm. In this section the impact of the pitch diameter is described and geometry
parameters were set as follows:

• Constant parameters: α = 30◦, b/dp = 0.3, and k = 0.07.
• Variable parameters: dp, mn and ε.

Figure 14(a) shows a general overview of the maximum misalignment angle achieved with all the generated
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geometries, in terms of the pitch diameter and the number of teeth.
It can be observed that the highest misalignment angles are achieved with small pitch diameters (dp < 100 mm),

regardless of the crowning ratio used. In other words, as the pitch diameter increases the maximum misalignment
angle decreases (Fig. 14(b)). In addition, the variation of the obtained maximum misalignment angle is smaller as
the pitch diameter increases. The figure also illustrates the decrease of the achievable maximum misalignment angle
while the number of teeth increases, with a common limiting surface, regardless of the pitch diameter.
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For a constant number of teeth and crowning ratio, the maximum misalignment angle achieved is very similar,
regardless of the pitch diameter. For instance, for geometries I (z = 12), J (z = 13) and K (z = 12), and ε = 0.4,
and the maximum misalignment angle is 7.87◦, 7.23◦ and 7.91◦, respectively (see Fig. 15). These slight differences
are associated with the different number of teeth, due to the predefined module values in the ISO 4156 standard [17].
The maximum variation observed due to the change in the pitch diameter by the module is of ∆γ = 0.98◦, which
corresponds to an effect of 7.80%.

Similarly, if the same module and crowning ratio geometries are compared for different pitch diameter values, a
significant decrease of the maximum misalignment angle is observed; e.g. for geometries J, L and M with mn = 4 mm
and ε = 0.4, a maximum misalignment angle of 7.23◦, 3.53◦ and 2.47◦ is achieved, respectively. The maximum vari-
ation observed due to the change in the pitch diameter by the number of teeth is of ∆γ = 6.57◦, which corresponds
to an effect of 73.99%. It can therefore be concluded, that although the module and the number of teeth are vari-
ables dependent on each other (dp = mn z), the number of teeth z has a greater impact on the achievable maximum
misalignment angle.

Indeed, within the recommended module and number of teeth values from ISO 4156 [17], it can be observed that
as the pitch diameter increases, the available area is reduced (geometries outside the boundaries are shaded: z < 6
and z > 100). The misalignment angle differences within this area are thus reduced, and a geometry that verifies
the conditions of existence is easier to obtain. Nevertheless, if the design demands a high misalignment angle, from
Fig. 15 it can be deduced that geometries with a small pitch diameter and low number of teeth are the most suitable,
even if undercut singularities exist.

To clearly state the limiting values of the crowning ratio at which conditions of existence are fulfilled, Fig. 16
shows the similarity of the boundaries for the useful flank (a), undercut (b) and pointed teeth (c) for all the pitch
diameters. The slight differences are related to the numerical deviations. In fact, it is evidenced that the crowning
ratio has no influence on the pitch diameter.

20



4 8 16 32 64 128
Number of teeth,  z   [ log

2 
]

0

2

6

8

10

12

M
is

al
ig

n
m

en
t 

an
g

le
, g

  [
º]

4

256 512 10244 8 16 32 64 128
Number of teeth,  z   [ log

2 
]

256 512 1024

4 8 16 32 64 128
Number of teeth,  z   [ log

2 
]

256 512 1024
0

2

6

8

10

12

M
is

al
ig

n
m

en
t 

an
g

le
, g

  [
º]

4

J
K

I

L

ISO 4156
limits

d
p
= 36 mm d

p
= 50 mm d

p
= 100 mm

d
p
= 200 mm d

p
= 400 mm

M

Condition of existence verified
Undercut 
Pointed teeth
Undercut & Pointed teeth

Undercut

Pointed teeth J KI

ML

Figure 15: Maximum misalignment angle for α = 30◦ and b/dp = 0.3 geometries for each pitch diameter. Dashed line (−−) represent the undercut
condition, while the dotted line (· ·) the pointed teeth limit.

Number of teeth,  z  [log
10

]

C
ro

w
n

in
g

 r
at

io
,  
e

  
[-

]

(b) (c)

10 40 100
0.4

0.6

0.8

1.0

(a)

Number of teeth,  z  [log
10

]
10 40 100

Number of teeth,  z  [log
10

]
10 40 100

d
p
 = 200 mm

d
p
 = 400 mm

d
p
 = 36 mm

d
p
 = 50 mm

d
p
 = 100 mm

Useful flank Undercut Pointed teeth

Figure 16: Conditions of existence for α = 30◦ and b/dp = 0.3 geometries in terms of the pitch diameter. (a) useful flank, (b) undercut, and
(c) pointed teeth.

6.7. Influence of the clearance factor k
Finally, the influence of the clearance between the hub and the sleeve tooth surfaces was analyzed, using the

clearance factor k, and with the subsequent parameters:

• Constant parameters: dp = 50 mm, ε = 0.4, α = 30◦, and b/dp = 0.3.
• Variable parameters: k and mn.

Even if clearance distribution changes as a function of the teeth angular position or due to manufacturing errors [38,
16], attention was paid to the minimum clearance value in the tilting position (see Fig. 17), to analyze its effect on the
misalignment angle.

Figure 17 shows the increase of the misalignment angle as the clearance factor k increases, in terms of the number
of teeth.

The clearance value ( j = k · mn) is in terms of the module, and thus for a constant pitch diameter, a smaller
number of teeth will have a greater clearance value. This is also consistent with the observation that the influence
of the clearance factor is more marked in geometries with a small number of teeth. Hence, if a z = 6 and z = 100
are compared, the misalignment variation reduces from ∆γ = 2.30◦ to ∆γ = 0.83◦ in terms of the clearance factor k.
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The maximum variation observed due to the change in the clearance factor is of ∆γ = 2.30◦, which corresponds to an
effect of 18.70%.
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Figure 17: Misalignment angle in terms of the clearance factor k for dp = 50 mm, α = 30◦ and b/dp = 0.3, and representation of misalignment
angle variation.

7. Discussion

In accordance with the analytical models in the literature proposed in equations (10, 11) to determine the mis-
alignment angle, it has been shown that deviations arise for small crowning ratios or big face width gear couplings, as
these are oriented for small misalignment angles. Indeed, these equations do not consider all the parameters involved
or the real geometry of the hub tooth, such as the face width, the module or the clearance. Related to this, in eqn. (11)
simplifications associated with the transverse crowning radius rt calculation are made. Indeed, in (11) the transverse
crowning radius is approximated as: rt = rc · tan(α)−1, but this equivalence is only satisfied when the transverse
crowning radius rt is large enough (big crowning ratios), and the contact point is in the pitch diameter.

From the parameters analyzed in this paper it can be concluded that geometries with low numbers of teeth are the
most suitable to attain higher misalignment angles, even if they are susceptible to undercut singularities. This is in
agreement with the design criteria proposed by Herbstritt and Paluh [19]. They found that larger and fewer teeth with
a small curvature (rc) result in significant stress reduction and increased life of the component, which makes them
more suitable for high misalignment applications [38]. In the same vein, Section 6.6 shows that small pitch diameters
provide the largest design space for high misalignment angles.

Concerning the design variables, the present paper has shown that crowning radius is a key parameter in the design
of highly misaligned hubs. Similarly, some works have noted that longitudinal crowning is necessary to compensate
for misalignment [3, 16]. Moreover, it is said that an excessive longitudinal crowning (reduced crowning radius)
leads to uneven clearance distribution [3]. This can also be observed in Fig. 8 and 9, by the fact that a geometry
optimized for a higher misalignment angle than the angle it is working at, will have bigger undercut singularities,
and thus a lower stiffness. The aforementioned issue is dependent on the useful flank, as crowning ratio is reduced,
the useful flank is also reduced. However, if crowning ratio is kept constant and the face width of the gear coupling
varies, neither the misalignment angle nor the useful flank values change significantly, due to the small value crowning
radius rc existing in these geometries. This appears to be in agreement with Dudley [39], who stated that in flexible
gear couplings the face width does not necessarily contribute to load-carrying capacity, and concluded that increasing
the face width will not increase the load capacity. In fact, in Fig. 12 it is observed that there is a limit b/dp ratio above
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which the maximum misalignment angle does not vary. AGMA 945-1-B20 [16] also stated that a face width limit
exists, above which root stresses are not reduced. Hence, it can be concluded that the most suitable aspect ratio values
are 0.15 < b/dp < 0.3, which is in agreement with recommended values from the literature [22, 32, 33], even if these
latter were never verified for such big misalignment angles.

On the other hand, the standard pressure angles commonly applied in the literature are 20◦ [3, 22] or 30◦ [17, 20].
Nevertheless, the present work demonstrates that large pressure angles (45◦) offer the best geometry adapted to high
misalignment applications. Indeed, a higher pressure angle will generate a wider tooth root and ultimately a stiffer
tooth. Alfares et al. [3] sets a minimum pressure angle of 25◦ for high misalignment applications, even if wear
problems arise with values higher than 40◦. The discrepancy with the proposed suitable pressure angle of 45◦ in the
present paper, might be due to the non extended use of gear couplings in high misalignment applications. Moreover,
wear failures are common in slight misalignment applications [40], and there are no evidence of wear failures in high
misalignment applications.

Finally, concerning the clearance, standards [17, 20] recommend increasing the clearance values when misalign-
ment occurs, but no guide values are provided. This work has shown that an increase of the clearance value does in
fact increase the maximum misalignment angle. However, it is known that smaller clearance values lead to increased
uniformity of tooth loading [3, 38], while higher values generate less uniform load distributions [41]. There are some
works that propose clearance values depending on the pitch diameter [39] or module [22], but they are not adapted to
working operations at high misalignment angles.

8. Conclusions

In this work, an algorithm to calculate the maximum misalignment angle is proposed, which considers real gear
coupling teeth geometries and all the design parameters involved in the misalignment angle calculation. After com-
paring the results with other models in the literature, it is concluded that:

(1) The proposed model, can be applied for all type of gear coupling geometries, and it is not limited to gear
couplings with small amounts of crowning (≪ 100 · 10−3 mm), as is the case with existing methods.

(2) The transverse crowning radius cannot be approximated to the crowning radius by rt = rc/ tan(α), in highly
crowned spherical gear couplings.

(3) The face width and the module must be considered when calculating the maximum misalignment angle, together
with the crowning radius, the pressure angle, and the clearance.

Secondly, the influence of the main design parameters of spherical gear couplings on the geometrical properties of
gear tooth surfaces that work in high misalignment applications was investigated. These analyses allow the following
conclusions to be drawn:

(4) The proposed procedure to define the limits of the main design parameter for spherical gear couplings is effective
to prevent tip pointing and undercutting profiles in highly crowned spherical gear couplings.

(5) Gear couplings adapted to high misalignment angles (γ > 5◦) must have undercutting profiles, which in conse-
quence need to be accurately generated with an appropriate model.

(6) The maximum effect of each design parameter on the maximum misalignment angle individually are, from
highest to lowest: the number of teeth (79.91%), the pressure angle (61.69%), the crowning ratio (35.04%), the
clearance factor (18.70%), and the pitch diameter (7.80%). The aspect ratio, has no significant influence on
small geometries (0.55%), with the most appropriate value being 0.15 < b/dp < 0.3.

(7) High pressure angle geometries give rise to hub tooth surfaces with verified geometric tooth surfaces at high
misalignment angles.
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This work serves as a tool for designers and manufacturers to choose the most appropriate highly crowned spher-
ical gear coupling geometry adapted to a required maximum misalignment angle.

This design space will require future validation with a stress analysis. Indeed, in load conditions, the number
of teeth in contact will vary in the presence of high misalignment and thus, flexibility of the gear coupling will be
modified giving as a result slightly larger misalignment angles.
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[8] I. Ulacia, J. Larrañaga, A. Arana, A. Iñurritegui, J. Elizegi, Fatigue life prediction of spherical gear couplings, in: American Gear Manufac-

turers Association Fall Technical Meeting 2018, Illinois, 2018, pp. 202–207.
[9] K. Mitome, T. Okuda, T. Ohmachi, T. Yamazaki, Development of a new hobbing of spherical gear, Transactions of the Japan society of

mechanical engineers. Series C 66 (646) (2000) 1975–1980. doi:10.1299/kikaic.66.1975.
[10] L. Chao, C. Tsay, Contact characteristics of spherical gears, Mechanism and Machine Theory 43 (10) (2008) 1317–1331.

doi:10.1016/j.mechmachtheory.2007.10.008.
[11] L. Kelemen, J. Szente, Two mathematical models for generation of crowned tooth surface, The Scientific World Journal 2014 (2014).

doi:10.1155/2014/641091.
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