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Abstract 

Some industrial applications require structured surfaces with high roughness values to ensure their 

functionality (Ra > 1 µm, Rmax < 30 µm). In order to obtain these structured surfaces with high 

roughness values, face milling operation is commonly used in aluminium components employed 

in the automotive and aeronautical sectors. Polycrystalline diamond insert tools (PCD) are widely 

used to obtain those structured surfaces. However, one of the major drawbacks of using face 

milling is that the roughness presents a high variation across the width of cut. Nevertheless, it is 

possible to mitigate these variations by (i) modifying the micro-geometry of the inserts, (ii) 

displacing each tooth by small axial amounts from their nominal positions or (iii) varying the feed 

rate. Frequently, the definition of those parameters is carried out employing trial-and-error 

strategies, with consequent cost and time penalties. In this research work, roughness maps have 

been developed as a novel optimisation tool to define the micro-geometry of the PCD inserts, 

their axial position in the tool and the feed rate, reducing the time to design new cutting tools for 

face milling. The roughness maps are determined based on roughness indicators calculated from 

3D face milled surfaces that are modelled as a split signal in two components: (i) the kinematic 

movements of the cutting edge and its geometry, and (ii) a novel approach considering the 

stochastic roughness, which embraces the chip removal process, material defects or vibrations. 

The model is validated by experimental face milling tests on A-356 aluminium alloy, showing 

good agreement with experimental results.  

Keywords Roughness, Modelling, Milling, Optimisation, Predictive model 

1 Introduction 

Surface roughness is one of the most common characteristics employed to assess the quality of 

machined components. Milne et al. [1] defined this parameter as the repetitive or random 

deviation from the nominal surface that forms the surface’s three-dimensional (3D) topology. 

Together with surface texturing (Coblas et al. [2]), it has been proven to significantly influence 

aspects such as tribology, fatigue life, corrosion, sealing, adhesive bonding, osseointegration, and 

optics. 

In the majority of industrial applications, surface roughness is required to be as low as possible 

to obtain an excellent surface finish or improve the performance of the manufactured workpiece. 

However, there are many other applications where high roughness values are advantageous (Ra > 

1 µm, Rmax < 30 µm). Mainly, these high roughness values are required on automotive industry 

(spoilers, door modules, seats, bumpers, and door cappings) or aeronautical industry, where 

higher roughness results in fewer residue adhesions after impacts, as Kok et al. [3] concluded. 

Moreover, Persson et al. [4] demonstrated that roughness influences the leakage rate in sealing 

applications, helps viscoelastic energy dissipation in rubber friction and increases adhesive bonds.  
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In addition, roughness is also necessary for applications such as healthcare, where dental implants 

require a specific roughness to ensure adhesion between human tissue and implants (dos Santos 

et al. [5], Elias et al. [6] and Caravaca [7]). 

Different manufacturing strategies are used to structure the rough surfaces, including sandblasting 

(Caravaca [7]), laser (Mumtaz and Hopkinson [8]), grinding (Hecker and Liang [9]), honing (Buj-

Corral et al. [10]), and machining (Bernardos and Vosniakos [11]). Machining is most commonly 

used in the industrial manufacturing sector, owing to its speed and comparatively lower cost. As 

most of the applications requiring high roughness values belong to the automotive and 

aeronautical sectors, lightweight alloys are critical to reduce the weight of vehicles and aircrafts. 

Among the light alloys, aluminium is one of the most widely used, which is usually machined by 

tools having polycrystalline diamond inserts (PCD). 

Among the machining operations, face milling is one of the most commonly used to control 

surface roughness. However, achieving the required roughness values in this process presents a 

higher degree of complexity than in other operations. While in turning, surface roughness depends 

mainly on the nose radius and the feed per turn, in face milling, the surface is generated by several 

edges whose traces are not constant across the surface. In consequence, highly variable roughness 

values are obtained across the width of cut. 

This fact is further complicated when some applications require a specific roughness range to be 

functional. Due to the variability of the roughness obtained by face milling, depending on the 

relative position between the tool and the workpiece to be machined (see Figure 1), it is usually 

complex to comply with the limits of the range. In addition, roughness variability can lead to an 

erroneous idea of the actual surface roughness. Single roughness measurements performed with 

a roughness tester do not give reliable information on the actual distribution of the roughness 

obtained by face milling. Consequently, cutting conditions may be defined inaccurately and 

cutting tools may be designed incorrectly. 

These difficulties lead to a reliance on trial-and-error strategies for tool design and manufacturing, 

and the need for additional resources (time, workers, materials, and energy) to correct the tool 

geometry and the cutting conditions. The trial-and-error strategy is usually based on the 

company's accumulated experience, and in most cases, this information is neither structured nor 

collected. Hence, it is challenging to design a tool correctly on the first try. If the customer is 

flexible with the cutting conditions, there can be a margin of error in the tool design. Otherwise, 

it is exclusively restricted to the tool geometry. Consequently, launching times could increase up 

to three weeks. 

Given these challenges, several authors investigated the face milling process in an attempt to 

reduce this economic impact and improve efficiency. Regarding the cutting conditions, Korkut 

and Donertas [12] and Alauddin et al. [13] concluded that surface roughness increases with the 

feed rate and decreases with the cutting speed. In a further study, Reddy and Rao [14] determined 

that feed rate is the most dominant effect for a given tool geometry, and cutting speed the least. 

In contrast, when end-milling titanium Ti-6Al-4V Sun et al. [15] observed that roughness 

increases in the cutting direction at a cutting speed of between 50 and 80 m/min, and decreases 

above 80 m/min. The same authors found that surface roughness increases almost linearly with 

the feed rate, but this was disputed by Baek et al. [16], who concluded that it is non-linear due to 

run-out effects. Regarding the axial depth of cut, Lopez de la Calle et al. [17] reported that it has 

no influence over the surface roughness, whereas Alauddin et al. [13] concluded the opposite. 
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Studies were also performed for micro-milling, as Lu et al. [18] concluded that the order of the 

parameters affecting the roughness is the feed rate, spindle speed, radius of ball-end milling and 

axial depth of cut. 

 

Figure 1. Example of Rz distribution in the cross-feed direction in face milling operation (adapted from [19]). The 

distribution of roughness indicators is variable in the cross-feed direction, due to tool rotation. Moreover, depending 

on the relative position between the workpiece and the tool, different roughness values can be achieved without 

changing cutting conditions and tool geometry. 

As regards the geometric parameters of the tool, Reddy and Rao [14] reported that the radial rake 

angle increases roughness due to a change in the sharpness of the cutting edge, which leads to a 

change in the cutting edge contact length. The same authors also found that the nose radius 

influences surface roughness. Moreover, Wang and Chang [20] observed that roughness increases 

by increasing the axial relief angle and concavity angle, when the concavity angle is more than 

2.5°. Baptista and Simoes [21] found that roughness is reduced by tilting the tool in the feed 

direction. Wang and Chang [20] achieved a similar reduction by applying coolant, as the cutting 

fluids reduce the frictions between tool and chip/workpiece. However, Ezugwu et al. [22] 

determined that the coolant pressure does not affect roughness values. As it can be concluded, 

there is considerable uncertainty in identifying appropriately the behaviour of roughness on face 

milled surfaces.  

Additionally, several authors applied this knowledge to develop surface roughness predictive 

models with which define efficient and accurate process planning (tool trajectory and cutting 

conditions) and tool geometries. Surface roughness predictive models analysed in this literature 

review have been classified in two groups: empirical and kinematic. 

Likewise, empirical models are divided in two approaches, Artificial Neural Network (ANN) and 

experimental. The first ones consist of training an ANN with the roughness results measured from 

experimental tests. Geometrical parameters of the tool, cutting conditions and workpiece material 

properties are used as input data, and experimental roughness results as output data. And 
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experimental approaches examine the effects of cutting parameters like feed rate, depth of cut or 

cutting speed through the execution of experiments and the analysis of results for developing 

equations that estimate roughness indicators.   

Additionally, kinematic models based on the machining theory to represent machined 2D profiles 

and 3D surfaces. Mainly based on the geometry of the tool and movements of the cutting edges. 

In regard to ANN approaches, Tsai et al. [23] developed a predictive model with four inputs 

(spindle speed, feed rate, depth of cut, and vibration average per revolution) and one output (Ra 

roughness indicator). Similarly, Bernardos and Vosniakos [24] predicted Ra parameter in face 

milling. The input parameters were the feed per tooth, cutting speed, tool-workpiece engagement, 

tool wear, cutting fluid, and the cutting force's three components. Hossain et al. [25] developed a 

model that uses the cutting speed, feed rate, and depth of cut as input data. And Liu et al. [26] a 

model that considers the cutting speed, depth of cut, width of cut and feed rate as input parameters. 

Other authors used ANNs together with other types of solutions to predict roughness. Wu and Lei 

[27] analysed the utility of using the signal features in vibration measurements during the milling 

process and the cutting parameters to predict the surface roughness. Palani and Natarajan [28] 

integrated an ANN into a machine vision system in order to predict the roughness of milling 

operation. Moreover, Kant and Sangwang [29] combined ANN with Genetic Algorithm (GA), 

Mahesh et al. [30] combined Response Surface Methodology (RSM) for prediction and GA for 

optimisation and Yeganefar et al. [31] Support Vector Machine (SVM), ANN and regression 

analysis. Finally, Kadirgama et al. [32] compared RSM, SVM and Potential Support Vector 

Machine (PSVM), concluding that the most accurate results are obtained with the last one. 

Other than to predict, Ozcelik et al. [33] and Oktem et al. [34] used ANN to optimise cutting 

conditions for minimising surface roughness and Huang et al. [35] to adapt the feed rate to a limit 

roughness. In addition, Oktem [36] used ANN for adapting the cutting conditions to achieve the 

desired roughness, Escamilla et al. [37] for optimising cutting speed, feed rate and depth of cut 

and Malghan et al. [38] for surface roughness, cutting forces and power consumption. Pinar et al. 

[39] applied neural networks for optimising cooling conditions. 

In general, ANN models are more successful when compared to the rest of approaches in terms 

of speed, simplicity and capacity to learn from examples. There are no required assumptions or 

hypotheses as in experimental or kinematic models, and the performance of the calculus can be 

improved by adding more levels for the input parameters. However, as concluded by Zain et al. 

[40], a high quantity of experimental tests is required for creating a realistic network. Moreover, 

it is time-consuming for further improvement by defining more levels of input parameters, and 

the repeatability of the tests is not assured. 

Regarding experimental approaches, Tipnis et al. [41] and Alauddin et al. [13] developed 

equations to predict Ra depending on the cutting speed, feed rate and axial depth of cut. Using a 

similar approach, Alauddin et al. [42] developed a model for Inconel 718 as a function of the feed 

rate and cutting speed. Mansour and Abdalla [43] also developed a model for EN32 steel. 

Recently, Liu et al, [44] combined an analytical calculation of the specific cutting energy 

consumption (SCEC) and empirical characterization of the relationship between the surface 

roughness and the SCEC to predict Ra in slot milling. They concluded that Ra is probably a 

function of SCEC at a given depth of cut. Overall, the drawback of empirical models is that they 

are only valid for the cutting conditions, tool geometry and workpiece materials used in the 

experimental tests. 

In contrast, Kinematic models are valid for any cutting condition and tool geometry, which makes 

them more attractive from an industrial point of view. Kinematic models are classified in two 

groups: (i) the models performing single 2D profile simulations and (ii) the models performing 
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multiple 2D profile simulations in order to generate 3D rough surfaces. In this last case, the 

obtained information is more detailed, and a broader view can be taken when designing tools or 

defining cutting conditions. 

Regarding 2D profile simulations, some authors developed models that consider tool run-out, tool 

geometry and cutting conditions (Baek et al. [16] and Muñoz-Escalona and Maropoulos [45]). 

Feng et al. [46] proposed a model for lasser-assisted end milling based on the kinematics of tool 

movement and elastic response of workpiece. In addition, based on these two parameters, Feng 

et al. [47] developed a model for ultrasonic vibration-assisted milling.  

Regarding 3D face milled simulations, several authors proposed approaches to develop the 3D 

rough surfaces. Ehmann and Hong [48] and Arizmendi et al. [49] developed two models based 

on the geometry of the tool and the effect of tool vibrations, Zhang et al. [50] considered tool 

wear and Arizmendi et al. [51] the tool parallel axis offset. Regarding the models to calculate the 

roughness indicators based on these 3D surfaces, Ryu et al. [52] and Franco et al. [53] developed 

similar models in which tool deflections, radial and axial run-outs, back-cutting and tool tilting 

are taken into account. The first authors analysed the distribution of Ra and Rmax across the width 

of cut, and determined that these two indicators decrease in the external areas of the width of cut. 

In addition, they concluded that roughness indicators as Ra and Rmax are not enough to describe 

the topography of a surface, and proposed further use of standard deviation, skewness and 

kurtosis. And the second authors focused on analysing in depth the effect of each of the 

parameters. Moreover, Buj-Corral et al. [54] analysed the effect of the feed rate, tool eccentricity 

and helix angle in side milling, proposing a model that considers grinding errors. 

Apart from the cutting and geometric parameters, other authors focused additionally on the effects 

of the cutting process stability and on the material properties. Concerning the process stability, 

Zhenyu et al. [55] introduced the dynamic characteristics of the milling process in order to 

consider phenomena as forced vibrations. They also concluded that the axial and radial run-outs 

have more influence than the feed per tooth. In the same line, Wojciechowski et al. [56] presented 

a model for cylindrical milling taking into account dynamic phenomena related to instantaneous 

tool deflections. In addition, Omar et al. [57] developed a model to simultaneously predict 

conventional cutting forces and 3D surface topography of the axial direction during side milling. 

The model incorporates the effects of tool run-out, tool deflection, system dynamics, flank face 

wear, and tool tilting on surface roughness. Finally, Lu et al. [58] considered cutting force and 

dynamic characteristics to estimate deformations in micro-milling and apply their effect on 

surface roughness. Regarding the material properties, Lu et al. [59] developed a model for micro-

end milling based on the vibrations, tool movement and the forming of workpiece surface 

governed by elastic recovery and tool geometry. Vibrations were measured through experiments. 

More recently, two papers have been presented with important advances in the calculation of 3D 

rough surfaces. On the one hand, Arizmendi and Jimenez [19] proposed a model in which the 3D 

face milled surfaces were obtained based on a regularly spaced grid of points defined along the 

feed and pick feed directions. The developed methodology predicts the surface height at each grid 

point as a result of the cutting edge trajectories of tool inserts in face milling operations. The 

model is also capable of calculating the roughness of overlapped face milled surfaces. On the 

other hand, Urbikain and Lopez de Lacalle [60] developed a model for inclined milling during 5-

axis machining using circle-segment end-mills, considering tool geometry, feed rate, radial 

immersion, and tool run-out. 

As it can be concluded, most of the research analysed in the literature review is focused on the 

influence of cutting conditions, process faults, cutting dynamics and tool deformations. However, 

and to the best of the author’s knowledge, no study has been found which analyses the variation 

of the axial and radial positions of the inserts in the mill, as well as using inserts with different 
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micro-geometries mounted in the same tool (nose radii, end-edge angles), or the effect of 

modifying these micro-geometries. These analyses could be of great interest for automotive and 

aeronautical sectors, as it would allow to reach and control the high roughness values (Ra > 1 µm, 

Rmax < 30 µm) without changing the cutting conditions of the process. 

Furthermore, the models analysed in the literature review focus on predicting surface roughness 

in a specific situation. However, they do not explicitly offer the possibility to optimise the tool 

geometry or cutting conditions by providing simulation results of a wide range of conditions 

simultaneously. In fact, the need has been identified to develop a simulation tool that provides a 

global view of the actual roughness state. By varying certain cutting conditions or geometrical 

parameters of the tool, this optimisation tool would generally show the actual roughness values. 

Consequently, the most appropriate parameters to meet the roughness requirements could be 

successfully chosen at the first attempt. With the use of this new approach, the trial-and-error 

experimental strategies could be considerably reduced. 

Additionally, from the literature review it has been concluded that external factors to the tool 

geometry and cutting conditions, such as vibrations, workpiece defects or process faults could be 

important in roughness predictions. These factors would be of particular interest for calculating 

precisely the roughness indicators that are directly dependent on the peak-to-valley distances of 

the roughness profile, such as Rz, Rt and Rmax.  

However, other parameters such as the elastic recovery of the workpiece material and the 

minimum chip thickness are neglected when modelling high roughness values (Ra > 1 µm, Rmax < 

30 µm). As mentioned by Shimada et al. [61] for materials such as aluminium or copper alloys, 

the minimum chip thickness is 5% of the cutting edge radius. Consequently, for such high 

roughness indicators, the elastic recovery of the workpiece material and the minimum chip 

thickness could be considered negligible. In addition, when machining aluminium alloys with 

PCD inserts, Pattnaik et al. [62] concluded that tool wear was minimum, so could therefore be 

disregarded for this tool-workpiece couple. 

Therefore, in the present paper, a novel approach called roughness maps is proposed as an 

efficient optimisation strategy to identify the appropriate geometry of the tool and cutting 

conditions to achieve the desired roughness. To obtain the maps, a predictive model is developed 

for 3D surface roughness predictions in face milling operation with polycrystalline diamond 

inserts (PCD). The model is oriented to predict 3D face milled surfaces with high roughness 

values (Ra > 1 µm, Rmax < 30 µm). The 3D surfaces are modelled as a split signal in two 

components: (i) the kinematic movements of the cutting edge and its geometry, and (ii) a novel 

approach considering the stochastic roughness, which takes into account the chip removal 

process, material defects, vibrations, etc. In the model, the back-cutting effect, axial and radial 

run-outs and cutting edge micro-geometry are considered.  

The roughness 3D surface is obtained calculating the 2D roughness profiles of the complete width 

of cut, from which Ra, Rz, Rt and Rmax indicators are calculated. The model is then experimentally 

validated for an A-356 aluminium alloy, material widely used in the automotive and aeronautical 

industries where high roughness values are often required. Additionally, a sensitivity analysis is 

performed to study the effects of feed rate, teeth quantity, teeth position in the tool, axial and 

radial position of the teeth and teeth micro-geometry on the roughness. 

Nomenclature 

Ap maximum amplitude of the 

stochastic roughness profile  

ap depth of cut 

C chord of the teeth trajectory Cc correlation coefficient 
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2 Surface roughness predictive model for face milling operation and roughness maps 

optimization tool 

The roughness predictive model developed in this research work focused on face milling. This 

operation consists on milling flat surfaces perpendicular to the axis of rotation of the cutter. In 

face milling, the tool is usually displaced perpendicular to its axis so that cutting occurs on the 

circumference of the cutter. As the mill enters the workpiece, the tool's cutting edges repeatedly 

cut into and exit from the material, shaving off chips from the workpiece with each pass. The way 

the material is cut, i.e., the tool is displaced in the feed direction and rotates on its axis (see Figure 

2), influences surface roughness generation. 

The roughness of face milled workpieces is highly complex. In contrast to other machining 

operations such as turning, the surface is generated by several cutting edges, and the geometry 

and position of these greatly influence the roughness surface. For example, when face milling a 

surface with a width of cut of 25%, the way the tool is positioned in respect to the workpiece will 

significantly influence the roughness and possibly the cycle time. In fact, due to back-cutting of 

milling operations, the topography of the surfaces is usually complex, and different roughness 

values are achieved on the same surface (see Figure 2).  

fprop proportional feed per turn 

according to C 

fz feed per tooth 

fv feed per turn fz scraper feed per scraper tooth 

fz limit limit feed rate dht incremental axial differential distance  

ht axial differential distance  O off-centre distance 

i end-edge angle Py y position of the teeth in advance 

Of offset Pz z position of the teeth 

Pypos y position of the teeth in back-

cutting 

Ra arithmetic mean roughness 

R tool radius Rn nose radius 

Rmax maximum peak-to-valley height of 

one cut-off 

Rz mean of the maximum peak-to-valley 

height of the complete profile 

Rt maximum peak-to-valley height of 

the complete profile 

r cutting edge radius 

rt radial differential distance of a 

tooth 

Ts scraper teeth 

Tr roughing teeth y y coordinates of the tooth geometry 

Vc cutting speed z z coordinates of the tooth geometry 

ypos y coordinates of the tooth 

geometry in back-cutting 

Zs scraper teeth number 

Z number of teeth α clearance angle 

θ off-centre angle γa axial rake angle 

γr radial rake angle   
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Figure 2. Roughness generation in face milling using scraper (Ts) and roughing teeth (Tr). Due to tool rotation, scraper 

teeth generate traces in advance and due to back-cutting (marked by blue lines). As observed, the topography of the 

surface is heterogeneous, so roughness indicators vary in the width of the cut (Ra is shown as an example). 

In industrial applications, one of the options for structuring a surface by face milling is to use 

teeth with different geometries, frequently using two types of inserts: roughing teeth and scraper 
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teeth. The roughing inserts (Tr in Figure 2) have a near wiper geometry, which carry out a function 

close to plateau honing. They have a minor end-edge angle i (3º) and produce a small theoretical 

peak-to-valley height. The scraper inserts (Ts in Figure 2) have a grooving action. Having a nose 

radius at a lower axial position than the roughing inserts, it generates valleys in the nearly flat 

surface created by the wiper edges. 

In milling, the roughness profile can be divided into the primary geometric profile, secondary 

geometric profile (both corresponding to the kinematics of the cutting operation) and stochastic 

profile. The primary geometric profile is created by the teeth in advance (red coloured profile in 

Figure 3 a)), and the secondary geometric profile by the traces generated by the same teeth due to 

back-cutting (blue coloured profile in Figure 3 a)). Both profiles form the kinematic roughness 

profile. Then, the stochastic roughness profile corresponds to the effect of the chip removal 

process, material defects or vibrations, and in general corresponds to a profile of lower amplitude 

than the one generated by the kinematics of the cutting process (see Figure 3 b)). Finally, once 

being able to accurately model rough surfaces, roughness maps are developed as an optimization 

tool that provides the optimum cutting conditions and tool geometry faster than performing 

individual simulations. 

  

Figure 3. a) Example of the primary (in red) and the secondary (in blue) geometric roughness profiles, b) Example of 

a stochastic roughness profile. 

2.1 Modelling of the kinematic roughness 

In order to model the kinematic component of the roughness profile, it is necessary to define the 

micro-geometry of the scraper and roughing teeth that compose the face mill cutter. For this 

purpose, the value of the different radii and edges that compose each tooth are first defined in the 

model. Consequently, vectors containing the coordinates defining the outline of the scraper and 

roughing teeth are generated. A graphical description of the definition of the insert geometries is 

described in Figure 31 in the appendix. 

Once defined the microgeometry of the scraper and roughing teeth, the model calculates the traces 

left by each tooth during one cutting turn. For this purpose, the radial position of each tooth in the 

tool (Rjcos(θ)) and their corresponding feed per tooth (fz) are added on the one hand to the feed 

direction coordinates defining the contours of the teeth yj, as shown in Figure 4 a) and b), 

(a) (b)
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Equations (1) and (2) and Figure 5 a). In this manner, each tooth contour is placed in its 

corresponding position in the feed direction of the cutting (Py distance in Y direction). 

On the other hand, each contour is placed in its corresponding Pz distance (axial position, Z 

direction), adding the corresponding axial differential distance ht (see Figure 4 c)) to the Z 

coordinates of the teeth contours zj, as in Equation (3). In this manner, the coordinates of the traces 

left by each tooth in advance are defined. 

𝜃 =  sin−1 (
𝑂

𝑅𝑗
) (1) 

𝑃𝑦𝑗 =  𝑦𝑗 + 𝑅𝑗 cos(𝜃) + 𝑗𝑓𝑧 (2) 

𝑃𝑧𝑗 = 𝑧𝑗 + ℎ𝑡  (3) 

where j is the number of teeth in study. However, in face milling, the teeth also generate traces in 

the surface due to back-cutting, and their geometry is symmetrical to that of the traces generated 

in advance with Equations (2) and (3) (see Figure 5 a)). 

In order to determine first their position in the feed direction, the chord C of the trajectory 

performed by each tooth during the cutting turn is estimated with Equation (4), considering the 

off-centre distance at which the roughness calculation is being performed. The proportional part 

of the feed per turn (fprop) that the tool has advanced in this period must then be calculated as in 

Equation (5), where fv is the feed per turn. And finally, to calculate the position of each trace in 

the back-cutting Pypos, C and fprop distances are subtracted from Py, as in Equation (6). 

𝐶 = 2𝑅𝑗 cos(𝜃) (4) 

𝑓𝑝𝑟𝑜𝑝  =  𝑓𝑣

(180 + 2𝜃)

360
 (5) 

𝑃𝑦𝑝𝑜𝑠𝑗 =  𝑃𝑦𝑗 − 𝐶 − 𝑓𝑝𝑟𝑜𝑝 (6) 

Moreover, the geometry of the back-cutting traces is obtained by multiplying the Y coordinates 

of the traces in advance by -1, as in Equation (7). In this manner, the contour of the traces left by 

the teeth in advance (primary geometric profile) and due to back-cutting (secondary geometric 

profile) are obtained, as shown in Figure 5 a) and b). 

𝑦𝑝𝑜𝑠𝑗 = −1 · 𝑦𝑗 (7) 
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Figure 4. Variables for insert position definition in the model, a) and b) top view. The tooth trajectory is marked in 

solid red, and the off-centre distance in discontinuous red. The mill advances in Y direction. c) axial differential 

distance between Tr and Ts. 

Then, the process is repeated for as many cutting turns as necessary to comply with the cut-off 

distance. The cut-off is the length of the reference line used to separate the irregularities forming 

the surface roughness. To evaluate the roughness profile, five cut-offs are required, and the length 

of each cut-off depends on the value of Ra. 

And finally, the intersection points between the traces left by the teeth in advance (primary 

geometric profile) and due to back-cutting (secondary geometric profile) are calculated (see 

Figure 5 c). For this purpose, vertical lines are drawn over the primary and secondary geometric 

profiles every 5 μm of distance. And then, all the coordinates of these geometric profiles that 

intersect with these vertical lines are identified, keeping the values of the intersection occurring 

at a lower height. In this way, the parts of the traces left by the teeth that are in contact with the 

workpiece are identified, obtaining the kinematic roughness profile (see Figure 5 d)). 
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Figure 5. Generation of the kinematic roughness profile in face milling at fz 0.15 mm/z: a) traces left by the teeth in 

one turn, b) primary and secondary geometric roughness profiles after one turn, c) zoom over the primary and 

secondary geometric roughness profiles after several turns, and d) kinematic roughness profile after calculating the 

intersection points. 

2.2 Modelling of the stochastic roughness 

In contrast to the kinematic component of roughness, the modelling of the stochastic part was 

based on experimentally measured face milling roughness profiles. The experimental set-up and 

the cutting conditions are explained in section 3. 

After performing the face milling experimental tests, roughness profiles were measured at 

different off-centre distances (0 mm, 10 mm and 20 mm) with Alicona IFG4 profilometer (see 

Figure 6 a)). Then, with Matlab software, a high pass filter was applied to each profile in order to 

eliminate the experimental kinematic part of the roughness (effect of the teeth geometry and 

movements of the cutting edge) and obtain the experimental stochastic roughness (see Figure 6 

b)). The frequency value of the filter was defined in function of the topography of each roughness 
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profile. The maximum amplitude (Ap) of each of the stochastic profiles (maximum peak-to-valley 

distance) was then estimated. 

  
Figure 6. Process of obtaining the experimental stochastic roughness profiles, a) An experimentally measured 

roughness profile, b) Stochastic roughness profile after high pass filtering. The maximum amplitude of the stochastic 

roughness profile and the local maxima (green asterisks) and minima (red asterisks) are also shown. 

Analysing the value of all the estimated Ap in respect to the cutting conditions, it was observed 

that a higher cutting speed (see Figure 32 a)) and the use of lubrication (flood milling, see Figure 

32 c)) reduced its value. In contrast, a higher depth of cut increased Ap (see Figure 32 b)), while 

no influence was perceived when using MQL for this material and cutting conditions (see Figure 

32 d)). Moreover, it was observed that a higher feed rate increases the roughness values. This can 

be observed in of the appendix. 

Hence, three equations were developed to estimate Ap, one for each lubricant condition: dry (8), 

flood (9), and MQL (10), which are shown in Table 1. R-square indicator showed accurate 

correlation (90.91%) for the three equations. 

Table 1. Equations for calculating the maximum amplitude of the stochastic roughness profiles in function of the feed 

rate, cutting speed and depth of cut. R-square statistical indicator is also shown for each equation. 

Lubrication Equation R2 (%)  

Dry 
𝐴p = 0.0096 + 0.028𝑓z − 0.000004𝑉c

+  0.001671𝑎p 

90.91 

(8) 

Flood 𝐴p = 0.0083 + 0.028𝑓z − 0.000004𝑉c + 0.001671𝑎p (9) 

MQL 
𝐴p = 0.00972 + 0.028𝑓z − 0.000004𝑉c

+ 0.001671𝑎p 
(10) 

In addition, the local maxima and minima of all the experimental stochastic roughness profiles 

were identified and classified in 35 groups according to their Z-axis values (height). Hence, the 

number of local maxima and minima classified in each group was calculated, and thus estimate 

the frequency with which they appear in the experimental stochastic roughness profiles. 

(a)

Max. 

Amplitude

(Ap)

(b)
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Identifying these frequency appearances enabled the modelling of more realistic stochastic 

roughness profiles. In fact, the highest peaks and deepest valleys appear less frequently (0.5%), 

and the ones of smaller amplitude are more likely to appear. The frequency appearances are shown 

in Figure 33 of the appendix. 

Therefore, in order to obtain the modelled stochastic roughness profile, its maximum amplitude 

is first calculated via Matlab software using Equations (8), (9) or (10) and the cutting conditions. 

Then, a vector with random Z-axis coordinates is generated with ‘Randsample’ command 

considering the calculated maximum amplitude and the appearance frequencies, obtaining the 

modelled stochastic roughness profile. Finally, this profile is added to the kinematic roughness 

profile (see Figure 7 a) and b)). 

  

Figure 7. Example of how it is obtained the modelled roughness profile at fz 0.15 mm/z, a) Kinematic roughness profile 

and b) Roughness profile (kinematic roughness profile with stochastic roughness). 

Since the equations developed to estimate stochastic roughness have been obtained from face 

milling tests, they are not considered projectable to other machining operations. However, to 

apply the stochastic roughness in another machining operation, the procedure developed in this 

subsection could be followed based on experimental tests carried out for that cutting operation. 

The whole process of calculating the kinematic and stochastic part of the roughness profiles is 

repeated for all the off-centre distances defined in the width of cut of the tool. And this process is 

summarized in the flow chart of Figure 34 in the appendix. 

2.3 Roughness maps 

After being able to predict the roughness considering the kinematic and the stochastic part of the 

roughness profiles, the model was adapted to predict the roughness maps. This optimisation tool 

determines the percentage of the width of cut that comply with the required roughness indicators, 

being helpful for toolmakers in tool design. 

As demonstrated throughout this paper, obtaining specific roughness values by face milling is 

challenging, due to the variable behaviour of the roughness in the entire width of cut. Due to this 

variability, it is likely to obtain areas where the roughness does not comply with the requirements 

of the manufacturing process. 

(a) (b)
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However, using the roughness maps, it is possible to know what percentage of the face milled 

surface will achieve the roughness requirements of the manufacturing process. By offering a 

comprehensive view of the roughness obtained across the width of cut, roughness maps permit 

achieving the roughness requirements while the productivity and the tool life are maximised 

Currently, the process of adjusting the tool geometry and cutting conditions is mainly performed 

by experimental trial-and-error strategies, with the high economic cost that this entails. However, 

trial-and-error are strategies are considerably reduced applying this novel concept. 

Before carrying out the simulation, there are defined most of the geometrical parameters of the 

tool and the cutting conditions, except the feed rate (fz), nose radius of the scraper teeth (Rn) and 

axial differential distance (ht). Between these three parameters, one is fixed and a set of 

simulations is performed by varying the other two parameters within a range (depending on the 

number of calculi selected for each variable, between 100 and 200 simulations providing results 

for roughness distributions could be presented). Consequently, the model calculates the roughness 

indicators for the entire range of study. 

Next, the upper and lower limits of the roughness indicators are defined. Hence, it is possible to 

calculate what percentage of the roughness indicators calculated with the model comply with the 

established limits. Finally, these percentages are displayed in function of the two variables 

selected for the simulation, obtaining the maps. The yellow areas of the maps show the 

combination of parameters (fz, Rn or ht) that best meet the requirements of the manufacturing 

process (higher percentage). In contrast, the blue areas show those with the lowest percentage. 

If the requirements of the manufacturing process claim the modification of other parameter than 

the relative height between teeth, the nose radius or the feed per tooth, it is necessary to simulate 

new roughness maps, which lasts 12 hours approximately. 

In this research work, one example is going to be shown for each combination, (i) feed rate and 

the axial differential distance, (ii) feed rate and the nose radius of scraper teeth and (iii) axial 

differential distance and the nose radius of the scraper teeth. For the simulations, the tool 

described at the beginning of chapter 5 was used. 

Using the map relating the feed rate and the axial differential distance permits optimising the 

manufacturing process. In fact, this kind of map helps determining the maximum fz without 

compromising the roughness limits, and thus reduce production times. In addition, allows 

identifying the appropriate axial differential distance between the scraper and roughing teeth to 

meet the requirements of the manufacturing process once the feed rate has been maximised. 

In Figure 8, a map for a fz range of 0.05-0.2 mm/z and a dht between 0-0.015 mm is shown, being 

the default value of ht 0.015 mm (ht range 0.015-0.03 mm). The percentages shown in the maps 

correspond to a limit for Ra between 5-25 µm and Rmax < 30 µm. The map illustrates how the zone 

with the highest percentage complying with the roughness requirements (marked in yellow as a 

93%) corresponds to a feed rate between 0.12-0.15 mm/z and a relative height increase of 0 and 

0.005 mm (ht of 0.015-0.02 mm). If production was to be maximised, an fz of 0.15 mm/z and dht 

of 0 mm (ht 0.015 mm) would be chosen. Moreover, it can be observed that the roughness 

requirements are met with a dht from 0 mm to 0.005 mm (ht 0.015 mm to 0.02 mm) for fz 0.13 

mm/z. 
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Figure 8. Example of a roughness map in function of ht and fz. Yellow zones are the conditions with the highest 

percentage complying with the roughness requirements (optimal conditions), whereas the blue zones are the ones with 

lowest percentage. 

Using the map relating the feed rate and the nose radius of scraper teeth, the manufacturing 

process and the tool geometry can be optimised. On the one hand, allows finding the maximum 

possible feed rate with which also meet the roughness requirements. Simultaneously, allows the 

design of inserts with the maximum possible nose radius, to avoid excessive wear and increase 

the tool life. 

For example, a map for a fz range of 0.05-0.2 mm/z and a nose radius 0.1-1.1 mm is presented in 

Figure 9. The percentage values shown in the map correspond to a limit for Ra between 5-25 µm 

and Rmax < 30 µm. The map displays two zones in which the percentage of achieving the roughness 

requirements are higher (marked in yellow as a 93%), (i) at fz 0.07-0.1 mm/z and Rn 0.1-0.3 mm 

and (ii) at fz 0.12-0.14 mm/z and Rn 0.4- 0.7 mm. 

In this case, an fz of 0.14 mm/z and Rn of 0.7 mm would be chosen. In this manner, it would be 

possible to work with the maximum possible fz and Rn to maximise production, minimise tool 

wear effect and meet the requirements of the manufacturing process. 
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Figure 9. Example of a roughness map as a function of Rn, and fz. Yellow zones are the conditions with the highest 

percentage complying with the roughness requirements (optimal conditions), whereas the blue zones are the ones with 

lowest percentage. In this case, two different zones are considered as optimum. 

Finally, the map relating the axial differential distance and the nose radius of the scraper teeth 

allows optimising the tool geometry. As the cutting conditions remain constant, it allows finding 

the optimum tool geometry to meet the roughness requirements. Hence, the maximum possible 

nose radius can be identified to avoid excessive tool wear, and the axial differential distance can 

be adjusted to meet the customer's requirements. 

For example, Figure 10 shows a map for a Rn of 0.1-1.1 mm and a dht of 0-0.015 mm, being the 

default value of ht 0.015 mm (ht range of 0.015-0.03 mm). The reported percentage values 

correspond to a limit for Ra between 10-25 µm and Rmax < 40 µm. The map features a single zone 

where the percentage of achieving the roughness requirements is higher (marked in yellow as an 

85%), at dht 0.007-0.01 mm (ht 0.022-0.025 mm) and Rn of 0.2-0.5 mm. In order to minimise tool 

wear effect, the maximum Rn would be chosen (0.5 mm), and the corresponding dht would be 

0.01 mm (ht 0.025 mm). 
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Figure 10. Example of a roughness map as a function of Rn and ht. The yellow zones are the conditions with the highest 

percentage complying with the roughness requirements (optimal conditions), whereas the blue zones are the ones with 

lowest percentage. 

3 Experimental tests 

In order to validate the predictive model and estimate the stochastic component of the roughness 

profile, experimental face milling tests were performed in a GF Mikron MILL P 800 U 5 axis 

machine using a 12 teeth mill with polycrystalline diamond inserts (PCD) of CBT010 grade 

fabricated by Zubiola S. Coop. The scraper teeth are located at a diameter of 61 mm at positions 

1-4-7-10 in the cutting tool (out of 12 teeth), whereas the roughing teeth are placed at a diameter 

of 63 mm at positions 2-3-5-6-8-9-11-12 (see Figure 11 a)). The scraper teeth are positioned 15 

μm axially below the roughing teeth. The nose radius of the scraper teeth is 0.5 mm, and the end-

edge angle of the roughing teeth is 3º. 
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Figure 11. a) Mill used in the experimental tests, b) Marks left on the surface (blue coloured). The dashed red lines 

indicate the O values at which roughness measurements have been performed. 

Each tooth's effective axial and radial differential positions were estimated from the 3D surfaces 

measured in Alicona IFG4 profilometer (see Table 2). Axial differential distance (ht) values are 

measured in reference to the roughing tooth placed at the highest height on the tool (teeth number 

5 in Table 2), considering its axial height to be 0 mm. The radial differential position rt is measured 

with regard to the nominal radius of each tooth. The errors in the estimation of the teeth positions 

were approximately of 2 µm. These axial and radial differential positions are related to the 

difficulty of positioning each tooth in its nominal position. 

Table 2. Axial (ht) and radial (rt) differential positions of each tooth (Ts) = scraper, (Tr) = roughing. ht is measured 

taking tooth number 5 as a reference. rt is measured considering as a reference the nominal radius of each tooth. 

Teeth 

number 

1 

(Ts) 

2 

(Tr) 

3 

(Tr) 

4 

(Ts) 

5 

(Tr) 

6 

(Tr) 

7 

(Ts) 

8 

(Tr) 

9 

(Tr) 

10 

(Ts) 

11 

(Tr) 

12 

(Tr) 

ht (μm) -16 -3 -3 -14 0 -1 -13 -4 -5 -16 -24 -3 

rt (μm) 60 0 0 60 0 0 60 0 0 0 0 0 

The experimental tests involved face milling an A-356 aluminium alloy workpiece off 75x100 

mm at the cutting conditions detailed in Table 3. Roughness measurements were carried out at 0 

mm, 10 mm, and 20 mm from the centre of the trajectory of the tool (off-centre distance), as 

shown in Figure 11 b). For each test, two repetitions were performed. Roughness measurements 

were carried out in an Alicona IFG4 profilometer using a 10x objective lens.  

(a)
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Table 3. Cutting conditions for face milling experimental tests. Each test has been assigned a number (test number), 

which is valid for the three O distances (0 mm, 10 mm and 20 mm). 

γr 

(º) 

γa 

(º) 

α 

(º) 

Teeth 

distribution 

r 
Coolant 

ap 

(mm) 

Vc 

(m/min) 
fz (mm/z), (test number) 

5 3 10 2 Tr per 1 Ts  3.7 No 1 1000 
0.01 (1), 0.04 (2), 0.1 (3), 

0.2 (4) 

5 3 10 2 Tr per 1 Ts  3.7 No 1 800 
0.01 (5), 0.04 (6), 0.1 (7), 

0.2(8) 

5 3 10 2 Tr per 1 Ts  3.7 No 1 1200 
0.01 (9), 0.04 (10), 0.1 

(11), 0.2 (12) 

5 3 10 2 Tr per 1 Ts  3.7 Flood 1 1000 
0.01 (13), 0.04 (14), 0.1 

(15), 0.2 (16) 

5 3 10 2 Tr per 1 Ts  3.7 MQL 1 1000 
0.01 (17), 0.04 (18), 0.1 

(19), 0.2 (20) 

5 3 10 2 Tr per 1 Ts  3.7 No 2 1000 
0.01 (21), 0.04 (22), 0.1 

(23), 0.2 (24) 

0 3 10 1 Tr per 1 Ts  3.7 No 1 1000 
0.01 (25), 0.04 (26), 0.1 

(27), 0.15 (28), 0.2 (29) 

4 Model validation 

The predictive model was validated in two manners. On the one hand, a comparison of the 

roughness indicators (Ra, Rz, Rt, Rmax) obtained from the experimental measurements and the 

model at O 0 mm, 10 mm and 20 mm (see subsection 4.1). On the other hand, a comparison of 

the 2D roughness profiles and 3D roughness surfaces obtained from experimental measurements 

and the model (see subsection 4.2). In this research work, the validation of the roughness profiles 

and surfaces is shown for test numbers 1, 2, 3 and 4. 

4.1 Comparison of experimental and modelled roughness indicators 

Regarding the modelled and experimentally obtained roughness indicators, Table 4 shows their 

average, maximum and minimum values at O = 0 mm, O = 10 mm and O = 20 mm. As it can be 

observed, high roughness values were induced over the workpieces. The measurement uncertainty 

of the experimental indicators was estimated at 6%, performing two measurements. Detailed 

prediction errors for each indicator and test number are shown in the appendix (Figure 35 for O 

= 0 mm, Figure 36 for O = 10 mm and Figure 37 for O = 20 mm). 
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Table 4. Average, maximum and minimum values of the experimentally measured and modelled roughness indicators 

(Ra, Rmax, Rt, and Rz), at O 0 mm, 10 mm and 20 mm for the 29 test numbers. 

 

O = 0 mm O = 10 mm O = 20 mm 

Experimental Modelled Experimental Modelled Experimental Modelled 

Ra 

(µm) 
3.8−2.5

+3.7 3.8−2.1
+3.7 3.6−2.4

+3.6 3.4−2.3
+4.8 3−2.2

+2.6 3.1−1.8
+3.5 

Rmax 

(µm) 
22.8−13.9

+17  23−13.9
+18.1 20.6−13.6

+15.8 21.8−14.3
+22.8 17.2−12.3

+12  19.9−11.8
+17.5 

Rt 

(µm) 
23.4−14.2

+17.4 23.7−14.8
+18.2 21.2−14

+16.4 22.2−14.2
+22.4 17.9−12.6

+12.7 20.6−12.1
+16.8 

Rz 

(µm) 
21.8−13.1

+15.9 21.8−13.9
+18.5 19.9−12.9

+15.9 20.4−13.6
+22.4 16.7−11.9

+12.  18.7−11.
+15.8 

In order to estimate the contribution of the stochastic roughness, average errors were calculated 

implementing the stochastic roughness (‘S’ column) and not implementing it (‘NS’ column), thus 

only considering the kinematic roughness (see Table 5). In addition, the improvement percentage 

of the predictions was also calculated when applying stochastic roughness (‘Improv.’). 

It should be noted that the response of the equations estimating the stochastic roughness is aleatory 

due to the use of ‘Randsample’ Matlab command. Although Equations (8), (9) and (10) depend 

on the cutting conditions, the topography of the stochastic roughness profile changes from 

simulation to simulation. Nevertheless, it was estimated that this random response varies the 

results by 4% for the same cutting conditions and tool geometry.  
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Table 5. Average errors taking into account the stochastic roughness (‘S’ column) and not taking into account the 

stochastic roughness (‘NS’ column). In addition, the improvement percentage obtained applying the stochastic 

roughness is shown in ‘Improv.’ column. Average errors are shown for O 0 mm, 10 mm and 20 mm. 

Average 

errors 

O = 0 mm O = 10 mm O = 20 mm 

S 

(μm) 

NS 

(μm) 

Improv. 

% 

S 

(μm) 

NS 

(μm) 
Improv.% 

S 

(μm) 

NS 

(μm) 

Improv 

% 

Ra 0.53 0.82 36 0.45 0.68 34 0.42 0.45 7 

Rmax 1.73 6.83 75 2.67 5.39 50 2.95 4.04 27 

Rt 2.06 7.03 71 2.52 5.74 56 3.08 4.47 31 

Rz 1.51 6.44 76 1.97 5.24 62 2.37 4.01 41 

As it can be observed in ‘S’ column, average errors considering the stochastic roughness were 

between 0.42-0.53 μm for Ra, 1.73-2.95 μm for Rmax, 2.06-3.08 μm for Rt and 1.51-2.37 μm for 

Rz, which were considered accurate. Moreover, it can be observed how avoiding the stochastic 

roughness, the average errors considerably increased (see Table 5 ‘NS’ column). The most 

significant improvements occurred in the indicators that depend directly on the peak-to-valley 

distance (Rmax, Rt and Rx, see Table 5 ‘Improv. %’ column). These improvements occurred 

because the stochastic roughness increases the value of the peaks and valleys, achieving 

roughness profiles closer to those measured experimentally. For these reasons, it was concluded 

that the stochastic roughness is necessary for predicting accurately the surface roughness in face 

milling. 

Nevertheless, it is possible to achieve the same roughness indicators with completely different 

roughness profiles. For this reason, the roughness 2D profiles and 3D surfaces were also validated. 

4.2 Comparison of experimental and modelled roughness 2D profiles and 3D surfaces 

To complement the validation performed with the roughness indicators, an additional validation 

was performed by comparing 2D roughness profiles and 3D roughness surfaces. Overall, it was 

concluded that the profiles as well as the surfaces were geometrically close to those 

experimentally measured. In the four cases shown in Figure 12 (test number 1), Figure 13 (test 

number 2), Figure 14 (test number 3) and Figure 15 (test number 4), the traces left by the roughing 

tooth at -24 μm can be observed, to the point where it dominates the profile at test number 1 (0.01 

mm/z) and test number 2 (0.04 mm/z). As the feed rate increases, the valleys and peaks become 

more separated from each other, which means that the roughing tooth at -24 μm removes fewer 

peaks and valleys created by adjacent teeth and thus does not fully master the profile topography. 

Moreover, the amplitude of the 2D roughness profiles is greater at higher feed rates. This occurs 

because increasing the feed rate causes the peaks and valleys to be generated at a greater distance 

from each other. Consequently, the intersections between the traces occur at greater heights, 

causing deeper valleys and higher peaks. For example, at test number 1 the maximum amplitude 

is about 7.6 μm (see Figure 12 c), whereas at test number 4 is about 25.7 μm (see Figure 15 c). 

It can be observed that the main differences are related to the height of the peaks and valleys. The 

cause could lie in the following three factors. On the one hand, built-up edge might lead to an 

enlargement of the height of the teeth, generating more profound valleys on the surface. On the 

other hand, an error in the estimation of the height at which the inserts are fixed could rise to these 
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differences. In fact, placing the teeth at the appropriate height is a laborious task in which 

positioning errors can occur. Finally, side flow could deform the peaks, varying their height and 

geometry. 

Nevertheless, considering the stochastic roughness more realistic profiles were achieved, as the 

adjacent peaks and valleys do not show the repeatability that they show in the kinematic profile 

(see Figure 7 a)). 

In order to quantify the accuracy of the 2D profiles, the correlation coefficients Cc were calculated. 

In general, the modelled profiles showed a good lineal positive correlation with the experimental 

ones, higher than 0.8. Table 6 shows the Cc for the four cases studied in this subsection. 

Table 6. Coefficients of correlation for the 2D roughness profiles of test number 1, 2, 3 and 4. 

 Cc 

Test number 1 0.86 

Test number 2 0.85 

Test number 3 0.91 

Test number 4 0.87 

Concerning the 3D roughness surfaces, it can be seen that the highest peaks and lowest valleys 

are mainly located at the central zone of the tool trajectory, and moving away from this area, they 

diminish. It can also be noticed that increasing the feed rate increases the peak-to-valley distance, 

generating rougher surfaces.  
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Figure 12. Comparison of experimental and modelled 2D and 3D profiles for test number 1. The black dashed line 

over the rough surfaces indicates the O at which the 2D roughness profile was obtained (at 0 mm), a) Experimental 

surface, b) Modelled surface, c) Profile comparison.  

(a) (b)

(c)
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Figure 13. Comparison of experimental and modelled 2D and 3D profiles for test number 2. The black dashed line 

over the rough surfaces indicates the O at which the 2D roughness profile was obtained (at 0 mm), a) Experimental 

surface, b) Modelled surface, c) Profile comparison.  

(a) (b)

(c)
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Figure 14. Comparison of experimental and modelled 2D and 3D profiles for test number 3. The black dashed line 

over the rough surfaces indicates the O at which the 2D roughness profile was obtained (at 0 mm), a) Experimental 

surface, b) Modelled surface, c) Profile comparison.  

(a) (b)

(c)
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Figure 15. Comparison of experimental and modelled 2D and 3D profiles for test number 4. The black dashed line 

over the rough surfaces indicates the O at which the 2D roughness profile was obtained (at 0 mm), a) Experimental 

surface, b) Modelled surface, c) Profile comparison. 

5 Sensitivity analysis of cutting conditions and geometrical parameters of the tool on the 

roughness surfaces 

As observed in the experimental results, the cutting conditions and several tool geometry 

parameters significantly affect roughness in face milling, and their study is crucial for tool design 

and improving the performance of manufacturing processes. In this manner, the roughness 

predictive model developed in this research work was used to perform a sensitivity analysis. The 

analyses have been complemented by a series of experimental results to demonstrate their 

validity. The parameters studied in the analysis were (i) feed rate in section 5.1, (ii) quantity of 

teeth and their position in the tool (including axial and radial positions) in section 0, and (iii) 

(a) (b)

(c)
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micro-geometry of the scraper and roughing teeth in section 5.3. To analyse the sensitivity of 

these parameters, a tool with a homogeneous tooth distribution was chosen, alternating scraper 

teeth with roughing teeth (1-1 distribution). The nominal geometrical parameters of the tool are 

shown in Table 7. Ra indicator was used to perform the analysis. These parameters vary depending 

on the parameter in study. 

Table 7. Geometrical parameters of the scraper and roughing teeth of the mill used for the sensitivity analysis. 

 
Axial position 

(µm) 

Radial position 

(mm) 
Position in the tool Rn (mm) i (º) 

6 scraper 

teeth 
-15 30.5 1-3-5-7-9-11 0.5 - 

6 roughing 

teeth 
0 31.5 2-4-6-8-10-12 - 3 

5.1 Influence of the feed rate (fz) 

Using the model developed in this research work, it was observed that the surface roughness 

increases and decreases with the feed per tooth. In addition, it was observed that these variations 

are non-linear with the feed per tooth, as the roughness shows a sawtooth behaviour within its 

upward or downward trend. Finally, it could also be observed that above a certain feed per tooth, 

the roughness decreases. As an example of where to observe these roughness behaviours, Figure 

16 shows the results for Ra indicator for a fz range from 0.001 mm/z to 0.4 mm/z and O 0 mm. 

 

Figure 16. Modelled Ra variation with fz at O 0 mm, and a set experimental results. Ra is observed to increase with fz, 

but not linearly. In addition, above a certain fz, the value of Ra starts to decrease (fz limit). Experimental results are 

marked with a blue cross. 

f z
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The cause of the roughness varying with the feed per tooth is that decreasing fz, the traces left by 

each tooth are closer each other. Consequently, the intersections between these traces occur at a 

lower height, which leads to lower profile amplitudes and roughness. In contrast, increasing fz, 

the traces left by each tooth are further each other, generating higher profile amplitudes and in 

consequence, increasing the surface roughness. This can be observed in Figure 17, where the 

profile amplitude is 16 µm for a fz of 0.15 mm/z (see Figure 17 a)) and 22 µm for a fz of 0.2 mm/z. 

(see Figure 17 b)). In this example, this behaviour is observed up to a fz of approximately 0.3 

mm/z. 

 

Figure 17. Influence of the feed rate over the topography of the roughness profile, a) fz 0.15 mm/z, b) fz 0.2 mm/z. The 

red lines correspond to the primary geometric profile and blue lines to the secondary roughness profile. The black 

circles indicate the intersection points between the traces left by each tooth, which occur at higher heights as the feed 

rate increases. 

Moreover, it can also be observed that the roughness starts to decrease above fz 0.3 mm/z. This 

phenomenon is also related to the position of the traces left by each tooth. Increasing enough the 

fz, the traces generated by the scraper teeth are too far from each other that the surface is not 

sufficiently texturized, i.e., the density of peaks and valleys of the roughness profile is too low 

and it results in an excessively flat surface. In consequence, the surface roughness begins to 

decrease. In this manner, it is demonstrated that although Korkut and Donertas [12], Sun and Guo 

[15], Baek et al. [16], and Ryu et al. [52] concluded that surface roughness increases with the feed 

rate, the opposite effect can be achieved at high feed rates. 

The feed rate at which this trend change occurs has been called as fz limit. The roughness will vary 

with the feed per tooth to a greater or lesser extent depending on the micro-geometry of the teeth. 

The narrower the traces generated by the teeth (smaller radius of the scraper teeth), the greater 

the increase in roughness with the feed per tooth. However, fz limit will be reached at a lower feed 

rate. 

Figure 16 also illustrates that the roughness increase is non-linear with the feed rate, as Ra values 

describe a sawtooth behaviour within an upward or downward trajectory. The same effect can be 

intuited from the experimental results (see the blue crosses in Figure 16). This phenomenon is 

closely related to the offset distance (Of), defined as the offset between the primary and the 

secondary geometric roughness profiles. Depending on Of, the intersections between the traces 

will occur differently so that within an upward or downward trajectory, there may be variations 

in roughness values. 

(a) (b)
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5.2 Influence of the quantity and position of scraper and roughing teeth in the tool 

Apart from the feed rate, the teeth quantities and their positioning in the tool influences the 

roughness values. In fact, roughness can vary even if the cutting conditions are not modified. This 

strategy could be advantageous when the cutting conditions cannot be changed due to 

manufacturing process requirements. To perform the analysis, several simulations were 

performed by modifying both the number of teeth and their position on the tool in a feed per tooth 

range. In Figure 18, an example is shown of the performed analysis. In this case, a fz range between 

0.001 mm/z and 0.4 mm/z, and different quantities of scraper teeth were tested: one (marked in 

blue), two (marked in red), four (marked in yellow), and six (marked in purple). A homogeneous 

distribution of teeth was chosen in each case, and roughness was measured in the centre of the 

tool trajectory. 

 

Figure 18. Modelled Ra variation with fz at O 0 mm, considering different scraper-roughing quantity and combinations: 

in blue 1 Ts for 11 Tr, in orange 2 Ts for 10 Tr, in yellow 4 Ts for 8 Tr and in purple 6 Ts for 6 Tr. In all options, teeth 

were uniformly distributed. A set of experimental results for 6-6 teeth combination is shown with purple crosses. 

As it can be observed, Ra increases with the feed rate until achieving the corresponding fz limit. 

However, the rate of increase is different concerning the number of scraper teeth used. The lower 

the number of scraper teeth, the higher the growth rate at low fz (for example, using one or two 

scraper teeth). In turn, the increase is more gradual with a higher number of scraper teeth. This 

phenomenon occurs due to the relationship between the number of traces generated on the surface 

and the feed rate. If the feed rate is low enough, the traces left by the scraper teeth intersect at an 

excessively short distance, as shown in Figure 17 a). In this case, the lower the number of scraper 

teeth, the higher the profile amplitude, and hence, the surface roughness. In turn, if the feed rate 

is high enough, the traces left by the scraper teeth intersect at an excessively long distance, as 

shown in Figure 17 b). In this respect, the higher the number of scraper teeth, the higher the 

number of traces left by the teeth, and hence, the surface roughness. 

The turning point between the two trends is the denominated fz limit, which is related to the feed 

per scraper tooth fz scraper, defined as the feed rate between two traces generated by the same scraper 
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tooth. In fact, for the four cases studied, fz scraper was 0.6 mm/z when the roughness trend changed. 

fz scraper is calculated with Equation (11), which depends on fz limit, teeth quantity Z and scraper teeth 

quantity Zs. 

𝑓𝑧 𝑠𝑐𝑟𝑎𝑝𝑒𝑟 =
𝑓𝑧 𝑙𝑖𝑚𝑖𝑡 · 𝑍

𝑍𝑠
 (11) 

One scraper tooth (marked blue in Figure 18) 𝑓𝑧 𝑠𝑐𝑟𝑎𝑝𝑒𝑟 =
0.05 · 12

1
= 0.6 𝑚𝑚/𝑧𝑠 

Two scraper teeth (marked orange in Figure 18) 𝑓𝑧 𝑠𝑐𝑟𝑎𝑝𝑒𝑟 =
0.1 · 12

2
= 0.6 𝑚𝑚/𝑧𝑠 

Four scraper teeth (marked yellow in Figure 18) 𝑓𝑧 𝑠𝑐𝑟𝑎𝑝𝑒𝑟 =
0.2 · 12

4
= 0.6 𝑚𝑚/𝑧𝑠 

Six scraper teeth (marked purple in Figure 18) 𝑓𝑧 𝑠𝑐𝑟𝑎𝑝𝑒𝑟 =
0.3 · 12

6
= 0.6 𝑚𝑚/𝑧𝑠 

In fact, Figure 19 shows that if the number of scraper teeth varies but fz scraper is maintained, 

roughness follows a similar behaviour in the four cases. The differences that exist are related to 

the effect of fz on the Of distance, that is, on the relative positioning between the primary and 

secondary geometric profiles. 

 

Figure 19. Evolution of Ra with regard to a different quantity and distribution of scraper teeth at O 0 mm, maintaining 

fz scraper. In blue 1 Ts for 11 Tr, in orange 2 Ts for 10 Tr, in yellow 4 Ts for 8 Tr and in purple 6 Ts for 6 Tr. In all options, 

teeth were uniformly distributed. A set of experimental results for 6-6 combination is shown with purple crosses. 

Analysing the trend of the roughness in the cross-feed direction of the surface, Figure 20 shows 

an example of the distribution of Ra for (a) a mill with one scraper tooth, and b) a mill with six 

scraper teeth, both for fz 0.1 mm/z. In both cases, it can be observed how Ra has a variation of 2 

µm between a maximum and a minimum value. However, when machining with a single scraper 

tooth, there are numerous areas where the roughness remains stable at 6 µm (see Figure 20 a)). 

The cause for this effect is that the number of valleys generated on the surface is few and these 

are homogeneously distributed across the width of cut. In consequence, a more homogeneous 

roughness is obtained over the complete machined surface. 
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In turn, having six scraper teeth, the number of traces left in the surface is higher, and the number 

of intersections between them increases, this being more noticeable in the outer areas of the width 

of cut. Consequently, the roughness values are lower (between 1-2.5 µm) and they decrease as 

the off-centre distance increases (see Figure 20 b)). Overall, roughness will tend to be more 

homogeneous with a smaller number of scraper teeth. 

  

Figure 20. Ra distribution in the width of cut for fz 0.1 mm/z, a) tool with a single scraper tooth (1 Ts-11 Tr), b) six 

scraper teeth (6 Ts-6 Tr). With a single scraper tooth, Ra distribution is more homogeneous, and higher values are 

achieved for the same cutting conditions and tool geometries.  

Moreover, the position of the roughing and scraper teeth on the tool is a factor to be considered 

when structuring the surfaces with face milling. Within a homogeneous distribution of the inserts, 

there are multiple ways to allocate them in the tool, and, roughness is affected depending on how 

they are grouped. To analyse the influence of tooth positioning over the roughness, simulations 

were carried out in a feed rate range of 0.001 mm/z to 0.4 mm/z having six scraper and six 

roughing teeth. Teeth distribution was carried out as following: 1 scraper tooth per 1 roughing 

tooth (1-1) (see Figure 21 a)), 2 scraper teeth per 2 roughing teeth (2-2) (see Figure 21 b)) and 3 

scraper teeth per 3 roughing teeth (3-3) (see Figure 21 c)). 

   

Figure 21. Different group distributions for scraper and roughing teeth (S= Scraper, R= Roughing), a) (1-1), b) (2-2), 

c) (3-3). 

In Figure 22 a) it can be observed that the roughness is lower for the 1-1 distribution (marked in 

blue). These lower roughness values are related to a higher number of intersections between the 

traces generated over the surface. As discussed previously in this subsection, a higher number of 

traces leads to lower profile amplitude, which reduces the roughness values. In contrast, when the 
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scraper teeth are placed in groups of two or three, the traces are wider but less in number. This 

causes a higher profile amplitude, which increases the roughness. It can therefore be concluded 

that for the same number of teeth, the greater the grouping of scraper teeth, the greater the 

roughness achieved. This effect can also be observed in the cross-feed direction (see Figure 22 

b)). For the same feed rate (fz 0.1 mm/z in this example), the highest roughness values were 

obtained with the scraper teeth distributed in 3-3. 

 

 

Figure 22. a) Ra variation with the feed rate for different tooth distributions at O 0 mm and b) Ra variation with the off-

centre distance for different tooth distributions. For both figures, 1-1 distribution in blue, 2-2 distribution in orange, 

3-3 distribution in yellow and blue crosses for experimental tests. 

In addition to what has been discussed so far, the positioning of the inserts at different radii and 

heights has a considerable influence on the roughness. Between the two directions, the axial 

position of the teeth stands out, where the difference in height between the scraper and roughing 

inserts is defined with an axial differential distance (ht). To analyse its influence, simulations were 

performed in a range of fz between 0.001 mm/z and 0.4 mm/z at O 0 mm, positioning the scraper 

teeth 15 μm and 20 μm lower than the roughing teeth. 

As observed in Figure 23, if the feed rate is low enough, ht does no influence the roughness values. 

The reason is that the feed rate is so low that the traces generated by the scraper teeth only intersect 

between them (see Figure 24 a)). Therefore, as the roughing teeth do not participate generating 

(a)

(b)
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the roughness profiles, the ht parameter is not relevant at this fz range (until 0.21 mm/z for this 

tool geometry). The fz range where the roughing teeth do not affect the roughness will vary 

depending on the insert geometries, as the smaller the nose radius of the scraper teeth, the lower 

this fz range, and as the bigger the nose radius, the higher this fz range. 

However, if the feed rate is increased sufficiently (above fz 0.21 mm/z for this tool geometry), the 

traces generated by the scraper teeth become so far apart that the roughing teeth machine the 

peaks appearing between them. In such cases, the axial differential distance influences the 

roughness since the greater the axial differential distance, the higher the roughness obtained. 

 
Figure 23. Ra variation with fz at O 0 mm having scraper teeth at -15 µm (blue) and -20 µm (orange) below the roughing 

teeth. Experimental results for ht 15 µm are shown with blue crosses. It can be observed that below a critical fz, no 

differences are observed. Nevertheless, above a critical fz, a higher ht means a higher roughness.  

Valley 

intersections 

between scraper 

teeth traces

Valley intersections 

between scraper 

and roughing  teeth 

traces
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Figure 24. a) Intersection points between primary and secondary geometric roughness profiles at a) 0.1 mm/z and b) 

0.3 mm/z. The intersections indicated in black colour occur only between the traces of the scraper teeth. The 

intersections indicated in green occur between the traces of the scraper and roughing teeth. 

Moreover, it is possible to modify the roughness of the complete range of fz by increasing the 

axial differential distance of a part of the scraper teeth. In the example shown in Figure 25, scraper 

teeth 1 and 4 were lowered to -20 µm (marked with a white S in the diagram on the left side of 

the figure), maintaining scraper teeth 7 and 10 at -15 µm. As it can be observed, roughness 

increases for the complete range of feed rates. Although at the lower feed rates intersections only 

occur between the traces generated by the scraper teeth, the axial differences of 5 µm between 

them generate higher profile amplitudes regardless of the feed rate. 

 

Figure 25. Ra variation with fz at O 0 mm having all scraper teeth at -15 µm (blue in the graph), only scraper teeth 1 

and 4 at -20 µm (orange in the graph and white S in the scheme of the right) and experimental (blue crosses). It can be 

(a) (b)
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seen how increasing the ht of two of the scraper teeth increases the roughness in the complete fz range. S = Scraper, R 

= Roughing. 

Finally, the effect of varying the radial differential distance (rt) between the scraper and roughing 

teeth was analysed. For this purpose, simulations were carried out varying the radial positions of 

the scraper teeth while fixing the position of the roughing teeth. In the example shown in Figure 

26, the scraper teeth were placed at diameters of 61 mm, 62 mm and 63 mm, while the roughing 

teeth were maintained at a diameter of 63 mm. In that way, the radial differential distance between 

scraper and roughing teeth was varied 2 mm, 1 mm and 0 mm. It can be observed how changing 

rt does not increase or decrease the roughness values. Changing this parameter leads to a different 

roughness distribution across the machined surface, but does not change the magnitude of the 

roughness values. 

 

Figure 26. Ra variation in the width of cut with scraper teeth at different diameters: at 61 mm (blue), at 62 mm (orange), 

63 mm (yellow) and experimental at 61 mm (blue crosses). It can be observed how the magnitude of the roughness 

indicators do not change, but occurs a redistribution of the roughness in the width of cut. 
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The diameter of the tool is a critical parameter that affects the offset between the primary and 

secondary geometric roughness profiles, as shown in Equation (4). Nevertheless, it does not affect 

the amplitude of the roughness profile or to the number of traces left in the surface. In fact, the 

peaks and valleys are displaced to other off-centre distances, redistributing the roughness values. 

5.3 Influence of the micro-geometry of scraper and roughing teeth 

To finish with the analysis, the effect of varying parameters related to the micro-geometry of the 

inserts was analysed. In this manner, it can be possible to modify the roughness values even if the 

feed rate and the number and position of the inserts in the tool are fixed. In this subsection, the 

effects of the nose radius of the scraper teeth (Rn) and the end-edge angle of roughing teeth (i) are 

analysed. 

In order to analyse the influence of Rn, its nominal value of 0.5 mm was increased to 1 mm and 

decreased to 0.1 mm and 0.01 mm. Figure 27 shows that for a determined fz (0.1 mm/z in this 

example) Ra can be considerably modified in the cross-feed direction with the nose radius of the 

scraper teeth. 

If Rn is such that the amplitude of the roughness profile is high (low Rn at low fz and high Rn at 

high fz,), high roughness values are achieved (see Figure 27 for Rn 0.01 mm and 0.1 mm). 

Nevertheless, if Rn is large enough that the roughness profile amplitude is low (high Rn at low fz 

and low Rn at high fz), roughness indicators are considerably reduced (see Figure 27 for Rn 0.5 

mm and 1 mm). 

 

Figure 27. Ra variation with different Rn across the width of cut, for fz 0.1 mm/z: Rn 0.01 mm (blue), Rn 0.1 mm (orange), 

Rn 0.5 mm (yellow) and Rn 1 mm (purple) and experimental Rn 0.5 mm (yellow crosses). It can be observed how the 

highest roughness is achieved with the smallest Rn. and the lowest roughness with the highest Rn. 

Performing the analysis in the centre of the tool trajectory and in a wide range of Rn values (see 

Figure 28), it can be observed how increasing Rn the roughness increases up to a limit value (Rn 

0.11 mm). From this limit value, the traces generated by the scraper teeth become wider, which 

decreases the amplitude of the roughness profile, and Ra starts to decrease (see Figure 28 for Rn 1 

mm). Finally, Ra tends to stabilise, so that increasing Rn has no major impact on roughness. 
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Figure 28. Ra evolution with different Rn at O 0 mm for fz 0.1 mm/z. An experimental result is shown with a blue cross. 

The maximum roughness is achieved with a Rn of 0.11 mm, above that value, roughness decreases. 

Moreover, Figure 29 shows how varying fz the surface roughness is different depending on the Rn 

values. In the lower feed rates, the intersections between the traces left by the scraper teeth occur 

at shorter distances, resulting in low profile amplitudes and roughness values. And if, in addition, 

the nose radius value increases, the roughness value decreases even more, as shown in Figure 29 

until fz 0.23 mm/z. If it is intended to increase the roughness values in that range of feed rates, it 

is necessary to decrease the value of the nose radius in order to increase the amplitude of the 

roughness profile, and consequently the surface roughness. In contrast, when the feed rate 

increases, the traces generated by the teeth are more separated between them, and the higher 

roughness values are achieved by the highest nose radii. 
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From this analysis can be concluded that depending on the feed rate to be worked at, the nose 

radius of the scraper teeth is a crucial parameter to obtain the desired roughness value. 

 

Figure 29. Ra variation with fz at O 0 mm for Rn 0.01 mm (blue), Rn 0.1 mm (orange), Rn 0.5 mm (yellow), Rn 1 mm 

(purple) and experimental for Rn 0.5 mm (yellow crosses). It is observed how roughness increases with the feed rate, 

but at different growth rates depending on Rn. 

Finally, in order to analyse the effect of the end-edge angle of the roughing teeth (i), simulations 

were carried out at 3º, 6º and 9º, maintaining the rest of the geometrical parameters as constant. 

Figure 30 shows that below a given feed rate (0.21 mm/z in this example), the end-edge angle 

does not influence the roughness values. The reason is that the feed rate is low enough so that the 

traces generated by the scraper teeth only intersect each other, as shown in Figure 24 a), and the 

roughing teeth do not intervene in the roughness profile generation. 

However, at higher feed rates (above 0.21 mm/z in this example), the traces left by the scraper 

teeth are sufficiently separated to allow the roughing teeth to machine the peaks that appear 

between them, as shown in Figure 24 b). In these cases, the greater the end-edge angle, the greater 

the peaks left over the surface, increasing the roughness values. 
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Figure 30. Ra variation with fz at O 0 mm for i = 3º (blue), i = 6º (orange), i = 9º (yellow) and experimental i = 3º (blue 

crosses). No differences are observed if the intersections only occur between scraper teeth traces. If intersections occur 

between scraper and roughing teeth traces, roughness increases by increasing i angle. 

6 Conclusions 

In this work, novel roughness maps are presented as an efficient optimisation procedure to 

considerably reduce trial-and-error strategies. The maps provide the optimum cutting conditions 

and tool geometry faster than performing individual simulations or experimental tests. Moreover, 

the maps permit identifying the maximum possible feed rate to increase the productivity of the 

process and the maximum nose radius to minimise the effect of tool wear, all in compliance with 

the roughness requirements. 

In order to calculate the roughness maps, a predictive model for surface roughness was developed 

based on 3D face milled surfaces. The 3D surfaces were modelled as a split signal in two 

components: (i) the kinematic movements of the cutting edge and its geometry, and (ii) a novel 

approach considering the stochastic roughness, which embraces the chip removal process, 

material defects or vibrations. Considering the stochastic roughness, predictions improved 

between 27%-76% for Rmax, Rz, and Rt, and in a lesser extent for Ra. 

In addition, a sensitivity analysis was carried out about the feed rate and several geometrical 

parameters of the tool. During this analysis, it was concluded that apart from the feed rate, the 

number of scraper and roughing teeth, the axial position of the teeth in the tool and the 

microgeometry of the teeth (nose radius of the scraper teeth and end-edge angle of the roughing 

teeth) are also important parameters to consider when structuring the surface roughness by face 

milling. 
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Appendix 

 

Figure 31. Schematic representation of the external contour of a generic insert. Roughing and scraper teeth geometries 

are generated by defining values to each radii and edges of the generic insert. 
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Figure 32. Influence of cutting conditions over the amplitude of the high-pass filtered profiles: a) cutting speed, b) depth of cut, c) lubricant (flood), and d) lubricant (MQL). The analysis is 

performed for different feed rates. 

(a) (b)

(c) (d)
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Figure 33. Probabilities of appearance of the peaks and valleys of each high-pass filtered profile. Peaks and valleys 

were classified into 35 groups depending on their values. 
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Figure 34. Flow chart for the modelling of the roughness. After defining the cutter geometry and the cutting conditions, 

the trace left by each tooth is calculated. With the traces, the primary and secondary geometric profiles are obtained, 

with which the kinematic roughness profile is achieved. Adding the stochastic roughness, the roughness profile is 

generated. The process is repeated for the complete width of cut to obtain a 3D face milled roughness surface. Finally, 

roughness indicators are calculated. 

 

Milling cutter definition

• Diameter (D), number of teeth (Z), roughing and scraper teeth 

geometry definition, teeth position in the mill and axial and 

radial positions of each teeth

Define cutting conditions

• Feed rate (fz), cutting sped (Vc) and depth of cut (ap)
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Figure 35. Errors between experimental and modelled roughness indicators at O = 0 mm for each of the 29 tested 

cutting conditions. The cutting conditions of each test number are detailed in Table 3. 

 

Figure 36. Errors between experimental and modelled roughness indicators at O = 10 mm for each of the 29 tested 

cutting conditions. The cutting conditions of each test are detailed in Table 3. 
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Figure 37. Errors between experimental and modelled roughness indicators at O = 20 mm for each of the 29 tested 

cutting conditions. The cutting conditions of each test are detailed in Table 3. 


