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Abstract

Given the growing amount of industrial data in the 4th industrial revolution, deep
learning solutions have become popular for predictive maintenance (PdM) tasks, which
involve monitoring assets to anticipate their requirements and optimise maintenance
tasks. However, given the large variety of such tasks in the literature, choosing the most
suitable architecture for each use case is difficult. This work aims to facilitate this task
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by reviewing various state-of-the-art deep learning (DL) architectures and analysing
how well they integrate with predictive maintenance stages to meet industrial com-
panies’ requirements from a PdM perspective. This review includes a self-organising
map (SOM), one-class neural network (OC-NN) and generative techniques. This ar-
ticle explains how to adapt DL architectures to facilitate data variability handling,
model adaptability and ensemble learning, all of which are characteristics relevant to
industrial requirements. In addition, this review compares the results of state-of-the-
art DL architectures on a publicly available dataset to facilitate reproducibility and
replicability, enabling comparisons. Furthermore, this work covers the mitigation step
with deep learning models, the final PdM stage that is essential for implementing PdM
systems. Moreover, state-of-the-art deep learning architectures are categorised, anal-
ysed and compared; their industrial applications are presented; and an explanation of
how to combine different architectures in a solution is presented that addresses their
gaps. Finally, open challenges and possible future research paths are presented and
supported in this review, and current research trends are identified.

Keywords Deep learning · predictive maintenance · data-driven · survey ·
review · Industry 4.0

Acronyms

AE Autoencoder
AD Anomaly detection
CM Condition monitoring
CNN Convolutional neural nework
DAE Denoising autoencoder
DBN Deep belief network
DL Deep learning
ELM Extreme learning machine
EMA Exponential moving average
EOC Environmental and operational conditions
FE Feature engineering
FFNN Feed forward neural network
GAN Generative adversarial network
GRU Gated recurrent unit
HI Health index
LSTM Long-short term memory
ML Machine learning
MSE Mean square error
NN Neural network
OCC One class classification
OC-SVM One class support vector machine
PdM Predictive maintenance
RBM Restricted boltzmann machine
RCA Root cause analysis
RMSE Root mean square error
RNN Recurrent neural network
RUL Remaining useful life
RVR Relevance vector regression
SAE Sparse autoencoder
SotA State-of-the-art
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SOM Self organising map
SVR Support vector regressor
VAE Variational autoenconder
XAI Explainable artificial intelligence

1 Introduction

In recent years, industry attention on artificial intelligence and machine learning
(ML) techniques has risen due to their capacity to create automatic models that
handle the large amounts of data currently collected, which is growing exponen-
tially. Research into machine learning has switched to more complex models such
as ensemble methods and deep learning (DL) due to their higher accuracy when
applied to larger datasets. These methods have evolved due to increases in com-
puting power primarily advances in GPUs making deep learning currently one of
the most researched topics. and the latter mainly due to the evolution of GPU-s,
being deep learning one of the most researched topics nowadays. These models
have achieved state-of-the-art results in fields such as intrusion detection systems,
computer vision and language processing.

Maintenance is defined by the norm EN 13306 (UNE-EN 13306 2018) as the
combination of all technical, administrative and managerial actions during the life
cycle of an item intended to retain it in, or restore it to, a state in which it can per-
form the required function. Moreover, EN 13306 defines three types of maintenance:
improvement maintenance improves machine reliability, maintainability and safety
while keeping the original function; preventive maintenance is performed before
failures occur either in periodical or predictive ways; and corrective maintenance
replaces defective/broken parts when a machine stops working. Currently, most
industrial companies rely on periodical and corrective maintenance strategies.

However, industry is transitioning towards a fourth revolution, termed ”Indus-
try 4.0”, which is based on cyber physical systems and the industrial Internet of
Things. Industry 4.0 combines software, sensors and intelligent control units to im-
prove industrial processes and fulfill their requirements (Lukac 2016). These tech-
niques enable automatised predictive maintenance by analysing massive amounts
of process and related data based on condition monitoring (CM).

Predictive maintenance (PdM) is the best maintenance type given its potential
to achieve an overall equipment effectiveness (OEE) (Vorne 2019) above 90% by
anticipating maintenance requirements (Colemen et al. 2017; Don Sanger 2017),
promising a return on investment of up to 1000% (Lavi 2018). Maintenance opti-
misation is a priority for industrial companies given that effective maintenance can
reduce maintenance costs by to 60% by correcting machine, system and personal
failures (Dhillon 2002). Concretely, PdM maximises components’ working lives by
taking advantage of their unexploited lifetime potential while reducing downtime
and replacement costs by performing replacements before failures occur, thus pre-
venting expensive breakdowns and production time losses caused by unexpected
stops.

The numerous research works on PdM can be classified into three approaches
(Liao and Köttig 2016): physical models, data-driven models and hybrid mod-
els. The physical model methods capitalise on prior system knowledge to build
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a mathematical description of system degradation (Li et al. 2000; Oppenheimer
and Loparo 2002; Venkatasubramanian et al. 2003; Blancke et al. 2018; Li et al.
2017). It is easy to understand the physical meaning of these systems, but they
are difficult to implement for complex systems.

Data-driven methods predict a systems’ state by monitoring its condition with
solutions learned from historical data (Baptista et al. 2018; Park et al. 2021; Yuan
et al. 2016). These methods are composed of statistical calculations, reliability
functions and artificial intelligence methods. They are suitable for complex systems
because they do not need to understand how the systems work. However, it is more
difficult to relate their output to physical meaning.

Hybrid approaches combine the aforementioned two approaches (Liao and
Köttig 2016; Zhao et al. 2013). Data-driven and deep learning methods have gained
popularity in industry in recent years due to improvements in machine data col-
lection, which have enabled the development of accurate PdM models in complex
systems.

1.1 Research methodology

The research methodology of this survey on deep learning model applications for
predictive maintenance is provided in this paragraph. It is intended to identify
trends, analyse significant works and detect future research lines.

Given that the number of publications in the field has increased exponentially
in recent years, as exposed in Figure 1, this survey covers studies published between
2016 and 2021. To conduct the research, we gathered information from various
electronic database-search engines, including Scopus, Engineering Village, Springer
Link, Science Direct, IEEE-Xplore, ACM Digital Library and Google Scholar.
These resources provided access to different types of works, including high-impact
journals and conference papers.

Fig. 1 Evolution of a number of publications on deep learning for predictive maintenance in
Google Scholar search engine.
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Given the high number of publications in the field, authors delimited the re-
search space by defining keywords and research queries. Specifically, the terms
“deep learning” AND “predictive maintenance” were the primary descriptors,
grouped by predictive maintenance stages: “anomaly detection”, “diagnosis”, “prog-
nosis”, “mitigation” and their preparatory “preprocessing” and “feature engineer-
ing” stages, as presented in Figure 2. In addition, complementary terms related
to industrial requirements were also grouped with the primary descriptors (see
Figure 3): “transfer learning”, “ensemble learning”, “reinforcement learning” and
“uncertainty modelling”.

Fig. 2 The number of deep learning techniques articles by predictive maintenance stages.

Fig. 3 A number of deep learning techniques that address industrial requirements by category.

This work reviews 87 publications that address predictive maintenance stages
using deep learning techniques, 19 works that combine deep learning and non deep
learning data-driven algorithms to create architectures that better address PdM
stages and 4 related review articles about deep learning applications for predictive
maintenance: Zhao et al. (2019), Zhang et al. (2019d), Khan and Yairi (2018) and
Fink et al. (2020).
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1.2 Contributions

The goal of this survey is to provide an extensive review of deep learning tech-
niques for predictive maintenance, specifying how these architectures can address
each PdM stage by adapting to industrial requirements. Despite existing published
reviews on machine learning and specifically deep learning for predictive mainte-
nance e.g., Zhao et al. (2019), Zhang et al. (2019d), Khan and Yairi (2018) and
Fink et al. (2020), this work provides the following contributions to the state-of-
the-art (SotA):

(1) This work reviews state-of-the-art DL techniques for PdM, describes how
they work, compares them and analyses them qualitatively. It also includes SOM,
OC-NN and generative techniques, whose use in the PdM life-cycle has not pre-
viously been reviewed. (2) This work is oriented from a predictive maintenance
problem perspective, focusing on how DL techniques implement each PdM stage to
address industrial requirements. (3) This article explains how to adapt DL archi-
tectures to facilitate data variability handling, model adaptability and ensemble
learning, and provides the relevant characteristics to address industrial require-
ments. (4) This work compares DL state-of-the-art results on a publicly available
dataset to facilitate reproducibility and replicability, enabling comparisons. (5)
This work covers the mitigation step with deep learning models, which is the final,
essential PdM stage for PdM system implementation.

This paragraph describes the remaining content of this work. Section 2 reviews
the background stages for predictive maintenance and provides an overview of the
traditional data-driven models used in the field, together with an overview of deep
learning techniques. Section 3 reviews and categorises the most relevant state-
of-the-art deep learning works for predictive maintenance organised by underlying
technique, analysing them by PdM stages to enable comparison. Moreover, related
reviews are analysed and compared with this work to highlight the contributions of
this work and how it addresses state-of-the-art gaps. Section 4 reviews the publicly
available reference datasets for PdM model application and benchmarking. Sec-
tion 5 discusses the suitability of deep learning models for predictive maintenance
by evaluating their benefits and drawbacks and analysing the DL architectures
qualitatively. Section 6 presents potential future research areas discovered during
the elaboration of this research work. Finally, Section 7 concludes this survey by
highlighting the most relevant aspects discovered during this work.

2 Overview of predictive maintenance and deep learning

2.1 Predictive maintenance background

Predictive maintenance solutions must consider many factors, peculiarities and
challenges of industrial data, the most relevant of which are discussed in the sub-
sequent paragraphs.

Venkatasubramanian et al. (2003) presented 10 desirable properties for a PdM
system: quick detection and diagnosis, isolability (distinguishing among different
failure types), robustness, novelty identifiability, classification error estimation,
adaptability, explanation facility, minimal modelling requirements, real-time com-
putation and storage handling, and multiple fault identifiability.
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Two main challenges of industrial use cases are their behaviour and data vari-
ability. These occur even in assets working under the same characteristics given the
variations in mechanical tolerances, mount adjustments, variations in environmen-
tal and operational conditions (EOC) and other factors. These factors increase the
difficulty of reusing PdM models among different machines and assets. Other rel-
evant challenges are gathering quality data, performing correct preprocessing and
feature engineering to obtain a representative dataset for the problem. In addition,
each observation is related to previous observations and therefore, they should be
analysed together, which increases the data dimensionality and modelling com-
plexity. Failure data gathering is difficult given that machines are designed and
controlled to work correctly while preventing failures; therefore, such data are
infrequent.

Some commonly monitored key components in PdM are (but are not limited
to) bearings, blades, engines, valves, gears and cutting tools (Zhang et al. 2019d).
Some common failure types detected by CM are imbalance cracks, fatigue, abra-
sive and corrosion wear, rubbing, defects and leak detection, and others. The
publication by Li and Gao (2010) classifies the types of failures that may exist
in the system as component failure, environmental impact, human mistakes and
procedure handling.

The commonly used CM techniques are the following (UESystems 2019): ul-
trasound (Bakar et al. 2013), vibration analysis (Wen and Gao 2018; Nithyavathy
et al. 2021), wear particle testing (Yadav et al. 2021; Baptista et al. 2021), thermog-
raphy, motor signal current analysis (Dos Santos et al. 2017) and nondestructive
testing (Narushin et al. 2021), but additional techniques exist such as torque, volt-
age and envelopes (Rajan Babu et al. 2021), acoustic emission (Jones et al. 2022),
pressure (Zhao et al. 2017) and temperature monitoring (Bakar et al. 2013; Zhao
et al. 2017).

Environmental and operational conditions (EOCs) describe the working con-
ditions for an industrial asset such a machine or component (Tavner et al. 2008).
Environmental conditions refer to external conditions that affect these machines
or components, such as ambient temperature or surrounding vibration perturba-
tions. In contrast, operational conditions are working processes to which technical
specifications are assigned, such as desired speeds, forces or positions. Addition-
ally, machine data are monitored by sensors. When monitored and collected over
time, these data comprise a dataset in the form of a time series. The analysis of
such time series datasets using condition monitoring techniques enables the deter-
mination of component and machine states by comparing patterns and trends with
historical data. The P-F curve (UESystems 2019) is a visual tool for presenting
component degradation patterns in which health degrades from healthy working
conditions to failure over time or as machine cycles progress.

2.2 Data-driven predictive maintenance stages

Deep learning models for PdM share the same principles as other machine learning
and statistical techniques for PdM. Specifically, the data-driven methods that in-
clude deep learning for PdM follow the incremental steps presented in the roadmap
shown in Figure 4, which is based on the articles (Welz 2017; Prajapati et al. 2012)
and the open system architecture for condition based maintenance standard OSA-
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CBM (Lebold et al. 2002): anomaly detection, diagnosis, prognosis and finally,
mitigation.

I Anomaly Detection

II Failure Diagnosis

   Degradation 

Prognosis

IV

Mitigation

III

Fig. 4 Predictive maintenance roadmap stages.

To prepare the data for PdM, these methods perform two additional steps
before the aforementioned ones, as presented in the general analytic lifecycle defi-
nition work Wirth and Hipp (2000), and PdM work Khan and Yairi (2018). These
additional steps are preprocessing and feature engineering (FE), which, as stated
above, are key enhancing model accuracy during the PdM stages by creating a rep-
resentative dataset for the problem. All the PdM stages must be designed, adapted
and implemented to fit specific use case requirements and data characteristics. In
addition, PdM system development is incremental; therefore, the techniques, al-
gorithms and decisions made during each stage will influence the following stages.

2.3 Deep learning techniques

This section presents the deep learning background and introduces the underly-
ing structures that state-of-the-art PdM works use to create deep learning-based
architectures. Information on how to create deep learning architectures for PdM
and a review of publications in this field are presented in Section 3.

Currently, deep learning models outperform statistical and traditional ML
models in many fields including PdM, when sufficient historical data exist. Deep
learning architectures are based on neural networks that go beyond shallow 1- and
2-hidden layer networks (Neapolitan and Neapolitan 2018).

Neural Networks (NNs) are formed by neurons that compute linear regressions
of inputs with weights and then compute nonlinear activation functions such as
sigmoid, rectified linear unit (ReLU) or tan-h to produce outputs. The network
parameters are commonly initialised randomly, and are then adjusted to map the
input data to the output data given the training dataset. This learning process
occurs by running a gradient descending algorithm combined with a backpropa-
gation algorithm. These enable calculations to adjust each neuron to reduce the
error produced by the network; the error is calculated based on a user-defined cost
function. The article by Hornik (1991) justifies that NNs of at least two hidden lay-
ers with enough training data are capable of modelling any function or behaviour,
creating the universal approximator.
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The book by Goodfellow et al. (2016) provides exhaustive background on DL
and is considered a reference book in the field. Specifically, the book introduces ma-
chine learning and deep learning mathematical backgrounds. Afterwards, it focuses
on DL optimisation, regularisation, different type of architectures, their mathemat-
ical definition and common applications. A simpler yet powerful overview of the
field exists in the survey of DL applied to medicine by Litjens et al. (2017), which
is further complemented with a visual scheme that collects the main architectures.
Another survey by Pouyanfar et al. (2018) focuses specifically on DL architec-
tures, applications, frameworks, SotA and historical works, trends and challenges.
Additionally, the reference book on practical DL applications presented by Géron
(2017), is based on the Scikit-Learn, Keras, and TensorFlow tools ∗.

The most common DL techniques related to the field of PdM are summarised
in the following paragraphs. Most are based on the feed-forward scheme, but each
scheme has its own characteristics:

– The feed-forward neural network (FFNN) (Werbos 2005) is the first, most com-
mon and simplest architecture. It is formed by neurons stacked in layers, where
the outputs of the neurons of one layer are connected to all the inputs of the
neurons of the next layer. The neural network is provided with observations
pairing input features and target features; the relations between these observa-
tions are learned by minimising the error produced by the network by mapping
the input data to the output.

– A convolutional neural network (CNN) (LeCun et al. 1989) is a type of feed-
forward network that maintains neurons’ neighbourhoods by applying convo-
lutional filters. CNNs have applications in image and signal recognition, rec-
ommendation systems and natural language processing, among others. The
convolutional operation extracts features from the inputs and is usually fed to
an FFNN for classification.

– A recurrent neural network (RNN) (Robinson and Fallside 1987) models tem-
poral data by saving the state derived from previous inputs of the network;
however, RNNs often suffer from vanishing or exploding gradient problems
(Hochreiter 1991), which cause these networks to forget long-term relations.
To solve this problem, specific RNN architectures were created based on forget
gates; these include long-short term memory (LSTM) (Hochreiter and Schmid-
huber 1997) and gated recurrent unit (GRU) (Cho et al. 2014) models.

– The deep belief network (DBN) (Hinton and Salakhutdinov 2006) and re-
stricted boltzmann machine (RBM) (Scholar and Smolensky 1986) models are
types of stochastic NNs that can learn a probability distribution over the data.
They can be trained in either a supervised or unsupervised manner. Their main
applications involve dimensionality reduction and classification.

– The autoencoder (AE) (Ballard 1987) is based on the singular value decom-
position concept (Golub and Reinsch 1970) to extract the nonlinear features
that best represent the input data in a smaller space. AN AE consists of two
parts: an encoder that maps input data to the encoded, and the decoder, which
projects the latent space between them to a reconstructed space that has the
same dimension as the input data. The network is trained to minimise the
reconstruction error, which is the loss between the input and output. Different

∗Resources can be found in https://scikit-learn.org , https://keras.io and
https://www.tensorflow.org respectively.
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types of autoencoders exist that are employed for different use cases, as will
be discussed later.

– Generative models such as the variational autoencoder (VAE) (Kingma and
Welling 2014) and generative adversarial network (GAN) (Goodfellow et al.
2014) were designed to work in an unsupervised way. A VAE is a generative
and therefore nondeterministic modification of the vanilla AE in which the la-
tent space is continuous. Usually, its latent space distribution is Gaussian, from
which the decoder reconstructs the original signal based on random sampling
and interpolation. A VAE has applications in estimating the data distribution,
learning a representation of data samples and generating synthetic samples,
among others. A GAN is another type of generative neural network that con-
sists of two parts: a generator and a discriminator. The generator is trained to
generate an output that belongs to a specific data distribution using a repre-
sentation vector as input. The discriminator is trained to classify whether its
input data belongs to a specific data distribution. The generator’s objective is
to fool the discriminator by generating outputs from random input that cause
the discriminator to classify it as belonging to the specific trained distribution.

– A Self-organising map (SOM) (Kohonen 1990) is a neural network-based unsu-
pervised way to organise the internal data representations. In contrast to typ-
ical neural networks that use backpropagation and gradient descent, a SOM
uses competitive learning to create a new space called a map that is typi-
cally two-dimensional. It is based on neighbourhood functions that preserve
the topological properties of the input space into the new space, represented
in cells. It has applications in clustering, among others.

3 Deep learning for predictive maintenance

This section collects, summarises, classifies and compares the reference DL tech-
niques for PdM by analysing the works and their applications. It includes accurate
DL models that achieve SotA results from reviewed articles, surveys and reviews
of the field. The works are classified by the principal DL technique used to perform
each stage of Section 2.2 in the first six parts of this section. Additionally, more
advanced DL architectures that combine different techniques or even perform more
than one PdM stage simultaneously are reviewed in Section 3.7. Finally, the last
subsection gathers the most relevant information contained in works similar to
this survey by discussing the related reviews and surveys.

The reviewed works can be classified based on their underlying ML task and
the algorithms used to address it, which are directly related to the use case and
its data requirements. Binary classification is used when training data contain la-
belled failure and nonfailure observations. Multiclass classification is used in the
same types of cases as binary classification, but where more than one failure type
is classified; therefore, multiclass classification involves at least three classes: one
represents nonfailure and then one class exists for each type of failure. One-class
classification (OCC) is used when the training dataset contains only nonfailure
data, which usually consists of machine data collected during early working states
or when technicians ensure that the asset is working correctly. Finally, unsuper-
vised techniques are used when the training datasets’ observations are unlabelled;
therefore, there is no knowledge of which observations belong to the failure or non-
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failure classes. Unsupervised techniques can also be used as one-class classifiers.
Additionally, there are a few works on other machine learning and deep learning
topics, such as active learning, reinforcement learning and transfer learning.

3.1 Preprocessing

The initial step is to preprocess the data and prepare it for data-driven models by
conducting techniques such as cleaning, encoding, imbalanced data handling and
feature scaling, among others. Each PdM model has different requirements, and
these must be taken into consideration when choosing adequate preprocessing tech-
niques to boost model performance. Even though these techniques are not specific
to the current field, common applications are explained to guide their use with
deep learning-based PdM architectures. Complementary information on prepro-
cessing techniques can be found in the article by Cernuda (2019) on preprocessing
for predictive maintenance.

Data cleaning is essential to obtain high-quality data. Its steps in predictive
maintenance frequently imply handling missing values by imputation, such as in-
terpolation or removing values, outlier handling, and ensuring that variables are in
the expected range. This process can be enhanced by introducing domain exper-
tise. In addition, neural networks have difficulties modelling categorical variables;
therefore, these must be encoded into numerical values before they are input to
the network; commonly, one neuron is created for each category.

Industrial companies have difficulties obtaining failure data; thus, they often
lack sufficient failure data to train or test created models. This is why unsuper-
vised and self-supervised architectures are becoming increasingly relevant in the
predictive maintenance field. Nonetheless, after several failures have been collected,
according to Mammadov (2019), two types of techniques exist that minimise this
impact of this imbalanced data: data-level and algorithm-level techniques. The
data-level methods are frequently oversampling methods; both SMOTE (Chawla
et al. 2002) and ADASYN (He et al. 2008) are widely used in predictive mainte-
nance. Mammadov also states that algorithm-level methods adjust the classifier
to fit imbalanced datasets, such as adjusting the misclassification costs or decision
thresholds.

Two principal data scaling methods are used to prepare variables for deep
learning models; these enable fair feature comparison and cause neural networks to
be less sensitive to bias, according to the deep learning book by Géron (2017) and
a master’s thesis on deep learning for PdM Willamos Silva (2019). One technique
is min-max scaling (often termed as normalisation), which scales each variable to
have values between the selected range by subtracting their minimum value and
dividing the result by the maximum value minus the minimum value, as defined in
Equation 1. The other technique is standardisation, which transforms each variable
to have a null expectation and unitary variance by subtracting their expectation
and dividing by their variance. This technique is defined in Equation 2.

XS
i =

Xi −Xmin

Xmax −Xmin
(1)

XS
i =

Xi −mean(Xi)

var(Xi)
(2)
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The choice of preprocessing techniques is tied to data characteristics and condi-
tioned by the selected deep learning architecture. One relevant factor for choosing
the scaling technique is the activation functions used in the neural network; com-
monly, the scaling technique used is min-max scaling given that it ensures that the
data are limited to the range expected by the network. Generally, when the net-
work activation function is sigmoid, min-max scaling for the range [0, 1] is selected
Wang et al. (2019b); when tanh is used, the data are expected to be in the range
[−1, 1] Soni et al. (2008), whereas when ReLU is used, the data are expected to be
in the range [0, inf ], and therefore batch normalisation can be used in the previous
layer Klein et al. (2020). Standardisation is less affected by outliers, but it does
not bound values to specific ranges, as neural networks commonly require. In con-
trast, min-max scaling bounds the variables’ range, although it is more sensitive
to outliers.

3.2 Feature engineering

This step consists of extracting a relevant feature subset to be used as input for
models in later stages. The deep learning algorithms used in PdM are capable
of performing feature engineering automatically by obtaining a subset of the de-
rived features best fit specifically for the task, which boosts model performance.
A common technique is to use feed-forward methods by adding deep layers with
fewer dimensions. RBMs also provide automatic feature extraction by modelling
the data probability with contrastive divergence minimisation, which is based on
one-way training and reconstructing the input from the output. Likewise, DBNs
enable automatic feature extraction using stacked RBMs with greedy training,
which can also be used for health index (HI) construction. Moreover, SOMs map
data to a specified dimension, and AEs reduce dimensionality in latent space while
preserving the maximum input data variance, providing nonlinear FE and HI cal-
culations. In addition, CNNs automatically extract features by univariate or mul-
tivariate convolutions of the input, thus modelling sequential data with sliding
windows. CNNs are usually combined with pooling methods to reduce dimension-
ality. Finally, RNNs use regression to model time-series and sequential data by
propagating state information over time.

These feature engineering techniques remove the dependence on manual and
feature engineering processes. Table 1 shows the strengths, limitations and refer-
enced applications of the common deep learning techniques used for feature engi-
neering. These techniques are integrated with machine learning and deep learning
models to create architectures that can be applied to PdM stages.

Feed-forward networks are unable to model the temporal relations of industrial
sensor data for feature extraction, but they can fuse nontemporal features to re-
duce the dimensionality of the feature set when used inside an AE. AEs have the
ability to extract features automatically; therefore, they are suitable for extract-
ing representative features to perform semisupervised and unsupervised predictive
maintenance. However, like the feed-forward models and RBM, DBN and SOM,
AEs depend on the use of CNN and RNN layers to extract time-based relations.

RBMs are simpler and faster to train than feed-forward networks, but they
have difficulty in modelling complex industrial data because they are composed
of a single layer. DBNs address this issue by stacking RBM layers; thus, they
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Table 1 Deep learning techniques for automatic feature engineering and projection. These
techniques are based on input signal relations and temporal context.

AlgorithmAdvantages Disadvantages Applications and refer-
ences

Feed-
forward
mod-
els

- Reduce dimension to
promote smaller feature
space
- Simplest NN architec-
ture

- Do not model the fea-
tures by neighbourhood
- Do not model temporal
relations

Engine health monitor-
ing (Yildirim and Kurt
2016; Rad et al. 2011),
bearing fault diagnosis
(Al-Raheem and Abdul-
Karem 2011)

RBMs - Preserve spatial repre-
sentation in new space
- Reduce training time

- Do not preserve data
variance in the new space
- Have difficulty mod-
elling complex data be-
cause they have only one
layer

Bearing degradation
(Liao et al. 2016), factory
PLC sensors (Hwang
et al. 2018)

DBNs - Competitive SotA
results
- Can model time-
dependencies using
sliding windows

- Lengthy training
- Do not model long-term
dependencies.

Vibration analysis (Wang
et al. 2017b), bearing
prognosis (Deutsch and
He 2017), engines (Peng
et al. 2019; Shao et al.
2017b), wind turbine
(Yang et al. 2018)

SOMs - Non-linear mapping of
complex data to a lower
dimension
- Maintain feature distri-
bution in the new space
- Can be combined with
other techniques for RCA
(i.e., 5-whys (Chemweno
et al. 2016))

- Have difficult linking la-
tent variables with physi-
cal meaning
- More complex than
other techniques
- Use a fixed number of
clusters

Turbofan (Lacaille et al.
2015), pneumatic ac-
tuator (Prabakaran
et al. 2014), thermal
power plant (Chemweno
et al. 2016), bearing
degradation (Liao et al.
2016)

AEs - Automatic FE of raw
sensor data achieve re-
sults similar to tradi-
tional features 1

- Traditional features can
also be input
- No need for classifica-
tion or failure data
- Allows online CM.

- Extract features not
specific to the task
- Require more resources:
both computational and
training data
- Lose temporal relations
if input data are raw sen-
sor data
- Can lead to overfitting

Bearing vibration (Chen
et al. 2017b; Hong and
Yin 2018; Ahmed et al.
2018), satellite data
(Sakurada and Yairi
2014), CAN vehicles
(Perini 2019)

CNN - Simple yet effective
- Faster than traditional
ML models in production
- Take advantage of
neighbourhoods
- Require less training
time and data by weight-
sharing
- Can outperform LSTMs
- Dropout can prevent
overfitting

- Slower training due
to the large number of
weights
- Analyse data in chunks
and fail to model long-
term dependencies.

Bearing diagnosis
(Cabezas Rodŕıguez
2019; Guo et al. 2016b),
electric motor (Liu et al.
2017), gearbox (Wang
et al. 2017a), turbofan
(Li et al. 2018a; Babu
et al. 2016), Numenta
Anomaly Benchmark
(Munir et al. 2019),
blade (Li et al. 2020)

RNNs - Model temporal rela-
tionships of EOC data
- Special architectures
such as LSTM and GRU
can model medium-term
dependencies

- Can suffer from van-
ishing gradient problems;
even special architectures
cannot model very long-
term dependencies
- Need more resources

turbofan (Yuan et al.
2016; Bruneo and De
Vita 2019; Aydin and
Guldamlasioglu 2017),
hydropower plant (Yuan
et al. 2019)

1 In this work, the term traditional features refers to handcrafted and automatic feature ex-
traction techniques such as statistical or ML-based features, excluding DL-based features.
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achieve SotA results in industrial data by modelling temporal relations with slid-
ing windows. However, the use of sliding windows limits the long-term modelling
capabilities of RBMs.

CNNs are suitable for modelling individual sensor relations with one-dimensional
filters and can also model time-based relations among sensors by using two-dimensional
filters. Their main advantage is that by weight sharing, they reduce the required
training resources and model complexity, but they have limited memory. RNNs
with specific architectures can extract longer temporal data relations among sen-
sors, but their memory is still limited by the vanishing gradient problem. In addi-
tion, they add complexity and therefore increase the explanation difficulty of the
network. Explanation difficulty is a challenge that PdM models must overcome
before being deployed to production.

3.3 Anomaly detection

Anomaly detection aims to detect whether an asset is working correctly under
normal conditions. Grouped by their underlying machine learning task, there are
three ways to address this step using data-driven models: classification, one-class
classification and clustering. These models can be used when labelled data for the
different classes are available during the training phase, when only one class of data
exists (commonly nonfailure data) and when the data are unlabelled, respectively.

The deep learning-based AD algorithms can be classified into three groups
based on the training data characteristics, as stated in the section introduction.
The main architectures are summarised in Figure 5.

Fig. 5 The main deep learning techniques for anomaly detection in predictive maintenance.

These algorithms are summarised and compared, and their main applications
are referenced in the subsequent tables. On the one hand, anomaly detection algo-
rithms based on binary and multiclass classification approaches (Rad et al. 2011;
Al-Raheem and Abdul-Karem 2011) rely on training data classified as correct or
failure. The commonly used feature extraction techniques are either traditional or
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deep learning features followed by a flattening process; then, several fully connected
layers of decreasing dimension are applied until the output layer. For binary clas-
sification, one or two output neurons indicate the probability of failure or normal
working conditions. Similarly, multiclass classifications have N+1 output neurons,
where one neuron indicates the probability of not failing and each of the remaining
N neurons indicates the probability of each type of failure.

On the other hand are the algorithms that address the AD problem based
on one-class classification or unsupervised approaches using only training data
classified as correct or unclassified. Autoencoder structures are widely used for
this purpose, where vanilla AEs use a threshold in the reconstruction error and
classify as anomalous data that surpasses that threshold. Stacking multiple AEs
one after another is termed a stacked AE. SAEs constrain training with sparsity
to keep neurons’ activations low, and DAEs are AEs designed for noisy data. A
generative VAE is an AE that maps input data to a posterior distribution, and
GANs are used for data augmentation and AD in 2 ways: using a discriminator
and using residuals.

One additional one-class technique is OC-NN, which trains an AE and freezes
the encoder for one-class classification - similar to an OC-SVM loss function.
Vanilla RNNs are also used for AD and analyse the tracking error between the
predicted and actual behaviour using regression and measuring HI differences.
Similarly, LSTM and GRU neural networks are used to replace the neuron archi-
tecture with LSTM and GRU neurons, respectively. A comparison of the strengths
and limitations together with the applications and references of these techniques
is shown in Table 2.

Autoencoders are trained to detect anomalies in industrial data using unsuper-
vised or one-class data; a vanilla AE is the simplest version. Stacked AEs achieve
better performances but at the cost of increased complexity and additional re-
sources. SAEs penalise the weights of the autoencoder to limit complexity, which
can be used to prevent overfitting of anomaly detection algorithms, and DAEs are
more complex and robust to noisy data, making them suitable for addressing vi-
bration data. An OC-NN works as a one-class neural network that can be trained
in a semisupervised way. While it cannot extract time-based relations, this ability
can be achieved by combining an OC-NN with CNN and RNN layers.

Regarding generative models, a VAE learns the posterior distribution of the
sensor data, but the random component can make model interpretability difficult.
GANs additionally enable data generation, which can be useful for generating
synthetic failure data when only a few failure observations have been collected,
and they can achieve SotA results in semisupervised anomaly detection. However,
GANs have difficulties handling datasets with high imbalance ratios, their com-
plexity makes them difficult for industrial stakeholders to interpret, and sometimes
they are outperformed by simpler methods. RNNs are widely used to evaluate the
evolution of industrial asset signals over time and detect anomalies, but the vanilla
version cannot model long-term dependencies. LSTMs and GRUs fix this vanish-
ing gradient problem, so they have currently replaced vanilla RNNs. The choice of
one model type over the other depends on the specific use case being addressed.
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Table 2 Anomaly detection methods that use training data classified as correct or unclassified:
one-class and unsupervised classification.

Algo-
rithm

Advantages Disadvantages Applications and references

Autoencoders

Vani-
lla
AEs

- Automatic feature en-
gineering of raw sensor
data or traditional fea-
tures
- Minimise variance loss
in latent space
- No need for classifica-
tion or failure data
- Allows online CM

- Extract features not spe-
cific to the task
- Require more resources,
both computational and
training data
- Lose temporal relations if
input data are raw sensor
data
- Can lead to overfitting

Bearing vibration (Chen
et al. 2017b; Hong and Yin
2018), flight data (Reddy
et al. 2016), CAN vehicles
(Perini 2019), marine au-
tonomous systems (Ander-
lini et al. 2021)

Stack-
ed
AEs

- Perform slightly better
than vanilla AEs

- Require more resources
than vanilla AEs

Bearing vibration (Tao
et al. 2015; Roy et al.
2019), generator turbine
vibration (Galloway et al.
2016)

SAEs - Same as AEs, but
also prevent overfitting
by forcing all neurons to
learn

- Form more complex net-
works that require more re-
sources than vanilla AEs

Bearing vibration, turbine
vibration (Lu et al. 2017),
(Chen et al. 2017a), (Gal-
loway et al. 2016), (Ahmed
et al. 2018)

DAEs - Outperform vanilla AEs
with noisy data
- Work slightly better
when several DAEs are
stacked

- More complex networks
that require more resources
than vanilla AEs
- Stacked DAEs need even
more resources

Bearing vibration (Lu et al.
2017; Xia et al. 2017)

Generative

VAEs - Learn posterior distri-
bution from noisy dis-
tribution, generate data
non-deterministically

- Implementation difficul-
ties
- Lose temporal relations
when input data consist of
raw sensor data.

Ball screw (Wen and Gao
2018), electrostatic coa-
lescer (Lygren et al. 2019),
web traffic (Xu et al.
2018b), aircraft data (Arias
Chao et al. 2021)

GANs - Good data augmenta-
tion with small imbalance
ratio
- ADs outperform unsu-
pervised SotA methods

- Do not work well with
large imbalance ratio
- Complex and require
more resources
- May be outperformed by
simpler methods such as
CNN (Cabezas Rodŕıguez
2019)

Induction motor (Lee et al.
2017), bearing multisensor
(Cabezas Rodŕıguez 2019)

One-Class Classifiers

OC-
NNs

- Automatic feature ex-
traction

- Slower than traditional
OCCs
- Extracted features are not
focused on the problem

General AD (Chalapathy
et al. 2018)

Recurrent Neural Networks

Vani-
lla
RNNs

- Model temporal rela-
tionships of time-series
data
- Self-learning.

- Suffer from vanishing gra-
dient problems; therefore
cannot model medium and
long-term dependencies
- Require more training re-
sources than than do feed-
forward AEs or CNNs.

Activity recognition (Ari-
foglu and Bouchachia 2017)

LSTMs - Same as a vanilla RNN,
however, these can model
longer time dependencies
than vanilla

- Even though these man-
age the vanishing gradient
problem better than a
vanilla RNN, they still
have difficulty modelling
long-term dependencies
- Lengthy training and
high computational re-
quirements

Aircraft data (Nanduri
and Sherry 2016), activity
recognition (Arifoglu and
Bouchachia 2017), nuclear
power machinery (You
et al. 2021)

GRUs - Comparable to LSTMs
but easier to train

- Comparable to LSTMs Aircraft data (Nanduri
and Sherry 2016), activity
recognition (Arifoglu and
Bouchachia 2017)
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3.4 Diagnosis

After an anomaly has been detected, the next stage involves diagnosing whether
this anomaly belongs to a faulty working condition and will evolve into a future
failure or whether, in contrast, there no failure risk exists. The diagnosis is usually
based on root cause analysis (RCA) techniques, which aim to identify the true
cause of a problem. The diagnosis algorithm must be suitable for the problem
being addressed.

The diagnosis steps depend on the information and type of AD model used
during the previous stage, given that PdM is an incremental process in which each
stage is predicated on the previous stages. For multiclass classifiers, the type of fail-
ure related to the detected anomaly is already known; this characteristic enables
a straightforward diagnosis and comparison with historical data (Rad et al. 2011;
Al-Raheem and Abdul-Karem 2011). Nonetheless, most PdM architectures im-
plement binary classifiers, one-class classifiers or unsupervised models, which lack
failure-type information. Therefore, the results can be diagnosed only by grouping
the detected anomalies by similarity, which is done using clustering models (Xu
et al. 2018a; Aytekin et al. 2018; Zong et al. 2018; Amarbayasgalan et al. 2018;
Arias Chao et al. 2021) and SOM (Li et al. 2018b; Rustum and Forrest 2018;
Schwartz et al. 2020; Hao et al. 2017). The features used during this stage are
similar to those for AD; they can be based on either traditional or deep learning
techniques.

3.5 Prognosis

After an anomaly has been detected and diagnosed, the degradation evolution can
be monitored based on that moment’s working conditions and machine state by
focusing on the most influential features for the AD and diagnosis stages that
can track failures. This step is usually carried out by remaining useful life (RUL)
models that estimate the remaining time or cycles until a failure will occur when
sufficient historical data for that failure type exists. Conversely, when the degrada-
tion data are insufficient, the only way to estimate the degradation is by tracking
the evolution of HI or the distance between novel working states and the known
good working states. Both aforementioned models can also provide a confidence
bound.

The deep learning-based models for PdM prognosis are focused on fitting a
regression model to prognosticate either the remaining useful life of the diagnosed
failure or the health degradation when no historical data of that type exist. The
RUL is commonly measured in time or by the number of cycles, while health
degradation is tracked using anomaly deviation quantification by health indices.
The most common algorithms are summarised and compared in Table 3. Vanilla
RNNs and gate-based RNN networks (LSTM or GRU) can be used for regression,
predicting features and HI evolution or predicting remaining cycles or time. Their
inputs can be the information generated by previous stages as well as traditional
or deep learning features. This section focuses on the most common and simple
SotA techniques that use only DL for prognosis; prognosis works that combine DL
with traditional features are presented in Section 3.7.
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Table 3 Summary of DL-based prognosis works for PdM. The terms “unsup” and “sup” in
the algorithm column refer to unsupervised and supervised respectively.

Algorithm Advantages Disadvantages Applications and
references

RNNs Model temporal relation-
ships of time-series data.
Possibility for self-learning

Suffer from vanishing gra-
dient problems; therefore,
they cannot model medium
and long-term dependen-
cies. They have lengthy
training and high computa-
tional requirements

Aero engine (Yuan
et al. 2016)

LSTMs Same as a vanilla RNN;
however, LSTMs can model
longer time dependencies
than can vanilla RNNs,
and they outperform vanilla
RNNs

Although LSTMs handle the
vanishing gradient problem
better than vanilla RNNs,
they still have difficulty
modelling long-term depen-
dencies and have lengthy
training and high computa-
tional requirements

Aero engine (Yuan
et al. 2016),
rolling bearing
(Niu 2017) (Zhang
et al. 2019a),
lithium batteries
(Chen et al. 2021)
(Zhang et al. 2018)

GRU Same as LSTMs but easier
to train

Same as LSTMs but may
achieve slightly worse results

Aero engine,
lithium batteries
(Yuan et al. 2016)
(Chen et al. 2021)

The use of LSTMs and GRUs is more common than that of vanilla RNNs
given that they allow the modelling of longer time dependencies. LSTMs are more
commonly used for prognosis in the PdM field, whereas GRUs achieve similar
results but are simpler and therefore easier to train. The choice of one model type
over the other depends on the addressed use case.

When target failure types are known and either a priori knowledge or obser-
vations of the target class exist and are available, uncertainty quantification can
help in identifying which predictions of the generated model are trustworthy and
which are not. This is particularly relevant for prognosis, because as the prediction
time horizon increases, the prediction uncertainty rises. A common technique for
quantifying the uncertainty of data-driven models is Bayesian inference, which is
implemented in articles presented by Wang et al. (2020) and Kraus and Feuer-
riegel (2019). However, when not enough data are collected from the target failure
types or the task is approached as a one-class classification, the aforementioned
techniques cannot be used. In this case, self-supervised metrics such as variance
gain relevance for uncertainty modelling.

3.6 Mitigation

After an anomaly has been detected, its cause diagnosed and its remaining life
prognosticated, there is enough information to perform maintenance actions to
mitigate failures in early phases and thus prevent assets from degrading into failure.
This stage consists of designing and performing the steps necessary to restore
assets to correct working conditions before failures occur, which also reduces the
implementation and downtime costs.
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The research methodology followed in this publication showed few DL-based
mitigation publications given that the majority of DL works focus on optimising
a single performance metric, such as minimising error or maximising the anomaly
detection rate, as stated in Sections 3.3, 3.4 and 3.5. Nonetheless, deep learning
models are the most difficult ML type to understand given their higher complexity,
which makes them more accurate at modelling high-dimensionality complex data;
therefore, they fail to meet the industrial facility explanation requirement.

The publications that generate automatic data-driven maintenance policies us-
ing deep learning models for PdM are based on reinforcement learning, an emerging
trend in this field. The article Paraschos et al. (2020) uses reinforcement learn-
ing to generate control policies that optimise maintenance for degrading failure
manufacturing systems. Moreover, Rocchetta et al. (2019) presented a reinforce-
ment learning framework to optimise power grid maintenance using Q-learning
on a fully-connected neural network. Likewise, Ong et al. (2020) proposed an au-
tomatic learning framework that creates optimal maintenance decision policies
based on machine health state, derived from sensor data and proposes actionable
recommendations.

Predictive maintenance systems should provide mitigation advice - or at least
explanations - regarding the reasons why predictions were made, and such advice
or explanations could be supported by the emerging field of explainable artificial
intelligence (XAI). Furthermore, the final and most ambitious step in this PdM
stage should be to automate recommendations for domain technicians to integrate
PdM into the maintenance plan by optimising the industrial maintenance process
via maintenance operation management.

3.7 Combination of models and remarkable works

The DL techniques already presented throughout the current section are the basic
elements and architectures used for PdM. It is worth highlighting that infinite
possible architectures are possible by combining these techniques or using them
together with other data-driven or expert-knowledge-based techniques. The com-
bination and adaptation of models for the problem being addressed results in more
accurate models that fulfil its requirements.

This work reviews the principal deep learning works for PdM, even though
the number of possible architectures is infinite by combining and adapting the
presented techniques. Several common architectures of reviewed publications for
anomaly detection, diagnosis and prognosis are presented in Figure 6, Figure 7
and Figure 8, respectively.

The remainder of this subsection summarises the contributions and strengths
of the relevant analysed works. One interesting article published by Shao et al.
(2017a) presents a methodology of AE optimisation for rotating machinery fault
diagnosis. First, they created a new loss function based on maximum correntropy
to enhance feature learning. Second, they optimised the model’s key parameters
to adapt it to signal features. This model was applied to fault diagnosis of gearbox
and roller bearings. Another relevant publication by Lu et al. (2018) uses growing
SOM, an extension of the SOM algorithm that does not need specification of map
dimension. This model was applied to simulated test cases with applications in
PdM.
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Fig. 6 Three common deep learning architectures for anomaly detection in predictive mainte-
nance: convolutional autoencoder (top), autoencoder-based extreme learning machine (bottom
left) and autoencoder-based ELM (bottom right).
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Fig. 8 A common deep learning architecture for predictive maintenance prognosis based on
LSTM layers.

Guo et al. (2016a)proposed a model based on LSTM and an exponentially
weighted moving average control chart for change point detection suitable for on-
line training. An additional interesting work was presented by Lejon et al. (2018),
who used ML techniques to detect anomalies in hot stamping machines by non-
ML experts. They aimed to detect anomalous strokes where the machine was not
working properly. They presented the problem that most of the collected data
correspond to press strokes of products without defects and that all the data are
unlabelled. These data come from sensors that measure pressures, positions and
temperature. The benchmarked algorithms were AE, OC-SVM and isolation for-
est, and AE outperformed the rest, achieving the least number of false-positive
instances. As the authors concluded, the obtained results show the potential of
ML in this field in transient and nonstationary signals when fault characteristics
are unknown, adding that AEs fulfill the requirements of low implementation cost
and close to real-time operation, which will lead to more informed and effective
decisions.

As previously mentioned in this article, the possibility of model combination
is infinite. For instance the publication by Luo et al. (2018), combines a GAN
structure with LSTM neurons, two widely used DL techniques that achieve SotA
results. Additionally, DL techniques can be combined with other computing tech-
niques as discussed in Unal et al. (2014), combining a feed forward network with
genetic algorithms.

The last highlighted article that combines DL models is by Zhang et al. (2019c),
and constitutes one of the most complete unsupervised PdM works. They built
a model that uses the correlation of sensor signals in the form of signature ma-
trices as input. This information is fed into an AE that uses a CNN and LSTM
with attention for AD, partial RCA and RUL. The strengths of this work are the
following: they show that correlation is a good descriptor for time-series signals,
the attention mechanism using LSTMs provides temporal context, and the use of
anomaly score as HI is useful for RCA, mapping the detected failures to the input
sensors that originated them. However, their form of RCA is incomplete since they
only correlate failures to input sensors but are not able to link them to physical
meaning. Moreover, the lack of pooling layers together with the combination of
DL techniques results in a complex and computationally expensive model that
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requires more time and data for training and yields decisions that are difficult to
explain.

The following publications use other ML tasks combined with DL models for
PdM, and other DL techniques. Wen et al. (2019) used transfer learning with
an SAE for motor vibration AD, outperforming DBNs. The article by Wen and
Keyes (2019) proposes a transfer learning based framework inspired by U-Net that
is pretrained with univariate time-series synthetic data. The goal of this network
is to be adaptable to other univariate or multivariate anomaly detection problems
through fine-tuning.

Mart́ınez-Arellano and Ratchev (2019) presented a DL-based classifier using
Bayesian search and CNN for AD. They first used a small labelled dataset to train
the model and then used the model to classify the remaining data. The model
uses uncertainty modelling to analyse the observations that cannot be correctly
classified due to high entropy. Finally, it selects the top 100 with highest entropy
to query a domain knowledge technician, asking him or her to label them to
retrain the model with these new data. This procedure is followed until the model
achieves good accuracy. This work is an example of how to use two interesting
techniques in the field of PdM to address the problem of insufficient labelled data
by querying domain technicians and showing them the instances from which the
model can learn the most. Concretely, the aforementioned techniques belong to
the semisupervised classification type using active learning. Similarly, the review
by Khan and Yairi (2018) mentions that expert knowledge can help troubleshoot
the model and, if domain technicians are available, the model could learn from
them using an ML training technique called active learning in which the model
queries the technicians during the learning stage. Moreover, the work by Kateris
et al. (2014) uses SOM as the OCC model for AD together with active learning to
progressively learn different fault stages.

The architectures of stacked autoencoders and stacked restricted Boltzmann
machines mentioned above are commonly used to optimise the creation of more
complex deep learning architectures by stacking one simple architecture type mul-
tiple times. However, little research has been applied to ensemble learning that
combines different deep learning techniques for predictive maintenance or even
with other data-driven systems. The article by Li et al. (2019a) trains the base al-
gorithms separately and then uses a parallel ensemble method that weights the pre-
diction of each base algorithm based on their performance to produce the output
of the ensemble algorithm for aircraft data. The weight vectors are optimised us-
ing particle swarm optimisation and sequential quadratic optimisation algorithms.
Similarly, the article by Li et al. (2019b) presents a method that weights the pre-
dictions of different remaining useful life algorithms and could be used to combine
different deep learning models with themselves or other data-driven models. The
work presented by Bose et al. (2019) uses an ensemble-based voting system to cre-
ate a one-class classifier relying on ELMs that optimises consumption and speeds
up calculations; given the achieved neuron quantity reduction, this approach en-
ables such models to be installed in edge computing scenarios.

Additionally, methods exist that fuse deep learning architectures, as proposed
by Shao et al. (2018), in which autoencoders are stacked based on majority voting,
selective ensemble and weight assignment techniques for roller bearing diagnosis.
Likewise, a stacked ensemble of recurrent neural networks to perform remaining
useful life estimation was presented by Mashhadi et al. (2020). Overall, ensemble
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techniques have shown promising results in the field of predictive maintenance.
However, the combination of algorithms in a meta-model increases the complexity
and therefore makes explainability difficult, so the choice of whether to implement-
ing ensemble methods is tied to the objectives of each use case.

Another interesting technique with PdM applications is deep reinforcement
learning. Zhang et al. (2019b) uses it for HI learning, where it outperformed feed-
forward networks but underperformed compared to CNN and LSTM for AD and
RUL. This technique consists of transferring the knowledge acquired from one
dataset to another dataset. The procedure consists of reusing a part or the com-
plete pretrained model by adapting it to new requirements. While this approach
sometimes requires retraining the model, it requires less data and time. In addition,
Koprinkova-Hristova (2014) used reinforcement learning on echo state networks to
predict possible alarm situations in an industrial power plant, enabling model
learning by experience, online readaptation from new information and human ex-
pert advice accounting.

3.8 Related review works summary

This subsection summarises the most relevant information of the review works re-
lated to this survey, highlighting their main contributions, detected challenges and
gaps in the SotA works and their conclusions. In addition, Table 4 compares the
contributions state-of-the-art reviews and surveys about deep learning-based PdM
applications by analysing their applicability to PdM stages and their adaptability
to relevant industrial requirements. Moreover, their description and limitations are
presented and compared with the contributions of this article.

The work by Rieger et al. (2019) conducts a qualitative narrative review on
the SotA fast DL models applied for PdM in industrial IoT environments. They
argue that real-time processing is essential for IoT applications, meaning that a
high-latency system can lead to unintentional reactive maintenance due to insuf-
ficient maintenance planning time. Moreover, they highlight how DL models can
be optimised. They state that weight sharing on RNNs enables parallel learning,
which can help in training these types of networks that achieve SotA results in
most PdM applications. Accordingly, they also justify the use of max-pooling lay-
ers when dealing with CNNs to eliminate redundant processing and thus optimise
them.

Two DL reviews applied to other fields contain information about models that
could be used for PdM: DL models for time series classification by Ismail Fawaz
et al. (2019) and DL used to model sensor data by Wang et al. (2019a). However,
these works do not focus on PdM, and therefore, their design, development and
validation do not address predictive maintenance use case requirements.

The review by Zhao et al. (2019) explains that there are algorithms that use
traditional and handcrafted features, whereas others use DL features for the prob-
lem. It also presents the most common FE methods for DL-based PdM systems.
The authors state that both aforementioned features work properly in DL models
and are supported in their SotA revision. These works usually use techniques to
boost model performance, such as data augmentation, model design and optimi-
sation for the problem, and adopt architectures that already work in the SotA.
They also adapt the learning function, apply regularizations, tweak the number of
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Table 4 Summary of related review works regarding DL application for PdM and comparisons
with this article. The columns evaluate whether the works conduct a review of the correspond-
ing characteristics.
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Description and limitations

Zhao
et al.
(2019)

3 3 3 3 7 3 3 3 7 7 7 7 Covers the main models: AE, RBM, DBN,
CNN, RNN, but does not cover generative
models. The results are compared quanti-
tatively in a local dataset. Several tech-
niques required to address industrial re-
quirements are not covered.

Zhang
et al.
(2019d)

3 3 3 3 7 3 7 3 7 7 7 7 Only feed-forward and AE models are in-
cluded. Their accuracy in different public
datasets is presented. Several techniques
required to address industrial requirements
are not covered.

Khan
and
Yairi
(2018)

7 3 3 3 7 3 3 3 7 7 7 3 Covers RBM, DBN, CNN, RNN, but does
not cover generative models. It covers a few
techniques required to address industrial
requirements, but several are missing. It
does not compare PdM results.

Fink
et al.
(2020)

7 7 7 7 7 3 7 7 3 7 3 3 Reviews the main DL architectures includ-
ing generative ones. It reviews the princi-
pal works, focusing on challenges. It does
not compare architectures nor how they
are applied to solve PdM stages. It includes
a few techniques required to address indus-
trial requirements, but several are missing.

This
work

3 3 3 3 3 3 3 3 3 3 3 3 Reviews the principal DL works by cat-
egory, including one-class neural net-
works, SOM and generative models. Com-
pares and discusses the results in a pub-
lic dataset quantitatively. It also com-
pares models qualitatively, which facili-
tates architecture fusion. Moreover, ensem-
ble learning is reviewed to enable robust
PdM models. The PdM mitigation step
is presented, supported on domain tech-
nicians. It includes several techniques re-
quired to address industrial requirements
that complement existing works.
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neurons and connections and apply transfer learning or stack models to enhance
model generalisation and prevent overfitting. The advantage of traditional and
handcrafted features is that they are not problem specific and are applicable to
other problems. Moreover, they are easy for expert-knowledge technicians to un-
derstand given that they are based on mathematical equations. However, because
they are not problem specific, in some cases, DL-based FE techniques perform bet-
ter since these models are trained specifically for the problem and directly from
the data. However, the results are not as intuitive as those using the aforemen-
tioned features, meaning that technicians can have difficulty understanding how
they work.

The article by Zhao et al. (2019) also summarises the information already
stated throughout this survey: DL models can achieve SotA results, pretraining in
AEs can boost their performance, denoising models are beneficial for PdM because
of the nature of sensor data, and CNN and LSTM variants can achieve SotA results
in the field of PdM using model optimisation, depending on the scale of the dataset.
In addition, domain knowledge can help in FE and model optimisation. Conversely,
it is difficult to understand DL models despite various visualisation techniques
because they are black-box models. Transfer learning could be used when few
training data are available. PdM belongs to an imbalanced class problem because
faulty data are scarce or missing.

The survey by Zhang et al. (2019d) compares the accuracy obtained by sev-
eral machine learning and deep learning architectures on different datasets and
makes comparisons; however, because these comparisons are done with models
applied to different datasets they are somewhat unfair. Nonetheless, they show
high-accuracy results: most models reached accuracies of between 95% and 100%,
emphasising that DL models can obtain promising results. They state that deeper
models and higher dimensional feature vectors result in higher accuracy models,
but require sufficient data. the increases in computational power and data growth
in the field of PdM have tended to focus research on data-driven techniques, and
specifically, DL models. However, the decisions of DL models lack explainability
and interpretability.

The review by Khan and Yairi (2018) states that the developed DL architec-
tures are application or equipment-specific, and therefore, there is no clear way to
select, design or implement those architectures. In addition, studies do not tend to
justify the decision for selecting one architecture over another that also works for
the problem, for instance, selecting a CNN versus an LSTM for RUL. The authors
also argue that SotA algorithms, such as those presented throughout this section,
have all been shown to work correctly and are similar. In addition, the work by
Fink et al. (2020) reviews relevant PdM works and current tendencies, but does
not detail how to build DL-based models for each PdM stage.

Although this section focuses on DL models for PdM, we have seen that they
are often integrated with traditional models and/or traditionally FE features, such
as time and frequency domains, feature extraction based on expert knowledge or
mathematical equations.

As the authors of Khan and Yairi (2018) state, there is a lack of understanding
of a problem when building DL models. They also argue that VAE is ideal for
modelling complex systems because such models achieve high prediction accuracy
without health status information. The algorithms that analyse the data while
maintaining their time-series relationships by analysing the variables simultane-
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ously are the most successful, regardless of whether a sliding window, a CNN or
an LSTM technique is used. Most SotA algorithms focus on AD but can also be
adapted to perform RUL by a regression or RNN, but the majority use LSTMs.
Regressions commonly use features learned for the used AD models or even use
traditional and handcrafted features. Generative models such as GAN do not work
as well as expected. However, CNN works well while requiring less data and com-
puting effort. This means that even DL models can achieve similar accuracy using
traditional features or deep features extracted from the data in an unsupervised
manner.

The majority of reviewed deep learning articles for PdM lack domain technician
feedback, so they tackle the problem while relying only on data-driven techniques,
without embracing domain knowledge. Moreover, few publications work on real
industrial data given that industrial companies avoid publishing such data to pro-
tect them from competition. These facts comparing data-driven works difficult
according to industrial requirements.

Overall, the existing reviews and surveys regarding DL applications for PdM
have set the basis for current SotA works. However, this work complements the
existing works and makes the following additional contributions: (1) This work
takes a PdM problem perspective, focusing on how existing technologies address
the PdM and industrial problems. In contrast, the related papers presented in
Table 4 present the PdM concerns by focusing on technical perspectives. (2) This
work explains all the state-of-the-art DL models for PdM and how they have been
adapted to address the PdM stages, including the previously unreviewed models
SOM and OC-NN, and it discusses model combination possibilities for creating ar-
chitectures that better address use-case requirements. Moreover, it compares and
discusses the differences among DL models qualitatively. In contrast, the existing
publications review the main models, but omit several state-of-the-art models, such
as generative models, whose use in the PdM life cycle has not been explained. (3)
This work includes explanations for data variability handling, model adaptability
or ensemble learning to ensure the robustness of deep learning models. These are
relevant characteristics for PdM models that are not included in existing reviews.
Most of the published reviews cover the semisupervised approach, include model
adaptability to changes in EOCs and cover robustness to data variability, but only
the work by Fink et al. (2020) covers several recent topics, such as transfer learn-
ing and reinforcement learning. (4) This article complements the existing works by
comparing state-of-the-art deep learning works for PdM on the widely researched
public dataset turbofan NASA (2020), allowing replicability and comparison under
the same criteria. In contrast, the existing works compare the results of different
architectures in a local dataset, such as the work by Zhao et al. (2019), or they
present results of architectures in different datasets such as the work by Zhang
et al. (2019d), which makes comparisons and replicability difficult. (5) This work
includes a review of how DL-based PdM systems can be used to perform mitiga-
tion, a previously unreviewed PdM stage that is essential to ensure the success of
PdM systems.
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4 Comparison of state-of-the-art results

4.1 Benchmark datasets

The review by Khan and Yairi (2018) states that one problem with PdM proposals
is the lack of benchmarks, which makes comparisons difficult. Some public PdM
datasets released by NASA are available for prognosis that were from the reposi-
tory (NASA 2020). These datasets belong to the scope of predictive maintenance
and are described in the following paragraphs.

The milling dataset (NASA 2020) comprises acoustic emission, vibration and
current sensor data acquired under different operating conditions and are intended
for analysing the milling insert wear. Regarding the PdM stages, this dataset
supports the application of AD, RCA and RUL.

The bearing dataset (NASA 2020) consists of vibration data from 4 accelerom-
eters monitoring bearings under constant pressure until failure. The result is a
run-to-failure dataset in which all the failures occur after the design lifetime of
100 million revolutions has been exceeded. This dataset’s possible PdM applica-
tions are AD and RUL estimation.

The turbofan engine degradation simulation dataset (NASA 2020) contains run-
to-failure data from engine sensors. Each instance starts at a random point in an
engine’s life at which it is working correctly and subsequently monitors its evolu-
tion until an anomaly occurs, after which the engine reaches a failure state. The
engines are employed under different operational conditions and develop different
failure modes. This dataset’s possible PdM applications are AD, RCA and RUL.

The femto bearing dataset (NASA 2020) is a bearing monitoring dataset from
the Pronostia competition that contains run-to-failure and sudden failure data.
The sensors used are thermocouples, which gathered temperature data, and ac-
celerometers that monitored vibrations in the horizontal and vertical axes. The
possible PdM applications of this dataset are AD, RCA and RUL.

To protect themselves from their competitors, industrial companies are reluc-
tant to publish their own datasets because such datasets tend to reveal secret,
private data and knowledge. A dataset that approximates data from most compa-
nies is published by the Semeion Research Center and named the steel plate fault
dataset (Lichman 2013); it contains steel plate faults classified into 7 categories.

4.2 Data-driven technique’s results comparison

During the elaboration of this article, all the reviewed works aimed at anomaly
detection and diagnosis used private datasets; therefore, they provide no opportu-
nity to compare or replicate their results. However, the prognosis stage has been
widely researched using the NASA turbofan dataset; thus, this stage has been used
as a reference to compare model performance.

This subsection compares different relevant data-driven works for the PdM
application turbofan dataset introduced in the previous subsection, which was
generated using a commercial modular aeropropulsion system simulation. The rea-
sons for choosing this dataset are that it is one of the reference datasets for PdM,
enables the application of all PdM steps and is one of the most commonly used
datasets for model ranking, although the majority of works focus on prognosis.
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The challenge is divided into four datasets, each of which has different charac-
teristics. The first, the FD001 dataset, contains 100 train and 100 test trajectories
with one operational condition and a unique fault mode. The second, the FD002
dataset, contains 260 train and 259 test trajectories related to six operational con-
ditions and unique fault modes. FD003 contains 100 train and 100 test trajectories
with one operational condition and two different fault modes, and finally, FD004
contains 248 train and 249 test trajectories with six operational conditions and
two different fault modes. All the datasets contain 3 operational setting variables
and 26 sensors.

The dataset lacks an RUL label, which is the target column. Hence, this value
is commonly assumed to be constant during the initial period of time when the
system is working correctly and degrades linearly after exceeding the changepoint
or initial anomalous point. The constant value during the initial period is a param-
eter denominated as Rmax, which is set to values near 130 in many state-of-the-art
works (see Table 5), enabling a fair comparison of their results.

The most common metrics for evaluating the models’ performances are the
following (Babu et al. 2016): RMSE is the square root of the normalised sum of
all the squared errors between real and predicted values, which penalises outliers
more than does the mean absolute error. RMSE is defined in Equation 3. The
score function selected for this problem is suitable given that it is asymmetric and
penalises later error predictions more than earlier ones. Concretely, it grows expo-
nentially in distance from target value, but early predictions have lower exponent
values than do later ones, which penalises the late predictions in Equation 4, which
was used in the PHM 2008 data challenge (Saxena et al. 2008). In the preceding
equations, N is the number of engines in the test set, S is the computed score, and
h = (estimatedRUL− trueRUL).

Table 5 gathers the state-of-the-art results of data-driven models from 2014 on
the four dataset subsets that use the presented two equations for model evaluation.
As explained by Ramasso and Saxena (2014), few works prior to 2014 used subset
testing for model evaluation, and many used different performance metrics, which
complicates comparisons. Therefore, we decided to omit those works and focus
only on novel works that outperformed the results of previous works on at least
one of the four data subsets.

RMSE =

√√√√ 1

N

N∑
i=1

h2
i

(3)

S =


∑N

i=1

(
e−

hi
13 − 1

)
for hi < 0∑N

i=1

(
e

hi
10 − 1

)
for hi ≥ 0

(4)

The results comparison in Table 5 shows not only the models’ performances but
also the combination of preprocessing and feature engineering techniques. There-
fore, the results show the performance of the complete data process applied to the
dataset until prediction. Nonetheless, the table also shows that deep learning-based
architectures have achieved state-of-the-art results in recent years. Concretely,
these architectures are composed of combinations of different DL techniques.
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Table 5 State-of-the-art results on four turbofan dataset subsets since 2014. The lower the
metric, the better the model is considered to perform on average. The best results are high-
lighted in bold.

Reference Rmax Architec-
ture

FD001
RMSE

FD002
RMSE

FD003
RMSE

FD004
RMSE

FD001
Score

FD002
Score

FD003
Score

FD004
Score

Ramasso
and
Saxena
(2014)

135 RUL-
CLIPPER

13.3 22.9 16.0 24.3 216 2796 317 3132

Babu
et al.
(2016)

130

FFNN 37.6 80.0 37.4 77.4 1.7e+4 7.8e+6 1.7e+4 5.6e+6

SVR 21.0 42.0 21.0 45.3 1381 5.8e+5 1598 3.7e+5

RVR 23.8 31.3 22.4 34.3 1504 1.7e+4 1431 2.6e+4

DCNN 18.4 30.3 19.8 29.2 1287 1.3e+4 1596 7886

Zhang
et al.
(2017)

130 MODBNE 15.0 25.1 12.5 28.7 334 5585 422 6558

Zheng
et al.
(2017)

130 LSTM +
FFNN

16.1 24.5 16.2 28.2 338 4450 852 5550

Li et al.
(2018a)

125 CNN +
FFNN

12.6 22.4 12.6 23.3 273 10412 284 1.2e+4

Listou
Ellef-
sen
et al.
(2019)

115-
135

RBM +
LSTM

12.6 22.7 12.1 22.7 231 3366 251 2840

Kakati
et al.
(2019)

125 LSTM +
attention

14.0 17.7 12.7 20.2 320 2102 223 3100

Subset FD001 obtains lower errors; however, it contains only one operational
condition and one failure type. Subset FD003 obtains similar results while con-
taining two failure types. In contrast, the performances on subsets FD002 and
FD004 are significantly higher given that operational conditions change each cycle
during the same experiment. Therefore, it is normal for all algorithms to have
significantly lower errors on subsets FD001 and FD003 compared with those on
subsets FD002 and FD004.

5 Discussion

This section analyses deep learning architectures’ applicability to the field of PdM.
It contains a qualitative comparison of deep learning works on PdM, discusses the
automatisation of their development and summarises their characteristics, advan-
tages, drawbacks and main applications. This section is the result of comparing the
reviewed articles’ trends, results and conclusions with PdM data characteristics
and industrial requirements.
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5.1 Qualitative comparison of deep learning in predictive maintenance

Different deep learning architecture types exist that can address PdM, as pre-
sented in Section 3. Each PdM use case has its own requirements; thus, the most
suitable architecture for addressing these requirements should be selected based
on their characteristics. Different deep learning techniques differ in complexity re-
garding their architecture type. Even models of the same type have differences in
complexity due to their hyperparameters.

Autoencoders have the advantage of modelling sensor data in semisupervised
and unsupervised scenarios, which are the most common PdM use cases. Their la-
tent space representation can be used as new features for other data-driven models,
and they are also applicable to anomaly detection by modelling the correct data
class. Compared with other DL techniques, they have the advantage of simplicity,
which reduces the required training resources and simplifies explanation tracking.
Inside the autoencoder category, stacked autoencoders can facilitate training with
respect to other autoencoders, helping to reduce the training loss of anomaly detec-
tion models for PdM. Sparse autoencoders can prevent the overfitting of anomaly
detection PdM models, but they require a more complex network to perform the
task than do vanilla autoencoders. Finally, a DAE has the capability to model
noisy data and is commonly used to detect anomalies in vibration data to search
for seizure and degradation failures.

Generative models are more complex than autoencoders, but they have advan-
tages in semisupervised anomaly detection for PdM. VAEs infer the distribution
of the training data, enabling the generation of synthetic samples of the original
data distribution. They can handle noisy sensor data better than can other au-
toencoders, but both architectures achieve similar results in other scenarios. In
addition, VAE’s stochastic approach increases the complexity of the model, and
therefore, they are more difficult to explain than are vanilla autoencoders. Simi-
larly, GANs can be used to create synthetic data from a learned distribution of
the training data. They can also be used to detect anomalies in PdM through
two techniques: by using the discriminator to detect observations not belonging to
the machine’s correct state or by setting a threshold on the residuals of the cor-
rect data and categorising observations that surpass this threshold as anomalous.
Nonetheless, GANs form more complex models than do autoencoders; therefore,
they are more difficult to explain.

CNNs are a good technique for modelling temporal relations in industrial data,
but they must be combined with other stated architectures to perform feature ex-
traction or anomaly detection. Their main drawback is that their memory is limited
to the filter size. RNNs have also been widely used to model temporal relations in
PdM. The most commonly used RNN architectures are LSTMs and GRUs, which
achieve SotA results. Both obtain similar results in anomaly detection and prog-
nosis; LSTMs achieve slightly better results, but GRUs contain a simpler structure
and therefore have the advantage of faster training. These recurrent structures are
also widely combined with autoencoders to facilitate modelling temporal relations,
but this combination increases the complexity of autoencoders and makes them
more difficult to explain.

The features extracted by any neural network can be used to reduce the input
data dimensionality, which facilitates the use of SOMs, clustering techniques and
XAI techniques for performing diagnosis on anomalies detected in a semisupervised
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way. The diagnosis of novel anomalies in PdM is particularly relevant given that
these anomalies can be automatically detected by deep learning models, after
which domain technicians can assist in their diagnosis. Technicians may then plan
maintenance actions to restore the industrial asset’s correct condition in the early
anomalous stages, avoiding failure states.

5.2 Automatic development of deep learning models for predictive maintenance

Even though deep learning models can achieve SotA results in PdM datasets,
their design, development and optimisation rely on related publications, author
expertise and trial-and-error testing. Some of their biggest challenges are as fol-
lows: architecture type and structure choice, number of hidden layers and neurons,
activation functions, regularisation terms to prevent overfitting and learning pa-
rameter optimisation.

For the above-stated reasons, the complete process of DL model creation is not
as automatic as believed; this section aims to facilitate these tasks by explaining
how state-of-the-art publications tackle them. To obtain competitive results, the
authors preprocess and feature engineer the raw EOC signals. Such operations can
boost model performance but simultaneously remove relevant information that
could be learned automatically using more complex architectures. In addition,
these steps are commonly performed by data scientists and do not embed domain
knowledge; thus, the models are expected to learn all the nonlinear relations from
the data. Conversely, this information could help in architectures’ dimensionality
reduction, resulting in simpler, more accurate andas a resultmore explainable mod-
els. Other by-product benefits are fewer training data requirements, less training
time and higher generalisation to avoid overfitting.

One relevant factor when training deep learning models is the choice of loss
function, which depends on the network architecture and data characteristics. The
most common loss function used to train PdM neural networks is mean squared
error (MSE), which is obtained by summing all the square differences between
the predictions and their target values. This metric is mainly used for progno-
sis and unsupervised anomaly detection, given that minimising the MSE equals
minimising the RMSE, which is a metric that averages errors by assigning more
importance to outliers. The reason why MSE is more suitable than RMSE dur-
ing training is that it removes the root square part of the equation, resulting in
faster training. In the case of supervised neural networks for binary and multiclass
classification, which is typical for supervised anomaly detection and diagnosis, the
most common loss metric is cross-entropy. This metric is used similar to Kass in
the article by Sleiman et al. to measure the differences among the probability dis-
tribution functions of the target classes: which are failure and not failure or even
different failure types.

Different techniques exist in the literature to prevent overfitting and make net-
works generalise better. One typical method is to restrict network complexity to
fit the training data, which reduces the number of layers and neurons, resulting in
faster training and reducing overfitting issues. Another way to reduce the number
of trainable parameters is to implement architectures that tie weights, such as
CNNs or to use pooling layers (commonly max-pooling) to reduce dimensionality
by obtaining only the most relevant information. Training different network parts
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in different steps with architectures such as stacked autoencoders and deep be-
lief networks also facilitates training. Furthermore, regularisation techniques also
reduce overfitting by conditioning weight evolution while preserving network struc-
ture. The dropout regularization randomly deactivates the output of each neuron
at a specified probability for each training sample; thus, all neurons are forced to
learn. Likewise, L1 and L2 regularisation terms can be added to the optimisation
function to penalise large weights, given that these are related to overfitting.

The stated techniques can be combined with random initialization of small
weights such as Xavier initialization by Glorot and Bengio (2010) to prevent large
weights, which increase the variance throughout the layers, causing vanishing gra-
dients and preventing learning. Finally, adopting optimisation techniques such as
learning rate decay and early termination help to halt network training at an
optimal point before overfitting occurs.

The optimisation of deep learning architectures for PdM can be automatised by
nonlinear optimisation algorithms, thus reducing the dependence on random and
manual searches for architecture optimisation and hyperparameter tuning. The
article by Martinez et al. (2018) uses evolutionary optimisation by implementing
genetic algorithms to optimise the architecture and parameters of a neural network
for regression on rotorcraft vibrations. These parameters include the number of
layers, number of neurons, number of filters in CNNs, or the number of LSTM
networks. Similarly, the publication by Sleiman et al. uses genetic algorithms for
deep neural network optimisation to improve the accuracy of bearing diagnosis
architecture.

5.3 Application of deep learning research in industrial processes

Most deep learning for predictive maintenance in the literature tackles PdM in
an unsupervised way due to the difficulty of obtaining failure data from industrial
companies. This is the reason that AEs, RBMs and generative models have so
much repercussions in the field. The following paragraphs summarise the common
techniques and how they meet industrial requirements.

Regarding SotA, a large number of DL proposals exist for AD and RUL. Most
of these works tend to combine different algorithms to create more complex model
that retains the advantages of the techniques that compose it. The most common
combination for unsupervised PdM sensor modelling uses CNNs with LSTMs in
an AE or AE-derived architecture. Similarly, supervised approaches usually use
CNNs and LSTMs in a neural network that outputs the probability of failure
types or regressions. However, such fusion techniques augment model complexity.

Regarding the diagnosis step, it is easy to perform RCA with supervised mod-
els given thatwhen the training data contain the label, failure, no failure, or even
the type of failurethe model can directly map the new data to the corresponding
failure type automatically. However, companies that lack this type of data can only
model normality using OCC models or must even use an unsupervised approach to
model unlabelled data. There is a gap in these latter models since they are unable
to perform complete RCA given the impossibility of classifying unspecified fail-
ure types. One underlying reason could be the lack of collaboration between data
scientists and expert-knowledge technicians. Therefore, this gap could be filled by
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applying explainable artificial intelligence techniques to facilitate the communica-
tion, understanding and guidance of DL models. XAI is a promising emergent field
but has few publications in the field of PdM.

Deep learning models also fail to propose mitigation actions since, as mentioned
before, they should work together with domain technicians knowledge. However,
the majority do not; they tackle the problem in a purely data-scientific way and
ignore the underlying process working knowledge. For this reason, despite the ac-
curacy of many models, they do not meet industrial and real PdM requirements.
They present complex schemes with many hidden layers despite Venkatasubra-
manian et al. (2003) stating that understandability is one desirable characteristic
for PdM models. Without it, industrial companies may not deploy deep learn-
ing models to production, as domain technicians would be unable to understand
their predictions and therefore, trust the models. Once again, the application of
XAI techniques together with expert knowledge could overcome this problem by
enabling technicians to understand the predictions, map detected failures to real
physical root causes and even propose mitigation actions and give data-driven
advice to help in maintenance management and with decision-making in manufac-
turing operation management.

The majority of the reviewed works were created and tested in research envi-
ronments but not transferred to or tested in industrial companies. Although some
models were trained with real industrial process data, the majority used reference
datasets that were preprocessed and specifically prepared for the task, such as the
ones presented in Section 4, which were generated in simulation or testing envi-
ronments. However, the resulting models are unable to adapt to the requirements
of industrial companies as presented by Venkatasubramanian et al. (2003), which
still prevail today. The work by Lejon et al. (2018) consolidated the aforemen-
tioned needs by stating that industrial data are unlabelled and mostly correspond
to non-anomalous process conditions. With regard to PdM architectures, the work
byKhan and Yairi (2018) seems to be the one that summarises and could better
fit the requirements of the companies, even though it lacks any specification on
how to address PdM in real companies.

Overall, we have seen that industrial companies need PdM models to be ac-
curate, easy to understand, process streaming data and adapt to process data
characteristics. Their data are mostly collected in an unsupervised way, or only
nonfailure data are available. Moreover, such data are collected under different
EOC. Consequently, there is a gap in the published data-driven models because
the available unsupervised and OCC proposals are unable to link novel detected
failures to their physical meaning, mainly because they ignore expert knowledge.
In addition, few research publications exist on the application of XAI techniques
in PdM, which could provide solutions for the main presented gaps.

As stated before, industrial companies that want to optimise their mainte-
nance operations should transition towards predictive maintenance. However, this
automatising should be embraced from simpler to more complex models, always
choosing models that could better fit their specific needs. Both domain experts
and data scientists should collaborate in the development and validation of a
PdM structure. This mixture could benefit from the advantages of both domain
knowledge-based and data-driven approaches, resulting in an accurate yet inter-
pretable model. Explainable machine learning applied to deep learning could be
an alternative to white- and grey-box models, which are more interpretable but
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less accurate. These new models may achieve a trade-off between accuracy and ex-
plainability by integrating with domain knowledge technicians, who can use them
as tools for performing PdM and who can gain knowledge from the data while
capitalizing on theoretical background and domain expertise.

6 Future research areas

The application of deep learning models for the development of predictive main-
tenance systems has grown in recent years. The reviewed works already cover
techniques to address several industrial requirements. However, further research
in several fields has the potential to develop advancements that address other
industrial characteristics with DL models in PdM and improve how DL models
address current maintenance requirements.

Given that industrial companies collect most of their data under normal work-
ing conditions, unsupervised and semisupervised methods are widely used to model
the known data distributions and discover novel failure types. One research area
that could facilitate addressing this imbalanced data problem is to simulate the
modelled asset’s behaviour. A realistic simulator could be obtained by the use of
digital twins and could enable the simulation of different machine and component
failure types.

Transfer learning is a research field that could simplify the life cycle of PdM
systems and facilitate model reusability by reducing the required amount of data
and training time to create PdM models, helping in adapting them to changes in
EOCs. Moreover, transfer learning could help to reuse models learned with one
component to components of the same type with similar characteristics.

The majority of deep learning works for PdM in recent years have focused
on achieving highly accurate state-of-the-art results. However, other significant
aspects of PdM requires further research, including interpretability, real-time ex-
ecution and uncertainty modelling. Currently, there are emerging research trends
that could address these mentioned gaps, such as combining explainable artificial
intelligence and domain knowledge to interpret the behaviour of more accurate
grey and black-box models; developing edge computing systems that integrate
simplified architectures, reducing complexity to enable online data processing, and
enriching model output with the probability for each prediction to model uncer-
tainty. In addition, oversampling and data augmentation research on PdM will be
useful when few faulty data are available, whereas in the meantime, generative
models such as GANs and VAEs can fill this gap despite their higher complexity.

Another little researched area with promising potential is the diagnosis of
semisupervised PdM systems given the necessity to perform RCA and classify
novel failures by linking them to physical meaning. Changes to industrial working
conditions require the adaptation of PdM systems, which can also be addressed
by research on active learning and reinforcement learning techniques. Moreover,
research on combining different data-driven techniques and ensemble learning will
result in more robust models. Research on the aforementioned gaps and techniques
is fundamental for transferring any machine learning model to real, industrial use
cases and running them in production.
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7 Conclusions

The majority of industrial companies that rely on corrective and periodical main-
tenance strategies can optimise maintenance costs by integrating automatic data-
driven predictive maintenance models. These models monitor machine and com-
ponent states, for which research has evolved from statistical to more complex
machine learning techniques. Currently, the main research focus is on deep learn-
ing models.

The main objective of this survey was to analyse state-of-the-art deep learning
technique implementation in the field of predictive maintenance. Consequently,
several analyses and research are reviewed throughout the work. Initially, the
most relevant factors and characteristics of industrial and PdM datasets were
presented. Second, the steps necessary to perform PdM were presented method-
ologically. Then, various statistical and traditional machine learning techniques for
PdM were reviewed to gain knowledge concerning the baseline models on which
some deep learning implementations are based. Therefore, a thorough review of
deep learning state-of-the-art works was conducted, the works were classified by
their underlying techniques and data typology and then compared; which enabled
the methods to be compared in a structured way. The related reviews on DL for
PdM were also analysed, highlighting their main conclusions. Thereafter, a sum-
mary of the main public PdM datasets was presented, and the SotA results were
compared on the turbofan engine degradation simulation dataset. Moreover, the
suitability and the impacts of deep learning in the field of predictive maintenance
were presented, together with a comparison with other data-driven methods. In
addition, the systematisation of deep learning model development for predictive
maintenance was discussed. Finally, the application of these models in real indus-
trial use cases was argued, analysing their applicability beyond public benchmark
datasets and research environments and highlighting the gaps between research
architectures and industrial production requirements.

In summary, this survey presents a comprehensive review of deep learning
techniques for predictive maintenance applications. Its main contributions to the
state-of-the-art are as follows: a description of how DL techniques can solve each
PdM stage in detail and an analysis of how to create DL architectures that can fit
industrial requirements by applying currently researched techniques, such as trans-
fer learning, reinforcement learning, uncertainty modelling and semisupervised ap-
proaches, while also addressing adaptability and data variability. In addition, a
suitability analysis of DL for PdM and an analysis of their possible combination
with other data-driven techniques is presented, including ensemble learning to cre-
ate robust models. This article reviews the current publication trends, identifies
their gaps and opens future lines of research.
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Neuroevolution for bearing diagnosis.

Hima Soni, Akshay Kansara, and Tanvi Joshi. Predictive maintenance of gas
turbine using prognosis approach. 2008.

Siqin Tao, Tao Zhang, Jun Yang, Xueqian Wang, and Weining Lu. Bearing fault
diagnosis method based on stacked autoencoder and softmax regression. In
Chinese Control Conference, CCC, volume 2015-September, pages 6331–6335.
IEEE, 2015. ISBN 9789881563897. doi: 10.1109/ChiCC.2015.7260634.

Peter Tavner, Li Ran, Jim Penman, and Howard Sedding. Condition monitoring
of rotating electrical machines. Condition Monitoring of Rotating Electrical
Machines, pages 1–250, 2008. doi: 10.1049/PBPO056E.

UESystems. Understanding the P-F curve and its impact on reliability centered
maintenance, 2019.

Muhammet Unal, Mustafa Onat, Mustafa Demetgul, and Haluk Kucuk. Fault
diagnosis of rolling bearings using a genetic algorithm optimized neural network.
Measurement: Journal of the International Measurement Confederation, 58:187–
196, 2014. ISSN 02632241. doi: 10.1016/j.measurement.2014.08.041.

UNE-EN 13306. Maintenance. maintenance terminology. Standard, Asociación
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