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Abstract—Power cables are critical assets for the reliable oper-
ation of the grid. The cable lifetime is generally estimatedfrom
the conductor temperature and associated lifetime reduction.
However, these tasks are intricate due to the complex physics-
of-failure (PoF) degradation mechanism of the cable. This is
further complicated with the different sources of uncertainty
that affect the cable lifetime estimation.Generally, simplified or
deterministic PoF models are adopted resulting in non-accurate
decision-making under uncertainty. In contrast, the integration of
uncertainties leads to a probabilistic decision-making process im-
pacting directly on the flexibility to adopt decisions. Accordingly,
this paper presents a novel cable lifetime estimation framework
that connects data-driven probabilistic uncertainty models with
PoF-based operation and degradation models through Bayesian
state-estimation techniques. The framework estimates thecable
health state and infers confidence intervals to aid decision-making
under uncertainty. The proposed approach is validated with a
case study with different configuration parameters and the effect
of measurement errors on cable lifetime are evaluated with a
sensitivity analysis. Results demonstrate that ambient tempera-
ture measurement errors influence more than load measurement
errors, and the greater the cable conductor temperature the
greater the influence of uncertainties on the lifetime estimate.

Index Terms—Condition monitoring, cable diagnostics, dy-
namic thermal rating, uncertainty, sensitivity.

I. I NTRODUCTION

POWER cables are critical assets for the reliable operation
of the grid [1]. The unexpected cable failure can lead

to lack of export capability or catastrophic failures depending
on the system response and the associated circuit. The main
ageing factors can be classified into [2]: thermal, electrical,
mechanical and environmental causes leading to oxidation,
partial discharges, electrical trees and space charges.

With the increase of available data sources across the power
grid, there has been an increased interest in the implementation
of Prognostics & Health Management (PHM) strategies. Many
PHM strategies focus on the development of data-driven solu-
tions through machine learning methods which learn a model
that represents the asset fault-to-failure progression taking
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into account influential parameters. However, the degradation
modelling of power cables is a challenging task [1], and in
many cases, the availability of run-to-failure data is limited.

A. Related work
1) Data-driven PHM solutions: Many data sources associ-

ated with power cables have been focused on diagnostic tests
such as elongation at break [3], partial discharge [4], time-
reflectometry [5], insulation resistance [6] and polarization
currents [7]. However, the limited availability of diagnostic
tests has constrained the adoption of PHM strategies for cables.

Alternative solutions based on operational datasets have
been developed such as cable prognostics modelling based
on voltage and current [8],internet-of-things based partial
discharge sensing networks [9], cable condition monitoring
through power line modems, time-frequency reflectometry and
machine learning strategies [10], and subsea power cable
degradation analysis due to corrosion and abrasion [11].

The interest of some other data-driven methods for cable
failure specification has been on designing statistical distri-
butions to model the cable lifetime through a parametric
function. These models can be used to estimate cable failure
occurrences [12] and plan system-level cable maintenance
strategies integrated within power system models [13], [14].

2) Physics-of-failure PHM solutions: Due to the limited
availability of run-to-failure and diagnostics data, physics-of-
failure (PoF) models have attracted a wide interest [15], [16],
[17]. There are different factors that influence the remaining
useful life (RUL) of a cable, and accordingly, the specification
of an accurate physics-based model for RUL prediction is a
challenging task. In this context, the focus of many PoF mod-
els has been on calculating the cable conductor temperature
through different techniques such as finite element methods
[18] or equivalent electro-thermal circuits [15], [16], [17].
With the estimated cable temperature it is possible to calculate
the associated lifetime reduction due to thermal stress through
lifetime models [17], [19], [20].

The cable temperature estimation is a widely addressed
research area with applications in dynamic line rating [21],
[22], [23] and lifetime estimation[24]. In addition to the
thermal stress, there are models focused on the analysis of the
joint influence of electrical and thermal stresses [17]. Many of
these models have been validated via experimental field tests
[25].

3) Uncertainty analysis: The presence of uncertainties in
cable temperature and lifetime estimation has been discussed
by different authors [2]. The increased availability of data and
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the emergence of data-driven solutions has contributed to the
proliferation of uncertainties due to the use of diverse data
collection equipment with associated errors, e.g. calibration
or conversion errors (measurement uncertainty) and health
estimation algorithms which adopt modelling assumptions
(process uncertainty).

The cable lifetime modelling process encompasses different
sources of uncertainty and there are different methods that
can be used to integrate uncertainty criteria in the cable
temperature and lifetime modelling processes [26]. Generally,
uncertainty modelling methods can be classified into interval
theory, fuzzy set based methods and probabilistic approaches.

Villacci and Vaccaro integrated measurement uncertainties
in the cable thermal model through interval mathematics
[27]. It provides fast processing times when probabilistic
information is not available. Wang and Qiu used fuzzy logic to
integrate uncertainty information in the cable thermal model
[28], which requires the formalization of expert knowledge
via membership functions. The focus of this work is on
data-driven probabilistic models that do not require the for-
malization of expert knowledge. Shabani and Vahidi pre-
sented an optimization approach so as to maximize ampacity
and minimize installation costs [29]. The method solves a
deterministic objective function and takes into account the
uncertainty of ambient temperature, load and soil via Monte
Carlo simulations (MCS). However, MCS lacks a systematic
framework to integrate and propagate uncertainties not only
for variables, but also for modelling processes.

B. Research direction and contribution

The lifetime reduction of a power cable varies non-linearly
according to different stochastic variables, state-estimation and
degradation models, and the sources of uncertainty associated
with these variables and evaluation models.

If these factors are not integrated in an adequate cable health
state estimation framework this may limit the application of
PHM strategies for effective cable lifetime estimation under
uncertainty and it may lead to non-optimal cable maintenance
decisions. Due to the complex PoF degradation process of
cables, deterministic models or simplified PoF models are
generally adopted resulting in non-accurate decision-making
under uncertainty [30].

In contrast, the integration of uncertainties leads to a prob-
abilistic decision-making process. This change of paradigm
impacts directly on the flexibility to adopt decisions. An
uncertainty-aware framework propagates the variability of
modelling and measurement parameters to the final health
state and infers confidence intervals to aid decision-making
under uncertainty. The probabilistic confidence bounds as-
sociated with the lifetime estimation assist the engineer in
the final decision-making process with information about the
confidence of the estimate. That is, if confidence bounds are
wide and the probability of the maximum likelihood value is
low, it reflects a complex decision-making situation where the
model is not confident about the final estimate. In contrast,
narrow confidence bounds with a high probability indicate a
high-confidence scenario for decision-making.

From a review of the literature, it appears that an effective
uncertainty processing framework for cable lifetime estima-
tion has not been proposed, which integrates systematically
different sources of uncertainty and propagates them to the
final cable health state estimation for decision-making under
uncertainty.

To cover this gap,the contribution of this paper is the
implementation of a cable diagnostics framework that con-
nects data-driven probabilistic uncertainty models with PoF-
based operation and degradation models for the cable lifetime
evaluation under uncertainty. The framework integrates and
propagates measurement and process modelling errors in the
cable conductor temperature and lifetime estimation models
and infers the cable health state under different operationand
error scenarios. In addition, the sensitivity evaluation of the
measurement errors is also developed to improve the decision-
making process.

Accordingly, a cable diagnostics framework is presented
based on Particle Filtering (PF) concepts [31] integratingnon-
linear state-space lifetime equations with physics-basedequa-
tions. The state-space model dynamically updates the power
cable lifetime using loading and temperature profiles along
with physical configuration parameters through a physics-
based model. This model estimates the conductor temperature
according to design and construction parameters. The cable
lifetime is then estimated as a probability density function
(pdf) obtained from the posterior distribution elicited from
the PF method. Subsequently 95% confidence intervals are
elicited from the obtained pdfs to assist the decision makerin
the visualization and interpretation of the results.

C. Organization

The rest of this paper is organised as follows. Section II
introduces cable temperature and lifetime estimation methods.
Section III defines the proposed approach for cable health state
estimation under uncertainty. Section IV presents evaluations
and results. Section V discusses the challenges and potential
extensions, and finally Section VI draws conclusions.

II. CABLE THERMAL & L IFETIME MODELLING

The cable conductor temperature is directly influenced by its
layers and materials, physical configuration and surrounding
environment. In turn, the temperature impacts on the cable
lifetime along with other parameters such as electrical stress.

A. Thermal modelling

The cable temperature can be calculated from analytic
methods [15], [16], [17], finite element methods (FEM) [18]
or non-invasive inspection measurements [32]. The expensive
temperature measuring equipment is not cost-effective andthe
implementation of FEM is outside the scope of this work.
Therefore this work focuses on analytic methods [2], [33].

Fig. 1a shows the equivalent thermal ladder circuit of a cable
from the inner conductor layer to the external jacket.

The temperatureΘ of each layerl of the cable,Θl, is mod-
elled through the thermal resistance (Tl), thermal capacitance
(Ql), and power loss unit (Wl).
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Fig. 1. (a) Thermal ladder circuit of a cable. (b) Equivalenttwo-loop circuit.

1) Thermal resistance & capacitance:The thermal resis-
tance models the heat dissipated in the cable:

T =
ρ

2π
log (Dext/Dint) (1)

whereρ is the thermal resistivity of the cable layer’s material
(K.m/W), and Dext and Dint are the external and internal
diameters of the corresponding cable layer under study. For
example, the thermal resistance of the insulator,T ins, is typi-
cally calculated by taking the diameters of the cable conductor
and sheath:T ins =

ρ
2π
log (Dsheath/Dcond)

The thermal capacitance models the capacity of the cable
to hold heat and it is calculated as follows:

Q = π/4
(

Dext
2 −Dint

2
)

C (2)

whereC is the volumetric specific heat of the cable layer’s
material (J/m3◦C) andDext andDint are defined immediately
above. For example, the thermal capacitance of the sheath,
Qsheath, is calculated by taking the diameters of the insulator
and sheath:Qsheath= π/4

(

Dsheath
2 −Dins

2
)

C.
2) AC Resistance:The AC resistance models the resistance

of the cable material to the heat. The alternating current
resistance of the cable,RAC, is calculated as follows:

RAC = RDC(1 + ys + yp) (3)

whereRDC is the direct current resistance of the cable (Ω/m),
and ys and yp are the skin and proximity effect factors
respectively. The direct current resistance,RDC, is defined as:

RDC = ρ20/S(1 + αmat.(90 − 20)) (4)

whereρ20 is the resistivity of the material at 20◦C (Ω.m),
αmat. is the temperature coefficient of the material (K−1), and
S is the cross-section area of the conductor (m2).

The skin effect,ys, is the tendency of an AC current to
become distributed such that the current density is largestnear
the surface of the conductor and decreases with greater depths
in the conductor. It is defined as:

ys = x2s/(192 + 0.8x2s) (5)

where,
xs = Fkks; Fk = 8πfe−7/RDC (6)

wheref is the operating frequency.
The proximity effect can increase the AC resistance of

adjacent conductors by inducing eddy currents. Proximity
effect depends on the cable configuration. Assuming cables in
trefoil formation, the proximity factor,yp, is obtained from:

yp = Fp((0.312 + 1.18)/(Fp + 0.27)) (7)

where,
Fp = x2p/(192 + 0.8x2p); xp = Fkkp (8)

wherekp and ks are directly determined from experimental
tables depending on cable configuration and material [2].

3) Losses:The cable power loss is directly translated into
dissipated heat and increased cable temperature. The total
cable temperature is the sum of self-heating, mutual heating
between adjacent cables and the temperature rise due to the
soil effect. The total cable temperature is then translatedinto
cable power loss, which is generally modelled according to
the different layers of the cable (cf. Fig. 1a).

Assuming a cable comprised of conductor, jacket and ar-
mour, the power loss due to self-heating is calculated as:

W self(t) =Wc(t) +Ws(t) +Wj(t) +Wa(t) (9)

whereWc is the conductor power loss, andWs, Wj andWa

are respectively the sheath, jacket and armour power losses.
4) Conductor losses:The conductor power loss at timet,

Wc(t), is defined as follows:

Wc(t) = I(t)2RAC (10)

whereI(t) is the current that flows through the cable at time
instantt andRAC is the alternating resistance of the cable.

5) Sheath and jacket/armour losses:Sheath losses depend
on the cable configuration. For cables in trefoil formation with
metallic sheath, loss factors in the sheath and jacket/armour
are defined as:

λ = λ1 + λ2 (11)

whereλ are the total losses in the sheath and jacket,λ1 is the
relation of the total losses in the sheath with respect to the
total losses in all the cable conductors,λ2 is the relation of
the total losses in the jacket/armour with respect to the total
losses in all the cable conductors.

Depending on the cable configuration the calculation ofλ1
is different. For three single-core cables in trefoil formation:

λ1 = Rs/RAC
(

1/
(

1 +Rs/X2
))

(12)

whereRs is the sheath’s resistance andX is the sheath’s
reactance per unit length (Ω/m) defined as:

X = 2ωe−7.log(2Daxis/Ds) (13)

whereDaxis is the distance between conductor axes of the
cables (mm), andDs is the mean diameter of the sheath (mm).

Accordingly, the sheath and jacket/armour power loss are
calculated as follows:

Ws = λ1Wc, Wj = λ2Wc (14)

Finally (9) can be redefined asWself (t)=Wc(t)(1+λ1+λ2).
In this analysis it is assumed that the cable has no jacket and
thereforeλ2 = 0 andWself (t) =Wc(t)(1 + λ1).

6) Dielectric loss: For AC cables the dielectric loss is
defined as follows:

Wd = ωCU2
0 tanδ (15)

whereω=2πf , C is the capacitance per unit length (F/m), and
U0 is the voltage to earth.For distribution voltages the effect
of dielectric losses can be neglected [20] and accordingly it
has not been included in this paper.
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7) Transient Operation:The transient response of the cable
is calculated using the Van Wormer coefficients [2]:

p∗ =
1

log(
Dins
Dcond

)
− 1

Dins
Dcond

; p′ =
1

2log( Dext
Dsheath

)
− 1

( Dext
Dsheath

)2 − 1
(16)

Short duration insulation capacitances are defined as [2]:

QI1 = π/4(Dins.Dcond.−Dcond.
2)cins.

QI2 = π/4(Dins.
2 −Dins.Dcond.)cins.

(17)

When modelling transient operation it is suggested to divide
the insulation in 2 additional sublayers with thermal resistivity
T1/2 (see insulation in Fig.1a). Accordingly, based on (16)-
(17) the short-term insulator response is defined as [2]:

Qi1′ = p∗QI1; Qi1′′ = (1− p∗)QI1

Qi2′ = p∗QI2; Qi2′′ = (1− p∗)QI2
(18)

Applying the same division to the shield, armour and jacket:

Qa1 = p∗Qarmor; Qa2 = (1− p∗)Qarmor

Qj1 = p′Qjacket; Qj2 = (1 − p′)Qjacket
(19)

whereQjacket, Qarmor, Qshield are calculated through (2).
In order to reduce the ladder circuit in Fig.1a to a two-loop

equivalent circuit shown in Fig.1b, capacitances are joined
per each section of the equivalent ladder circuit, i.e. sheath’s
capacitanceqs=1+λ1 and jacket’s capacitanceqj=1+λ1+λ2.
Namely the capacitances are grouped as follows:

Q1 = Qc +Qi1; Q2 = Qi2 +Qi3

Q3 = Qi4 +Qsheath/qs+Qa1/qs; Q4 = (Qa2 +Qj1)/qs
(20)

Accordingly, the ladder circuit in Fig. 1a is reduced to its
equivalent circuit shown in Fig. 1b to resolve the temporal
response. These are the parameters of the reduced circuit [2]:

TA=T1/2; TB = T1/2 + qsT2 + qjT3

QA = Q1; QB=Q2+Q3((qsT2+qjT3) /TB)2+Q4(qjT3/TB)2
(21)

8) Temporal Response:The circuit in Fig. 1b is solved
using the Laplace transform as follows:

H(s)=
TA+TB+TATBQBs

1+s(TAQA+TBQB+TBQA)+s2(TAQATBQB)
(22)

where s is a complex number frequency parameters = σ+

iω, andF (s) =
∞
∫

0

f(t)e−stdt. The response of the transfer

function in (22) models the temporal response of the cable
conductor temperature due to the self-heating of the cable.

Changing froms to the temporal domain,t, the temporal
response of (22), i.e. cable conductor temperature due to self-
heating,Θself (t), is defined as follows:

Θself(t) = Wc(Ta(1− e−at) + Tb(1 − e−bt)) (23)

where the temporal response parameters are defined as follows:

Ta = (1/(a − b))(1/QA−b(TA+TB)); Tb = TA + TB − Ta

a =

(

M0 +
√

M2
0 −N0

)

/N0; b =

(

M0 −
√

M2
0 −N0

)

/N0
(24)

whereTA, TB, QA, andQB are defined in (21), and:

M0 = 1/2(QA(TA + TB) +QBTB)

N0 = QATAQBTB
(25)

The soil temperature is crucial for underground power
cables because it directly affects the final cable temperature.
The soil temperature rise,Θsoil(t), due to constant power
dissipation transient,Wself , is defined as:

Θsoil(t) = α(t)

[

W self
ρs

4π

(

Ei

(−L2

σt

)

− Ei

(−Dsurf
2

16σt

))]

(26)

whereL denotes the depth burial of the cable (m),Dsurf de-
notes the external surface diameter of the cable (m),σ denotes
the diffusivity of the soil (m2/s),Wself can be calculated from
(9), andEi(.) is the exponential integral function.

With more than one cable located next to each other, the
proximity of the cables causes mutual heating. The mutual
heating temperature,Θmutual(t), is defined as follows:

Θmutual(t)=α(t)

N−1
∑

k=1

[

W self
ρs

4π

(

Ei

(−dpk
2

4σt

)

−Ei
(−dpk’

2

4σt

))]

(27)

wheredpk denotes the distance from the cablep to cablek
(m) anddpk’ is the virtual distance from the cablep to k (m).

The attainment factor,α(t), is defined as follows:

α(t) =
Θself(t)

Wc(t)(TA + TB)
=
Ta(1− e−at) + Tb(1− e−bt)

TA + TB
(28)

The total rise of temperature over ambient temperature is
defined as follows:

Θrise(t) = Θself(t) + Θsoil(t) + Θmutual(t) =

W c(t)(Ta(1−e−at)+Tb(1−e−bt))[1+
ρs

4π

(1+λ1)

(TA+TB)

([Ei(
−L2

σt
)−Ei(

−Dsurf
2

16σt
)]+2[Ei(

−d2pk
4σt

)−Ei(
−d2

pk′

4σt
)])]

(29)

In order to account for the temperature changing alternating
current resistance, a correction factor is applied to the final
temperature rise over ambient,Θrise,C(t):

Θrise, C(t) = Θrise(t)/

(

1 +
Θ(∞)−ΘRise(t)

234.5 + Θamb.(t)

)

(30)

The total stationary temperature,Θ(∞), is calculated as:

Θ(∞) = Θself(∞) + Θmutual(∞) + Θsoil(∞)

Θself(∞) = Wc(t)(TA + TB)

Θmutual(∞) = W self(t)ρs/2πlog(kp
′/kp)

Θsoil(∞) = W self(t)ρs/2πlog

(

2L/Ds +
√

4L2/Ds2 − 1

)

(31)

where L is the depth burial of the cable, andDs is the
surface. After reorganising and reducing the total stationary
temperature can be redefined as:

Θ(∞)=Wc(t)

{

(TA+TB)+
(1+λ1)ρs

2π

[

log

(

kp′

kp

)

+log

(

2L

Ds

√
d

)]}

(32)

whered = 4L/D2

s − 1.
Finally, the cable temperature is determined from:

Θcable(t) = Θamb.(t) + Θrise, C(t) (33)

Algorithm 1 defines the cable temperature estimation frame-
work for the time interval[k0, K]:
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• Lines 1-5: define the temperature-independent cable
parameters which depend on the physical characteristics.

• Lines 6-12: estimate the cable temperature for the
diagnostics time horizonK. It is assumed that the load,
i, and the ambient temperature,Θamb, measurements are
collected every∆t within the time interval [k0, K] and
superposition of past transients are applied.

Algorithm 1 Cable temperature estimation
1: CalculateT , Q for all the cable layers via Eq. (1) and Eq. (2)
2: CalculateRAC through Eq. (3)
3: Calculateλ1 using Eq. (12) ⊲ λ2 = 0 cable without jacket.
4: Calculatea, b, Ta, Tb from equations in (24)
5: CalculateT (∞) via Eq. (31)
6: for k = k0 : ∆t : K do ⊲ Cable temperaturediagnostics
7: Readi(k), Θamb.(k) ⊲ Monitored data
8: CalculateWself via Eq. (9)
9: Calculateα(k) via Eq. (28)

10: CalculateΘsoil(k), Θmutual(k) via (26) & (27) respectively
11: CalculateΘcable(k) via Eq. (33)
12: Θ̂cable[k]← Θcable(k) ⊲ Store results at instantk
13: return Θ̂cable ⊲ All cable temperature estimates inK

B. Lifetime estimation

There are different lifetime models that diagnose the cable
health based on thermal and electrical stresses [19]. This paper
focuses on the Arrhenius inverse power model (IPM) due to its
wide adoption in the community, e.g [34], [35]. IPM defines
the cable time-to-failure (TTF) as follows [19]:

TTF = TTF0e
−BcTE/E

−(η0−bcT )
0 (34)

whereE is the electric field (kV/mm),cT = 1/T0−1/T is the
conventional thermal stress, whereT is temperature in Kelvin
degrees andT0 is a reference temperature,η0 is the voltage
endurance coefficient atT = T0 (non-dimensional),E0 is a
value of electric field below which electrical aging is deemed
as negligible (kV/mm), TTF0 is time-to-failure atT = T0 and
E = E0, B is equal to∆W/k (∆W being the activation
energy of the main thermal degradation reaction andk being
the Boltzman constant) andb is a parameter that models the
synergism between electrical and thermal stresses (K.mm/kV).

In order to estimate the remaining useful life (RUL) itera-
tively (34) has been rewritten as a recurrence relation form:

RULt = RULt−1 −∆t/TTF (35)

whereRULt is the cable RUL att, RULt−1 is the RUL at
t − 1, ∆t is the time-step, andTTF is the time-to-failure
defined in (34).The fraction∆t/TTF models the loss-of-life
fraction in each iteration. At instantt=0, RULt−1 equals to
the initial lifetime estimationRUL0. In subsequent iterations
RUL0 is updated with the most up-to-date RUL estimation to
reflect the previous state att−1.

C. Sources of uncertainty

Algorithm 1 is the method used by the IEC standard and
generally adopted by the research conducted around cable
conductor temperature estimation [15], [16], [17]. However,
some measurements may be affected by hardware inaccuracies
or calibration errors, modelling imprecision errors may also

influence the final estimation, and in the end these factors will
impact on the accuracy of the final estimate. Under conditions
of errors and uncertainty, the estimation of a single point cable
conductor temperature may not be accurate. A pdf around a
number of conductor temperature values with the probability
associated with each value represents better the uncertain
nature of the cable conductor temperature estimate. Some
examples include measurement errors due to sensor calibration
or noisy environments, lack of exact knowledge of empirical
formulations, and physical configuration uncertainties such as
the exact distance to the cable or the exact soil diffusivity.

In this context, given the uncertainties around the cable
temperature estimate, it is possible to re-evaluate the lifetime
models to quantify effect of cable temperature estimation
errors on cable lifetime estimation.

The lifetime equation can be redefined as:

RULt = RULt−1 + νRULt−1
−∆t/ (TTF + νt) (36)

whereνRULt−1
is the RUL estimate error att−1 andνt is the

process error. At the initial time instantνRULt−1
will denote

the uncertainty around the initial life estimateνRUL0
and this

will be propagated in subsequent iterations.
The uncertainty around theloss-of-life fraction∆t/TTF is

defined in terms of the process and measurement uncertain-
ties. The main measurement sources of uncertainty are load,
ψI , and ambient temperature,ψa, measurements. Integrating
uncertainty measurements in (33) results in:

Θcable(t) = Θamb(t) + ψa +
Θrise(t)(234.5 + Θamb(t) + ψa)

1 +
Θ(∞)−Θrise(t)

234.5+Θamb(t)+ψa

(37)

definingf1(t) andf2(t) as follows:

f1(t) = [Ta(1− e−at) + Tb(1 − e−bt)]

[1+
(1+λ1)ρs

4π
([Ei(

−L2

σt
)−Ei(

Dsurf
2

16σt
)]+2[Ei(

−d2
pk

4σt
)−Ei(

−d2
pk′

4σt
)]

(38)

f2(t)=(TA+TB)+
(1+λ1)ρs

2π
(log(

dkp′

dkp
)+log(

2L

Dsurf

√

4L

Dsurf
2
−1)) (39)

results in:

Θcable(t)=Θamb(t)+ψa+
f1(t) [234.5+Θamb(t)+ψa]

2

234.5+Θamb(t)+ψa

RAC(I(t)+ψI)
2 +f2(t)−f1(t)

(40)

Comparing (40) with (33) it is possible to see that the
different uncertainty sources may affect the cable temperature
and accordingly, comparing (36) with (35) it is possible to see
that the lifetime estimation is also affected by different sources
of uncertainty. The proposed framework below effectively
integrates these sources of uncertainty.

III. A N OVEL DIAGNOSTICS FRAMEWORK FORCABLE

L IFETIME ESTIMATION UNDER UNCERTAINTY

Power cable aging can be considered a partially-observable
Markovian process, where the state of the cable cannot be
directly observed, but it can be estimated from measurands
like ambient temperature and load. Accordingly, so as to take
into account different uncertainties and propagate them along
with inspection data, the PF method has been implemented.
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The PF is a Monte Carlo based Bayesian filtering method
[31], which has been used for prognostics predictions of
transformers using machine learning strategies with different
measurement and degradation functions and sources of uncer-
tainty [36]. PF enables the estimation of cable lifetime under
different sources of uncertainty as shown in Fig. 2.

Fig. 2. High-level PF-based cable lifetime diagnostics framework.

The Dynamic Thermal Rating model in Fig. 2 is
Algorithm 1 adapted for uncertainty measurements according
to the PF approach. It takes as input environmental parameters,
cable parameters and external parameters which can be speci-
fied with pdfs to model the associated uncertainty, e.g. ambient
temperature and load. The outcomes of this model are a
number of pdfs (one per each evaluated data point) of the cable
temperature,Θcable. The Lifetime Estimation model
evaluates the cable RUL,RUL(t), with input cable conductor
temperature estimate pdfs and calculates the lifetime pdfs(one
per each evaluated data point). Finally the pdfs are converted
into maximum likelihood and 95% confidence intervals so as
to improve the readability for the end-user.

A. Particle Filtering for cable diagnostics

The parametric state-space formulation for a dynamic model
at the discrete-time instantk is described as follows [31]:

xk = f(xk-1, νk) “Degradation equation”

zk = h(xk, ψk) “Measurement equation”
(41)

wherexk is the unobserved cable health state vector,zk is the
measurements vector,f(·) is the degradation function,h(·) is
the measurement function,νk is the process noise vector, and
ψk is the measurement noise vector. Each element of the noise
vectors represent a different source of uncertainty, and each
of them is formalized through its corresponding pdfνk ∼ pν
andψk∼pψ. The uncertainty sources considered in this work
are synthesized as followsνk=〈νk, νRUL0〉 andψk=〈ψa, ψI〉.

The resolution of this state-space problem enables filtering
the cable health state at the instantk integrating multiple
sources of uncertainty [31]. Fig. 3 shows the application of
(41) to the cable lifetime estimation process.

Fig. 3. Framework for cable lifetime diagnostics under uncertainty.

The measurement equation is defined by the cable con-
ductor temperature calculated according to Algorithm 1. The
measurements included in the cable conductor temperature are
load,i(k), and ambient temperature,Θamb(k), along with their
measurement errors,ψI andψa, respectively, and other cable

parameters and physical characteristics, which result in the
calculation of the cable conductor temperatureΘcable(k).

The cable health state at the discrete instantk, RULk, is
calculated via (36). This equation defines the cable degradation
trend as a function of the cable temperature, electrical stress,
the synergism between thermal and electrical stresses, and
cable health state atk−1, which is updated at every time-step
with the most up-to-date cable health state estimation.

The pdf p(xk|z0:k) defines the system statexk with mea-
surements until the instantk, zk. The prior pdf of xk from
p(xk-1|z0:k-1) is determined as follows [31]:

p(xk|z0:k-1) =

∫

p(xk|xk-1)p(xk-1|z0:k-1)dxk-1 (42)

where (41) defines the cable state-transitionp(xk|xk-1). The
prior pdf is updated with new measurements gathered at
instantk, z0:k, leading to theposteriorpdf [31]:

p(xk|z0:k) = p(xk|z0:k-1)p(zk|xk)/p(zk|z0:k-1) (43)

For each instantk, the PF method applies prediction, update
and resampling steps so as to solve (43).Particles are a
key concept for the resolution, which are random samples
with their weights that describe a pdf, e.g.{xik−1

, wik−1
}
Np
i=1

denotes the system state at timek − 1 with Np particles.
Algorithm 2 defines the implementation of the cable RUL

prediction under uncertainty.

Algorithm 2 Cable RUL prediction under uncertainty via PF

1: {RULk-1, x
i
k−1, w

i
k−1}

Np
i=1 ⊲ Previous instant results atk − 1

2: for k=k0:∆k:K do ⊲ Iterate∆k timestep until finish horizon K
3: Preprocess measurements collected atk

4: CalculateΘ̂cable(k) from Algorithm 1
5: Extract uncertainty data:ra ∼ N(Θ̂a,ψa), ri ∼ N(i, ψI),
rRULk-1 ∼ N(RULk-1, νRULk-1), rk ∼ N(0, νk)

6: for i = 1 : Np do ⊲ State-spaceprediction step
7: Propagatexik via (41),RULk-1 and Θ̂cable(k)

8: Calculate{wik}
Np
i=1, through (44) ⊲ Particleupdate step

9: if N̂eff < NT then ⊲ Particleresampling step cf. (45)
10: Update{xik, wik} through systematic resampling
11: end if
12: RULk ← {x

i
k, w

i
k}
Np
i=1 ⊲ Save particles at timek

13: RULk-1 = RULk ⊲ Prepare for the next iteration
14: return RUL ⊲ Estimated particles for the finish horizonK

The prediction atk is done by simulating the cable dynamics
according to (41) to generate new samplesxik from the
predicted distributionp(xk|z0:k-1) (lines 6-7).

Next, measurement likelihoods are calculated given the
health state of the i-th particlep(zk|xik), and accordingly, a
weight is estimated for every particle i={1,. . .,Np} (line 8):

wik = p(zk|xik)/
Np
∑

j=1

p(zk|xjk) (44)

The obtained set of particles{xik, w
i
k}
Np

i=1
are then used to

elicit the posterior pdf p(xk|z0:k).
The PF introduces the weight degeneracy issue [31]: one

particle has meaningful weight and the rest are negligible.An
effective particle size is defined to eliminate the degeneracy:

N̂eff = 1/

Np
∑

i=1

wik (45)
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The systematic-resampling is applied if̂Neff < NT [31],
whereNT=Np/2 is the adopted threshold (lines 9-11).

IV. CASE STUDY & EVALUATIONS

Fig. 4 shows the parameters of the three-phase cross-linked
polyethylene (XLPE) cable installation in trefoil formation
analysed in this section.In order to validate the developed
thermal model (cf. Subsection II-A), cable conductor temper-
ature results in [16] have been used as a validation strategy.

Fig. 4. Experimental case study parameters (Th: thickness, D: outer diameter).

Table I displays the lifetime estimation parameter values.

TABLE I
ARRHENIUSIPM MODEL PARAMETER VALUES [19].

Parameter Value
TTF0 [h] 1×106

b [K mm/kV] 4420
η0 [non-dimensional] 15

E0 [kV/mm] 5
E [kV/mm] 7.2
B [K] 12430

Cable layers, materials and their configuration in Fig. 4
influence the thermal model equations associated with cable
losses, and in turn, the estimated cable conductor temperature
directly influences the lifetime equation (see Subsection II-B).

A. Diagnostics: cable health state estimation

In order to calculate the health state under uncertainty, a
number of load and ambient temperature profiles with different
measurement errors have been examined. Fig. 5 shows the
applied hourly sampled load and ambient temperature profiles.
Note that the first 350 hour data samples of the load profile
without errors are taken from [16], which is done deliberately
to validate the obtained thermal results. This pattern is repeated
periodically (see dashed vertical lines in Fig. 5) creatinga
signal of 14000 data samples.

Fig. 5. (a) Load and (b) ambient temperature data samples and associated
measurement errors (inspired from [16]).

For parametric sensitivity analysis purposes the influence
of typical measurement errors of 1%, 2% and 5% have been
tested for loadψI = {13A, 26A, 65A} and ambient tempera-
ture measurement errorsψa = {0.25◦C, 0.5◦C, 1.25◦C}.

Under these assumptions, and considering a process mea-
surement error ofνt = 0.0001 units, an initial lifetime of
νRUL0

= 15 years± 10 days (νRUL0
= νRULt−1

) and an
initial cable temperature ofΘcable(t= 0) = 20 ± 0.5◦C, the
associated lifetime reduction is calculated from the estimated
cable conductor temperature [cf. Eq. (36)]. Adopted initial
lifetime, process error and initial temperature values arehypo-
thetical reasonable values and they can be adapted if needed.

Fig. 6a shows the cable conductor temperature over time
for fixed 5% ambient temperature measurement error and
different load measurement errors. The maximum likelihood
(ML) and 95% confidence intervals (CI) are elicited from the
pdfs inferred for each time instant using the PF model denoted
as [CI-, CI+]. Fig. 6b shows the pdf of the last cable conductor
temperature data point, i.e. the 14000th sample in Fig. 6a.
Fig. 6c shows the cable lifetime reduction due to the thermal
stress and Fig. 6d shows the pdf of the last lifetime estimate
data point, i.e. 14000th sample in Fig. 6c.

Fig. 6a shows that the increase of load measurement error
has a direct influence on the 95% confidence intervals of
the cable conductor temperature. It can be noticed that the
confidence bounds widen with the increased cable conductor
temperature, which suggests that the measurement errors are
more critical for higher cable conductor temperatures. Fig. 6b
shows the change of the pdf of the cable conductor temperature
and it indicates that the greater the load measurement error,
the wider the pdf bounds.

Fig. 6c shows that the greater the load measurement error,
the lower the lifetime which is ruled according to the cable
conductor temperature in Fig. 6a. The maximum likelihood
values in Fig. 6c show a similar degradation trajectory for
different load error values, but it can be noticed that the
degradation for the highest load measurement error starts
deviating faster towards the last 350 hours period due to
higher cable conductor temperatures. Fig. 6d confirms that
the maximum likelihood value is lower for greater load error
values.

So as to evaluate the effect of cable conductor temperature
estimates on the cable lifetime Fig. 7 shows the average life
fraction lost per day, i.e.Fday = 1/24

∑24

i=1
1/TTFi, which

is repeated for the whole tested period. This index enables the
observation of more stable trends.

It is possible to see from Fig. 7 that the effect of measure-
ment errors on the loss-of-life fraction becomes more impor-
tant over time as the cable conductor temperature increases.
This can be seen with the difference between three loading
cycles, were the confidence bounds of the 5% load error widen
over the evaluation timespan.

B. Sensitivity analysis

Measurement errors influence directly on the cable conduc-
tor temperature, which in turn, directly impacts on the cable
lifetime estimation. It is possible to correlate the cable ageing
rate with the cable conductor temperature and its associated
error for sensitivity analysis purposes.

In this context, the equivalent cable ageing (ECA) index
as a function of the cable conductor temperature (Θc) and
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Fig. 6. (a) cable conductor temp.; (b) cable conductor temp. pdf at 14000th sample; (c) cable RUL estimate; (d) RUL pdf at 14000thdata sample.

Fig. 7. Average life fraction lost per day.

its associated error (ec) can be defined by the ratio between
the time-to-failure at the rated cable conductor temperature
(TTFR) and the time-to-failure of the measured cable con-
ductor temperature (TTF ) [24]. The ECA(Θc ± ec) for a
cable thermally rated at 90◦C is defined as follows:

ECA(Θc ± ec) =
TTFR

TTF
= e

B
(

1

363
−

1

Θc±ec

)

E

E0

−b
(

1

366
−

1

Θc±ec

)

(46)

Fig. 8 shows the ECA as a function of cable conductor
temperature and associated cable conductor temperature errors.

Fig. 8. Equivalent cable ageing for a cable thermally rated at 90◦C as a
function of cable temperature and error.

As Fig. 8 confirms the cable conductor temperature has a di-
rect influence on the confidence intervals. Namely, the greater
the cable conductor temperature the greater the influence of
errors on the cable lifetime estimation. It can be noticed that
the sensitivity of cable conductor temperature with respect to
ECA is not lineal and this explains why the ageing rate is
faster for different cable conductor temperatures and the effect
of higher temperatures on the RUL estimate.

Note also that Fig. 8 informs about the equivalent cable
ageing with respect to the rated cable. That is, at 90◦C for the
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deterministic model the ECA is 1 unit, meaning that the ageing
of the cable is equivalent to that of the rated temperature cable.
However, this relationship changes quickly for different cable
conductor temperature values.

The cable conductor temperature is influenced by different
sources of uncertainty. Focusing on measurement uncertain-
ties, the effect of load and ambient temperature measurement
errors on cable lifetime can be analysed using the designed PF
framework. Namely Fig. 9 shows the maximum likelihood and
95% confidence intervals of the last data point of the lifetime
estimate using load and temperature profiles shown in Fig. 5.
This is calculated for different load and ambient temperature
measurement error values.

Fig. 9. Cable lifetime at 14000th data point for different error values.

It is possible to see from Fig. 9 that for the tested configura-
tions the effect of load measurement error is greater than the
ambient temperature measurement error. Namely, observing
the maximum likelihood values, the lifetime variation of a
fixed load error and different ambient temperature error values
is lower compared with the lifetime variation of a fixed
ambient temperature error and different load error values.It is
also possible to see that the confidence bounds are greater for
bigger measurement error values. The final shape of the PDF
estimate depends on the uncertainty propagation mechanism
of the Particle Filtering framework.

For all the evaluated metrics including cable conductor
temperature, daily average life fraction lost, remaining useful
life and equivalent cable ageing the corresponding proba-
bilistic 95% confidence intervals have been estimated. These
confidence bounds help the engineer in the decision-making
process with information about the confidence of the estimate.
Accordingly, this paper contributes with the integration of
complex, detailed physics-of-failure operation and degradation
process of cables including different sources of uncertainty
within the Particle Filtering framework for probabilisticlife-
time estimation purposes.

V. DISCUSSION

There are different sources of uncertainty arising from the
cable lifetime estimation process. The focus of this research
is on measurement uncertainties (ambient temperature, load)
and process uncertainties (degradation process, initial health

state) because load and ambient temperature are measurable
values widely used by practitioners, the uncertainty of the
initial health state enables the adaptation of the framework to
different health states and initial conditions, and the process
uncertainty models the lack of exact knowledge of the em-
pirical degradation modelling process. However, the designed
diagnostics framework is extendible to other sources of uncer-
tainty.

Focusing on the surrounding of the cable, it is possible to
include other sources of uncertainty, such as soil or backfill,
which are modelled with the equivalent thermal resistanceT4
in Fig. 1. In this work soil properties have been assumed
constant, but it is possible to include soil-related uncertainties
that impact on the cable conductor temperature and then
integrate in the cable conductor temperature formulation.Refer
to [16] [37] to see the effect of soil and backfill properties on
the cable conductor temperature.

Similarly, the influence of different cable configurations on
the lifetime estimate can be analysed through the appropriate
adaptation of cable conductor temperature estimation equa-
tions. The cable arrangement affects the equations associated
with the proximity and loss factors [cf. (7) and (11)], which
in turn impact on the cable conductor temperature estimation.

If the type of cable changes including its constituent layers,
this affects the equivalent electrical circuit in Fig. 1 and
accordingly its associated thermal model formulations [15],
[2].

These variations affect the cable conductor temperature
estimation,Θc(t), which in turn affects the cable lifetime as
examined in Fig. 8.

There are different cable configurations and sources of
uncertainty that can be considered when estimating the cable
conductor temperature and its lifetime. With the appropriate
modifications of the underlying equations the proposed frame-
work can accommodate different measurement and process
uncertainties.

The specification of measurement and process errors is
modelled using Gaussian pdfs and it is assumed that the distri-
bution is centred on the measured value with the specified error
values in Section IV (cf. Algorithm 2,line 5). However,
note that the Particle Filtering framework is flexible and it
enables the integration of non-Normal distributions too. In this
direction, if the noise induced by measurement errors (ψI ,
ψa) or process errors (νRUL0

, νt) is known, it is possible
to design the associated pdf from data which represents the
corresponding measurement or cable health state process.

VI. CONCLUSIONS

The effective development of power cable PHM strategies
is challenging due to the involved complex degradation tra-
jectories. The difficulty to obtain run-to-failure datasets has
put the focus of many PHM applications on the development
of physics-of-failure (PoF) models. There are multiple sources
of uncertainty that affect the specification of the PoF models.
If these sources of uncertainty are not taken into account the
decision-making process may not be accurate.

The literature indicates that an effective uncertainty pro-
cessing framework for cable lifetime estimation is missing.
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In this direction, the diagnostics framework presented in this
paper fills this gap with the proposed Bayesian state-estimation
framework that connects data-driven probabilistic uncertainty
models with PoF-based operation and degradation models.
The framework systematically integrates different sources of
uncertainty and propagates them to the final cable health
state estimation for decision-making under uncertainty. This
framework leads to a probabilistic decision-making process
that impacts directly on the flexibility to adopt decisions.The
evaluation of the cable health state under different conditions
of uncertainty with associated confidence intervals assists in
the decision-making under uncertainty.

The implemented sensitivity evaluation of the measurement
errors improves the decision-making process with information
about the effect of different sources of uncertainty on the cable
lifetime. The analysis confirms that the influence of the ambi-
ent temperature measurement error on the lifetime estimateis
greater than the load measurement errors. It has been also
shown that the influence of load and ambient temperature
measurement errors on the cable conductor temperature and
lifetime estimates becomes more important for higher cable
conductor temperatures.
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