
Dynamic monitoring of Android
malware behavior: A DNS-based

approach

Oscar Somarriba Jarquín
Advisors:

Dr. Urko Zurutuza Ortega
Dr. Roberto Uribeetxeberria Ezpeleta

Department of Electronics and Computer Science

Mondragon University

A thesis submitted for the degree of

Doctor of Philosophy

May 2019

2

Acknowledgements

I am grateful to the many people whose support was indispensable to

this work. Foremost I would like to express my deep gratitude to Dr.

Urko Zurutuza Ortega, for giving me the opportunity to join the De-

partment of Electronics and Computer Science group at Mondragon

University (MU) and whose wisdom, guidance, patience, and encour-

agement have helped me achieve the seemingly impossible. I would

like also to express my appreciation to my co-advisor, Dr. Roberto

Uribeetxeberria Ezpeleta from MU as well; his enthusiasm, feedback

and practical way of thinking has broadened my perspectives.

The financial support from the Erasmus Mundus Lamenitec Programme

and the National University of Engineering (UNI) is gratefully acknowl-

edged.

Special thanks to Dr. Iñaki Garitano and Iñaki Arrenaza for their valu-

able reviews and discussions. Also thanks to Dr. Enaitz Ezpelta and

Dr. Mikel Iturbe for providing very important support during my won-

derful stay in MU. Also I would like to thank to Assier Aduriz, Dr.

Pablo Vásquez, Dr. Alain Peréz, Dra. Ane Alberdi, Dr. Aitor Lizeaga,

Dr. Aitor Arrieta, Dra. Maite B., Dr. Raúl Roldan, Dr. Unai Bernabe,

Miriam Moreno, Mikel M., contributed to my work in several ways too

long to be listed here.

I am particularly indebted to Edurne Agirre, and Oihane Lameirinhas

for their assistance with all practical issues regarding my work.

Last but not least, I want to express my gratitude to my two sons Oscar

Alejandro & Jan Sebastian, to mother Angelita, to my nephew Douglas

Alexander, and to my brothers and sisters, all of whom have been sup-

porting me all this time and an example to follow.

Abstract

The increasing technological revolution of the mobile smart devices

fosters their wide use. Since mobile users rely on unofficial or third-

party repositories in order to freely install paid applications, lots of

security and privacy issues are generated. Thus, at the same time that

Android phones become very popular and growing rapidly their mar-

ket share, so it is the number of malicious applications targeting them.

Yet, current mobile malware detection and analysis technologies are

very limited and ineffective. Due to the particular traits of mobile de-

vices such as the power consumption constraints that make unafford-

able to run traditional PC detection engines on the device; therefore

mobile security faces new challenges, especially on dynamic runtime

malware detection. This approach is import because many instructions

or infections could happen after an application is installed or executed.

On the one hand, recent studies have shown that the network-based

analysis, where applications could be also analyzed by observing the

network traffic they generate, enabling us to detect malicious activities

occurring on the smart device. On the other hand, the aggressors rely

on DNS to provide adjustable and resilient communication between

compromised client machines and malicious infrastructure. So, having

rich DNS traffic information is very important to identify malevolent

behavior, then using DNS for malware detection is a logical step in the

dynamic analysis because malicious URLs are common and the present

danger for cybersecurity. Therefore, the main goal of this thesis is to

combine and correlate two approaches: top-down detection by iden-

tifying malware domains using DNS traces at the network level, and

bottom-up detection at the device level using the dynamic analysis in

order to capture the URLs requested on a number of applications to

pinpoint the malware. For malware detection and visualization, we

propose a system which is based on dynamic analysis of API calls. This

can help Android malware analysts in visually inspecting what the ap-

plication under study does, easily identifying such malicious functions.

Moreover, we have also developed a framework that automates the dy-

namic DNS analysis of Android malware where the captured URLs at

the smartphone under scrutiny are sent to a remote server where they

are: collected, identified within the DNS server records, mapped the

extracted DNS records into this server in order to classify them either

as benign or malicious domain. The classification is done through the

usage of machine learning. Besides, the malicious URLs found are used

in order to track and pinpoint other infected smart devices, not cur-

rently under monitoring.

5

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Technical Background . 8

1.2.1 Android Systems . 8

1.2.2 Taxonomy of Mobile Malware 11

1.2.3 Malware analysis techniques 16

1.2.4 Introduction to the Domain Name System 18

1.3 Research Statement, Hypotheses and Main Objective 21

1.3.1 Research Statement . 21

1.3.2 Hypotheses and Main Objective 22

1.4 Technical Objectives . 23

1.5 Methodology . 23

1.6 Thesis Contributions, Papers and Thesis outline 26

1.6.1 Thesis Contributions . 26

1.6.2 Papers . 28

1.6.3 Thesis Outline . 29

2 Rule-based Visualization of Android API calls 30
2.1 Introduction . 30

2.2 Related Work . 34

2.3 Platform Architecture . 37

2.3.1 Embedded client and Sink . 39

2.3.2 The Web Service . 40

2.3.3 Instrumenting an Application 42

2.3.3.1 Hooks insertion . 42

2.3.3.2 Hook example . 43

2.3.4 Visualization . 45

2.3.4.1 Rules "Generation" 47

i

2.4 Testbed and Experimentation . 48

2.4.1 Experiment set up . 49

2.4.2 Client-side monitoring . 50

2.5 Results . 52

2.5.1 Visual analysis of the traces with Neo4j-graphs 52

2.5.2 Visual analysis of the traces with dendrogram diagrams . . . 53

2.5.3 Interactive Dendrograms . 55

2.5.4 Client-side CPU use analysis 58

2.5.5 Responsiveness . 60

2.6 Limitations . 61

2.7 Conclusions of the Chapter . 63

3 Dynamic DNS request monitoring of Android malware 64
3.1 Introduction . 65

3.1.1 Problem definition . 66

3.1.2 Contribution and Outline of the chapter 66

3.2 Related Work . 67

3.3 Method1: Dynamic DNS request monitoring of Android malware

via networking . 69

3.3.1 Network Sentinel: The Proposed Malware Detection Tool via

networking . 70

3.3.2 Experimental Results . 73

3.3.2.1 The capture of the Requested URLs 73

3.3.2.2 The Maliciousness of the Android application . . . 74

3.3.2.3 Battery Usage with Network Sentinel working 75

3.4 Method2: Dynamic DNS request monitoring of Android malware

via instrumentation . 76

3.4.1 AppURL: The Proposed Malware Detection Tool via instru-

mentation . 76

3.4.1.1 First Phase: Acquisition of data, Analysis and Mon-

itoring of mobile traffic at the network level 77

3.4.1.2 Second Phase: Identification of captured URLs . . . 80

3.4.1.3 Third Phase: Storage of malicious URLs 80

3.4.2 Experimental Results . 80

3.4.3 Remarks on the Method2 . 81

3.5 Comparison of the previous methods 83

ii

3.6 Limitations . 85

3.7 Conclusions of the Chapter . 85

4 A Framework to detect Android Malware from DNS Servers 86
4.1 Introduction . 86

4.1.1 Problem Statement . 88

4.1.2 Contribution and Outline . 89

4.2 The Framework to detect Android malware using DNS Servers . . . 89

4.2.1 Related Work . 91

4.2.1.1 Network-based Android MD 92

4.2.1.2 Collaborative Approaches for Android MD 92

4.2.2 Research methodology . 95

4.2.2.1 Introduction to the Malware Dataset 96

4.2.2.2 Data Generation (DNS Data Sources) 96

4.2.2.3 Log aggregation and transport 98

4.2.2.4 Search and Analytics 99

4.2.2.5 Visualization . 102

4.3 Experimental Results . 103

4.3.1 Experimental Results without ML 103

4.3.2 Experimental Results with ML 105

4.4 Limitations . 107

4.5 Conclusions of the Chapter . 108

5 Conclusions and Future Work 109
5.1 Conclusions . 109

5.2 Future Work . 111

Bibliography 114

iii

Chapter 1

Introduction

This chapter contains the antecedents and an overview of the research project that

we carried out in order to develop this PhD thesis. First of all, we motivate the

main reasons why we chose as subject of the thesis, Dynamic DNS Monitoring of
Android Malware behavior as the main scope of this work. Second, we introduce

and explain the background of the research, focusing briefly on the major issues

of its knowledge domain and clarifying why these issues are worthy of attention.

Third, we then proceed with the presentation of the research statement. Forth, af-

terwards, we link the research problem statement with the objectives of this work

and with the hypotheses that guide us to provide a solution to the problem; as

well as the research methodology used in this work is described. Finally, the thesis

contributions with its associated publications are detailed, and the thesis outline

is also presented.

1.1 Motivation

Mobile devices have become an attractive and an indispensable asset today, they

are based on outstanding advances on computing & communication and sensing

capacities, making critical personal and professional information accessible to the

user at all times. As the most popular personal smart devices at present, smart-

phones are outselling the number of Personal Computers (PCs) worldwide since

2011 [2]. In our research we consider Android Operating System (OS), because

is the dominant mobile operating system, nowadays. Given the ubiquitous na-

ture of Android OS and the menaces against this mobile ecosystem, there is an

urgent need for comprehensive & effective techniques to support the development

of trustworthy tools for detection approaches and classification analysis. Since An-

droid users are usually related with third-party applications, lots of security and

1

privacy problems are generated. Yet, current mobile malware detection techniques

and analysis technologies are still ineffective and limited. In [3], it is stated that

“Due to the specific characteristics of mobile devices such as limited resources,

constant network connectivity, user activities and location sensing, and local com-

munication capability, mobile malware detection faces new challenges, especially

on dynamic runtime malware detection. Many intrusions or attacks could hap-

pen after a mobile App is installed or executed.” However, both in academia and

industry there is a pressing need for practical and effective dynamic malware de-

tection approaches.

During the last decade, we have witnessed the rise of a new generation of per-

sonal devices that have revolutionized our modern society. The massive adoption

of mobile communications in everyday life has brought unprecedented need for

the society to trust in mobile infrastructures. This is a major challenge in terms

of security today, since the amount of smart devices is increasing growth in the

mobile market of smartphones and, despite the existing security mechanisms. In

Figure 1.1, the growing and forecast of the mobile phones worldwide, 2015-2020.

Concurrent with the aforementioned emergent growth is the amount mature mali-

cious applications (commonly referred to as malware) targeting the smart devices.

Nowadays, the Android application ecosystem has grown considerably over the

last years. The increasing number of malicious applications targeting Android de-

vices raises the demand for analyzing them to find where the malcode is triggered

when user interacts with them. In addition, smartphones running on Android

platform represent an overwhelming majority of smart devices. For instance, with

a global market share of 85% in the first quarter of 2017 (1Q17) and keeps growing

continuously [4]. Besides, it was most placed at 3.5 million the number of avail-

able applications for mobile Android OS in the Google Play Store in December

2017 [5], see Figure 1.2. In fact, since every smartphone is actually a hand-held

computer, it can be infected by malware. Of course, the outgrowth of mobile smart

devices has also been supported by the enhancement of the OS technology uphold-

ing them. Therefore, in the Android ecosystem, the number of malicious Apps are

constantly increasing. For instance, in [6], it is reported that a new malware for

Android is released roughly every 10 seconds.

The F-Secure-Threat-Report State of Cyber Security 2017 [7] stated that "There

are over 19 million malware programs developed especially for Android, making

Google’s mobile operating system the main target for mobile malware. The reason

2

Figure 1.1: Mobile Phone Users and Penetration Worldwide, 2015-2020 [8].

for this is the vast distribution of Android devices, as well as the relatively open

system for the distribution of Apps. And consequently, over 99% of all malware

programs that target mobile devices are designed for Android devices." Figure 1.3

shows the reported number of Android Malware in AV-TEST’s Database [7] from

January 2011 up to part of April 2017. Also, another Threat Report [9] shows, see

Figure 1.4, that between January and September 2017, it was found 32 different

menaces on Google Play; around twice the amount from the same period in 2016.

This seems like a trivial problem and it does not sound like a big number of de-

vices, but this kind of threats are very smart and specialized malware accordingly

to [9]: "the significant point was that this looked like targeted, precision malware

rather than a broad data-stealing tool."

The increase in the number of Internet-connected mobile devices worldwide

because of the portability and relatively low cost of the smartphones, along with

a gradual adoption of LTE/4G, has drawn the attention of attackers seeking to

exploit vulnerabilities and mobile infrastructures. Therefore, at the same time,

the malware targeting smartphones has grown exponentially due the popularity

of Android OS, which has led to a huge increase in the spreading of this kind

of malicious applications. Moreover, mobile users increasingly rely on unofficial

repositories to freely install paid applications whose protection measures are at

least dubious or unknown to say to speak. Some of these applications have been

3

Figure 1.2: Number of available applications in the Google Play Store from December
2009 to December 2017 [7].

uploaded to such repositories by malevolent communities that incorporate ma-

licious code into them. In agreement with [10]: “The end-users without enough

knowledge on the security aspect of mobile applications cannot identify whether

the downloaded App is malicious. These unverified and unreliable mobile appli-

cations may lead to the risk of devices hacking.” This poses strong security and

privacy issues both to users and operators [11].

In order to cope with the malware threats, it is required collecting a large

amount of data issued by applications for smartphones, which is essential for

making statistics about the applications’ usage or characterizing the applications.

Characterizing applications might be useful for designing both an anomaly detec-

tor and a misuse detector, for instance. So, it is necessary to record device infor-

mation most efficiently and effectively possible, to face this malware increase. For

example, logging information from applications destined for smartphones is be-

coming vital for evaluating the security of an application. A log may characterize

the application behavior, e.g. for designing an anomaly detector or for evaluating

the energy footprint.

4

Figure 1.3: Number of malicious Android Apps reported to AV-TEST Institute, over
the time, January 2011 to April 2017 [7].

However, Android platforms put restrictions on applications for security reasons.

These restrictions prevent us from easily collecting traces without modifying the

firmware or rooting the smartphone. Since modifying the firmware or rooting

the smartphone may void the warranty of the smartphone, this method cannot

be deployed on a large scale. Nevertheless, most of the methods presented in the

literature so far need to root the phone in order to access relevant information.

In this situation, many users may resist rooting a phone and thereby losing the

warranty that comes with it, but may accept a purposeful study by a trusted agent

(e.g., a security vendor).

This research work proposes an infrastructure for inserting hooks and/or with

a non-rooted basic sniffer (Android application), collecting the application traces

using the hooks and a network traffic agent, and uploading the traces to a remote

server for observation and analysis. In this way, we are able to monitor Android ap-

plications (Apps) at a large scale at the application layer independently from the

hardware, and without requiring changes to the firmware or rooting the phone.

We will describe the infrastructure all the way from the client end elements to the

elements that reside at the remote server in the coming chapters. Furthermore,

5

we show how our potential changes at the application layer to achieve the men-

tioned remote monitoring may affect the application performance, by measuring

its overhead at the smartphone side. Our monitoring system is portable between

smartphones running on Android platforms. As opposed to other works [12],

[13], we do not root the smartphone or change its firmware in order to monitor

smartphones. The monitoring infrastructure can be made freely available to the

Android security community, or adapted for other purposes.

Figure 1.4: Threats on Google Play doubled between January and September2017 [9].

So, there is an open issue where research is needed: To monitor the current fast

and ever-growing malware threat (problem), which is raising and ever increasing

in number and complexity as the time goes on with more sophistication to evade

detection and analysis.

On the other hand, in [14] it is mentioned that “greater and greater amounts

of manual effort are required to analyze the increasing number of new malware

samples. This has led to a strong interest in developing methods to automate the

malware analysis process”. Therefore, there is a need to continuously monitor

applications and learn about their behavior on the “flight”.

To our knowledge, many mobile users do not keep safe or protect their smart-

phones from malware since they falsely assume that the mobile network operator

will safeguard them in the case of an attack. “However, this is not (yet) true. So

far, only Internet Services Providers (ISPs) provide real-time malware detection

6

directly in the network and mobile end users are left unprotected.” [15]. Indeed,

we would like to contribute in this direction, to promote the protection of smart

devices from malware, in order to reduce this gap in the Android ecosystem secu-

rity.

In summary, mobile devices have become major targets for smart malware due

to their constant network activity, including the Internet access. Thus, there is an

urgent need for detecting potential malicious behaviors by means of advanced dy-

namic mobile malware detection methods. Furthermore, Android malware is one

of the major security issues and fast growing threats facing the Internet in the mo-

bile arena. In this context, it is worth mentioning that the Domain Name System

(DNS) is widely misused by miscreants in order to provide Internet connection

within malicious networks, and DNS has turned an appealing target for malware

developers. Thereby, DNS should be the first line of defense against many malev-

olent attacks. As it is well-known, DNS is one of the key critical elements of the

Internet that facilitates associating or translating memorized domain names into

IP addresses, and vice versa. Then subsequently, in addition to the crucial role in

functioning of the Internet, DNS is put to wrong use by malware authors. Thus,

the aggressors rely on DNS to provide adjustable and resilient communication be-

tween compromised client machines and malicious infrastructure [16].

Besides, the information collected from the devices along with the collection

of DNS-service traffic in the networks of the operator might be combined for the

monitoring, detection, characterization, and mitigation of mobile threats, as well

as to create an early warning system for the operators. From an infrastructure

perspective, the deployment of mobile devices is a double-edged sword: it can be

used for massive attacks and rapid exploitation of security threats, but it can also

be used as a massive network of distributed sensors in order to obtain a global

real-time location for the emergence of malware and to facilitate early warning

to the operator’s infrastructure. This thesis will take advantage of the potential

of this latest idea. In this way, it is noting that a mobile operator could quickly

or indirectly detect other infected devices that had not installed the monitoring

application. This detection is due to they behave in the same manner, by doing the

same DNS queries than the monitored devices. This is certainly a very valuable

benefit, because we do not need to monitor all the smart devices in the mobile

network at the same time. Since we collect the used URLs on the Android device

instead of on a remote server or gateway, we shorten the time to detect malware as

it is suggested in the hybrid analysis method dubbed NeseDroid [17].

7

Consequently, it seems natural to link both issues, the dynamic analysis of the

growing theats posed by Android malware that abused intensively of the DNS

queries at the smartphone level with the DNS service traffic at the network level.

Thus, this thesis aims to put together these two approaches by applying Dynamic

DNS Analysis for Android malware detection.

1.2 Technical Background

In this section, we introduce what the reader needs to know to understand the

context of the thesis.

1.2.1 Android Systems

In this subsection we introduce the Android OS. Android is a Linux-based OS

designed primarily for touchscreen mobile devices developed by Android, Inc.,

which was later bought by Google.

In order to understand the Android malware features it is firstly important to

have a whole picture of the security model of this mobile OS to be able to assess

its strengths and vulnerabilities, and therefore have an idea of the deficiencies or

aspects that need improving that are currently being exploited by malware writers.

The architecture of Android is based on a multilayer model as shown in Figure 1.5.

Platform Architecture. The architecture of the Android System can be divided

into four main parts (see Figure 1.5): applications, application framework, mid-

dleware, and Linux kernel.

• Applications: The top layer of the architecture is where the applications

are located. They are written in Java language and use the APIs (Applica-

tion Programming Interfaces) and libraries provided by the lower layers. An

Android application is composed of several components, amongst which we

have Activities and Services. Activities provide an user interface (UI) of the

application and are executed one at a time; Services are used for background

processing such as communication, for instance.

• Application Framework: This is a suite of Services that provides the en-

vironment in which Android applications run and are managed. These pro-

grams provide higher-level Services to applications in the form of Java classes.

8

Figure 1.5: Overview of the Android System.

• Middleware: This layer is composed of the Android runtime (RT) and C/C++

libraries. The Android RT is, at the same time, composed of the Dalvik Vir-

tual Machine (DVM) and a set of native (core) Android functions. Note that

Android version 4.4 launches a new virtual machine called Android runtime

(ART). ART has more advanced performance than DVM, among other things,

by means of a number of new features such as the ahead-of-time (OTA) com-

pilation, enhanced garbage collection, improved application debugging, and

more accurate high-level profiling of the Apps [18]. The DVM/ART is a key

part of Android as it is the software where all applications run on Android

devices. Each application that is executed on Android runs on a separate

Linux process with an individual instance of the DVM/ART, meaning that

multiple instances of the DVM/ART exist at the same time. This is man-

aged by the Zygote process, which generates a fork of the parent DVM/ART

instance with the core libraries whenever it receives a request from the run-

time process.

• Linux Kernel: The bottom layer of the architecture is where the Linux kernel

is located. This provides basic system functionality like process and memory

management. The kernel also handles the drives for interfacing to peripheral

hardware such as screen and camera.

In standard Java environments, Java source code is compiled into Java bytecode,

which is stored within .class format files. These files are later read by the Java

Virtual Machine (JVM) at runtime. On Android, on the other hand, Java source

9

code that has been compiled into .class files is converted to .dex files, frequently

called Dalvik Executable, by the “dx” tool. In brief, the .dex file stores the Dalvik

bytecode to be executed on the DVM.

Android applications are presented on an Android application package file

(APK) .apk, the container of the application binary that contains the compiled

.dex files and the resource files of the App. In this way, every Android applica-

tion is packed using zip algorithm. An unpacked App has the following structure

(several files and folders)[7], see Figure 1.6:

Figure 1.6: The APK package structure.

• META-INF: it is a directory which contains the digital certificate with which

the application was signed (App RSA), and the signatures of all the files

within the APK package (the MANIFEST.MF and the CERT.SF files contain

the list of files and the SHA (Secure Hash Algorithm), in particular the SHA-

1 hashes, of the files and of their declarations in the Android-Manifest.xml

file, respectively). It also holds a list resources;

• an AndroidManifest file.xml: it contains the settings of the application

(meta-data) such as the permissions required to run the application, version,

referenced libraries, the name of the application, and the definition of one or

more components such as Activities, Services, and Broadcasting Receivers, or

Content Providers. Upon installing, this file is read by the PackageManager,

10

which takes care of setting up and deploying the application on the Android

platform;

• an assets folder: it stores noncompiled resources. This is a folder containing

applications assets, which can be retrieved by AssetManager;

• The classes.dex: it stores all Android classes compiled in the dex file format

to be executed on the DVM. In the case of ART, Dalvik bytecode is stored in

an .odex file (pre-processed of .dex) [19];

• a res folder: it holds the resources used by the applications. By resources,

we mean the App icon, its strings available in several languages, images, UI

layouts, menus, and so forth. In short, it contains resources not compiled

into resources.arsc [19];

• resources.arsc: it is a file that describes the precompiled resources (e.g. bi-

nary xml);

• lib: it is a directory which contains the compiled code that is specific to a

software layer of a processor;

For protecting a smartphone against attacks, several security mechanisms can

be found into the corresponding OS. In particular, one the prevalent security mech-

anism in Android smartphones, is its used User’s Permission model. Regarding the

runtime permissions, note that the release of Android version 6.0 (API level 23),

demands asking users for dangerous permissions during runtime or at the time

the users are needed. Another security mechanism is the App execution isolation

using the DVM/ART. In other words, Android uses UNIX-like user IDs to assign

specific permission to applications. A comprehensive guide to Android security

mechanisms can be found in [20] and [21].

1.2.2 Taxonomy of Mobile Malware

In this subsection, we introduce key aspects of mobile malware and list some of

them. In our case, we will describe various potential attack scenarios where an

attacker can take advantage of the vulnerabilities of the Android platform to com-

promise a user.

At present, the cyber attacks can be of any form ranging from opportunistic at-

tacks such as phishing, spamming, SQL Injection Attack, Denial of Service (DoS),

11

to more precisely targeted ones like the Advanced Persistent Threat (APT), which

is an stealthy and continuous attempt or hacking process to infiltrate a particular

target organization for business or political reasons.

In general, we can usually consider three common types of malicious or in-

trusive software (malware): virus, worm, and Trojan horses. A virus is a piece of

code that can replicate itself. In other words, it has the ability to harm and self-

replicating in order to infect hosts. A virus comes in a resident medium that can

be, e.g. an executable file or a USB memory. If the user runs this “payload” (which

represents the actual content that is used to harm the device of the victim), the

virus executes its malicious commands, which can be almost everything the OS

allows. A worm is a program that makes copies of itself and it can often spread

without user interaction. Once started, it looks for an infectable victim within

reach. If a victim is found, it tries to exploit a vulnerability to stick to the victim

and then repeats this action. Sometimes worms allow back door access by drop-

ping other malware to the infected machine. A back door allows a hacker to gain

access to a remote computer. Malware can also come packaged as a Trojan horse,

a software that appears to provide some useful functionalities but, it contains a

malicious program instead. Moreover, a Trojan horse is a program that is used to

trick users, e.g. as a popular application, in order to convince a user to execute or

install it [22, 23].

The malware propagation concept refers to the electronic method, by which,

malware is spread to an information system, platform or device it seeks to infect.

Malware can be propagated using several techniques and communication inter-

faces (through OS, across wireless networks, by means of file sharing, through

visualized systems, over e-mail communications, throughout social networking),

in other words, ranging from an exploit to using social engineering (malware re-

quiring user interaction) [23]. With respect to smartphones, most used means of

infection are Bluetooth, Internet, SMS, MMS, Memory Card, and USB [22].

Nowadays, a universally accepted mobile malware taxonomy does not exist

either in the academic literature or in the security experts domain. We can start by

taking into consideration the taxonomies implicitly proposed by the major mobile

anti-virus companies in their periodical reports.

Classification of Android malware attacks and intrusions. Regarding security

and privacy issues to users, smart devices present greater challenges than con-

ventional PCs. Of course, most of the existing Android malware types are di-

12

rectly inherited from the desktop space (e.g. Adware). However, there are other

Android malware types that are unique to mobile space (e.g. Trojan-SMS). As

aforementioned, this is due to such devices incorporate several sensors that could

leak highly sensitive information about their owners or users [11]. On August the

9th 2010, Kaspersky discovered the very first SMS Trojan for Android in the wild

dubbed FakePlayer 1.

By the end of 2010, the Android malware dubbed Geinimi was discovered. The

paper in [24] presents a comprehensive Android malware evolution from the first

SMS Trojan discovered in the wild in 2010 to the sophisticated malwares seen

in the official Google Play during the first half of 2011 like DroidDream, Droid-

KungFu, and Plankton. Also, Castillo in [24] presents some common methodolo-

gies and tools used to analyze two samples of Android malware, namely: Fake-

Player and Plankton.

La Polla et al. [25] conducted a literature survey on menaces and exposures

with a focus on work published from 2004 until 2011. Furthermore, other authors

also surveyed on threats and vulnerabilities following the same line of research as

in [25] for the period from 2010 until 2013 [11], and from 2010 until 2014 [26],

respectively. Several works related to the categorization and classification of mal-

ware attacks and intrusions can be found in [11, 27, 28, 29], and they included

various of the taxonomies focused on the categorization of mobile device misuse.

A thorough survey of Android malware is presented by Jiang and Zhou in [30]

charting the most common types of permission violations in a large data set of

malware. Noting that the Android Malware Genome (MalGenome) Project cre-

ated circa 2011 has been one of the most widely studied dataset by the research

community due to its easy access. However, by end of 2015, the Genome authors

have stopped the efforts of malware dataset sharing due to resource limitation [3].

A more in-depth analysis of a current Android malware dataset public available

is provided in [31]. Recently, in [32, 33, 19], they surveyed mobile malware anal-

ysis techniques to cope with Android malware on mobile devices, comprehensive

taxonomies to classify and characterize the state-of-the-art research in this area, as

well as malware tactics to hinder analysis.

An appealing alternative of malware classification encompassing most of the

above described vulnerabilities is shown in Figure 1.7. This Figure also includes

some malware usually directly inherited from the traditional PCs environment

1The list of one year of Android malware after it began is detailed in
http://hackmageddon.com/2011/08/11/one-year-of-android-malware-full-list/

13

(e.g., Rogue-also known as FraudTool-AV), even if some of them have additional

capabilities due to the mobile space.

Furthermore, the basic level premium-SMS Trojans is still expected to grow

in number. Most seriously, current Trojans are using advanced polymorphism

and metamorphism based techniques making it impossible to detect them solely

through static analysis (i.e., only by means of code checking of the involved App,

see further details in subsection1.2.3). Android malware with kernel-level rootkit

has been demonstrated as a proof-of-concept already. Such malicious Apps are

harder to combat since they are able to modify OS level code of the system. Re-

searchers in [34] predict worms capable of self-replicating without human inter-

vention as the next step in the evolutionary development of malware.

Figure 1.7: The Android malware types [35].

Some malware categories could be defined as follows [35], see Figure 1.7:

• Root Exploits or Rootkits, it is a malware that operates at the kernel level of

the Android OS;

• Botnet, it is a number of interconnected infected smart devices. Each mobile

device is called a bot. A collection of such bots is referred to as a botnet. They

14

execute tasks and clear their actions based on a control and command (C&C)

server or software;

• Rogue or Scareware, it is a faked antivirus tool or a deceptive App that mis-

leads a user to believe that it is a well-known or trusted software in order to

steal money and/or confidential data;

• Trojan or Trojan Horse, it is a type deceptive App that is often disguised as

legitimate software;

• Infostealers, Trojan that exploits Apps. Since, they can easily get the list of

contacts of the user, browsing history, device International Mobile Equip-

ment Identity (IMEI), etc. through API calls if they have the right permis-

sions;

• Spyware, it is a Trojan that performs espionage on any actions of smart device

users;

• Ransonware, it is a Trojan that usually prevents users from accessing their

smartphone, either by locking or encrypting the users' files unless a rescue is

paid;

• Trojan-SMS, Trojan that subscribes the users to premium-rate call services

and the cost of these SMS messages are charged to the sender’s phone bill,

without his/her authorization.

• Adware, i.e., a program that displays unwanted advertisement [36];

• Grayware, which is a legitimate App that collects data user for the purpose

of marketing or user profiling without harming intentions.

• Virus/Worm, a virus/worm adapted to the mobile environments.

In Figure 1.8 [37] shows the many different ways that a hacker can profit from

a compromised mobile device. Some of these, such as ransomware, fake anti-virus

sofware, botnet activity and data theft, have migrated from the traditional PCs.

Similar to other mobile platform owners do, such as iOS and Windows Phone,

in Android the applications submitted to the official repository are analyzed before

they are publicly available. In this particular case, Google runs those applications

for a short period of time on a virtual machine called ”Bouncer” (which is a dy-

namic analysis tool), looking for malicious behavior. However, usually the Bouncer

15

Figure 1.8: Anatomy of a hacked Mobile Device [37].

can be bypassed or tricked [11] since the malware could manage to circumvent the

service by changing their manner of operating or with application updates and,

apparently, all those mechanisms are not effective enough.

1.2.3 Malware analysis techniques

In [38] it is defined that "Malware analysis is the art of dissecting malware to un-

derstand how it works, how to identify it, and how to defeat or eliminate it."

Malware analysis is the study or process of extracting information from mal-

ware through code checking and/or code execution inspection by using different

tools, techniques, and processes. It is a methodical approach to uncovering a mal-

ware’s main purpose by extracting as much data from a given malware sample

such as a virus, worm, botnet, scareware, spyware, trojan horse, rootkit, or back-

door. A method or a particular way of doing the malware analysis, that needs prac-

tical skills accordingly to a well established procedure is dubbed malware analysis

technique. However, the malware analysis can be also considered an art or craft,

because of the successful data extraction or to extract as much information from

the malicious code, it depends on the capability/adaptive nature of malware sam-

ple under inspection and the experience/skills of malware analyst.

16

Most often, when performing malware analysis, we will have only the malware

executable, which will not be human-readable. In order to make sense of it, we will

use a variety of tools and tricks, each revealing a small amount of information. We

will need to use a variety of tools in order to see the full picture. There are two

fundamental approaches to malware analysis: static and dynamic. Static analysis

involves examining the malware without running it. Dynamic analysis involves

running the malware.

Static Analysis (SA) represents an approach of checking source code or com-

piled code of applications before it gets executed. In other words, this type of

technique attempts to identify malicious code by unpacking and disassembler the

malware. The results depend on the up-to-dateness of the corresponding detec-

tion rules and methods. Yet the static analysis can be evaded through obfuscation

or encryption technique, and it is very ineffective against sophisticated malware.

So, the main idea behind using static techniques for detecting possible malicious

behavior is to utilize a relatively fast approach such as parametric-static code anal-

ysis, taint tracking, and control flow dependencies. Of course, all of these without

actually executing the malware. However, SA can miss important behaviors of the

malware.

Conversely, dynamic analysis techniques seek to identify malicious behaviors

after deploying and executing the malware on a controlled device or on an emula-

tor. Usually the dynamic analysis techniques focus on black-box testing. Blackbox

testing is the process of executing a malware in order to monitor its behavior. Dy-

namic Analysis (DA) techniques considers parameters including network traffic,

native code, system call sequences, processes, file system and registry changes, and

user interaction. It usually involves running the malware in a isolated environ-

ment to track its execution behavior, therefore immune to obfuscation attempts.

Egele [34] provides a comprehensive survey of various automated dynamic analy-

sis techniques. While considered more effective against several polymorphic and

metamorphic malwares which evade static analysis, dynamic analysis suffers from

having very resource-intensive utilization.

In summary heretofore we have introduced, malware detection (MD) tech-

niques for smart devices can be classified according to how the code is analyzed,

namely: static analysis and dynamic analysis. In the former case, there is an at-

tempt to identify malicious code by decompiling/disassembling the application

and searching for suspicious strings or blocks of code; in the latter case the behav-

ior of the application is analyzed using execution information. Examples of the

17

two named categories are: Dendroid [39] as an example of an static MD for An-

droid OS devices, and Crowdroid as a system that clusters system call frequency of

applications to detect malware [40]. Also, hybrid approaches have been proposed

in literature for detection and mitigation of Android malware. For example, Pa-

tel et al. [41] combine Android applications analysis and machine learning (ML)

to classify the applications using static and dynamic analysis techniques. Genetic

algorithm based ML technique is used to generate a rules-based model of the sys-

tem.

1.2.4 Introduction to the Domain Name System

The Domain Name System (DNS), it is charged of handling all naming virtually

within the Internet. It is a hierarchical decentralized system and core to the ap-

propriate operation of hardly all Internet Protocol (IP) network applications, as

well as the naming system for computers, smartphones, tablets, services, or other

resources connected to the Internet. DNS is a networking system which is a fun-

damental element of the Internet functionally that provides the lookup service to

convert domain names to their corresponding IP addresses.

The unavailability of the DNS network service due to a network disruption or

product of a cyber-security or privacy attack, as well as a consequence of manipu-

lating the integrity of the data contained within the DNS traffic, can collapse the

network from the perspective of the end user, even though we have network con-

nectivity (unless, of course, we already know the IP address of the web site we

would like to connect straightforward to); however we will not be able to connect,

and we will be unable to watch any hyper-linked contents. Thereby, one of the

critical aspects to sustain the proper functioning of the whole Internet is the need

to keep the DNS safe. Note that DNS query log files from the DNS servers provide

clues of the security of this system [42].

Most of the current applications and malware are also using DNS tunneling

techniques and HTTPs traffic. So, the DNS could be used as some kind of a back-

door. In this way, as several studies proposed, DNS is the first step in allowing

users to connect or visiting to specific websites. Indeed, it is likewise usable by

malware writers to carried out their malevolent activities. Given that the DNS

traffic is always available to flow freely through networks, exposing networks to

attacks that leverage this freedom of communications for lookups or for tunneling

of data out of the mobile users [43].

18

Now, let us consider DNS network traffic. The domain name space is struc-

tured like a tree and it outlines the specifications for each of the nodes within the

networked environment. A domain name identifies a node in the tree. The set

of resource information associated with a particular name is composed of resource

records (RRs), which is the elementary type of information link in DNS. Also, DNS

defines a number of various types of RR. For instance, an A-type RR links a domain

name with an IPv4 network address. The depth of a node in the tree is sometimes

referred to as domain level. For instance, the domain name H.D.B.A. identifies the

path from the root "." to a node H in the tree. Here, A. is a top-level domain (TLD),

B.A. is a second-level domain (2LD), D.B.A. is a third-level domain (3LD), and so

on [44] [45].

Figure 1.9: Basic DNS Resolution Flow [44].

As stated in [45]: "RRs are returned in response to a DNS query from a re-

quester. Figure 1.9 shows the basic flow of a DNS query. In this process, upon entry

of the desired destination from a host for the A-type record for www.example.com
in this case. A DNS query is initiated by a DNS resolver (usually included with

the device OS) running on a host. This application is responsible for generating

some sequence of queries and translating the responses to arrive at the requested

resource. There are two parts in a typical DNS resolution request: the recursive

and iterative part. In a typical use, an end system will issue a recursive request

using a stub resolver to a dedicated recursive DNS resolver (RDNS) (Step 1, Fig-

ure 1.9). If not relevant information exists in the resolver cache the device will

19

query the RDNS. So, in a recursive request, the RDNS is charged with completing

the iterative portion of the DNS resolution process. It will communicate with the

necessary remote name servers (NS) or DNS servers and returns a DNS answer,

from the authoritative NS for the requested domain, to the stub resolver in the

form of an RR-set. In the case of Fig.e 1.9, the RDNS sends iterative requests to the

various levels of the DNS hierarchy (Steps 2 to 7). In Step 7, the RDNS receives

the authoritative answer for www.example.com., and sends it to the requester (or

stub resolver) in Step 8, completing the DNS resolution, and initiate connection to

obtained IPv4, e.g. 192.0.2.54. The RDNS will typically cache the RR locally for

up to some period, the Time To Live (TTL), specified in the RR."

Wessels et al. [46] were the first to analyze Domain Name System (DNS) query

data as seen from the upper DNS hierarchy. The authors focused on examining

the DNS caching behavior of recursive DNS servers from the point of view of Au-

thNS (Authoritative name servers) and TLD servers, and how different implemen-

tations of caching systems may affect the performance of the DNS. AuthNSs that

have complete knowledge about a zone (i.e., they store the RRs for all the nodes

related to the zone in question in its zone files) are said to have authority over

that zone. Several studies provide deep understanding behind the properties of

malware propagation and botnet’s lifetime [44] [47]. An interesting observation

among all these research efforts is the inherent diversity of the botnet’s infected

population. Besides, in [48], there is a proposal of the analysis of passive DNS

traffic for network-based malware detection mainly for botnets, that make use of

dynamic mapping (between domain names and IP addresses) known as domain-

flux and IP-flux. Their analysis is based on graph theory and machine learning

algorithms. Recently, a more in-depth DNS traffic analysis on these evasive tech-

niques (agile DNS mappings) of the malware is given in [16]. Also, in [49] there is

a report on DNS lookup patterns measured from the .com TLD servers. Their anal-

ysis shows that the resolution patterns for malicious domain names are sometimes

different from those observed for legitimate domains. In [44], the system Kopis

is proposed to monitor query streams at the upper DNS hierarchy and be able to

detect previously unknown malware domains. Kopis directly uses the intuition

behind these past research efforts in the requester diversity and requester profile

statistical feature families in order to analyse DNS query patterns at the AuthNS

and TLD server level for the purpose of detecting domain names related to mal-

ware. For instance, a low rate (less than 0.0009%) of malware infections of DNS

traffic is reported by [50]. Regarding this result, in [19], it is stated that: “However,

20

this method indirectly measured domain-name resolution traces.” So, we need to

further research in the Android ecosystem, the possible correlation between mal-

ware domain detection at the DNS-network service level and malware detection at

the App level.

1.3 Research Statement, Hypotheses and Main Objec-
tive

In this section, we introduce the Problem Statement, the hypotheses that guide us

to tackle the research work, and the principal objective of this thesis.

1.3.1 Research Statement

This thesis aims to deal with the current and emerging threat of the Android mal-

ware in mobile ecosystems. Much of the research reported in the literature sur-

rounding mobile malware has been centered around the in-depth analysis of ma-

licious Apps (host-based systems) rather the network-based [51]. However, smart

devices are designed to be connected to a mobile network most of the time, so

with the former approach we are not able to detect malware activities occurring on

mobile devices through the Internet. Besides, with the latter approach (network-

based systems) for instance, where applications could be also analyzed by observ-

ing the network traffic they generate, which enables us to detect malicious activ-

ities occurring on the smart device (e.g., the DNS queries from the smartphone

to malicious remote server). Further by inspecting whom, an Android applica-

tion connects to, we can deduce its malicious behavior [13]. Since most of the

Android malicious Apps communicate with some command and control (C&C)

servers using the DNS system, then the DNS analysis is an appealing way to detect

the presence of malware.

As stated before, the cyber criminals make use of DNS services to exploit their

malicious networks (e.g., botnet). Thus, at this network level analyzing DNS re-

quests may be useful in the identification of current and future mobile threats.

Furthermore, mobile devices have become major targets for malware due to their

constantly crossing physical and network domains, so they are exposed to more

rate infections than desktop environment. In addition to, DNS plays a crucial role

in a large number of apps including those that allow the communication of most of

21

the mobile malware with some remote server(s). Then, gathering DNS-service net-

work traffic adds a new dimension to support the mobile malware detection. De-

veloping a collaborative framework between the aforementioned approaches (top-

down detection by identifying malware domains using DNS traffic and bottom-up

detection using dynamic analysis on Apps to pinpoint the malware) could further

enhance our chances of malware detection.

Furthermore, Android platforms put limitations on Apps for security reasons,

in order to avoid easily gathering traces without reshaping the firmware or rooting

the smartphone. Even so, we need to collect traces from Apps on a large scale,

herein this will be done under two constraints such as preclude modifying the

firmware or rooting the smartphone. As said before, without these restrictions the

warranty of the smart device may be invalidated or further exposed to malware

attacks. In particular, our research work faces the lack of a light framework for

analyzing mobile malware and correlating these two levels, namely: application

traces at host and network level and the traces of the DNS-service network traffic

at the operator’s infrastructure.

1.3.2 Hypotheses and Main Objective

The main goal of this thesis is to explore, design, and develop techniques that can

be used to detect malicious mobile behavior from "massive" sets of heterogeneous

sources. In particular, the DNS traffic activity produced by mobile malware will

be inspected and correlated with device-related activity.

The following hypotheses of work will be considered for this research project:

• Hypothesis 1: Detection and visualization of Android Malware Behavior can

be achieved by means of a rule-based system based on API calls without

compromising the performance of the mobile devices involved.

• Hypothesis 2: It is possible to design and develop a system capable of ex-

tracting from the Android application, the DNS request (queries) monitor-

ing the Android malware, in an efficient way regarding the resources of the

smart device.

• Hypothesis 3: The execution of malware implies in most of the times the

access of the same malicious domains in Internet, reason why the capture

of this type of consultations can give rise to detect infected devices without

needing to monitor the own device.

22

Hypotheses 1, 2 and 3 will be addressed in the coming Chapters 2, 3, and 4,

respectively.

1.4 Technical Objectives

The most technical objectives of this thesis are described below:

1. Investigate existing Android malware detection algorithms and methods in

terms of computing cost and detection strategy.

2. Design and develop a system capable of extracting from the Android applica-

tion, the DNS traffic in an efficient way regarding the resources of the smart

device.

3. Identify within the DNS records those requests that utilize the device run-

ning the Android application under test.

4. Map the local (extracted) DNS records into a server in order to classify them

either as benign or malicious domain.

5. Develop a framework that automates the former analysis (items 2, 3, and 4)

using our client(s) App(s) for smart devices developed or enhanced in this

thesis.

1.5 Methodology

This chapter contains the methodological part of the research project. In this sec-

tion the most important research stages are described.

The details of the methodology are defined according to the characteristics of

design science research (DSR) [52, 53, 54, 55].

In order to carry out this thesis work, we have followed the guidelines for per-

forming DSR in information systems as described by Peffers et al. in [56], see Fig-

ure 1.10. The methodology consist of six process steps or activities described as

follow. The Figure 1.10 summarizes the steps, methods and techniques used in

this research in accordance to the stages suggested by Peffers et al.:

1. Problem identification and motivation: In this activity, the definition of the

specific research problem was taken as input and used the information gath-

ered from the literature survey to motivate the relevance of the study and

23

Figure 1.10: Design science research process (DSRP) model, [56].

justification of the solution (e.g., it includes motivation and reasoning with

the understanding of the problem by the researcher). The survey was also a

tool to acquire useful knowledge to develop the proposed solution approach.

The resources needed for this activity include knowledge of the state of the

art problem and the importance of its solution. Here, we identified the prob-

lem to be resolved and we stated it clearly. See subsection 1.3.1.

2. Define Objectives of a solution: The second activity infers the outlined ob-

jectives of a solution from the problem definition and its requirements. Also,

it includes a more comprehensive state-of-the-art report to extract potential

open research issues, conceptual framework, and strategies to address the

problem, and thus suggest a possible solution to the problem stated based

on the formulated hypotheses. Herein, it is of paramount importance to

take into account the current solutions and their efficacy, if any. See sub-

section 1.4.

3. Design and development: According to the authors in [54] the third activity

consists: “Create the artifactual solution. Such artifacts are potentially, with

each defined broadly, constructs, models, methods, or instantiations.” For

instance, we can establish the technique of implementing the artifact. Also

in agreement with Peffers et al. in [56]:“ This activity includes determining

the artifact’s desired functionality and its architecture and then creating the

actual artifact. Resources required moving from objectives to design and

24

development include knowledge of theory that can be brought to bear as a

solution.” The design and prototyping of the artifact(s) usually implies some

publications, see section 1.6.2.

In our case, we proposed a technique of systematically exploring and mon-

itoring the execution of instrumented Apps in the cloud to detect Android

malware. In addition to that, we designed and created an Android DNS snif-

fer to conduct network packet analysis. So, with the latter artifact, we can in-

tercept malicious URLs based on the capture and review of the DNS queries

done by the malware at the smart device, and correlated with DNS-service

network traffic at the operator’s infrastructure to find and locate other in-

fected smart devices.

4. Demonstration (Experimentation): As stated in [56], this stage of Design
and Creation process is about to: “Demonstrate the efficacy of the artifact to

solve the problem. This could involve its use in experimentation, simula-

tion, a case study, proof, or other appropriate activity. Resources required

for the demonstration include effective knowledge of how to use the artifact

to solve the problem.” This activity is an iterative process which includes a

solution to re-design or design and experimentation steps. Once the solution

is envisioned, we plan to design and develop it. The outputs at this point are

malware detector artifacts (i.e., to provide a dynamic analysis and tracking

traces of audit data such as network traffic) and related publications, which

validate the original design and development.

We conduct the demonstration through experiments, so two frameworks were

developed in this thesis. One of them, it is a framework named AppShaper
(Chapter 2), which the main objective is the detection and visual analysis

of Android malware. The first framework is a rule-based visualization of

API calls of Android malware. The second framework dubbed SIMPLEDNS
(Chapter 4) includes the DNS request monitoring of Android malware based

on one of two novel methods proposed here (Chapter 3) combined with dy-

namic analysis of the Apps running on the smartphone [57, 58]. In the se-

quel, the analysis of the DNS-service network logs, including the identifica-

tion of the infected devices in the operator network without the direct moni-

toring of them. The operation of SIMPLEDNS is described in Chapters 3 and

4 that follow. We also address the efficacy of the two frameworks developed

25

to solve the problem, especially in the client side (i.e., the smart device). See

Step 4, in Figure 1.11.

5. Evaluation: The evaluation activity validates the solution. In this stage, we

employ a measurement campaign based on relevant metrics and analysis

techniques and to characterize the performance of this approach (satisfying

or not the stated hypothesis). In other words, we observe and measure how

well the artifact supports a solution to the problem. Besides, if it is feasible

we can conduct test on real scenarios, thereafter we can try to publish those

results (if that is allowed). For further details, see step 5 of the Figure 1.11.

6. Communication: Finally, Peffers et al. [56] define this activity as: “Commu-

nicate the problem and its importance, the artifact, its utility and novelty,

the rigor of its design, and its effectiveness to researchers and other relevant

audiences, such as practitioners, when appropriate.” Thus, we published the

results of our research in a set of papers [35, 59, 60, 61, 57]. The final output

of this activity is this thesis.

In Figure 1.11, we can appreciate in more details the research strategy that we

utilize in this thesis work.

1.6 Thesis Contributions, Papers and Thesis outline

1.6.1 Thesis Contributions

In this thesis we present methods to analyze mobile malware for Android environ-

ments when utilizing a behavioral analysis and a collaborative detection frame-

work (smart devices and DNS servers at the operator’s infrastructure, working

together).

The main contributions of the thesis can be summarized as follows:

1. In [35], we present a survey on dynamic Android malware detection. We first

recap the classification and security menaces of mobile malware. Then, we

review a number of dynamic malware detection methods proposed in recent

years. Additionally, we compare, analyze, and discuss on existing mobile

malware detection methods based on certain evaluation criteria. Finally, we

summarize open issues in this current research topic and point out future

research directions in mobile security, especially on dynamic runtime detec-

tion. This has been published in [35].

26

Research Process Sequence
Applied research technique Steps from the research strategy

Design & Creation

Executed activities

1

Review and Analysis of

documentation

- Getting acquitted

with previous

Android

prototypes

- Problem definition

2 - Literature Survey

- Hypotheses and Main

Objective

- Writing the state

of Art

- Defining the

requirements of

the artifacts

3 Development methodology

of the Artifacts, namely:

- Analysis & Design (A&D)

of Apps

- A&D of an IT system

based on ELK stack &

Machine Learning

- Creation the

artifactual

solution

4 - Simulations with

Android Emulators,

Experimental prototype

of the visualization

system (Artifact 1)

- Experimental Apps in

smartphones (Dynamic

DNS request monitoring

of Apps), publicly

available tool at Google

Play (Artifact 2)

- A case Study of the

whole DNS-based

framework (Artifact3)

- Demos of the

Rule-based

visualization of

Android API calls

at MU & Euskaltel

- Implementation

of the DNS

request

monitoring of

Apps at UNI

- Testbed of the

framework

SIMPLEDNS at UNI

5 - Good performance

metrics in visualization

using graphs

- Small impact on the

performance of the

smartphones involved

(CPU & RAM & Battery

consumptions)

- Tests of the

Artifact 1

- Tests of the

Artifact 2

- Tests of the

Artifact3

6

Scholarly publications

-05 conference Papers

and one Journal.

Figure 1.11: The Design science research process applied to this thesis work, [56].

2. We proposed a visual analysis of the behavior of Android Applications by

means of using an instrumentation framework in order to monitor the func-

tion calls invoked by App and represent the outcomes using graph modeling.

This has been published in [59].

3. Herein we extended the work in [59] in order to allow Android malware de-

27

tection by using rules-based expert systems. Alternatively, the visual analy-

sis is generated via behavior-related dendrograms out of the traces, that are

collected by a remote server from the instrumented Apps. A dendrogram

consists of many U-shaped nodes-lines that connect data of the Android ap-

plication (e.g., the package name of the application, Java classes, and meth-

ods and functions invoked) in a hierarchical tree. This has been published

in [60].

4. We investigated and proposed infrastructure for monitoring the Android ap-

plications in a platform-independent manner, introducing the capture and

interception of the URLs requested by the Apps at the smartphone (App

traces) [58] at runtime. These traces are collected at a central server where

the received URLs are utilized to do string pattern matching with the DNS

server records, in this way, in most of the time, we can pinpoint other smart

devices doing similar DNS consultations. Initially, the classification of these

domains could be done through the usage of blacklists. This has been pub-

lished in [61]. Later on, in Chapter 4 of this thesis, we have extended the

classification of the located DNS records by machine learning..

1.6.2 Papers

Most of these contributions have been published in the following list of publica-

tions:

• Oscar Somarriba and Henry Jaentschke, "Dynamic Android Malware Detec-

tion: A Survey". In Proc. of the IEEE LATINCOM Workshop 2017, Guatemala

City. Guatemala. Nov. 2017 [35].

• Oscar Somarriba, Ignacio Arenaza Nuño, Roberto Uribeetxeberria, and Urko

Zurutuza, "Analisis Visual del Comportamiento de Aplicaciones para An-

droid". RECSI XIII. Alicante, Spain (in Spanish). Sept. 2014 [59].

• Oscar Somarriba, Urko Zurutuza, Roberto Uribeetxeberria, Laurent Delosières,

and Simin Nadjm-Tehrani, "Detection and Visualization of Android Malware

Behavior". Journal of Electrical and Computer Engineering, 2016 [60].

• Oscar Somarriba and Urko Zurutuza, "A Collaborative Framework for An-

droid Malware Detection using DNS & Dynamic Analysis". In Proc. of

28

the 2017 IEEE 37th Central America and Panama Convention (CONCAPAN

XXXVII). Managua, Nicaragua. Nov. 2017 [61].

• Oscar Somarriba, "Detecting blacklisted URLs from unmodified and non-

rooted Android devices". In Proc. of the 2017 IEEE 37th Central America

and Panama Convention (CONCAPAN XXXVII). Managua, Nicaragua. Nov.

2017 [57].

• Oscar Somarriba, Luis Carlos Pérez Ramos, Urko Zurutuza, and Roberto

Uribeetxeberria, "Dynamic DNS Request Monitoring of Android Applica-

tions via networking". In Proc. of the 2018 IEEE 38th Central America and

Panama Convention (CONCAPAN XXXVIII). San Salvador, El Salvador. Nov.

2018 [58].

1.6.3 Thesis Outline

The thesis is written as a monograph composed of five chapters and it is organized

as follows.

Chapter 2, Rule-based visualization of Android API calls, proposes a work-

ing framework to examine Android applications by means of instrumentation and

collected traces in a remote server in order to conduct a dynamic analysis and its

results are shown in graphs and dendrograms.

Chapter 3, DNS request monitoring of Android malware, presents two novel

methods to detect Android malware based on capture and interception of URLs

(e.g., DNS queries to malign remote servers) combined with dynamic analysis.

Chapter 4, A Framework to detect Android malware from DNS servers, presents

a framework that provides a detection method that can be used for identifying po-

tentially compromised mobile clients based on DNS traffic analysis. The malware

detection is conducted by using DNS-service network traffic (DNS server records)

at the operator’s infrastructure and dynamic analysis at the host and network level

of the smartphones (Apps traces). The main goal of this framework is to combine

two approaches: top-down detection by identifying malware domains using DNS-

service network traffic and bottom-up detection using the runtime dynamic analy-

sis malware detection on a large number of Apps to hunt down the malware. String

pattern matching algorithms and theirs performance evaluations are used within

this approach combined with machine learning to classify the name domains.

Finally, Chapter 5, Conclusions and Future Work, discusses the results and

some remarking conclusions as well as further future research work.

29

Chapter 2

Rule-based Visualization of Android
API calls

This chapter proposes a framework named AppsShaper that allows rule-based vi-

sualization of Android API calls. The main motivation is as follows. Malware

analysts still need to manually inspect malicious software samples that are con-

sidered suspicious by heuristic rules. They dissect software pieces and look for

malware evidence in the code. The increasing number of malware samples tar-

geting Android devices puts up the demand for analyzing them to find where the

malcode is triggered when user interacts with them. In this chapter, a framework

to monitor and visualize Android applications’ anomalous function calls is de-

scribed. Our approach includes platform-independent application instrumenta-

tion, introducing hooks in order to trace restricted API functions used at run time

of the application. These function calls are collected at a central server where the

application behavior filtering and a visualization takes place. This can help An-

droid malware analysts in visually inspecting what the application under study

does, easily identifying such malicious functions.

2.1 Introduction

As was stated in Chapter 1, mobile malware is one of the greatest menaces in

computer security to our networked society.

In order to design a detection and visualization system of Android malicious

behavior, we need to characterize Apps. To do that, it is necessary gathering a

large amount of data emitted by Apps for smartphones which is crucial for mak-

ing statistics about the applications’ featuring usage or characterizing the appli-

cations. However, this is not straightforward, due to Android platforms put re-

30

strictions avoiding collecting traces without modifying the firmware or rooting

the phone, altogether it is not suitable to deploy on a large scale. To overcome

this we have the pressing need to apply another approaches such as instrumenting

an application. So, we resort to doing code injection (usually dubbed as well as

hooking) into selected API calls that allow to gather the data issued by Apps.

A hook is a functionality provided by software for users of that software to

have their own code called under certain circumstances. That code can augment

or replace the current code altering the behavior of an Operating Systems (OS),

of applications, or of other software components by intercepting function calls or

messages or events passed between software components. Code that handles such

intercepted function calls, events or messages is called a hook.

This chapter proposes an infrastructure for inserting hooks, collecting the ap-

plication traces using the hooks, and uploading the traces to a remote server for

observation and analysis. To the best of our knowledge, this was one of the first ap-

proaches which enable to monitor Android applications at a large scale at the ap-

plication layer independently from the hardware, and without requiring changes

to the firmware or rooting the phone. We also give a detailed description of the

infrastructure all the way from the client end elements to the elements that re-

side at the remote server. Furthermore, we show how our potential changes at

the application layer to achieve the mentioned remote monitoring may affect the

application performance, by measuring its overhead at the smartphone side. Our

monitoring system is portable between smart phones running on Android plat-

forms. As opposed to other works [62], [13], we do not root the smart phone or

change its firmware in order to monitor smart phones. The monitoring infrastruc-

ture can be made freely available to the Android security community, or adapted

for other purposes.

The architecture of the proposed framework can be split up in two flavors re-

garding the visualization component. First of all, the variant number one, when

Android applications are executed, they call a set of functions that are either de-

fined by the developer of the application, or are part of the Android API. Our

approach is based on monitoring a desired subset of the functions (i.e., hooked

functions) called by the application and then uploading them to a remote server.

For this, we use four components: (i) the embedded client, (ii) the Sink on the

smart phone side, (iii) the Web Service on the remote server, (iv) and the visu-

alization system based on graphs generated using the tool named Neo4j1. Thus

1https://neo4j.com/

31

malicious behavior could be highlighted in the graphs based on a predefined set

of anomaly rules. An overview of the framework based on graphs is depicted in

Figure 2.1. See further details in Section 2.3

Furthermore, the second variant of the proposed framework focuses on mon-

itoring Android applications’ suspicious behavior at runtime, and visualizing (in

a slightly different manner) its malicious functions to understand the intention

behind them. We also propose a platform-independent behavior monitoring in-

frastructure composed of four elements: (i) an Android application that guides

the user in selecting, instrumenting and monitoring of the application to be ex-

amined, (ii) an embedded client that is inserted in each application to be moni-

tored, (iii) a cloud service that collects the application to be instrumented and also

the traces related to the function calls, (iv) and finally a visualization component

that generates behavior-related dendrograms as well graphs out of the traces. A

dendrogram [39] consists of many U-shaped nodes-lines that connect data of the

Android Application (e.g., the package name of the application, Java classes and

methods and functions invoked) in a hierarchical tree. As a matter of fact, we are

interested in the functions and methods which are frequently seen in malicious

code. Thus malicious behavior could be highlighted in the dendrogram based on a

predefined set of anomaly rules. An overview of the monitoring system is shown

in Figure 2.2. See in more in-depth details of the framework in Section 2.3

Monitoring an application at runtime is essential to understand how it interacts

with the device, with key components such as the provided application program-

ming interfaces (APIs). An API specifies how some software components (routines,

protocols, and tools) should act when subject to invocations by other components.

By tracing and analyzing these interactions, we are able to find out how the ap-

plications behave, handle sensitive data and interact with the operating system.

In short, Android offers a set of API functions for applications to access protected

resources [63].

As stated before, Android applications are presented on an .apk file, the con-

tainer of the application binary that contains the compiled .dex files (in the case

of ART, Dalvik bytecode is stored in an .odex file) and the resource files of the

application. The resulting .apk file is signed with a keystore to establish the iden-

tity of the author of the application. Besides, to build Android applications, a

software developer kit (SDK) is usually available allowing access to APIs of the

OS [64]. Note that in this chapter we only consider the use of DVM instead of

ART. Additionally, two more components are described in order to clarify the

32

background of this chapter: the android-apktool [65], and the smali/backsmali

tools. The android-apktool is generally used to unpack and disassemble Android

applications. It is also used to assemble and pack them. It is a tool set for re-

verse engineering third party Apps that simplifies the process of assembling and

disassembling Android binary .apk files into smali .smali files and the application

resources to their original form. It includes the smali/baksmali tools, which can

decode resources (i.e., .dex files) to nearly original form of the source code and re-

build them after making some modifications (i.e. hooking). This enables all these

assembling/disassembling operations to be performed automatically in an easy yet

reliable way. We utilize smali/baksmali tools to inserts the hooks into the Apps.

However, it is worth noting that the repackaged Android binary .apk files can

only possess the same digital signature if the original keystore is used. Otherwise,

the new application will have a completely different digital signature.

The remainder of the chapter is organized as follows. Section 2.2 provides an

introduction of the state-of-art of the related work. Next we describe the moni-

toring and visualization architecture in Section 2.3, while we provide the details

of the implementational issues of our system in Section 2.4. Later, in Section 2.5,

we evaluate the proposed infrastructure and the obtained results by using 8 mal-

ware applications. Limitations and Conclusions are presented in Section 2.6 and

Section 2.7, respectively.

Figure 2.1: Overview of the monitoring system with graphs.

33

Figure 2.2: Overview of the monitoring system with dendrogram diagrams.

2.2 Related Work

Previous works have addressed the problem of understanding the Android appli-

cation behavior in several ways. An example of inspection mechanisms for identi-

fication of malware applications for Android OS is presented by Karami et al. [66]

where they developed a transparent instrumentation system for automating the

user interactions to study different functionalities of an App. Additionally, they

introduced run-time behavior analysis of an application using input/output (I/O)

system calls gathered by the monitored application to within the Linux kernel.

Bugiel et al. [27] propose a security framework named XManDroid that extends

the monitoring mechanism of Android, in order to detect and prevent application-

level privilege escalation attacks at runtime based on a given policy. The principal

disadvantage of this approach is that the modified framework of Android has to be

ported for each of the devices and Android versions in which it is intended to be

implemented. Unlike [66] and [27], we profile only at the user level and therefore

we do not need to root or to change the framework of Android smart phones if we

would like to monitor the network traffic for example.

Other authors have proposed different security techniques regarding permis-

sions in Android applications. For instance, Au et al. [67] present a tool to extract

the permission specification from Android OS source code. Unlike the other meth-

ods, Dr. Droid and Mr. Hide, implemented by Jeon et al. [68], does not intend

to monitor any smart phones. They aim at refining the Android permissions by

embedding a module inside each Android application. In other words, they can

34

control the permissions via their module. We also embed a module inside each

Android application but it is used to monitor the Android application instead.

In the work by Zhang et al. [63], they have proposed a system called VetDroid
which can be described as a systematic analysis technique using an App’s per-

mission use. By using real-world malware, they identify the callsites where the

App requests sensitive resources and how the obtained permission resources are

subsequently utilized by the App. To do that, VetDroid intercepts all the calls to

the Android API, and synchronously monitors permission check information from

Android permission enforcement system. In this way, it manages to reconstruct

the malicious (permission use) behaviors of the malicious code and to generate

a more accurate permission mapping than PScout [67]. Briefly this system [63]

applies dynamic taint analysis to identify malware. Different from VetDroid, we

do not need to root or jailbreak the phone nor do we conduct the permission-use

approach for monitoring the smartphone.

Furthermore, in [28], a learning-based method is proposed for the detection of

malware that analyzes applications automatically. This approach combines static

analysis with an explicit feature map inspired by a linear-time graph kernel to rep-

resent Android applications based on their function call graphs. Also, Drebin [29]

combines concepts from broad static analysis (gathering as many features of an

application as possible) and machine learning. These features are embedded in

a joint vector space, so typical patterns indicative of malware can be automat-

ically identified in a lightweight App installed in the smart device. Shabtai et

al. [69] presented a system for mobile malware detection that takes into account

the analysis of deviations in application networks behavior (App’s network traf-

fic patterns). This approach tackles the challenge of the detection of an emerging

type of malware with self-updating capabilities based on runtime malware detec-

tor (anomaly-detection system) and it is also stand-alone monitoring application

for smart devices.

Considering that [28] and Drebin [29] utilize static methods, they suffer from

the inherent limitations of static code analysis (e.g., obfuscation techniques, junk

code to evade successful decompilation). In the first case, their malware detec-

tion is based upon the structural similarity of static call graphs that are processed

over approximations, while our method relies upon real functions calls, that can

be filtered later on. In the case of Debrin, transformation attacks that are non-

detectable by static analysis, as for example based on reflection and bytecode en-

cryption, can hinder an accurate detection.

35

Although in [69], we have a detection system that continuously monitors App

executions. There is a concern about efficiency of the detection algorithm used

by this system. Unfortunately, in this case, they could not evaluate the Features

Extractor and the aggregation processes’ impact on the mobile phone resources,

due to the fact that an extended list of features was taken into account. To further

enhance the system’s performance, it is necessary to retain only the most effective

features in such a way that the runtime malware detector system yields relatively

low overhead on the mobile phone resources.

In [70], they proposed a two-step malicious App detection method, which com-

bines static and dynamic analysis approaches. During the static analysis, per-

mission combination matrix (the values of the matrix can be used to determine

whether some risky combination of two permissions exists) is used to determine

whether an App has potential risks. And then those suspicious applications are

further sent into the dynamic monitoring module to track the call information of

the sensitive APIs while it is running. In other words, for those suspicious Apps,

based on the reverse engineering, embed monitoring smali code for those sensitive

APIs is done such as sending SMS, accessing user location, device ID, phone num-

ber, etc. The monitoring report from the dynamic module is combined with DDMS

(Dalvik Debugger Monitor Server) logs, so they can conduct more in-depth man-

ual analysis related with the user privacy information leakage. Our approach in

this chapter is similar to this work in particular in the dynamic analysis, however

the visualization component is more advanced in our case, and we also run our

apps in real smart devices instead of only in the Android emulators in [70]. More-

over, our approach is done in a client/server architecture running on a web service

which is flexible, whereas their proposed method is confined to smartphones and

we they dont mention the overhead of their monitoring App.

Our proposed infrastructure is related to the approaches mentioned above and

employs similar features for identifying malicious applications, such as permis-

sions, network addresses, API calls, and function call graphs. However, it differs

in three central aspects from previous work: First, we have a runtime malware de-

tection (dynamic analysis) but abstain from crafting detection in protected envi-

ronment as the dynamic inspections done by VetDroid. While this system provides

detailed information about the behavior of applications, they are technically too

involved to be deployed on smartphones and detect malicious software directly.

Second, our visual analysis system is based on accurate API call graphs, which

enables us to inspect directly the App in an easy-to-follow manner in the cloud.

36

Third, we are able to monitor not just the network traffic, but most of the Re-

stricted and Suspicious API calls in Android. Our platform is more dynamic and

simpler than other approaches mentioned above.

Malware in smart devices still poses many challenges and in different occa-

sions, a tool for monitoring applications at a large scale might be required. Given

the different versions of Android OS, and with a rising number of device firmwares,

modifying each of the devices might become a nontrivial task. This is the scenario

in which the proposed infrastructure in this paper best fits. The core contribution

of this work is the development of a monitoring and instrumentation system that

allows a visual analysis of the behavior of Android applications for any device on

which an instrumented application can run. In particular, our work results in a

set of graphs/dendrograms that visually render existing API calls invoked by An-

droid malware application, by using dynamic inspection during a given time in-

terval, and visually highlighting the suspicious ones. Consequently, we aim to fill

the void of visual security tools which are easy-to-follow, and design for Android

environments in the technical literature.

2.3 Platform Architecture

Web Services extend the World Wide Web infrastructure to provide the means for

software to connect to other software applications [71]. RESTFul Web Services

are Web Services that use the principles of REpresentational State Transfer (REST)

[72]. In other words, they expose resources to clients that can be accessed through

the Hypertext Transfer Protocol (HTTP) protocol.

When Android applications are executed, they call a set of functions that are

either defined by the developer of the application, or are part of the Android API.

Our approach is based on monitoring a desired subset of the functions (i.e., hooked

functions) called by the application and then uploading information related to

their usage to a remote server. The hooked function traces are then represented

in a graph structure, and a set of rules are applied to color the graphs in order to

visualize functions that match known malicious behavior.

For this, we use four components: the Embedded client and the Sink on the smart

phone side, and the Web Service and the Visualization component on the remote

server side.

A work flow depicting the main elements of the involved systems are shown

in Figure 2.3 and Figure 2.4. The main difference between both systems is related

37

with the Visualization component, i.e., in Figure 2.3 it is a rule-based visualization

with graph diagrams [59] and in Figure 2.4 it is a rule-based visualization with

dendrogram diagrams [60]. The latest approach was taken in order to improve the

visualization interpretation that it was a little bit more complicated to do with the

Neo4j graphs in many cases. Let us describe the platform architecture in further

details.

Figure 2.3: Schematics and logical stages of the system with graph diagrams.

In Stage 1, the application under study and a set of permissions aiming to mon-

itor are sent to the Web Service. Next, the main processing task of Stage 2, labeled

as Hooking Process, is introduced. In this case, hooks or logging code are inserted

in the functions that require at least one of the permissions specified at the previ-

ous Stage. The new "augmented" application will be referred to as APP’ from now

on. Stages 3, 4, and 5 consist of running APP’, saving the traces generated by APP’

in the server’s database and showing the results as visualization graphs/dendro-

grams, respectively. The aforementioned infrastructure for platform-independent

monitoring of Android applications is aimed to provide behavioral analysis with-

out modifying the Android OS or root access to the smart device.

38

Figure 2.4: Schematics and logical stages of the system with dendrogram diagrams.

2.3.1 Embedded client and Sink

The monitoring system consists of two elements: an embedded client that will

be inserted into each application to be monitored, and a Sink that will collect

the hooked functions that have been called by the monitored applications. The

embedded client simply consists of a communication module that uses the User

Datagram Protocol (UDP) for forwarding the hooked functions to the Sink. Here,

JavaScript Object Notation (JSON) is used when sending the data to the Sink,

which allows sending dynamic data structures. In order to know the origin of

a hooked function that has been received by the Sink, the corresponding moni-

tored application adds its application hash, its package name, and its application

name to the hooked function which we call a partial trace before sending it to the

Sink.

The partial traces are built by the prologue functions (i.e., hook functions), that

are placed just before their hooked functions, and which modify the control flow

of the monitored applications in order to build the partial traces corresponding

their hooked functions and passing the partial traces as parameter to the embed-

ded client. Only the partial traces are built by the monitored application so that

we add little extra overhead to the monitored application. The insertion of the em-

bedded client and of the prologue functions in the Android application to monitor

is explained in Section 2.3.3.

39

The embedded client is written using the smali syntax and is included on each

of the monitored applications at the Web Service, at the same time that the func-

tions hooks are inserted, before the application is packed back into an Android

binary .apk file.

The Sink, on the other hand, is implemented as an Android application for

portability both as a service and an activity whose service is started at the boot

time. It is responsible for receiving the partial traces issued from all the monitored

applications clients via a UDP socket, augmenting the partial traces to get a trace

(i.e. adding a timestamp and the hash of the ID of the phone), storing them, and

sending them over the network to the Web Service. As for the activity, it is respon-

sible for managing the monitored applications via a UI, sending the applications

to hook to the Web Service, and downloading the hooked applications from the

Web Service. By hooked applications, we mean the applications in which hooks

have been inserted. Once an application has been hooked then we can monitor it.

Before storing the traces in a local database, the Sink first stores them in a cir-

cular buffer which can contain up to 500 traces. The traces are flushed to the local

database when any of the following conditions are met: (i) the buffer is half full,

(ii) the Sink service is shutting down, or (iii) upon an activated timeout expiring.

This bulk flushing enables the Sink to persist the traces more efficiently. Unfortu-

nately, if the service is stopped by force, we lose the traces that are present in the

circular buffer. Once the traces are persisted in the local database, the time-out

is rescheduled. Every hour, the Sink application tries to send the traces persisted

in the local database out to the Web Service. A trace is removed locally upon re-

ceiving an acknowledgment from the Web Service. An acknowledgment is issued

when the Web Service has been able to record the trace in a SQL database with

success. If the client cannot connect to the Web Service, it will try again at the next

round.

When a user wants to monitor an application, a message with the package name

as payload is sent to the Sink service which keeps track of all the applications to

monitor in a list. When a user wants to stop monitoring a given application, a

message is sent to the Sink service which removes it from its list of applications to

monitor.

2.3.2 The Web Service

This server provides the following services to Sink: upload applications, download

the modified applications and send the traces. Now the key part of the whole

40

system where the logic of the method presented lies, is the tool that implements

the application, a process known as "hooking". In the following, we explain it.

The Web Service, implemented as a Servlet on a Tomcat web application server,

is a RESTful Web Service which exposes services to clients (e.g., Android smart

phone) via resources. The Web Service exposes three resources which are three

code pages enabling the Sink to upload an application to hook, download a hooked

application, and send traces. The hooking process is explained in more detail in

Section 2.3.3.1.

The file upload service allows the Sink to send the target application to moni-

tor, and triggers the command to insert all the required hooks and the embedded

client to the application. Also, it is in charge of storing the submitted Android

binary .apk file on the server and receiving a list of permissions. This set of per-

missions will limit the amount of hooks to monitor, hooking only the API function

calls linked to these permissions. Conversely, the file download service allows the

Sink to download the previously sent application, which is now prepared to be

monitored. A ticket system is utilized in order to keep tracking of the current ap-

plication under monitoring. The trace upstream service allows the Sink to upload

the traces stored on the device to the server database and remove the traces from

the devices local SQLite database. Upon receiving traces, the Web Service persists

them in a SQL database and sends an acknowledgment back to the Sink. In case of

failure in the server side or in the communication channel, the trace is kept locally

in the SQLite database until the trace is stored in the server and an acknowledg-

ment is received by the Sink. In both cases, it might occur that the trace has just

been inserted in the SQL database and no answer is sent back. Then the Sink would

send again the same trace and we would get a duplication of traces. However, the

mechanism of primary key implemented in the SQL database prevents the dupli-

cation of traces. A primary key is composed of one or more data attributes whose

combination of values must be unique for each data entry in the database. When

two traces contain the same primary key, only one trace is inserted while the in-

sertion of the other one throws an exception. When such an exception is thrown,

the Web Service sends back an acknowledgment to the Sink so as to avoid the Sink

to resend the same trace (i.e. force the Sink to remove from its local database the

trace that has already been received by the Web Service).

41

2.3.3 Instrumenting an Application

In this Section, we first describe the process of inserting hooks into an Android

application and then we show an example of a hook implementation. A tutorial

on instrumentation Android applications is presented by Arzt et al. in [73].

However, before proceeding with the insertion of instrumentation code to the

decompiled APK below, we would like to clarify the effect of disassembling the up-

loaded applications, i.e., the differences between the original code and code gener-

ated after instrumentation. Briefly, the disassembling of the uploaded application

is performed by using the smali/baksmali tool which is assembler/disassembler

respectively for the dex format 2. This is the format used by Dalvik, one of the

Android’s JVM implementations. Thus, the disassembling is able to recover an

assembler-like representation of the Java original code. This representation is not

the original Java source code (Baksmali is a disassembler, not a decompiler after

all). However it creates both an exact replica of the original binary code behavior,

and high-level enough to be able to manipulate it in an easy way. This is why we

can add additional instructions to instrument the original code for our purposes

and then re-assemble it back to a dex file that can be executed by Android’s JVM.

On the other hand, as discussed in [73], instrumentation of applications outper-

forms static analysis approaches, as instrumentation code runs as part of the target

App, having full access to the run-time state. So, this explains the rationale behind

introducing hooks in order to trace core sensitive or restricted API functions used

at run time of the Apps. In other words, the smali code reveals the main restricted

APIs utilized by the Apps under test, even in the presence of source code obfusca-

tion. We can therefore resort to monitoring these restricted APIs and keep tracking

of those Android suspicious programs’ behavior

2.3.3.1 Hooks insertion

The hooking process is done in 6 steps: (i) receiving the application to hook from

the smart phone, (ii) unpacking the application and disassembling its Dalvik byte

code via the Android apktool, (iii) modifying the application files, (iv) assembling

Dalvik byte code and packing the hooked application via the Android apktool,

(v) signing the hooked application, and (vi) sending the hooked application upon

request of the smart phone.

Step iii can be subdivided into several sub-steps:

2https://source.android.com/devices/tech/dalvik/dex-format.html

42

1. adding the INTERNET permission in the AndroidManifest to enable the em-

bedded client inserted in the application to hook to communicate with the

Sink via UDP sockets.

2. parsing the code files and adding invocation instructions to the prologue

functions (PF) before their corresponding hooked functions. When the mon-

itored application is running, before calling the hooked function, its corre-

sponding prologue function will be called and will build its corresponding

partial trace. The list of desired functions to hook is provided by the admin-

istrator of the Web Service. For instance, if the administrator is interested in

knowing the applications usage, it will hook the functions that are called by

the application when starting and when closing.

3. adding a class that defines the prologue functions. It is worth noting that

there will be as many prologue functions as functions to hook. Each prologue

function builds its partial trace. Since we do not log the arguments of the

hooked functions, the partial traces that are issued by the same monitored

application, will only differ by the name of the hooked function. It is also

worth noting that the prologue functions are generated automatically.

Since every Android application must be signed by a certificate for being in-

stalled on the Android platform, we use the same certificate to check if the hooked

application comes from our Web Service. For this, the certificate used in the Web

Service has been embedded in the Sink application. This prevents attackers from

injecting malicious applications by using a man-in-the-middle attack between the

smart phone and the Web Service.

2.3.3.2 Hook example

Consider a case where the function sendTextMessage, used to send short messages

(SMS) on the Android platform, is to be logged in a monitored application. This

function is called in the main activity class of the application corresponding to

the code Listing 2.1. As for the class shown in Listing 2.2, it defines the prologue

functions and the function responsible for passing the partial traces, built by the

prologue functions, to the embedded client. For space reasons, we will not show

the embedded client.

In the main activity class corresponding to the class shown in Listing 2.1, the

function sendTextMessage is called at line 4 with its PF log_sendTextMessage which

43

has been placed just before at line 3. Since the hooked function may modify com-

mon registers used for storing the parameters of the hooked function and for

returning objects, we have preferred placing the prologue functions before their

hooked functions. The register v1 is the object of the class SmSManager needed to

call the hooked function. As for the registers v2 to v6, they are used for storing

the parameters of the hooked function. Since our prologue functions (PFs) are de-

clared as static, we can call them without instantiating their class 2, and therefore

we do not need to use the register v1.

An example of the Monitor log class is shown in Listing 2.2. The name of the

class is declared at line 1. At lines 3 and 10, two functions are defined, namely

log_sendTextMessage and sendLog. The former function, prologue function of the

hooked function sendTextMessage, defines a constant string object containing the

partial trace at line 5 and puts it into the register v0. Then the function sendLog
is called at line 6 with the partial trace as parameter. The latter function saves

the partial trace contained in the parameter p0 into the register v0 at line 13. At

line 15 and 16, two new instances are created respectively: a new thread and new

instance of the class EmbeddedClient. Their instances are initialized respectively

at lines 17 and 18. Finally, the thread is started at line 19 and the partial trace is

sent to the Sink. It is worth noting that in these two examples, we have omitted

some elements of the code which are replaced by dots to facilitate the reading of

the code.

Listing 2.1: Main activity class
1 .class public Lcom/mainactivity/MainActivity;

2 ...

3 invoke-static/range {v2 .. v6}, log_sendTextMessage(...)

4 invoke-virtual/range {v1 .. v6}, sendTextMessage(...)

5 ...

Listing 2.2: Monitor log class
1 .class public Lorg/test/MonitorLog;

2 ...

3 .method public static log_sendTextMessage(...)

4 ...

5 const-string v0, "packageName: com.testprivacy, ..."

6 invoke-static {v0}, sendLog(Ljava/lang/String;)

7 return-void

8 .end method

9
10 .method public static sendLog(Ljava/lang/String;)

44

11 .locals 3

12 .parameter payload

13 move-object v0, p0

14 ...

15 new-instance v1, Ljava/lang/Thread;

16 new-instance v2, Lorg/test/EmbeddedClient;

17 invoke-direct {v2, v0}, init(Ljava/lang/String;)

18 invoke-direct {v1, v2}, init(Ljava/lang/Runnable;)

19 invoke-virtual {v1}, start()

20 return-void

21 .end method

2.3.4 Visualization

The visualization of anomalous behavior is the last component of the proposed

architecture. Again, here we have two cases: one with Neo4j graphs and a second

approach with dendrogram diagrams.

Let us consider the first approach. In order to perform a visual analysis of the

behavior of the applications, a graph-based NoSQL database, Neo4j, is used in

Figure 2.3. Neo4j stores the data in a graph-oriented structure, instead of using

the relational tables of conventional databases.

The graphs are elaborated through relations of type "an Application includes

several Classes that in turn call Functions". The first top node, "Application", con-

tains the name of the application package, which is unique for each of the existing

applications, while the second node, "Class", represents the name of the applica-

tion component. Android that has called the "API call", the "Function" node. Once

the information collected by the Web service in the database is obtained, its entire

function call structure can be filtered and treated. Initially a graph is generated

without including colors using the Cypher Query Language from Neo4j that al-

lows to operate and apply transformations in the graph. To do this, an expert must

complete and chain a set of rules that help highlight the known malicious behav-

ior (for example, the call to the SendMessageText function). For this, the nodes are

searched in the lower part of the graph related to calls to API functions considered

malicious. The rules include the search and representation of malicious functions

(represented in red), suspicious or malicious but not critical (in orange) and benign

(in green). When a malicious behavior is detected, such as sending SMS messages

to a premium payment number without the user’s consent, the node under red

inspection will be represented as a warning signal using Cypher.

45

Alternatively, we consider the second case regarding the visualization compo-

nent as shown in Figure 2.4. In order to perform a visual analysis of the appli-

cations’ behavior in a simplified way, a D3.js (or just D3 for Data-Driven Docu-

ments3) graph was used. D3 is an interactive and a browser-based data visual-

izations library to build from simple bar charts to complex infographics. In this

case, it stores and deploys graph oriented data on a tree-like structure named den-

drograms using conventional database tables. Generally speaking, a graph visu-

alization is a representation of a set of nodes and the relationships between them

shown by links, (vertices and edges, respectively).

This way, we are able to represent each of the analyzed application’s behav-

ior with a simple yet illustrative representation. In general, the graphs are drawn

according to the schema depicted in Fig. 2.5. The first left-hand (root) node, "Ap-

plication", contains the package name of the application, which is unique to each

of the existing applications. The second middle node (parent), "Class", represents

the name of the Android component that has called the API call. The third node,

"Function" (the right-hand or child node), represents the names of functions and

methods invoked by the application. It is worth noting that each application can

include several classes and each class can call various functions or methods.

Figure 2.5: Schema used for the graphs/dendrograms.

3JavaScript library available at d3.org

46

d3.org

In other words, function calls are located in the right-hand side of the grap-

s/dendrogram. For each node at this depth we are looking for known suspicious

functions derived from a set predefined of rules as described below.

2.3.4.1 Rules "Generation"

The rules aim to highlight restricted API calls, which allow access to sensitive

data or resources of the smartphone and are frequently found in malware sam-

ples. These could be derived from the static analysis where the classes.dex file

is converted to smali format, as mentioned before, to get information considering

functions and methods invoked by the application under test. On the other hand,

it is well-know that many types of malicious behaviors can be observed during

runtime only. For this reason we utilize dynamic analysis, i.e., Android applica-

tions are executed on the proposed infrastructure (see Figures 2.3 and 2.4) and

interact with them. As a matter of fact, we are only interested to observe the Java

based calls, which are mainly for runtime activities of the applications. This in-

cludes data accessed by the application, location of the user, data written to the

files, phone calls, sending SMS/MMS, data sent and received to or from the net-

works, etc.

For the case that an application requires user interactions, we resort to do that

manually so far. Alternatively, for this purpose one can use MonkeyRunner toolkit,

which is available in Android SDK.

In [29] and in [74], authors list API functions calls that grant access to restricted

data or sensible resources of the smartphone, which are very often seen in mali-

cious code. We base our detection rules in those suspicious APIS calls. In particu-

lar, we use the following types of suspicious APIs:

• API calls for accessing sensitive data, e.g IMEI and USIMnumbeleakage, such

as getDeviceId(), getSimSerialNumber(), getImei() & getSubscriberId()

• API calls for communicating over the network, for example setWifiEnabled()
& execHttpRequest()

• API calls for sending and receiving SMS/MMS messages, such as sendTextMes-
sage(), SendBroadcast() and sendDataMessage()

• API calls for location leakage, such as getLastKnownLocation() and getLati-
tude(), getLongitude(), and requestLocationUpdates()

47

• API function calls for execution of external or particular commands like Run-
time.exec(), and Ljava/lang/Runtime;->exec()

• API calls frequently used for obfuscation and loading of code, such as Dex-
ClassLoader.Loadclass() and Cipher.getInstance()

Here the rule module uses the above mentioned API calls to classify the func-

tions and methods invoked on the runtime of the applications into three classes,

i.e., Benign, Adware or Malware. So in this way, we can generate IF-THEN rules

(cf. rules-based expert systems). Next we show example rules that describe suspi-

cious behavior. Some of the rules generated by us are similar or resemble the ones

in [75], as follows, namely:

1. A rule that shows that the examined App is not allowed to get the location of

the smart device user:

IF Not (ACCESS_FINE_LOCAT ION) AND CALL_getLastKnownLocation

THEN Malware

2. Another rule might detect that the application is trying to access sensitive

data of the smartphone without permission:

IF Not (READ_PHONE_STAT E) AND CALL_getImei THEN Malware

Our approach selects from the database those functions that have been executed

that match the suspicious functions described in the rules. Package name, and

class name of such function are colored accordingly to the "semaphoric" labeling

described in Section 2.5.

To illustrate the basic idea we choose a malware sample, known as FakePlayer,

in order to draw its graph. Thus, by means of running the filtering and visualiza-

tion operations we end up with the graph of the malware, shown in Figure 2.6.

The system allows adding new rules in order to select and color more families

of suspicious functions.

2.4 Testbed and Experimentation

Before introducing the reader into the results of using the monitoring and visual-

ization platform, we need to explain the testbed. We first describe the experiment

set up, then we follow the steps of running the client-side Sink.

48

Figure 2.6: The simplified dendrogram of the malware FlakePlayer has been generated
using the D3. Note that at the upper left corner of the figure there is a combobox
to select the monitored malware (here, for simplicity, we use a shortened version of
package name of the App, i.e., androidapplication1). Besides, lining up to the right of
the combobox, there are three activated checkboxes, labeled as: Goodware in blue,
Adware in orange, and Malware in red. Also, at the upper right corner of the figure,
there is a search button that allows to look for classes or functions. The complete
package name of the malware FakePlayer is org.me.androidapplication1.MoviePlayer.

2.4.1 Experiment set up

All the experiments have been realized on a Samsung Nexus S with Android Ice

Cream Sandwich (ICS). The Nexus S has a 1 GHz ARM Cortex A8 based CPU core

with a PowerVR SGX 540 GPU, 512 MB of dedicated RAM and 16 GB of NAND

memory, partitioned as 1 GB internal storage and 15 GB USB storage.

We have explored different Android applications in order to evaluate the whole

framework, some of these samples have been taken from the Android Malware

Genome Project4):

4The Android Malware Genome Project dataset is accessible at http://www.

malgenomeproject.org/

49

http://www.malgenomeproject.org/
http://www.malgenomeproject.org/

• FakePlayer malware.

• SMSReplicator malware.

• iMatch malware.

• DroidKungFu1 malware.

• DroidKungfu4 malware.

• The spyware GoldDream in two flavors.

• GGTracker malware.

2.4.2 Client-side monitoring

The activities in Figure 2.7(a) display all the applications installed on the device

that did not come preinstalled, from which the user selects a target application

to monitor. Once an application is selected, the next step is to choose which per-

mission or permissions the user wants to monitor. This can be observed in the

third snapshot (white background) of Figure 2.7(c). Following the permissions

clearance, the interface guides the user along several activities starting with the

uploading of the selected application which is sent to the Web Service where the

hooks are inserted. After this hooking process has finished, the modified applica-

tion is downloaded from the web service. Afterwards, the original application is

uninstalled and replaced by the modified application. Finally, a toggle allows to

start and stop monitoring the application at any time by the user.

We focus on the functions of the Android API that require, at least, one per-

mission. This allows the user to select from the Sink those permissions that are

to be monitored at each application. This allows understanding how and when

these applications use the restricted API functions. The PScout [67] tool was

used to obtain the list of functions in the "API permission map". This way, the

permission map obtained contains (Android 4.2 version API level 17) over thirty

thousand unique function calls and around seventy five different permissions. Be-

sides, it is worth mentioning here that we refer to as "restricted API functions"

those associated with a sensitive API as well as sensitive data stored on device and

privacy-sensitive built-in sensors (GPS, camera, etc.). The first group is any func-

tion that might generate a "cost" for the user or the network. These APIs include

[64], among others: Telephony, SMS/MMS, Network/Data, In-App Billing, NFC

50

Figure 2.7: User Interface of the Sink. (a) Choosing the Application, (b) Selecting the
menu for Permissions, (c) Electing the Permissions, and (d) Steps of the monitoring
process.

(Near Field Communication) Access. Thus, by using the API map contained in

the server’s database, we are able to create a list of restricted ("suspicious") API

functions.
The trace managing part is a service that runs in background with no interface,

and is in charge of collecting the traces sent from the individual embedded clients,

located on each of the monitored applications. It adds a timestamp and the hash

of the device ID, and stores them on a common circular buffer. Finally, the traces

are stored in bulk on a common local SQLite database, and are periodically sent to

the web service and deleted from the local database.

In summary, the required steps to successfully run an Android modified in-

strumented application are listed in Figure 2.7(d) and comprising the followings:

• Step 1: Select permissions. Set up and run the platform. Choose an application

APP to be monitored on the device. Elect the permission list.

• Step 2: Upload the Application (APK). Then, when this command is launched

to upload the applications to the Web Service, the hooking process is trig-

gered.

• Step 3: Download modified application. This starts the downloading of the

hooked application.

• Step 4: Delete original application. This command starts the uninstallation

process of the original application.

51

• Step 5: Install modified application. This command starts the installation pro-

cess of the modified application using Android’s default application instal-

lation window.

• Step 6: Start monitoring. Finally, a toggle is enabled and can be activated or

disabled to start or stop monitoring that application as chosen by the user.

2.5 Results

To evaluate our framework, in this section we show the visualization results for

several different applications to both benign and malicious. Then we proceed to

evaluate the Sink application in terms of CPU utilization and ratio of partial traces

received. Finally, we estimate the CPU utilization of a monitored application and

its responsiveness.

2.5.1 Visual analysis of the traces with Neo4j-graphs

As stated above, a set of rules predefined by experts allows us to identify func-

tions "Suspicious" APIs, and depending on their parameters, colors are assigned

to them. By doing so, it allows us to quickly identify the functions and associate

them with related elements. By applying the classification of functions based on

a color for each node of the graph, this allows the construction of a "visual map"

that describes and helps the analysis of its operation, see subsection 2.5.2 for the

description of the colors used as state of the security threat. In addition, this graph

is suitable for guiding the analyst during the examination of the classification of

a dangerous malware sample because the red shadow of the nodes indicates ma-

licious structures identified by the monitoring infrastructure. This revision must

be made between all the nodes of the functions called at the lowest level of each

branch of the tree of the graph. However, in order to completely color the graph of

the application until reaching the root node, it is necessary to resort to a bottom-up

analysis of the neighborhood of each function invoked and associated. Therefore,

if one of the branches of the graph is colored red, then the App is considered po-

tentially malicious.

By means of running the filtering and visualization operations we end up with

the graph of the malicious software, shown in Fig. 2.8 and Fig. 2.9. The whole

process of obtaining the graph of the API calls of the App under test is described

52

in [59]. Of course, the system allows adding new rules in order to select and color

more families of suspicious functions.

In order to give a favor of the what kind of results we can obtain with Neo4j, we

illustrate in Figures 2.8 and 2.9; the Neo4j graphs of the Pjapps malware, and the

DroidKungFu malware, respectively. Here we can notice that every function calls

is denoted by a number making sometimes difficult the conduct the visual analysis

so can look for another visual representation technique, which is introduced in the

next subsection.

2.5.2 Visual analysis of the traces with dendrogram diagrams

As mentioned before, a set of predefined rules allows us to identify the suspicious

API functions" and depending on its parameters (e.g., application attempts to send

SMS to a short code that uses premium services) we assign colors to them. This en-

ables us to quickly identify the functions and associate them with related items.

On top of that, by applying the color classification of each node of the graph as-

sociated to a function in accordance with the color code (gray, orange and red) ex-

plained below, allows a "visual map" to be partially constructed. Furthermore, this

graph is suitable to guide the analyst during the examination of a sample classified

as dangerous because, for example, the red shading of nodes indicates malicious

structures identified by the monitoring infrastructure. In particular, to give a fla-

vor of this analysis, the dendrogram of FakePlayer in Figure 2.6 provides to the

user an indication of the security status of the malware. Different colors indicate

the level of alarm associated with the currently analyzed application:

• Gray: indicates that no malicious activity has been detected, as of yet.

• Orange: indicates that no malicious behavior has been detected in its graph,

although some Adware may be presented.

• Red: indicates in its graph that a particular application has been diagnosed

as anomalous, meaning that it contained one or more "dangerous functions"

described in our blacklist. Moreover, it could imply the presence of suspi-

cious API calls such as sendTextMessage with forbidden parameters; or the

case of using restricted API calls for which the required permissions have

not been requested (root exploit).

53

Figure 2.8: Graphs using Neo4j with the malware PjApps.

Figure 2.9: Graphs using Neo4j with the malware DroidKungFu.

54

So, it is possible to conduct a visual analysis of the permissions and function

calls invoked per application, where using some kind of "semaphoric labelling" al-

lows to identify easily the benign (in gray and orange colors) applications. For

instance in Fig. 2.6 there is a presence of malware, and the nodes are painted

in red. The dendrogram shown for FakePlayer confirms its sneaky functionality

by forwarding all the SMS sent to the device to the previously set phone num-

ber remaining unnoticed. For the sake of simplicity, we reduce the API func-

tion call sendTextMessage(phoneNo, null, SMS Content, null, null) to sendTextMes-
sage(phoneNo, SMS Content).

It uses the API functions to send four (see Figure 2.6) premium SMS messages

with digit codes on it in a matter of milliseconds. Of course, sending a SMS mes-

sage does not have to be malicious per se. However, e.g., if this API utilizes num-

bers less that 9 digits in length, beginning with a "7" combined with SMS messages,

this is considered a costly premium-rate service and a malware that sends SMS

messages without the user’s consent. The malware evaluated sends SMS messages

that contain the following strings: 846976, 846977, 846978, and 846979. The mes-

sage may be sent to a premium SMS short code number "7132", which may charge

the user without his/her knowledge.

This implies financial charges. Usually, when this malware is installed, mali-

cious Broadcast Receiver is enrolled directly to broadcast messages from malicious

server to the malware, so that user can not understand whether specific messages

are delivered or not. This is because the priority of malicious Broadcast Receiver

is higher than SMS broadcast receiver. Once the malware is started, sending the

function call sendTextMessage of SMS Manager API on the service layer, a message

with premium number is sent which is shown in Figure 2.6.

2.5.3 Interactive Dendrograms

In general, it is needed to conduct the visual analysis from different perspectives.

To do that we have developed an interactive graph visualization [1]. So, we have

four options or features in the D3 visualization of the application to monitor,

namely: a) selection of full features of the application (Goodware checkbox, Ad-

ware checkbox and Malware checkbox), b) the Goodware choice of the App, c) the

Adware checkbox of the application, and d) the Malware checkbox to look for ma-

licious code. The analyst can choose to observe a particular java class or function

55

Table 2.1: Malware family, detection rules and suspicious functions

Malware

Family

Detection Rules Suspicious Functions

FakePlayer IF (SEND_SMS) && (CALL_sendTextMessage()
with preset numbers) THEN Malware

sendTextMessage(7132, null, 846976, null, null);

SMSReplicator IF (SEND_SMS) && (CALL_sendTextMessage()
with preset numbers) THEN Malware

sendTextMessage(1245, null, {From: 123456789
Hi how are you}, null, null);

iMatch IF Not (ACCESS_FINE_LOCATION) && IF
(SEND_SMS) THEN Malware

requestLocationUpdates(); sendTextMessage();

DroidKungFu1 [IF (INTERNET) && IF Not (AC-
CESS_FINE_LOCATION)] || [IF
(READ_PHONE_STATE) && IF (INTERNET)]
THEN Malware

getLatitude(); getLongitude(); getDeviceid();
getLIne1Number(); getImei();

DroidKungFu4 IF (INTERNET) && IF (READ_PHONE_STATE)
THEN Malware

getDeviceid(); getLIne1Number(); getSimSe-
rial(); getImei();

GoldDream
(Purman)

[IF (READ_PHONE_STATE) &&
IF Not (SEND_SMS)] || [IF Not
(READ_PHONE_STATE) && IF (INTERNET)]
THEN Malware

getDeviceId(); getLIne1Number(); getSimSe-
rial(); sendTextMessage(); getImei();

GoldDream
(Dizz)

[IF (READ_PHONE_STATE) && IF
Not (SEND_SMS)] || [IF Not (AC-
CESS_FINE_LOCATION) && IF (INTERNET)]
THEN Malware

getDeviceId(); getLIne1Number(); getSimSe-
rial(); sendTextMessage(); requestLocationUp-
dates(); getImei();

GGTracker [IF (READ_PHONE_STATE) &&
Not (SEND_SMS)] || [IF Not (AC-
CESS_FINE_LOCATION) && IF (INTERNET)]
THEN Malware

getDeviceId(); getLIne1Number(); getSimSe-
rial(); sendTextMessage(); requestLocationUp-
dates(); getImei();

by typing the name of it inside the search box, and clicking on the related Search

button.

Figures 2.10 & 2.11 illustrate a big picture of the whole behavioral performance

of the malware DroidKungFu1 whose package name is com.nineiworks.wordsXGN,

and the malicious function calls invoked. For the sake of simplicity, we shorten

the package name of DroidKungFu1 to wordsXGN in the dendrogram. As a matter

of fact, we apply a similar labeling policy to the other dendrograms. Moreover,

we have the Dendrograms for the DroidKungFu4 in Figures 2.12. In particular, in

the graph of Figure 2.12(a), we conduct the visual inspection by using full features

(i.e., all the checkboxes active simultaneously) looking for red lines (presence of

malware, if that is the case). Furthermore, in the graph of Figure 2.12(b), now we

can focus our visual examination in the malicious functions carried by the appli-

cation. The visual analysis of the DroidKungFu1 and DroidKungFu4 include en-

crypted root exploits, Command & Control (C& C) servers which in the case of

DroidKungFu1 is in plain text in a Java class file, and shadow payload (embedded

App). In Table 2.1, we have some of the suspicious function calls utilized by the

malware which pop-up from the dendrograms. Regarding the IF THEN rules, the

allowed clauses or statements in our infrastructure are: permissions and API func-

tions calls. The fundamental operators are: Conditional-AND which is denoted

by &&, Conditional-OR which is denoted by ||, and Not. For example, If exam-

56

ined App does not have permission to send SMS messages in the AndroidManifest
file and that App try to send SMS messages with the location of the smartphone

THEN that application may have malicious code. The rule generated for this case

is shown below:

IF Not (SEND_SMS) && (ACCESS_FINE_LOCAT ION) THEN Malware

Here, malicious code and malware are interchangeable terms. The possible

outcomes are: Goodware or Malware. Nevertheless, the proposed infrastructure

might be capable of evaluating a third option, Adware, in a few cases. In this paper

we do not describe the IF THEN rules for the third kind of outcome. In this work,

we restrain the possible outcomes to the two mentioned options.

We have used 7 rules in our experimentation which are listed in Table 2.1 (note

that rules 1 & 2 are the same). We have listed in Table 2.1 the most frequently used

rules. They mainly cover cases of user information leakage.

The most frequently used detection rules that we have utilized in our experi-

mentation are listed in Table 2.1 (second column).

Figure 2.10: Visualization of the DroidKungFu1 malware with full features chosen
(i.e., all the checkboxes are activated).

57

Figure 2.11: Visualization of the malicious API calls detected by our system for Droid-
KungFu1. Note the chosen options of the monitored malware in the dendrogram
at the upper left side. First, we shorten version of the package name (wordsXGN)
of the malware in the combobox. Next we have three checkboxes, namely: Good-
ware, Adware, and Malware. In this graph, only the red checkbox has been activated
in order to conduct the visual analysis. The full package name of DroidKungFu1 is
com.nineiworks.wordsXGN.

2.5.4 Client-side CPU use analysis

We define the CPU utilization of a given application as the ratio between the time

while the processor was in busy mode only for this given application both at the

user and kernel levels, and the time while the processor was either in busy or

idle mode. The CPU times have been taken from the Linux kernel through the

files "/proc/stat" and "/proc/pid/stat" where pid is the process id of the given

application. We have chosen to sample the CPU utilization every second.

58

(a) Dendrogram in full features (Goodware, Adware and Malware) for DroidKungFu4.

(b) Graph visualization of the detected malware in the case of DroidKungFu4.

Figure 2.12: Dendrograms of the tested application. (a) Upper diagram: Graph of
the DroidKungFu4 in full features, and (b) Lower diagram: Graph of the malicious
functions invoked by DroidKungFu4.

59

The CPU utilization of the Sink application has been measured in order to

evaluate the cost of receiving the partial traces from the diverse monitored ap-

plications, processing them and persisting them in the SQLite database varying

the time interval between two consecutive partial traces sent. We expect to see

the CPU utilization of the Sink increase as the time interval between two consecu-

tive partial traces sent decreases. Indeed, since the Sink must process more partial

traces, it needs more CPU resource. This is confirmed by the curve in Figure 2.13.

The CPU utilization has a tendency towards 30% when the time interval between

two consecutive partial traces received tends to 10 ms because the synthetic appli-

cation takes almost 30% of the CPU for building and sending partial traces, and

the rest of applications utilize the rest of the CPU resource. When no monitored

applications send partial traces to the Sink and the Sink is running in the back-

ground (i.e., its activity is not displayed on the screen), it consumes about 0% of

the CPU.

The CPU utilization of a synthetic application has also been measured in order

to evaluate the cost of building and sending the partial traces to the Sink while the

time interval between two consecutive partial traces sent was varied. We expect to

see a higher CPU utilization when the application is monitored. Indeed, since the

synthetic application must build and send more partial traces, it needs more CPU

resource. This is confirmed by the Figure 2.14. We note that the increase of CPU

utilization of the application can be up to 28% when it is monitored. The chart

shows an increase in application CPU utilisation to a level up to 38% which is jus-

tified when the monitoring is fine-grained at 10 ms. However, this high frequency

is not likely to be needed in real applications.

Figure 2.13: CPU utilization of the Sink.

2.5.5 Responsiveness

We define an application as responsive if its response time to an event is short

enough. An event can be a button pushed by a user. In other words, the application

60

Figure 2.14: Difference of CPU utilization between an application monitored and non
monitored.

is responsive if the user does not notice any latency while the application is run-

ning. In order to quantify the responsiveness and see the impact of the monitoring

on the responsiveness of monitored applications, we have measured the time spent

for executing the prologue function of the synthetic application. We have evalu-

ated the responsiveness of the monitored application when the Sink was saturated

by partial traces requests, i.e. in its worst case. The measured response time was

in average less than 1 ms. so, the user does not notice any differences when the

application is monitored or not, even though the Sink application is saturated by

partial traces. This is explained by the fact that UDP is connectionless and there-

fore sends the partial traces directly to the UDP socket of the Sink without waiting

for any acknowledgments.

2.6 Limitations

So far we illustrated the possibilities of our visual analysis framework by analyz-

ing 8 existing malicious applications. We successfully identified different types of

malware accordingly to the malicious payload (e.g., privilege escalation, financial

charges and personal information stealing) of the App while using only dynamic

inspection in order to obtain the outcomes. Even though the results are promising,

they only represent a few of the massive malware attacking today’s smart devices.

Of course, the aim of this system is not to replace existing automated Android mal-

ware classification systems because the final decision is done by a security analyst.

Although, here, we propose a malware detector system based on runtime be-

haviour, this does not have detection capabilities to monitor an application’s ex-

ecution in real time; so this platform cannot detect intrusions while running. It

61

only enable detecting past attacks.

Also, one can figure out that malware authors could try avoiding detection,

since they can gain knowledge whether their App has been tampered with or no.

As a result, the actual attack might not be deployed, which may be considered a

preventive technique. Moreover, it is possible for a malicious application to evade

detection by dynamically loading and executing dalvik bytecode at runtime.

One of the drawbacks of this work could be the manual interactions with the

monitored application during runtime (over some time interval). Also, the clas-

sification needs a more general procedure to get the rule-based expert system.

The natural next step is to automate these parts of the process. For example, in

literature there are several approaches that can be implemented in order to auto-

matically generate more IF-THEN rules [41] or to resort to the MonkeyRunner kit

available in Android SDK to simulate the user interactions. Of course, the out-

comes of the 8 sample malware presented here are limited to longest time interval

used in the study, which was 10 minutes. Extending this "playing" time with the

App using tools for the automation of user’s interactions could provide a more

realistic graph and better pinpoint the attacks of the mobile malware.

Another limitation of this work is that it can only intercept java level calls and

not low level functions that can be stored as libraries in the applications. Thus,

a malicious App can invoke native code through Java Native Interface (JNI), to

deploy attacks to the Android ecosystem.

It is worth mentioning that our API hooking process does not consider the In-

tents. The current version of the infrastructure presented in this paper is not ca-

pable of monitoring the Intents sent by the application, as sending Intents does

not require any kind of permission. Not being able to monitor Intents means that

the infrastructure is not able to track if the monitored application starts another

app for a short period of time to perform a given task, for instance opening a

web browser to display the end-user license agreement (EULA). Also, adding this

feature would allow knowing how the target application communicates with the

rest of the third party and system applications installed on the device. In [76],

the authors discuss the effectiveness of the analysis of Android Intent in malware

detection.

Ultimately, this framework could be useful for final users interested in what

Apps are doing in their devices.

62

2.7 Conclusions of the Chapter

We provide a monitoring architecture aiming at identifying harmful Android ap-

plications without modifying the Android firmware. It provides a visualization

graph named Dendrograms where function calls corresponding to predefined mal-

ware behaviors are highlighted. Composed of four components namely, the em-

bedded client, the Sink, the Web Service, and the visualization, any Android ap-

plication can be monitored without rooting the phone or changing its firmware.

The developed infrastructure is capable of monitoring simultaneously several

applications on various devices and collecting all the traces in the same place. The

tests performed in this work show that applications can be prepared to be mon-

itored in a matter of minutes and that the modified applications behave as they

were originally intended to, with minimal interference with the permissions used

for. Furthermore, we have shown that the infrastructure can be used to detect ma-

licious behaviors by applications, such as the monitored FakePlayer, DroidKungFu1
and DroidKungFu4 and the SMSReplicator and many others taken from the dataset

of the Android Malware Genome project.

In the visualization part we have opted for the use of dendrogram diagrams

because it is easier, so far, to analyze than the graphs in Neo4j.

Evaluations of the Sink have revealed that our monitoring system is quite re-

active, does not lose any partial traces, and has a very small impact on the perfor-

mance of the monitored applications.

A major benefit of the approach is that the system is designed as platform-

independent so that smart devices with different versions of Android OS can use

it. Further improvements on the visualization quality and the user interface are

possible, but the proof of concept implementation is demonstrated to be promis-

ing.

63

Chapter 3

Dynamic DNS request monitoring of
Android malware

Of course, the first task in detecting network attacks and instructions is to collect

security-related data. This chapter proposes two methods of capturing the DNS

requests done by the smart devices to a remote machine, this is crucial in order to

monitoring the Android malware. Most of the Android-based malware commu-

nicate with some remote servers (command and control center) either for getting

instructions as it does in a botnet or to send data / information stolen from device

to the attacker. As stated in [77]: "Whatever intention is there, this malware are

mostly dependent on the remote machine and always need to communicate with

it." The first method is based on the development of an Android sniffer for DNS

Request Monitoring of Android using network traffic. As it is defined in [78]: "A

packet analyzer (also known as a packet sniffer) is a computer program or piece

of computer hardware that can intercept and log traffic that passes over a digital

network or part of a network". To the best of our knowledge, this first non-rooted

sniffers that captures and intercepts URLs requested by the smart devices to re-

mote machines, publicly available for the Android ecosystem. Later, we also de-

velop a second method based on the hooking of API calls. So, in the latter case the

objective we pursue is to try to discover which API calls involve a query to a DNS

server (using the InetAddress class), to capture the URL to which the malware

wants to perform some action (e.g., stealing, update, data transmission or leakage,

etc.). With these both approaches, we could perform a pattern matching with the

logs of DNS servers of a mobile operator, and we could detect the same behavior in

other users without the need to install the monitored App into theirs smart devices

in most of the time. The tests that we have carried out help to identify the URLs

64

(Uniform Resource Locators) invoked through the DNS queries requested by the

smartphone malware.

3.1 Introduction

As aforementioned, in the last years, mobile smartphones with a mobile OS are

widely being used, and now we observe the explosive growth of mobile devices

around the world. Accordingly, to Symantec’s Internet Security Threat Report(2018),

Internet security threats such as mobile malwares are rapidly increasing and di-

versifying as well.

On the one hand, to conduct our experiments with real malware samples, we

use the MalGenome dataset in order to generate network traffic, among other is-

sues. Besides, most of the malware we examine misuse the DNS in order to obtain

the URLs of their command and control servers. Then, the problem of determin-

ing the DNS queries done by the malware through devices without modifying the

firmware or rooting smartphone is very important and it poses a big challenge.

From traces we generated from Apps under test, we can extract malicious URLs

invoked by the malware. On the other hand, most of the research published in

the technical literature focuses on host-based malware detection systems, which

implies an in-depth analysis of malicious applications; instead of also integrating

in the analysis of the system, the traffic or behavior of the Apps in the commu-

nications networks; which severely disables the detection of malicious activities

that occur on the mobile device through the Internet. In this is remarkable, the

abusive use by the mobile malware of the Domain Name System (DNS), one of the

fundamental components of the Internet.

The main objective of this chapter is to propose two methods, on the side of the

smartphone, that allows the combination and the correlation of two complemen-

tary approaches: the top-bottom detection by identifying the names of malware

domains through the records of the DNS servers, and bottom-up detection using

classic dynamic analysis in Android applications to identify malware. Herein, we

address the bottom-top approach. Concretely, in monitoring malware, special-

ized tools are needed to extract information from network traffic of the intelligent

mobile device without modifying its firmware or "rooting" it. Specifically, in this

chapter we focus on the detection of "bottom-up" malware, using dynamic analy-

sis and capturing DNS queries carried out by smartphones with malicious remote

servers, i.e., Dynamic DNS request Monitoring of Apps.

65

3.1.1 Problem definition

The problem to solve is how to capture network traffic from the smartphone. In

our case, we are interested in identifying the URLs invoked through the DNS

queries required by the malware, without altering the firmware or "rooting" the

intelligent device. On the other hand, it is commonly believed that the next genera-

tion of mobile malware detection systems will combine malware analysis, anomaly

detection, network analysis, log analysis, as well as detection of denial of dis-

tributed services (DDoS), among other aspects; all in order to allow real-time mon-

itoring of malware attacks. Here, we focus on Dynamic DNS request monitoring

of Android malware by capturing traces from the smartphones.

So, at present, there is the challenge of developing a scalable and high efficient

platform for Android monitoring and analysis of security events that can compro-

mise mobile devices or pose threats that affect the operator’s infrastructure. The

management of the detection and reaction to new threats and their mass spread

due to the ubiquity of the underlying communications network, will be done by

extending security event management capabilities for the monitoring, detection,

characterization, and mitigation of threats to mobile devices, as well as creating an

early warning system for operators. In particular, this research will address part

of this challenge, showing how to obtain the traces of network traffic from mobile

device Apps under the restrictions mentioned above.

3.1.2 Contribution and Outline of the chapter

Throughout this chapters we present two novel methods for detecting malware, by

capturing malicious URLs at the network level of intelligent devices by executing

the functions they call, and developing an ad hoc Android sniffer. The first con-

tribution [58], it is the method description and the proposed malware detection

tool (Android sniffer) for Dynamic DNS request Monitoring of Android Appli-

cations via networking without rooting or modified the phone under trial. The

second contribution of this chapter is the enhancement of the Android platforms

described in [60], consisting of an implementation on the side of the smartphone

and on the side of the remote server. Here, we concentrate on capturing the URLs

requested to detect malicious transactions initiated by an application running on

the Android phone side. In particular, we conduct the processing on the smart

device side at the network of the Apps in order to do the dynamic DNS request

monitoring of Android malware via instrumentation.

66

The rest of the chapter is organized as follows: Section II discusses the related

works. Section III presents the design of the first method based on a VPN-platform

to capture the network packets. Thereafter, in Section IV, we have the second

method based on the instrumentation of native functions of Android OS. Section

V evaluates the performance of both methods and presents a comparison of them

in terms of effectiveness and efficiency. The battery consumption and the use of

some smartphone resources are also considered. Finally, Section VI presents the

remarking conclusions of this chapter.

3.2 Related Work

In this section, we introduce some previous works on this topic. The analysis

and detection of Android malware have been a hot theme of research in the last

years. Several concepts and techniques have been proposed to counter the growing

amount and sophistication of this malware.

There are several ways to dynamically intercepting/obtaining the network pack-

ets transmitted by the mobile smart devices to remote servers, among others,

namely: i) by using a proxy [80], ii) by utilizing an Android network log mon-

itor [13], or packet analyzers (sniffer) such as tPacketCapture Pro [81] & MalDe-
tec [82] based on Virtual Private Networks (VPN) approaches, iii) by modification

and customization of the Android OS as in [77], iv) by hooking function calls, such

as library APIs, (e.g., OpenConnection method), and v) by exploiting the Logcat

tool from Android OS such as the tool dubbed Logdog, where Logcat is the com-

mand to view and filter information from the Android logging system [83].

In [77], Rughani customized source code of Android OS 1. The customization

includes modifying the code in needed files and rebuilding the code to make cus-

tom OS. Afterward, the author utilizes a python script that captures and intercepts

logs. It then extracts IP Address / URLs from the logs and puts them in a file. Af-

ter extracting information, it compares the extracted information with existing

blacklisted IP Address (which are downloaded from openbl.org automatically by

the script). As the last step, the script creates result file containing suspicious

IP Addresses (if any found). Collected information is not restricted. Unlike the

work in [77], with the "approaches" presented in this chapter later (See Sections 3.3

and 3.4) we can obtain the URLs consulted by the smartphone, without modify-

ing the firmware of the Android OS making use of dynamic detection techniques

1Available at AOSP (https://source.android.com/)

67

using instrumentation (introducing hooks) in API function calls and non-rooted

Android sniffer.

In the approach proposed by Bae et al. [13], they minimize the use of high over-

head functions and replace them to lightweight features (e.g., function call mon-

itoring). They have leveraged those features instead of using high overhead op-

erations. Also, they monitor the network connections, including the DNS queries

requested by using an Android network log monitor. Our approach is different

from theirs, in that they [13] need to root the smartphones while we can utilize

our sniffer and dynamically obtain the URLs requested by the Android phone,

without rooting the smart devices as it is described in Section 3.3.

Let us begin with the methods of interest for dynamic DNS request monitor-

ing of Apps. First, the method hooking is a technique used to intercept the call

of a certain method at runtime to change the behavior of the calling application.

By dynamically (it is used for mechanisms that can dynamically apply a hook at

runtime) intercepting function calls frameworks can analyze both single calls and

sequences of calls to reconstruct behaviors for semantic representations or monitor

the function calls for misuse. Function hooks can also be used to trigger additional

analyses. For instance, if a function was hooked and triggered, parameter analysis

could then be applied to retrieve the parameter values of when the function was

invoked. The analysis framework InDroid [84] inserted function call stubs at the

start of each opcode’s interpretation code in order to monitor bytecode execution

and analyze Android behaviors. While it does require modifications to the Dalvik

VM and may not work on Android 5.0 (e.g., with ART), the method requires rela-

tively light modifications and has been used on versions 4.0-4.2. However, InDroid

requires to root the smartphone, which it is not necessary in our case. Dynamic

hooking happens in volatile memory only.

On the other hand, of course, we could try to install a limited version of Wire-

shark [85] for Android, which allows us to identify the URLs invoked through the

DNS queries requested from the Smartphone. However, this would imply "root-

ing" the phone, which is not acceptable for practical purposes in our case, since

mobile operators could not maintain the guarantees of their users. We have also

done tests with tPacketCapture Pro [81], very similar to tcpdump [86], that allows

the capture of Internet traffic back and forth on the smartphone, but it has severed

restrictions to show the DNS queries made by the Android phone. Also tcpdump
requires "rooting" the smart mobile device. Another possibility found in the re-

view of the technical literature is Logdog [83], which has been developed to detect

68

botnets for smartphones using log analysis techniques. Again, Logdog is based on

a collection of Android logs called Logcat and you need to get the permission of

superuser (root user) of the OS, to be able to operate with this App on the smart

device, which is out of scope of this thesis work.

Furthermore, in [87], Brandolini designed and implemented a security library

for Android applications exploiting the hooking of Java and native functions to

enable runtime analysis. The library verifies if the application shows compliance

to some of the most important security protocols, and it tries to detect unwanted

activities based on the Dalvik compiler. Testing of the library shows that it suc-

cessfully intercepts the targeted functions, thus allowing to block the application

malicious behavior. He also assesses the feasibility of an automatic tool that uses

reverse engineering to decompile the application, inject his library, and recompile

the security-enhanced App.

Moreover, as aforementioned Android 5.0 introduced the new ahead- of-time

compiling Android runtime ART. So, it is needed an advanced instrumentation

approaches based on the new virtual machine ART which are addressed in [88, 89,

90, 91].

In the forthcoming two subsections, our aim is the detection of dangerous DNS

queries requests in Android smart devices.

3.3 Method1: Dynamic DNS request monitoring of An-
droid malware via networking

As stated before, currently, almost anyone has access to smart devices such as

smartphones, since these devices are used for all kinds of daily activities, rang-

ing from social networks to banking and business transactions. At the same time,

unfortunately, smart devices are a direct target for malicious activities of hackers

and cybercriminals that aim to distribute malware to the typical user, who does

not know the intentions behind it. Since these attacks usually install on your de-

vice malware from third-party (e.g., unofficial) reservoirs, typically free of charge,

thus causing monetary losses such as financial fraud, theft of user profiles and cor-

porate or personal data, user spoofing, adware and ransomware attacks, among

others. All the above affectations without the user realizing it, sending the stolen

information through the network where the smartphone is connected.

One of the most common mechanisms used by malware is that once installed

on the device, connect to the network and send a request signal to a remote on-

69

line server. This master machine gives instructions on how to proceed to attack

the smart mobile device, either by capturing network traffic or by installing other

Apps without the user’s consent; often leaving the smart device unusable or ob-

taining confidential information. These Apps do not usually show suspicious ac-

tivities so they can be tricks by running naturally while executing their second in-

tention; the user then becomes totally vulnerable to attackers who can take some

control of their device by simply accessing the network.

3.3.1 Network Sentinel: The Proposed Malware Detection Tool
via networking

Although there are proposals that aim to control network traffic in smart de-

vices [69, 92], current smartphones do not usually give importance to network

requests and what they could represent to them in terms of mobile security. Also,

ordinary users must resort to sophisticated systems and maintenance techniques

to ensure that their smart devices are not infected with some malware. Therefore,

it is of great value and importance to develop an application that can track and

monitor network traffic in a more automated way and that performs the majority

of actions necessary to give the state of reliability of the equipment to the user. In

this way we can benefit both common users and some more advanced users who

need specific administrative tools in their smart devices, some as developers or re-

searchers can make use of the application to help them understand how packets

travel through the network.

So, the main goal here is, develop an App that manages to keep track of net-

work packets or network traces in order to ensure the degree of reliability of the

applications installed on the smart device and avoid or warn possible malware

problems associated with communication with malicious servers in the network.

We have developed an App that can track access to the network that other Apps

can make, whether the user has proof of these accesses or not. The Proposed Mal-

ware Detection Tool captures DNS queries requested by Apps on the smartphone

to remote online servers, and it creates a check that defines to the user whether or

not there is some unwanted access by the installed applications. Network Sentinel is

an application freely available for Android mobile phones. While running Network
Sentinel allows the user to capture Internet traffic sent to and from the smartphone

similar tcpdump and save this to a PCAP file. A conceptual block diagram of the

proposed tool for malware detection via networking is shown in Figures 3.1.

70

Figure 3.1: Usage of the proposed tool termed Network Sentinel.

Let us describe the basics of the proposed method, where we develop a simple

sniffer based on the Android Studio IDE version 2.3. Our application stars gath-

ering the network traffic of the targeted App or Apps at the smartphone, through

the creation of a local virtual private network (VPN), See Figures 3.2 and 3.3. We

then need to use VpnService to redirect all the device’s network traffic through our

application. Of course, we can only capture the DNS traffic from/to the App or

Apps under test. Afterward, the network traffic captured and all requests that ex-

ist within the device are thus packaged it into a PCAP file (PCAP is a generic API

for capturing network traffic). After that, the jNetPcap library is utilized; which is

an open source Java library, used to capture and decode network packets. And, it

uses native implementations to provide optimum packet decoding performance.

In Figure 3.2, we have a diagram showing how the VpnService is called from Main
Activity of the Android programming and its services that this utilized.

By doing so, the obtained IP traffic or URLs in the network traces can be checked

through a blacklist server, and know if there is any malicious behavior on the de-

vice. Consequently, it is possible to define/declare which application under test

is not suitable to use or uninstall. Note that Network Sentinel runs in its entirety

on the local smart device and traffic is not routed through a remote VPN server.

This procedure is the basics of the proposed malware detection tool for Dynamic

DNS request monitoring that works with the ART compiler. And, we named as to

71

Figure 3.2: The diagram of use and implementation of the capture service of the VPN
at the smart device.

Network Sentinel which needs at least the Android version number 5.0 (code name

Lollipop) to work correctly.

Of course, VPN approaches [81, 92] have suggested in the literature to provide

secured communications in Android ecosystems. For instance, PrivacyGuard [92],

an open-source VPN-based platform for intercepting the network traffic of Apps.

This Android application also requires neither root permissions nor any knowl-

edge about VPN technology from its users. Thus, we implemented Network Sen-
tinel on the Android platform by also taking advantage of the VpnService class

provided by the Android SDK. PrivacyGuard is an App that alerts you when one

of our Apps leaks sensitive information to a remote server, which is a little bit dif-

ferent from our scope of the proposed method presented here. Furthermore, we

tested the paid App tPacketCapture Pro [81], but we did not succeed to get or cap-

ture straightforward any URLs at all. So, this was one of the reasons to develop

Network Sentinel to fulfill this gap in the arsenal of the tools publically available

for the Android analysis, in particular for Dynamic DNS request monitoring of

Android malware. In Figure 3.4, it can be seen the icon on the Network Sentinel as

is depicted in the platform of Google play store. This Android "sniffer" is available

72

Figure 3.3: Schema handling of packets via VPN (Virtual Private Network) from An-
droid smartphone or Tablet. The main configuration of our Android sniffer is shown,
capturing packets through a protected data tunnel.

through Google Play Store, at the web (december 2018) link 2.

3.3.2 Experimental Results

In order to evaluate our approach (Android sniffer), we conduct several experi-

ments with the two smartphones, XiaomiRedmi 3S Prime and Samsung Galaxy

Grand Prime. First of all, we validate the network traces (benign Apps and mal-

ware) provided by our tool. Second, we carry out interceptions of URLs by ap-

plying Dynamic DNS request monitoring of the App under test combined with

existing blacklisted URL/IP address of malicious Domain Name available on the

Internet, to detect the presence of malware. And third, we address the consump-

tion of resources of the Android "sniffer", mainly through the power consumption

of the device regarding the battery usage.

3.3.2.1 The capture of the Requested URLs

We first present the main menu of the Network Sentinel as can be shown in Fig-

ure 3.5. Here we start by choosing the configuration of the dynamic monitoring,

e.g. we can select the App under examination (we can also monitor several Apps,

if we want to do that) and the type of capture of the network traces.

2https://play.google.com/store/search?q=Network%20Sentinel&c=appstext

73

Figure 3.4: The Android sniffer termed Network Sentinel is available at Google Play
Store.

So far, the menu of Network Sentinel is only available in the Spanish language, how-

ever, future versions are going to migrate to a full version in the English language.

For instance, in this case, "INICIAR CAPTURA" translated into English is "Start

Capture", and "SELECCIONAR APLICACIONES" means in English "Choose the

App or Apps to monitor". It is important to mention that the Network Sentinel pro-

vides information about the protocols in use in real-time, not the raw data. After

obtaining the network traces, the results are being automatically saved in a file on

the smartphone (Android sdcard) with an extension PCAP. We validate Network
Sentinel by comparison, its results against similar monitoring using an Android

version of the protocol analyzer Wireshark [85] in an ad hoc set up with the smart-

phone Samsung Grand Prime rooted. Of course, doing the validation with tcpdump
is convenient as well, because we have the Android tcpdump available, which is a

command line packet capture utility but it requires root privileges. We tested 10

benign Apps (they were taken from Google Play Store) and 10 malicious software.

3.3.2.2 The Maliciousness of the Android application

Figure 3.6 depicted the functional block diagram employed the feature of inspect-

ing the threat of the App under examination in Network Sentinel, utilizing black-

listed service provided by the Internet. We can further extend the malware analy-

sis selecting the option "Usar Servidor DNS" in the configuration menu of Network
Sentinel, here we can either choose one of two possibilities namely, Web of Trust

(WoT) [93] or Safe Browsing [94]. In Figure 3.7, it is shown the monitoring results

74

Figure 3.5: The main menu of Network Sentinel available at Google Play Store.

using the WoT, we reach this feature in Network Sentinel by using the PCAP Anal-
isis, in particular with the option THREAT. Usually, a web site in red color could

imply a suspicious or malicious URL.

3.3.2.3 Battery Usage with Network Sentinel working

Application performance is always a trouble for everyone developing Apps. Here

we review the battery usage of the Network Sentinel by utilizing the tools Batterys-
tats and Battery Historian. Batterystats takes data from our smart device bout bat-

tery. On the other hand, Battery Historian converts this data to HTML format to be

able to see it on Browser. Batterystats is a part of the Android framework and Bat-
tery Historian is on Github as opensource at https://github.com/google/battery-

historian.

The step by step procedure how we use Batterystats is described at the following

web site below3. During the experiments using Batterystats & Battery Historian we

"play" with the App under test for about 15-20 minutes. The typical outcome of

the battery usage during the trials was roughly an average of 0.05%, as it is shown

in the Table 3.1, an excerpt of the Battery Historian tool.

3https://medium.com/@elifbon/android-application-performance-step-4-battery-
b1f88d096b1e.

75

Figure 3.6: Functional diagram of the developed App. Configuration of the structure
of the App and connection to the blacklisted service.

3.4 Method2: Dynamic DNS request monitoring of An-
droid malware via instrumentation

The analysis of Android applications becomes more and more difficult currently.

Both benign and malicious developers use various protection techniques, such as

Java reflection, dynamic code loading, and code obfuscation, to prevent their Apps

from reverse engineering. Besides, in order to build a hooking framework for dy-

namic analysis, we follow a similar hooking approach as the propose by Brandolini

in [87]. Throughout this section, we present a method for detecting malware, by

capturing malicious URLs at the level of intelligent devices by executing the func-

tions they call. The contribution of this method2 is to expand the system for An-

droid platforms described in [60], consisting of an implementation on the side of

the smartphone. Here, we concentrate on capturing the URL queries requested to

detect malicious transactions initiated by an application running on the Android

phone side.

3.4.1 AppURL: The Proposed Malware Detection Tool via instru-
mentation

Next, the methodology used in this section is described. This consists of three

phases. The first phase is the identification and capture of URLs invoked through

the DNS queries requested that are being made by an Android application under

76

Figure 3.7: Outcome of the queries to the blacklisted service WoT [93] with Network
Sentinel.

test from the smartphone. The second phase is to determine if the URLs obtained

in the first phase are whether benign or malicious, by using a reputation grading

(blacklisted) service available at the Internet. Finally, the third phase consists of

storing the malicious URLs, in a text file and in a database for later use, if applica-

ble. That is, if any malware detection is made.

3.4.1.1 First Phase: Acquisition of data, Analysis and Monitoring of mobile
traffic at the network level

In this phase, it has been designed and developed a module to capture data from

mobile applications (in our case we will conduct our experiments by using the

popular MalGenome dataset [36]), which serves to identify attacks against mobile

platforms. In order to make the system as non-intrusive as possible, first, we ob-

tain a general map about the nature of the applications installed on the client’s

device. This map is obtained with a simple query to the Virustotal API [96]. On

the other hand, there are applications whose analysis gives an unknown result in

VirusTotal. In this case, method2 would be executed to monitor the suspicious

App, performing an instrumentation process, based on the injection of functions

that cause the sending of records of its execution to a central server. This last pro-

cess is carried out through a process called "Hooking". Unlike method1 described

in 3.3, in our case (method2) the hooking process is still done partially by manual

77

Table 3.1: Table of the battery usage with the smart device Xiaomi Redmi 3S, in par-
ticular the org.nucleo.ami.networksentinel (Ranking 4 in the Table has as Battery
Percentage Consumed, 0.05%).

sequence, so far App by App, which an inconvenient. Here, we test hooking Java

methods and native functions to enhance Android applications security.

In our case, the instrumentation process is conducted by using ADBI toolkit [95],

which implements the hijacking utility of the ARM binary code [97]. Due to its

binary-level hooking feature, the ADBI can hook the native code of an App, which

is required in order to instrument the URL queries requested. Here, we need to

invoke native functions as it is explained as follows. A detailed explanation of

the monitoring architecture used is available in [60]. The development of this

system allows to analyze in a visual way the behavior and the dangerous func-

tions executed by the application under study. Next, the task will be to identify

and evaluate relevant sources of information security in the mobile network, and

show how they could be used to detect security events related to subscribers in

the mobile network. Considering the current traffic rates, the detailed inspection

of user plane traffic is prohibitive, in addition to that the privacy implications

and regulatory limitations have to be enforced or followed. Thus, the data source

considered here is that of the DNS queries made by the App under monitoring

on the smartphone. In general, DNS records contain very valuable information

about domain names and associated IPs that Apps consult. It will therefore contain

78

Figure 3.8: A malware sample instrumented by using the ADBI toolkit [95].

records of malicious URLs that could make mobile Apps in the form of malware.

Here the key piece of all our infrastructure and where lies the logic of the pre-

sented method, it is the tool that implements the instrumentation of the Android

application under examination. The data sources to be collected are, therefore,

the traces with the invoked DNS queries performed by the malicious application

executed, previously instrumented, in a controlled environment, by introducing

hooks as described in [87]. The instrumented methods come from the Class "In-

etAddress" of the Android 4.3 API, and to complete the capture of the involved

URLs, the hooking library called Android Dynamic Binary Instrumentation ADBI

is also used [95]. This is because we have identified the Java Abstract class URL-
Connection (which cannot be instrumented at the level of the Android framework

layer) as the main Java class used for opening the URL connections, and we rec-

ognize that in turn, this appeals to a native function of the lowest level called

connect(). In short, we run the instrumented App under examination for a certain

period of time, and it creates a text file with a list of captured URLs as explained

later.

79

3.4.1.2 Second Phase: Identification of captured URLs

The objective of this phase will be to review and evaluate relevant sources of in-

formation security in the mobile network and show how they could be used to

detect security events of users in the network. First of all, we can consult the trace

database of the application using a QPython script written by us to extract the

URLs involved ("qpython-language script"). So here we focus on the detection of

malicious URLs. And for this we depend on several third-party APIs. With the

help of these APIs such as URLVoid [98] and Web of Trust [93] we can know if

the URLs obtained are in blacklists. These are free services that analyze a website

through multiple blacklist engines or monitors and online reputation tools to facil-

itate the detection of fraudulent and malicious websites. This service helps them

identify websites involved in malware incidents, fraudulent activities and phish-

ing websites, etc. We consult known reputation grading services URLVoid [98]

and/or Web of Trust [93] as aforementioned before. So, among URLs collected

from experiments, we treated them as malicious URLs if both services said “mal-

ware”, as benign URL if both said “benign”. URLs with different answers are dis-

carded.

3.4.1.3 Third Phase: Storage of malicious URLs

The objective of this phase will be to store in a text file (e.g., analysis.txt) and in a

MySQL database the malicious URLs found, respectively, so that they are available

for further analysis or at least notify the user of the smartphone of a connection to

remote servers that can be considered dangerous.

3.4.2 Experimental Results

To evaluate our platform, we show the results obtained for several different stages

of the complete process of monitoring the DNS queries invoked by the malware.

First, we assume that we have already instrumented and monitored, and executed,

one of the malware samples that performs DNS queries as it can be seen in Fig. 3.8,

so we consider one of the ADRD Trojan specimen provided by MalGenome, and

let it run for a period of 15 to 20 minutes on the Android Emulator of the Eclipse

IDE; in order to capture URL queries requested. Besides, in Fig. 3.9, we have the

whole block diagram used to detect malicious URLs.

80

Figure 3.9: The processing of the URLs is illustrated for the proposed Non-root
method for Dynamic DNS Monitoring of Android malware via instrumentation.

Thus, on one hand, we write a script in Qpython for extracting the URLs ob-

tained by instrumented App. On the other hand, we now describe the processing

of a single sample of malware used. The following steps illustrate by means of

screenshots the proposed technique, regarding to the network traffic of the An-

droid smartphone. Then, in the next screenshots of the Android emulator we

show: (i) the computer language in use, Android python (Qpython); in Fig. 3.10

Qpython is running on the emulation environment, (ii) the Fig. 3.11 shows a way

to execute the python script, in Qpython, and (iii) the Fig. 3.12, which presents the

outcome of the evaluation of one of the samples of the ADRD Trojan malware and

in the output of the script we have the malicious URL addr.taxuan.net, which is

the address of the remote malware server.

3.4.3 Remarks on the Method2

In this section we propose a tool for Android malware detection termed AppURL
based in instrumentation. However, so far, it presents some shortcomings because

it has been not possible to implement an automatic toolkit version of the AppURL.

This tool could contribute to develop a collaborative framework of that allows to

find of events between the malicious URLs of the applications in the intelligent

device, and the DNS records of the network traffic provided by the DSN Servers

81

Figure 3.10: The App of the Qpython programming language up and running on the
Emulator (Eclipse IDE).

at the mobile infrastructure. Here, we only work in the part that operates on the

side of the smartphone, identifying URLs invoked through the DNS queries re-

quired by Apps under test (we want to know if they are malicious or not), in this

case, samples have taken from the MalGenome dataset. This can be used to iden-

tify malware attacks on several smartphones that use the OS Android API level

19 without modifying the firmware or "rooting" it. These characteristics make

it attractive to apply this method proposed here because of its practical implica-

tions. Furthermore, to be able to work with Android OS above API level 19, it

will be needed to incorporate the Android ART VM into future research work,

see [88, 89, 90, 91].

82

Figure 3.11: Executing the Script Qpython dubbed JointDNSqueryv3.py, on the Em-
ulator (Eclipse IDE).

3.5 Comparison of the previous methods

Based on the aforementioned previous two sections, we proceed to compare method1
versus method2 as it is shown in Table 3.2 with regard to their (Android version),

(Automatic toolkit), (Battery Usage), (Memory resources), and some comments

on their pros and cons. Based on Table 3.2, we summarize:

• We need to have a real-time dynamic DNS request monitoring detection at

the mobile device. So far, this is available with the method1.

• The most advanced feature regarding the Android versions is given by method1.

As it can be seen in the Table 3.2, with method1, we examine App from An-

droid version 5 and above. However, method2 could be used for Android

83

Figure 3.12: Results of the Qpython Script running in Figure 3.11 analyzing the trojan
ADRD for tool termed AppURL.

version 4.3 and below.

• Also, with method1 was possible to conduct tests for battery usage of the

Apps. For method2, these tests were not done, since we conduct the exper-

iments on the emulators. Also, note that the used Qpython scripts run very

well on smartphones.

With the available results, we opted for the method1. This tool can be incorpo-

rated into a framework to detect malware by the DNS dynamic request monitor-

ing of Android applications, integrating the smartphones and the DNS data of the

DNS servers at the infrastructure of the mobile operators.

84

Table 3.2: COMPARISON of the Dynamic DNS Request Monitoring of Android Mal-
ware

Features Method1 Method2
Android version Up to version 4.3 From version 5.0 and above
Automatic tool Yes No
Batery Usage
(on average) 0.05 % Not available

Memory resources Ok Too many memory mapping
Environment Test Emulators & Smartphones Emulators & Smartphones

3.6 Limitations

Of course, one limitation of running experiments on emulators, it is the possibility

that smart malware can detect this kind of environments and refrain from contin-

uing the malicious attacks. However, it is tough to use only real smartphones for

massive experiments.

3.7 Conclusions of the Chapter

Here we propose and discuss two methods to conduct Dynamic DNS request mon-

itoring of Android malware. The so-called method1, which is based on the use of

VPN-network traffic analysis at the smartphone to capture the DNS queries done

by it. Also, we implemented the so-called method2, which is based on the instru-

mentation of the functions calls done by the target App at the smart device; the

hooking process was done by using the ADBI toolkit [95]. For both methods, we

were using well-known reputation grading services (blacklisted URL reputation

services). Of course, blacklisted URL/IP services have several constraints regard-

ing advanced malware attacks, so in the next chapter, we are going to propose a

framework for Android malware detection more sophisticated that it takes into

account the records of the DNS servers.

From the experimental results, we conclude that the most trustworthy method,

it is method1, which is termed Network Sentinel. This method has publicly avail-

able in the Google Play Store for several months showing, so far, that is useful and

it has an easy manner to be utilized.

85

Chapter 4

A Framework to detect Android
Malware from DNS Servers

As was discussed in Chapter 3, Domain Name System (DNS) is the cornerstone of

the almost all protocols and services of the Internet; and the way that most smart

malware callbacks to their controllers’ C&C infrastructure (often referred as to

command and control server) in order to obfuscate their operation overall archi-

tecture from security monitoring. For a complete view of malicious activities, it

is often necessary to enrich the DNS data by aggregating data from applications

and networks from multiple sources, such as domain registration records and ge-

ographic location records of IP hosting domains, among others. So, having rich

DNS traffic information is very important to identify malicious behavior and this

research shall consider information sources that capture DNS traffic. In agreement

with authors in [99]: "Several studies proposed using DNS for malware detection,

because, it is the first step visiting a specific website". Here we propose a frame-

work for DNS monitoring approach termed Security In Mobile PLatforms with

Event Analysis of DNS data (SIMPLEDNS).

4.1 Introduction

It is a well-known fact that the Internet is being used continuously to execute

cyberattacks athwart different objectives. For instance, DNS plays a crucial role in

network connectivity. Unfortunately, its open nature has made it one of the fastest

growing vectors for malware threats.

As stated in [100]:“Benign services and protocols are being misused for vari-

ous malicious activities: to disseminate malware, to facilitate command and con-

trol (C&C) communications, to send spam messages, to host scam and phishing

86

webpages. Clearly, it is very important to detect the origins of such malevolent

activities, be it by identifying an URL, a domain name or an IP address.”

Many approaches have been proposed for such purpose: network traffic analy-

sis [101, 80], scrutiny of the content of web pages [102, 103], URL inspection [104],

or using a combination of thereof. On top of these, one of the most promising di-

rections relies on the analysis of the Domain Name System data.

Regrading the Domain Name Space, its primary task is to resolve requests for

naming. This function could be explained as an analogy with a telephone informa-

tion service that has current contact data and facilitates it when someone requests

it. Thus, the domain name system uses a global network of DNS servers, which

subdivide the namespace into managed areas independently from each other. This

system allows a distributed management of domain information. Each time a user

registers a domain, a WHOIS entry is created in the corresponding registry and

stored in the DNS as a "resource record." The database of a DNS server becomes,

thus, the compilation of all records in the area of the domain namespace that it

manages.

Furthermore, DNS protocol is a fundamental part of the Internet, which is the

way that easy, memorable domain names are localized and translated into the In-

ternet Protocol (IP) addresses. The domain name system maps the name people

use to locate a website to the IP address that a computer uses to localize a website.

So, the detection of malicious domains through the analysis of DNS (data) logs

have several benefits compared to other approaches. First of all, DNS logs consti-

tute only a small fraction of the overall network traffic, which makes it suitable for

analysis even in large scale networks which cover large areas. Moreover, caching,

being an integral part of the protocol, naturally facilitates further decrease the

amount of data to be analyzed, allowing researchers to explain even the DNS traf-

fic coming to Top Level Domains [105]. Second, DNS traffic contains a significant

amount of essential features to identify domain names associated with malicious

activities. Third, many of these features can further be enriched with associated

information, such as Autonomous System number (ASN), domain owner, etc., pro-

viding an even more precious space exploitable for detection. A large number of

features and the vast quantity of traffic data available have made DNS traffic a

prime candidate for experimentation with various machine learning techniques

applied to the context of security. Forth, although the solutions to encrypt DNS

data like DNSCrypt [106] exist, still a significant fraction of DNS traffic remains

unencrypted, making it available for the inspection in various Internet vantage

87

points. Last but not least, sometimes researchers can reveal attacks at their early

stages or even before they happen due to some traces left in the DNS data.

Besides, DNS Protocol was initially being designed with no security protection

in place. Subsequent The Domain Name System Security Extensions (DNSSEC)

added a layer of trust on top of DNS by providing authentication and message

integrity whilst remaining backwards compatible, but it still did not address issues

such as Denial of Service (DoS)/Distributed DoS (DDoS) attacks and deployment

difficulties. Yet despite the fact that DSN is vulnerable to a variety of attacks,

which have been well known since the late 90s, there has been very little adoption

of DNSSEC. Blockchain technology offers an innovative perspective to tackle those

challenges and it has been proposed for the next generation of DNS [107].

The purpose of this chapter is to describe an approach that aims at detecting

domains involved in malicious activities through the analysis of DNS data logs.

The first observation we have made is that this research area is relatively new.

Here, we focus on passive DNS techniques. The seminal paper [108], which led

to the area as we know it today, dates back to 2005. This work was the very first

published paper not only to consider using DNS records to detect malicious do-

mains but also to propose a practical solution to obtain large amounts of data

amenable to various types of analysis. A detailed survey on Malicious Domains

Detection through DNS Data analysis is presented in [100], where the authors

propose a general framework to describe the various components required to im-

plement a DNS based detection technique, namely: Data Sources(DNS data col-

lection (Where are the Data Collected: a)Host-resolver b) DNS-DNS) and How are

the Data Collected (active and/or passive), Data Enrichment(Geo-location, ASN,

Registration records, IP/domain black-/whitelists, Associative resources records,

Network information), ground Truth), Approaches or Design of detection algo-

rithms(Features, Detection methods (Knowledge based, Machine learning based,

Hybrid), outcome(agnostic, specific)), Evaluation methodology (Metrics(e.g., type

of metrics utilized in machine learning), evaluation strategies) .

4.1.1 Problem Statement

This work aims to deal with the sophisticated and emerging threat of Android

malware in mobile ecosystems. We develop techniques to systematically explore

and monitor the App traces generated from the execution of Apps via the capture

of the network traffic, after that they are sent to the cloud service to support the

malware detection. Much of the research work surrounding mobile malware has

88

been centered on either the in-depth analysis of malicious Apps (host level) or the

network-based approach (network level). Of course, developing a collaborative

framework between the former methods seem to a natural step, and it can increase

the chance of malware detection. Concretely, here, we focus on the discovery of

malicious URL through DNS Data Analysis. The main goal of this research is

to explore, design, and develop techniques that can be used to detect malicious

mobile behavior from large sets of heterogeneous sources. In particular, the DNS-

service network traffic activity produced by mobile malware will be inspected and

correlated with device-related activity.

4.1.2 Contribution and Outline

The contributions of this chapter are (1) extending the system for Android plat-

forms described in [60] composed of implementation on the smartphone side and

the remote server side. Herein, we focused on capturing the requested URL for de-

tecting malicious transactions initiated by an App running on the Android phone;

and (2) evaluation of combining and correlate the following two approaches: top-

down detection by identifying malware domains using DNS-service network traf-

fic and bottom-up exposure using the classical Dynamic Analysis (DA) on a num-

ber of Apps to pinpoint the malware.

It is worth to mentioned that App Network Sentinel has been updated to the

version 1.1 in Google Play Store since March 2019 to support the interconnection

with relational databases.

This chapter is organized as follows. In Section 4.2 we provide the related work

and necessary background of the framework to detect Android malware from DNS

servers; as well research methodology, while in Section 4.3 we have the Results

of the computational experiments carried out in this chapter.In Section 4.4 we

discuss the limitations of the proposed DNS-based framework and in Section 4.5

we have the concluding remark of this chapter.

4.2 The Framework to detect Android malware using
DNS Servers

As aforementioned in the previous chapters, in recent years, Android malware has

been considered one of the significant security issues and fast-growing threats fac-

ing the Internet in the mobile arena. At the same time, DNS is widely misused

89

by miscreants to provide Internet connection within malicious networks. Here,

we apply an infrastructure for monitoring the Android applications in a platform-

independent manner, which is based on dynamic DNS request monitoring of Apps

via networking. These traces are collected at a central server where string pat-

tern matching is used, machine learning algorithms are applied, and visualiza-

tion takes place. From these traces (Apps logs) we can extract URLs and correlate

them with DNS records, enabling us to find the presence of malware running at

the network level; either through the usage of blacklisting or machine learning

techniques. Example of the fields of the database that we use to store the App

traces are: timeStamp: Time in which the DNS query request was made, package-
Name: Name of the package which helps to identify the application, aplication-
Name: Name of the application, phoneID: Phone identifier, cURL: captured URL,

and ipSource: IP used by the smartphone.

Many security mechanisms were proposed to detect mobile malware and pro-

tect targets from attacks. In general, most of these mechanisms are based on an-

alyzing App elements such as permissions, the used application programming

interface (API) function calls, the employed system calls, or its bytecode. Such

mechanisms employ various detection techniques such as static dissection, dy-

namic analysis (DA), and cloud-based analysis. In the static analysis, there is an

attempt to identify the malicious code by decompiling/disassembling the App and

searching for suspicious strings or block of code. The DA implies the execution of

the App performed through instrumenting or virtual machine monitoring to ob-

serve its behavior. In the cloud-based approach, the App will be executed and

dissected on a remote server.

Mobile devices have become significant targets for smart malware due to their

substantial network activity, including Internet access. So, DNS is one of the criti-

cal elements of the Internet that facilitates associating a domain name and hosting

IP address. Besides, the DNS scheme is a query/reply based protocol where the

authenticity of the response is not confirmed or confirmed by approaches that can

be thwarted easily. However, in addition to the crucial role in the functioning of

the Internet, DNS is extensively misused by malware developers. Thus, the ag-

gressors rely on DNS to provide adjustable and resilient communication between

compromised client machines and malicious infrastructure. However, it is worth

noting that we do not address or detect malicious DNS in this work, which is DNS

traffic corrupted for illicit and malevolent reasons. In fact, we only take advantage

of DNS to find malware without having to monitor all smartphones in a system.

90

This work focuses on monitoring Android applications’ suspicious behavior at

runtime, in particular integrating to the App traces (described in [61, 58]) of the

captured URLs requested to remote servers by the App of the smart device. Later,

we correlate these enhanced App traces with DNS traces taken from the DNS

servers of the mobile infrastructure. Thus, we propose a platform-independent,

dubbed SIMPLEDNS, behavior monitoring infrastructure. It is composed of four

elements with the capacity of capturing the DNS queries requests by the App un-

der test via traffic network monitoring. To do this, we utilize an ad hoc packet

sniffer [58] publicly available at the Google Play store and developed by us. SIM-
PLEDNS is composed by: (i) an App (sniffer) that guides the user in selecting and

monitoring of the application to be examined and it sends the detected URLs to

a processing server, (ii) a cloud (processing) service that collects the App traces

and it has the capability to classify the URLs by a module of machine learning,

(iii) the DNS servers that provide data logs of the DNS network-service traffic, and

(iv) finally a cluster of Elasticsearch technology [109]. The Elastic stack includes a

visualization component that can generate dashboards of the top-ranking classi-

fication of URLs based on Kibana (part of the Elastic Stack, it is an analytics and

visualization platform that builds on Elasticsearch(ES) to give us a better under-

standing of the data). Also, the DNS records are sent the input data (DNS logs) to

the tool dubbed Logstash (an agent and server-side data pipeline processing that

receives it, parses it and later sends the indexes into ES). The log files of the DNS

data are analyzed by using Elasticsearch technology, namely the so-called Elastic
stack (Elasticsearch, Logstash, and Kibana). An Overview of the monitoring system

is shown in Figures 4.1 and 4.2. See further details about our infrastructure in

section 4.2.2.4

4.2.1 Related Work

Since most of the Android malware resort to communicate with some remote

server (e.g., a botnet master machine), there is the crucial need to detect fraud-

ulent or malevolent operation with the help of a collaborative malware analysis

framework between the smart device and the network traffic involved. Besides,

usually, the malware analysis comprises the process of reviewing the code and

gets information about the behavior and functionality of the malicious software in

its environment. Afterward, the results of the analysis will be used as an input to

the Malware Detection (MD). The type of analysis for identifying malicious appli-

cations in the Android platform can be classified as follows, namely: Host-based

91

Analysis and Network-based Analysis. Here, we will be focused on the latter. The

so-called smart malware in current smartphones and tablets have mushroomed

over the last few years, which is supported by sophisticated techniques intention-

ally designed to master security architectures in use by such devices. Let us re-

view some of these following approaches, namely: Network-based Android MD

and Collaborative Approaches for Android MD.

4.2.1.1 Network-based Android MD

Several approaches explicitly analyze network traffic for different goals. In [80],

they address the network-based malware detection mechanisms for Android-based

attacks, and they use MalGenome [36] dataset in their research. So, the authors

used four different traffic categories (network traces), namely based on: DNS-

based features, HTTP-based features, Origin-destination based features and TCP-

based features. This trait analysis is used to train a detection app model for classi-

fication of Apps based on ML algorithms. Furthermore, in CREDROID [101], it has

been proposed an Android malware detection by network traffic analysis captur-

ing packets in a remote server using the protocol analyzer WireShark [85]. They

also introduced the reputation score of the URL. With all of this, the authors pro-

posed a method which identifies malicious Apps on the basis of their DNS queries

and APK score computation through Virustotal [110], as well as the data it trans-

mits to remote server by performing the in-depth analysis of network traffic logs in

offline mode. Unlike [80] and [101], we profile only gathering the network traffic

of the app under test at the smartphone side, without rooting the Android phone.

Most of the published host-approaches do not integrate the network traffic dimen-

sion at the device side into the analysis. But, unlike the component-application

analysis, we include the DNS traffic in our approach at the network level of the

smartphone. So, to attain the goal of detecting the malware, we propose a dynamic

inspection combining the DNS queries at the Android phone level (app traces) and

the DNS log files from the network operator at the infrastructure level.

4.2.1.2 Collaborative Approaches for Android MD

Han et al. [111] proposed to identify malicious Apps by analyzing malware traffic

on the mobile Internet and achieved a high detection rate and scalability in their

system. Specifically, the authors designed a real-time Android malware detec-

tion system based on network traffic analysis and distributed third-party scanning

services. This system is composed of a training model and a real-time detection

92

model. By training over the malware traffic (they capture malware samples traffic,

then used the distributed third-party scanning services to get malicious URLs) us-

ing the training model, they found that 76.33 % DNS queries and 45.39 % HTTP

requests are all malicious. By performing malware detection using the established

real-time detection model, they showed that the detection rate using the real-time

scanning service is much higher than the integrated service. Meanwhile, the de-

tection rate will further improve by integrating more third-party scanning services

into their system.

In [16], the authors suggested a method for identifying compromised clients

based on DNS traffic analysis combined with graphs. As it is well-known Internet

criminals misuse to support communication within their malevolent network in-

frastructure. Besides, to evade traditional detection approaches based on domain

and IP blacklists, attackers resort to the so-called agile DNS mapping or dynamic

DNS techniques (e.g., Fast-flux and Domain-flux). These techniques involve swift

changing of domain names or/and IP addresses associated with a single fully qual-

ified domain name for malicious servers. This work targets both Fast-flux and Do-

main flux, thus having an advantage over current detection methods that identify

infected clients based on DNS traffic analysis in large-scale operational infrastruc-

ture, from different Internet Service Providers networks.

Additionally, in [13] a collaborative framework for characterizing malicious

behaviors on Apps is presented here by using the following features: (i) network

patterns or usages (ii) host domain reputation with the App is connecting to, (iii)

which APIs are used and (iv) which permissions are used. Thus, they have de-

signed a detection system based on these features by implementing four engines,

namely: network behavior analysis engine, host domain reputation analysis en-

gine, critical API call pattern analysis engine, and Android permissions use analy-

sis engine. Each engine then monitors its particular trait from Apps and indepen-

dently detects malicious behavior based on ML techniques. So, each engine makes

its decision, and the given information from four engines are correlated into a final

decision. In other words, the correlator determines the ultimate decision. The tests

conducted with thousands of Apps had proved that detection with this approach

can be reached with a very low rate of error (e.g., a precision rate of the final de-

cision of 91.25% is achieved using Support Vector Machine (SVM) and with very

little overhead.

Our proposed infrastructure is related to some of the research work mentioned

above and employs similar traits for identifying malicious applications, such as

93

DNS queries, algorithm design, and DA. However, our approach is different from

the aforementioned approaches in the following aspects. Firstly, we have a runtime

malware detection (dynamic analysis) but abstain from reshaping the firmware or

rooting the smart device as it is done by [40, 112, 13]. Also, the DNS queries re-

quested from the Apps under test are captured at the smart device, but not on

a remote server using Wireshark as it is done in [80] and in [101]. Secondly,

we combine in a collaborative or integrated environment the bottom-up analy-

sis (Network-Level monitor at the smartphone) with top-down approach (DNS-

service network traces) in an easy-to-follow manner in the cloud service and ES
cluster. Thirdly, moreover, we are able to monitor almost in real time, not just the

DNS queries request for a particular app to be monitored, but we are able to focus

on intercepting malicious URLs at the traffic network affecting others smart de-

vices. Our platform is more dynamic and collaborative than the other approaches

mentioned above.

On the other hand, for instance, let us focus Android botnets regarding the cap-

ture of theirs Command and Control URLs. We are wondering: How many URLs

are requested by a malicious app using dynamic analysis (DA)? In this case, DA

usually compels a botnet sample to reveals hidden URLs. Let us review one of the

previous works by authors in [113], where they proposed a method to detect An-

droid botnets; first, they collected a dataset of 19129 malware samples (including

some of them from MalGenome project) comprising 14 Android botnet families,

their characteristics and communication behavior. Second, they extracted all the

hidden URLs within these families through static and dynamic analysis. These

analyses helped them to illustrate and visualize the C&C communication patterns

of android botnet applications. Their experiments with some malware samples

show that there are different types of relationships (one-to-one (one APK file is as-

sociated with a unique URL), one-many (one APK file are associated with several

URLs), many-to-many (many APK files contain many URLs)). In this study, they

showed that some samples of the malware AnserverBot are utilizing public blogs

to set up their C&C URLs to send commands to bot clients. So they managed to

obtain from public blogs up to 830 C&C URLs (8 unique URLs) from 244 APKs,

that adopted many-to-may relationships. Some of malevolent domain names de-

tected are: 91.cookier, baisu.com, b4.ccookeier, sina.com, b3.8866.org, among others.

Another interesting finding of the Command and Control URL pattern is on the

DNS. They found that the C&C URLs exploit its DNS by adopting the Domain

94

Generation Algorithm (DGA) and the URL obfuscation techniques [114] (e.g, ob-

fuscating the host with an IP address, obfuscating with the large hostname, and

unknown or misspelled domain). The latter result is very interesting because we

can utilize heuristic rules based on lexical analysis [99] of the URLs to further

extend the malware detection capabilities provided by the blacklistings.

Our results could be shown in a dashboard that visually render existing mali-

cious URLs in the system enabling to warning a potential mobile operator about

their presence in its traffic network. Noting that a mobile operator can easily or

indirectly detect other infected devices that had not installed the monitoring ap-

plication. This is due to they behave in the same manner, by doing the same DNS

queries than the monitored devices. This is certainly a very valuable benefit be-

cause we do not need to monitor all the smart devices at the same time. Since we

collect the used URLs on the Android device instead of on a remote server or gate-

way, we shorten the time to detect malware as it is suggested in the hybrid analysis

method dubbed NeseDroid [17].

4.2.2 Research methodology

Obviously, once an App visits a malicious URL, it may become a malware. So,

malware refers mainly to the software with malicious behaviors running in a host

or a network system. In this work, we come up with or conceive a method that

uses the URLs visited by Apps to identify malware. Hence the whole process is

divided into four phases. First of all, the first phase implies the generation of

the app traces, data collection and the analysis and monitoring of network traffic.

Actually, the app traces are, in this particular case, the malware traces with the

plus in this approach that we are able to capture the DNS queries done by the app

under test if any. The second phase includes the log aggregation and transport of

data generated, the extraction of URLs from app traces and DNS-service network

traces are done with the help of Python-language scripts. The third phase is the

search and analytics task (without and with Machine Learning algorithms). And,

the fourth phase is the visualization component of the system. The rest of the

process is outlined in subsections that follow.

An overview of the monitoring system are shown in Figure 4.1 without machine

learning (ML) and in Figure 4.2 with ML.

95

Figure 4.1: Proposed approach without ML. "Servidor DNS" means DNS Server.

4.2.2.1 Introduction to the Malware Dataset

First, let us introduce one of the employed Malware Datasets. In our experiments,

we partially are using the MalGenome dataset [36], which it has 1260 Android

application package (apks). So according to our approach, we need to "capture"

the network traffic from 100 malware samples of these applications (apk files). It

should be mentioned that there are malicious Apps that are not generating net-

work traffic, therefore these cases are not taken into account or ignore in our anal-

ysis.

4.2.2.2 Data Generation (DNS Data Sources)

This part is done in two flavors, namely: i) DNS generation from MalGenome

dataset, and ii) DNS Data from the DNS servers & and app dubbed Network Sen-
tinel [58].

Part1: DNS Data from a list of malicious (MalGenome) and benign Apps used
for data collection. Here we are interested in the data sources that will feed into

our platform, namely: the app traces from smart devices conveying information

about the DNS consultations done by one app under test; and the DNS-service

network traffic in the mobile infrastructure, in particular, the logs from the DNS

servers. To achieve our objective, we utilize the Android OS Version 5.0. In order

to collect data at the smart device level, we need to set up an experimental testbed

96

Figure 4.2: Proposed approach with ML.Data Flow: 1) Monitored URLs from Apps
collected by Network Sentinel 1.1 and send to processing server, 2) Traces from the
Apps are saved into the DDBB, 3) The processing server computes the vector features
to feed the ML module, 4) The ML algorithm classifies the URL under scrutiny, 5) If
the URL in 4) is found malicious then a Python script is utilized to conduct a search
based on ES and figure out how many smart devices are affected by the malware, 6)
Kibana shows some malicious URLs found in the DNS-service network records under
scrutiny. "Servidor DNS" means DNS Server.

with multiple virtual machines (VM) which used VMWare WorkStation 12 and

VirtualBox 5.0.28, respectively; to create a controlled environment. Afterward,

we use either the smartphone or the Android Studio Emulator on a host a machine

which is employed for running the Apps and the App Network Sentinel; and we

then run various tools to process the malicious Apps under analysis, in particular

in the Virtualbox VM we run the Elastic Stack [109]. Let us introduce the first data

source, the processing of the traffic generated by the smartphones in the VMWare

VM. Thereafter, we store some privacy data (e.g., contacts information, images,

and some downloaded files) to the emulator, the next step performed is to capture

the DNS queries of the samples from each MalGenome family in use. Samples

from each of the malware family were executed on the emulation environment

for a short and fixed amount of time (10 mins). We expect some of the samples

to communicate to the remote server since each sample itself is a malware. To

separate network traffics of the smart devices, the virtual machine is left idle for

around 5 minutes between running and terminating of applications after the net-

work traces from the App under examination are captured and saved. After the

97

traces have been collected from an application, it is uninstalled and Android Studio
Emulator is rebooted. It is important to mention that the aforementioned proce-

dure, it is just to check out which malware samples are connecting with remote

servers. Also, we are to generate DNS traces from the smart devices by monitoring

with a tool named Network Sentinel, for further details see [58]. The benign Apps

consider, for sake of comparison, in this study are (all of them have been taken

from Google Play Store): Book Read, Dictionary.com, BBC News, Maps, Facebook,

WhatsApp, Email, Youtube. On the other hand, the malicious Apps [36] involved

are the following: ADRD, Anserver, BaseBridge, DroidKungfu 1, DroidKungfu 2,

DroidKungfu 3, DroidKungfu 4, Geimini, PjApps, Plankton, RougeLemon, Droid-

Dream, DroidDreamLight.

Part2: DNS Data from the DNS servers & and Apps under test. Regarding the

second data source, for sake of simplicity, in this work; we initially only consider

two samples of DNS-service network logs (each file has around 30 MB in size,

which are currently available for our experiments) provide by one mobile operator

in 2015 and 2016. DNS records contain valuable information about domain names

and associated IPs that clients query, whether mobile or not. It will therefore con-

tain usually malicious URL records that could make mobile Apps malware. Later

on, we will utilize some DNS logs collected from the main campus of the National

University of Engineering (UNI) in Managua, Nicaragua. Typical sizes of these

logs are around 3 MB (2019).

4.2.2.3 Log aggregation and transport

This task will focus mainly on the description of the agent responsible for col-

lecting and storing information on DNS-service network logs. For data collec-

tion, the data will be used in text format from the DNS Servers, and DNS data

(traces) collected in a well-structured relational database of the Apps using Net-
work Sentinel. The collection of the logs of the DNS servers will be indexed through

Logstash [109], see Figure 4.3. This tool, designed to collect and add events and logs

created on multiple devices and services, sends information from DNS-service net-

work logs to a system that indexes content for durable storage. Here, the main idea

is to be able to have a telemetry correlator that will provide the analysis and cor-

relation of all device telemetry data with all the sources that will be available to

the system. Thus, on the other hand, when malware is executed, malicious URL

98

queries will be logged and sent to a SQL database (DDBB) to the server in the

cloud. For further details, see Figures 4.1 and 4.2.

Figure 4.3: A Logstash instance has a fixed pipeline constructed at startup,
based on the instance’s configuration file. Picture credit: Deploying and Scaling
Logstashhttps://www.bogotobogo.com/Hadoop/ELK/ELK_ElasticSearch_Logstash.php.

4.2.2.4 Search and Analytics

In this task the correlation of the monitored events in the previous task has to be

carried out without or with ML.

Let us begin with the case without ML. Here the utilized strategy is to index

the content of data collection in order to develop a pattern matching system, in

particular, we do that with the DNS-service network logs that are expected to be

a huge amount of data. Thereafter, we proceed with the extraction of the URLs

included in the app traces of a particular sample of malware in use, if there is any

URL. Malicious labeling through the usage of blacklisting could be also done by

the Network Sentinel. Next, the following step is conducting a search of malicious

URLs on the aforementioned content indexing built in with ES. So, we are able to

identify other smart devices who are running the same malicious URLs previously

executed. By the way, here ES has been used as a method of content indexing.

ES is a Lucene-based search server [109]. Also, our system is designed with an

easy-to-use web interface. The connection between the processing server and ES is

supported by a Python script. The ES makes simple to search and perform various

forms of analysis on the Apps and their traces, as well as the DNS-service network

traces from the infrastructure of the mobile operator. In our case, we search for

pattern matching in strings for those common malicious URLs found both in the

app traces of the smart devices and in the DNS-service network records (logs)

99

extracted in the network traffic of the mobile operator, see in Figure 4.4 without

ML.

Figure 4.4: Correlation of the blacklisted URLs from the smart devices traces obtained
with the App name Network Sentinel with the logs from the DNS servers without using
ML.

The DNS server logs are usually huge in size, which is very difficult to analyze

simply by looking at the log files. Then, we exploit the Elastic stack to find quickly

the fields of the DNS records. The main advantage of Elastic is that it integrates

search capabilities and visualization. Since the elasticsearch is highly scalable, in

principle, it can search in "any" data size. Later on, we will come back to discuss

this assumption.

In the sequel, let us now continue with the case of Search and Analytics task

with ML. In general, blacklists provide robust evidence about blacklisted domains.

Even though reputable blacklistings are the first line of defense, however, they still

have a number of troubling issues. They cannot be exhaustive and none of them is

wholly reliable. Thus, we need extra more accurate security measures and clearly,

ML techniques are a promising line of action, so that must be put in place to ensure

more intelligence is used to protect the users.

Furthermore, sometimes blacklists can exhibit high false positives and false

negatives rates as well as they cannot cope with the rate at which newer malicious

domains reveal themselves due to fast-flux services. Therefore, we can resort to

integrate into the case of Search and Analytics phase, the ML algorithms. So, in

100

order to refine the generality capability of malicious URL detectors, several ML

techniques have been explored [115]. See Figure 4.2.

Here, we utilized Supervised Learning. Because in this technique we have

knowledge about the dataset, mainly understanding about the correct output [58]

of the algorithm and its relation to the input. The types of problems that are cov-

ered are regression and classification. We focus on the second type of problems,

namely, classification. Next, the ML algorithms of the scikit-learn 0.20.1 library

that were used during the study are: Support Vector Machine (SVM) and Ran-

dom Forest (RF). Sahoo et al. [115] provide a comprehensive and thorough survey,

that reviews the most common types of ML algorithms utilized to detect malicious

URLs. In section4.3, we describe the proposed Framework with ML (SIMPLEDNS)

in more details.

First of all, in order to build a detection model ad hoc [99], we collected two

kinds of domains (malicious and legitimates) for reputation train. So, on the one

hand for the training set construction, we need sample domains. The database

of benign/malicious domains is collected from the URL dataset (ISCX-URL-2016)

of the Canadian Institute of Cybersecurity (https://www.unb.ca/cic/datasets/url-

2016.html). Over 35,300 benign URLs were collected from Alexa top websites at

the following URL: https://www.alexa.com/. Also, malware URLs are more than

11,500 URLs related to malware websites were obtained from DNS-BH1 (Malware

Domain Blocklist by RiskAnalytics) which is a project that maintains a list of mal-

ware sites (in this work we chose 5000 malware domains and 4500 legitimate do-

mains). Again, those are further used for training the classifier, then the SVM and

RF classifiers generated a model, respectively. Finally, we labeled the Dataset: 0

for benign, and 1 for malicious.

Second, regarding the features selection, we are going to use a slight variant of

the feature set proposed in [99, 45]. The features are as following:

• FD1: The length of the domain name

• FD2: The number of dots found in the domain name

• FD3: The number of hyphens found in the domain name

• FD4: The number of numerical characters found in the domain name

• FD5: Entropy of the URL

1https://www.malwaredomains.com/

101

• FD6: Suspicious top-level domains-based features

• FD7: Inappropriate words and transfer-based words found in the domain

name

• FD8: Days elapsed since registration

• FD9: Average TTL value for the domain.

In short, the Domain Name-based Features are: Basic features (Number of char-

acters (usually on average 12-13 characters are a good sign of a benign domain

name), Number of dots (more than 3 dots in the domain name is related with

malware with high probability), Number of hyphens(the number of hyphen in the

domain name because benign domains have at most two hyphens), Number of

numerical digits, list of suspicions Top Level Domain, and Tokens (Inappropriate

words and Transfer-based words). We also add three more features such as whois
query, the Shannon entropy of the string of characters present in the URL, and the

average Time-To-Live (TTL). Afterward, we run a third python script to read an

URL from the BBDD (processing server) and extract the chosen features aforemen-

tioned (feature vector) that are handled to ML algorithm. Again, the first python

script allows us to search for URLs in the Elastic stack. The second python script en-

ables us to compare the searching time of the URLs inside ES versus the searching

time directly on the DNS Server log file through the KMP algorithm [116]). Those

characteristics will be subsequently used in the training and testing process.

4.2.2.5 Visualization

The visualization of anomalous behavior is the last component of the proposed

architecture. In order to perform a visual analysis of the platform. So, we use the

Elastic stack, which is a versatile collection of open source software tools that make

gathering insights from data easier [109]. Formerly referred to as the ELK stack

(in reference to ES, Logstash, and Kibana). In particular, Kibana is a browser-based

or web-interface visualization frontend for ES. It enables users to easily consume

data in aggregate that would otherwise be difficult to process; making logs, met-

rics, and unstructured data searchable and more usable for humans. So because

Kibana persists most of its data within ES, managing Kibana dashboards and vi-

sualizations is a similar exercise as managing other indexes in ES. Charts, graphs,

and other visualizations sit atop ES APIs which can be easily inspected for closer

analysis or use in other systems.

102

4.3 Experimental Results

The assessment of the proposed framework is two folded, namely: a) Without ML

and b) With ML.

4.3.1 Experimental Results without ML

To evaluate our framework, in this subsection we show the visualization results

of the process of monitoring the malware behavior. Firstly, let us have monitoring

and running our DNS sniffer, one of the malware samples that it does DNS queries,

and we let it runs for a long time. By the way, from the 100 sample families ex-

plored, only 63 of them have connections with at least one remote server. We then

proceed to apply the pattern matching in strings by using Python-language scripts

developed for this purpose (see Fig. 4.4).

Figure 4.5: Finding a "suspicious" URL in use in several different smart devices in the
DNS-service network logs using the first Python-language script.

Moreover, two programs written in Python language are used for this subsection.

The first Python script extracts one suspicious URL upon the time from the MySQL

database with the App traces, and then it connects with ES to look up through the

whole indexed DNS Server records within it. For instance, if we search for the

particular URL, s0.2mdn.net. The Python program obtained automatically (see,

Figure 4.5) this target URL from app traces stored in the MySQL database in the

service cloud. In Figure 4.6, it is shown one of the DNS logs from the mobile

103

operator and obtained after the processing (indexing) with the tool Logstash and

stored in ES. Also, in the Figure 4.6, we can appreciate the several fields that can

be utilized to look up for precise information, in our case we search for the field

tagged "URL". In the case of s0.2mdn.net, as a matter of fact, this URL is actually

an adware accordingly to [96].

In Table 4.1, we can see the possibility of finding more malware not only in the

smartphone under examination, but in other smart devices that are concurrently

using the same malicious URLs and are also being detected in the DNS network-

service traffic so we can do a decisions correlation.

The second Python script allows us to do pattern matching in strings using a

well-known algorithm (or KMP algorithm) [116]. The pattern matching is done to

compare the Elasticsearch processing against the KMP algorithm. In other words,

the URLs stored in the MySQL database of the cloud service are also read with the

second Python script. After that, we run the KMP algorithm, to conduct a pattern

matching in strings, searching directly inside the DNS Server log in ES to look

for the URLs under examination. Comparison of the searching time on malicious

URLs inside the indexed DNS log in ES using the first Python script are faster by

approximately five times in average in 10000 trials, versus the searching time of

using the second Python script.

Figure 4.6: Indexed DNS log after being processed by Logstash tool and stored in the
ES, and it is shown using the tool for searching and data visualization called Kibana.
The queried URL is s0.2mdn.net.

104

Table 4.1: MALICIOUS URLs AFFECTING SEVERAL SMART DEVICES

Malicious URLs from smartphones No. of times in one of the DNS Server logs from a mobile operator
dlinkddns.com 2221

xxcamd.com 1806
alog.umeng.com 1630
thepiratebay.org 1024
servegame.com 288

pm-m.d.chango.com 30

4.3.2 Experimental Results with ML

In order to improve the proposed framework, we add ML techniques. The assess-

ment of the SVM and RF classifiers are done by using 10-folds cross-validation. In

this case, the dataset is divided into 10 parts or sets, 9 used to training and one for

teasing process. Python with the scikit-learn can provides us with the accuracy of

the classifier and gives information about the actual and predicted classifications

done by the system. The so-called confusion matrix (Figure 4.7) is composed of

following terms includes: TP is also known as hit, False alarm or Type I error (FP),

True Negative (TN), False Negative (FN) or Type II error. Then we use the following

equations below to compute the main metrics of precision or positive predictive

value (PPV), recall or True Positive Rate (TPR), specificity or True Negative Rate

(TNR), and F1-Score.

FP
False Positive

TP
True Positive

TN
True Negative

FN
False Negative

Predicted Class

A
ct

u
al

C
la

ss

Figure 4.7: Confusion matrix: TP as true positive, TN as correct rejection, FP as false
positive and FN miss. PP V stands for Positive Predictive Value (also Precision), TP R
True Positive Rate (Sensitivity) TNR , True Negative Rate (Specificity)and Negative Pre-
dictive Value (False Positive Rate)

The definition in machine learning of these parameters (Figure 4.8) depends

upon the different entries of what is known as a confusion matrix or error matrix.

That matrix is a specific table layout that allows visualization of the performance

of an algorithm and it is an array with two rows and two columns (see Figure 4.7)

that reports the number of false positives, false negatives, true positives, and true

105

negatives regarding a classification task where the goal is to predict an outcome

from a process.

Precision
P P V =

TP
TP +FP

Sensitivity

TP R =
TP

TP +FN

Neg.Pred. Value

NPV =
TN

TN +FN

Specificity

TNR =
TN

TN +FP

Fals. Pos. Rate
FPR =

FP
FP + TN

Accuracy

ACC =
TP + TN
P +N

Figure 4.8: The different parameters used to describe error performance. PP V stands
for Positive Predictive Value (same as Precision), True Positive Rate TP R (Sensitivity),
True Negative Rate TNR (same as Specificity), Negative Predictive Value NP V (False
Positive Rate)

Receiver operating characteristic (ROC) curves are also frequently used in al-

gorithm performance evaluation. These are 2D plot where sensitivity is plotted

against 1-specificity (False Positive Rate). When we require a unique value the F1-

score can be used as a single measure of performance of the test. The F1-Score is

the harmonic mean of precision (also called PPV or Positive Predictive Value) and

recall (Sensitivity, TPR) and it is defined as follows:

F1− Score = 2 ∗ P P V ∗ T PR
P P V + T PR

= 2 ∗ P recision ∗Recall
P recision+Recall

. (4.1)

In the experiment with the SVM algorithm, the TP (equivalent with hit) of

malicious domains detected resulted in 3666 out of 5000 predicted malware do-

mains, which leaves behind an FP (equivalent with false alarm) of 1334 (TP of the

malicious domains is 0.7332). For the benign domains, the TP outcome was 3980

out of 4,500 predicted legitimate domains, with a FP of 520 (TP of the legitimate

domains is 0.8844).

The Table below (The accuracy of the SVM Classifier) shows the results re-

ceived from the SVM classifier. The highest classification detection rate was 87.58%

percent. Out of a total of 9,500 malicious and legitimate domains: 7646 do-

mains were classified correctly, and 1854 were wrong classified. The precision

is the fraction of retrieved instances that are relevant, whereas Recall is the frac-

tion of relevant instances that are retrieved. Precision for malicious domains=

106

3666/(3666+ 520) = 0.8757, and the Precision for benign domains=3980/(3980+

1334) = 0.7489.

The accuracy of SVM Classifier
Malicious Benign Weighted Avg

TP Rate 0.7332 0.8844 0.8048
FP Rate 0.1155 0.2668 0.1156
Precision 0.8757 0.7489 0.8758
Recall 0.7050 0.8572 0.7332
F1-Score 0.7982 0.7982 0.7982

Regarding the experiments with Random Forest (FR) algorithm, we obtained

the following results shown in Table 4.2:

Table 4.2: The experimental results for the Random Forest algorithm

TP Rate 0.885
FP Rate 0.130

Precision 0.885
Recall 1024

F1-Score 0.885

Now, using one of the DNS server logs from our main campus at UNI com-

bined with the framework with ML (SIMPLEDNS), we detected the following Top

7 malicious URLs, namely as it is show in Table 4.3 below:

Table 4.3: MALICIOUS URLs AFFECTING SEVERAL SMART DEVICES

Malicious URLs from smartphone traffic No. of times in the DNS logs
http://market.moboplay.com/softs.ashx 478

http://y-bt.in/ 396
http://ya.ru 336

http://search.gongfu-android.com 284
http://222.186.37.93:9000/Application/reportStateC.do 138

t-mysqlnet.com 130
http://cecilia-gilbert.com/ 25

4.4 Limitations

It is very-well known, there is no prefect detection system without limitations. In

this chapter, we only consider URL/DNS traffic, however current applications and

malware as well are using DNS tunneling techniques and HTTP traffic so, taking

into consideration the current communication landscape this proposal will be only

covering partially the current malware. In addition to this, malware using certifi-

cate pinning will be totally able to evade our system. Also, working with sand-

boxes in DA instead of real Android phone could be a drawback since malware

can detect the use of emulators as is discussed in [117]. For instance, most of the

107

current mobile malware, specially bankers make use of geo-location techniques

in order to prevent it being execute in sandboxes, so this is one of the vectors the

system must consider. In order to develop a real-time system for malware detec-

tion as a Framework for Mining Massive Malware Data on Mobile Networks and

Devices, it is necessary to complement SIMPLEDNS with a big data platform since

Elasticsearch is more suitable and limited for full-text analysis. As a matter of fact,

several graph approaches have been proposed in the literature [16, 118] for dis-

covering malicious domains through DNS Data graph analysis where Elastic stack
is not enough in resources and computational power to handle this new direction.

Therefore, these issues will need further research work.

4.5 Conclusions of the Chapter

In this chapter, we propose a collaborative framework (SIMPLEDNS) for Android

MD that allows finding events correlation among common malicious URLs from

the App traces in the smart device and the DNS-service network logs from the

mobile operator. This can be used to pinpoint the malware attacks in several un-

monitored smartphones in the wireless cellular system. This platform provides

a visualization component using the tool dubbed Kibana from the Elastic Stack,

in particular, the malicious URLs corresponding to malware behaviors are high-

lighted. Our infrastructure is composed of several components namely: the App

that collects the network traffic of the application under examination, Python-

language scripts that allow processing of the URLs taking from the App traces and

the DNS records at the server that supports the search and analytics cluster (Elastic
Stack) and the ML module. So, any Android application (up to 19 API level) can be

monitored without rooting the phone or changing its firmware. Our results with

the proposed DNS framework using the RF algorithm shows, regarding the F1-

Score, a better performance than the work in [99] with J.48 classifier (0.885 versus

0.775). Further improvements on the visualization quality and the user interface

are possible, but the design and implementation of our platform demonstrated to

be promising.

108

Chapter 5

Conclusions and Future Work

This chapter presents the conclusions of this dissertation. We first summarize

the main contributions. Thereafter, we identify a number of challenging open

issues/future research lines that need further research work.

5.1 Conclusions

This thesis has dealt mainly with the design and implementation of a lightweight

framework for detecting mobile smart malware based on a dynamic DNS monitor-

ing approach. This is a potential technology to improve cybersecurity, specifically

in mobile platforms that it consists of efficiently monitoring mobile communica-

tions for the early identification of new attacks and to limit their impact. The

selection of this technology has been proposed as an appealing solution to tackle

mobile threats. Concrete our framework will take special care to minimize the im-

pact that the use of mobile devices will have on their performance when they are

acting as information collectors (i.e., some distributed sensors) for the monitoring

system. The information collected from the devices along with the data log collec-

tion in the networks of the operator will be combined for the monitoring, detec-

tion, characterization, and mitigation of mobile threats as well as to create an early

warning system for the operators. We first conducted a thorough literature survey

where we analyzed the field of mobile security, in particular, regarding Android

malware analysis techniques. We identified some gaps in current research and

some headroom for future betterments/enhancements based on dynamic analysis.

So, we investigated existing Android malware detection algorithms and methods,

in terms of computing cost and detection strategy. We identify that the abuse of

the DNS system is, in most of the cases, the first step to launch a malicious attack

109

to the smart device. Thus we must take into account this fact to detect mobile

malware.

Next, we proposed an infrastructure named AppShaper for monitoring the An-

droid applications in a platform-independent manner. The infrastructure consists

of two parts: one in the smartphone to collect the different partial traces issued by

the monitored Apps by means of another Android application dubbed the Sink;

and the server side to collect the traces from the smartphones and prepare the ap-

plications (i.e., inserting the hooks and the communication module for sending the

logs to the Sink). We have evaluated the performance of the Sink upon receiving a

high quantity of partial traces. It turns out that the Sink is capable of generating

traces for storage in a local database with reasonable CPU usage (not exceeding

28% even with an unrealistically high load). As for the monitored application, we

find that its CPU utilization, due to insertion of each probe, is negligible for the re-

sponsiveness (in the order of milliseconds). In other words, our approach includes

platform-independent application instrumentation, introducing hooks in order to

trace restricted API functions used at runtime of the application. These function

calls were collected at a central server where the App behavior filtering and vi-

sualization take place (through the usage of graphs and dendroid diagrams). In

this way, detection and visualization of Android malware behavior were achieved

through a rule-based system based mainly on API calls without compromising the

performance of the mobile devices involved. This result can help Android mal-

ware analysts to inspect visually what the application under study does, easily

identifying such malicious functions.

Later, we designed and implemented a dynamic DNS Android Sniffer termed

Network Sentinel based on VPN approach, which enabled us to capture and store in

near-real time the DNS queries request done by Apps in a smart device. This will

be the client side of the second Framework for mining malware data on mobile

networks and devices by DNS traffic termed SIMPLEDNS. By doing this, it was

possible to design and develop a system capable of extracting the DNS queries

requested by the Android applications (i.e., the work done here is focused on in-

tercepting the domains requested by application under test), in an efficient way

regarding the resources of the smart device. The App Network Sentinel is publicly

available at Google Store and, it has capabilities to classify URLs based on two

well-known public Reputation Blacklist services available on Internet (this will

be our first line of defense in our framework SIMPLEDNS). If one URL is found

110

suspected or malicious, it is then stored in its internal database. All the captured

URLs are sent to a remote server side for further processing, see Chapter 4.

Finally, we modified the framework in Chapter 2 to add a convenient, suit-

able server side (the Cloud side) where we utilized the Elastic Stack (Elasticsearch,

Logstash, and Kibana) to provide a distributed, RESTful search and analytics en-

gine capable of solving a growing number of use cases. As the heart of the Elastic
Stack, Elasticsearch centrally stores our gathered data so that we can conduct string

pattern matching. As a second line of defense on the remote server side, we also

trained and developed a machine learning (ML) module based on lexical analy-

sis and heuristic rules to obtain a classifier system of the URLs, which have been

sent previously by the App Network Sentinel on the smart device. The execution of

malware implies, in most of the times, the access of the same malicious domains

on Internet, which is a reason why the capture of this type of consultations could

help us to detect infected devices without needing to monitor them directly. In

other words, we identified within the DNS records from the DNS Servers of the

network those requests that utilize the device running the Android application

under test. And we can then map the extracted DNS records into the server side

to classify each one of them as a benign or malicious domain (the ML algorithm

does this). Thus, we developed a framework that automates the recent analysis us-

ing our client(s) App(s) for smart devices developed or enhanced in this research.

In summary, in this thesis, we explored, designed, and developed techniques that

can be used to detect the malicious mobile behavior of medium-size collections

(hundreds to thousands of traces) of heterogeneous sources.

5.2 Future Work

In this section, we outline future research directions that can lead to additional

contributions to the field of mobile security. This thesis, though limited in scope,

offers development opportunities that deserve the attention of the scientific com-

munity for further advances in the field. We now list the aforementioned oppor-

tunities arranged by topic.

Extending the framework AppShaper (Chapter 2). This monitoring platform

could be extended by logging the selected parameters of hooked functions too.

However, before doing that it is needed to address the privacy issues since we will

be able to log private information.

111

Extending the framework SIMPLEDNS into a Big Data Testbed (Chapter 4).

Instead of using the Elastic Stack as in this dissertation is done, this framework

can be redesigned and implemented as a Big Data testbed through the usage of

the Apache Spark platform, which is an open-source distributed general-purpose

cluster-computing framework, allowing data parallelism and fault tolerance; using

this framework will allow us to add graph analysis to the malware detection. On

the other hand, Elasticsearch, in a nutshell, is a search engine. It is great at getting

documents, understanding their language (word stemming, cleaning stop words,

etc.), and storing them in a way that will allow a very fast fetching. However, it

will be fast only for fetching the first 100s-1000s of documents. When querying

for 10000 results - Elasticsearch will be relatively slow. In short, the huge number

of malware samples and big size of collected data for malware detection cause a

big data problem, which challenges the detection and forces it to be much efficient

to handle big data. The speed of malware growth has never slowed down. The

sample database is becoming enormous. So, finding a way to dramatically and

efficiently reduce the sample space and effectively detect malware is urgent. To

some possible extent, distributed detection systems and cloud-based solutions can

make this problem easier to solve. Besides, data mining and fusion methods and

some other strategies used in big data processing can also be applied in solving

the big data issues in this research field. Providing more intelligence to the smart

device. The trained machine learning model based on lexical features developed

on the server or cloud side in Chapter 4 of this thesis, it might be transferred to the

smart device enhancing its classification capabilities. Since this model mentioned

above is a light-weight method. Now the mobile phone will have two lines of

defenses, one through the usage of blacklists and the second one by means of the

trained machine learning model incorporated into de smartphone, either option

can classify a URL as malicious, implying that the server side or cloud service will

be informed about this behavior, and it will take the necessary actions to detect the

same malware in another mobile device (which are not being currently monitored)

active in the DNS logs from the DNS servers.

Addressing Protection Privacy Issues to the frameworks. In the literature,

we found many cloud-based methods proposed for mobile malware detection due

to the constrained resources of smart devices. This is also valid for the aforemen-

tioned methods suggested in this thesis work, which carried out feature analysis

and detection of unknown software on a server or a cloud, that could result in

privacy concerns. The collected data about mobile users need to be uploaded to

112

the cloud to be processed. This could intrude on user privacy since the cloud can-

not be fully trusted. But, none of the existing work provided privacy protection

during the process of mobile malware detection. This is an important private data

leakage issue that urges in future research efforts to be addressed.

Enhancing the proposed framework SIMPLEDNS through Content-based Fea-
tures. Content-based features are those obtained upon downloading the entire

web-page, so it must be done at the server or cloud side. As compared to URL-

based features, these are heavy-weight traits, as a lot of information needs to be

extracted, and at the same time, safety concerns may arise. The content-based

features of a web-page can be drawn primarily from its HTML content, and the

usage of JavaScript. Usually, this approach is combined with machine learning

algorithms. In the sequel, a general processing framework for malicious URL de-

tection using machine learning is suggested in [115], including the formulation

of the binary classification problem as a convex optimization process, see([115],

page 5, equation 1).

113

References

[1] Asier Aduriz Saiz, “Simple: Security in mobile platforms with even analy-

sis.,” july 2014, Mondragon Unibertsitatae.

[2] THe Guardain, “How the smartphone is

killing the pc. retrieve april 30, 2017 from

https://www.theguardian.com/technology/2011/jun/05/smartphones-

killing-pc.,” Available Online, 2017.

[3] Ping Yan and Zheng Yan, “A survey on dynamic mobile malware detection,”

Software Quality Journal, pp. 1–29, 2017.

[4] IDC, “"smartphone shipments os market share, 2017 q1,"

http://www.idc.com/prodserv/smartphone-os-market-share.jsp.,” Avail-

able Online, 2017.

[5] Statista, “Number of available applications in the google play

store from december 2009 to march 2017. retrieve april 18, 2017

from https://www.statista.com/statistics/266210/number-of-available-

applications-in-the-google-play-store/.,” Available Online, 2017.

[6] G. DATA, “8,400 new android malware samples every day. retrieve april 18,

2017 from https://www.gdatasoftware.com/blog/2017/ 04/29712-8-400-

new-android-malware-samples-every-day,” Available Online.

[7] F-secure, “F-secure-threat-report-state of cyber security 2017. retrieve july

30, 2017 from http://www.f-secure.com.,” Available Online, 2017.

[8] eMarketer, “Mobile phone users and penetration worldwide, 2015-2020.

retrieve july 30, 2017 from https://www.emarketer.com/chart/mobile-

phone-users-penetration-worldwide-2015-2020-billions-of-population-

change/196278,” Available Online, 2017.

114

[9] SophosLabs 2018, “Sophoslabs 2018 malware forecast. re-

trieve september 15, 2018 from https://www.sophos.com/en-

us/en-us/medialibrary/pdfs/technical-papers/malware-forecast-

2018.pdf?la=en,” Available Online, 2017.

[10] Zhiqiang Wu, Xin Chen, and Scott Uk-Jin Lee, “Identifying latent android

malware from applications description using lstm,” .

[11] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Arturo

Ribagorda, “Evolution, detection and analysis of malware for smart de-

vices,” IEEE Communications Surveys & Tutorials, vol. 16, no. 2, pp. 961–987,

2014.

[12] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro,

“Copperdroid: Automatic reconstruction of android malware behaviors.,”

in NDSS, 2015.

[13] Chanwoo Bae and Seungwon Shin, “A collaborative approach on host and

network level android malware detection,” Security and Communication Net-
works, vol. 9, no. 18, pp. 5639–5650, 2016.

[14] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao, “Semantics-aware

android malware classification using weighted contextual api dependency

graphs,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2014, pp. 1105–1116.

[15] Marián Kühnel and Ulrike Meyer, “Applying highly space efficient black-

listing to mobile malware,” Logic Journal of the IGPL, vol. 24, no. 6, pp.

971–981, 2016.

[16] Matija Stevanovic, Jens Myrup Pedersen, Alessandro DAlconzo, and Stefan

Ruehrup, “A method for identifying compromised clients based on dns traf-

fic analysis,” International Journal of Information Security, pp. 1–18, 2016.

[17] Nguyen Tan Cam and Nguyen Cam Hong Phuoc, “Nesedroid android mal-

ware detection based on network traffic and sensitive resource accessing,”

in Proceedings of the International Conference on Data Engineering and Com-
munication Technology. Springer, 2017, pp. 19–30.

115

[18] Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al., “Securing android:

A survey, taxonomy, and challenges,” ACM Computing Surveys (CSUR), vol.

47, no. 4, pp. 58, 2015.

[19] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo

Cavallaro, “The evolution of android malware and android analysis tech-

niques,” ACM Computing Surveys (CSUR), vol. 49, no. 4, pp. 76, 2017.

[20] William Enck, Machigar Ongtang, and Patrick McDaniel, “Understanding

android security,” IEEE security & privacy, vol. 7, no. 1, pp. 50–57, 2009.

[21] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, Shlomi Dolev, and

Chanan Glezer, “Google android: A comprehensive security assessment,”

IEEE Security & Privacy, vol. 8, no. 2, pp. 35–44, 2010.

[22] Aubrey-Derrick Schmidt, Detection of smartphone malware, Phd thesis, Tech-

nical University of Berlin, 2011.

[23] Mohsen Damshenas, Ali Dehghantanha, and Ramlan Mahmoud, “A survey

on malware propagation, analysis, and detection,” International Journal of
Cyber-Security and Digital Forensics (IJCSDF), vol. 2, no. 4, pp. 10–29, 2013.

[24] Carlos A Castillo et al., “Android malware past, present, and future,” White
Paper of McAfee Mobile Security Working Group, vol. 1, pp. 16, 2011.

[25] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra, “A survey

on security for mobile devices,” IEEE communications surveys & tutorials, vol.

15, no. 1, pp. 446–471, 2013.

[26] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh

Gaur, Mauro Conti, and Muttukrishnan Rajarajan, “Android security: a

survey of issues, malware penetration, and defenses,” IEEE communications
surveys & tutorials, vol. 17, no. 2, pp. 998–1022, 2014.

[27] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and

Ahmad-Reza Sadeghi, “Xmandroid: A new android evolution to mitigate

privilege escalation attacks,” Technical Report TR-2011-04, Technische Uni-

versität Darmstadt, Apr. 2011.

116

[28] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck, “Struc-

tural detection of android malware using embedded call graphs,” in Pro-
ceedings of the 2013 ACM workshop on Artificial intelligence and security. ACM,

2013, pp. 45–54.

[29] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, Konrad

Rieck, and CERT Siemens, “Drebin: Effective and explainable detection of

android malware in your pocket,” in Proceedings of the Annual Symposium
on Network and Distributed System Security (NDSS), 2014.

[30] Xuxian Jiang and Yajin Zhou, “A survey of android malware,” in Android
Malware, pp. 3–20. Springer, 2013.

[31] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou, “Deep

ground truth analysis of current android malware,” in International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2017, pp. 252–276.

[32] Bahman Rashidi and Carol J Fung, “A survey of android security threats

and defenses.,” JoWUA, vol. 6, no. 3, pp. 3–35, 2015.

[33] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek, “A taxon-

omy and qualitative comparison of program analysis techniques for security

assessment of android software,” IEEE Transactions on Software Engineering,

vol. 43, no. 6, pp. 492–530, 2017.

[34] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel,

“A survey on automated dynamic malware-analysis techniques and tools,”

ACM Computing Surveys (CSUR), vol. 44, no. 2, pp. 6, 2012.

[35] Oscar Somarriba and Henry Jaentschke, “Dynamic android malware detec-

tion: A survey,” in IEEE LATINCOMM 2017. IEEE, 2017.

[36] Yajin Zhou and Xuxian Jiang, “Dissecting android malware: Characteriza-

tion and evolution,” in Security and Privacy (SP), 2012 IEEE Symposium on.

IEEE, 2012, pp. 95–109.

[37] Vanja Svajcer, “Sophos mobile security threat report,” in Launched at Mobile
World Congress, 2014.

117

[38] Michael Sikorski and Andrew Honig, Practical malware analysis: the hands-
on guide to dissecting malicious software, no starch press, 2012.

[39] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Jorge

Blasco, “Dendroid: A text mining approach to analyzing and classifying

code structures in android malware families,” Expert Systems with Applica-
tions, vol. 41, no. 4, pp. 1104–1117, 2014.

[40] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani, “Crowdroid:

behavior-based malware detection system for android,” in Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile devices.
ACM, 2011, pp. 15–26.

[41] Kanubhai Patel and Bharat Buddhadev, “Predictive rule discovery for net-

work intrusion detection,” in Intelligent Distributed Computing, pp. 287–298.

Springer, 2015.

[42] Guihua Shan, Yang Wang, Maojin Xie, Haopu Lv, and Xuebin Chi, “Visual

detection of anomalies in dns query log data,” in Visualization Symposium
(PacificVis), 2014 IEEE Pacific. IEEE, 2014, pp. 258–261.

[43] Michael Dooley and Timothy Rooney, DNS Security Management, John Wiley

& Sons, 2017.

[44] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, and

David Dagon, “Detecting malware domains at the upper dns hierarchy.,” in

USENIX security symposium, 2011, vol. 11, pp. 1–16.

[45] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi, “Ex-

posure: Finding malicious domains using passive dns analysis.,” in Ndss,
2011.

[46] Duane Wessels, Marina Fomenkov, Nevil Brownlee, et al., “Measurements

and laboratory simulations of the upper dns hierarchy,” in International
Workshop on Passive and Active Network Measurement. Springer, 2004, pp.

147–157.

[47] David Dagon, Cliff Changchun Zou, and Wenke Lee, “Modeling botnet

propagation using time zones.,” in NDSS, 2006, vol. 6, pp. 2–13.

118

[48] Linh Vu Hong, “Dns traffic analysis for network-based malware detection,”

M.S. thesis, 2012.

[49] Shuang Hao, Nick Feamster, and Ramakant Pandrangi, “An internet-wide

view into dns lookup patterns,” School of Computer Science, Georgia Tech,
Tech. Rep, 2010.

[50] Charles Lever, Manos Antonakakis, Bradley Reaves, Patrick Traynor, and

Wenke Lee, “The core of the matter: Analyzing malicious traffic in cellular

carriers.,” in NDSS, 2013.

[51] Shree Garg, Sateesh K Peddoju, and Anil K Sarje, “Network-based detection

of android malicious apps,” International Journal of Information Security, pp.

1–16, 2016.

[52] Nigel Cross, “Science and design methodology: a review,” Research in engi-
neering design, vol. 5, no. 2, pp. 63–69, 1993.

[53] Dawn G Gregg, Uday R Kulkarni, and Ajay S Vinzé, “Understanding the

philosophical underpinnings of software engineering research in informa-

tion systems,” Information Systems Frontiers, vol. 3, no. 2, pp. 169–183, 2001.

[54] R Hevner Von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram, “De-

sign science in information systems research,” MIS quarterly, vol. 28, no. 1,

pp. 75–105, 2004.

[55] Juhani Iivari, “A paradigmatic analysis of information systems as a design

science,” Scandinavian journal of information systems, vol. 19, no. 2, pp. 5,

2007.

[56] Ken Peffers, Tuure Tuunanen, Charles E Gengler, Matti Rossi, Wendy Hui,

Ville Virtanen, and Johanna Bragge, “The design science research process:

a model for producing and presenting information systems research,” in

Proceedings of the first international conference on design science research in
information systems and technology (DESRIST 2006). sn, 2006, pp. 83–106.

[57] Oscar Somarriba, “Detecting blacklisted urls from unmodified and non-

rooted android devices,” in Central America and Panama Convention (CON-
CAPAN XXXVll), 2017 IEEE 37th. IEEE, 2017, pp. 1–6.

119

[58] Oscar Somarriba, Luis Carlos Perez Ramos, Urko Zurutuza, and Roberto

Uribeetxeberria, “Dynamic dns request monitoring of android applications

via networking,” in 2018 IEEE 38th Central America and Panama Convention
(CONCAPAN XXXVIII). IEEE, 2018, pp. 1–6.

[59] Oscar Somarriba, Ignacio Arenaza Nuño, Roberto Uribeetxeberria, and Urko

Zurutuza, “Análisis visual del comportamiento de aplicaciones para an-

droid,” 2014.

[60] Oscar Somarriba, Urko Zurutuza, Roberto Uribeetxeberria, Laurent De-

losières, and Simin Nadjm-Tehrani, “Detection and visualization of android

malware behavior,” Journal of Electrical and Computer Engineering, vol. 2016,

2016.

[61] Oscar Somarriba and Urko Zurutuza, “A collaborative framework for an-

droid malware detection using dns and dynamic analysis,” in IEEE Central
American and Panama Convention (CONCAPAN XXXVII). Nov 2017. IEEE,

2017.

[62] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos, “Pro-

filedroid: multi-layer profiling of android applications,” in Proceedings of
the 18th annual international conference on Mobile computing and networking.

ACM, 2012, pp. 137–148.

[63] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,

X Sean Wang, and Binyu Zang, “Vetting undesirable behaviors in android

apps with permission use analysis,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 2013, pp. 611–622.

[64] Android.com, “Android system permissions,” Available online, 2014.

[65] R Winsniewski, “Android–apktool: A tool for reverse engineering android

apk files,” 2012.

[66] M. Karami, M. Elsabagh, P. Najafiborazjani, and A. Stavrou, “Behavioral

analysis of android applications using automated instrumentation,” in Soft-
ware Security and Reliability-Companion (SERE-C), IEEE 7th International
Conference on, June 2013, pp. 182–187.

120

[67] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie, “Pscout:

analyzing the android permission specification,” in Proceedings of the 2012
ACM conference on Computer and communications security. ACM, 2012, pp.

217–228.

[68] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel,

Nikhilesh Reddy, Jeffrey S Foster, and Todd Millstein, “Dr. android and

mr. hide: fine-grained permissions in android applications,” in Proceedings
of the second ACM workshop on Security and privacy in smartphones and mobile
devices. ACM, 2012, pp. 3–14.

[69] A Shabtai, L Tenenboim-Chekina, D Mimran, L Rokach, B Shapira, and

Y Elovici, “Mobile malware detection through analysis of deviations in ap-

plication network behavior,” Computers & Security, vol. 43, pp. 1–18, 2014.

[70] Quan Qian, Jing Cai, Mengbo Xie, and Rui Zhang, “Malicious behavior

analysis for android applications,” International Journal of Network Security,

vol. 18, no. 1, pp. 182–192, 2016.

[71] Microsoft, “Web services,” Available Online, 2014.

[72] Roy Thomas Fielding, Architectural Styles and the Design of Network-based
Software Architectures, Phd thesis, University of California, Irvine, 2000.

[73] Steven Arzt, Siegfried Rasthofer, and Eric Bodden, “Instrumenting android

and java applications as easy as abc,” in Runtime Verification. Springer, 2013,

pp. 364–381.

[74] Seung-Hyun Seo, Aditi Gupta, Asmaa Mohamed Sallam, Elisa Bertino, and

Kangbin Yim, “Detecting mobile malware threats to homeland security

through static analysis,” Journal of Network and Computer Applications, vol.

38, pp. 43–53, 2014.

[75] Kanubhai Patel and Bharat Buddadev, “Detection and mitigation of android

malware through hybrid approach,” in Security in Computing and Commu-
nications, pp. 455–463. Springer, 2015.

[76] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-Tangil, and

Steven Furnell, “Androdialysis: Analysis of android intent effectiveness in

malware detection,” computers & security, vol. 65, pp. 121–134, 2017.

121

[77] Parag H Rughani, “Detecting blacklisted ip access from android phone,”

Indian Journal of Science and Technology, vol. 9, no. 48, 2016.

[78] Usha Banerjee, Ashutosh Vashishtha, and Mukul Saxena, “Evaluation of

the capabilities of wireshark as a tool for intrusion detection,” International
Journal of computer applications, vol. 6, no. 7, 2010.

[79] Jae Kyu Lee, “Research framework for ais grand vision of the bright ict

initiative,” MIS Quarterly, vol. 39, no. 2, 2015.

[80] Shree Garg, Sateesh K Peddoju, and Anil K Sarje, “Network-based detection

of android malicious apps,” International Journal of Information Security, pp.

1–16, 2016.

[81] Taosoftware, “tpacketcapture is the software that can cap-

ture communication packets on non-rooted device,” Online:
http://www.taosoftware.co.jp/en/android/packetcapture/, 2015.

[82] Nachiket Trivedi and Manik Lal Das, “Maldetec: A non-root approach for

dynamic malware detection in android,” in International Conference on In-
formation Systems Security. Springer, 2017, pp. 231–240.

[83] Daifur Abubakar Girei, Munam Ali Shah, and Muhammad Bilal Shahid, “An

enhanced botnet detection technique for mobile devices using log analysis,”

in Automation and Computing (ICAC), 2016 22nd International Conference on.

IEEE, 2016, pp. 450–455.

[84] Juanru Li, Wenbo Yang, Junliang Shu, Yuanyuan Zhang, and Dawu Gu, “In-

droid: An automated online analysis framework for android applications,”

Crisis Intervention Team (CIT), 2014.

[85] Wireshark, “Wireshark: A network protocol analyzer for unix and win-

dows,” .

[86] Van Jacobson, Craig Leres, and Steven McCanne, “Tcpdump public reposi-

tory,” Web page at http://www. tcpdump. org, 2003.

[87] Filippo Alberto Brandolini, Hooking Java methods and native functions to
enhance Android applications security, Ph.D. thesis, University of Bologna,

2016.

122

[88] Marvin Wißfeld, ArtHook: Callee-side Method Hook Injection on the New An-
droid Runtime ART, Ph.D. thesis, Saarland University, 2015.

[89] Michael Backes, Sven Bugiel, Oliver Schranz, Philipp von Styp-Rekowsky,

and Sebastian Weisgerber, “Artist: The android runtime instrumentation

and security toolkit,” in Security and Privacy (EuroS&P), 2017 IEEE European
Symposium on. IEEE, 2017, pp. 481–495.

[90] Lukas Dresel, Mykolai Protsenko, and Tilo Müller, “Artist: the android

runtime instrumentation toolkit,” in Availability, Reliability and Security
(ARES), 2016 11th International Conference on. IEEE, 2016, pp. 107–116.

[91] Valerio Costamagna and Cong Zheng, “Artdroid: A virtual-method hooking

framework on android art runtime.,” in IMPS@ ESSoS, 2016, pp. 20–28.

[92] Yihang Song and Urs Hengartner, “Privacyguard: A vpn-based platform to

detect information leakage on android devices,” in Proceedings of the 5th An-
nual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile
Devices. ACM, 2015, pp. 15–26.

[93] Web of Trust, “Web reputation ratings,” 2016.

[94] Google, “Google safe browsing,” 2017.

[95] C. Mulliner, “Adbi,” 2016.

[96] Virus Total, “Virustotal-free online virus, malware and url scanner,” 2012.

[97] Zhongmin Dai, Tong-Wei Chua, Dinesh Kumar Balakrishnan, Vrizlynn LL

Thing, et al., “Chat-app decryption key extraction through information flow

analysis,” 2017.

[98] URLVoid, “Check if a website is malicious/scam or safe/legit,” 2015.

[99] Khulood Al Messabi, Monther Aldwairi, Ayesha Al Yousif, Anoud Thoban,

and Fatna Belqasmi, “Malware detection using dns records and domain

name features,” in Proceedings of the 2nd International Conference on Future
Networks and Distributed Systems. ACM, 2018, p. 29.

[100] Yury Zhauniarovich, Issa Khalil, Ting Yu, and Marc Dacier, “A survey on

malicious domains detection through dns data analysis,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 67, 2018.

123

[101] Jyoti Malik and Rishabh Kaushal, “Credroid: Android malware detection by

network traffic analysis,” in Proceedings of the 1st ACM Workshop on Privacy-
Aware Mobile Computing. ACM, 2016, pp. 28–36.

[102] Yung-Tsung Hou, Yimeng Chang, Tsuhan Chen, Chi-Sung Laih, and Chia-

Mei Chen, “Malicious web content detection by machine learning,” Expert
Systems with Applications, vol. 37, no. 1, pp. 55–60, 2010.

[103] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel,

“Prophiler: a fast filter for the large-scale detection of malicious web pages,”

in Proceedings of the 20th international conference on World wide web. ACM,

2011, pp. 197–206.

[104] Annabella Astorino, A Chiarello, Manlio Gaudioso, and Antonio Piccolo,

“Malicious url detection via spherical classification,” Neural Computing and
Applications, vol. 28, no. 1, pp. 699–705, 2017.

[105] Kamal Alieyan, Ammar ALmomani, Ahmad Manasrah, and Mohammed M

Kadhum, “A survey of botnet detection based on dns,” Neural Computing
and Applications, vol. 28, no. 7, pp. 1541–1558, 2017.

[106] DNScrypt, “Dnscrypt is a protocol that authenticates communications be-

tween a dns client and a dns resolver,” .

[107] Scarlett Gourley and Hitesh Tewari, “Blockchain backed dnssec,” in In-
ternational Conference on Business Information Systems. Springer, 2018, pp.

173–184.

[108] Florian Weimer, “Passive dns replication,” in FIRST conference on computer
security incident, 2005, p. 98.

[109] BV Elasticsearch, “Elasticsearch,” 2016.

[110] Virus Total, “Virustotal-free online virus, malware and url scanner,” Online:
https://www. virustotal. com/en, 2012.

[111] Hongbo Han, Zhenxiang Chen, Qiben Yan, Lizhi Peng, and Lei Zhang, “A

real-time android malware detection system based on network traffic anal-

ysis,” in International Conference on Algorithms and Architectures for Parallel
Processing. Springer, 2015, pp. 504–516.

124

[112] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth,

“Taintdroid: an information-flow tracking system for realtime privacy mon-

itoring on smartphones,” ACM Transactions on Computer Systems (TOCS),
vol. 32, no. 2, pp. 5, 2014.

[113] Andi Fitriah Abdul Kadir, Natalia Stakhanova, and Ali Akbar Ghorbani,

“Android botnets: What urls are telling us,” in International Conference on
Network and System Security. Springer, 2015, pp. 78–91.

[114] Anh Le, Athina Markopoulou, and Michalis Faloutsos, “Phishdef: Url names

say it all,” in 2011 Proceedings IEEE INFOCOM. IEEE, 2011, pp. 191–195.

[115] Doyen Sahoo, Chenghao Liu, and Steven CH Hoi, “Malicious url detection

using machine learning: a survey,” arXiv preprint arXiv:1701.07179, 2017.

[116] Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt, “Fast pattern

matching in strings,” SIAM journal on computing, vol. 6, no. 2, pp. 323–350,

1977.

[117] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer, “Emulator

vs real phone: Android malware detection using machine learning,” in Pro-
ceedings of the 3rd ACM on International Workshop on Security and Privacy
Analytics. ACM, 2017, pp. 65–72.

[118] Issa Khalil, Ting Yu, and Bei Guan, “Discovering malicious domains through

passive dns data graph analysis,” in Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ACM, 2016, pp. 663–

674.

125

	Introduction
	Motivation
	Technical Background
	Android Systems
	Taxonomy of Mobile Malware
	Malware analysis techniques
	Introduction to the Domain Name System

	Research Statement, Hypotheses and Main Objective
	Research Statement
	Hypotheses and Main Objective

	Technical Objectives
	Methodology
	Thesis Contributions, Papers and Thesis outline
	Thesis Contributions
	Papers
	Thesis Outline

	Rule-based Visualization of Android API calls
	Introduction
	Related Work
	Platform Architecture
	Embedded client and Sink
	The Web Service
	Instrumenting an Application
	Hooks insertion
	Hook example

	Visualization
	Rules "Generation"

	Testbed and Experimentation
	Experiment set up
	Client-side monitoring

	Results
	Visual analysis of the traces with Neo4j-graphs
	Visual analysis of the traces with dendrogram diagrams
	Interactive Dendrograms
	Client-side CPU use analysis
	Responsiveness

	Limitations
	Conclusions of the Chapter

	Dynamic DNS request monitoring of Android malware
	Introduction
	Problem definition
	Contribution and Outline of the chapter

	Related Work
	Method1: Dynamic DNS request monitoring of Android malware via networking
	Network Sentinel: The Proposed Malware Detection Tool via networking
	Experimental Results
	The capture of the Requested URLs
	The Maliciousness of the Android application
	Battery Usage with Network Sentinel working

	Method2: Dynamic DNS request monitoring of Android malware via instrumentation
	AppURL: The Proposed Malware Detection Tool via instrumentation
	First Phase: Acquisition of data, Analysis and Monitoring of mobile traffic at the network level
	Second Phase: Identification of captured URLs
	Third Phase: Storage of malicious URLs

	Experimental Results
	Remarks on the Method2

	Comparison of the previous methods
	Limitations
	Conclusions of the Chapter

	A Framework to detect Android Malware from DNS Servers
	Introduction
	Problem Statement
	Contribution and Outline

	The Framework to detect Android malware using DNS Servers
	Related Work
	Network-based Android MD
	Collaborative Approaches for Android MD

	Research methodology
	Introduction to the Malware Dataset
	Data Generation (DNS Data Sources)
	Log aggregation and transport
	Search and Analytics
	Visualization

	Experimental Results
	Experimental Results without ML
	Experimental Results with ML

	Limitations
	Conclusions of the Chapter

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

