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“The purpose of computing is insight, not numbers.”

—Richard Hamming. In Numerical Methods for Scientists and Engineers, 1962, p. iv.

“The only truly secure system is one that is powered off, cast in a block of concrete and sealed in a

lead-lined room with armed guards - and even then I have my doubts.”

— Eugene H. Spafford. In “Computer Recreations: Of Worms, Viruses and Core War”, Scientific
American, March 1989, p. 110.

“Data isn’t information, any more than fifty tons of cement is a skyscraper.”

— Clifford Stoll. In Silicon Snake Oil: Second Thoughts on the Information Highway, 1996, pp. 193-194.





Abstract

Since the conception of the first Programmable Logic Controllers (PLCs) in
the 1960s, Industrial Control Systems (ICSs) have evolved vastly. From the primi-
tive isolated setups, ICSs have become increasingly interconnected, slowly form-
ing the complex networked environments, collectively known as Industrial Net-
works (INs), that we know today. Since ICSs are responsible for a wide range
of physical processes, including those belonging to Critical Infrastructures (CIs),
securing INs is vital for the well-being of modern societies. Out of the many re-
search advances on the field, Anomaly Detection Systems (ADSs) play a promi-
nent role. These systems monitor IN and/or ICS behavior to detect abnormal
events, known or unknown. However, as the complexity of INs has increased,
monitoring them in the search of anomalous trends has effectively become a Big
Data problem. In other words, IN data has become too complex to process it by
traditional means, due to its large scale, diversity and generation speeds. Nev-
ertheless, ADSs designed for INs have not evolved at the same pace, and recent
proposals are not designed to handle this data complexity, as they do not scale
well or do not leverage the majority of the data types created in INs.

This thesis aims to fill that gap, by presenting two main contributions: (i) a
visual flow monitoring system and (ii) a multivariate ADS that is able to tackle
data heterogeneity and to scale efficiently. For the flow monitor, we propose a
system that, based on current flow data, builds security visualizations depicting
network behavior while highlighting anomalies. For the multivariate ADS, we
analyze the performance of Multivariate Statistical Process Control (MSPC) for
detecting and diagnosing anomalies, and later we present a Big Data, MSPC-
inspired ADS that monitors field and network data to detect anomalies. The
approaches are experimentally validated by building INs in test environments
and analyzing the data created by them. Based on this necessity for conduct-
ing IN security research in a rigorous and reproducible environment, we also
propose the design of a testbed that serves this purpose.
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1.1. Motivation 3

This chapter introduces the work carried out in this PhD thesis. It first describes the
main reasons that have motivated the election of data-driven anomaly detection in Indus-
trial Networks as the main scope of this thesis. Second, it lists the objectives, hypotheses
and contributions of the work, along the followed research methodology for its conclusion.
Finally, it provides the organization of this dissertation.

1.1 Motivation

Industrial Networks (INs) refer to the networked environments where specialized, heteroge-
neous, interconnected components, known collectively as Industrial Control Systems (ICSs),
automate, monitor and control physical processes. As such, they are responsible for running
a wide range of physical processes, both in different industrial sectors and in Critical Infras-
tructures (CIs) [132]. The European Council [46] defines a CI as “an asset, system or part
thereof (…) which is essential for the maintenance of vital societal functions, health, safety,
security, economic or social well-being of people, and the disruption or destruction of which
would have a significant impact (…) as a result of the failure to maintain those functions;”
Examples of ICS-controlled CIs include power generation and transport, water distribution,
water waste treatment and transportation systems.

Therefore, the correct functioning of CIs has a vital importance for the well being of
modern societies. Miller and Rowe [107] surveyed previous security incidents that affected
CIs. Nowadays, there are two main specific concerns about the impact of IN-related attacks:

1. Successful attacks against INs may have an impact on the physical process ICSs are
monitoring, potentially leading to safety-threatening scenarios. Examples of such
incidents include Aurora [158], Stuxnet [92], the Maroochy water breach [129], the
Georgia-Pacific incident [117] and the German steel mill attack [17].

2. The proliferation of ICS-specific malware for conducting espionage. The aim of these
pieces of malware is to gather information about the controlled process and/or com-
pany running it. The purpose can be twofold: to steal confidential information about
the process (e.g. recipe for manufacturing a product) or to gather information to con-
duct attacks against a third party. Examples of such malware include Duqu [8] and
Dragonfly [135].

Traditionally, INs and ICSs have relied on two main principles for their protection, often
disregarding additional security measures present in Information Technology (IT) networks
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Figure 1.1: Reported ICS vulnerabilities over time [3]

(e.g. access control, authentication or encryption). The first principle is security through
obscurity, where ICS vendors entrusted the secrecy of the created systems (proprietary soft-
ware and hardware, private network protocols) to discourage potential attackers from find-
ing security vulnerabilities in their products. This approach has been proven as an inefficient
one [114]. While secrecy makes vulnerability discovery harder, as it is more difficult to un-
derstand the inner workings of a system, it also conveys the lack of wider verification and
validation that public implementations have. Figure 1.1 shows the evolution of the pub-
licly reported ICS vulnerabilities. While many ICS implementations are still proprietary,
the number of vulnerabilities has risen since the beginning of the present decade. Some
vulnerabilities even have exploits in penetration testing frameworks such as Metasploit1.
Therefore, the intended obscurity is no longer applicable, as even if the implementation de-
tails of ICSs and INs are not known, some of their vulnerabilities and exploits are. Moreover,
patching and upgrading vulnerable devices forming an IN often requires system downtime,
which generally is not acceptable within the availability constraints of critical processes [32].
Thus, such processes are in many cases left unpatched and in consequence, vulnerable.

1https://scadahacker.com/resources/msf-scada.html

https://scadahacker.com/resources/msf-scada.html


1.1. Motivation 5

The other principle ICS vendors and operators have relied on for their protection is net-
work isolation, or air-gapping. That is, INs were not to be connected with external net-
works. As networks would not have any outbound connections, attackers would need to
obtain physical access to the facilities in order to access the IN and the ICSs in it. However,
since the 1990s, pushed by the increasing demand for location-independent access to net-
work resources, INs became progressively interconnected with external networks such as
the companies’ internal IT network and even the Internet [32, 69]. Project SHINE (SHodan
INtelligence Extraction) discovered 2 186 971 publicly available ICSs [138] between the years
2012–2014 using the Shodan search engine. Likewise, the Shodan search engine has a pub-
lic service dubbed ICS Radar2 that crawls the Internet for protocols providing raw access
to ICSs. Moreover, it also hosts a search category encompassing ICSs3, that allows users to
search for publicly reachable devices serving different IN protocols. The existence of these
publicly available ICSs demonstrates that a large number of INs are not properly isolated
and the air gap does not exist.

In the case of INs not directly connected to the Internet, they might not be publicly
accessible from the Internet, but a compromise on the external IT network can provide ac-
cess to the IN. For instance, in the case of the German Steel Mill incident [17], attackers
were able to get access to the IT network by using a spear-phishing attack, and from there,
compromise the production IN, eventually damaging a blast furnace. Even where no log-
ical connection exists between the IT network and the IN, motivated and skilled attackers
have circumvented this limitation by using alternative means, such as USB sticks (e.g. in the
Stuxnet [92] incident).

The Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) provides
operational capabilities to defend control systems against cyber threats [64]. In order to
pursue this goal, one of its main tasks is to analyze and respond to control systems related
incidents, especially the ones concerning CIs. In yearly reports detailing the number and
nature of incidents regarding CIs [64–68], the ICS-CERT highlights the raise of incidents
since the reporting records began. Figure 1.2 shows the evolution of the number of incidents
reported to the ICS-CERT, ranging between 9 reported incidents in 2009 to 295 reported
incidents in 2015.

Figure 1.3 depicts the evolution of the percentage of incidents by CI sector, based on the
aforementioned incident reports. At the beginning, the sectors that accumulated most of

2https://ics-radar.shodan.io/
3https://www.shodan.io/explore/category/industrial-control-systems

https://ics-radar.shodan.io/
https://www.shodan.io/explore/category/industrial-control-systems
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Figure 1.2: Number of reported security incidents to the ICS-CERT CIs [64–68]

the security incidents were water and energy, around 60% in total. With time, the weight of
these sectors has decreased and the relevance of critical manufacturing facilities has risen to
the first position, being the main target in 2015.

Due to the critical nature of CIs and the incapacity of securing them by traditional ap-
proaches, IN security is an active research field. As such, IN protection has received wide
attention from both industry and the scientific community. Among the different fields of
IN security research, Intrusion Detection Systems (IDSs) and, particularly, Anomaly Detec-
tion Systems (ADSs) have an important role and there are many proposals in this direc-
tion [51, 108, 164]. Previous proposals have mostly focused in either monitoring the net-
work [51, 164], or the physical properties of the process [82, 88]. Some Anomaly Detection
Systems (ADSs), especially the physical ones [88, 105, 134], are model-driven. That means
that the ADS needs or creates a model of the monitored process behavior. However, mod-
elling the nature of a complex process can be a challenging task, and outright infeasible in
some scenarios. On the contrary, data-driven methods do not require to model the physi-
cal process as they make assumptions based only on data. This eases deploying data-driven
ADSs in complex INs or to extend their usage in different types of INs in a simpler manner,
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Figure 1.3: Evolution of the percentage of CI incidents by sector in time [64–68]

as it is not necessary to adapt or recreate a model.

Alternatively, since the birth of distributed computing frameworks such as MapRe-
duce [37] and distributed file-systems such as the Hadoop File System (HDFS) [12], a new
computing paradigm known as Big Data Analytics (BDA) has emerged. Big Data refers to
the set of information that is too complex to process by traditional IT mechanisms within
an acceptable scope [33]. Although no consensus exists, this data complexity is generally
expressed in at least three qualities: the amount of data (volume), data generation and trans-
mission pace (velocity) and diversity of data, both structured and unstructured (variety) [91].
More recently, a fourth quality is also widely mentioned: the ability to search for valuable
information on Big Data (veracity) [33]. However, the term Big Data has transcended the
type of information and it is also used to refer to set of methodologies and mechanisms de-
veloped to work with this type of data. BDA aims to extract valuable knowledge from Big
Data by analyzing or modeling it in a scalable manner.

Among themultiple applications BDAhas, Cárdenas et al. [26] and Everett [47], discussed
its potential for intrusion detection, as the inherently created data in complex networks (e.g.
logs, packets, flows) can be considered Big Data. Therefore, finding anomalous trends in
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these large datasets is not feasible with traditional mechanisms. They conclude that using
BDA can lead to more efficient IDSs. However, both works center on regular, Information
Technology (IT) networks, and do not examine its applicability to INs. On a related note, ICSs
inherently create large amounts of heterogeneous data: process readings, where temporal
values of physical properties are kept (temperatures, flows, pressures) and network data
(packets, flows and logs). While the utility of BDA for analyzing large network datasets for
intrusion detection has already been mentioned, it is worth noting that several proposals
also exist for the analysis of process data. Specifically, BDA is considered an opportunity for
improved process analysis and operation [80, 116, 125, 151, 165].

Consequently, it seems natural to link both worlds, and leverage BDA in INs to detect
anomalies in these heterogeneous environments where data has very different nature. This
thesis aims to fill that gap by applying BDA for anomaly detection in INs.

1.2 Research Objectives, Hypotheses and Contributions

The main objective of this thesis is to develop data-driven Anomaly Detection Systems for

Industrial Networks that will allow the processing of large-scale, heterogeneous data to detect
security events without the need of a process model. For this purpose, we focus in two
different approaches: a visual monitoring approach and a holistic approach that leverages
the different types of data that is created in INs, such as process data and network data,
instead of just focusing on one aspect of the environment.

1.2.1 Hypotheses

The hypotheses that we will try to demonstrate are listed as follows:

• Due to the static, repetitive nature of IN traffic flows, security visualizations can aid IN
operators to detect flow-related anomalies. Chord diagrams are a suitable candidate
for this purpose.

• By using Multivariate Statistical Process Control (MSPC), we are able to detect anoma-
lies and to diagnose them in ICSs, allowing the distinction between intrusions and
process disturbances in a process-independent manner.

• Extending traditional MSPC models to include network and field data allows us to
create an ADS that is able to monitor all data created in an IN in a scalable manner.
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1.2.2 Contributions

The main contributions of this work can be summarized in the following items:

• A comprehensive literature review in the field of large-scale and heterogeneous ADSs,
focusing on their applicability to INs and highlighting some open research questions
that can lead to further research in the field [73].

• A IN testbed designed for the security research of INs and ICSs. This testbed is built
around the software Emulab and the simulation of physical processes to ensure a rig-
orous environment for IN research. It supports Sofware-Defined Networking (SDN)
and has an integrated data analysis module, enabling their use when conducting future
research that employs these technologies [76].

• A visual monitoring system for INs representing network flows and anomalies related
to them. It is built over chord diagrams that depict flows as legitimate and anomalous
based on a previously created set of whitelists that describe network flows in different
time frames [74, 75].

• A study on the feasibility of detecting and diagnosing intrusions in ICSs using MSPC.
We conclude that MSPC is able to detect anomalies in ICSs effectively, but when diag-
nosing their cause it is necessary to audit the real process data. If the genuine process
status is concealed from the operator, additional data (such as a network capture) is
necessary to provide correct anomaly diagnosis [71, 72].

• A large-scale, heterogenenous ADS for INs that monitors field and network data to
detect anomalies. For this end, we extend traditional MSPCmodels to include network
data along with field data. The implementation is done on top of Apache Spark to
ensure the scalability of the proposed system. With the presented approach, the ADS
is able to detect and diagnose anomalies occurring at the field, network, or both levels.

• A Big Data tool set designed to analyze and process large multivariate datasets by
using Principal Component Analysis (PCA). The components of the tool set have been
designed and developed for building the previously mentioned large-scale ADS, but
they can be used for other purposes as well, such as the exploration and analysis of
large multivariate datasets.
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Publications

Parts of the works covered in this dissertation have already been published or have been sent
for review in different peer-reviewed journals and international and national conferences.
We now list the scientific publications that are directly related to the work in this thesis:

Journal papers

• Mikel Iturbe, Iñaki Garitano, Urko Zurutuza, and Roberto Uribeetxeberria. Towards
Large-Scale, HeterogeneousAnomalyDetection Systems for Industrial Networks. Sub-
mitted for publication to the IEEE Transactions on Industrial Informatics, 2017.

Conference papers

• Mikel Iturbe, Iñaki Garitano, Urko Zurutuza, and Roberto Uribeetxeberria. Visualizing
Network Flows and Related Anomalies in Industrial Networks using Chord Diagrams
andWhitelisting. In Proceedings of the 11th Joint Conference on Computer Vision, Imag-

ing and Computer Graphics Theory and Applications (VISIGRAPP 2016), volume 2, pages
99–106, Rome, Italy, Feb. 2016.

• Mikel Iturbe, José Camacho, Iñaki Garitano, Urko Zurutuza, and Roberto Uribeetxeber-
ria. On the Feasibility of Distinguishing Between Process Disturbances and Intrusions
in Process Control Systems Using Multivariate Statistical Process Control. In 2016 46th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks Work-

shops (DSN-W), pages 155–160, Toulouse, France, Jun. 2016. IEEE.

• Mikel Iturbe, Iñaki Garitano, Urko Zurutuza, and Roberto Uribeetxeberria. Sistema
visual de monitorización de seguridad de flujos de red industriales. In Proceedings of I

Jornadas Nacionales de Investigación en Ciberseguridad (JNIC 2015), pages 59–65, León,
Spain, Sep. 2015. Universidad de León.

• Mikel Iturbe, Unai Izagirre, Iñaki Garitano, Ignacio Arenaza-Nuño, Urko Zurutuza, and
Roberto Uribeetxeberria. Diseño de un banco de pruebas híbrido para la investigación
de seguridad y resiliencia en redes industriales. In Proceedings of II Jornadas Nacionales

de Investigación en Ciberseguridad (JNIC 2016), pages 3–10, Granada, Spain, Jun. 2016.
Universidad de Granada.
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• Mikel Iturbe, José Camacho, Iñaki Garitano, Urko Zurutuza, and Roberto Uribeetxe-
berria. Distinguiendo entre perturbaciones de proceso e intrusiones en sistemas de
control: caso de estudio con el proceso Tennessee-Eastman. In Proceedings of the XIV

Spanish Meeting on Cryptology and Information Security (RECSI 2016), pages 117–122,
Maó, Spain, Oct. 2016. Universitat de les Illes Balears.

1.3 Methodology

The researchmethodology employed in this thesis isDesign and Creation. Oates [115] defines
the design and creation strategy as “the one that focuses on developing new IT products, also
called artifacts”. According to March and Smith [102, 115], these artifacts can be categorized
in four main output types:

Constructs Relate to concepts, such as the notion of entities, objects or data flows.

Models The representation of a situation that is composed of constructs that are used to aid
problem understanding and solution development. For instance, flow diagrams or use
case scenarios.

Methods Guidance on the models to be produced and process stages to be followed to solve
problems. The main examples are algorithms.

Instantiations Aworking system that demonstrates that constructs, models, methods, ideas,
genres or theories can be implemented in a computer-based system.

Sometimes the research outcome can be a combination of these four possible outputs.
Design and creation methodology can be mistaken for normal software development

process. However, this research work goes one step further than just creating a viable IT
product. It is a research work with analysis explanation, argument, justification and critical
evaluation of the results. As such, it aims to create new knowledge and disseminate its results
through academic publications by means of building of an artifact.

Vaishnavi and Kuechler [145] describe the design and creation research process by di-
viding it into five iterative steps, shown in Figure 1.4.

Awareness The recognition and articulation of a problem that identifies a particular area
for further research. The output of this phase is a proposal, formal or informal.
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Figure 1.4: Design and Creation process used in this thesis along with its different outputs [145]

Suggestion Suggestion is an essentially creative step wherein new functionality is envi-
sioned based on a novel configuration of either existing or new and existing elements.
This new functionality aims to solve the problem identified in the Awareness phase.
A tentative design is built on this phase, where the proposal is expanded and further
details are given about the artifact (possible model, prototype etc.).

Development In this phase, the tentative design is further developed and implemented into
an artifact. As expected, the nature of this implementation might vary depending on
the artifact (e.g. piece of software, or an algorithm).

Evaluation The implementation of the artifact is examined according to the criteria defined
in the proposal, implicitly or explicitly.

Conclusion This phase represents the end of the research cycle, where the results from the
design and creation processmeet the desired functionalities defined in previous phases.
The results are consolidated and this is the phase where the acquired new knowledge
is detailed and disseminated.

As it is shown in Figure 1.4, the main process is iterative, as the continuous feedback
on the artifact helps to re-shape it all over again to improve results. However, there is one
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more task that is not related to the iterative process: the dissemination of results through
scientific publications. Our approach to perform this duty has been continuous, that is, we
have sent manuscripts as soon as they were elaborated enough to be published, so the entire
community could benefit of the advances. The final results, however, along with the details
of the research process, are written in this dissertation.

1.4 Document Overview

This dissertation is divided into seven chapters. In this section, we provide a short summary
of the contents of each of the chapters.

Chapter 1 is this introduction.
Chapter 2 reviews the field of large-scale, heterogeneous ADSs, emphasizing their ap-

plicability to INs and it also identifies some open research questions that pose opportunities
for further developments in the field.

Chapter 3 presents the design of a novel IN security testbed. This testbed uses Emulab and
process simulation along with SDN and data analysis to provide a faithful and reproducible
environment for IN security research.

Chapter 4 describes a visual monitoring system for IN flows. Based on chord diagrams
and whitelists, the system shows the status of network flows, visually highlighting the
anomalous ones (i.e. the ones not included in the whitelist).

Chapter 5 introduces the concept of MSPC and studies its applicability to anomaly de-
tection and diagnosis in ICSs. It shows how MSPC is a valid method to detect anomalies in
this context, also mentioning its limitations when diagnosing their cause.

Chapter 6 discusses a large-scale extension to MSPC for anomaly detection in INs. The
MSPC model is enhanced to include both process and network-level data in a scalable man-
ner. Results show that the proposed system is suitable for anomaly detection and it is scalable
both in terms of monitored variables and the size of the datasets.

Chapter 7 concludes the thesis by summarizing the main findings and contributions of
this dissertation. Moreover, it provides some possible lines for further work.

Additionally, the thesis contains an appendix at the end, with a summary in Basque lan-
guage highlighting the context and the main contributions of the work.
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This chapter introduces the research field of anomaly detection for Industrial Networks
(INs). First, it introduces the required background to provide the necessary concepts to sup-
port further analysis. Then, it studies the relevant proposals in the field of large-scale and
heterogeneous anomaly detection and analyzes their applicability to INs. The chapter ends
by identifying some open research areas that can lead to further development.

2.1 Technical Background

In this section we provide the necessary background to support our argumentation and to
improve the understanding of the analyzed works.

2.1.1 Industrial Networks

Since the invention of the Programmable Logic Controller (PLC) in the 1960s, INs have
evolved significantly from the initial primitive, proprietary and isolated environments to the
complex, standard, interconnected networks that are today. Traditionally, INs were isolated
environments where communication was conducted through proprietary network protocols
with limited or non-existent interaction with external networks.

As mentioned in Section 1.1, the IN and Information Technology (IT) networks became
more interconnected since the 1990s. On the one hand, this increased network standard-
ization led to the start of using standard network protocols (TCP/IP) and Commercial off-
the-shelf (COTS) software, laying behind proprietary, ad-hoc hardware and software solu-
tions [132]. On the other hand, this merge significantly increased the attack surface of INs,
as it exposed them to simple remote attacks and exploitation by using known vulnerabilities
of COTS software. Traditional isolation and obscure characteristics that INs had relied on
for security did no longer exist.

Figure 2.1 shows the network architecture of a simple IN. INs have a vertical architec-
ture. At the bottom lays the physical process that is being controlled. The physical process
has a set of sensors and actuators that are used to gather information about the state of the
process and to perform actions on it. These sensors and actuators are connected to field con-
trollers, normally PLCs, through buses or direct connections in the so-called field network.
Field controllers are the workhorse of INs. They read process data from the field sensors
and, based on their stored control algorithm, send orders to the actuators to interact with
the process, generally trying to keep process variables’ values around a set of certain set-
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points. Nevertheless, except for the simplest installations, field controllers are not enough
to conduct all the required tasks. Consequently, additional devices, called supervisory de-
vices, are necessary. These devices usually run on normal IT-based hardware and software.
Examples include control servers, Human Machine Interfaces (HMIs) and engineering sta-
tions. Control servers store process data and, optionally, implement second level control
logic, usually involving data from different field controllers. HMIs are the graphical user
interfaces operators use to interact with the process. Critical processes are monitored 24/7
by human operators. Process engineers use engineering stations to develop and test new
applications regarding control logic.
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Figure 2.1: Example of a simple industrial network

INs can be further divided according to different layers. According to the definition by
Genge et al. [52], on the one hand, there is the physical layer, composed of the actuators
and sensors that directly interact with the physical process. On the other hand, there is the
cyber layer, composed of all the IT devices and software which acquire the data, elaborate
low level process strategies and deliver the commands to the physical layer. Field controllers



2.1. Technical Background 19

act as the bridge between both layers, as they read field data and send local commands to
the actuators, but they also forward field information to the cyber layer components while
executing commands they receive from the supervisory devices.

Hence, ICSs can be considered a type of Cyber Physical Systems, as they are able to
process and communicate data while also interacting with their physical environment.

There are different types of INs, such as Supervisory Control and Data Acquisition
(SCADA), Distributed Control Systems (DCSs) and Process Control Systems (PCS). How-
ever, differences are getting blurred, and they can often be considered as a single entity
when designing security solutions [50, 132].

Although they share a common part of technology stack, INs are inherently different
to commercial IT networks. Table 2.1 shows a summary of the main differences between
both network types. The main difference resides in the purpose of each of the networks:
whereas in IT, the purpose is the transfer and processing of data, in the case of INs the main
objective is to control a physical process. These differences mean that even when techni-
cally possible, blindly applying IT-based security mechanisms or procedures in industrial
environments might lead to process malfunction or potentially safety-threatening scenar-
ios. For instance, running anti-virus software on PLCs might compromise the PLC’s ability
to perform real-time operations on a process, or, conducting a penetration test can lead to
dangerous scenarios [44].

However, these traits can also be leveraged to build security mechanisms for INs, that
would be impractical to use in IT networks. For instance, the deterministic nature of INs and
its periodic traffic between different hostsmakes them suitable candidates for using Anomaly
Detection Systems [108].

2.1.2 Anomaly Detection Systems

Anomaly Detection Systems (ADSs) are a subset of Intrusion Detection Systems (IDSs) [38].
IDSs are security mechanisms that monitor network and/or system activities to detect sus-
picious events. IDSs are classified according to two main criteria: the detection mechanism
they use (signature detection or anomaly detection), and their source of information (where
they collect the events to analyze).

Signature-based IDSs compare monitored data to a database with known malicious pat-
terns (signature database). If there is a match, an alert is raised, as the activity has been
identified as suspicious. Their efficiency is directly related to the completeness and accu-
racy of the signature database they are working with, as attacks will go undetected if their
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Industrial networks IT networks
Primary function Control of physical equipment Data processing and transfer

Applicable Domain Manufacturing, processing and

utility distribution

Corporate and home environ-

ments

Hierarchy Deep, functionally separated hi-

erarchies with many protocols

and physical standards

Shallow, integrated hierarchies

with uniform protocol and

physical standard utilisation

Failure Severity High Low

Reliability Required High Moderate

Round Trip Times 250 µs–10 ms 50+ ms

Determinism High Low

Data Composition Small packets of periodic and

aperiodic traffic

Large, aperiodic packets

Temporal consistency Required Not Required

Operating environment Hostile conditions, often featur-

ing high levels of dust, heat and

vibration

Clean environments, often

specifically intended for sensi-

tive equipment

System lifetime Some tens of years Some years

Average node complexity Low (simple devices, sensors,

actuators)

High (large servers/file system-

s/databases)

Table 2.1: Differences between Industrial and IT networks [32, 50]

signature is not available. Among their operational characteristics, they have a low number
of false positives but they are unable to detect unknown attacks. ADSs, on the other hand,
identify malicious patterns by measuring their deviation from normal activity. ADSs build a
model of the normal behavior of the process (through automated learning or manual speci-
fications) and detect deviations with respect to the model [32]. Many ADSs are built using
machine learning methods [15]. As opposed to signature-based IDSs, ADSs are able to detect
unknown attacks, but they often yield a higher number of false positives.

Regarding the source of information, IDSs traditionally have been classified into two
main categories: network-level and host-level IDSs. Network-based IDSs monitor network
traffic to detect suspicious activity (suspicious connections, malicious packet payloads…),
while host-based IDSs monitor local data stored in a device (system logs, file integrity…). In
the case of INs, the limited processing ability of industrial devices has limited the deployment
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of host-based ICSs [32]. Therefore, when considering IN IDSs, the source of information
criterion can be set based on the IN layer they use to gather information from: the cyber
level or the physical layer. Cyber-level IDSs are similar to their IT counterparts as they
generally monitor network-level data. Physical-level IDSs monitor the physical quantities
of the process (pressures, temperatures, currents…) in order to detect intrusions. Physical
properties of the process are constantly monitored, often polling data every fewmilliseconds
in the case of critical variables, which with large, continuous processes can lead to a scenario
where it is necessary to use Big Data Analytics (BDA) in order to process field and control
data. This is further confirmed by proposals that, outside the field of security research, point
to this need and propose process monitoring solutions based on BDA [80, 116, 125, 131, 151,
165].

Most IN ADSs work on the cyber layer (see surveys [51, 108, 163]). Physical-level ADSs
can be divided into two main groups: ADSs where it is necessary to model the physical
process [88, 134] or ADSs that do not need a specific model for the physical process [72, 82].
Few proposals combine data from both levels [53, 79].

2.1.3 Big Data Security Mechanisms

Modern and complex IT networks create and process vast amounts of data continuously.
Analysis of the created data for security purposes is a daunting task, and before the advent
of Big Data processing tools, data was normally sampled or only subsets of it was analyzed
(e.g. only metadata). Since MapReduce [37] was introduced, several Big Data frameworks
have been proposed, which allow the processing of large, heterogeneous datasets.

Traditionally, Big Data frameworks have been divided into two main groups, according
to the nature of the data they work with. On the one hand, there are batch processing
technologies, that work with data at rest and are usually used when doing Exploratory Data
Analysis (EDA). Examples of technologies that use this approach would include Hadoop [9],
Disco [113] and Thrill [10]. On the other hand, there are stream processing technologies,
that are designed to work with flowing data. Gorawski et al. [56] reviewed different Big
Data streaming proposals.

However, hybrid tools such as Apache Spark [156] or Apache Flink [24] are able to work
both on streaming and resting data. Spark uses micro-batches to process incoming data
while Flink does batch processing as a special case of stream processing.

Extracting insight from the large amount of information that could be leveraged for se-
curity event detection (e.g. logs, network flows or packets) in a network can be considered
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a Big Data problem [26, 47]. Consequently, different types of Big Data security mechanisms
have been proposed:

• Intrusion detection (see survey [167])

• Botnet detection ([35, 49, 100, 128])

• Malware detection ([31, 70, 99, 118]) and analysis ([60, 78, 161])

• Distributed Denial of Service (DDoS) detection ([36, 98, 109, 144, 162])

• Spam detection ([27, 28, 94])

On a related note, other resources have been developed that even if they are not security
mechanisms per se, they have been designed to handle large volumes of network data, and
thus, can be useful to build security mechanisms on top of them:

• Frameworks for analyzing network flows ([96, 141])

• Frameworks for analyzing network packets ([6, 97])

• Frameworks for analyzing logs ([90, 153])

However, in this chapter we will limit the scope of the literature review to Big Data ADSs
that could potentially be applicable to the industrial domain.

2.2 Taxonomy

In this section, we describe the taxonomy or classification method that will be used in Sec-
tion 2.3 for existing large-scale industrial ADSs. Figure 2.2 shows the created taxonomy tree.
When classifying IDSs in general, two main criteria are used: the detection method and the
scope of the IDS [5, 32, 38, 108]. We can apply these criteria to build an IN ADS classification
method.

2.2.1 Detection Method

The main criterion to classify IDSs resides on the detection method. While the difference
between signature-based IDSs and ADSs was already covered in Section 2.1.2, ADSs can be
further classified based on their detection technique. According to Axelsson [5] andMitchell
and Chen [108] ADS detection techniques belong in two categories:
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Figure 2.2: A taxonomy for Anomaly Detection Systems in Industrial Networks

1. Self Learning or Behavior-Based ADSs. The ADS detects anomalous features that are
distinct from normal system behavior. Normal system behavior can be retrieved in
a unsupervised (e.g. clustering historical data) or in a semi-supervised manner (e.g.
collection of training, generally attack-free, data).

2. Programmed or Behavior-Specification-Based ADSs. Using expert knowledge, a hu-
man defines legitimate behaviors and implements them on the ADS. The ADS detects
anomalies by detecting deviations from the specified behavior.

2.2.2 Scope

Apart from the detection method, the other main criterion for IDSand ADSs is their scope,
that is, the source and nature of the data used for audit. In IT ADSs, there are two main types
of ADSs depending on the data they use.

1. Network ADSs. ADSs monitor a network without focusing on individual hosts. The
most prominent data sources for these ADSs are network flows and packets.

2. Host ADSs. The ADS monitors data from an individual host to check anomalies. Ex-
amples of host data include logs, files or system calls.

While this split was conceived for IT-based ADSs, this classification has also held for IN
ADSs [32, 108, 164]. And indeed, most IN ADS proposals can be classified in one of the two
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above categories. Nevertheless, due to the cyber-physical nature of INs, this classification
is not complete enough, as it only tackles the cyber part of INs, while not considering the
physical dimension of INs that handles field data. Field data mainly consists of sensor sig-
nals that monitor physical quantities (temperature, pressure…) although other process-based
variables (counters, setpoint values…) might be present. There are several examples of IN
ADSs that leverage field-level data. [72, 82, 88, 134]. This data can come from logs on a con-
trol server, direct process measurements, simulated data, or can be scattered across different
hosts or devices. Therefore, ADS proposals that leverage process data for anomaly detection
do not fit well in the above classification. Consequently, we have created a novel taxonomy
where the physical dimension of IN ADSs is taken into account as a proper data source. This
taxonomy can be leveraged to classify IN ADSs, both conventional and Big Data proposals,
as it encompasses more data sources and types that are present in INs, than previous pre-
sented taxonomies that do not acknowledge the existence of ADSs based on the physical
layer of INs.

2.3 Anomaly Detection Systems

In this section, we survey existing Big Data ADSs that could be used in INs. Proposals are
divided according to the taxonomy described in Section 2.2.

2.3.1 Cyber-level ADSs

Cyber-level, Self Learning ADSs

The proposal of Xu et al. [152] is an ADS based on host log mining. System logs are first
parsed to provide a unified data-structure from different log formats, by getting log format
templates from the application source code. Then, they build features from the extracted
log data, focusing in state ratio vector (a vector representing a set of state variables on a
time window) and the message count vector (a vector representing a set of related logs with
different message types) features. These vector features are later mined using an algorithm
based on Principal Component Analysis (PCA) for anomaly detection. The results are finally
visualized in a decision tree to aid operators to find the root cause of an anomaly. The analysis
is carried out in a Hadoop cluster to increase computing speed.

Yen et al. [154] introduce Beehive, a large scale log mining tool that uses Hive [142]
to detect suspicious activities in corporate networks. For that purpose, Beehive mines logs
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coming from different sources and, especially, web proxy logs. Beehive clusters log data and
identifies misbehaving hosts as cluster outliers, as they show a unique behavioral pattern.
The clustering is done by an adapted version of the k-means algorithm. The incidents related
to the outliers were labeled manually by using other system logs and showed that many of
these outliers where not detected by traditional security mechanisms.

Ratner and Kelly [121] conduct a case study of network traffic anomalies in a corporate
network. For this end, they extract packet metadata from a set of captured packets, and they
perform specific queries in the gathered data to detect attacks, mainly IP scans. In order to
process the large dataset, they use Apache Hadoop. They find a large number of IP scans and
conclude that roughly half of the packets arriving from external IP addresses are anomalous.
Those anomalies were found by comparing each packet’s IP metadata to the average values
for each day.

Therdphapiyanak and Piromsopa [140] expose an anomaly detection system based on
host log analysis. First, the system parses log data and later clusters it by using k-means.
Once the clusters are formed, the authors extract major characteristics from the clusters to
examine differences and similarities. Minor clusters with important differences when com-
pared to others are flagged as anomalous. While the system has been tested with Apache
Web Server logs, the authors address aggregating logs from different network agents in fu-
ture steps. Log parsing and clustering is performed in a Hadoop cluster.

Camacho et al. [19] use a PCA-based solution to detect anomalies in computer networks.
The workflow of the approach can be seen on Figure 2.3. The anomaly detection is accom-
plished in two separate phases: a model building phase, where the ADS is tuned based on
training data, and a monitoring phase, where the ADS analyzes incoming data and deter-
mines it as anomalous or legitimate based on the model built during the previous phase. In
the first phase, incoming data (generally, IDS and Firewall logs) is pre-processed and con-
verted into feature vectors. Later, this data is used to create a PCAmodel, where the original
features are transformed into a new variable subspace. This dimensionality reduction helps
to discard anomalies that made into the training data, by filtering outliers. The PCA model
can also be used to create two different statistics that are widely used for for process moni-
toring: Hotelling’s T 2 [62], comprising the leverages of the PCA model and the SPE [77],
involving the residuals of the model. The proposed approach calculates the statistics for each
of the observations in the training set and based on it, calculates a control limit based on an
arbitrary confidence level, where a given percentage of the training observations should be
below the control limit. Once the control limits have been set, the training phase has ended
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Figure 2.3: Anomaly Detection System proposed by Camacho et al. [19], based on Principal Com-

ponent Analysis (PCA)

and the ADS is now prepared to work in the monitoring phase. In this phase, incoming data
is pre-processed and transformed using the previously created PCA model and it calculates
the T 2 and SPE values for each incoming observation. If several consecutive observations
surpass either of the set control limits (the necessary number of out-of-bounds observations
depends on the confidence level), an anomaly is flagged. The process can be parallelized us-
ing hierarchical PCA and the workload shared through several slaves. The ability of PCA to
work with high dimensional data ensures that the approach can be extended to a wide range
of incoming data.

Hashdoop [48] is a MapReduce-based framework designed to run anomaly detection sys-
tems in a distributed manner. It does not provide enhanced anomaly detection capacity to
the original ADS but it speeds up its execution. First, it splits and hashes network traffic,
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preserving traffic structures. Later, each of the hashed traffic subsets is analyzed by an in-
stance of the ADS to detect anomalies. Finally, the generated information about the subsets
is summarized in a single output report. Results show that processing time is reduced when
using Hashdoop-powered ADS compared to their single-node counterparts.

Marchal et al. [103] propose an intrusion detection system that uses honeypot data to
detect similar intrusions in networks. First, it collects Domain Name System (DNS) replies,
HTTP packets and IP flow records from the network, along with honeypot data. Based on
the collected data, three different scores are computed in order to quantify the maliciousness
of the recorded DNS, HTTP and flow communications. This quantification uses other gath-
ered or publicly available data such as domain blacklists or the data compiled by the in-house
honeypot. When one of these maliciousness indices reach a certain threshold, a flag is raised
to inform about the anomaly. The authors test different data-intensive frameworks that are
designed to work with potentially very large data volumes. According to their tests, Apache
Spark and its subproject, Shark, are faster than Hadoop, Hive or Pig. However, several con-
cerns arise with this mechanism: the performance of the proposed system is directly related
to the performance of the honeypot. If an attacker does not interact with the honeypot and
their domain is not explicitly blacklisted, the mechanism will not be able to raise an alert,
even in the case of known attacks.

MATATABI [137] is a threat analysis platform that stores data from different sources
(DNS captures and querylog, Network flows and spam email) in a Hadoop cluster and orga-
nizes it in Hive [142] tables. Later, different modules query this data via a Javascript Object
Notation (JSON) Application Programming Interface (API). Although the exact implemen-
tation details of each of the analysis modules are vague, each module queries the stored
data looking for anomalous patterns, such as hosts receiving or sending a large number of
packets, specific port scans by counting the number of packets to a specific port number,
or botnet activity through abnormal DNS activity. While the gathered data is varied, the
modules are designed to query a single type of data. If suspicious activity is detected, it is in
the operator’s hand to query other types of data to find additional evidence of the attack.

TADOOP [143] is a network flow ADS that implements an extension of the Tsallis En-
tropy [166] for anomaly detection, dubbed DTE-FP (Dual q Tsallis Entropy for flow Feature
with Properties). In short, TADOOP gathers network flows and computes a pair of q val-
ues aiming to accentuate high and low probability feature distributions, usually linked to
traffic anomalies. TADOOP is based on four main modules (i) The Traffic Collector gathers
network flow packets and decodes them. (ii) The Entropy Calculation Module extracts flow
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features from each flow and it computes the DTE-FP q values for each flow feature distribu-
tion. (iii) The Semi-Automatic Training Module is the responsible for setting optimal q pair
detection thresholds for each of the distribution. The criterion is keeping false positive rate
below an arbitrary maximal threshold. (iv) The Detection module calculates entropy values
for all the flows in a given time window and compares them to the thresholds computed by
the training module to detect anomalies. TADOOP uses Hadoop for storing and processing
historical flow data. TADOOP is evaluated using the flow data of a university network.

Gonçalves et al. [55] present an approach for detecting misbehaving hosts by mining
server log data. In the first phase, they extract features from DHCP, authentication and fire-
wall logs, and for each host a feature vector is created. These vectors are later clustered using
the Expectation-Maximization (EM) algorithm which are later used to build a classification
model. Smaller clusters in the set correspond to anomalous host behavior. In the second
phase, once the classification model is built, incoming data is clustered in a similar way as
in the first phase, however, these newly created clusters are classified with the previously
created model in order to detect if they are anomalous. While the feature extraction from
the log data is done in Hadoop, clustering and classification of the data is carried out with
the Weka [59] data mining tool.

Dromard et al. [43] extend the UNADA [29] ADS to detect anomalies in Big Data net-
work environments. UNADA is a three-step unsupervised ADS. (i) Flow Change Detection.
Flows gathered in a given timewindow are aggregated on different levels defined by network
masks. For each level, UNADA computes a simple metric or feature of the aggregated flows:
number of bytes, number of packets, number of IP flows…Then, when a new set of flows is
gathered, these metrics are recomputed for the new flow and compared to the previous set.
If there is a change in the values, the time window is flagged and further computed. (ii) Clus-

tering. In this phase, UNADA clusters the feature vectors from the previously flagged flow
sets using DBSCAN [45]. Network flow feature vectors can have numerous variables and
DBSCAN does not perform well in multivariate environments. In order to overcome this is-
sue, UNADA splits the feature space into smaller, two-dimensional subspaces and computes
DBSCAN independently on each of them. (iii) Evidence accumulation. In the last phase, data
from each of the subspaces is aggregated to identify anomalies. In each subspace, indepen-
dently, data points that do not belong to a cluster are flagged as anomalous and UNADA
records the distance to the nearest cluster centroid. A dissimilarity vector is built with the
accumulated abnormality scores for each flows across all subspaces. To ease anomaly detec-
tion, dissimilarity vectors are later sorted and a threshold is defined to finally flag flows as
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anomalous. The authors evaluate the performance of UNADA over Apache Spark [156] to
compute the ADS over the network data gathered on a core network of an Internet Service
Provider. Results show that the approach is able to detect flow anomalies while speeding up
execution time in regards to the original UNADA proposal.

The proposal of Rathore et al. [120] is a flow ADS built on four layers. (i) Traffic captur-

ing. The traffic is captured from the network and forwarded to the next layer. (ii) Filtration
and load balancing. This layer checks whether the flow has been previously registered as
a legitimate or anomalous in a database. If it has not, data is forwarded to the next layer.
(iii) Hadoop layer. This layer extracts the features from the gathered data. It uses Apache
Spark [156] on top of Hadoop for faster computation. (iv) Decision Server. The extracted
features are classified as legitimate or anomalous sets by a set of classifiers implemented
in Weka. The authors use the well-known intrusion detection NSL-KDD dataset for result
evaluation and conclude that the C4.5 and REPTree are the best performing classifiers for
this task.

Wang et al. [149] propose a continuous, real-time flow ADS based on Apache Storm. In
order to reach this objective, they combine three different detection methods: (i) Network
flows. They count the number of flows in a small enough time slot that allows online pro-
cessing. After, they compute the standard deviation and mean of this count and calculate a
confidence interval based on them. Later, they perform a set of operations over the flows in-
volving hashing into groups and calculating Inter-group Flow Entropy [148]. In all steps, the
system checks that the observations are inside the confidence interval, otherwise an alarm
is raised. (ii) Intuitive Methods based on Traffic Volume. The system applies the same ap-
proach as in network flows but taking into account the number of packets in a time window
instead the number of flows. (iii) Least-Mean-Square-based detection. The system uses a
Least-Mean-Square-based (LMS) filtering method that aims to find inconsistencies between
the inter-group flow and packet entropies, which should be strongly correlated. LMS also
operates in an online manner. They evaluate they approach by replaying a capture of an In-
ternet backbone while introducing in parallel two types of anomalies that where not present
in the capture: An attack involving a large number of small network flows and an attack
involving a small number of large flows.

Gupta and Kulariya [57] compare a set of feature extraction and classification algorithms
for anomaly detection. They benchmark the different approaches using the popular intrusion
detection KDD’99 and NSL-KDD datasets and the algorithms implemented in Spark’s MLlib
library. They evaluate correlation based feature selection and hypothesis based feature selec-
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tion for feature extraction. For classification they measure the performance of Naïve Bayes,
Logistic Regression, Support Vector Machines, Random Forests and Gradient Boosted Deci-
sion Trees. They conclude that hypothesis based feature selection helps to achieve a better
classification score. Among the classifiers, Random Forests and Gradient Boosted Decision
Trees yield better results than the rest.

Cyber-level, Programmed ADSs

The work presented by Giura and Wang [54] uses large-scale distributed computing to de-
tect APTs. First, they model the APT using an Attack Pyramid, a multi-plane extension of
an attack tree [2, 124] where the top of the pyramid represents the asset to be protected. The
planes of the pyramid represent different environments where attack events can be recorded
(e.g., user plane, application plane, physical plane…). The detection method groups all po-
tential security events from different planes and maps the relevant events that are related to
a specific attack context. This context information is later leveraged to detect a security inci-
dent if some indicators surpass a set of user-defined thresholds. Themethod usesMapReduce
to consider all the possible events and related contexts.

Bumgardner and Marek’s approach [16] consists in a hybrid network analysis system
that uses both stream and batch processing, capable of detecting some network anomalies.
First, it uses a set of probes that collect network traffic to build and send network flows to
the specified processing unit. Then, the created flows are stream processed through Storm
to enrich it with additional data (e.g. known state of the internal network) and anomalies
are detected based on previously defined event detection rules (bot activity, network scans).
Once the flows have been processed, they are stored in a HBase table, a column oriented
database, to perform EDA to get further insight that it is not explicitly stated in each of
the flows. This batch data processing is executed on top of Hadoop. The main drawback
of Bumgardner and Marek’s approach is that the system’s anomaly detection capability is
directly related to the capability of describing network events or anomalies using rules when
doing stream processing.

2.3.2 Physical-level ADSs

Hadz̆iosmanović et al. [58] present a log mining approach to detect process-related threats
from legitimate users’ unintentional mistakes. They identify unusual events in log data to
detect these threats. In order to extract the unusual events from the potentially large log data,
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they first use a FP-growth algorithm to count matching log entries. Later, unusual events are
defined as the ones whose number of occurrences is below of a user-set, absolute threshold.
FP-growth algorithms do not use candidate generation, and thus, are able to effectively count
occurrences in two data scans.

Difallah et al. [40] propose a scalable ADS for Water Distribution Networks. Specifically,
they use Local Indicators of Spatial Association (LISA) [4] as a metric for anomaly detection,
by extending the metric to consider temporal associations. In the proposal, wireless sensors
send process data to a set of base stations that perform part of the anomaly detection process
by computing a limited set of LISA calculations on the streaming data they receive. Thus,
it uses a distributed approach for a first phase of anomaly detection. Later, data is sent to a
central Array Database Management System (ADBMS). The ADBMS allows global analytics
of the distribution network as a whole. Evaluation of the proposal is done using Apache
Storm for the stream processing in the base stations and SciDB [14] as the ADBMS, analyz-
ing data from a simulated environment created after the Water Distribution Network of a
medium-sized city.

Hurst et al. [63] introduce a Big Data classification system for anomaly detection on
CIs. They extract process data from a simulated nuclear power plant and extract relevant
features from it, by selecting a number of variables that best describe the overall system
behavior. However, this feature extraction relies on expert knowledge to identify the subset
of variables that are most suitable. Moreover, the needed features will vary between different
types of processes, even different installations, and thus, the approach is process-dependent.
They do not specify the used criteria for feature selection. After feature extraction, they
perform anomaly detection using five different classifiers by splitting the gathered data into
two halves for the training and testing. They demonstrate that increasing both dataset size
and the number of features used for anomaly detection yields better classification results.
They do not specify the framework they used for this large-scale classification.

Kiss et al.’s system [83] is designed to detect field-level anomalies in Industrial Networks.
By leveraging the field data that sensors and actuators periodically send, they classify normal
and abnormal operation cases. To this end, field parameters are used to build feature vectors
that are later clustered using k-means to identify operation states and anomalous states of
the physical process. In order to deal with the growing field data, the system uses Hadoop
to create the different clusters. As the vectors to be clustered are built using field data, these
feature vectors depend on process nature. Furthermore, in case of complex physical pro-
cesses, building the features and identifying different operation states can be a challenging
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problem that can complicate the deployment of the proposal.
Wallace et al. [147] propose a Smart Grid ADS by mining Phasor Measurement Unit

(PMU) data. The overview of their proposal is depicted in Figure 2.4. The system first mod-
els normal grid operation by measuring voltage deviation from each of the PMUs and cre-
ating a cumulative probability distribution to represent the likelihood for a signal to have a
given voltage deviation. After the distribution function has been created, the likelihood of a
given divergence of two voltage signals can be estimated. The system evaluates this calcu-
lated likelihood in order to classify an incoming observation as anomalous or legitimate. In
detail, the system calculates the voltage deviation from two consecutive signals, and then,
using the probability distribution function constructed with the historical data, establishes
an event as anomalous if this deviation is unlikely to happen. That is, consecutive signals
with high discrepancies in voltage values are more unlikely to arise, and therefore, when
they happen they can be classified as anomalous situations in the grid. After an anomaly
has been flagged, further analysis of the data can explain the nature of the anomaly. This
anomaly identification is carried out by a classification decision tree algorithm, that infers
the type of anomaly based on three hand-coded events, developed with expert knowledge.
The evaluation is done using real PMU data of an electrical grid and using Apache Spark for
data computation.

2.4 Discussion

In this section, we discuss the proposals presented in Section 2.3, pointing to the advantages
and disadvantages of the proposals, stressing their applicability to INs.

Table 2.2 shows a comparison of the presented works, according to different criteria:

• Domain: Refers to the network type the proposal has been defined to work in: IT or
IN.

• Granularity: Axelsson [5] defines granularity of data processing as a “category that
contrasts systems that process data continuously with those that process data in batches

at a regular interval.”

• Time of detection: Axelsson [5] defines this category by defining the two main groups
that compose it: systems that give results in real-time or near real-time and those that
process data with some delay (non-real). Though related to the previous category, they
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Figure 2.4: Flowchart of the Smart Grid Anomaly Detection procedure proposed by Wallace et

al. [147]

do not overlap, as some real-time systems might process micro batches, thus giving
real-time or almost real-time performance.

• Source of information: Refers to the type of input data the ADS collects and audits for
anomaly detection.

• Main detection technique: Refers to the main technique the ADS leverages to detect
anomalies in the gathered information.
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Table 2.2: Comparison of the surveyed works

Name Ref. Dom. Granul.
Time of
detect.

Sources
Main
Detect.
technique

Beehive [154] IT Batch Non-real Proxy logs k-means

Bumgardner &

Marek

[16] IT Both Real
Network

flows

Threshold

establishing

Camacho et al. [19] IT Both Non-real
Firewall &

IDSlogs
PCA

Dromard et al. [43] IT Batch Non-real
Network

flows
DBSCAN

Difallah et al. [40] IN Both Real Process data LISA

Giura and Wang [54] IT Batch Non-real

Network

and ap-

plication

data

Threshold

establishing

Gupta and Ku-

lariya

[57] IT Batch Non-real
Network

captures

Several

feature

extraction

and clas-

sification

algs.

Gonçalves et al. [55] IT Batch Non-real

DHCP, Au-

thentication

and Firewall

logs

EM

Hadžiosmanović et

al.

[58] IN Batch Non-real SCADA logs FP-Graph

Hashdoop [48] IT Batch Non-real

Network

traffic (tex-

tual format)

None

Continued on next page
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Table 2.2 – Continued from previous page

Name Ref. Dom. Granul.
Time of
detect.

Sources
Main
Detect.
technique

Hurst et al. [63] IN Batch Non-real Process data

Multiple

classifi-

cation

algs.

Kiss et al. [83] IN Batch Non-real Process data k-means

Marchal et al. [103] IT Batch Non-real

Honeypot,

DNS, HTTP

and Net-

work flow

data

Threshold

establishing

MATATABI [137] IT Batch Non-real

DNS

records,

Network

flows, Spam

email

Multiple

Rathore et al. [120] IT Batch Non-real
Network

flows

C4.5, Rep-

Tree

Ratner and Kelly [121] IT Batch Non-real
Network

packets

Manual

data query-

ing

Therdphapiyanak

& Piromsopa

[139] IT Batch Non-real
Network

logs
k-means

TADOOP [143] IT Batch Non-real
Network

flows
DTE-FP

Wallace et al. [147] IN Cont. Real Process data

Cumulative

Probability

Distribu-

tion

Wang et al. [149] IT Cont. Real
Network

flows

Inter-group

entropy,

LMS

Continued on next page
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Table 2.2 – Continued from previous page

Name Ref. Dom. Granul.
Time of
detect.

Sources
Main
Detect.
technique

Xu et al. [152] IT Batch Non-real Console logs PCA

As Table 2.2 shows, most of the proposals are both batch and in non-real-time. Moreover,
a similar set of proposals use a single type of data input as the source for audit information.
Thus, it can be stated that the majority of these proposals focus on handling large, resting
data volumes for anomaly detection (one of the V Big Data dimensions) while the other
dimensions (mainly velocity and variety) are not as relevant.

Table 2.3 shows the Big Data adoption level of the proposals, by listing the following
metrics:

• Locus of Data Collection (LDC): Axelsson [5] notes that “audit data can be collected
from many different sources in a distributed fashion, or from a single point using the
centralised approach”.

• Locus of Data Processing (LDP): Similarly, Axelsson states that “audit data can either
be processed in a central location, or is collected and collated from many different
sources in a distributed fashion .”

• Underlying solution: Lists the underlying Big Data technology the ADS uses for Big
Data computing.

• Evaluation environment: Shows the nature of the evaluation data used to test the
performance of the ADS.

Table 2.3 shows that most of the proposals use distributed computing for data processing.
However, distributed data collection, where data from different sources is analyzed is not as
widespread. Hadoop and Spark are the most prominent Big Data frameworks that are used
for anomaly detection. It is worth mentioning that in some proposals, although using these
mechanisms, they are only used in a part of the data pipeline. For instance, they use the Big
Data tools for feature extraction, while once the features have been extracted into a smaller
feature dataset, other conventional tools are used for the data classification.

Table 2.4 summarizes the suitability of the IT-based solutions to be used in INs. For that
end, it defines the following metrics:
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Name Ref. LDC LDP Solution Eval. environ.
Beehive [154] Dist. Dist. Hadoop, Hive Operational network

Bumgardner & Marek [16] Dist. Dist. Storm, HBase, Hadoop Operational network

Camacho et al. [19] Dist. Unknown Custom Public dataset

Dromard et al. [43] Dist. Dist. Spark Operational network

Difallah et al. [40] Dist. Dist. Storm Simulated process data

Giura and Wang [54] Dist. Dist. Hadoop Operational network

Gupta and Kulariya [57] Cent. Dist. Spark Public dataset

Gonçalves et al. [55] Dist. Dist. Hadoop, Weka Operational network

Hadžiosmanović et al. [58] Cent. Cent. Custom Operational network

Hashdoop [48] Cent. Dist. Hadoop Public dataset

Hurst et al. [63] Cent. Unknown Custom Simulated process data

Kiss et al. [83] Cent. Dist. Hadoop Simulated process data

Marchal et al. [103] Dist. Dist. Hadoop, Hive, Pig, Spark Operational network

MATATABI [137] Dist. Dist. Hive Operational network

Rathore et al. [120] Cent. Dist. Spark, Weka Public Dataset

Ratner and Kelly [121] Cent. Dist. Hadoop Operational network

Therdphapiyanak & Piromsopa [139] Cent. Dist. Hadoop, Mahout Public Dataset

TADOOP [143] Cent. Dist. Hadoop Operational network

Wallace et al. [147] Dist. Dist. Spark Operational network

Wang et al. [149] Dist. Dist. Storm Operational network

Xu et al. [152] Cent. Dist. Hadoop Operational network

Table 2.3: Big Data comparison of the surveyed works

• OSI Layer: Refers to the corresponding layer of the Open Systems Interconnection
(OSI) model the network data belongs to. In the case of logs, it shows the layer of the
network application that created the logs.

• IN interoperability: Refers to the performance of running the IT ADS, out-of-the-box
in an industrial environment. Low interoperability means that the ADS would not be
usable. Mediummeans that the ADS is expected to run on INs and to detect anomalies
to some extent. High means that the ADS is also tailored to work in IN environments.

• Response type. Categorizes the ADSs in two categories, not related to the detection
mechanism, but to their response when an anomaly is flagged. Passive responses con-
sist of logging and sending alerts, without interacting with the traffic, while active
responses try to tackle the source of the intrusion or anomaly. Active response mech-
anisms are often referred to as Intrusion Prevention Systems (IPSs). All the reviewed
works have passive passive responses. The usage of active responses that fit well into
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the availability constraints of INs is still an undeveloped field [108].

• Self Security. Zhu and Sastry [164] define self-security to “whether the proposed ADS
itself is secure in the sense it will fail-safe.” Availability is an important concern in INs.
As such, redundant and fail-safe mechanisms are widespread in INs.

Name Ref. OSI layer IN interoperability Self-security
Beehive [154] 7 Low Medium

Bumgardner & Marek [16] 3,4 Medium Medium

Camacho et al. [19] 3,4,7 Medium Unknown

Dromard et al. [43] 3,4 Medium Medium

Giura and Wang [54] 3,4,7 Medium Medium

Gupta and Kulariya [57] 3,4,7 Medium Medium

Gonçalves et al. [55] 3,4,7 Low Medium

Hashdoop [48] Packet captures Dependent on implementation Medium

Marchal et al. [103] 3,4,7 Medium Medium

MATATABI [137] 3,4,7 Medium Medium

Rathore et al. [120] 3,4 Medium Medium

Ratner and Kelly [121] Packet captures Medium Medium

Therdphapiyanak & Piromsopa [139] 3,4,7 Medium Medium

TADOOP [143] 3,4 Medium Medium

Wang et al. [149] 3,4 Medium Medium

Xu et al. [152] 7 Medium Medium

Table 2.4: Suitability of IT-based solutions for their use in INs

As Table 2.4 lists, most proposals, especially the ones that work with network flows, are
able to work in INs, as nowadays IT networks and the cyber layer of IT networks share the
same network stack at the OSI 3 and 4 layers (Network and Transport) and similar network
infrastructure coexists in both types of networks (e.g. firewalls). However, even if technically
possible, it is yet to be seen how they would perform.

It is worth mentioning that even if not listed in Table 2.4, the Time of Detection feature
(covered in Table 2.2) becomes a relevant aspect of the ADSswhenmeasuring their suitability
for INs, as their real-time nature requires fast detection to raise alerts as fast as possible and
to perform mitigation actions if necessary [108].

Furthermore, although Big Data ADSs listed were not designed for the availability con-
straints of INs, the usage of distributed file-systems for data storage and the distributed na-
ture of Big Data processing, gives most solutions a relative defense against faults, as shown
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by the self-security field. It might not be enough for the high availability requirements on
which ICSs and INs have, but still, it makes Big Data ADSs better candidates in this aspect
than their conventional counterparts.

2.5 Open research areas

There are several open research lines in the area of Big Data ADSs for INs. We categorize
them based on the different Big Data dimensions.

2.5.1 Dealing with volume

Most surveyed Big Data ADSs have dealt with large volumes of data, and in many cases it
has been the main focus of the Big Data ADS. Indeed, some of the surveyed works go no
further than applying conventional algorithms and approaches using Big Data mechanisms.

Therefore, the volume requirement for Big Data ADSs can be considered as partially
fulfilled. However, there is still room for improvement that can lead to further research:

• No large-scale cyber-level ADSs for IN specific protocols. Some IT counterparts deal
with application-level data (7th OSI layer) but no proposals exist for INs. While lower
OSI level proposals exist and could be applied to INs, these kind of mechanisms have
been more studied and attackers expect related defensive measures [108]. Therefore, it
is necessary to develop large-scale ADSs that will gather information from IN-specific
protocols, opening the way of analyzing packet payload information.

• Big Data IN storage. Though process data has been traditionally stored in historian
servers, novel approaches for the storage of IN related data are necessary: not only
process readings, but wider types of data (for instance, network traces, or alerts). This
can help not only with Anomaly Detection but also for other fields of research regard-
ing INs and Big Data.

2.5.2 Dealing with velocity

As stated in Section 2.4, the vast majority of the proposals are not continuous nor real-time.
This presents the issue that the mentioned approaches are only capable of finding anomalies
over historical data, and when new data arrives, a new, larger version of the original dataset
that contains the new data is computed again in order to find anomalies. In some of the
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proposals historical data is divided in time bins and only data corresponding to an specific
time bin is executed.

However, this is an impractical approach for a realistic ADS, more so in INs where, as pre-
viously stated, real-time detection is an important aspect. It is necessary to develop stream-
ing models where incoming data is treated on arrival in order to detect anomalies. An issue
regarding streaming models is that it is not possible to perform EDA on them. EDA and the
building of several models require data at rest, so relationships between different observa-
tions can be defined. Similarly, most streaming models need well-defined models for acting
on incoming data.

A solution to this problem might lay in building hybrid models based on a two-phase
approach where (i) A model is defined based on gathered historical data at rest. (ii) After
building a model, this model is applied to compute incoming streaming data. INs have the
advantage over IT networks that they are more static and deterministic by nature, so two-
phase ADSs seem a viable solution, as once an ADS model is built, it will seldom require an
update.

It is necessary to mention, that to encourage and compare different contributions in the
area of real-time ADSs for INs, it is necessary to create and use a set of metrics where latency
should be taken into account [108].

2.5.3 Dealing with variety

Bompard et al. [11] state that “In order to make IDSs effective in protecting this kind of sys-
tems, it is then needed a set of multilayer aggregation features to correlate events generated
from different sources (…) in order to detect large scale complex attacks. This probably rep-
resents the next research challenge in this field”. Still, this is an open issue, as most proposals
reviewed deal with a single, or few data sources for anomaly detection.

ICSs are multivariate and heterogeneous by nature, they deal with very diverse types of
data, both at the network level (packets, flows, logs…) and specially at the field level where
they keep track of a large number of different physical quantities simultaneously. However,
existing large-scale ADSs do not leverage data from both levels. This issue is extensible to
most conventional ADSs as well, as only a few proposals deal with both process-level and
network-level data [53, 79] to detect anomalies.

BDA gives the opportunity to use this heterogeneous data and leverage it in a unified
manner to detect anomalies. In this direction, the work of Camacho et al. [19, 20] gives
promising insight. The usage of multivariate algorithms, such as PCA, can help to build a
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model where parametrized cyber and process data can be used to build a single ADS that
leverages data from both levels. PCA-based techniques scale well horizontally and are used
in fields such as genomics where they are used to handle massively dimensional data.

2.5.4 Dealing with veracity

From our point of view, Big Data veracity for Anomaly detection is not only related to cor-
rectly flagging a relevant anomaly on a large dataset, but also to communicate and alert the
anomaly correctly, instead of overwhelming the operator with too much alert noise. In a
related note, we believe that properly testing different Big Data ADSs on neutral, relevant
environments such as using public datasets, is also ensuring the veracity of ADSs in Big
Data. Therefore we can identify the following research areas:

• Closing the semantic gap. Sommer and Paxon [130] define the semantic gap as the
lack of actionable reports for the network operator. In other words, the ADS does not
provide sufficient diagnosis information to aid decision making for the operator. In
INs, it is necessary for an operator to know what is the cause for an anomaly, as suc-
cessful attacks or serious disturbances could have potentially catastrophic outcomes.
BDA can help to provide useful information about the cause of the anomaly. Big Data
visualization techniques or Visual Analytics might play a significant role in this matter.

• Necessity to have realistic, large-scale datasets. Few datasets exist for Anomaly De-
tection evaluation in INs and existing datasets [111] are too small to evaluate Big Data
ADSs. Therefore, it is necessary to have public, realistic, large-scale IN datasets that
would allow the evaluation of the ADS performance independently.

• Integration of honeypots. When trying to find anomalies in Big Data, it is important
to keep the value of false positives and false negatives low. The task of finding anoma-
lies is equivalent to find a needle in a haystack. Trusted data sources can help in this
endeavor. Honeypots can consitute such a trusted information source, as by defini-
tion do not yield any false positives [146]. The field of IN-oriented honeypots is still
maturing [146], but the possibility of feeding and correlating IN honeypot data to a
Big Data IN ADS, in a similar fashion as Marchal et al. [103], opens the way to a new
field of research.
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2.6 Conclusions of the Chapter

We have presented a literature review comprising of three main contributions: i) a review
of current proposals of Big Data ADSs that can be applied to INs, ii) a novel taxonomy to
classify existing IN-based ADSs, and, iii) a collection of possible future research areas in the
field of large-scale, heterogeneous and real-time ADSs for INs.

Big Data Anomaly Detection in Industrial Networks is still a developing field. Few pro-
posals exist for INs exclusively, but some IT-based solutions show that it is possible to have
similar counterparts on INs. Nevertheless, while most proposals focus on large-volume so-
lutions for anomaly detection, other aspects, such as dealing with data with high velocity or
variety is still largely untackled. We have offered some future research work areas regarding
these open issues.
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In the previous chapter, we have surveyed the field of Big Data anomaly detection from the
point of view of Industrial Networks (INs). After discussing some of the issues regarding
current research proposals, we have detected room for improvement in the field of data-
driven, large-scale and heterogeneous Anomaly Detection Systems (ADSs) for INs.

However, before pursuing further development in this field, it is necessary to create a
safe testing environment that will provide the means for the development of the ADS by
generating data and can also serve as a realistic platform for ADS evaluation. This chapter
covers the design of a hybrid IN testbed that aims to fulfill such purposes, with the additi-
tional objective of being useful for future research, not necessarily coupled with the objective
of developing novel ADSs. Therefore, it supports additional technologies, such as Sofware-
Defined Networking (SDN) or an integrated data analysis module.

3.1 IN Security Testbed Research

Due to the critical mission of some industrial processes and the difficulty to recreate tests in
real, live environments, both the scientific community and industry have employed testbeds
to design and test different security measures and scenarios. On the one hand, Holm et
al. [61] survey existing Industrial Control System (ICS) security testbed proposals. They
identify thirty different contributions, mainly devoted to vulnerability analysis, security ed-
ucation and the creation of environments to test and evaluate the performance of detection
mechanisms, such as firewalls or Intrusion Detection Systems (IDSs). On the other hand, Di
Pietro and Panzieri [39] develop a taxonomy that allows the classification of tested propos-
als into a set of categories. Likewise, they perform a comparison of seven different testbeds
according to the presented taxonomy.

Based on these two works, it can be inferred that the main classification criterion for
security ICS testbeds resides on the methods and solutions used for their implementation.
Holm et al. [61] define these methods as virtualization, simulation, emulation and hardware.
Most testbeds do not uniquely rely on a single method of implementation, and they com-
bine different methods for different tasks. For instance, it is possible to simulate a physical
process, while the controller runs inside a virtual machine.

However, among the mentioned implementation approaches, three different testbeds can
be chosen as representative examples of each method: the proposals by Reaves and Mor-
ris [122], Candell et al. [23] and Siaterlis et al. [127].

Reaves and Morris [122] present a testbed centered on virtual devices, that work as con-
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trollers. These virtual devices are responsible of controlling a physical process that is simu-
lated. Therefore, the control logic is implemented in them and they possess communication
abilities that they use to gather data from the process and issue commands to it. Depend-
ing on the settings, these devices can act as masters or slaves and are interoperable with
real control systems. The testbed has two different simulated processes: a water tank and
laboratory-scale gas pipe.

The testbed presented by Candell et al. [23] is mainly based on hardware. The controllers
and the rest of the agents in the industrial networks are physical. As for the physical process,
this testbed has two variants: (i) Simulation of the Tennessee-Eastman process [42] and
(ii) The usage of a physical robotic arm. In addition to these two different processes, the
testbed has third component that contains the network hardware and it is responsible for
the capture and modification of the network’s packets.

The proposal of Siaterlis et al. [127], known as EPIC, is the most flexible of the three
proposals here mentioned. EPIC’s architecture is founded in the Emulab software [150],
which employs to recreate the cyber layer of the IN (network topology and nodes). Emulab’s
flexibility allows to use physical and virtual controllers dynamically, along with different
network topologies and states. Like the previous proposals, EPIC simulates the physical
process under control.

Even if the focus of the aforementioned testbeds are fundamentally different, in practice,
they share some shortcomings when handling cybersecurity research related to INs.

On the one hand, the proposals lack SDN support. The potentiality of these type of
networks for their use in INs has already been mentioned in the literature [160]. Specifically,
in the field of cybersecurity, SDN can provide resiliency and additional security mechanisms
to INs [41, 110]. For this reason, Dong et al. [41] argue that SDN should be incorporated in
IN testbeds, proposing an applied use case to the Smart Grid.

On the other hand, the different types of analyzed testbeds also lack a module for storing
and processing the data created in it. As covered in Chapter 2, storing and processing data
from an IN can pose a Big Data problem. Reaves and Morris [122] point to the lack of a mod-
ule with this characteristics and consider the creation of a repository for storage “a natural
extension” to their testbed. In the case of Candell et al. [23], they mention the existence of a
module for network packet storage, but the module has no additional functionalities.

The testbed presented in this chapter aims to overcome these two issues, by providing
support for SDNs and having an integrated module for large-scale data processing.



3.2. Testbed structure 47

Experimental plane

Experiment
description

Resource
acquisition

and topology
configuration

Experiment
recreation

Figure 3.1: Experiment creation workflow in Emulab

3.2 Testbed structure

In this section we explain the structure of the proposed IN testbed.

3.2.1 Overview

Thestructure of the testbed is based on using the Emulab software [150]. Emulab is a software
system which provides a platform for the research, education and development of networks
and distributed systems. It has been designed with three main objectives: simple usage,
environment control and realism. It achieves the objectives by utilizing abstraction and
virtualization systematically.

Emulab’s basic architecture is composed by two control servers, a set of physical re-
sources that are used as experiment nodes and a set of network devices whose aim is to
interconnect the different nodes.

Figure 3.1 shows the experiment creation process of Emulab in different steps:

1. Using a Network Simulator (NS) file, the user specifies the details of the experiment,
such as the number of participating nodes (physical or virtual), the Operating System
(OS) that powers each node, the network topology or the details of each of the network
links (packet throughput, packet loss etc.)
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Figure 3.2: Simplified architecture of an IN testbed as defined by Holm et al. [61]

2. Once the details have been specified, the NS file is loaded in the servers thatmanage the
testbed, and Emulab books and configures the necessary resources for the experiment.

3. Later, Emulab recreates the network topology, configures the nodes, creates the system
users in the hosts and gives the final user the possibility of connecting to each of the
nodes and interact with them. The experiment is ready to run.

Based on the guidelines given in the National Institute of Standards and Technology
(NIST) Special Publication 800-82 [132], Holm et al. [61] consider four types of elements that
every IN testbed should cover (Fig. 3.2):

1. The Communication Architecture encompasses the components that allow the com-
munication between different devices that form the IN. Examples include switches,
routers and communication lines.

2. The Control Center or Supervisory Devices refer to the severs and workstations that
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are used to monitor and control the physical process remotely. Examples include pro-
cess historians, Human Machine Interfaces (HMIs) and control servers.

3. The Field Devices or Controllers concern the devices that link the physical and the
cyber world, and thus, generally interacting directly with the process itself. Examples
include Programmable Logic Controllers (PLCs) or Remote Terminal Units (RTUs).

4. The Physical Process involves the physical reality that the ICSs monitor and control.

We now focus in each of the aspects and detail its implementation in our testbed.

3.2.2 Communication Architecture

In the testbed, the communication architecture is built around two main concepts: the Em-
ulab software and SDN.

Emulab

Previously, we have mentioned Emulab as the software system that powers experiment ex-
ecution. Figure 3.3 shows Emulab’s architecture.

Emulab is installed in two different servers. These two servers manage all the hardware
and software available for experiment recreation. The first server, dubbed Boss, controls
the hardware, hosts the user interface and manages the name system and the deployment
service that loads the disk images containing the OSs and applications that will run on the
experiment nodes. The second server, named Ops, manages and stores user data, which
generally is the one to be used in the experiments and the data created in them.

As shown in Figure 3.3, the two servers are connected into the control plane network.
This network is used to have a direct control over the experiment nodes. Therefore, each ex-
periment node has a dedicated network interface with the sole purpose of enabling manage-
ment from Emulab, while the rest are used in the experiment. Moreover, Boss is connected to
the hardware control plane. This network comprises all the switches and routers present in
the network, along with the power controller. Switches and routers are configured to create
the necessary Virtual Local Area Networks (VLANs) that will create the designed network
topology for the experiment, whereas the power controller is used to remotely reboot experi-
ment nodes and to shut down idle nodes that are not actively taking part in any experiment,
allowing to save energy. Boss also needs outside network access, thus providing remote
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users the ability to interact with experiment nodes and uploading the NS file describing the
experiment.

The experimental plane is used to recreate all the defined experiments. As stated previ-
ously, each experiment node has at least two network interfaces, one for its control and the
rest connected to the experiment switches, where the experiment traffic is going to flow. Em-
ulab maintains a database where it lists which node interface is connected to which switch
port. This information is important when designing the VLANs.

Apart from recreating different network architectures, Emulab is also able to recreate
different network conditions. That is, it can emulate packet loss, latency or bandwidth for
each of the connections defined in the experiment. A study conducted by Siaterlis et al. [126]
concludes that Emulab is an efficient and realist tool to emulate different network conditions
and as such, it is a valid tool for scientific research.
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Software Defined Networking

Software Defined Networking (SDN) constitutes a novel networking paradigm that aims to
overcome the existing limitations of current networking infrastructures by unifying network
policies in a single software system called controller [81].

Software defined networks separate the network control plane from the data transmis-
sion plane. Data transmitting devices such as switches or routers on traditional networks
become simple packet forwarding devices, while the control logic and the decision making
process are implemented in a single controller, belonging to the control plane. Therefore,
the network agents responsible for network configuration are not the ones responsible for
packet forwarding, as the controller instructs the network agents how to behave by sending
commands that the agents integrate in their forwarding tables.

The communication between data and control planes can be conducted by using well
defined network protocols. In that sense, OpenFlow [106] is one of the most important
protocols serving this purpose. Devices capable of communicating using OpenFlow can have
one or more packet forwarding tables containing different rules for packet handling. These
tables contain rules where each of the rules describes a subset of the network traffic and an
action to perform over it, such as removing it, forwarding it and/or modifying the packets.
Therefore, depending on the rules that a controller sets on a SDN-capable device, this device
can behave as a data forwarder, a firewall or can perform other actions such as load balancing
or packet shaping.

This testbed uses OpenFlow as the protocol for the construction of different software
defined networks. In order to prevent collisions between the Emulab software and the SDN
controller, we identify the node containing the SDN controller as unmanaged, and as a con-
sequence, its network connection would be independent and Emulab would not interfere
with the node or the connection. Moreover, it is necessary to isolate each of the experiment
nodes in different VLANs, to force packet routing to the SDN-enabled device, as the Emulab-
managed switch would simply forward the packet based on the configuration loaded by Em-
ulab, without first asking to the SDN controller. This way, the traffic is shaped according to
the filters and rules defined in the SDN controller.

3.2.3 Control Center

The control center encompasses the set of devices that perform a supervisory control of
the process, or enable its remote control or analysis. Examples of these devices include
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control servers, engineering workstations and HMIs. In contrast to the field devices, the
devices present in the control center run over standard hardware and Commercial off-the-
shelf (COTS) software. Consequently, for experimentation purposes, it is possible to virtu-
alize these devices and have them run in virtual machines instead of running directly over
hardware.

Emulab is able to work with virtual hosts, and this approach is more resource efficient,
as physical hardware is shared between several virtual hosts. However, independently of
the medium used, in order to employ control center devices in Emulab, it is first necessary
to build disk images with the software that will be used in the experiment over the pre-built
Emulab images. This process can be described in the following steps:

1. Load an Emulab pre-built image into a host.

2. Install and/or configure the necessary software in the host.

3. Create a new image from the host comprising the OS and the applications.

4. Deploy the newly created image in experiments.

3.2.4 Field Devices or Controllers

The existence of field controllers is one of the main characteristics of INs. Based on the
data they receive from their multiple input ports and according to the implemented control
algorithm, field devices act on the process by sending orders through their output ports to
the actuators. They also send data and receive orders from the supervisory devices in the
control center. As explained in Section 2.1, field devices act as a bridge between the physical
and the cyber layer of the IN.

As with the control center devices, it is possible to use physical or virtual controllers.

Physical Controllers

Physical controllers are the hardware-based devices that are used in production INs. How-
ever, with Emulab, it is not possible to manage physical controllers in the same manner as
the control center devices, as the hardware and software controllers run are much more spe-
cialized. However, it is possible to configure these controllers offline and to add them as
unmanaged nodes to the experiment, where the Emulab software does not administer the
controller, in a similar fashion to the SDN controller mentioned previously.
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The main advantage of using physical controllers in the testbed relies on having a more
realistic testing environment where it can be possible to perform vulnerability analysis or to
work with proprietary software, hardware and protocols that can be challenging to replicate
in a virtual or emulated environment.

However, the usage of physical devices presents the drawback of cost. Physical devices
are expensive, and replicating a complex IN with a high number of controllers can result
infeasible for this reason.

Virtual Controllers

The alternative to using physical controllers is the virtualization of controller functions.
Nowadays, it is not possible to completely virtualize field devices, especially in the case
of proprietary controllers [61]. In spite of it, it is possible to emulate the functions of a con-
troller by using software, a practice that has been used previously in IN testbeds [122, 127].

In our testbed proposal, we use software-based controllers, that emulate field controller
behavior by acquiring data from the physical process and forwarding it to the control center,
while also relaying orders from the control center to the physical process. The existence of
libraries for general purpose programming languages for industrial communications such as
PyModbus4 or Snap75, eases the task of building software that emulates controller behavior.

3.2.5 Physical Process: Tennessee-Eastman

As stated previously, the actual physical process is the physical reality that ICSs aim to au-
tomate, monitor and control. Therefore, it lays at the core of INs and without a physical
process there would be no IN. When integrating physical processes into ICS and IN security
research, the use of real processes is often not feasible.

Recreating realistic and complex physical processes (e.g. a city-level water distribution
system, or a large chemical plant), with their equipment would require vast amounts of
resources. Moreover, when evaluating attacks where the intent of the adversary is to cause
physical impact (e.g. closing valves or increasing the pressure in a vessel) the equipment in
the testbed can result damaged, and repairing it can be costly, both in time and money.

Consequently, when integrating physical processes into them, security IN testbeds have
relied on two different approaches:

4https://github.com/bashwork/pymodbus
5http://snap7.sourceforge.net/

https://github.com/bashwork/pymodbus
http://snap7.sourceforge.net/
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• Simple laboratory-level model processes [112].

• Complex, real-world, simulated processes [88, 127]

In our testbed, we have chosen to use the simulation approach for three main reasons.
First, as mentioned previously, simulation simplifies embedding complex physical processes
within a testbed. Second, it also eases the procedure of establishing a set of standard physical
processes that can be used to reproduce findings across different testbeds. And third, the
use of common simulation platforms offers a standard evaluation ground to evaluate and
compare different proposals in a common environment.

The simulation model used in this work is the popular Tennessee-Eastman (TE) process,
proposed by Downs and Vogel [42]. The TE process is modelled after a real chemical pro-
cess of the Eastman Chemical Company. Though a real process, Downs and Vogel modified
some of the aspects of the chemical process, such as the components, kinetics and operating
conditions in order to protect its proprietary nature.

The TE process produces two liquid products (G,H) from four gaseous reactants
(A,C,D,E). In addition, there are also a byproduct (F ) and an inert (B), making a total
of eight chemical components, coded after the first eight letters of the alphabet. Four irre-
versible, exothermic reactions take place in the modeled process:

A(g) + C(g) +D(g) → G(liq), Product 1,

A(g) + C(g) + E(g) → H(liq), Product 2,

A(g) + E(g) → F (liq), Byproduct,

3D(g) → 2F (liq), Byproduct.

Figure 3.4 shows a general overview of the process. It has five main operation units: the
reactor, the condenser, the recycle compressor, the vapor-liquid separator and the stripping
column. The gaseous reactants, fed by three different feeds, react in the reactor to form liquid
products. The products, along with residual reactants, leave the reactor as vapors. Later, the
vapors are cooled in the condenser to return to liquid state. Then, the vapor-liquid separator
isolates the non-condensed vapors, which are fed again to the reactor by using a centrifugal
compressor. The condensed components, on the other hand, move to a stripping column
to remove the remaining residual reactants. The final product (Mix of G and H) exits the
stripper and head to a refining section that separates them. This final refining section is not
included in the model. Similarly, the inert and the byproduct are purged in the vapor-liquid
separator as vapor.
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Figure 3.4: Tennessee-Eastman process flowsheet

The process can produce different ratios of G/H in the finished product. This aspect is
determined by the operation mode of the plant. The model supports six different operation
modes, at three different ratio of products and two different production rates.

Originally, the model was released with no embedded control approach, as its aim was
to benchmark different control strategies. As such, several control strategies have been
proposed for the TE process [93, 123]. Moreover, the TE process has also served as a
standard ground for fault diagnosis proposals [155]. However, more recently, the TE pro-
cess has increasingly developed as the main physical scenario for IN and ICS security re-
search [25, 82, 85, 88, 105] and has become a de facto standard for this purpose.

In this thesis, we use the DVCP-TE implementation presented by Krotofil and Larsen [87],
publicly available on GitHub6. This model is oriented towards security research. It is devel-
oped as a Simulink model, where the process itself is implemented as a Simulink S-function
and the control approach is described using Simulink blocks. We use the control strategy
presented by Larsson et al. [93]. Apart from the control strategy, the model also has imple-
mented a framework to perform attacks on sensor and actuator signals that we will discuss

6https://github.com/satejnik/DVCP-TE

https://github.com/satejnik/DVCP-TE
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with further detail in other sections of this document.

3.2.6 Data Analysis

As covered in Chapter 2, IN data monitoring can certainly be considered a Big Data problem,
as long, continuous experiments can generate large amounts of data, fast and of different
nature (e.g. variable readings, logs or packet captures). This capture data can be later used
for different purposes inside the testbed: process monitoring, anomaly detection or process
optimization, among others.

We mentioned in Section 3.1 that the necessity of data storage and analysis in testbeds
has already been noticed by some proposals.

In our testbed, we use Apache Spark [156, 157] for the analysis of the created data in the
testbed. Built over a Hadoop File System (HDFS) layer, Spark can process both data at rest
and continuously in a distributed manner.

The integration method for this module is similar to the control center; as Apache Spark
is designed to work over standar OSs and hardware, it is possible to use the image creation
process to deploy Spark instances in the experiment as needed.

3.3 Conclusions of the Chapter

The development of novel IN testbeds for security research is an active research field. As
such, several testbeds have been proposed, each with different methods of implementation
for evaluating various aspects of INs.

In this chapter, we have presented a testbed that dynamically emulates network behavior,
including its topology and the devices that form it that additionally simulates a physical
process. Together, the testbed is able to build the existing functionalities of an IN, both at
the cyber/network and at the process level.

For this end, the testbed uses the Emulab software and the Tennessee-Eastman process,
both previously used for IN and ICS security research.

Additionally, the testbed supports SDN, allowing further research in IN security, such
as the development of advanced security mechanisms for attack detection and response and
network resilience, an aspect that has not been covered in previous proposals. Besides, the
testbed has an integrated data analysis module that allows the large-scale processing of rest-
ing and streaming data.
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This chapter introduces a novel visual flowmonitoring system for Industrial Networks (INs).
First, it introduces chord diagrams and their previous uses for security visualizations. Next,
it describes the proposed system, introducing the methodology of building the visual chord
diagrams based on flow data. Finally, the chapter shows the evaluation of the proposal,
where the system is validated using real industrial traffic.

4.1 Chord diagrams

Chord diagrams, also known as Circos diagrams, are circular diagrams that represent re-
lationships between different entities. Though originally conceived for genomics [89], the
usage of diagrams has expanded into a wide variety of fields.

Typically, the visualized entities are arranged in a circular manner. Each entity occupies
a given arc length of the circle mentioned. This length is proportional to the weight the
entity has compared to the rest.

Chords are links that match the entities that jointly form the circle all together. Each
chord generally links two different entities, and the width of the chord at both ends denotes
the nature of the link. The wider chord end belongs to the entity that is dominant in the
relationship between both entities linked by the chord. For instance, in the case that the
chord represents a trade relationship between two countries, the country with the wider
chord end sells more goods to the other country and vice versa.

The main advantage in the usage of chord diagrams to represent network flow data, even
under normal network operation conditions, is that diagrams can provide situational aware-
ness to operators in a direct manner, whereas traditional text-based alert systems cannot.
This way, network operators can easily check how each host is interacting with the rest of
the network.

Moreover, when using chord diagrams, it is not only possible to visualize relationships
between different entities, but also their prominence when compared to the rest of the net-
work. When visualizing network flows, it is possible to represent their activity through the
size of the chords. For instance, active flows can be depicted using larger chords. Other
types of visualizations, such as bi-partite graphs, lack this magnitude feature.

Communication patterns between hosts are fixed in Industrial Networks, as in this type
of networks each host usually only communicates with a small subset of the hosts present
in the network. Therefore, few chords are necessary to represent all possible flows, and
diagrams are kept simple enough to be meaningful, even in large networks.
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Chord diagrams are considered to scale well [89, 104]. However, if an industrial network
is complex enough to render a unique chord diagram too confusing, simpler chord diagrams
can be computed for each of the network segments. Industrial Networks are hierarchical,
vertical and segmented by nature [50], so it is possible to use different chord diagrams to
represent the traffic in a network segment. Another approach to tackle potential scalability
issues might be to use the multi-scale approach proposed by Zeng et al. [159].

In the field of network security, chord diagrams have been used in diverse types of visu-
alization systems, but its usage is not as widespread as other types of diagrams.

Mazel et al. [104] use chord diagrams to perform a visual comparison of different
Anomaly Detection Systems and their detection performance.

Thework of Layton et al. [95] gives a representation of the relationships between clusters
of phishing websites with chord diagrams.

OCEANS [34] uses chord diagrams (dubbed as RingGraphs) for visualizing network flows
between subnets. However, OCEANS is centered in traditional IT networks and lacks the
additional information that can be gathered from industrial networks, where whitelisting
policies can not be as strict as in industrial networks. Moreover, the color code used in
OCEANS’ chord diagrams is by the logical location of the host or subnet (internal or external
IP), not by the nature of the connection (normal or anomalous).

To the best of our knowledge, no flow and security-oriented visualization system has
been developed for industrial networks, let alone using chord diagrams. Nevertheless, some
advances have been made to ease process monitoring visualization [136].

4.2 Proposed visualization system

Figure 4.1 shows the workflow of the flow monitoring and visualization system.
First, flow-enabled networking devices inside an industrial network send network flow

packets to a flow collector.
Once flow collection has started, the flow collector is queried to generate offline, a model

of detected flows. The model contains a whitelist of allowed network traffic flows. We call
this phase the learning phase. Once a model has been created, the system queries the collec-
tor for new flow records and compares them to the model online, detecting flows that do not
comply with the policies and tagging each individual detected flow as valid or anomalous.
This corresponds to the detection phase. Finally, once the tagged dataset is available, the sys-
tem builds a set of chord diagrams to represent the results. This is the visualization phase.
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Figure 4.1: Overview of the flow monitoring system

While the learning phase happens once per network, the detection and the visualization
phases occur periodically.

4.2.1 Learning phase

In this phase, a model is automatically created from the flows that have been detected in the
network in a given time frame. The length of this time frame to build the model depends on
the nature of the controlled process. For instance, a process that consists in small batches
will require shorter learning time than longer, continuous processes, as the cyclical network
patterns will be shorter. The collected network flows in this time window are considered
legitimate and are used to build the model.

The whitelist that models the network flow behavior is stored in a human-readable
Comma-Separated Values (CSV) file. This way, it is possible for an operator to add missing
flows to the modeled whitelist, or, on the contrary, to delete flows that should be considered
anomalous.

In our approach, we store the following data on the whitelist per flow: source IP address,
destination IP address, server port, IP protocol and registered number of packets in the flow
in the given time. For whitelisting purposes, the client port is not registered as it is assigned
randomly and taking it into account would yield false positives. Barbosa et al. [7] do not take
the number of packets in the flow into account. However, we consider packet number an
important aspect to be recorded for two main reasons: (1) it is a good metric to be used with
chords in the visualization (e.g. to depict the more active flows as wider chords), allowing the
operator the identification of the main network flows. (2) this approach allows the system to
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detect flow anomalies that relate to its size (e.g. Denial of Service attacks or a downed host).

Whitelisting with time-dependent flow data

As useful as might be, taking into account the number of packets complicates the usage of
whitelists. As the number of packets in a flow is time-dependent (the longer the time, the
higher the number of registered packets), it is necessary to establish the time frame in which
the whitelist is valid when comparing this value. In other words, a whitelist is only relevant
if the capture time that has been used to build it is the same as the time length of the incoming
flow data. For instance, if a whitelist records the first ten minutes of the flow data from an
industrial network, it is necessary to poll the network in intervals of ten minutes in order to
be able to correctly compare packet numbers.

There are two approaches that can be followed:

1. A single whitelist is created, with recorded flow data from a specific time frame. All
incoming flow data is collected and later, when querying it, it is divided in chunks
where the capture duration of each chunk is the same as the time the whitelist has
used upon creation. The latest chunk of flow data and the whitelist are compared and
a single visualization is created.

2. Various whitelists are created, each containing data belonging to different time frames.
Flow data is collected, andwhen querying it, the chunk size varies to the duration of the
specific whitelist it is being compared to. Latest chunks of flow data are compared with
each correspondent whitelist and different visualizations are created, each showing the
information of the last time frame belonging to the chunk and whitelist.

The second option is a better option, as it offers more granularity and increases the ability
to detect flow anomalies that might not be easy to detect with a single, fixed-length whitelist.
For instance, let us assume a host that sends a large number of packets in short bursts but
within the packet number limits of the whitelist with short time frames. If this bursts should
decline after a short time, but for whatever reason they do not, the unique whitelist system
will not be able to detect the anomaly, as it is not able to check the system in the long run
and the packet number is correct in each of the short time frames.

If the opposite case, where the whitelisting time frame is too long, wemight not be able to
detect short bursts of a high number packets that might not change much the whole number
of packets in the long run.
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Therefore, in our approach we propose a system where whitelists of different time length
are considered. Nonetheless, the optimal number of whitelists and the time length of each of
them is process-dependent and should be studied for each network. However, it is important
to note that with longer learning periods, the probability of whitelistingmalicious traffic gets
higher.

4.2.2 Detection phase

In this phase, the different created whitelists are used to evaluate new flow data. This flow
data is queried from the flow collector with different time lengths in order to match each of
the time lengths registered with the whitelists. Later, this new flow data is compared to the
whitelist corresponding to the same time frame. This way, the packet number of each flow
is kept consistent, as comparing data collected in different time lengths would raise a high
number of false positives. This process is repeated constantly in a batch manner.

The mechanisms checks if the flow data matches the one in the whitelist. In the case of
source and destination addresses, server port and protocol, the flow information must match
exactly. In the case of the registered number of packets in the time frame there is an excep-
tion: both numbers do not have to match exactly, but do not have to differ vastly either.
The detector gives the possibility of setting a user-defined threshold for packet number tol-
erance in terms of percentage. Flows that are above or below this percentage threshold are
considered anomalous, while the ones that are within the limits are considered valid.

If the flow is whitelisted, no alert is raised and the flow is tagged as legitimate. Still,
if a non-whitelisted flow is detected, the system raises an alert and the flow is tagged as
anomalous. In addition, the system also checks if all the flows registered in the whitelist
also happen during the given time frame. If a flow registered in the whitelist has not been
detected in the given time frame the flow is tagged as missing and an alert is raised. This
gives the opportunity of detecting a downed host or connection.

We have created the following tags in the detector, based on the comparisons the system
does between whitelists and new flow data:

Whitelisted flow The flow is considered legitimate according to the whitelist.

Anomalous network flow Two hosts communicate between them but according to the
whitelist, these two hosts are not allowed to do so. All flows regarding a previously
unknown host are marked as such.
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Incorrect port A host tries to access a different port than the usual on a host it is allowed
to communicate with.

Incorrect protocol Anetwork flow is detected using a different IP protocol to thewhitelisted
one.

Missing flow A flow contemplated on the whitelist has not been detected on the collected
flow data.

Anomalous flow size The packet number on the designated flow is either higher or lower
than the defined threshold when compared to the whitelist.

Each of this tags is used to give information about the cause of the anomaly both in the
raised alerts and in the rendered chord diagram.

Once the data has been tagged, the system translates known IP addresses into host names
in the tagged dataset in order to make flow data easier to understand to the user.

Finally, after the detection phase, we have a fully tagged flow dataset. This tagged infor-
mation is later used in the visualization phase to build the chord diagram that depicts the
network flows and related anomalies in the industrial network.

4.2.3 Visualization phase

In this phase, each of the tagged flow datasets is rendered visually in the form of a chord
diagram.

First, each of the active hosts in the network is given an arc section of the circle of the
chord diagram. The arc length is given by the number of packets the host has sent on the
measured time frame; more active senders havewider arcs thanmore silent hosts. The nature
of the host determines its color; each type of host has an identifying color (e.g. PLCs are blue)
while individual hosts are differentiated by having a different shade of the same color.

In our case, Programmable Logic Controllers (PLCs) are depicted with blue colors, con-
trol servers are green, Human Machine Interfaces (HMIs) are purple and, finally, different
network devices (gateways, switches etc.) are colored in orange.

Once the hosts have been located, it is necessary to represent network flows between
them. This is achieved by using chords: each bidirectional network flow is rendered as a
single chord that links two distinct hosts. If two hosts have different network flows (for
instance, a host communicates with two different services offered by another host), only a
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single chord is created in the diagram. The width of each chord end is given by the number
of packets the related host sends. For example, if in a given flow Host A sends more packets
to Host B than vice versa, the chord will be wider at the Host A’s end. Similarly, more busy
flows are depicted as wider chords than the almost-inactive counterparts. Later, each of the
legitimate flow chords is filled with the color of the more active host in the communication.

Figure 4.2 shows a completed chord diagram where all the registered flows have been
tagged as legitimate. Note that hosts of the same type share similar colors. In chord diagrams
where network flow data is shown, all chords will link distinct hosts, as when a host accesses
a local service, the network communication is carried out through the loopback interface and
the data does not travel over the network. When the user hovers over an specific flow, the
visualization shows basic information about the flow, such as the name of the involved hosts
and the number of packets that take part in each direction of the network flow.

Since under normal operation conditions legitimate traffic flows represent most of the
traffic of an industrial network, the reproduction of each traffic flow by a selection of a
color-range makes easier to distinguish between different flows. Thus, the network operator
can determine if the traffic tagged as legitimate is behaving as expected.

Figure 4.2: Chord diagram depicting a set of legitimate network flows.

In case of non-legitimate flows, the chord is filled with red color, as it can be seen in
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(a) Anomalous flow between PLC 3 and HMI 2. (b) Detail of the flow when hovering the mouse.

Figure 4.3: Representation of an anomalous network flow.

Figure 4.3. On the one hand, Figure 4.3a represents how the red color stands out over the
rest of chords when the diagram is rendered. On the other hand, Figure 4.3b shows how the
diagram filters the information concerning a single host when hovering the mouse over it, to
highlight related information and ease visualization. As it is also shown, when hovering over
the anomalous flow, the diagram shows additional information about the flow, regarding the
reason why it has been flagged as such. As stated before, this information is contained in
the tag assigned in the detection phase. In this case, no traffic between the PLC 3 and HMI
2 is allowed according to the whitelist.

With the exception of the “Missing flow” tag, all detected non-legitimate network flows
are dyed in red to visually highlight it from the rest of the flows. However, due to the different
nature of the “Missing flow” tag, these flows are rendered in black (see Figure 4.7). These
flows are as well the only flows that are rendered with the data from the whitelist instead of
the collected flows, as no data regarding them has been retrieved from the network.

4.3 Application in an Industrial Network monitoring dash-

board

This section tests the previously described system within an industrial network.
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4.3.1 Test network

Switch 2

Switch 1 Gateway

Figure 4.4: Network topology of the test industrial network.

As security testing on a live network can have unexpected consequences, such as mal-
functioning or safety issues [44], and currently, to the best of our knowledge, there is no
network flow data for industrial networks, we have duplicated the network topology of a
real industrial installation. The original network is the control network of a car painting line
in a manufacturing facility.

Figure 4.4 shows the topology of our test network. Both network switches are the net-
work agents that send flow packets to the collector. In our case, we use Cisco’s NetFlow,
version 5. Moreover, Switch 1 is also the DNS Server of the network.

There are three Programmable Logic Controllers (PLCs) in the network that are responsi-
ble for controlling the industrial process. Two supervisory control servers poll process data
from all the PLCs. Communication between servers and PLCs is done through the Mod-
bus/TCP protocol.

There are also three Human Machine Interfaces (HMIs) present in the network, that en-
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able operators to overview the process through the representation of process data in a visual,
accessible manner. HMI 1 gathers data from Server 1, HMI 2 renders data from Server 2 and
finally, HMI 3 visualizes data from both servers. Communication between HMIs and the
servers is done using the OLE for Process Control–Unified Architecture (OPC-UA) protocol.

A gateway gives the industrial network access to external hosts, such as the network
flow collector.

4.3.2 System Implementation

For our tests, we use Cisco’s Netflow (version 5) as network flow system to send data to
the flow collector. The switches from the network send flow data to a Logstash7 agent that
receives it, parses it and later indexes it in an ElasticSearch8 cluster. This approach allows
potential large-scale usage of the monitoring system and fast querying of the flow data to
render visualization. The visualization system that builds these chord diagrams has been
developed using the D3 [13] library.

4.3.3 Cases

In this sectionwe show rendered chord diagrams in three different anomalous cases: a Denial
of Service (DoS) attack, a network scan that aims to enumerate hosts in the network, and
a network outage where a host goes down. For test purposes, all the next chord diagrams
have been created with data taken at ten minute intervals, using their equivalent whitelist
and with a threshold of 20% variation tolerance in the number of packets in the flow.

Denial of Service

Denial of Service (DoS) attacks occur when an attacker tries to obstruct the normal function-
ing of a host or service by making it unavailable to legitimate users. In industrial networks,
where availability is the primary security concern and latency issues can create significant
network problems, DoS attacks are a real problem. In our case we mimic a DoS attack from
the HMI 3 to Server 1 by making a great number of illegitimate network requests.

Figure 4.5 shows the rendered result. The flow with the attack is painted in red, as it has
surpassed the established threshold for network packages. As the sent number of packets

7https://github.com/elastic/logstash
8https://github.com/elastic/elasticsearch

https://github.com/elastic/logstash
https://github.com/elastic/elasticsearch
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gets higher, HMI 3 also gets a wider arc in the chord diagram circle, as well as the chord’s
end in its side.

Figure 4.5: Visualization of a Denial of Service attack.

Host discovery

Host discovery is one of the first steps an attacker performs when obtains access to an un-
known network in order to gather insight about it. Port scanning is one of the most used
techniques for host discovery. For our test, conducted a TCP Connect scan with Nmap from
the host HMI 3.

Figure 4.6 shows the chord diagram depicting the attack. All flows regarding HMI 3
are flagged as malicious, either because it is communicating with non whitelisted hosts (e.g.
PLCs) or because it uses different protocols and/or ports with hosts that it is actually allowed
to communicate with.

Host down

Finally, we consider the case when a host goes down from the network and it is not able
to receive or send packets. In this case, we have physically disconnected Server 1 from the
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Figure 4.6: Visualization of a port scan.

network.
Figure 4.7 shows how the system shows the downed host, with black chords representing

that we are dealing with missing flows. In order to be able to render the diagram, data is
taken from the whitelist, as no real data has been collected from the network regarding these
flows.

4.4 Conclusions of the Chapter

Wehave presented a novel pipeline for network data analysis that enables to visuallymonitor
industrial networks by using whitelists and chord diagrams. To do so, first we build a time-
based industrial traffic model which whitelists allowed network flows. Moreover, the model
considers packet throughput, in addition to host addresses, server ports and IP protocols that
makes possible to detect additional flow-related anomalies (DoS attacks and downed hosts).
Each entry of the model whitelists an specific duration of gathered flow data. In the same
way, every new flow data is compared against the traffic model to see if it fits an entry. All
flows are tagged according to its nature (legitimate, anomalous, incorrect port or protocol,
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Figure 4.7: Visualization of a downed host.

missing and anomalous flow size).
This tagged data is used to build chord diagrams that represent network flow relation-

ships between different hosts. The size of the chords represents the amount of network pack-
ets in the flow, used as the main metric to build the diagram. The tagging system provides a
color code to highlight anomalous flows (in red and black) and also provides feedback about
its nature. Historical flow data is stored in a scalable search server to store large amounts of
data and to perform fast queries over it.
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This chapter introduces a different data-driven methodology for anomaly detection and di-
agnosis in the physical layer of Industrial Networks (also known as the field level). This
technique, Multivariate Statistical Process Control (MSPC), previously used in the field of
process control, simplifies variable monitoring in multivariate environments. The chapter
further analyzes the performance of MSPC for anomaly detection, specifically focusing in
the diagnosis of events that can be misread due to other similar situations with a related
outcome.

5.1 Anomaly Detection based on Process data

We introduced Anomaly Detection Systems (ADSs) in the context of Industrial Networks
(INs) in Section 2.1 of this work. Anomaly Detection is an active research field and we men-
tioned that different proposals regarding anomaly detection can be categorized into network-
level or field-level ADSs.

While most of the approaches leverage network level data to detect anomalies in INs (see
surveys [51, 108, 164]), other proposals, such as the one presented in this chapter, address
this task by leveraging field or process data.

When dealing with field level data, proposals can be further classified in two subgroups:
(i) solutions that require a model of the monitored process to detect anomalies and (ii) ap-
proaches where modelling the process is not necessary. Process model dependant contribu-
tions include the work of McEvoy and Wolthusen [105] and Svendsen and Wolthusen [134].
While effective to detect anomalies, these approaches require accuratemodelling of the phys-
ical process. This requirement poses an important obstacle for implementing detection sys-
tems of this nature, especially in complex processes. More process-independent approaches
on the other hand, include the work of Kiss et al. [82] and Krotofil et al. [88].

Kiss et al. [82] present an anomaly detection technique based on the Gaussian mixture
model clustering of the field-level observations. Later, they use silhouette examinations to
interpret the results. Nevertheless, they only consider attacks as possible factors for abnor-
mal situations in the process, without considering process faults or disturbances. Therefore,
process related anomalies could be mislabeled as attacks and vice versa.

Krotofil et al. [88] propose a method to detect when attackers tamper with sensor sig-
nals. To this end, they use entropy to detect inconsistent sensor signals among a cluster of
correlated signals. Although they consider scenarios with process disturbances, there is no
direct comparison between tampered sensor signals and similar process disturbances.
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Figure 5.1: Example of a control chart. Control limits are presented for 95% (lower dashed line) and

for a 99% (upper dashed line) confidence levels

In this approach, we go beyond the state of the art by presenting a novel, data-driven,
security anomaly detection and diagnosis technique for field data. Additionally, we also
analyze the effect of process disturbances and its effect when detecting security anomalies.

5.2 Multivariate Statistical Process Control

Multivariate Statistical Process Control (MSPC) [101] is a process monitoring methodology
that relies on the use of multivariate control charts to detect unexpected changes in the
monitored process. It is an extension of the univariate Statistical Process Control (SPC)
approach.

Stoumbos et al. [133] define SPC as a “set of statistical methods used extensively to mon-
itor and improve the quality and productivity of manufacturing processes and service opera-
tions. SPC primarily involves the implementation of control charts, which are used to detect
any change in a process that may affect the quality of the output.”

Figure 5.1 shows an example of a control chart with two control limits given by two dif-
ferent confidence levels. Under normal process operating conditions, 99% of all the points
will fall under the upper control limit. In that case, we consider that the process is in a state



5.2. Multivariate Statistical Process Control 77

of statistical control. It is important not to confuse this term with other similar expressions,
such as control loop or automatic feedback control, as they refer to different concepts. Sta-
tistical control refers to the state of the process where only common causes of variation are
present [101].

The existence of consistent observation series over the established control limit is likely
to be attributed to a new special cause. In the case of a physical process, this variation source
may be attributed to attacks or process disturbances, i.e. an anomaly.

The univariate nature of SPC means that only a single variable is monitored and visual-
ized in a control chart. However, industrial processes are multivariate by nature, as many
process variables are observed in a plant (e.g. temperatures, pressures, volumes or distances).
Asmonitoring all variables with SPCwould be impractical, only a few of them aremonitored,
generally the ones related to product quality (e.g. purity of the produced chemicals).

Nevertheless, the monitoring of a few quality-related variables is impractical. The ap-
proach does not take into account the information that other process variables give. For
instance, the diagnosis of an anomalous event is complicated, as it relies on expert knowl-
edge and a one-at-a-time inspection of process variables [84].

MSPC aims to solve these problems by providing tools to monitor all measured variables
in an efficient manner. In that sense, MSPC does not only monitor the evolution of variable
magnitude but also the evolution of the relationship it has to other variables. For this end, a
main technique that MSPC uses is Principal Component Analysis (PCA).

5.2.1 PCA-based MSPC

Let us consider process historical data as a X = N × M two-dimensional dataset, where
M variables are measured forN observations. PCA transforms the original M -dimensional
variable space into a new subspace where variance is maximal. It converts the original vari-
ables into a new set of uncorrelated variables (generally fewer in number), called Principal
Components (PCs) or Latent Variables.

For a mean-centered and auto-scaled9 X and A PCs, PCA follows the next expression:

X = TAPt
A + EA (5.1)

where TA is theN ×A score matrix, that is, the original observations represented according
to the new subspace; Pt

A is theM×A loading matrix, representing the linear combination of

9Normalized to zero mean and unit variance
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the original variables that form each of the PCs; finally, EA is theN ×M matrix of residuals.
In PCA-based MSPC, both the scores and the residuals are monitored, each in a separate

control chart [22]. On the one hand, to comprise the scores, the D-statistic or Hotelling’s
T 2 [62] is monitored. On the other hand, in the case of the residuals, the chosen statistic is
the Q-statistic or SPE [77].

For an n observation, both statistics are computed as follows:

Dn =
A∑

a=1

(
tan − µta

σta

)2

; Qn =
A∑

a=1

(enm)
2 (5.2)

where tan is the score of the observation in the a-th PC, µta and σta represent the mean
and standard deviation of the scores of the a-th PC in the training data respectively and enm

stands for the residual value corresponding to the m-th variable.
D and Q statistics are computed for each of the observations in the anomaly-free train-

ing data, and control limits are set for each of the two charts. Training data is previously
inspected through Exploratory Data Analysis (EDA) to remove existing outliers that could
changeD andQ values. Later, these statistics are also computed for incoming data and plot-
ted in the control chart. When an unexpected change occurs in one (or more) of the original
measured M variables, one (or both) of these statistics will go beyond control limits. Thus,
anM -dimensional monitoring scenario is effectively converted into a two-dimensional one.

An event is considered anomalous when three consecutive observations surpass the 99%
confidence level control limit in either of the monitored statistics [119]. Leaving some of
the observations out of bounds (1% of the observations with a control limit set on the 99%
confidence level) improves the performance of the control charts in themonitoring phase [21,
119].

Once an anomaly has been detected, anomaly diagnosis in MSPC is generally carried out
using contribution plots [84]. These plots show the contribution of the original measured
variables to an anomalous event. Details of the calculation and analysis of contribution plots
can be found in the work of Alcala and Qin [1].

In this work, we use oMEDA plots [18] to diagnose the anomaly causes by relating
anomalous events to the original variables. In essence, oMEDA plots are bar plots where
the highest or lowest values in a set of variables reflect their contribution to a group of
observations. Therefore, when computed on a group of observations within an anomalous
event, the most relevant variables related to that particular event will be the ones with the
highest and lowest bars. Though similar, one of the main differences of oMEDA plots with
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traditional contribution plots is that the oMEDA plots are capable of comparing different
sets of observations whereas traditional plots can only compute a single set of them. In that
sense, oMEDA plots can be considered an extension to the contribution plots. In this case,
to compute oMEDA we first define a dummy variable, d, a vector of length N , in which the
anomalous observations that are to be computed are marked with 1, leaving the rest as 0.

For a set of observations marked in d, oMEDA is computed as follows:

d2A,(i) =
1

N
·

2 ·
d∑
(i)

−
d∑

A,(i)

 ·

∣∣∣∣∣∣
d∑

A,(i)

∣∣∣∣∣∣ (5.3)

where
∑A

(i) and
∑A

A,(i) represent the weighted sum of elements for variable i in X and
its projection XA according to the weights in d, respectively. Larger absolute values of d2

will indicate a larger contribution of that variable in causing the anomalous observation.
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Figure 5.2: Run Length example

In the field of process control, Average Run Length (ARL) is an evaluation metric that
measures the performance of control approaches in different situations. Chakraborti [30]
defines run length as a “variable that represents the number of control statistics that must
be plotted in order for the chart to first detect a shift from a stable or in-control process”.

In our case, we treat run length as the elapsed time between the start of an anomalous
situation, either a disturbance or an attack (Ts) and its detection when three consecutive ob-
servations go out of bounds of the 99% confidence level (Td). Figure 5.2 shows the example of
the run length when monitoring the Q-statistic or SPE. The ARL is computed by averaging
run lengths of various executions.
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Figure 5.3: Example of a field network and used attack model.

5.3 Proposed approach

Figure 5.3 shows an example of a field network. At the core of the system resides a physical
process, with a fixed number of sensors and actuators. These sensors and actuators are
the input/output devices that controllers use to interact with the process. Controllers read
process data from the sensors, and according to the control algorithm implemented in them,
they decide what is the next step to be taken on the actuators. Once the actuators act on the
process, the process reacts to the change and evolves. And as the process evolves, so do the
sensor readings. Then, sensor data is fed to the controllers again, thus repeating the process.

However, the communication between process controllers and sensor/actuators is often
performed over insecure transmission lines, frequently using unencrypted, unauthenticated,
legacy protocols. Thus, it is possible for an attacker to interact with the communication,
performing Man-in-the-Middle (MitM) attacks or Denial of Service (DoS) attacks.

This can lead to situations where the data fed to the controller is not the genuine value
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read by the sensors, or that the actuators receive data that was not sent as such by the
controllers.

In the work presented in this Chapter, we apply MSPC over a simulated industrial pro-
cess, the Tennessee-Eastman, to detect anomalies and diagnose their cause distinguishing
between natural (disturbances) and human induced (attacks) factors.

5.3.1 Attacks and Disturbances in the Tennessee-Eastman process

TheTennessee-Eastman (TE) process has already been introduced in Section 3.2.5. As already
stated, the TE is a well-known benchmark model, modeled after a real chemical process.
We also noted that, while more recently it has become a prominent choice among security
research works, the original aim of the TE model was to evaluate different process control
approaches.

For this purpose, the TE model has 41 measured variables (XMEAS), 12 manipulated
variables (XMV) and 20 process disturbances (IDV) implemented. On the one hand, XMEAS
variables correspond to sensor readings, where 22 of them are measured in real time and the
rest are variables measuring the amount of chemical components at different stages of the
process, which are gauged in fixed intervals. On the other hand, XMV variables represent
the actuators. Therefore, the XMEAS values are read by the controllers, and then controllers
interact with the process by sending commands to the XMV actuators. In a physical process,
the aim of the control strategy is to keep field values as close to a set of previously defined
setpoints, where the process is supposed to work under certain desirable conditions, such
as maximum throughput, minimal cost or specified output purity. Process disturbances are
unexpected and undesired changes in process conditions that can affect the process normal
operation. A good control algorithmwill withstand the impact of a disturbance and keep the
process running as close to the control setpoints as possible. In the TE model, IDV distur-
bances allow to evaluate the performance of different control strategies against adversities.
For a full description of the variables and disturbances, refer to the original Downs and Vogel
paper [42] introducing the model.

Out of the modelled disturbances, IDV(6) is one of the most difficult to handle. It sim-
ulates a loss of reactant in an input feed (Feed A). As A is a necessary chemical reactant to
produce the product, the process stops the production due to a too low liquid level in the
stripping column. The input flux of feed A is measured by XMEAS(1), whereas XMV(3) is
the manipulated variable that controls the valve of feed A.

Figure 5.4 shows three different scenarios for Feed A. The reactant flows into the input
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Figure 5.4: Stream 1 (Feed A) of the TE process under different conditions

pipe from the left, XMEAS(1) measures the quantity of reactant that goes through it and
XMV(3) controls the flow that goes into the plant. Figure 5.4a, shows Feed A under Normal
Operation Conditions (NOC). There are no contingencies and the A reactant flows into the
plant and thus XMEAS(1) reports normal readings. Figure 5.4b depicts an IDV(6) disturbance:
the Feed A is empty (probably due to a problem upstream) and therefore, no reactant enters
the pipe. Opening the valve will have no effect in increasing A levels. Hence, XMEAS(1) will
equal to zero. Finally, Figure 5.4c illustrates the case where an attacker closes the XMV(3)
valve. The reactant flows normally to the pipe, but as the valve is closed, Feed A does not
reach the plant. As there is no running flow, XMEAS(1) will read zero values again.

Therefore, it is to be expected that attacks on closing the valve XMV(3) and the existence
of disturbance IDV(6), will affect similarly to XMEAS(1), and thus, to the process.

Figure 5.5 shows both situations. When monitoring XMEAS(1), there is almost no dif-
ference between IDV(6) and an integrity attack on XMV(3) where the attacker commands
closing the valve controlling feed A, as the flow decreases abruptly in both cases. Both the
disturbance and the attack occur at the tenth hour. After 17 hours and 43 minutes, the pro-
cess shuts down in both cases as the stripper liquid level becomes too low to continue plant
operation.

Hence, we can conclude that having a process disturbance and a potential attack on a
process variable that react almost identically provides a sound setup to test the performance
of techniques that try to distinguish them.
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Figure 5.5: Comparison of the evolution of XMEAS(1) under disturbance IDV(6) or an integrity

attack on XMV(3).

5.3.2 Adversary modelling

The adversary and attack models considered in this scenario are the ones proposed by
Krotofil et al. [88]. We consider that the adversary is able to read and manipulate network
traffic, between controllers and the physical process as depicted in Figure 5.3. Therefore, the
attacker is capable of manipulating input data both at the controllers’ (forged XMEAS data)
and/or the physical process’ (forged XMV data) end, performing an integrity attack.

Following the model of Krotofil et al. [88], we consider an attacked variable Y ′
i (t) at time

t, 0 ≤ t ≤ T as follows, where T is the duration of the simulation and Ta the arbitrary attack
interval. An integrity attack is defined as follows:

Y ′
i (t) =

Yi(t), for t /∈ Ta

Y a
i (t), for t ∈ Ta

(5.4)

where Y a
i (t) is the modified variable value injected by the attacker.

Similarly, during the DoS, the attacker effectively stops communication, and no commu-
nication reaches the actuator or the controller. Krotofil et al. [88] define as a DoS attack
starting at ta as:

Y a
i (t) = Yi(ta − 1) (5.5)

where Y a
i is the last value received before the DoS attacks.
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5.4 Experimental results

In order to evaluate our approach, we conduct a set of experiments where the randomized TE
model is run ten times per anomalous situation. Themodel we used for the set of experiments
is the DVCP-TE model presented by Krotofil and Larsen [87], freely available on Github10.
The time length of each simulation is 72 hours, except in the cases where the process shuts
itself down due to safety constraints. For each simulation hour, variable data is recorded
2000 times, that is, every 1.75 seconds. The training dataset consists of 30 runs, and this data
is used to build the MSPC model and establish the control limits of the D and Q statistics.

All anomalies start at the 10th hour of simulation. For each of the anomalous situations,
we calculate the ARL, that refers to the averaged run length across different executions. As
previously stated, an event is flagged as anomalous when three consecutive observations
surpass the 99% control limit.

Once an anomaly is flagged, oMEDA charts are computed for the set of the first three
observations that surpass control limits in each of the ten runs in either of the two control
charts (monitoring D and Q-statistic).

For each anomalous event two plots are created, one with real process data (data the
process receives and sends), and the other with controller level data. Both data sets will be
identical in case of an attack free environment. But, in the case of attacks, both data sets will
diverge.

For the analysis of the process data, and plotting purposes, we used the MEDA tool-
box [22].

We set five different scenarios based on the similar anomalous cases presented in Sec-
tion 5.3.1: a) Disturbance IDV(6), b) Integrity attack on XMV(3), c) Integrity attack on
XMEAS(1), d) DoS attack on XMEAS(1) and d) DoS attack on XMV(3).

Disturbance IDV(6)

Figure 5.6 shows the oMEDA charts for the case of the IDV(6) disturbance. As the A feed
level, measured by XMEAS(1), is much lower than expected, XMEAS(1) stands out as the
major contributing variable to this anomaly in both levels. As there is no interference from
an attacker, the oMEDA charts are the same at both ends.

10http://github.com/satejnik/DVCP-TE

http://github.com/satejnik/DVCP-TE
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Figure 5.6: oMEDA plots of process disturbance IDV(6)
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Figure 5.7: oMEDA plots of an integrity attack to XMV(3)

Figure 5.7 shows the oMEDA charts for the case of where the attacker performs an in-
tegrity attack to XMV(3), setting its value to zero and effectively closing the valve of feed
A. In this case, from the controllers point of view, the anomaly is similar to the one with
IDV(6). It is when we look at process-level data that we see that the real concerned variable
is not XMEAS(1). Rather, the attacker is manipulating XMV(3) to perform the attack.
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Figure 5.8: oMEDA plots of an integrity attack to XMEAS(1)

Figure 5.8 shows the oMEDA plots of an scenario where the attacker manipulates the
XMEAS(1) variable and sets it to zero. Therefore, the controller receives the information
that there is no flow in Feed A. That is why the XMEAS(1) value from the controller point
of view is lower than usual, because the attacker has set it so. As the control algorithm tries
to tackle the situation, it opens XMV(3) more, and thus allowing more reactant A to enter
the process. From the process point of view, that is the reason XMV(3) and XMEAS(1) have
higher values than usual.

Denial of Service attack on XMEAS(1)

oMEDA plots for a DoS attack on XMEAS(1) are shown in Figure 5.9. In this scenario, the
process keeps receiving a constant value, previous to the attack. Neither of the oMEDA plots
show a variable that stands out clearly among others, let alone XMEAS(1).

Denial of Service attack on XMV(3)

Figure 5.10 shows the scenario where a DoS attack is performed over the XMV(3) actuator
signal. In this case, the attack can be diagnosed somehow from the controller point of view,
as it sends a close command to the XMV(3) actuator (hence the large negative value of d2A
on XMV(3)), but it never reaches the process. However, as with the previous DoS case, the
diagnosis of the problem is not straightforward.
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Figure 5.9: oMEDA plots of a DoS attack to XMEAS(1)
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Figure 5.10: oMEDA plots a DoS attack to XMV(3)

5.4.1 Discussion

Our approach successfully detects all the tested anomalous situations of disturbances and
attacks. In this case, we can evaluate the performance of our approach based on two main
criteria: correct diagnosis, and detection time.

For the diagnosis part, different oMEDA plots have shown that when diagnosing an
anomaly, controller-based readings –on which traditional MSPC has relied on– are not
enough to do so correctly. Both integrity attacks and the process disturbance are diagnosed
in a very similar way, in a manner that it is not feasible to distinguish what caused the
anomaly. To address this matter and be able to correctly diagnose, it is necessary to mea-
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Scope IDV(6) XMV(3) int. XMEAS(1) int. XMV(3) DoS XMEAS(1) DoS
Field-level 5.25s 5.25s 5.25s 1h 9.88m 1h 19.14m

Controller-level 5.25s 5.25s 5.25s 1h 6.73m 1h 19.28m

Table 5.1: Average Run Length (ARL) for each anomalous scenario

sure both field and controller level variables. DoS attacks have no clear diagnosis, and might
require more data to correctly identify their cause.

As for the detection time, Table 5.1 shows the necessary time to detect an anomalous sit-
uation. Considering that the sampling time is 1.75s, integrity attacks and the IDV(6) are
detected as soon as possible, as the three out-of-bounds readings are consecutive to the
anomalous event. The system needs to verify that there are three successive out-of-bounds
readings, hence the 5.25s delay. In systems where the sampling time can be increased, the
ARL will decrease.

In the case of DoS attacks, the ARL is significantly longer than with integrity attacks or
process disturbances and their detection takes longer than an hour. However, DoS attacks
do not stop the process from working, and it can be considered a resilient against DoS. This
aspect was already confirmed by Krotofil and Cárdenas [86].

5.5 Conclusions of the Chapter

We have presented a process-independent approach to detect and distinguish process dis-
turbances from related attacks. Unlike previous approaches, it is not a process-dependent
approach and it is able distinguish between disturbances and attacks.

Ourmethodology is based onMSPC for anomaly detection and oMEDAplots for anomaly
diagnosis. We have used the popular Tennessee-Eastman process to experimentally evaluate
our approach.

Distinguishing process disturbances and low level attacks at the field level is a complex
task, especially if all controller’s I/O are to be considered compromised.

We extended the traditional MSPC model to monitor both controller and process level
variables. Often, manipulated variables are also measured by an external sensor, so this
approach is feasible in these environments. This scenario, would also complicate the work of
an attacker, as it would need to forge both the target manipulated variable and the associated
measured one to avoid detection.
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When analyzing process disturbances or integrity attacks, the oMEDA plots clearly show
the implicated variables. In the case of DoS, detection time is significantly longer and the
diagnosis with oMEDA might not be related to the attacked variable.

However, some limitations exist; it is not always feasible to monitor field-level data di-
rectly to improve diagnosis, and the ARL in the case of DoS attacks is still high. To overcome
these limitations and improve attack traceability, it is possible to add more information to
the model.

In the case of industrial settings, a promising source of additional information is the one
created at the network level (packets, flows, logs etc.). This aspect is covered in the next
Chapter.
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In this chapter we combine the techniques and tools presented in Chapters 4 and 5 among
other components to a build a holistic Anomaly Detection System (ADS) for Industrial Net-
works (IN) that monitors both physical or field data along with data belonging to the cyber
or network domain at the same time. To ensure the proposal’s scalability, the ADS is imple-
mented over Apache Spark.

6.1 Data creation and aggregation

Section 5.2 introduced the methodology of Multivariate Statistical Process Control (MSPC).
There, it was described that, in order to be able to apply MSPC, it was necessary to have an
X = N×M matrix comprising the recorded observations of the system. When applying this
approach to field data, there is no need for pre-processing, as this type of data already has
the correct format, a scalar value associated to each of theM variables at the given moment
were the observation was recorded.

However, network data is not arranged in the same manner. Network data comes in
form of logs, flows and packets, and it is not possible to directly insert this data into the
MSPC model, as the data does not come in the form of discrete scalars. It is necessary to find
the network-level equivalent of having a scalar value representing the state of a network
variable.

One approach is compiling general network flow statistics and registering them in a
variable. For instance, it is possible to count the number of registered flows in a given time
frame, or the average number of packets per flow in the same time frame. This way, it is
possible to translate some of the information given in a set of flows to a summarizing value.

Moreover, we can extend this approach by using features-as-a-counter [19, 20] which
allow transforming more complex types of network data into a set of quantitative values.
In this approach, network variables are rearranged into a set of counters that yield the sum
of a given occurrence in a time window. For instance, if a server named Serv1 registers
two log entries containing authentication errors in a minute, an associated feature-as-a-
counter variable serv1_auth_err that keeps track of this events in a minute long time frames
would have a value of two. As network data is redefined into a new set of variables, the
correct definition of feature-as-a-counter variables has an utmost importance, as the anomaly
detection performance of the MSPC model is directly related to the ability of these variables
to describe network behavior. Non-exhaustive or incorrect feature-as-a-counter variable
definition can make anomaly detection and diagnosis more problematic.
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Next, we provide a general description of the used variables for anomaly detection, both
directly used from process readings and inferred from network behavior.

6.1.1 Data types

Field data

For creation of the field data, which is formed by process readings, we use the Tennessee-
Eastman (TE) process, first presented in Section 3.2.5 and later used as a use case for field-
level anomaly detection and diagnosis throughout Chapter 5. As in the previous case, we
use the DVCP-TE version and the control approach proposed by Larsson [93].

For this model, we monitor the first 22 XMEAS readings, discarding XMEAS values from
23 to 41. This last group relates to the concentration levels of different chemicals and do not
have any impact on process control, therefore, they are not useful for diagnosing anomaly
causes.

The monitored 22 measurement variables are divided in the following types:

• Ten Flow Indicators (FIs).

• Five Temperature Indicators (TIs).

• Three Pressure Indicators (PIs).

• Three Level Indicators (LIs).

• One Power Indicator (JI).

The XMV manipulated variables, are classified as follows:

• Eleven valves.

• One Speed Controller (SC).

Flow statistics

We compute a set of statistics related to the network flows registered in a given time frame.
These features compress a part of the information of network flows into scalar values and
have been set according to the nature of Industrial Networks (INs). As INs tend to be static
and stable along time, these statistics are expected not to be very volatile. These metrics
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will not perform well on most Information Technology (IT) networks, as they tend to have
a more seasonal behavior and the values will vary significantly between readings, yielding
more false positives.

• Number of registered flows.

• Number of unique source IP addresses.

• Number of unique destination IP addresses.

• Number of registered input packets.

• Number of registered input bytes.

• Number of registered output packets.

• Number of registered output bytes.

• Number of packets in the most active flow.

• Number of bytes in the most active flow.

Flow anomalies based on whitelisting

Apart from the flow summaries, we also include flow tags as an additional information source
for the model. For this end, we use the whitelisting approach presented in Chapter 4. How-
ever, in this case, instead of working with the visualization systems, we process the text-
based logs. In essence, we count the number of occurrences of each of the alerts the system
generates during a given time frame, a case of feature-as-a-counter.

As with the flow statistics, these metrics will be most effective when used for INs.
Whitelisting is a recommended security practice for INs [7] but it might prove unsuccessful
for IT networks. These are the tracked variables:

• Number of anomalous flows. That is, the number of flows where every communication
between the hosts that compose it is forbidden.

• Number of flows with incorrect protocol. The number of flows, that even if the com-
munication between hosts is allowed, the used protocol is not correct. For instance, if
a whitelisted Transmission Control Protocol (TCP) flow is registered using User Data-
gram Protocol (UDP).
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• Number of flows with incorrect service port. The number of flows that link two hosts
that are allowed to communicate, but using a different service. For example, a SSH
connection between hosts where only Modbus/TCP traffic is whitelisted.

• The number of legitimate flows with a significantly lower or higher packet throughput
when compared to its whitelisted equivalent.

6.1.2 Network and field data aggregation

We have covered the different types of data that will be added to the MSPC model. However,
even if the network information is summarized in a set of scalar values, it is necessary to
merge both field and network data into a unified X = N ×M matrix where each row has
records for M variables, where network and field-level variables are considered.
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Figure 6.1: Flowchart of the data merging process

Figure 6.1 shows the process of merging field and network data in a single dataset. We
consider that field data is polled at a higher frequency than network data. Most Industrial
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Control Systems (ICSs) poll data multiple times every second, whereas network data is cre-
ated in longer intervals, such as several seconds or minutes. For every record in the Comma-
Separated Values (CSV) file containing field data, we extract the timestamp, and compute the
network-level features for the events registered in the previous minute. In other words, we
compute the statistics and count the non-whitelisted occurrences for the network flows that
ended at most a minute from the registered field timestamp.

As the TE process needs stabilization when starting before reaching normal operation,
the first two hours of process execution are discarded when building the dataset.

6.1.3 Detecting anomalies

Once a unified dataset has been built, the data can be used to build and apply a MSPC model
over it. Figure 6.2 depicts the data processing procedure, divided in two phases: the training
phase and the anomaly detection or monitoring phase.

When describing MSPC in Section 5.2, we already mentioned that MSPC has a two-phase
approach for anomaly detection. In the first phase, a Principal Component Analysis (PCA)
model is built over scaled data (zero mean and unit variance), and the control limits for
D (also known as Hotelling’s T 2) and Q (or SPE) statistics are set. In the second phase,
incoming data is transformed according the created models and we check whether three or
more consecutive observations are out-of-bounds. If they are, we compute oMEDA plots [18]
to diagnose the cause of the anomaly.

Before applying PCA for data transformation, all data is scaled to zero mean and unit
standard deviation. The PCA settings and the scaling properties used for model building are
stored. That way, when evaluating incoming data, it is not necessary to recompute them
again.

6.2 Data processing framework

As exposed in Section 1.1, both network monitoring and field data processing can be con-
sidered a Big Data problem. We mentioned that Big Data complexity evolves from three
different data qualities: volume, variety and velocity, collectively known as the three V-s.
PCA is able to handle highly dimensional datasets, and as long as we are able to translate
raw network data into quantitative features, MSPC is highly scalable in this sense.

To address data volume and velocity, we have implemented our approach on top of
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Figure 6.2: Flowcharts of the Training and Anomaly detection phase

Apache Spark [156, 157]. We introduced Apache Spark in Section 2.1 of this dissertation.
Spark is a Big Data framework whose key feature are Resilient Distributed Datasets (RDDs),
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which allows in-memory, fault-tolerant data partitions across a set of nodes in a cluster.
RDDs allow users to perform different operations on large datasets in a fast manner. Spark
is a batch-oriented framework, where all operations are performed on data at rest. However,
it also has a streaming interface, where incoming data is processed onmicro-batches. Its core
is written in Scala, although it also has programming interfaces in Scala, Python, Java and R.
For this development we used the Python Application Programming Interface (API) of Spark,
also called Pyspark. This allows the usage of native Python libraries for handling tasks not
present in Apache’s core, such as plotting, while also leveraging the data processing abilities
of Spark. The implementation has been done on top of Spark 2.0.1.

In detail, most of the implementation has been done in top of Spark’s MLlib Machine
Learning library, using its pipeline API. By implementing the necessary functionalities for
PCA-based MSPC we have effectively created a tool set that can also be used for multivariate
data exploration. As such, it contains a subset of the features of theMEDAToolbox [22], used
for data processing in Chapter 5.

6.3 Experimental setup

In order to experimentally validate our anomaly detection approach, we design an experi-
ment network and a set of scenarios that will allow the evaluation of our proposal.

6.3.1 Experiment network

Figure 6.3 shows the network topology of the experiment network. Out of the nine nodes
of the network, six are the ones that comprise the industrial network. The rest are commu-
nication devices or network data collectors. For the industrial domain, there is a simulation
node, containing the simulation of the physical process and its control, two control servers
and three Human Machine Interfaces (HMIs).

Figure 6.4 depicts the main communication flows between the nodes of the industrial
networks. Communication between the control servers and the simulation nodes has been
carried out with Modbus/TCP. This communication has been implemented using the Py-
modbus library11, where the control servers act as masters (or clients) and the simulation
node as a slave (or server). Control servers poll field data periodically from the simulation
node, starting the communication, and they later store it in the servers. The HMI–control

11https://github.com/bashwork/pymodbus

https://github.com/bashwork/pymodbus
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Figure 6.3: Network topology of the experiment network

server communication is implemented using the OLE for Process Control–Unified Architec-
ture (OPC-UA) protocol, on top of the FreeOPCUA library 12. Control servers acts as OPC-UA
servers while HMIs are clients that request process data stored in the control server, to later
serve it to human operators. HMI1 and HMI3 poll data from Control Server 1 and 2, respec-
tively, while HMI2 polls data from both servers.

The simulation node is responsible for generating field-level data that is later queried
by the control servers. The simulation platform used for this experiment, Simulink, does
not support real-time execution on the simulation node. However, there are available tools
that enable this approach. The Real-Time Pacer for Simulink 13, is one of those tools. It
slows down simulation speed, down to the clock speed of the host Operating System (OS).
This way, each simulation time frame is synchronized with the equivalent time frame: i.e. a
simulation second lasts as long as a second in the simulation node clock.

Moreover, Simulink has basic networking abilities such as sending and receiving UDP

12http://freeopcua.github.io/
13http://es.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-simulink

http://freeopcua.github.io/
http://es.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-simulink
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Figure 6.4: Main network flows in the experiment network

and TCP packets, but has no communication libraries that support industrial network pro-
tocols.

We modified the DVCP-TE model, (already mentioned and used in Sections 3.2.5 and 5.4)
to allow variable reading and setting through local UDP sockets. Moreover, we developed a
software module that acts as a bridge between Simulink and the control server. When polled
by the server through Modbus/TCP, queries the current status of the TE process through
local UDP sockets and returns the gathered values using Pymodbus. Similarly, if the bridge
receives a Modbus/TCP command, sets the specified variable values to the obtained ones.

To prevent discrepancies between timestamps from different hosts, all nodes in the in-
dustrial network are synchronized using Network Time Protocol (NTP).

Field records are stored and timestamped in both control servers in CSV files, which they
are updated each time they query the simulation node. The last entry in these files is the one
that is served to the HMIs, so they always receive updated data regarding process status. As
for the network data, the flow collector runs the NFDump 14 for collecting and processing of
the Netflow V5-compatible flow information that the switch generates. To ensure that in a
minute framewe register all possible flows including the longer ones, we set the flow timeout

14http://nfdump.sourceforge.net/

http://nfdump.sourceforge.net/
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to one minute. Control servers poll data from the simulation node every two seconds.

6.3.2 Scenarios

After the model building phase, our approach has been evaluated in five different anomalous
scenarios. All scenarios are eight hours long, and the anomalous situation is induced exactly
at the start of the fifth hour.

For the model training, a 24h capture was used to set theD andQ statistics control limits.
No unknown sources of variations where found in this training dataset, so no outliers where
removed.

Process disturbance

In this setup, we simulate process disturbance IDV(6), which has already been explained
in Section 5.3.1. It is worth mentioning IDV(6) is set at a field level, no abnormal network
behavior is induced at this point.

Network Denial of Service

Denial of Service (DoS) remains one of the biggest challenges that INs face, as field con-
trollers and other specialized ICSs have little computing power to process and answer to a
high number of requests, especially if the requests are crafted to drag as much resources as
possible from the target.

As in the case presented in Section 4.3.3, we consider that HMI3 has been compromised
by an external attacker, or it is being used by a malicious user. As such, the attacker starts a
SYN flood DoS attack against the OPC-UA port (4840) of Control Server 2.

In this attack, the attacker starts several TCP handshakes with the target, but when com-
pared to a normal handshake, the attacker does not send the final acknowledgement (ACK)
packets. The target waits for these acknowledgements and in the meantime, leaves the con-
nections half-open. These half-open connections drag resources from the client and can
cause to effectively leave the target out of service, especially in the case of devices with low
computing power.

The SYN flood attack has been implemented using a Python script using the Scapy15

library for packet manipulation.

15https://github.com/secdev/scapy

https://github.com/secdev/scapy
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Port scan

Port scanning is the action of enumerating services present in a host or network by probing
different ports. Though they are widely used for auditing and analyzing IT networks, port
scans can have serious consequences over INs, as the usage of malformed packets in these
scans, and the relatively high volume of created traffic can affect several ICSs’ availability
and lead to unexpected scenarios due to inconsistent ICS responses against port scans [44].

For the recreation of this scenario, we use the Nmap16 popular port scanner, running
with the default options.

Command from malicious agent

Modbus/TCP is a legacy protocol that lacks authenticationmeasures, and therefore, any node
can poll data from a Modbus slave, or send commands to it.

In the last scenario, we consider a malicious agent in control of HMI3 who sends the
command to close the XMV(3) valve, eventually forcing the process to stop working. We
already covered in Sections 5.3.1 and 5.4 that when auditing field data from the controller’s
point of view, this attack is difficult to distinguish from the IDV(6) disturbance, as both yield
a lack of reactant on XMEAS(1).

For this scenario, we develop a Modbus client on top of the previously mentioned Py-
modbus that sends the closing command to the simulation node, overriding the value the
control algorithm sets. The attacker compromises HMI3 and sends a control command di-
rectly to the controller in the simulation node. This would mean a direct command to the
controller, without first passing through the control server, and thus, without leaving any
log or trace in it.

6.4 Experimental results

This section introduces the findings when evaluating our approach. All anomalies where
detected when monitoring the Q statistic, as the D statistic did not yield any alerts.

Figure 6.5 shows the evolution of the Q statistic values, centered on the start of the
anomaly. The horizontal red dashed line represents the control limit for Q, and the ver-
tical black dashed line the moment where the anomalous situation (disturbance or intru-
sion) started. The vertical axes have been divided to illustrate the difference between the

16https://nmap.org/

https://nmap.org/
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(a) Process disturbance (b) Denial of Service

(c) Port Scan (d) Malicious Command

Figure 6.5: Evolution of the Q statistic in different scenarios, focusing on the anomalous situation.

Q control limit is depicted with a horizontal red dashed line, while the starting point of the attack is

shown with a vertical black dashed line
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Q-statistic values before and after the start of the anomaly. As depicted, when an attack
starts, Q values go immediately out-of-bounds, detecting the anomaly as soon as possible.

We now analyze the oMEDA plots of each of the anomalies. The oMEDA plots are only
computed on the first out-of-bounds observation, leaving the rest of the observations out
of the analysis. This way, it is possible to discern the contribution of the variables at the
beginning of the anomaly.

Process disturbance

d2
A

Figure 6.6: oMEDA plot of the process disturbance scenario

Figure 6.6 shows the oMEDA plot for the process disturbance. In this scenario, there is
no abnormal network activity. The oMEDA shows that two variables have the most contri-
bution for this situation: a low XMEAS(1) value and a high XMV(3) one. The low XMEAS(1)
corresponds to a lack of reactant due to disturbance IDV(6). However, the control algorithm
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tries to counter the lack of reactant by opening the XMV(3) valve, hence its high value. As
no significant contributions from the network variables is shown, it can be diagnosed that
the anomaly occurred only at the field level.
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Figure 6.7: oMEDA plot of the DoS scenario

Figure 6.7 depicts the oMEDAflowwhereHMI3 starts a DoS attack against Control Server
2. As HMI3 regularly queries Control Server 2 to get field data, there are no alerts for forbid-
den flows. However, the size of the flows forming the SYN flood is different from the regular
flows recorded in the whitelist between both hosts. Therefore, the oMEDA shows a large
increase in incorrectly sized flows. As this intrusion only affects the network of the IN, field
variables do not show an important contribution to the situation.
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Port Scan
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A

Figure 6.8: oMEDA plot of the Port Scan scenario

The oMEDA plot from Figure 6.8 depicts the effect of a port scan where HMI3 is compro-
mised and executes Nmap. As the HMI3 has only whitelisted traffic towards Control Server
2, all other flows probing the rest of the hosts are classified as anomalous. Therefore, the
variable which shows the highest impact is the number of anomalous flows. As with the
previous case, field-level variables show little contribution to the anomaly.

Command from malicious agent

The diagnosis of the last scenario, where a compromised HMI3 sends a control command
ordering to close XMV(3), is shown in Figure 6.9. It depicts a lower XMEAS(1) value, and
as in the IDV(6) case, shown in Figure 6.6, the control algorithm tries to open the valve
again, hence the high XMV(3) value. As no communication is allowed between HMI3 and
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Figure 6.9: oMEDA plot of the malicious command scenario

the simulation node, the number of forbidden flows shows a great contribution, notifying
process operators that the intrusion has been carried out by a command unit not allowed to
communicate with the Modbus slave.

6.4.1 Discussion

Theaddition of network variables by extending traditionalMSPCmodels allows the detection
of other types of anomalies such as port scans, network DoSs and the case where an anomaly

IDV(6) Proc. dist. Network DoS Port scan Malicious command
Run length 6s 6s 6s 6s 6s

Table 6.1: Run Length for anomaly detection using network variables
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at the process level is caused by disrupting network security policies.
Furthermore, this extended MSPC model eases anomaly detection diagnosis, at least dis-

tinguishing the affected domains in case of an attack or a disturbance and the violated poli-
cies, if that is the case. It is to be expected that the development of new network-level
variables will enhance anomaly diagnosis properties.

Table 6.1 shows the run lengths for the cases presented. As data is polled every two
seconds and three consecutive out-of-bounds observations are needed to flag an anomaly,
our approach detects anomalies in the minimum 6s time in all five cases.

6.5 Conclusions of the Chapter

This chapter presents a network and field-level Anomaly Detection System (ADS) that deals
with data complexity. Scalability is achieved by implementing the data processing solution
over Apache Spark, thus migrating some of the tools present in the MEDA toolbox to this
framework. The ability to process heterogeneous data is achieved by using PCA and features-
as-a-counter and some general statistics of a given time. High data creation rates as the
incoming can be streamed, especially for the detection.

We have experimentally validated our approach in five different scenarios concerning
network-level and field-level anomalies, along with a scenario where both levels were impli-
cated. We did so by adding communication abilities to the DVCP-TE simulation model and
building a test IN with real industrial traffic. The system has been implemented on top of
Apache Spark to ensure its scalability to address larger datasets. The presented system has
detected all anomalies promptly and has aided in the process of diagnosing them by showing
the contribution of each of the variables to its cause.
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This chapter presents the final remarks and also identifies some future research lines for
further development of the area.

7.1 Conclusions

This dissertation has been centered on the development of novel data-driven ADSs for INs.
We first performed a comprehensive literature review where we analyzed the field of

large-scale, heterogeneous ADSs and their applicability to INs. We identified some gaps in
current research and some room for future improvements.

Due to the necessity of conducting IN security research in a safe, faithful and repro-
ducible environment, we presented a testbed that dynamically emulates network behavior
and also simulates a physical process. Together, the testbed is able to emulate existing IN
functionalities, based on the software Emulab and the Tennessee-Eastman (TE) process. Ad-
ditonally, to support future research in the area, the testbed supports Sofware-Defined Net-
working (SDN).

Later, we introduced a visual flow monitoring system based on whitelisting and chord
diagrams. Network flows are depicted in a chord diagram and highlighted according to its
legitimate or anomalous nature. For this end, we develop time-based whitelists, where the
traffic nature is registered in a given time-frame. When compared to traditional whitelists,
with time-based whitelists, it is possible to detect anomalous network flow sizes. Historical
data is stored in a scalable search server. To the best of our knowledge, this is the first
security-oriented visualization for INs.

Next, we analyzed the performance of MSPC for anomaly detection at a field level. We
concluded that MSPC is an effective methodology for anomaly detection, but process diagno-
sis can be a complex task in cases where the real process status is hidden from the operator.
Moreover, detection times are sometimes long. As a data-driven approach, one of its main
advantages is that no prior knowledge about the process is needed.

Finally, we extended the MSPC model to include network-level variables. This was
achieved by summarizing flow data in a set of quantitative features, and using features-as-a-
counter to include anomalous flow information. The approach has been validated by building
an experiment network with real traffic and a simulated TE process which has been modified
to include network communication abilities. This extended ADS is able to detect network
and field level anomalies, along with intrusions that disturb both levels. Furthermore, by us-
ing oMEDA plots, it is possible to analyze the contribution of each of the monitored variables
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to the anomaly, allowing the diagnosis of the attack by inspecting the prominent variables.

7.2 Future Work

In this section we outline future research directions that can lead to additional contribu-
tions in the field of IN anomaly detection. This dissertation, though limited in scope, offers
development opportunities that deserve the attention of the scientific community for fur-
ther advances in the field. We now list the aforementioned opportunities arranged by topic.
These opportunities can be seen as a direct continuation of the work presented in this dis-
sertation, and therefore this future work outlines can be complemented with the research
gaps identified in Section 2.5 of the Literature Review.

Testbed evaluation Once a testbed has been designed and implemented, the next step is
the evaluation of its fidelity when compared to real installations. There are several evaluation
metrics that fulfill this purpose. Siaterlis et al. [127] use the simulatedmodel’s execution time
as a metric, when compared with its latency requirements. Reaves and Morris [122] identify
metrics related to Modbus packet payloads. Finally, other proposals gathered by Holm et
al. [61] compare their testbeds to the guidelines and standards published by prominent insti-
tutions [132]. However, it is difficult to compare different proposals, as the used evaluation
metrics are not the same. Therefore, the development of a unified evaluation framework that
will allow a common ground for testbed comparison would be a valuable contribution that
would improve future IN testbed development.

Anomaly Detection in INs Anomaly detection in INs is an active field, and recently, the
field-level, physics-based ADSs are gaining importance. In this sense, MSPC, as a data-
driven, scalable methodology, offers a novel approach for anomaly detection. The identifica-
tion of new quantitative variables can improve the efficiency of MSPC-based approaches, by
adding new information to themodel. Examples of possible information sources for anomaly
detection include control server alerts, protocol parsers and ICS logs. The quantification of
these variables by using the feature-as-a-counter approach can lead to a new research field
where complex data can be transformed into simpler features for anomaly detection. More-
over, in a similar case to the previously mentioned testbed evaluation, it is necessary to
provide a common ground for ADSs validation. The existence of de facto standards such as
the TE process helps in this matter, but it is necessary to go a step further and provide a pub-
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lic set of attacks against INs and ICSs to help ADS assessment. In this sense, the development
of stealthy and advanced attacks against a simulated implementation of a real process, such
as the TE, is vital for the evaluation performance of ADSs.

Large-scale multivariate tool set When developing the large-scale ADS on top of Apache
Spark, we implemented the necessary functionalities for MSPC. These functionalities can
also be used for exploring and analyzing large multivariate datasets. Further development
of this tool can lead to a fully fledged piece of software that would allow the exploration
of large and heterogeneous datasets, in a similar manner to the MEDA toolbox [22] but for
larger volumes.

Anomaly response in INs So far, this dissertation has been centered in the detection and
diagnosis of anomalies in INs. The topic of anomaly response has not been covered. Nev-
ertheless, the fragility of INs due to the low computing abilities of some of the nodes in the
network and the high availability constraints they have, correct anomaly response would
be a desirable feature for INs. For instance, to lessen the effects of a port scan that could
eventually disrupt controller communication. In this direction, SDN is a promising technol-
ogy that can help in lessening the effect of intrusions and anomalies in INs. However, the
particularities of these networks, where availability is the primary concern, have to be taken
into account when designing response solutions.
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Datuek gidaturiko anomalien detekzioa sare industrialetan
–Laburpena–

1960ko hamarkadan lehen Kontrolatzaile Logiko Programagarriak (PLC) sortu zirenetik,
Industri Kontrol Sistemek (IKS) garapen handia izan dute. Hasiera bateko instalazio iso-
latuetatik abiatuta, IKSak gero eta elkarkonektatuago egotera pasatu dira, gaur egun Sare
Industrial modura (SI) ezagutzen ditugun ingurune saretu konplexuak osatzeraino. IKSak
hainbat prozesu fisikoren kontrolaren ardura duten heinean, eta baita Azpiegitura Kritikoak
(AK) osatzen dituzten prozesuen kontrolarenean ere, SIak babesteak berebiziko garrantzia
du gizarte modernoen ongizaterako. Arlo horretan eginiko aurrerapenen artean, Anomalien
Detekzio Sistemek (ADS) toki nabaria dute. Sistemok SI edota IKSen jokabidea aztertzen du-
te ohiz kanpoko gertakariak detektatzeko, ezagunak zein ezezagunak izan. Dena den, SIak
konplexuago bihurtu ahala, haien segimendua egitea Big Data arazoa bilakatu da. Beste era
batera esanda, SIetan sortzen diren datu-sortak konplexuegiak bihurtu dira ohiko bitarte-
koen bidez prozesatzeko, duten eskala, aniztasun eta sorrera-abiadura handiak direla-eta.
Gauzak honela, SIetarako diseinatutako ADSek ez dute abiadura beretsuko garapenik izan,
eta esparru honetan eginiko ekarpen berriak ez dira gai datuen konplexutasun honi aurre
egiteko, ez baitira eskalagarriak edo ez baitituzte sortutako datuen gehiengoa baliatzen ano-
malien detekziorako.

Tesi honek hutsune hori betetzeko asmoa dauka, bi ekarpen nagusi eginez: (i) sare-
fluxuen monitorizazio-sistema bisual bat eta (ii) aldagai-anizkoitzeko ADS bat, eskala han-
dian lan egin eta datuen heterogeneotasunari aurre egiteko gai dena. Fluxuen monitori-
zaziorako sistema bat proposatzen dugu, zeinak, momentuko sare-fluxuen datuez baliatuta,
segurtasun-bisualizazioak sortzen baititu, non unean aktibo diren fluxuak irudikatzen dituen
eta anomaloak direnak nabarmentzen diren. Aldagai anitzeko ADSerako, aldiz, lehenbizi
aztertzen dugu Aldagai Anitzeko Prozesuen Kontrol Estatistikoak (AAPKE) anomalien de-
tekziorako eta diagnosirako duen eraginkortasuna, ondoren Big Data-rekin lan egiteko gai
den eta AAPKE-n oinarrituriko ADS bat aurkezteko. ADS honek sare eta prozesu mailako
aldagaien segimendua egiten du anomaliak detektatzerako orduan. Bi ekarpen hauek espe-
rimentalki balidatzen dira, probetarako inguruneetan SIak eraikiz eta sortutako datuak az-
tertuz. SIen segurtasunerako ikerketa eremu erreproduzigarri eta zehatzetan egiteko behar
honi helduz, helburu hori betetzen duen banku-proba baten diseinua ere aurkezten dugu.
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Eranskin honetan, doktoretza-tesian zehar eginiko lanaren ikuspegi orokorra aurkezten
da, euskaraz. Lehenik eta behin, sare industrialetan datuek gidaturiko anomalien detekzioa
gai modura aukeratzearen zergatiak zerrendatzen dira. Ondoren, tesi honetako helburuak,
hipotesiak eta ekarpen nagusiak azaltzen dira, erabilitako ikerketa-metodologiarekin batera.
Ostean, dokumentuaren egitura zein den aipatzen da. Azkenik, tesiaren ondorio nagusiak
ematen dira ezagutzera, etorkizunerako zenbait lan-ildo ere identifikatuz.

A.1 Motibazioa

Sare Industrial (SI) deritze kolektiboki Industri Kontrol Sistema (IKS) modura ezagunak di-
ren gailu espezializatu, heterogeneo eta elkarkonektatuek osatzen duten ingurune saretuei,
zeinetan IKSek prozesu fisikoak automatizatzen, kontrolatzen eta gainbegiratzen dituzten.
Hala, IKSak hainbat eta hainbat prozesu fisikoren arduradunak dira, bai industri sektore des-
berdinetan, baita Azpiegitura Kritikoetan (AK) ere [132]. Europako Kontseiluak [46] honela
definitzen du AKa: “aktibo bat sistema bat edo haietariko baten zatia (…) zeina ezinbestekoa
den gizarte-funtzioen eta pertsonen osasuna, segurtasuna eta ongizate ekonomiko eta so-
ziala mantentzeko, eta zeinaren eteteak edo suntsitzeak ondorio larriak izango lituzkeen (…)
funtzio horiek mantentzeko lanean porrot egitearren”. IKSek kontrolaturiko AKen adibide
modura, energia-sorrera eta garraioa, ur-hornikuntza eta garraio-sistemak har daitezke.

Beraz, AK-en funtzionamendu egokiak berebiziko garrantzitsua du gizarte modernoen
ongizaterako. Miller eta Rowe-k [107] AK-ekin zerikusia izandako segurtasun gertakariak
zerrendatu zituzten. Gaur egun, bi dira SIen aurkako erasoek sortzen dituzten kezka nagu-
siak:

1. IKSek kontrolatzen duten prozesu fisikoen gainean eragina duten SIen aurkako era-
soak, prozesuaren eta inguruaren segurtasuna arriskuan jartzen delarik. Gisa hone-
tako erasoen adibide dira Aurora [158], Stuxnet [92], Maroochy ur-sistemako era-
soa [129], Georgia-Pacific-eko gertakaria [117] eta Alemaniako altzairutegian jazotako
erasoa [17].

2. Espiotzarako diseinaturiko software kaltegarri edo malwarearen ugaritzea. Softwa-
re berezitu hauen jomuga informazioa biltzea da, kontrolaturiko prozesuari buruzkoa
edota haren jabe den enpresari buruzkoa. Helburua bitarikoa izan daiteke: prozesuari
buruzko informazio sekretua lapurtzea (adib., produktu baten fabrikazio-errezeta) edo
hirugarren erakunde baten aurkako erasoa burutu ahal izateko informazioa jasotzea.
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Gisa honetako software kaltegarrien adibide dira Duqu [8] eta Dragonfly [135].

Usadioz, SI eta IKSak bi printzipio nagusitan oinarritu dira euren babeserako, askotan
informazio-teknologietan (IT) ohikoak diren segurtasun-neurri gehigarrien erabilera arbuia-
tuz (adibidez sarbide-kontrola, autentifikazioa edo zifraketa). Alde batetik, iluntasun bidez-
ko segurtasuna, non IKS fabrikatzaileek eurek sortutako sistemen sekretutasuna (software
eta hardware jabeduna eta sare-protokolo pribatuak) bultzatzen zuten balizko erasotzaileek
euren produktuetan segurtasun-ahultasunak aurkitzea ekiditeko. Joera hau ez-eraginkorra
dela demostratu da jada [114]. Sekretutasunak ahultasunak aurkitzea zailtzen duen arren,
zailagoa egiten baitu sistema baten barne-funtzionamendua ulertzea, ez ditu eskura siste-
ma ageri batek dituen egiaztatze eta balidazio-prozesuak. ⁇ irudiak erakusten du IKSekin
zerikusia daukaten eta publiko eginiko aurkituriko software-ahultasunen bilakaera denbo-
ran zehar. IKS inplementazio asko oraindik jabedun eta sekretuak diren arren, aurkituta-
ko ahultasun-kopuruak gora egin du hamarkada honen hasieratik hona. Ahultasun horiez
baliatuz erasoak edota segurtasun-ikuskaritzak egiteko moduluak ere badaude eskuragarri
software espezializatuetan, Metasploit plataforman17 adibidez. Hots, iluntasun lortu nahi
hori jada ez da aplikagarria. Sistema bateko zehaztasunak sekretuak izaten jarraitu deza-
keten arren, bere ahultasunak eta haien probetxu (txarra) ateratzen duten tresna asko pu-
blikoak dira jada. Gainera, segurtasun-ahultasun hauek konpontzeko beharrezkoak diren
eguneraketak egitea askotan ez da bideragarria, askotan eguneraketak aplikatzeak prozesu
industriala geldiaraztea ekartzen baitu. Hau ez da onargarria prozesu kritiko gehienetan,
eskuragarritasun handia behar izaten baitute [32]. Hortaz, maiz, gisa honetako prozesuak
eguneratu gabe eta beraz, ahul, uzten dira.

IKSen fabrikatzaileek eta erabiltzaileek haien segurtasunerako euren sareen babeserako
erabilitako beste printzipioa sareen isolamenduarena da. Tradizionalki SIek ez dute kanpo-
konexiorik izan eta beraz, erasotzaileek sarbide fisikoa behar izan dute SIetan erasoak bu-
rutu ahal izateko. Dena den, 1990eko hamarkadatik aurrera, sare-baliabideen sarbide non-
nahikoaren beharrak bultzatuta, SIak kanpoko sareekin gero eta elkarkonektatuago izatera
igaro ziren, hala nola, enpresetako IT sarea edota Internet [32, 69]. SHINE (SHodan Inte-
lligence Extraction) proiektuak 2.186.971 IKS gailu identifikatu zituen Internetera zuzenki
konektatuta 2012–2014 urteen artean [138]. Era berean, Shodan bilatzaileak badauka ICS

Radar18 izeneko zerbitzu publikoa, zeinak Internet aztertzen duen IKSetara sarbide zuzena
eskaintzen duten sare-protokoloen bila. IKS mota desberdinak gordetzen dituen kategoria

17https://scadahacker.com/resources/msf-scada.html
18https://ics-radar.shodan.io/

https://scadahacker.com/resources/msf-scada.html
https://ics-radar.shodan.io/
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A.1 Irudia: Jakinarazitako segurtasun-ahultasunak denboran zehar [3]

bat ere badu, erabiltzaileari sarbide zuzena emanez gailuetara19. Publikoki eskuragarriak
diren IKSak izateak erakusten du hainbat SI ez daudela behar den modura bananduta Inter-
netetik, eta beraz balizko isolamendu hori ez dela existitzen.

Zuzenki Internetera konektaturik ez dauden SIen kasuan, ez da egongo sarbide publi-
korik haietara, baina kanpo-sareetan eginiko erasoek sarbidea lor dezakete SIetako barne-
sarera. Hau izan zen Alemaniako altzairutegiko erasoaren [17] kasua, non erasotzaileek
IT sarean sarbidea lortu zuten e-posta kaltegarri bat baliatuz, eta hortik jauzi egin zuten
produkzioko SIra, erasoan labe garaietako bat kaltetuz. Eta SIak kanporanzko inolako sare-
konexiorik ez duen kasuetarako, baliabide handiak dituzten erasotzaileek bitartekoak aur-
kitu ditzateke muga hauek gainditzeko, USB memoriak erabiliz adibidez (hala gertatu zen
Stuxnet-en [92] kasuan, adibidez).

Ameriketako Estatu Batuetako ICS-CERT erakundeak kontrol-sistemak ziber-erasoetatik
babesteko bitartekoak ematen ditu [64]. Helburu hau betetzeko, bere betebehar nagusietako
bat kontrol-sistemekin zerikusia izan duten segurtasun-gertakariei erantzutea da, bereziki
tartean AKak daudenean. Urtero kaleratzen dituzten txostenetan [64–68], ICS-CERTek az-

19https://www.shodan.io/explore/category/industrial-control-systems

https://www.shodan.io/explore/category/industrial-control-systems
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A.2 Irudia: ICS-CERTi jakinarazitako segurtasun-gertakarien kopurua [64–68]

pimarratzen du gorakada izan dela gisa honetako segurtasun gertakarietan, erregistroak hasi
zirenetik. A.2 irudiak erakusten du gertakari hauek izan duten bilakaera, 2009an 9 gertakari
jakinarazi zizkioten ICS-CERT-eri eta 295 gertakari 2015ean.

A.3 irudiak erakusten du gertakari hauek izan duten bilakaera AK sektore bakoitzeko.
Hasieran ur eta energia-sektoreak ziren gertakari gehien batzen zituzten sektoreak, % 60tik
gora. Denborarekin, bi sektore hauen garrantziak behera egin du eta beste batzuek hartu
diete aurre, bereziki fabrikazio kritikoak.

AKek daukaten izaera kritikoa ikusita, eta ohiko bideen bidez hauek babesteko dagoen
ezintasuna dela eta, SIen babesa ikerketa esparru aktiboa da. Hala, SIen babesak arreta han-
dia jaso du industria eta komunitate zientifikoaren eskutik. SIen babeserako ikerketa-esparru
desberdinen artean, intrusioen detekzio-sistemek (IDSek) eta bereziki anomalien detekzio-
sistemek (ADS) rol garrantzitsua jokatzen dute eta hainbat dira esparru honetan eginiko
ekarpenak [51, 108, 164]. Ekarpen horietako gehienek sareko trafikoa aztertuz [51, 164]
edota prozesuko magnitude fisikoen jarraipena eginez [82, 88] detektatzen dituzte anoma-
liak. ADS batzuk, bereziki magnitude fisikoei begira daudenak, ereduetan oinarrituetakoak
dira [88, 105, 134]. ADS hauek beharrezkoa dute aztertzen duten prozesuaren eredu ma-
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A.3 Irudia: AKetako segurtasun-gertakarien ehunekoaren bilakaera, denboran zehar [64–68]

tematiko bat izatea. Haatik, prozesu fisiko baten eredua eraikitzea lan zaila izan daiteke,
baita ezinezkoa ere zenbait kasutan, prozesua bera oso konplexua denean. Bestalde, datuek
gidaturiko metodologiek ez dute inolako eredurik behar anomaliak detektatzeko, datuetan
oinarriturik bakarrik hartzen baitituzte erabakiak. Gaitasun honek datuek gidaturiko AD-
Sen erabilera sustatzen du SI konplexuetan, eta baita prozesu mota desberdinetan ADS berak
erabiltzea ere, ez baita beharrezkoa ereduak berraztertzea edota birsortzea aplikazio desber-
dinetarako.

Bestalde, MapReduce [37] moduko konputazio banatuko egiturak eta HDFS [12] gisako
fitxategi-sistema banatuak sortu zirenetik, konputazio-paradigma berria jaio da, Big Data
analisia (BDA) izenarekin ezaguna.

Big Data (Datu-multzo handia) delakoak ohiko bitartekoen bidez, denbora tarte onarga-
rrian, prozesatzeko konplexuegia den datu-multzoari egiten dio erreferentzia [33]. Nahiz eta
kontsentsurik ez den existitzen, datuen konplexutasun hau hiru ezaugarrik definitzen dute:
datu-kopurua, datuen sorrera eta transmisio abiadura eta datu-moten aniztasuna, bai egitu-
ratua edo egituratu gabea [91]. Berriki, laugarren ezaugarri bat gehitu zaie aurreko hirurei:
Big Data datu-multzo baten barruan informazio balioduna aurkitzeko gaitasuna. Dena den,
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Big Data terminoak datu-multzoaren izana gainditu eta berau prozesatzeko gai diren tresna
eta teknologiak izendatzeko ere erabiltzen da egun. Big Data analisiak (BDA) helburu du
jakintza balioduna erauztea Big Data datu-multzoetatik, era eskalagarrian analizatuz.

BDAk dituen hainbat aplikazioren artean, Cárdenas et al.-ek [26] eta Everett-ek [47],
BDA-ren eraginkortasuna aztertu zuten intrusio-detekziorako, sare konplexuetan berez sor-
tzen diren datuak (erregistorak, fluxuak, paketeak…) Big Data kontsideratu daitezkeelako.
Beraz, datu-multzo handi hauetan anomaliak aurkitzea ez da egingarria ohiko mekanismoen
bidez. Hala, ondorioztatzen dute BDA erabiltzeak IDS eraginkorragoak garatzea ahalbidetu
dezakeela. Dena den, euren analisia IT ordenagailu-sare ohikoetan dago oinarrituta, SIetan
teknologia hauek dituzten aukerak alde batera utziz. Era beretsuan, beste autore batzuek
BDAk industria-aplikaziotarako dituen aukerak aztertu dituzte. SIetan hainbat datu oso des-
berdin sortzen dira era oso azkarrean, adibidez, prozesuaren azterketa egiteko erabiltzen di-
ren magnitude fisikoen balioak erregistratuz (tenperaturak, presioak…) edota edozein komu-
nikazio saretan sortzen diren datuak (paketeak, fluxuak eta erregistroak). Segurtasunerako
aplikazioak alde batera utzita, badira hainbat lan BDAren erakargarritasuna azpimarratzen
duten prozesuen analisirako [80, 116, 125, 151, 165].

Beraz, naturala da bi mundu hauek lotzea, eta BDA erabiltzea SIetan anomaliak detek-
tatzeko ingurune heterogeneo hauetan, zeintzuetan datuek oso forma desberdinak izaten
duten. Tesi honek esparru hori betetzeko helburua izan du, BDA aplikatuz SIetan anomaliak
detektatzeko.

A.2 Helburuak, hipotesiak eta ekarpen nagusiak

Tesi honen helburu nagusia hau da: SIetarako datuek gidaturiko anomalien-detekzio siste-

mak garatzea eskala handiko datu-multzo heterogeneoak prozesatzea ahalbidetuko dutenak
segurtasun-gertakariak detektatzeko prozesuaren eredu bat eraiki behar gabe. Xede hone-
tarako, bi irizpide desberdin jorratzen ditugu: sareko fluxuen jarraipen bisuala eta SIetan
sortzen diren datu mota desberdinak analizatzen dituen hurbiltze holistiko bat, sarearen es-
parru bakar batean fokatzea behar ez duena.

A.2.1 Hipotesiak

Hau da frogatzen saiatuko garen hipotesien zerrenda:

• SIek duten sare-fluxuen izaera estatiko eta errepikakorrari esker, segurtasun-
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bistaratzeek SI operadoreei lagun diezaiekete fuxuekin zerikusia daukaten anomaliak
detektatzeko. Kordoi-diagramak hautagai egokiak dira xede honetarako.

• Aldagai Anitzeko Prozesuen Kontrol Estatistikoa (AAPKE) erabiliz, gai izan gaitezke
SIetan anomaliak detektatzeko eta haien diagnosia egiteko, intrusioak eta perturba-
zioak desberdintzea ahalbidetuz prozesuaren eredurik erabili gabe.

• AAPKE eredu tradizionalak hedatuz eta sareko aldagaiak bertan txertatuz, ADS bat
sortzea posible da zeina SIetan sortzen diren datu-mota guztiak analizatzeko gai den
era eskalagarrian.

A.2.2 Ekarpenak

Doktore-tesi honetako ekarpen nagusiak hurrengo puntuetan laburbildu daitezke:

• Eskala handiko ADS heterogeneoen esparruaren literatura-aztertze sakona, bereziki
euren SIetarako aplikagarritasunean fokatuz eta oraindik garatzeke dauden ikerketa-
esparruak identifikatuz [73].

• SIetan segurtasun-ikerketa egiteko banku-proba baten diseinua. Banku-proba hau
Emulab softwarea eta prozesu fisikoen simulaizoaren inguran dago egituratua, inguru-
nearen fideltasuna bermatzeko. Software bidezko sareentzako euskarria dauka, baita
datu-analisirako modulua ere, etorkizuneko ikerketarako teknologia hauek erabiltzea
ahalbidetuz [76].

• SIetarako segimendu sistema bisuala, sare-fluxuak eta hauekin erlazionatutako ano-
maliak bistaratzen dituena. Kordoi-diagrametan dago oinarrituta eta bertan, fluxuak
zilegi ala anomalo modura adierazten dira, aurretik zenbait zerrenda zuritan deskriba-
tutako sareko fluxuen arabera [74, 75].

• AAPKE erabilita IKSetan intrusioak eta prozesuko perturbazioak desberdintzeko da-
goen bideragarritasunari buruzko ikerketa bat. Bertan, ondorioztatzen da AAPKE
gai dela IKSetan anomaliak detektatzeko, baina haien kausa identifikatzerako orduan,
beharrezkoa dela prozesuko benetako datuen analisia egitea. Egoera hau ezkutatzen
bada operadorearengadik, lagungarria da datu gehigarriak (adib., sareko trafikoa) era-
biltzea anomalia era zuzenean diagnostikatzeko [71, 72].
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• Eskala handiko datu-multzo heterogeneoekin lan egiteko gai den ADS bat, detekzio-
rako sare eta prozesu-mailako datuak analizatzen dituena. Honetarako, ohiko AAPKE
eredua hedatu egiten dugu sareko datuak txertatzeko ereduan, prozesuko datuekin
batera. Inplementazioa Apache Spark Big Data softwarearen gainean egiten da propo-
samenaren eskalagarritasuna bermatzeko. Aurkeztutako ADSa gai da sare eta prozesu
mailan gertaturiko anomaliak detektatzeko eta haien diagnosia egiteko, baita bi mai-
letan gertatzen direnak ere.

• Osagai Nagusien Analisia (ONA) erabiliz aldagai anitzeko datu-multzo handien esplo-
razio eta analisia egitea ahalbidetzen duen Big Data tresna multzoa. Aurretik aurkez-
turiko ADSa eraikitzeko erabilitako tresnak eta inplementazioak daude bertan.

Argitalpenak

Doktoretza-tesi honetan aurkezturiko zenbait atal dagoeneko argitaratu dira edo errebisiora-
ko bidali dira pare bidezko azterketa duten aldizkarietara eta nazioarteko zein estatu mailako
konferentzietara. Segidan, doktore-tesi honetako lanarekin zuzenki erlazionaturik dauden
lanen zerrenda aurkezten dugu, argitaratuta zein azterketa-prozesuan dauden lanekin:

Aldizkarietako argitalpenak

• Mikel Iturbe, Iñaki Garitano, Urko Zurutuza, eta Roberto Uribeetxeberria. Towards
Large-Scale, Heterogeneous Anomaly Detection Systems for Industrial Networks. Ar-

gitaratzeko bidalia IEEE Transactions on Industrial Informatics aldizkarira, 2017.

Kongresuetako argitalpenak

• Mikel Iturbe, Iñaki Garitano, Urko Zurutuza, eta Roberto Uribeetxeberria. Visualizing
Network Flows and Related Anomalies in Industrial Networks using Chord Diagrams
and Whitelisting. Non: Proceedings of the 11th Joint Conference on Computer Vision,

Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016), 2. liburu-
kia, 99–106 orr., Erroma, Italia, 2016ko Otsaila.

• Mikel Iturbe, José Camacho, Iñaki Garitano, Urko Zurutuza, eta Roberto Uribeetxebe-
rria. On the Feasibility of Distinguishing Between Process Disturbances and Intrusions
in Process Control Systems Using Multivariate Statistical Process Control. Non: 2016
46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Workshops (DSN-W), 155–160 orr., Tolosa, Frantzia, 2016ko ekaina. IEEE.
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• Mikel Iturbe, Iñaki Garitano, Urko Zurutuza, eta Roberto Uribeetxeberria. Sistema
visual de monitorización de seguridad de flujos de red industriales. Non: Proceedings of
I Jornadas Nacionales de Investigación en Ciberseguridad (JNIC 2015), 59–65 orr., León,
Espainia, 2015ko iraila. Universidad de León.

• Mikel Iturbe, Unai Izagirre, Inaki Garitano, Ignacio Arenaza-Nuno, Urko Zurutuza, eta
Roberto Uribeetxeberria. Diseno de un banco de pruebas híbrido para la investigación
de seguridad y resiliencia en redes industriales. Non: Proceedings of II Jornadas Na-

cionales de Investigación en Ciberseguridad (JNIC 2016), 3–10 orr., Granada, Espainia,
2016ko ekaina. Universidad de Granada.

• Mikel Iturbe, José Camacho, Iñaki Garitano, Urko Zurutuza, eta Roberto Uribeetxe-
berria. Distinguiendo entre perturbaciones de proceso e intrusiones en sistemas de
control: caso de estudio con el proceso Tennessee-Eastman. Non: Proceedings of the

XIV Spanish Meeting on Cryptology and Information Security (RECSI 2016), 117–122 orr.,
Maó, Espainia, 2016ko urria. Universitat de les Illes Balears.

A.3 Metodologia

Tesi honetan erabilitako ikerketa-metodologia Diseinu eta sorkuntza da. Oates-en [115] ara-
bera, metodologia hau “IT produktu berritzaileak –artefaktuak– garatzen zentratzen dena
da”. March eta Smith-en [102, 115] arabera, artefaktu hauek lau kategoria nagusitan bana
daitezke:

Konstruktuak Kontzeptuekin daude erlazionaturik, hala nola entitate, objektu edota data
fluxuen nozioekin.

Ereduak Konstruktuz osaturiko egoera baten irudikapenak dira, arazoen ulermena eta irten-
bideen garapena erraztuko dutena. Adibidez, fluxu-diagrama bat edo erabilera-kasu
konkretu baten zehaztapena.

Metodoak Sortuko diren ereduen gaineko eta arazoa konpontzeko jarraituko den prozesua-
ren pausuen gida. Adibide nagusiak algoritmoak dira.

Instantziazioak Martxan jar daitekeen sistema bat, konstruktuak, ereduak, metodoak,
ideiak edota teoriak ordenagailu-sistema batean inplementatu daitezkeela demostra-
tzen duena.
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Zenbaitetan ikerketaren emaitza lau emaitza hauen arteko konbinazioa izan daiteke. Di-
seinu eta sorkuntza prozesua eta ohiko software-garapenaren prozesua nahastu daitezke.
Dena den, ikerketa-lan hau IT produktu bat garatzea baino harago doa. Ikerketa-lan hone-
tan analisiaren azalpena, argumentuak, justifikazioa eta emaitzen ebaluazio kritikoa aurkitu
daitezke. Hortaz, jakintza berriaren sorkuntza du helburu, eta honen emaitzen zabalkundea
argitalpen zientifikoen bidez, horretarako artefaktu baten garapenaz baliatuz.

Jakintza
Fluxuak

Jakintzari
ekarpena

Mugatzea

Emaitzak

Proposamena

Behin-behineko 
diseinua

Tresna

Eraginkortasun
neurketak

Emaitzak

Prozesuko
urratsak

Kontzientzia

Eskaintza

Garapena

Ebaluazioa

Amaiera

Argitalpenak

A.4 Irudia: Tesi honetan erabilitako diseinu eta sortze-prozesua, emaitza desberdinekin batera [145]

Vaishnavi and Kuechler-ek [145] bost pausu iteratibotan banatzen dituzte diseinu eta
sorkuntza prozesua:

Kontzientzia Esparru jakin batean ikerketa ahalbidetzen duen arazo baten identifikazioa eta
artikulazioa. Fase honen emaitza proposamen bat da, formala zein informala.

Eskaintza Fase honetan, funtzionalitate berria identifikatzen da, exisitzen diren elementue-
kin edo existitzen diren eta berriak diren elementuekin konfigurazio berritzaile batean
oinarrituz. Funtzionalitate berri honen helburua kontzientzia-fasean identifikaturiko
arazoari irtenbidea aurkitzea da. Fase honetan behin-behineko diseinu bat garatzen
da, non aurreko fasean lorturiko proposamena landu eta artefaktuari buruzko detaile
gehiago ematen diren (eredu posibleak, prototipoa…).
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Garapena Fase honetan, behin-behineko diseinua are gehiago garatzen da eta artefaktu ba-
tean inplementatu. Espero bezala, inplementazio honen forma, sortzen den artefak-
tuaren araberakoa da (softwarea,algoritmoak…).

Ebaluazioa Artefaktuaren inplementazioa proposamenean era inplizituan zein esplizituan
zehazturiko irizpideen arabera aztertzen da.

Amaiera Fase hau ikerketa-zikloaren amaiera da, non diseinu eta sorkuntza-prozesuko
emaitzek aurreko faseetan definitutako funtzionalitateak betetzen dituzten. Emaitzak
sendotu egiten dira eta jasotako jakintza berria zehaztu eta zabaldu egiten da.

A.4 irudian ikus daitekeen bezala, prozesu nagusia iteratiboa da, artefaktuaren inguruko
erreakzioek hura birmoldatzea ahalbidetzen baitute emaitzak hobetzeko. Dena den, badago
ataza bat ez dagoena erlazionatuta prozesu iteratiboarekin: emaitzen zabalkundea argitalpen
zientifikoen bidez. Lan honekiko jarrera jarraitua izan da, hots, argitalpenak ebaluatzeko
bidali dira emaitzak nahikoa helduak zirenean, komunitate zientifikoak aurrerapenok ahalik
eta arinen balia ditzan. Hala ere, azken emaitzak, ikerketa-prozesuaren zehaztasun guztiekin
batera, doktoretza-tesi honetan daude aurkezturik.

A.4 Dokumentuaren egitura

Doktoretza-tesi hau zazpi kapitulutan dago banaturik. Atal honetan, zazpi kapituluen edu-
kiari buruzko laburpen txikia jasotzen dugu.

1. kapitulua sarrera da. Eranskin honetako lehen lau ataletan euskaraz paratutako edu-
kiaren baliokidea da.

2. kapituluak eskala-handiko ADS heterogeneoen eremuan eginiko ekarpenen azterketa
egiten du. Are gehiago, oraindik konpondu gabe dauden zenbait arazo identifikatzen ditu,
esparru horretan ikerketa-ildo berrietara eraman dezakeena.

3. kapituluak SIetako segurtasunean ikertzeko baliagarria den banku-proba baten disei-
nua aurkezten du. Banku-proba honek Emulab softwarea darabil, prozesu fisikoaren simu-
lazioarekin batera gisa honetako ikerketa burutzeko eremu fidagarria eta erreproduzigarria
sortuz.

4. kapituluak SIetako sare-fluxuen jarraipena egiteko sistema bisual bat proposatzen du.
Kordoi-diagrametan eta zerrenda zurietan oinarrituz, sistemak fluxuen egoera erakusten du,
bisualki nabarmenduz anomaloak diren horiek, hots, zerrenda zuriko arauak betetzen ez
dituztenak.
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5. kapituluak AAPKEren kontzeptua azaltzen du, baita bere aplikagarritasuna aztertu
IKSetan anomaliak detektatzeko eta haien diagnosia egiteko. Ondorioztatzen du AAPKE
metodologia baliagarria dela anomaliak detektatzeko kontestu honetan, dituen mugak aipa-
tuz anomalien diagnosia egiterako orduan.

6. kapituluak AAPKEren eskala handiko hedapen baten garapena erakusten du SIetan
anomaliak detektatzeko. AAPKE eredua hedatu egiten da bertan, prozesuko eta sareko alda-
gaien jarraipena egiteko era eskalagarrian. Emaitzek erakusten dute proposaturiko sistema
egokia dela anomaliak detektatzeko eta eskalagarria dela, bai jarraituriko aldagai kopuruari
dagokionez, baita aztertu beharreko datu-multzoen bolumenari dagokionez ere.

7. kapituluak amaiera ematen dio tesiari, ondorioen eta ekarpen nagusien laburpena egi-
nez. Era berean, etorkizunerako zenbait ildo ere zehazten ditu. Kapitulu honen edukiak
euskaraz paratu dira eranskin honetako hurrengo ataletan.

A.5 Ondorioak

Doktore-tesi hau datuek gidaturiko ADS berritzaileen garapenean egon da zentratuta.
Lehenik eta behin, literatura-azterketa sakona egin dugu, non eskala-handiko ADS hete-

rogeneoen esparrua aztertu dugun, baita SIetara duten aplikagarritasuna ere. Bertan, zenbait
hutsune identifikatu ditugu gaur eguneko ikerketa-proposamenetan, baita zenbait lan-ildo
etorkizunerako ere.

SIetako segurtasun-ikerketa eremu seguru, fidel eta erreproduzigarrian aurrera erama-
teko beharrari erantzunez, sareko jokabidea era dinamikoan emulatzen duen eta prozesu
fisikoa simulatzen duen banku-proba aurkeztu dugu. Honekin, banku-proba gai da SI errea-
len funtzionalitateak emulatzeko, Emulab softwarean eta Tennessee-Eastman prozesuan oi-
narriturik. Etorkizunean ikerketa-lan berrietan erabili ahal izateko, banku-probak software
bidezko sareetako euskarria ere badu.

Ondoren, sare-fluxuen jarraipena egiteko sistema bisuala aurkeztu dugu, kordoi-
diagrama eta zerrenda zurietan oinarriturikoa. Sare fluxuak kordoi-diagrama batean iru-
dikatzen dira, eta daukaten zilegitasunaren arabera nabarmentzen dira. Hau ahalbidetzeko,
denbora aintzat hartzen duten zerrenda zuriak garatzen ditugu, non trafikoaren izaera erre-
gistratzen den denbora tarte jakin batean. Ohiko zerrenda zuriekin alderatutakoan, posi-
blea da tamaina ezohikoa duten fluxuak atzematea. Fluxuen erregistro historikoak bilaketa-
zerbitzari eskalagarrian gordetzen dira. Eginiko azterketen arabera, SIetarako espreski di-
seinatutako gisa honetako lehen bistaratze-tresna da hau.
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Gero, AAPKEren eraginkortasuna aztertu dugu anomaliak detektatzerako orduan pro-
zesu mailan. Ondorioztatu dugu AAPKE metodologia erabilgarria dela anomaliak detekta-
tzeko, baina haien diagnosia ataza konplexua izan daitekeela, prozesuaren benetako egoera
operadorearengandik ezkutatzen denean. Gainera, batzuetan anomaliak detektatzerako or-
duan dauden denbora-tarteak luzeak izaten dira. Datuek gidaturiko metodologia izaki, duen
abantaila nagusienetako bat da jarraipena egiten dion prozesuari buruzko aurretiko ezagu-
penik izatea ez dela beharrezkoa.

Azkenik AAPKE eredua hedatu dugu sare-mailako aldagaiak ere kontuan hartzeko. Hau
lortzeko sare fluxuetako informazioa zenbait aldagai kuantitatibotan laburtu dugu, baita kon-
tagarriak diren zenbait ezaugarri definitu ere, fluxu horiek anomalo modura etiketatuak izan
diren edo ez AAPKE barruan sartzeko. Proposamen hau balidatzeko, SI esperimental bat
eraiki dugu, sare-trafiko industrial errealarekin eta simulatutako Tennessee-Eastman proze-
suarekin, zeina aldatua izan den sare bidez komunikatu ahal izateko. ADS hedatu hau gai da
sare eta prozesu mailako anomaliak detektatzeko, baita bi mailetan eragina duten intrusioak
detektatzeko ere. Gainera, oMEDA grafikoak erabilita, posible da aldagai bakoitzak egoera
anomaloan izan duen eragina aztertzea, arazoaren diagnosia erraztuz.

A.6 Etorkizunerako ildoak

Atal honetan zenbait etorkizunerako ildo zehazten ditugu, SIetako anomalien detekzioaren
esparruan ekarpen berrietara eraman dezaketena. Doktore-tesi honek, nahiz eta irismen
mugatukoa izan, eskaintzen ditu zenbait aukera garapen gehiagorako. Orain aipatutako au-
kera horiek zerrendatzen ditugu, gaika ordenatuta. Aukera hauek tesi honetan aurkeztutako
lanaren jarraipen berehalako modura har daitezke, eta beraz hemen identifikatutako lerroak
aurretik 2.5 atalean aipatutakoei gehitu diezaizkiete.

Banku-probaren ebaluazioa Banku-proba bat diseinatu eta inplementatu eta gero, hurren-
go pausua bere fideltasuna neurtzea da, instalazio errealekin alderatuz ahalik eta berdintsue-
nak izateko. Funtzio hau betetzen duten ebaluazio-metrika desberdinak daude. Siaterlis et
al.-ek [127] aurkezturiko lanean, simulaturiko prozesuaren exekuzio-denbora erabiltzen dute
metrika modura, prozesu horrek dituen latentzia-eskakizunak betetzen dituen edo ez alde-
ratuz. Reaves eta Morris-ek [122] Modbus sare-protokoloko paketeen kargarekin zerikusia
duten metrika batzuk proposatzen dituzte. Azkenik Holm et al.-ek [61] batutako proposa-
menetako batzuek euren banku-probak instituzio esanguratsuek argitaraturiko estandarei
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eta gidei jarraipena nola egiten dien aztertuz ebaluatzen dituzte. Gauzak honela, oso zaila da
banku-proba desberdinen arteko konparazio orekatua egiteko, erabilitako metrikak desber-
dinak baitira. Beraz, banku-probak ebaluatzea eta konparatzea ahalbidetuko duen metrika
multzo bateratu bat ekarpen garrantzitsua litzateke banku-proben ikerketa aurrera erama-
teko.

Anomalien detekzioa SIetan Aurretik aipatu modura, SIetan anomaliak detektatzea iker-
keta esparru aktiboa da, eta azkenaldian asko ugaritu dira proposamenak, batez ere prozesu
mailako jarraipena egiten dutenak. Ildo honetan, AAPKE, datuek gidaturiko metodologia
eskalagarri gisa, anomalien detekziorako era berritzailea da. AAPKE barnean erabili ahal
izango diren aldagai kuantitatibo berriak garatzea metodologiaren hobekuntza ekar deza-
ke, informazio gehigarria izango bailuke analisirako. SIen esparruan, aldagai berri hauen
informazio-iturri interesgarriak izan daitezke alertak, sare-protokoloen analizatzaileak eta
IKSetako erregistroak. Aldagai konplexu hauen kuantifikazioak, ikerketa-esparru berria ire-
ki dezake, non hasierako datuak sinplifikatu daitezkeen era desberdinetako ADSak erabili
ahal izateko. Gainera, aurretik banku-proben ebaluazioarekin aipatu modura, beharrezkoa
da plataforma komun bat garatzea ADSen ebaluaziorako. Tennessee-Eastman prozesuaren
moduko de facto estandarrak egoteak laguntzen du afera honetan, baina beharrezkoa da pau-
su bat harago joan eta SIak eta IKSak jomugan dituzten eraso-multzo publikoak sortzea. Era
honetan, ADSen detekzio-ahalmenak era errazagoan konparatu ahal izango lirateke propo-
samen desberdinen artean.

Eskala handiko aldagai anitzeko tresna-multzoa Apache Spark-en gainean eskala-
handiko ADSa garatzerako orduan, AAPKE metodologia erabili ahal izateko beharrezko me-
todoak inplementatu ditugu. Funtzionalitate hauek erabiltzea posiblea da, halaber, aldagai
anitzeko datu-multzo handiak esploratu eta aztertzeko. Tresna hau garatzen jarraitzeak,
software-aplikazio oso batera eraman dezake, aldagai anitzeko datu-multzoen analisirako
lagunduko duena, gaur egun MEDA tresna-kutxak [22] egiten duen modura, baina datu-
multzo handiagoetarako.

Anomaliei erantzuna SIetan Aurretik esan bezala, doktoretza-tesi hau anomalien detek-
zioan eta diagnosian zentratu da. Anomalia bat detektatu eta honen kausaren diagnosia egin
eta gero ez da aztertu zer erantzun egin daitekeen anomalia horren eragina mugatzeko. Adi-
bidez, portu-eskaner baten eragina deusestatzeko. Dena den, SIek duten eskuragarritasun
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behar handiei lotuta, beharrezkoa da erantzun mota guztiak aurretik ondo aztertzea, sarea-
ren funtzionamendu egokiari ez eragiteko. Erantzuteko esparru honetan, software bidezko
sareek lagun dezakete era dinamikoan sarearen egoera desberdinei aurre egiten, betiere, SIen
berezitasunak kontuan hartzen badira soluzio hauek garatzeko orduan.
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