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5.1 Introduction

Data analysis is of paramount importance in the management of proactive
maintenance. This chapter provides a deep analysis of the different techniques
that can be adopted when dealing with the automation of maintenance pro-
cesses. In particular, it focuses on three aspects of the maintenance that we
have considered as the cornerstones of PM:

• Root cause analysis: aims to identify the causes of failures that have
occurred in the past and avoid their appearance in the future. Basically, it
provides a set of approaches intended at building a knowledgebase that
relies on past experience to identify the core causes behind a problem
in the system under investigation. This kind of analysis is useful when
performing post-mortem analysis of the failures that have been reported
and learn from them;
• Identification of the remaining useful life: aims to estimate the

operational life of a component to support different activities including;

• The proper design of a system based on the operational constraints
and the expectations of the users to guarantee its usability;
• The definition of a proper plan of maintenance activities to avoid

unexpected down times.

• Alerting and predicting of failures: aims to identify possible failures
before they actually happen and/or provide an alert about a set of still
acceptable conditions that are unusual and that may result in a failure of
the system if they are not managed properly in a timely fashion.

Besides these three main aspects, there are a number of additional ones
that could be considered to create a comprehensive proactive maintenance
environment. Since modern systems are very complex and taking decisions
about maintenance requires taking into account many aspects, the decision-
making approach needs the participation of multiple stakeholders and the
implementation of collaborative decision-making strategies.

In a collaborative process, entities share information, resources and
responsibilities, risks and rewards to jointly plan, implement, and evaluate
a program of activities to achieve a common goal. Collaboration usually
involves mutual engagement of participants to solve a problem together,
which implies mutual trust. Coordination, that is, the act of working together
harmoniously, is one of the main components of collaboration (Figure 5.1). In
MANTIS, the common goal is the maintenance optimization of assets and the
different systems and stakeholders that take part in maintenance tasks, will
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Figure 5.1 The collaboration concept.

have to share information, resources and responsibilities. From the process
automation point of view, a key aspect of collaborative automation includes a
single, unified environment for the presentation of information to the operator
as well as the ability to present information in context to the right people, at
the right time, from any access point within the system. This implies that the
Proactive Maintenance Service Platform Architecture of MANTIS requires to
collect data from all equipment regardless of type or age, store and organize
the collected data over time, perform advanced analytics and provide decision
support. Thus, MANTIS pursues a collaborative maintenance ecosystem.

Maintenance management can nowadays take advantage of many infor-
mation sources for faster and more accurate prognosis. Data can be extracted
and stored from machines and components. Machine based data analysis may
be used locally to optimize the machine’s maintenance. Better results may be
expected if these particular data are combined with other data sources such
as that from the MES, ERP, cloud-based open-data sources and the machine
operators.

Proactive and collaborative decision support is an integral part of a
proactive maintenance strategy. Condition monitoring is only one part of the
equation, since the actual assets’ condition needs to be combined with other
relevant information, such as customer needs, ambient conditions, business
models and service contracts in order for a service team to make the right
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decision and take the appropriate actions. The goal of MANTIS is to provide
the service team with an intuitive, proactive and context-aware system for
industrial maintenance that supports maintenance by proactively pushing rel-
evant information to the right people at the right time, by intelligently filtering
and summarizing information to prevent information overload through con-
text awareness, by automatically and dynamically scheduling and adapting
maintenance plans, thereby keeping the human in the loop at all times. The
chapter is organized as follows:

• Section 5.2 focuses on root cause analysis providing a short introduction
to the theoretical background and a catalogue of techniques that have
been demonstrated to be useful in this kind of analysis. Such tech-
niques are mainly based on statistical and machine learning approaches.
Moreover, a set of real-world applications are shortly introduced;
• Section 5.3 deals with the identification of the remaining useful life

of components. The section provides a short theoretical background, a
catalogue of the useful approaches, and an analysis of some use cases
to demonstrate the applicability of the described techniques analysing
different modelling approaches;
• Section 5.4 investigates how to alert and predict failures. The section

provides an extensive catalogue of useful techniques. The presented
techniques are also mainly based on statistical and machine learning
approaches;
• Section 5.5 provides some real examples that come from different appli-

cation domains where most of the techniques previously presented have
been applied with valuable results.

5.2 Root Cause Failure Analysis

RCA is a methodology to identify the primary cause of a failure in a system.
RCA is the function that makes PM possible, detecting and correcting root
conditions that would otherwise lead to failure. Once the root cause is
identified, corrective action can be taken to make sure that the issue does
not re-occur.

5.2.1 Theoretical Background

Data-driven RCA uses data and data analysis techniques to identify root
causes, based on the observable states of the system. These observable states
may be directly or indirectly related to identifiable components in the system.
Based on the design of the system, it is necessary to define the relevant
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features in the available data and to identify the components that are most
likely involved in the failure. The latter may require, for example, expert
domain knowledge, historical maintenance data and historical performance
data. If data analysis reveals that a single component caused the (majority of)
issues, then the RCA is complete; otherwise the RCA is re-iterated with an
updated set of features and/or components.

The CRISP-DM defines a methodology for structured data mining. For
RCA, the following phases are used: business understanding, data under-
standing, data preparation, modelling.

Business understanding
Due to the size/complexity of systems and the amount of available data, it
is necessary to narrow down the scope of RCA data analysis a-priori. Expert
domain knowledge is required to scope the RCA in terms of machines, failure
modes, parts and data sources. This is an iterative approach; insights in the
data helps the expert to refine the scope. When the system is complex, expert
knowledge may not be adequate to identify a-priori the relevant system com-
ponents and data features. Probabilistic graphical models could, for example,
be used to identify the most probable components and features.

Data understanding
There is a wide variety of visualization and statistical techniques to provide
an overview of the data. Graphs and statistical characteristics are instrumental
in understanding the data (-distributions) and to identify the relevant features
in the data in the next analysis phases. Examples of data visualization are
PCA and t-Distributed Stochastic Neighbour Embedding. These techniques
can provide insights of the distribution and classification of data in the
multi-dimensional feature space. Examples of statistical techniques are for-
ward/backward selection, trend extraction, and classification. The purpose
of these techniques is to reduce the multi-dimensional feature space to a
manageable number of features, which represent the system adequately for
RCA purposes.

For specific RCA cases, the influence of features evolves over time while
the system evolves. This adds time as an additional dimension. There are
statistical techniques that include implicitly time as dimension, but this raises
the risk that the statistics get biased by the more recent data.

Data preparation
The collected data usually originate from a variety of data sources. These can
comprise machine data, e.g., sensor data obtained by sampling in real-time,
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or machine logs that represent the internal condition of the system. Service
maintenance records are another source of data. These data contain, for
example, specifics of parts replaced (quantity, quality). Each data source may
require specific pre-processing and transformation techniques before it can
be used by data analysis algorithms. Examples include aligning timestamp
formats, correcting for missing data and erroneous data and the aggregation
of noisy data.

Modelling

Once the data features are identified, it is possible to develop algorithms
(models) that identify the specific components -which are the most probable
root cause of a specific issue - and the failure modes. The input of the
algorithms are the data, which are prepared specifically for each algorithm.
The output of the algorithm is a statistical measure that can be used to identify
the specific component as the root cause.

5.2.2 Techniques Catalogue

There is a wide variety of modelling techniques available. Table 5.1 shows an
excerpt of techniques.

Based on research of practical systems, a selected set of algorithms is
described in the next sections. For each algorithm, the main aspects are
outlined, and some practical examples are given. Some of the described
algorithms are used for RCA only; other algorithms are used for root cause
analysis and for failure prediction (Figure 5.2). Some of the examples
illustrate how to embed the algorithm in the system, while other examples
illustrate how to the use the algorithm outside the system.

Table 5.1 Root Cause Analysis Techniques
Modelling technique Algorithm
Classification Random forest classification, Naive Bayes, Support Vector

Machine (SVM), Limit and trend checking
Regression Partial least square regression (PLS), Random forest regression,

Least absolute deviations regression, Logistic regression,
Bayesian network (BN)

Neural network Artificial Neural network, recurrent neural network,
convolutional neural network

Unsupervised learning Hierarchical clustering, K-means clustering, attribute-oriented
induction

Pattern analysis Hidden Markov model (HMM), expectation maximization,
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Figure 5.2 Overview for RCA.

5.2.2.1 Support vector machine
A SVM is a supervisory learning algorithm that can be used for binary
classification. It uses feature data as input and it calculates the most probable
class. This algorithm is trained by providing feature data that is already
classified, i.e., labelling. The algorithm then constructs a hyper plane or a
set of hyper planes based on linear combination of features in the multi-
dimensional feature space and optimizes the distance between the feature
values and the hyper plane(s). For some problems, it may be required to first
linearize the feature values by a (non-linear) transformation. Once the hyper
plane(s) have been constructed, the algorithm is applied to a test dataset. The
percentage of correctly classified cases is a measure for the performance of
the algorithm.

SVM is capable to handle high-dimensional feature spaces adequately
and is insensitive to outliers in feature values. Domain expertise can be
embedded in the transformation of feature values. Furthermore, SVM has
proven its use in numerous application domains, such as text mining, face
recognition, and image processing.

5.2.2.2 Limit and trend checking
Limit and trend checking are a classical algorithm where (derived) feature
values are compared against limits (one-sided or two-sided). Feature values
that are within the limits represent normal behaviour of the system, feature
values that are outside the limits can be caused by defective component(s).
Limit and trend checking are commonly integrated in process automation
systems. These algorithms are in many cases sufficient to prevent larger
failure or damage. However, faults are detected rather late and a detailed com-
ponent diagnosis is mostly not possible. The limits can be based on design
and/or historical data and this represents, in general, a trade-off between
early detection (narrow limits) and inherent statistical variation of the system
(wide limits). Limits may be fixed values, may vary in time or may vary with
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other feature values, depending on the characteristics of (components of) the
system.

Example: press machine
In a press machine, the forces in the ram (which consist of 2 rods) are
measured during the stamp. A misalignment (eccentricity) in the rod forces
creates undesired loads in the press and may lead to premature wear and
future malfunction of the press. Piezoelectric sensors measure the force in the
press rods. During each stroke, the eccentricity is calculated and compared
against limits. When the eccentricity is outside limits, a maintenance action
is triggered by the press.

Example: photovoltaic plant
For a photovoltaic plant, the performance loss ratios are determined by each
energy conversion component. These ratios are aggregated for a given time
span, e.g., one day up to several months. These ratios are compared against
configured limits. The limits are derived from the technical specifications
of the components in the system and from field measurements of “known
good” photovoltaic plants. Furthermore, the limits are corrected for weather
conditions in the given time span. When the performance is outside the limits,
a maintenance action is triggered.

Example: health equipment
In a health equipment, the ambient conditions are monitored to make sure
that the system operates within its operational limits. Sensors continuously
measure ambient temperature, humidity and cooling water temperatures. The
health equipment compares these values against configured limits. When the
ambient conditions are outside the limits, a maintenance action is triggered
by the health equipment. The (wide) limits are based on the design of the
health equipment. The limits can be localized (narrowed) using the configu-
ration capabilities on the health equipment, if local environment operational
conditions justify this.

5.2.2.3 Partial least squares regression
PLS is an algorithm that constructs a hyper plane or a set of hyper planes
based on linear combination of features in the multi-dimensional feature
space and minimizes the distance between the feature values and the hyper
plane(s), based on mathematical projections to a lower-dimensional feature
space. The weight of a feature in the linear fit is a measure of the relative
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impact of the component, associated to that feature. The higher the weight,
the higher the detection capability of a defective component.

The upside of this algorithm is that it can handle a large (more than
10) number of features, it can handle correlated features effectively, and
it can handle missing data points. The downside is that the output of the
algorithm may be difficult to interpret, for example confusing causality with
co-linearity.

PLS was initially developed for econometrics and chemo-metrics. Since
then, it has been applied in numerous domains, such as education, manufac-
turing, marketing and social sciences.

Example: shaver production plant
In a shaver production plan, the product quality is measured and is expressed
as 4 geometry features (Y). The production line quality is measured and
expressed as 12 sensors features (X). Product features are measured on a
sample-basis; production line features are measured continuously. A unique
product identifier is used to join the product features and the production
line features, furthermore, short terms sensor failures are removed from
the production line features. The dataset was fed into the PLS algorithm
where production line features are the independent variables (X) and the
product quality features are the dependent variables (Y). This provided the
weighting factors and the root mean square error. It was concluded that the
root mean square error is acceptable for each of the product features, given the
acceptable bandwidth of product quality. This enabled the shaver production
plant to implement the algorithm in the production line to monitor product
quality in real-time.

5.2.2.4 Bayesian network
A BN is a probabilistic directed acyclic graph of nodes where the nodes
represent observable stochastic variables of a system. Such graphs can be
used to calculate the probability distribution of specific conditions or states,
where multiple nodes interact. More specifically in the case of RCA, nodes
can represent machine components and the node state can represent the
failure modes and non-failure states of the corresponding components [3].
One can therefore calculate the probability of a state (for example failure
or no failure) of a component based on the states of the other dependent
nodes (marginal probability). The process of building a BN graph uses expert
domain knowledge to identify the primary components and their interactions.
In general, many components work independently and their failure does not
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propagate to all other components. This simplifies the BN and allows for
computation that is more efficient.

Common Applications:

Because the BNs are a general probabilistic inference method, it can be
applied to a wide range of problems where objects can be assigned a
probability of being in a state. Examples of application include:

• Medicine (diagnosing disease or illness based on symptoms);
• Document classification (classifying a document belonging to a given

subject based on the word content);
• Image processing (for example assigning a pixel to a region based on

its colour components and the region membership of its surrounding
pixels);
• Spam filters (determining if a message is spam or not);
• Biology (inferring the network), etc.

Strengths and challenges:

The BN model is a very good fit for the RCA problem. It is only necessary
to identify the components and their failure modes. The components are
then mapped to the nodes and the states of each node are used to hold the
conditional probabilities. The problem with constructing this model however
is twofold. The first is determining the state dependency between each pair
of components (establishing the network) and the second is acquiring enough
failure data for each and every component (conditional probabilities). This
requires good domain knowledge and much effort. Since it was used a very
small model (modelled only fail or non-fail states), calculating the marginal
probabilities could be done efficiently.

• Advantages:

• Intuitive model construction;
• Allows for on-line model updates;
• General model applicable to many problems.

• Disadvantages:

• Difficult to automatically infer the network;
• Requires detailed domain specific knowledge to construct the

network;
• Has high computational costs.
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Example: sheet metal machinery
One of the subsystems in a sheet metal machine is the hydraulics subsystem.
Domain expertise is used to define a set of hydraulics failure modes, which
are easy to understand and easy to describe. To further reduce the feature
dimensional space, it is opted to use a binary representation of the state
of the hydraulics subsystem: healthy or faulty. As there was no live data
available from a working sheet metal machine, a BN simulation was built
using hypothetical probability distributions and using a limited set of compo-
nents, such as motors, encoders, actuators, sensors, valves. Each node in the
graph represents one of these components. An interactive User Interface was
developed to select the state of each node; the BN then calculates the failure
probability distribution of each of the nodes in the network. The node with the
highest probability is the most likely defective component. This interactive
tool can be used to obtain a list of most probable defective components, based
on real observations.

5.2.2.5 Artificial neural network
An ANN is a collection of computational units called artificial neurons that
mimic the human brain cells. Each neuron performs a weighted summation
of its input values and applies an activation function, such as ReLU, sigmoid,
Softmax. The output of a neuron is input to other connected neurons. The
neurons are organized into layers: an input layer where the input values are
fed into, the hidden layers that perform the learning process and the output
layer that performs the final decision making process. The variability in
number of layers, number of neurons and the activation functions results in
a wide variety of possible ANN architectures. Similarly to SVM, the ANN
algorithm is trained using a training data set and is validated using a test
data set.

In recent years, the advances in computation power and effective imple-
mentations have enabled ANN to learn through large datasets and in
numerous application domains.

Example: health equipment
To research predictive maintenance capabilities for healthcare equipment,
ANN was used to predict part replacement, with ANN training based on
historical machine data. Historical part replacements were extracted from
service business data. The matching machine errors in an observation window
of 14 days before (failure sequence) and after the part replacement (non-
failure sequence) was retrieved from machine logs. The machine data were
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grouped into features and represented as 1-dimensional and two-dimensional
images and provided as input to the ANN. To test the influence of the chosen
ANN architecture, five deep learning architectures were tested: artificial
ANN, 1D convolution ANN, 2D convolution ANN, LeNet ANN, LSTM. For
each architecture, the ANN is trained using 70% of the feature values while
the remaining 30% is used to test the ANN. To judge the performance of
each architecture, the percentage of correctly predicted part replacements is
determined. All the above-mentioned ANN architectures yielded a percentage
between 50% and 70%. This percentage does not significantly increase when
doubling the number of features or doubling the historical period of time.

Example: metal cutting machine
To research predictive maintenance capabilities for a metal cutting machine,
ANN was used to predict the texture classification of machined products.
The hypothesis is that machine defects may lead to surface defects in the
machined products. The surface could be measured using cameras in the
production line and the resulting images could be inspected in real-time. A
ANN is a well known algorithm to classify image data. For that purpose,
a convolution neural network has been built and trained. The Northeastern
University, or NEU, surface defect database, publically available, was used
to train the ANN. This database contains labelled images that cover multiple
texture classes and contains hundreds of images per texture class. Each
texture type is related to a certain, known, root cause. The ANN was tested
using another dataset, containing images from machined products. The ANN
yielded a performance of 95% of correctly classified textures. This is a good
starting point to further explore how to improve maintenance of the metal
cutting machine, based on visual inspection of metal surfaces.

5.2.2.6 K-means clustering
The purpose of clustering is to group features in such a way that features of
elements inside one cluster are more similar to each other than to the elements
in other clusters. Clustering is useful to gain insights on the internal structure
in data. In the clusters, it is easier to detect recurrent patterns and underlying
rules. K-means clustering is a widely used algorithm that groups data points
around centroids or means. The algorithm iteratively determines the centroids
by minimizing the distance between data points and the centroids. The num-
ber of iterations depends on the dimensions of feature-space and the number
of means. There is a variety of strategies how to select the centroids best, e.g.,
farthest point selection, K-means++.
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Example: press machine
In a press machine, the acceleration of the ram is measured during stamp-
ing. The acceleration is a measure for the vibration state of the press. The
frequency spectrum is calculated from the accelerometer data. The peaks
in the spectrum are identified using a peak detection algorithm. Data of
multiple ram cycles are fed into a K-means cluster algorithm. The K-means
algorithm is designed to detect the highest peak clusters in the frequency
spectrum, covering the different press operating conditions. The higher the
peak, the more it can contribute to a vibration induced failure. From the data
analysis, it was concluded that 4 main peaks in the frequency spectrum can be
clearly identified and can be related to excessive vibrations in the press. This
knowledge is an enabler to implement this algorithm in the press machine in
real-time and to trigger a maintenance action when if required.

Example: special purpose vehicles
To research predictive maintenance capabilities in special purpose vehicles,
log messages from hundreds of these vehicles have been analysed. The data
set contains log messages from multiple vehicle types, multiple customers
and multiple service providers. Each vehicle produces a time-series of log
messages for what is considered as a stochastic process. The K-means
algorithm is designed to detect log message patterns as function of vehicle
type, customer and service provider. It was concluded that there is a strong
relation between log message patterns and vehicle type but that there is no
relation between log message patterns and service provider. Depending on
the clustering size, there is a weak relation between log message patterns and
customer; this indicates a weak impact of vehicle utilization.

5.2.2.7 Attribute oriented induction
AOI is considered a hierarchical clustering algorithm for knowledge dis-
covery in databases. Specifically, it is considered a rule-based concept
hierarchy algorithm, due to the fact that the representation of the knowledge is
structured in different generalization-levels of the concept hierarchy. The exe-
cution of the AOI algorithm follows an iterative process where each variable
or attribute will have its own hierarchy tree. Later, data must change from one
generalization-level to another, generalizing all the data in the dataset. That
step is denoted concept-tree ascension. AOI is an algorithm whose power
resides on defining thresholds and generalization hierarchies for the attributes
of the data. This means that it is an algorithm where domain expert feedback
is very useful. Basically, AOI must be trained first with healthy data, and
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build the base tree using these healthy data. Later, in the test part it is checked
whether the evaluated data creates the same tree or it creates a different one. If
the data creates the same tree, the asset can be considered to be healthy; if new
instances are created, the asset had probably some issues in the meantime.

This would be the first level of maintenance: the anomaly detection. In
order to provide RCA, there should be a database of each type of damage, to
allow to correlate the cluster apparition with the damage itself.

Example: clutch brake machine
AOI was successfully applied to a clutch brake machine monitoring use case.
Brake pads are consumable parts of the clutch brake, and it is important to
know when they wear out. Historical data from a clutch break machine was
extracted. These data comprise information of pressure, rotating speed, air
pressure and trigger, of a clutch brake both with complete brake pads and
with worn out brake pads. First, using information provided by the domain
expert, the generalizations of the AOI algorithm were established. Using data
with the healthy clutch brake, the AOI algorithm was trained. Later, using the
test data, the anomaly detection part of the AOI was used in order to model
the wear of brake pads. Finally, thanks to the wear model, the solution was
able to provide a RUL estimation for the asset.

5.2.2.8 Hidden Markov model
A HMM is a statistical Markov model in which the system being modelled
is assumed to be a Markov process with unobserved (hidden) states. The
HMM is represented by a collection of states, state transitions probabilities
and observations. It is the task of the HMM model to calculate, in the best
way, the probability for a particular sequence of observations, without prior
knowledge of the states. Similarly to other algorithms, such as SVM and
ANN, the HMM is trained using a training data set and is validated using
a test data set.

Example: off-road and special purpose vehicles
To research predictive maintenance capabilities for forklift trucks, HMM
was used to predict the probability of part replacement, based on histori-
cal machine data. Historical part replacements were extracted from service
technician logs, based on text keywords. The matching machine data in an
observation window of 30 days before the part replacement data (failure
sequence) were retrieved from machine error logs. Machine errors after a
part replacement (non-failure sequence) were also retrieved from machine
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error logs. These data sets were joined and fed to the HMM algorithm to train
it. The performance of the HMM algorithm was determined using a test data
set, randomly selected failure sequences and non-failure sequences.

5.3 Remaining Useful Life Identification of Wearing
Components

The RUL is the useful operational life left on an asset at a particular instance
in time. Depending on the scientific or engineering field, RUL definitions can
also include the usable or productive keywords, when defining the end of the
asset useful life [ISO 13381-1, 2004].

5.3.1 Theoretical Background

An essential question for design and operation of technical components is
their expected useful lives. The estimation of useful life is important for
designers and manufacturers for design improvements and marketing pur-
poses, as well as product users for making decisions on which product to buy.
Furthermore, the estimation of remaining useful life after the product has
been put into operation is important for making decisions on maintenance,
repair, reinvestment and new investments. RUL estimation is also important
in relation to possibly existing service agreements between the users and
manufacturers and possible guarantee periods. In this sense, the estimation
of RUL of any asset is the first step towards CBM. A RUL prognostic model
will typically provide at least two components: the RUL estimation and an
associated confidence limit. Models that are more informative provide for
instance an estimate of the failure distribution function.

5.3.2 Techniques Catalogue

Various RUL models classification systems exist within the scientific litera-
ture. For instance [Si et al., 2011] classify RUL prediction models into two
main types depending on whether they use: 1) direct condition monitoring
data, or 2) indirect condition monitoring data. The first type is then divided
into models which model the state evolution as a continuous process or
alternatively as a discrete state space; while the second type is divided into the
subcategories: a) filtering type of models, 2) covariate-based hazard models,
and 3) hidden Markov model based methods. [Welte and Wang, 2014] classify
RUL prediction models into physical, stochastic, data-driven and artificial
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Table 5.2 RUL techniques categories
Classification Techniques
Physical modeling Application specific
Artificial Neural networks RUL forecasting, Parameter estimation
Life expectancy models Trend extrapolation, Auto regressive mean average methods,

Proportional hazard models, reliability function, (Hidden)
Markov models, Kalman filter, Particle filters

Knowledge based models Expert systems, Fuzzy rules

intelligence model, while [Sikorska et al., 2011] categorize models into four
main groups and a varying number of subgroups where the latter consist of the
various RUL techniques. The classification system of Sikorska et al. is applied
in the setup of this section and Table 5.2 shows the four main classification
categories together with the techniques that fall within each group.

5.3.3 Physical Modelling

The application of RUL techniques depend on expert knowledge that is dis-
tilled into a model of the physical asset being evaluated. The model families
used in this context can differ between applications, and a few selected
families are described in this section.

5.3.3.1 Industrial automation
Manufacturing defects combined with severe working conditions and lack of
maintenance, accelerate structural damage in the press head that can lead to
failures in the form of fractures in the structural components of the press. The
structural components, such as the press head, are typically welded steel parts.
The welds are one of the sensitive parts where cracks can initiate because
of notch stress concentration, residual stress and base material properties
degradation.

Crack growth can be divided into three stages: initiation, stable propa-
gation and fracture after an unstable or fast propagation. The first stage is
difficult to predict and difficult to detect during regular maintenance ser-
vice by traditional methods. Cracks are usually only detected when large
enough to be visually localized during inspection. In such cases, a corrective
maintenance action is taken to repair the failure. For this application, two
degradation models have been used to predict the RUL: classical high cycle
fatigue damage and crack propagation according to Paris’ law.
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Figure 5.3 Press machine head critical zones and measured forces at the rods.

High cycle damage: RUL to crack initiation
Classical high cycle fatigue is used to estimate the RUL to a certain thresh-
old damage value, assuming that it is associated with a predefined initial
crack length. Three methods oriented to welded structures recommended
by the [International Institute of Welding, 2008] are used to evaluate the
damage. The steps consist of 1) the stress evolution is calculated by Finite
Element models applying the real forces measured at the press rods, see also
Figure 5.3, 2) once the stress time history is calculated, the stress cycles
during operation are obtained with the standard rain-flow cycle counting
algorithm, then 3) the fatigue damage due to ni constant stress cycles δσi is
obtained by the corresponding structural detail SN curve:Di = ni/Ni, where
Ni indicates the maximum allowable stress cycles of range δσi that a struc-
tural detail can withstand before failure for a given S-N curve characterized
by C and m (slope). The SN-curve can have a different slope depending on
the stress range, that is Ni = C/(δσi)

m. The total damage D due to different
stress cycles is calculated according to Miner’s rule, D = ΣDi = Σni/Ni.

Finally, the RUL, considered as the estimated cycles (time) to the end of
the first stage (crack initiation), is estimated at each critical zone setting up
a damage threshold and calculating the remaining cycles. A fatigue damage
indicators map is created in the studied component in order to identify the
most probable crack initiation locations due to the real forces history applied
in the press.

Crack growth, Paris’ law and particle filters
During the stable propagation stage, in the case of one-dimensional frac-
ture, the crack growth rate is governed by a power law such as Paris’ law.



162 Providing Proactiveness: Data Analysis Techniques Portfolios

This model gives a measure of the crack growth rate proportional to the stress
intensity factor

da

dN
= c(∆K(a))m, (5.1)

with a the crack length, N the number of stress cycles; C and m material
specific parameters ∆K=Kmax-Kmin, the stress intensity factor, which is a
function of the applied stress (load) range ∆σ, ∆K(a)=Y(a) ∆σ (πa)1/2,
and Y(a) the geometry function taking into account the geometry of the
surrounding of the crack.

Under the hypothesis of a crack of certain length started at a critical zone
of the structural component, it is possible to estimate when the crack will
reach a threshold length for a given loading. If experimental data on crack
length propagation are available, the estimation of the RUL can be improved
combining the measurements and the physics based crack propagation model.
In this case, a particle filter technique has been applied to obtain the RUL. The
technique handles the error associated to the measurements and to the model
and updates the RUL, and it is supplemented with an interval of confidence
every time a new observation becomes available.

In Figure 5.4, RUL estimation based on real data from a component under
constant stress loading is shown. The initial crack size is 14 mm and the
maximum crack size is set to 32 mm. The observed crack propagation is given
by the blue line. An initial RUL estimation is done from the initial crack size
based on the physical model (blue dotted line).

5.3.3.2 Fleet’s maintenance
Within MANTIS one of the goals is to find ways towards predictive fleet
maintenance. With respect to RUL prediction, the main goal is to develop a
method to optimize the maintenance protocols for defence vehicles and other
types of complex machines, such that maintenance paradigms can be mod-
ified from a “time-of-usage” and a “number-of-driven-kilometres” approach
to an approach taking into the account the severity of usage during operation.
Thereby, the predictive power for when maintenance is truly necessary to be
performed on the vehicle in order to prevent failure is increased.

An algorithm for determining the remaining useful life for a vehicle as
one whole unit is introduced here. The goal of the algorithm is to estimate the
wear induced on a vehicle by surface induced vibrations. The wear is quanti-
fied by calculating a wear index that is weighted with both the magnitude and
the duration of an excitation. Damages due to the long-term use of a structure
are typically associated with fatigue failure. This failure mode occurs when a
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Figure 5.4 RUL calculation at 4.5 104 cycles.

structural member is exposed to a repeated loading a critical number of times.
The fatigue strength of a certain material is often represented by an SN-curve.
An SN-curve shows the mean number of constant stress-cycles it takes to
break the material versus the applied, constant, stress magnitude. The critical
number of cycles as a function of the applied constant stress level often
follows, approximately, an exponential function of the form:Ni = (S0/Si)

m,
whereNi is the critical number of cycles, S0 a constant, Si the constant stress
magnitude applied, and m an exponent. In real-life, structures are exposed to
excitations of varying amplitudes. Cycle counting then yields a histogram
of cycles binned according to amplitude range. In this case, to compute the
cumulative damage due to the cycles with various stress levels, Miners rule is
applied, which states that:

D =
k∑
i=1

ni
Ni
, (5.2)
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with ni the number of cycles with stress level Si; Ni denotes the number
of cycles after which (approximately) failure will occur when a constant
stress level of Si is applied and k denotes the number of discrete stress levels
possibly applied to the structure. When D > 1 it is typically assumed that the
structural member is expected to fail.

The concept behind the developed RUL algorithm is to estimate the wear
of a vehicle to surface excitation in a manner similar to the Miner’s rule
damage estimation described above. However, as it is not feasible to measure
the applied stress directly, as a measure of the stress the force applied to the
structure of the rigid vehicle frame is used. To that purpose, the acceleration
of the vehicle is measured with a 3D accelerometer sensor, and the amplitude
of the force follows then directly from this measurement. The overall concept
has some challenges. First of all the wear has to be calculated for the vehicle
as one unit, although it consists of multiple structural members. Further,
the loads cannot be measured directly, and instead the measured parameters
are the accelerations. Finally, no parameters for the SN-model are available,
moreover, these parameters are also expected to depend on other factors such
as the location of sensor on the vehicle, the suspension system and the vehicle
type.

To overcome many of these challenges a position translation algorithm
has been developed. The position translation algorithm transforms the obser-
vations made at one location of the vehicle, the physical position of the
sensor, to find the impact at another location of the vehicle, the physical
position of the desired place of impact for the RUL computation. The so-
called Inertial Measurement Unit measures translational accelerations and
rotational velocities, and is located in the moving reference frame mounted
on the vehicle frame close to the centre of gravity of the vehicle. Denoting
the reference frame by x’ y’ z’, the task is to transform the data measured in
the reference frame to a similar aligned reference frame x” y” z” defined by
displacing the reference frame by a displacement vector s′p. The prime in s′p
indicates that the displacement vector for the new double primed reference
frame is written in terms of the primed vehicle fixed system. Denoting the
angular rotation vector as ω’ =[ωx’, ωy’, ωz’]T , which is the vector filled
with data from the Inertial Measurement Unit, then the transformation of the
translational accelerations from the primed to the double primed system are
governed by the following relation r̈

′
P = r̈

′
+ ω

′
Ms

′
P + ω

′
Mω

′
Ms

′
P , in which
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ωM is the so called skewed symmetric matrix defined through ω as

ωM =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (5.3)

The numerical differentiation of the angular velocities is necessary to
estimate the angular acceleration of the primed system.

5.3.3.3 Eolic systems
A degradation model is applied to predict the RUL of REBs in wind turbine
gearboxes. The model can be viewed as a hybrid of a statistical model
and a qualitative physics-based model. The objective of qualitative physics-
based models is typically to select a proper damage indicator to construct
a statistical model. The statistical model can then be fitted to the damage
indicator data. Prior knowledge concerning probable values for the model
parameters can be incorporated into the model by applying a Bayesian
approach. By gathering an increasing amount of on-line monitoring data over
time, the uncertainty related to the value of the model parameters decreases
by applying a Bayesian updating method. In parallel the probability density
function describing the remaining useful life of the REBs, which uses the
parameter estimates, is updated accordingly.

Implementation
Among four vibration features extracted from the full frequency domain
vibration spectrum, the so-called High Frequency Peak Value was selected
as the damage indicator to apply for the diagnosis and the prognosis of
REBs. An exponential statistical model with multiplicative error terms is
used, originally proposed by [Gebraeel, 2005] and [Gebraeel, 2003]. The
mathematical form of the model is S(ti) = θ exp[βti + ε(ti)], in which the
parameters θ and β are assumed to follow, respectively, a log-normal and a
normal distribution. Generally, the logarithm of the raw vibration signal S(ti)
is taken to fit the model to the data.

Given a specific time tk, RUL denoted by T is defined as the duration from
tk to the critical time reaching the critical threshold denoted by D. The prob-
abilistic distribution of T is equivalent to the logarithm of High Frequency
Peak Value to reach D, and can be expressed by: P (T < t|L1,L2,. . . ,Lk)
= P [L(tk+ T) = D|L1,L2,. . . ,Lk], with L1, L2,. . . , Lk the logarithm of the
observations. The data related to a number of REBs was used to infer prior
information for both the model parameters and the pdf of RUL. For each of
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Figure 5.5 Illustration of Updated pdf of RUL for a REB.

these REBs, part of the signals was approximated by an exponential trend,
over a period from the start-up of increase in vibration signal amplitude (day
ts) to the occurrence of cut-off (day te), and used to fit the statistical model.
The statistics of θ and β of this specific REB is estimated based upon the
other N-1 REBs, also known as leave-one-out cross validation, and is used as
the prior distribution of θ and β for this specific REB. Bayesian updating
is performed four times with the interval of 10 days (e.g., first Bayesian
updating performed at Day (ts+10), and so on), with the updated pdfs of one
specific REB illustrated in Figure 5.5.

5.3.3.4 Medical systems
The activity concerns the wear of cathode filaments in X-ray tubes that are
used in interventional X-ray systems. X-ray tubes are the most expensive
replacement parts of an interventional X-ray systems and therefore of major
concern for the service organization. Because of the major impact, in terms of
downtime and costs related to an X-ray tube replacement, it is important for
Philips to be able to predict an upcoming failure of X-ray tubes accurately in
order to provide in time replacement. A failure analysis was performed and
the dominant failure mode turned out to be a blown cathode filament.

X-ray tube cathode filaments are heated to a high temperature dur-
ing operation, in order to emit sufficient electrons to produce the desired
X-ray dose. The high temperature, however, also makes the Tungsten—of
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which the filaments are made of—to evaporate. Thereby, a hot-spot forms
locally at a certain location, where the generated heat and the evaporation
increase exponentially over time, until the material melts at the hot-spot
resulting in the opening of the filament, see also [Webers et al., 2016] and
[Horster et al., 1971]. The physics of failure of the X-ray tube is very similar
to the physics of failure for incandescent lamps [Rice, 1997]. Understanding
the stress applied and having a damage indicator at hand are two prerequisites
for building a physical model for RUL prediction of the filament. From the
previous literature and experience, the filament stressor (which is the filament
temperature) and a proper damage indicator (which is the filament resistance)
are known. However, monitoring the damage increase over time by simply
plotting the filament resistance as a function over time is problematic for
two reasons: 1) individual interventional X-ray systems are daily used with
various settings, meaning that is different filament currents are applied from
run to run, implying that time is not a proper aging factor to apply as
independent variable. 2) The filament resistance cannot be measured directly.

The first issue is dealt with by using a method similar to Miner’s rule [10].
Instead of using the accumulated run time, an accumulation of linear damage
(W) is used

W = X∆Wi (5.4)

with the sum applied over the total number of runs, and

∆Wi =
tij
Tj

(5.5)

where ti,j is the time duration of run i, carried out with an applied current
of Aj , j = 1, . . . , k, and k the total number of possible Ampere values to be
applied; and Tj the mean lifetime for a filament when a constant current Aj

is applied to it.
The second issue is overcome by using the c-factor as a damage indicator

rather than the filament resistance. The relationship between the resistance
and the c-factor is given below. If the resistance of the filament at a particular
temperature is R0 at the start of use, while after being used for i runs the
resistance at the same temperature has changed to Ri, then the c-factor for
that run is:

ci =

√
R0

Ri −R0
(5.6)

The value of cican be derived for each run, without involving measurement
of Ri. Two small modifications are made to the two variables in order to
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use them for monitoring the degradation over time. For the ∆W calculation,
the mean lifetime Tj— mean lifetime for a filament when a constant current
Aj is applied to it— is not used. In fact, the sum is divided by the mean life
time for a current Aj /ci. Without going into detail, by dividing the applied
filament current by the c-factor, the accumulation of wear per unit time
remains constant if the user keeps on using the system in the same way, and
the new variable is referred as linear wear (LW), that is

LW = X∆LWi (5.7)

with the summation over all runs i, and

∆LWi =
ti,j

T
′
j

(5.8)

with T’j the mean lifetime for a filament for which a constant continuous
current Aj /ci is applied. The need for this modification is a consequence
of using a constant heating current during the lab experiments rather than
constant heating power, which would have resulted in a constant filament
temperature during a single experiment. In Figure 5.6, the logarithm of the
c-factor is plotted as a function of linear wear for lab data.

Figure 5.6 ln(c-factor) vs. linear wear from lab experiments.
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It was observed that the slope of the linear part of the curve and the slope
at time of failure are correlated, meaning that the relative large initial negative
slope implies relative large negative slope at time of failure. This observation
was quantified and incorporated in the final RUL estimation method.

The RUL estimation method entails now roughly the following steps

• For the linear part of the curve a simple linear regression is used to
determine the slope of this segment. For the curved segment a third order
polynomial fit is applied, leading to c-factor= a LW3+ b LW2+d LW +
e, with LW representing linear wear, and a, b, d and e coefficients that
need to be found experimentally;
• The first derivative with respect to the linear wear is taken, resulting in

the quadratic function: c-factor’= 3a LW2+ 2b LW +d. This quadratic
function needs to fulfil two requirements. First, it needs to be a negative
parabola, i.e., downward opening and second the top of the parabola
should be located before the split of the two segments;
• If the quadratic function is found, and writing the empirical found

relation between the slope (aini) of the initial part of the curve and at
failure (aend) as aend = p aini+ q, then by solving c-factor’=aend for
LW, gives the prediction for when failure will occur;
• Finally, by extrapolating the observed increase of linear damage with

time, an estimate can be found in terms of calendar date when the LW
obtained under step 3) presumably is reached. Similarly, the latter can
be done to obtain two confidence limits for which the filament will fail
with 95% confidence.

5.3.4 Artificial Neural Networks

ANNs are Machine Learning algorithms inspired by biological nervous sys-
tems such as the human brain. ANNs process information using a set of highly
interconnected nodes, also referred as neurons, organized into layers. The
structure of ANN’s are typically split into three types of layers: one input
layer; one or more hidden layers; and one output layer (see Figure 5.7). The
input layer receives the data and is connected to the first hidden layer, which
in turn is connected either to the next hidden layer (and so on) or to the output
layer. The output layer returns the ANN’s predictions.

A node links to other nodes by weighted connections. At each node,
an activation function combines these weights into a single value, which
may limit signal propagation to the next nodes. These weights, therefore,
enforce or inhibit the activation of the network’s nodes. Neural networks can
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Figure 5.7 Schema of an artificial neural network, from [Haeusser, 2017].

detect complex nonlinear relationships between dependent and independent
variables and require very little feature engineering.

5.3.4.1 Deep neural networks
DNNs (see Figure 5.8) brought major advances in solving some problems
that were previously difficult to overcome in the artificial intelligence field
[LeCun et al., 2015]. They have proved to be good at finding intricate
structures in high dimensional data, which makes them relevant for many
fields of study. Despite the fact that there is no clear border between what
distinguishes a DNN from the others, a simple definition is that, a DNN
contains many hidden layers in the network [Schmidhuber, 2015].

Common applications
• General classification [Baxt, 1990; Widrow et al., 1994];
• General regression problems [Refenes et al., 1994];
• Prediction of medical outcomes [Tu, 1996];
• Environmental problems [Maier and Dandy, 2000];
• Stock market index predictions [Moghaddam et al., 2016];
• Remaining useful life (RUL) [Ali et al., 2015];
• DNNs for image processing [Egmont-Petersen et al., 2002];
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Figure 5.8 Deep Neural Network with 3 hidden layers, from [Nielsen, 2017].

• DNNs for audio [Lee et al., 2009];
• DNNs for text [Collobert and Weston, 2008];
• DNNs for regression tasks and remaining useful life [Tamilselvan and

Wang, 2013].

Strengths and challenges
• Some of the strengths of ANNs are:

• ANNs are effective at modelling complex non-linear systems;
• Once an ANN has been trained, it processes the data efficiently;
• ANNs (and DNNs in particular) require little to no feature engi-

neering [Tran et al., 2011].

• Some of the challenges are:

• Training a model usually incurs high computational and storage
costs;
• Lack of interpretability (“black boxes”) despite efforts to extract

knowledge from them [Andrews et al., 1995; van der Maaten and
Hinton, 2008; Merrienboer et al., 2014];
• Many hyper parameters need to be tuned;
• Many configurations are possible;
• DNNs typically require a lot of data to be trained [Chilimbi et al.,

2014];
• Collecting large labeled datasets required for training the DNNs is

a challenge.
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Research has been carried out in order to reduce the training time by
using simple learning functions [Guo and Morris, 2017] or by transfer
learning [Schmidhuber, 2015]. In regards to hyper-parameter tuning, sev-
eral approaches have been proposed to automate this process; for example
[Domhan et al., 2015].

Implementation
The use-case considered has a dataset that represents a time-series of sensor
readings from a fuel system. Each sample provides information from several
sensors and the current health state of the system (range from 0% to 100%).
Exposing these sensors to extreme driving or ambient conditions for several
years can lead to their failure or deviations in measurement. The goal is to
predict the current health state of the fuel system as accurately as possible
while being robust to sensor failure and deviations. Experiments based on
small feed-forward neural network with only 3 hidden layers (Input layer: 161
neurons; Hidden layer 1: 128 neurons; Hidden layer 2: 256 neurons; Hidden
layer 3: 128 neurons; Output layer: 6 neurons) and using drop-out and noise
injection were able to maintain accurate predictions with as much as 40% of
incorrect sensor data (using simulated errors).

5.3.5 Life Expectancy Models

In some cases, RUL computation leverages on models of life expectancy of
assets. This is the case, in particular, when time series are used to express
collected data over data, and to drive the prediction regarding particular
parameters that can be useful to obtain a reliable RUL.

5.3.5.1 Time series analysis with attribute oriented induction
A time series is a collection of data measured over time and represents the
evolution of a certain quantity over a certain period. The main feature of a
time series is that the collected data values are successive in time and typically
strongly correlated with neighbouring observations. In many scenarios the
goal is to predict the future outcomes of a variable of interest. The overall
research field dealing with time series is referred to as time series analysis.
Commonly, in order to analyse a time series the signal is: 1) decomposed
in various parts, that is in a trend component, a cyclic (seasonal) component
(both nonstationary) as well as in the random (stationary) component that
remains after removing the cyclic and trend effect from the observed series;
2) analysis is performed on the various parts, which are then 3) recombined
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in order to make predictions. One of the most utilized time series forecasting
models are autoregressive and moving average models (ARIMA). The AR
part of ARIMA indicates that the evolving variable of interest is regressed
on its own lagged, i.e., previous, values. The MA part indicates that the
regression error is actually a linear combination of error terms whose values
occurred contemporaneously and at various times in the past. The “I” (for
“integrated”) in the name ARIMA indicates that in many applications, instead
of analysing the original data, the data is preliminary differentiated, one
or multiple times. The purpose of each of these features is to construct an
ARIMA model to fit the data as well as possible.

AOI is a data mining hierarchical clustering algorithm. The main charac-
teristic of AOI is the capacity to describe the information in more general
concepts/terms, reducing the dimension of the data. Its power resides on
combining the monitored data with domain expert knowledge, in order to
provide a more trusty knowledge generation.

The execution of the AOI algorithm follows an iterative process where
each variable or attribute will have its own hierarchy-tree. Later this data
must change from one generalization-level to another, generalizing all the
data in the dataset. That step is denoted concept-tree ascension. AOI is an
algorithm whose power resides on defining thresholds and generalization
hierarchies for the attributes of the data. This means that it is an algorithm
where domain expert feedback is necessary. Based on the defined hierarchy
trees, generalizations are performed iteratively in order to conform similarity
clusters. The higher the generalization level on the hierarchy tree is, the more
general—but thereby also the more ambiguous—the cluster description gets.
The more general the cluster, the lower the value of significance of the cluster.
Such clusters refer to different states of the behaviour of the monitored asset.

Implementation
Time Series analysis with AOI was applied in relation to a clutch brake
machine monitoring use case. Two main phases are employed on RUL
calculation: (i) quantification, and (ii) time series analysis. The aim of
quantification is to describe the signal(s) to be forecasted in a measurable
(numeric) way. When quantification is applied over a set of signals, its
information representation becomes simpler and easy to deal with, but also
some information-loss occurs. With the help of AOI, different work-cycles
(clutch or brake cycles) were labelled by a training process with a value
corresponding to their level of normality, called Normality Factor, according
to the ambiguity values of clusters. Thereby, a minimum value for a work
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cycle to be considered as normal is calculated based on training phase data.
Finally, the evolution of the Normality Factor value can be modelled with a
time series based ARIMA model, in order to check when a work-cycle, which
does not meet the normality conditions, occurs.

5.3.5.2 Application to a pump
A methodology for quantifying and monitoring the evolution of the perfor-
mance of a pump has been formulated, in order to take maintenance decisions
based on this information. The performance of a pump is influenced by two
main causes: the wear/tear of its components and the clogging situations.
In both cases, maintenance tasks may be needed to recover the best pump
performance. A maintenance task is recommended when the performance
decreases more than 20%. Therefore, in this context, RUL is understood as
the time (in days) until a pump’s performance decreases more than 20%. The
methodology is based on data typically available for pumps: the operation
frequency (Hz) and the pumped flow rate (m3/h).

First of all, the performance of the pump is estimated each day using
the available frequency and flow rate historical data. Later, the evolution of
the pump performance is used for estimating the RUL. Thus, the trend of
the pump performance is calculated applying a linear regression algorithm.
Finally, this linear regression is used for predicting the evolution of the pump
and calculating the RUL, i.e., the time until the performance reaches the value
of –20%.

The RUL estimation error has been analysed for three clogging situations
which vary in duration and magnitude. For each clogging period, Figure 5.9
shows the RUL estimation error on the Vertical Axis, as a function of the
remaining days to clogging situation (Horizontal Axis). In particular, day 0
corresponds to the day of a −20% performance.

The RUL estimation error ended up being between ±5 days during the
analysed situations, which is considered good enough taking into account the
duration of the clogging situations and the randomness of its nature.

5.3.5.3 Application to industrial forklifts
This use-case used data collected from industrial forklifts. The overall goal
is to provide RUL estimates for forklift tires. Two different datasets were
available to achieve this goal. The Fleet Manager system provides data on
the usage by the on-board computers of different forklifts and generates
10-minute aggregated data reports. It contains fields like driven time, dis-
tance travelled, number of direction changes and consumed energy amount.



5.3 Remaining Useful Life Identification of Wearing Components 175

Figure 5.9 RUL error vs remaining days to clogging situation.

The second data source are the service reports from service technicians, in
which they reported in free text both the problems identified in a forklift and
the repairs that were performed.

Text analysis was used to identify and extract the dates from the service
reports when a tire replacement occurred due to the tire being worn-out
(and not due to any other cause). Thereafter, the Fleet Manager data set was
further aggregated into time intervals where forklifts used a given set of tires.
The regression model was built using this pre-processed dataset. The Fleet
Manager data set was also clustered into three driving profiles by using expert
knowledge, which resulted in useful categorical variables in the regression
model.

The clustering was done in two steps. In the first step, a centroid-based k-
means algorithm was used, and then the final 3 driving profile classifications
were created with a hierarchical clustering method. This was needed to lever-
age the advantages of both algorithms, while minimalizing their drawbacks.
For example, the k-means clustering algorithm tends to create equally sized
convex clusters, which is not physically meaningful in relation to this data
set. A more detailed analysis of these clustering solutions, highlighting the
strength and weaknesses of both can be found in [Kaushik and Mathur, 2014].

The second step involved building an ensemble tree-based regression
model, called Gradient Boosted Decision Trees [Friedman, 1999]. Like other
ensemble regression models (e.g., Random Forest), this algorithm provides
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good defence against overfitting at the cost of interpretation, in the sense that
the predictions of the model are less transparent. The model handles different
variable types well, and it is insensitive to correlated variables. With adequate
parameter optimization, it is shown in [Caruana and Niculescul-Mizil, 2005]
that the Gradient Boosted Decision Trees provides great accuracy com-
pared to many other classical machine learning models. The model training
included cross-validation to reduce the level of overfitting due to the limited
amount of data points, and hyper parameter optimization to find the optimal
algorithm parameters (e.g., number of trees or tree depth). The results were
evaluated based on the Root Mean Square Error measure.

5.3.5.4 Application to a gearbox
One of the main objectives in this use-case in relation to RUL prediction is in
improving the failure prediction of a gearbox by incorporating an additional
covariate besides produced GWh to a failure model, and to test whether
or not incorporating this additional covariate adds predictive power. The
additional covariate is allowed to change with time and so it is a so-called
time dependent variable.

The additional covariate is incorporated by applying proportional haz-
ard modelling with a time-dependent covariate. The Incorporation of a
time-dependent covariate within a proportional hazard model, requires the
knowledge at each failure time t the value of the time dependent covariates
of all assets that did not fail until time t. The latter demand is in practice
in many situations hard to fulfil. Through the last two decades, applying
time dependent covariates has become more and more common and standard
software is available in for instance [R Core Team, 2014] to incorporate them
[Therneau, 2015; Therneau and Atkinson, 2017; Fox and Weisberg, 2010].

Denoting w the produced energy [GWh], then for an object with one
single GWh-dependent covariate the hazard function takes the form [Thomas
and Reyes, 2014]

λ(w|z(w)) = λ0(w) exp(βz(w)), (5.9)

with z(w) the value of the covariate at n of w, and w ≥ 0. By the hazard rate
the survival function conditional under z(w) is

S(w|z(w)) = exp[−Λ(w|z(w))] (5.10)

with the cumulative hazard conditional under z(w) defined by

Λ(w|z(w)) =

∫ w

0
λ(u|z(u))du. (5.11)
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The latter two equations taken together imply that to define the survival
function for an asset at w=0—or at the current value of w—it is necessary
to know the future values of the covariate as a function of w, which is often
an impossible requirement to fulfil [Fisher and Lin, 1999]. For more details
concerning including time-dependent covariates in a proportional hazard
model, please refer to [Fisher and Lin, 1999] and [Collett, 2003].

5.3.6 Expert Systems

An extended Expert system can be used as support for both RUL and RCA
algorithms. The extension includes a Petri net [Aghasaryan, 1997] based
execution scheduling, which allows for further enhancements of the system.
The method entails introducing a supporting function in order to use an expert
system along with a RUL estimation algorithm. In this use case the method is
applied together with a Proportional hazard model based RUL estimation of
tire wear (see Section 5.3.5.3).

The objective of the Expert System is to verify and make decisions based
on the result of the RUL estimation algorithm. The RUL estimation is per-
formed online, and updated every time a new sensor measurement set arrives.
However, the estimated RUL needs to be validated, and then a decision is
taken. The Expert System is performing the validation, and makes a decision
accordingly. A rule-based system is selected as it scales well, provides results
faster than case based systems [Simpson and Sheppard, 1998], and does not
require large amounts of labelled training data like machine learning based
methods. The proposed method mimics the behaviour of a human expert as
follows:

• The Expert System is triggered by a rule;
• It extracts key parameters from the trigger description and based on this,

a course of actions is selected;
• It initiates elementary investigation checks, search routines and possible

correlated processes in a simultaneous manner;
• Once a result of a check is available, new routines are started using the

new pieces of information;
• It continue to perform checks and tests until a result is found.

The course of actions to be executed for a specific trigger is based mainly
on expert knowledge. For each monitored component, a different rule set is
used, specific to the component.

Petri nets present an efficient way to implement data flow-driven pro-
gramming. They can be used to mimic the simultaneous data processing
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capabilities of a human expert. System specialists make ad-hoc plans or fol-
low predefined procedures to find the root cause of an alarm. Consciously or
not, they fetch further input data e.g., environment data, to start measurement
or analysis processes. Simultaneous processes finish asynchronously, which
forces the expert to make decisions on what to do next: what kind of further
checks can be initiated using the gathered input data? In short, the expert’s
behaviour that consists in scheduling elementary checks to solve a RCA
problem can be naturally modelled with Petri nets. In the use-case, the Petri
net describes rules, extended with elementary checks. The elementary checks
are typically basic checks like database lookups, more detailed data requests
as well as they may include active measurements like on-demand vibration
analysis. The various triggers associated with the definition of such Petri nets
are based mainly on expert knowledge.

Implementation
In a complex system the input of RCA and RUL calculation is big data
aggregated from multiple distinct sources, and the analysis of such big data
is performed in the cloud. For implementation, Microsoft Azure has been
chosen which provides extensive functionality for collecting and processing
data from different sources. Azure IoT Hub is used to handle incoming
chunks of data such as real-time measurements. The failure prediction is
performed in Azure Stream Analytics based on the trigger conditions, which
need to be uploaded to Azure Storage in advance. The IoT Hub receives
the error logs and other measurements from the trucks and forwards this
data to Stream Analytics, which checks for trigger conditions. A simple rule
set can be implemented in Stream Analytics directly. The Stream Analytics
process is defined in stream analytic query language, which has a similar
syntax to SQL. When a failure is predicted, a Web based remote application
will be informed, which does the actual verification. The remote application
implements the Petri-net based scheduler and the elementary checks. The
output of the application can be visualized in Azure Power BI, and it also
integrates in the Mantis HMI (see Chapter 6).

5.4 Alerting and Prediction of Failures

Alerting is a method to trigger a corrective action. The purpose of the
corrective action is to make sure that the failure does not re-occur. Data
driven alerting is based on algorithms that detect and predict failures. These
algorithms process historical data and, based on domain knowledge, produces
a failure probability (see Figure 5.10). Based on business understanding, these
probabilities are used to define the precise corrective action.
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Figure 5.10 Overview for Alerting and prediction of failures.

5.4.1 Theoretical Background

There is a wide variety of algorithms available to detect and predict fail-
ures. The algorithm selection is based on business understanding, data
understanding, and data preparation.

The CRISP-DM defines a methodology for structured data mining. For
prediction and alerting of failures, the following phases are used: modelling,
evaluation, deployment.

Modelling
Once the relevant data features have been identified, the algorithm to predict
failures can be developed. The output of the algorithm is a statistical measure
that indicates the failure probability. Based on business rules, an alert can be
created if the probability warrants this.

Evaluation
The model is applied to a selected set of real-life cases. These cases are
evaluated to judge whether there is a sufficient match between prediction and
reality.

Deployment
The model is brought into production after successful evaluation. The model
can be implemented in the system or outside the system (depending on the
required data sources and computation capabilities) to create alerts in real-
time.

5.4.2 Techniques Catalogue

There is a wide variety of modelling techniques available. Table 5.3 shows an
excerpt of techniques.

Based on research on practical systems, a selected set of algorithms is
described in the next sections. For each algorithm, the common application,
strengths and challenges are outlined, and some practical examples are given.
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Table 5.3 Techniques for Alerting and Prediction of Failures
Modelling technique Algorithm
Pre-processing Nearest Neighbor Cold-deck Imputation
Classification /
Pattern Recognition

SVM, LDA, Pattern Mining

Dimensionality
reduction

Temporal Pattern Mining, PCA

Probabilistic graphical
models

Hidden Semi-Markov model with Bayes Classification

Neural networks DNN, Autoencoders, Convolutional neural network with
Gramian Angular Fields, RNN with LSTM

Time Series Analysis Change detection
Statistical tests Fisher’s exact test, Bonferroni correction, Hypothesis test-

ing using univariate parametric statistics, Hypothesis testing
using univariate non-parametric statistics, Mean, thresholds,
normality tests

5.4.2.1 Nearest neighbour cold-deck imputation
General description
Many machine learning algorithms assume that all records in the data set
are complete, i.e., there is no missing data. Industrial data, however, often
contains gaps e.g., due to misconfigured sensors, connectivity problems or
manual input. One approach for addressing the missing data problem is to
impute the missing values. Let us assume that the data is provided as a table,
with columns representing the features and rows representing the records. The
common hot-deck methods include mean imputation (the missing values in a
column are filled in with the mean of that column), fixed value imputation,
random imputation (the missing values are filled by randomly sampling the
given values in the column), considering donor samples from the same data
set. Nearest neighbor cold-deck imputation fills in the missing values from
donor records that are selected from a different data set. It selects the donors
by searching for the nearest neighbours using meta-features describing the
original data set or its column. The meta-features can be derived from
the available data samples (e.g., mean, range, ...) or external to the data
(e.g., specification of the data source, conditions under which the data was
collected . . . ).

Common applications
Cold deck imputation in general is commonly used in for imputing missing
data in structured collections of data such as tables and questionnaires.
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Strengths and challenges
Nearest Neighbour Cold-deck Imputation performs better than the traditional
hot deck imputation methods for data sets for which a significant proportion
of the data is missing. The performance of Nearest Neighbour Cold-deck
Imputation also depends on the meta-features used for selecting the nearest
neighbour donors, and how they partition the donor space. If donors are
selected based on meta-features derived from the data set, then (similarly to
hot deck imputation) the more data is missing the less accurate the imputa-
tion. If external meta features are used, then the imputation accuracy does not
depend on the amount of missing data, but on the relationship between the
external features and the underlying data generating process.

5.4.2.2 Support vector machine
General description
A SVM is a supervised learning model that can be used for binary classifi-
cation and regression analysis. Supervised learning requires labelled training
data consisting of input objects (e.g., a feature vector) and a desired output
in order to infer the model parameters from the data and to be able to predict
new incoming data. A SVM constructs a hyperplane or a set of hyperplanes
to separate classes in the feature space. SVM defines optimal hyperplanes
for linearly separable patterns and can be extended to patterns that are not
linearly separable, by transforming the original data to a new space by using
a kernel function.

A hyperplane is defined as f (x) = b + wT x where w is the weight vector,
b is the bias and x the training dataset. Infinite hyperplanes can be used to
separate the classes by scaling w and b (See Figure 5.11). Rewriting the
hyperplane in canonical form states

∣∣b+ wTx
∣∣ = 1.

The optimal hyperplane is therefore defined as the plane maximizing the
margin of the training data. In SVM the data points that lie the closest to
the decision surface and therefore the most difficult to classify, are the ones
influencing optimality. These points are called support vectors.

The distance between points is defined as di =
|b+wT xi|
‖w‖ = 1

‖w‖
In a binary classifier, the margin M is defined as twice the distance to the

closest examples M = 2
‖w‖

Therefore, the problem of maximizing the margin M is the same as the
problem of minimizing the following function L subject to constraints:

min
w,b

L (w) =
1

2
‖w‖2 subject to yi( b+ wTxi ) ≥ 1 ∀i (5.12)
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Figure 5.11 Linearly separable point can be separated in an infinite number of ways.

Where yi represents each of the labels in the training dataset. This is a
constrained optimization problem that is solved by Lagrangian multiplier
method as:

L =
1

2
‖w‖2 −

∑
αi[yi

(
b+ wTxi

)
− 1] (5.13)

By equating the derivatives to 0, the result is w = Pαiyixi and Pαiyi = 0
(Figure 5.12).

In case the data are not separable by a hyperplane, SVM can use a soft
margin, meaning a hyperplane that separates many but not all data points
(Figure 5.13). Different formulations are possible for adding soft margin by
adding slack variables si and a penalty parameter C. An example is the L1-
norm problem:

min
w,b,s

L (w) =
1

2
‖w‖2 + C

∑
j

si subject to yi( b+ wTxi )

≥ 1 ∀i and si ≥ 0 (5.14)

Figure 5.12 Optimal hyperplane in a 2D feature vector obtained by maximizing the margin.
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Sj
Si

Figure 5.13 Slack variables introduced for not linearly separable problem.

Some problems that do not have a simple hyperplane as a separator may
require nonlinear transformation with kernels. The idea is to gain linearly
separation by mapping the data to a higher dimensional space (Figure 5.14).

SVM are inherently a binary classifier that can be extended to the multi-
class problem (e.g., by reducing the multiclass problem into multiple binary
classification problem).

In the context of anomaly detection, one-class SVM can be used to detect
if the system is behaving normally or not. In order to define the normal
behaviour of the system to be monitored, historical data of the system running
in normal behaviour is required. The support vector model is hence trained on
the anomaly-free data and afterwards each new measurement point is scored
by a normalized distance to the decision boundary.

Common applications
SVM was developed by Vapnik and Chervonenkis [1971]; Vapnik [1995]
and became popular because of its success in handwritten digit recognition.

Φ:  x→φ(x)

Figure 5.14 SVM kernel transformation to gain linearly separation.
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SVMs have demonstrated highly competitive performance in numerous real-
world applications such as bioinformatics, text mining, face recognition, and
image processing, which has established SVMs as one of the state-of the-art
tools for machine learning and data mining.

Strengths and challenges
• Some strengths of SVM are:

• Training time necessary depends on the number of supports and the
kernel chosen, while the execution time is very short so that it is
suitable for real-time application;
• SVM do not suffer from the curse of dimensionality;
• SVM is not much affected by local minima in the data;
• Does not require lot of data to be trained, however the data should

come from all the possible normal behaviours of the system.

• On the other hand, it also has some limitations, some of them being listed
below:

• The feature space of a SVM is often high dimensional and
therefore has many parameters and is hard to estimate;
• Selection of the kernel function is not trivial.

5.4.2.3 Linear discriminant analysis
General description
Let P(x) be the probability distribution of the input data, and P(y) the class
distribution. The goal of a classifier is to assign a sample x to the class y,
which corresponds to the largest posterior probability P(y|x) that input x
belongs to class y. The LDA classifier relies on the Bayesian theorem

P (y | x) =
P (x | y)P (y)∫

y P (x | y)P (y) dy
(5.15)

to compute the posterior using the likelihood P(x|y) of input x being gen-
erated by class Y, the prior P(y) and the marginal probability P(x) of input
x. The P(y) can be easily estimated from the data by taking the fraction of
samples that belong to class Y. Assuming that likelihood P(x|y) is normally
distributed, it can be estimated by fitting the mean and variance parameters to
the data. See James et al. [2014] for more details, including the formula for
the discriminant function used to select the most likely class for input x.
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Common applications
LDA is a general classifier that can be applied in various applications.
In the context of failure predictions, it can be applied to classify process
measurements as those likely to result in a failure.

Strengths and challenges
• LDA is applicable in cases when there are few samples, or the classes

are overlapping or well separated (in contrast to other classification
methods, e.g., logistic regression, which become unstable when classes
are well separated). LDA performs best when the classes (i.e., P(x—y))
are approximately normally distributed.

5.4.2.4 Pattern mining
General description
Pattern mining is one of the most known methods to extract useful infor-
mation from the data. By looking for patterns, i.e., closely linked events or
items, this technique allows to analyse behaviour and make prediction on
future behaviour.

By knowing this behaviour, pattern mining can predict when a failure will
occur (by detecting also when the start of the sequence occurs) and can signal
the problem before it occurs. This method can be deployed in many various
fields, such as maintenance of a factory or a wind mill farm, determining a
disease, predicting the next medical prescription, analysing the behaviour of
cyclists in a town.

The first pattern mining algorithm, Apriori, was created in 1995 and was
only able to find frequent item sets, i.e., to find items that usually occur
together. Now pattern-mining methods can also look for sequences of items
where the order of the items matters.

Common applications
The list below only mentions the main topics, but many others exists:

• Frequent item sets
A supermarket can analyse the list of goods bought by their customers to
find those usually bought together. It can help the supermarket managers
to reorganize their shelves or to propose special offers;
• Sequence of events

A logistic company that continuously monitors events occurring in their
vehicles, e.g., engine oil level too low or motor temperature too hot.
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As they also know when the vehicles are break, they can find patterns
leading to failures, i.e., the sequence of events that usually precede a
failure;
• Multi-level

In multi-level pattern mining, not only the items are considered, but also
their hierarchy. Going to the supermarket use case, multi-level pattern
mining can output purchases containing apples, pears, kiwis. All of them
are considered as distinct items although they are all fruits. Therefore,
the supermarket may also be interested to find patterns containing fruits
and not the more specific sub-level items, e.g., apples. In addition, by
considering the fruits as a whole, it is possible to find patterns that would
be hidden if selected independently.
• Multi-domain

The multi-domain pattern mining methods consider multiple properties
of the items when looking for patterns. The supermarket could have
stores all over a country and would be interested to check if there
are different patterns depending on the location of the purchase. These
methods could also analyse the patterns depending on gender or income
of the customer. Multi-domain methods will answer questions such as
which goods are usually bought together by rich women in Brussels.
• Temporal pattern mining

When considering a sequence, the interest property can be not only
the next item of the sequence, but also the usual gap time before the
occurrence of that item. This is particularly interesting for maintenance
purposes. If a pattern leads to a failure or defective product, it can
be interesting to know how many times it is necessary to prevent that
problem and ensure that there is enough time to do so. Indeed, nobody
is interested in a pattern than only allows to predict a car’s failure 3
seconds before it happens.
• Constrained pattern mining

This topic covers many different methods that allow to impose con-
straints to the patterns. A constraint can be defined on the length of the
patterns, to only retrieve patterns of more than 5 items. For example,
directed pattern can search for patterns containing items of interest,
e.g., to find patterns containing fine Belgian chocolate. Aggregate
constrained pattern mining imposes a constraint on an aggregate of
items, e.g., to find patterns where the average price of all items is above
50 euro.
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Strengths and challenges

• Strengths

• Insights about the sequences of events;

• Challenges

• Computation time on large datasets.

5.4.2.5 Temporal pattern mining
General description
Temporal abstraction is the process of transforming a point time series into
a series of state intervals and is widely used in data mining to aggregate
multivariate time series into a representation that is easier to analyse. This
higher-level representation is equivalent to a smoothing of the data. Instead
of a series of points, the values are discretized using an abstraction alphabet Σ
that represents the set of possible value ranges a variable can assume (e.g., Σ
= {High, Medium, Low}). Each time series is then represented by a series
of intervals during which the value is constant. Temporal Pattern Mining
then searches for (multivariate) temporal patterns that are common among
the input samples, where a pattern encodes the temporal ordering between
the intervals present in the sample (e.g., “Sensor1.High before Sensor2.Low
and Sensor2.Low concurrent with Sensor3.Medium”). Each sample can then
be reduced to a binary vector indicating which temporal patterns it contains.
The input dimensionality can be further reduced by keeping track only of
those patterns, which are sufficiently long and unique. See Batal et al. [2013]
for more details.

Common applications
Temporal pattern mining is applied for mining symbolic patterns in various
domains, including natural language processing, bioinformatics (e.g., finding
discriminative patterns, sequence alignment).

Strengths and challenges
Temporal Pattern Mining can be used as a dimensionality reduction technique
for multi-dimensional time series, as a pre-processing step for classify-
ing noisy multivariate time series with irregular time intervals between
measurements, different granularity across time series, and missing values.
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5.4.2.6 Principal component analysis
General description
PCA is a space transformation method used to reduce the dimensional space
from a multivariate dataset while retaining most of the information (com-
ponents). This statistic technique converts a set of observations of possible
correlated variables into a set of values of linearly uncorrelated variable called
principle components by applying a transformation in such a way that the
first principal component has the largest possible variance [Pearson, 1901].
The key idea is that if two signals are highly correlated or dependent, one is
enough to carry the information.

Two steps are performed in the PCA transformation [Jolliffe, 2002]:

• Find principal components (Figure 5.15);

• Compute the covariance matrix Σ of the dataset X;
• Find P = (n,n) the n eigenvectors −→p1,−→p2, . . . ,−→pn of Σ and the

corresponding eigenvalues Λ1= Λ2= = Λn where P represents
an orthonormal basis.

• PCA approximation by ignoring components with lower significance.

Important properties of the PCA transformation are 1) that the principal
components are uncorrelated since they are orthogonal to each other; 2) the
data can be transformed between the bases without loss of information; 3) the
principal components are ordered so that the first retain most of the variation
in the data.

The PCA can be used for different applications, one of which is fault
detection. This requires having historical data of the system to be monitored

Figure 5.15 Principal components of a 2-dimensional data.
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in a healthy state Xh. For each new input data Xobs, the projection on the
eigenvectors is calculated, and then anti-transformed in order to calculate
the normalized reconstruction error, which is a measurement for determining
whether the input belong to normal or to abnormal conditions, as follows:

• Normalize the data so that the mean is zero and standard deviation is
one;
• Calculate the principal components P of Xh and retain only the first n

components containing a predefined variance (e.g., 95%);
• Reconstruct the input data Xobs by projecting in the transformed

basis, keep only the principal components and anti-transform: Xrec =
XobsPP

T ;
• If Xrec = Xobs then the input data belong to the normal condition,

otherwise it belongs to the abnormal condition. This distance need to
be defined based on threshold values.

Common applications
PCA is often used as a technique to reduce the amount of information from
an original dataset before a classification or a clustering step is applied.
Moreover, it can be used for finding patterns in the data and for data
compression.

Strengths and challenges
• Some strengths of PCA are:

• Training time necessary to find the principal components is pro-
portional to the number of measured signals, usually denoted as
n, while the execution time is very short so that it is suitable for
real-time applications;
• Reduce the dimensionality of the problem, retaining only the

relevant information;
• Sound statistical technique;
• Does not require lots of data to be trained, however the data should

come from all the possible normal behaviours of the systems.

• On the other hand, it also has some limitations, the most prominent of
them are listed below:

• PCA has low robustness on highly correlated measurements;
• PCA produce unsatisfactory results for dataset characterized by

highly nonlinear relationships.
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5.4.2.7 Hidden Semi-Markov model with Bayes classification
General description
HMM is a form of Markov Mixture Model, which contains a hidden and
observable stochastic process. The former is a hidden process representing the
system states while the latter is a Markov chain of the output of the system
known as observations. A complex system (of which we cannot model its
internal operation) can be represented by a HMM. A model can be trained
with observation sequences which can (using a proper structure and sufficient
number of training sequences) estimate the likelihood distribution of states at
each transition, e.g., the most likely state of the system.

The Hidden Semi-Markov Model is an extension of HMM with the
duration parameter, e.g., we can use sequences where observations do not
follow in constant time.

Common applications
HMMs have been used in speech recognition for many years, using it for
failure prediction is quite new. It is a supervised learning approach, so
training data is needed. Multiple models need to be trained, at least one for
failure sequences and one for non-failure sequences. Based on observations,
sequences are assembled and sequence likelihood is calculated on each
model. A Bayes classification algorithm is used to detect a failure-prone case
and the probability of failure.

Strengths and challenges
For the successful outcome of using the HMM approach, a proper model
structure needs to be selected. The number of states needs to be selected based
on the length of the observation sequences. In addition, this length needs to
be the same for each sequence. Shorter sequences need to be padded with
synthetic symbols.

5.4.2.8 Autoencoders
General description
An autoencoder is a neural network specifically designed for learning rep-
resentation (encodings) from data. It can be used in an unsupervised setting
such as dimensionality reduction. It mays also be used for creating generative
models, which were exploited in the MANTIS project.

An autoencoder is a standard feedforward multilayer neural network,
however, its topology (structure) is characterized as follows:
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• The number of output nodes is the same as the inputs in order to allow
for signal reconstruction;
• A central layer with the minimum number of nodes is used to encode

the data (minimal representation), denoted as the z layer;
• The connections from the input nodes through 0 or more hidden layers

to the z layer are used to encode the signal;
• The connections from the output nodes through 0 or more hidden layers

to the z layer are used to decode the signal;
• The network on left (input) and right (output) are usually symmetric.

The simplest autoencoder network consists of one input layer, a single hidden
z layer and one output layer. Autoencoders are trained to minimize the
reconstruction error by measuring the difference between the input and the
output. One such loss function can be for example the squared error.

It is important to note that the z layer must have a reduced number
of nodes, otherwise it will not be able to learn an encoding and simply
“memorize” all of the examples. In effect, the z layer should be small enough
to compress the data into a reduced set of useful features, although not too
small, otherwise the learned features will not be useful. Several variations
of these networks have been developed with the aim of finding such useful
features, i.e., capturing essential information and find a richer set of features.

One variant is the denoising encoder that assumes that the input data
consists of a stable set of higher level features that are robust to noise. The
aim is to extract those high-level features that represent the data distribution
robustly. In this variant, the learning procedure first corrupts the signal and
uses that as input to the network. Learning follows the usual procedure of
loss evaluation and backpropagation of the error. However, it is important to
note that the loss function is between the original uncorrupted signal and the
network’s output signal.

The sparse autoencoder works under the assumption that by making the
hidden layers sparse, it is possible to better learn the structures that are present
within the data. Sparsity is imposed by either manipulating the loss function
or deactivating some of the hidden nodes with higher activation values (for
example using a L1 regularizer). Intuitively, the network will learn to select a
subset of features for a given number of inputs that are characterized by those
features only.

The variational autoencoder has its roots in Bayes inference and graphi-
cal models. It considers the hidden nodes as a set of latent variables connected
in a regular graph (fully connected layers) and whose parameters (weights)
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are unknown. Variational Bayesian methods are then used to provide an
approximation to the posterior probability (weights) of the unobserved vari-
ables (hidden nodes), and base their mechanisms on an iterative procedure
similar to expectation maximization to determine the solution. More con-
cretely, they use a loss function with additional penalty terms (function
includes a term using Kullback–Leibler divergence) and trains the network
with the Stochastic Gradient Variational Bayes algorithm. Note the posterior
probability that is learned can be seen as two conditional probabilities each
with its own set of parameters, one for encoding and another for decoding.
Moreover, these are encoded separately in the loss function.

The contractive autoencoder [Rifai et al., 2011] uses a loss function that
promotes learning models that are robust to variations of the input. The loss
function uses a Frobenius norm of a Jacobian matrix as a regularizer. The par-
tial derivatives of this norm apply only to the activations of the input nodes.
This penalty has the effect of ensuring that only significant changes of the
input cause changes in the hidden layers. In other words, if the partial deriva-
tives are zero, then feature learning is reduced. The intuition here is that only
important changes will promote significant changes in the learned parameters.

Common applications
The autoencoders ability to encode data and regenerate the input can be taken
advantage of in the following way:

• Dimensionality reduction: use the z hidden layer as an output for
visualization;
• Feature engineering: use the z hidden layer as an output to generate input

for other machine learning algorithms (regression, classification);
• Clustering: use the distance between the z hidden layer’s outputs

measure similarity and difference between input signals (feature engi-
neering for exploratory analysis). The same technique can be used for
classification;
• Pre-training of Deep Network: some deep neural networks are difficult

to train due to the vanishing and exploding gradients. The deep networks
can use autoencoders’ learning process in an initial stage in order to
initialize the parameters (weights) that will facilitate learning in the next
stage (the use of ReLU as activation functions has made this largely
unnecessary);
• One-Class Classification: the error of the regenerated signal can be used

to determine if the input signal has any new features that differentiate it
from the training dataset;
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• Image denoising: robust autoencoders can regenerate noisy input signals
by extracting and using only the most salient features that are resistant
to noise;
• Natural language processing (NLP): autoencoders have been used to

solve problems in word embedding (converting words or sentences to
vectors), build bilingual word and phrase representations, document
clustering, sentiment analysis and paraphrase detection.

Strengths and challenges
The main difficulty in using the autoencoder was the set up of the hyper-
parameters and the topology. A simple grid search was performed. We found
that a simple 3 layers network was effective (the input and output layers
consisted of 32 nodes). We could successfully detect changes in the normal
distribution’s standard deviation (z layer with 16 nodes) and the mean and/or
standard deviation (z layer with 25 nodes).

Advantages

• No need to understand the data;
• Automated feature engineering (data transformation);
• Reduced pre-processing required (except for normalization or scaling).

Disadvantages

• Requires large datasets of relevant high quality data;
• Requires large amounts of CPU time and memory;
• Many hyper-parameters to tune;
• Difficult to select the most appropriate loss function and network

topology;
• Model validation is difficult (requires correct data labelling);
• Training is difficult if the data is not representative of the problem (for

example, non-failure data contaminated with failures);
• May learn irrelevant features (only detectable during model valida-

tion). One further issue regards how to bias the network to learn those
important features;
• Features are not interpretable.

Use in MANTIS
The technique described above can be used to detect anomalies that may
occur in a press brake machine. Signals indicating the movement (velocity
and distance) of the press ram and back gauge, oil temperature and vibration
can be used to detect failure.
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Denoising encoders allows us to encode and regenerate the signals that
represent the machine with no failure. To test for failure, the signals is
encoded, and it is verified that its reconstruction is within a given bound. If it
is not, it can be concluded that the signal signature has not been encountered
before (because it cannot be decoded successfully) and it most probably
represents a failure. Unlike the statistical test, we are not testing if a given
sample belongs to the same population. We are in effect testing if the “curve”
that describes the displacement of the ram or back-gauges have the expected
“shape”. Samples of non-failures “curves” are the dominant class that were
used during an initial training phase. Samples of failures “curves” can then
be used to establish the cut-off threshold between the fail and no fail classes
during a second phase of learning. This threshold is then used again for model
evaluation.

Due to a lack of data, synthetic data were used for the tests, generated
using a normal distribution by varying either the mean, standard deviation
or both. The autoencoder was trained for datasets with a single set of known
statistics (no failure). The autoencoder was then used to reconstruct the signal
for data with a different set of statistics (with and without failure labels).
During the learning phase, we determined the minimum square error thresh-
old that was necessary to reduce false positives. During a second learning
phase, signals with different statistics were used to determine the minimum
square error threshold that was necessary to reduce false negatives. The final
threshold was then set to the mean of these two separate thresholds.

Test sets were then used to regenerate the input signal and calculate the
reconstruction error (containing both failure and non-failure signals). If this
error was below the threshold no failure was assumed, otherwise the data was
labeled as a failure. The Mathews correlation coefficient was then used to
evaluate the performance of the model. The Mathews correlation coefficient
emerged from the experiment was evaluated as 1 (perfect score).

5.4.2.9 Convolutional neural network with Gramian angular
fields

General description
According to a survey from 2014 [Schmidhuber, 2015], one of the currently
most successful deep learning methods uses RNNs with LSTM or CNNs with
max-pooling. This technique description will focus on the latter one.

In image classification, the goal is to recognize (classify) what is shown
in a given input image. Typically, an image is encoded as a matrix with values
between 0 and 1 or 0 and 255, along with the correct label (i.e., what is
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shown in the image). Colour images are typically encoded as 3-channel (red,
green, blue) images. Several benchmark datasets are available in this domain,
including MNIST1 (grayscale images of handwritten digits), ImageNet [Deng
et al., 2009] (colour images of objects, animals and scenes) and CIFAR2

(colour images of vehicles and animals), to name a few.
In essence, CNNs rely on three basic concepts, which are described below

and illustrated graphically in Figure 5.16. To simplify discussions, we assume
that the input consists of 1-channel images. Note that in a CNN, the input
image is treated as an h× h square, with h the number of pixels (or: the height
and width of the image). Hence, the input layer of a CNN contains h× h input
neurons, where each neuron contains the intensity of one pixel of the image.

Each neuron in the first layer after the input layer, known as the convo-
lutional layer, is only allowed to connect to a small part of the input layer.
In particular, each neuron in the latter layer connects to a small square of the
input neurons (e.g., 3 × 3), known as the local receptive field. In this work,
the size of this square region is denoted as recepsize. Each hidden neuron will
learn a weight over the connections from its local receptive field, along with
a bias. Intuitively, each neuron in the convolution layer thus learns to analyse
the data in its local receptive field.

In Figure 5.16a, a 10 × 10 pixel input image is shown (i.e., h = 10). The
neurons of the next convolution layer use local receptive fields of recepsize
= 3 to connect to a small square region of the input. The first convolution
neuron (top-left neuron first row, light orange circle) connects to the top
left receptive field (light orange rectangle) of the input. For the next neuron,

Figure 5.16 Detection of the presence or absence of a 3× 3 square in the input image by a
Convolutional Neural Network.

1Y. LeCun, C. Cortes, and C. J.C. Burges. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/

2A. Krizhevsky. CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/
kriz/cifar.html
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the receptive field is shifted by 1 pixel horizontally, obtaining the receptive
field for the second convolution neuron (dark orange). This procedure repeats
itself, up to the borders of the input image. For the first neuron on the second
row of the convolution layer (brown circle), the local receptive field of the
first neuron in the first row is shifted by 1 pixel vertically (brown rectangle).
The amount of pixels shifted (either horizontally or vertically) to obtain local
receptive fields for convolution neurons is known as the stride length, denoted
stridelen. Subsequent horizontal or vertical local receptive fields therefore
always overlap by recepsize x stridelen pixels from the input.

The number of pixels that remain of an h pixel image after applying
convolution with receptive fields of size recepsize and stride length stridelen
can be computed according to the following formula:

convsize =
h− recepsize

stridelen
+ 1. (5.16)

In Figure 5.16a, h=10, recepsize=3 and stridelen=1 resulting in a 10−3
1 +

1 = 8 pixel image. In order to match this reduced image size, there are 8 × 8
convolution neurons in the subsequent layer.

Shared weights and biases

In a CNN, all the weights and biases of the neurons in the convolutional layer
are shared. This allows the network to detect a particular feature in the input
image at any position; this property is also called translation invariance. Note
that the term feature in the context of CNNs has a different meaning than
the feature from feature selection methods. In the former context, a feature
typically represents a certain part of an image (such as a horizontal line).
In the latter context, it refers to a piece of information in a dataset (e.g., a
column or a combination of columns) that can be used for classification, to
distinguish failures from non-failures.

The weights and biases from the input to the convolutional layer are often
referred to as a feature map; a CNN usually has multiple feature maps to learn
different features in the input image (e.g., horizontal, vertical and diagonal
lines). In this work, the number of feature maps is denoted as nrmaps. In
Figure 5.16a, three feature maps (nrmaps = 3) are used to analyse the 10× 10
input image, where each of the neurons in the other feature maps has the same
connectivity pattern of the top feature map shown here.

Pooling

The objective of pooling is to simplify or summarize the information from
a convolutional layer in a small square region (e.g., 2 × 2), for a particular
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feature map. The size of the pooling region is also known as the pooling size,
denoted poolsize. Different types of pooling exist, but the most common form
is max-pooling, where a pooling unit outputs the maximum activation in its
pooling region. Pooling is a nice way to reduce the number of parameters of a
CNN, because it reduces the size of the remaining input image (after applying
convolution). In particular, if the size of an image after applying convolution
is convsize, then this is reduced to a convsize

poolsize image after max-pooling.
Max-pooling is illustrated in Figure 5.16b. Each neuron in the pooling

layer uses the convolution layer from Figure 5.16a as input. The first neuron
in the pooling layer (light orange circle) connects to a small square pooling
region of size 2 (light orange square). For the second neuron (dark orange
circle), this square is shifted horizontally by the pooling size, obtaining
the pooling region for this neuron (dark orange square). This procedure
is repeated up to the borders of the input. For the first pooling neuron
on the second row (dark brown circle), the square from the first pooling
neuron of the first row (light orange) is shifted vertically by the pooling
size to obtain a new pooling region (dark brown square). As in convolution,
pooling is done per feature map separately and so there are again 3 feature
maps in Figure 5.16b that follow the same connectivity pattern. Unlike
convolution however, there is no overlap in subsequent horizontal or vertical
(pooling) regions. According to the calculations from above, convsize = 8
in Figure 5.16a after convolution. With poolsize = 2, this image is further
reduced to 8

2 = 4 after applying pooling; there are therefore 4 × 4 pooling
neurons in Figure 5.16b.

Because of these three basic concepts, CNNs are powerful networks that
can learn useful spatial representations of images and at the same time require
relatively few parameters when compared to other types of networks. Gener-
ally speaking, if a neural network has few parameters, it also has a shorter
training time. How well a neural network performs is not only determined by
its test performance, but also by the time needed to train the network. After
all, a network that performs very well (e.g., achieves over 90% accuracy) that
takes weeks (or even months) to train is not very useful.

Common applications
CNNs are typically used to perform classification tasks on images, for
instance on the ImageNet dataset [Deng et al., 2009]. Images are not time
series however and in some approaches [Wang and Oates, 2015; Bashivan
et al., 2015], a transformation technique is employed to transform the raw
time series data into a sequence of images, before providing it as data to
some kind of CNN. Other approaches make use of EEG, video or log data
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to do time series classification with CNNs, for instance in the context of
making predictions in the medical domain [Hajinoroozi et al., 2016], human
action recognition [Ijjina and Chalavadi, 2016], automatic annotation of
clinical texts [Hasan et al., 2016] and automatic identification of predatory
conversations in chat logs [Ebrahimi et al., 2016].

Strengths and challenges
• Some strengths of CNN are:

• CNN is one of the strongest algorithms with a high accuracy for
image recognition;
• CNN can automatically extract high-level features from the raw

data that are suitable for solving classification or regression prob-
lems, without relying on features designed manually by an expert;
• CNN are robust for distortions in the image caused by the camera

lens; different lighting conditions, horizontal and vertical shift, etc.
[Hijazi et al., 2015];
• Convolving filters over the input vector allow to reduce the number

of trained parameters, thus reducing the resource requirements for
training and storing CNN models.

• On the other hand, the usage of CNN gives rise to some challenges:

• The algorithm requires huge amounts of data. Most problems
using neural nets require somewhere around 10.000 examples, but
preferably more. To collect and label these examples can be very
time consuming;
• CNN and artificial neural networks in general are very computa-

tionally expensive to train. Due to the advancements in GPUs in
the last decade, it is now viable to train neural networks;
• While visualizing the feature maps can provide some insight into

the features that a CNN extracts in the intermediate layers, the
inclusion of dense layers makes it difficult to interpret how the
neural network model produces its prediction and to trust the result.
For some domains, e.g., medical and fraud investigation, this is
unacceptable;
• The design of CNN architectures for solving a particular machine-

learning task remains an art.
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5.4.2.10 Recurrent neural network with long-short-term memory
General description
According to a survey from 2014 [Schmidhuber, 2015], some of the most
successful deep learning methods nowadays use Recurrent Neural Networks
RNNs with LSTM or CNNs with max-pooling. This technique description
focuses on RNN with LSTM.

In a RNN [Zachary et al., 2015], both forward and recurrent edges to neu-
rons are allowed. Recurrent edges may form cycles in a network, including
a cycle of length 1 (known as a self-connection or self-loop). Because of the
recurrent connections, a certain neuron now not only receives input from the
current data at time t, but also from the previous hidden state at time t - 1. The
recurrent edges thus introduce a notion of time in RNNs and as such, they are
naturally used to model sequences (including time series). An example of a
time series classification benchmark dataset is the University of California,
Riverside (UCR) repository [Chen et al., 2015]. Although RNNs are very
powerful networks, they often suffer from either the vanishing gradients or
exploding gradients problem. In the former problem, the gradients (used to
update the weights in the various layers) grow exponentially smaller as they
are propagated backward through the hidden layers. In the latter problem, the
opposite occurs, and the gradients grow exponentially larger. Both problems
cause learning to considerably slowdown in RNNs. To overcome this prob-
lem, a special type of neuron or memory cell has been introduced, known
as a LSTM cell [Gers et al., 2000]. This memory cell provides a form of
intermediate storage in between the long-term memory stored in the weights
of an RNN (which tend to change slowly over time during training) and
the short-term memory stored in the activations passed from one neuron to
another (which can change much faster). A simplified overview of an LSTM
is shown in Figure 5.17a. The idea of the LSTM cell is to allow a network to
hold a value for a longer period of time, using a special internal state that has
a self-loop with weight 1. Both the flow in and out of the cell are controlled
via gates, as illustrated in Figure 5.17a (gates are shown in gray). If the input
gate is set to high (Figure 5.17b), data from the rest of the network (e.g.,
a value) can flow into the memory cell and change the internal state. If the
input gate is set to low (Figure 5.17c), no data can flow into the cell. A similar
mechanism is used to control the output of the memory cell, through the use
of an output gate (Figure 5.17d and e). The network can also ‘flush’ (remove)
the contents of the memory cell using a special forget gate. In particular, if
the forget gate is set to high (Figure 5.17f), the previous state is maintained; if
the forget gate is set to low (Figure 5.17g), the content of the memory cell is
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Figure 5.17 Illustration of the components of a LSTM cell.

removed (forgotten). During training, the RNN learns when it is appropriate
to remember or forget data using the LSTM cells.

In an RNN, the neurons in the hidden layers (which typically have
sigmoid or tanh activation functions) are replaced by LSTMs, obtaining
an entire layer with LSTM cells. Using these cells, an RNN can model
long sequences reliably without suffering from the vanishing or exploding
gradients problems.
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Common applications
RNNs are naturally used to model time series and have been applied success-
fully in many application domains, including video description [Yuea et al.,
2016], speech recognition [Li and Wu, 2015; Li et al., 2016; Cai and Liu,
2016], computer vision [Chen et al., 2016] and diagnosing medical EEG data
[Lipton et al., 2016].

Strengths and challenges
• Some strengths of RNN in combination with LSTM are:

• Deep learning methods, such as RNN, have the ability to learn
and model non-linear and complex relationships, which is a major
advantage since in practice many of the relationships between
inputs and outputs are non-linear as well as complex;
• Recurrent Neural Networks are suitable for problems that require

sequential processing of information;
• LSTM models are powerful to learn and remember the most impor-

tant past behaviours, and understand whether those past behaviours
are important features in making future predictions;
• The recurrent connections effectively allow RNNs to share param-

eters and thus capture long time dependencies using simpler
models than deep feed-forward neural networks, making them
suitable for cases with smaller data sets.

• On the other hand, the usage of RNN with LSTM provides some
challenges:

• RNN and artificial neural networks in general are very computa-
tionally expensive to train. Moreover, RNN are more difficult to
parallelize (e.g., using GPUs) than feed-forward networks, due to
the sequential dependencies between the states;
• It is difficult to interpret how the neural network model produces its

prediction and to trust the result. For some domains, e.g., medical
and fraud investigation, this is unacceptable.

5.4.2.11 Change detection algorithm
General description
Change detection is the problem of finding abrupt changes in data when the
probability distribution of a stochastic process or time series changes in order
to determine the fault early enough and to provide an early warning alarm
[Aminikhanghahi and Cook, 2017].
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Change detection algorithm is therefore not a single algorithm but a
family of algorithms that can be categorised as follows [Gustafsson, 2000]:

• Methods using one filter, where a whiteness test is applied to the residual
• Methods using two or more filters in parallel, each one following a

specific assumption for the change to be detected (Figure 5.18).

A filter in system identification is a mathematical model that maps the
relation between the input and output of the system and returns a sequence of
residuals. Which filter to be used is a research topic by itself and it depends
on the problem under study [Ljung, 1999] and does not matter from a change
detection perspective [Gustafsson, 2000]. Examples of filters can be Kalman
filter, kernel, parametric models, state space models and physical models.

The basic idea of a change detection system is that if there is no change
in the system and the model is correct, given the input and output variables,
the result is a sequence of independent stochastic variables with zero mean
and know variance. When a change occurs in the system, the model cannot
capture anymore the behaviour of the system and this affects the residuals.
The essential step now is to define a rule of thumb to indicate whether the
residuals are too large and an alarm needs to be generated or not.

This can be formulated into the problem of deciding between two
hypotheses where a stopping rule is achieved by low-pass filtering of st and
comparing the value with a threshold [Gustafsson, 2000]:

H0 : E (st) = 0
H1 : E (st) > 0

(5.17)

Figure 5.18 Filter that map the relation between inputs ut and output yt and generate
residuals εt.
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Below two examples of common rules are given [Gustafsson, 2000]:

• CUMSUM is a sequential analysis technique [Barnard, 1959]. It implies
calculating the cumulative sum from the residuals of the filter as follows:

S0 = 0

St+1 = max(0, St+1 + st − v)
(5.18)

When the value of S exceeds a certain threshold value, a change in the
timeseries has been found where v represents the likely-hood function.

• Geometric Moving Average:
The Geometric Moving Average calculates the geometric mean of the
previous N values in the time series as follows:

St+1 = λSt + (1− λ)st (5.19)

Where λ introduces a forgetting factor to account for the slow timevary-
ing behaviour (i.e., degradation) of the system. When the value of S
exceeds a certain threshold value, a change in the time-series has been
detected.

Therefore, a change detection algorithm based on time-series requires the
definition of the model to represent a system and a rule to define when the
model does not match anymore the behaviour of the system and therefore an
alarm must be triggered.

Common applications
Change detection has been used in a number of applications [Aminikhanghahi
and Cook, 2017] from stock analysis, to condition based monitoring, to
speech detection and image analysis. Moreover, it has been used for detecting
climate change and human activity analysis. Generally, it can be used for any
process in which time series are available and a model representing the system
can be defined.

Strengths and challenges
• Some strengths of change detection algorithms are:

• Expert knowledge can be included in the model;
• Fast technique that can be used also on embedded devices in

real-time;
• Do not require historical data;
• Can track dynamic change of the behaviour of the system if timevary-

ing parameters are used.
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• On the other hand, it also has the limitations listed below:

• Requires defining or identifying a model of the system of interest;
• Selection of the stopping rule is not trivial and can vary depending

on the system of interest.

5.4.2.12 Fisher’s exact test
General description
Fisher’s exact test3 is a statistical significance test used in the analysis of
contingency tables. It is in particular suitable for small sample sizes, where
an χ-squared test is less appropriate or would yield unreliable results. For a
given contingency table, its p-value is given by the sum of all probabilities
that are at most the probability of the given contingency table of any other
contingency table that is realizable with the original row and column sums in
the given contingency table [Fisher, 1922, 1954; Agresti, 1992]

Common applications
The test is useful for categorical data that result from classifying objects in
two different ways. As such, it has a broad applicability in many domains.
A typical example is where one classification constitutes a so-called ground
truth, of which the validity is beyond doubt, and the other consists of the
output of a machine-learning algorithm. In this case, one normally speaks of
a confusion matrix instead of a contingency table.

Strengths and challenges
Fisher’s exact test is particularly suitable when the sample size is small. Also,
the fact that it is a nonparametric test is a strength, as no assumptions have
to made about the shape of the distributions. It is, however, based on the
assumption that the row- and sum-totals of the contingency table are fixed,
which may be problematic in practice. In the current context, this assumption
could be defended. Where, in the social sciences, p-values in the order of 0.01
or 0.001 are common, in the current context, values in the order of 10−7and
even orders of magnitude smaller were often encountered. This has to do with
the fact that, in a given dataset, there are many calls where neither a given part
is replaced, nor the log pattern occurs. The latter, by the way, demanded an
implementation of the binomial coefficients using logarithms and additions
instead of multiplications.

3https://en.wikipedia.org/wiki/Fisher%27s exact test
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5.4.2.13 Bonferroni correction
General description
Statistical hypothesis testing is based on rejecting a null hypothesis if the
likelihood of the observed data under the null hypotheses is low. If multiple
hypotheses are tested, the chance of a rare event increases, and therefore, the
likelihood of incorrectly rejecting a null hypothesis (i.e., making a Type I
error) increases. The Bonferroni correction provides a remedy for this. For
a given confidence level α and m hypotheses, by rejecting a hypothesis if its
pvalue exceeds α/m, the so-called familywise error rate, i.e., the probability of
making at least one type-I error is bounded from above by α [Mittelhammer
et al., 2000] (https://en.wikipedia.org/wiki/Bonferroni correction).

Common applications
As this technique is quite general, it is broadly applicable to cases where
statistical hypothesis testing is done repeatedly. In the context of alerting and
predicting failures, it is one of the key methods by which log patterns are
selected.

Strengths and challenges
Its broad applicability and simplicity as well as being non-parametric is an
important strength. One of its weaknesses is that it may be overly conservative
if there is a large number of tests. The correction comes at the cost of
increasing the probability of accepting false hypotheses, i.e., missing good
log patterns.

5.4.2.14 Hypothesis testing using univariate parametric
statistics

General description
Statistical hypothesis testing allows one to compare two processes by com-
paring the distributions generated by the random variables that describe those
processes [Stuart et al., 1999]. A distribution of a given process may be
described by one or more random variables. Univariate statistics refers to the
use of statistical models that use only one variable to describe the process.
Several univariate statistics can be extended to cater for multi-variate statistics
that use two or more random variables (for example, the 2 variable Gaussian
processes using the correlation matrix instead of the mean and deviation).

There are two basic methods used in statistical inference. The first
establishes a null hypothesis that stipulates the no differences between two
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processes (distributions) exist. Inference therefore consists in testing the
hypothesis and rejecting the null hypothesis. For example, given the heights
of men and women we can test whether or not the mean heights are different.
The null hypothesis states that no such difference exists. If we reject this
null hypothesis, then the alternative hypothesis, that states that there is a
difference, is assumed to be true.

The second consists of modelling each process (distribution) with a set
of possible statistical models. Each model is a parametric mathematical
equation that describes a possible hypothesis (given a set of random input
variables, it outputs a frequency). Inference then consists of evaluating and
selecting the most appropriate model. The models are selected according to a
specific criterion such as the Akaike information criterion or the Bayes factor
[Burnham and Anderson, 2002].

Parametric statistics refers to the use of parametric mathematical mod-
els of distributions. Examples of these distributions include both continuous
(Uniform, Gaussian, Beta, Exponential, Weibull, etc.) and discrete distri-
butions (Uniform, Binomial, Poisson, Bernoulli, etc.). Statistical inference
requires that we estimate the parameters and use this directly or indirectly to
compare the distributions.

When performing statistical inference, statistical significance is used to
determine how likely it is to assume that the null hypothesis is not rejected
under the current circumstances. The statistical significance level establishes
a threshold, under which a null hypothesis rejection cannot be accepted. Note
that, in addition to this threshold, additional limits on the type 1 (incorrect
rejection of a true null hypothesis – false positive) and type 2 errors (incorrect
retaining a false null hypothesis – false negative) can be set.

As a title of example, let us consider the p-value and establish the
significance level of 0.05 (could be as low as 0.02 or lower). If the p-value of
the statistical test is below the threshold, it is highly unlikely (less than 5% of
the time) that such a distribution can be observed, and the null hypothesis is
true. In this case, the null hypothesis can be rejected. Note however that if it
fails, there is not enough information to reject the null hypothesis. Therefore,
the test is inconclusive.

The testing process is as follows:

• Select the null and alternative hypothesis;
• Establish the assumption under which the test will be made (type of

distribution);
• Select the significance level to use as the threshold;
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• Select the test statistic to use and calculate it (single sample, two
samples, pared test, etc.);
• Compare the “t” statistics with the p-value threshold and decide if it can

be rejected or not.

Note that test statistic “t” can be calculated from the observations and
compared with the p-value, or it is possible to use the statistical tests to
compare the distributions’ samples directly. In either case a “t” statistic that
is comparable to the p-value is obtained.

The naive Gaussian parametric tests that are used are of two types: one
checks for differences in the distribution mean and another one is used to
test differences in variance. The variance tests allow us to check that a sensor
signal is within a given threshold of a constant (zero for example).

In this case, the t-Test was performed. More concretely, the t-test was
performed by means of a two-sample location test of the null hypothesis
that states that the means of the populations are equal. The independent two
sample t-test calculates the t statistic based on the number of samples and
the means and variances of each population. The t statistic led to a 2-sided
p value that is then used to compare against the threshold that allows either
accepting or rejecting the null hypothesis.

Common applications
Statistical tests allow to analyse data collections when no prior theory exists
that can be used to predict relationships. In such cases, one can design and
implement experiments to evaluate if a hypothesis is likely to be true. In these
experiments, data is collected under the conditions of the null hypothesis and
the alternate hypothesis under test. For example, to test the effectiveness of
a certain pharmacological treatment two data sets are collected, one where
no treatment is applied and one wherein it is (note that in the clinical cases
usually a third dataset that uses placebos is also used). The effectiveness of the
treatment can then be established by testing if there is a statistically significant
difference between the two distributions.

Other examples include [Larsen and Stroup, 1976]:

• Determining the effect of the full moon on behaviour (null hypothesis:
no full moon);
• Establishing the range at which bats can detect an insect by echo (null

hypothesis is the mean detection range);
• Deciding whether or not carpeting results in more infections or not (null

hypothesis: no carpets).
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Note that depending on the hypothesis that is under test and the experiment
set-up, it is either possible to use a single distribution (for example the bat’s
echo location range) or two (for example testing whether or not carpets cause
infections).

Strengths and challenges
The following is a list of general advantages and disadvantages of the
parametric tests.
Advantages:

• Simple process;
• Easy to calculate;
• Provides additional information (confidence intervals);
• Some models can be learned (updated) and tested as streams of data

(Gaussian model);
• Can deal with skewed data;
• Greater statistical power;
• Robust to samples with different variability (2-sample t-test or one-way

ANOVA).

Disadvantages:

• Assumes the type of distribution is known and does not change with
time;
• If the null hypothesis is not rejected, no conclusion can be reached;
• Requires large data sets;
• Lack of robustness (sensitive to outliers, sensitive to comparison point4);
• Assume all samples are i.i.d (Independent and identically distributed

random variable);
• Experiments may produce unexpected effects resulting in failed tests

(type 1 and 2);
• Each test has its own assumption (example t-Test of independent means

assumes populations of equal variance).

Use in MANTIS
The technique described above was used to detect anomalies that may occur
in a press brake machine. Signals indicating the velocity and distance of the

4For example, when comparing two Gaussian curves, because the tails fall off at an
exponential rate, the difference in distributions is small when close to the mean but very large
close to the tail ends.
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press ram and back gauge, oil temperature and vibration were used as the
univariate variables.

The parametrical statistical tests were used to determine whether new
samples conform to the same distribution of previously sampled machine
states that are known to be failure free. If the distributions are not equivalent,
(null hypothesis rejected) then it was assumed that a failure occurred and
alerts are generated.

In the case of the formal statistical tests, if the p-value does not allow us
to reject the null hypothesis, it is not possible to infer that the machine has no
failure (type 2 error). However, for simplicity, it was assumed that it was true
and alerts were only sent when the null hypothesis was successfully rejected.

In the case of a test for a constant (for example position), the signal is
normalized prior modelling and testing (a machine may stop its ram at any
position, and the interest regards only knowing if it is stopped, and not were).
In addition to this, two signals (for example the rams speed at the two different
pneumatic pistons) are subtracted one from another. The result is a single
sample whose means should be 0 (no need for normalization). The statistical
test is then performed as is done for the first case.

Parametric Gaussian tests were performed on the mean (t-Test) and
deviation (directly compare deviations, F-test, Bonett’s test and Levene’s
test).

The test for a difference in the mean and deviation were also done using
the naive statistical test. In this case, an online Gaussian model is obtained
via the calculation of a mean and variance. These means and variances are
then directly compared to the continually sampled signals from a working
machine. If significant divergence is found, alerts are generated. Due to the
high false positive and false negative rates (type 1 and type 2 respectively),
an additional multiplicative threshold (in respect to one standard deviation) is
used when comparing deviations. The initial values of this threshold are set
automatically by selecting the lowest possible threshold that reduces type 1
errors.

Due to lack of data, initial tests were performed with artificial data. For
large samples the effectiveness of the t-test appeared to be reduced (increased
number of false positives and false negatives), and it was also concluded that
the naive statistical tests using simple means and variance are very effective.
The naive statistical tests were used on a sample of real data first before
committing to the more complex t-test. The latest tests on the real data
seem to show that the t-test is ineffective for some of the signals. Work in
progress is still trying to ascertain why this is so (noise, incorrect labelling



210 Providing Proactiveness: Data Analysis Techniques Portfolios

of failure, non-normal distribution, variance does not follow the Chi-square
distribution, etc).

5.4.2.15 Hypothesis testing using univariate non-parametric
statistics

General description
As with the case of parametric statistics (see hypothesis testing using uni-
variate parametric statistics in Section 5.4.2.14), the process of defining the
hypothesis, sampling data and establishing a significance level as a threshold
are the same. However, not all of the non-parametric methods provide a
p-value for a significance level comparison. This section describes three
types of statistical tests that were used in project MANTIS: the Kolmogorov-
Smirnov test (K-S test), the Man-Whitney U test and the use of a Kernel
Density Estimation. In the first case, the U statistic (as performed by the
software library) is approximated by a normal distribution and a p-value is
available. In this case, the p-value is used to establish a threshold to accept or
reject the null hypothesis (distributions are the same).

In the case of the KDE, an online algorithm was used that generates
a configurable number of (Gaussian) kernels. The kernels and respective
parameters of two different distributions cannot be directly compared. Exper-
imentation shows that the estimated densities may be visually very similar,
but the kernels themselves differ significantly. However, since the kernel
can be used to sample the underlying estimated distribution, the statistical
tests were used to compare the samples (for both the parametric cases and
nonparametric cases using the Kolmogorov-Smirnov test and Mann-Whitney
U test). Another option could have been the use of alternate algorithms such
as the earth mover’s distance, but they were not applied to the case at hand
because the naive parametric tests seemed to be working well [Levina and
Bickel, 2001].

Kolmogorov-Smirnoff test
This test compares an empirical distribution function (estimate of the CDF)
of a sample to a cumulative distribution of a reference distribution. The
two sample K-S test can detect differences in both the location and shape
of the empirical CDFs of both populations. Given two CDFs (the reference
population distribution being a known function or sample), the Kolmogorov–
Smirnov statistic is the maximum difference between these two CDFs. The
two sample S-K test can be used to compare two arbitrary distribution func-
tions of a single random variable. Here the Kolmogorov– Smirnov statistic
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Dn,m is the supremum of only two samples (with n and m being the number
of samples in each population). This supremum is used to reject the null
hypothesis. The rejection threshold is calculated by applying a significance
level (α) to a known function (c(α) pn + m/nm)). Note that this expression
is an approximation. The critical values Dα are usually generated via other
methods and can be made available in a table form [Facchinetti, 2009].

Man-Whitney U-Test [Mann and Whitney, 1947]
This test allows to check if a random variable is stochastically larger than
another one. The test is done by calculating the U statistic, which has a known
distribution. Usually the U statistic is calculated directly (see next paragraph)
and not from the distribution itself. For large datasets however, the U statistic
can be approximated by a normal distribution. The large U statistic associated
to a given dataset indicates that the dataset’s random variable is larger.

Two methods exist to calculate the U statistic: The first can be used in
small data sets. In this case all pairs are compared, to sum the number of
times the first sample is greater than the second (ties are assigned a value
of 0.5). This sum is the U statistic U1. The process is repeated by swapping
the pairs that are compared. This U statistic is U2. In the second case, both
datasets are joined and ranked. The ranks of all elements from the first dataset
are the summed to obtain the U1. U2 can now be calculated based on the total
number elements in each dataset. In either case, the large U value indicates
which dataset is stochastically higher.

The advantages of this test compared to the t-test is that it can be used for
ordinal data, is robust against outlier (based on rank) and is a better estimator
(higher efficiency) for large datasets that are not normally distributed (for
normal distributions its efficiency is 5% below that of the t-test). Note that
this test can also be used when comparing two populations of different
distributions.

Kernel density estimation [Rosenblatt, 1954; Parzen, 1962]
Also known as Parzen–Rosenblatt window method, this is a data smoothing
technique that estimates the shape of a function of unknown density.

The kernel density estimator is a sum of scaled kernel functions. A kernel
function is a function that has an integral of 1. Density estimation consists
of identifying the type and number of kernels to use and determining the
kernels and smoothing parameters (also referred to as the bandwidth). These
parameters are selected in order to reduce an error, usually the MISE. This
process of estimating the density has similarities to that of manifold learning,
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which includes among other techniques auto-encoders (see category Artificial
Neural Network, technique auto-encoders in Section 5.4.2.8).

Several kernels exist, such as the uniform, triangular, Epanechnikov
and normal functions, among others. Usually a normal (Gaussian) kernel
is used for mathematical convenience. Its efficiency is close to that of the
Epanechnikov, which is optimal with respect to MISE.

The selection of the parameters, based on the MISE, is not possible
because it requires prior knowledge of the density function that is being
estimated. Several techniques have been developed [Xu et al., 2015], which
include the most effective plug-in and cross validation selectors. However,
bandwidth selection for heavy-tailed distributions is difficult.

Besides the various techniques used to estimate the various parameters
such as the bandwidth, kernel density estimators also differ in the number
of random variables modelled (uni- or multi variate), the use of constant or
variable bandwidth (variable kernel density estimation) and the use of a single
kernel per data-point or a variable (optimal) number of kernels.

Common applications
Function smoothing in general has many uses that include:

• Kernel smoothing allows to estimate underlying function of a noisy
sample;
• Kernel regression uses the learned function for prediction (non-linear

regression);
• Conditional probability density estimates can be obtained from the

data by estimating the density functions of the data that are selected
according the desired conditionals (Bayes theorem);
• The maxima can be used for data analysis and machine learning such as

clustering and image processing (multivariate kernel density estimation).

Strengths and challenges

Advantages

• Does not require the process to be Gaussian;
• Can be used in small datasets;
• Some tests have simple calculations and are easy to understand. Man-

nWhitney U test is based on the more robust median (instead of the
mean of the parametric tests, therefore not so sensitive to outliers);
• Mann-Whitney U test can analyse ordinal and ranked data (for example,

data using the Likert scale use the de Winter and Dodou).
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Disadvantages

• Lower probability of detecting an effect as compared to parametric
methods;
• May have additional assumptions that are required of the dataset (for

example the Mann-Whitney U-Test requires that the distribution be
continuous and that the alternative hypothesis being tested represent the
distribution is stochastically greater than that of the null hypothesis.);
• Still require the estimation of parameters for model generation;
• These tests are usually less efficient than the parameterized versions;
• CPU intensive (KDE);
• The K-S test requires large data sets to correctly reject the null

hypothesis.

Use in MANTIS
The technique described above was used to detect anomalies that may occur
in a press brake machine. Signals indicating the velocity and distance of the
press ram and back gauge, oil temperature and vibration were used as the
univariate variables.

The non-parametric statistical tests were used to determine whether new
samples conform to the same distribution of previously sampled machine
states that are known to be failure free. If the distributions are not equivalent,
(null hypothesis rejected) then it can be assumed that a failure occurred and
alerts are generated.

When testing for a constant (for example position), the signal is normal-
ized prior modelling and testing (a machine may stop its ram at any position,
we are only interested in knowing if it is stopped, but not where it happened).
In addition to this, two signals (for example the rams speed at the two different
pneumatic pistons) are subtracted one from another. The result is a single
sample whose means should be 0 (no need for normalization). The statistical
test is then performed as it is done for the first case.

The Mann Whitney U test was applied directly to the previously recorded
samples of a correctly functioning machine and new samples were obtained
from a working machine. As with the parametric case, a p-value was set to
reduce the type 1 errors. In the case of the KDE, a model was generated for
a sample of the correctly function machine. This model was used to generate
a reference sample. The reference sample was then compared to the new
working machine samples. Once again, Mann Whitney U test was applied
as previously described.
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Of all the parametric and non-parametric tests, the Mann-Whitney seemed
to be the most robust and effective method. The KDE was tested by applying
the t-Test, the Kolmogorov-Smirnov test and the Mann-Whitney U test. The
result was no better than applying the Mann-Whitney U test directly. The
Mann-Whitney U test is used were the naive statistical tests fails (note that it
is necessary to use alternate tests when comparing variability because all the
tests discussed here only deal with the mean).

5.4.2.16 Mean, thresholds, normality tests
General description
Descriptive statistics [Mann, 1995] is often used to provide a basic analysis
of an unknown dataset and identify the basic properties of the data that can
be used to select proper techniques to perform a deeper investigation and
build statistical models. Moreover, such analyses are useful to identify the
characteristics that allow the use of specific statistical approaches. The most
common are the following:

• Mean: it measures the average value of a dataset;
• Median: it measures the central value of a dataset (half of the dataset

is greater than the median value and the other half is smaller). In many
cases, it is preferred compared to the mean since it is less affected by
outliers;
• Quartiles: they provide a basic understanding on how the values are

distributed. Usually, they are calculated to identify where the 25%, 50%,
75% of the data reside;
• Variance: it measures the variability and the spread of the data.

After this preliminary set of analyses, it is required to investigate more deeply
the distribution of the data. In particular, it is required to understand if the
distribution is normal (or Gaussian) since many statistical approaches can be
used only if the data distribution is of this kind.

To test normality, there are many different approaches but the most used
is the Shapiro-Wilk test [Shapiro and Wilk, 1965] (another popular but
less powerful test is the Kolmogorov–Smirnov one [Wayne, 1990]). After
verifying whether a dataset follows a normal distribution, it is possible to
select properly the statistical tools to perform further investigations.

To define “normal” and “abnormal” values for a variable in a dataset,
it is required to define thresholds, and it requires a dataset that includes a
large number of repeated measures of the variable. Such measures should be
labelled as “normal” or “abnormal” since the threshold can be built using



5.4 Alerting and Prediction of Failures 215

the “normal” measures and verified against both “normal” and “abnormal”
ones to build a good descriptive model. In addition, in this case there are
several approaches and one that is very popular when dealing with data not
distributed normally is the Tukey’s range test [Tukey, 1949]. This technique
allows the definition of thresholds for outliers, such as the values outside the
range are candidate to be considered “abnormal”.

Common applications
Descriptive statistics is used as a preliminary investigation in any anal-
ysis of an unknown dataset regardless of the application domain. They
include basic measures that are useful to characterize the data and decide
further actions (e.g., subsequent analysis, split/merge of datasets, apply
transformations, etc.).

After the extraction of descriptive statistics, testing the data for normality
distribution is the second most common activity in any kind of application
domains if the distribution of the data is not known. It is also possible to
test the compliance with other distributions, but several statistical methods
require the normality distribution of the data to be applicable. Therefore, this
kind of tests is performed as a pre-requisite for the identification of the proper
statistical tool to apply.

Thresholds definition using different kinds of approaches is frequently
used to perform statistical process control, to define statistical models, and
to evaluate their performances using only data from the field (e.g., historical
data) and perform online checks of the behaviour of a system to rise alerts
in case of violations. The developed models can also be used to make
predictions of violations in conjunction with other statistical techniques that
are able to identify trends in data (e.g., using time series analysis techniques).

Strengths and challenges
Strengths

• Simple mathematical approach;
• The definition of the model requires a limited amount of data;
• The model can be generated on-the-fly and adapted to different working

conditions;
• Models can be generated using limited computational resources.

Challenges

• Can be sensitive to noise;
• Requires fully labelled data.
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Use in MANTIS
The described techniques have been used for the characterization of the
datasets coming from railway switches and to define their expected behaviour
based on available data. In particular, the used data regarded the adsorbed
current of the motor and the position of the switch over time to define the
profiles of correct behaviour through the analysis of the variability of the
data at each time instant. The distribution of the samples from different
movements of the switch at each time instant was analysed, followed by
the definition of thresholds of acceptable values based on an analysis of the
outliers. Moreover, since the collected data are affected by the temperature of
the environment, the adopted approach can continuously adapt itself using
the data from the latest movements that were considered correct. Finally,
the work on the project also proved that abnormal behaviours can be easily
detected since the correct profiles have a low percentage of samples that are
outside the threshold defined (less than 5%) while the abnormal ones have a
much higher percentage and/or the duration of the movement is very different
from the expected one.

5.5 Examples

This section entails some example use cases of the unsupervised algorithms
and the recurrent neural networks for analysing and predicting temporal
message log respectively, and investigates the use of convolutional neural
network architectures for predicting textures of the metal surface, which is
very useful for maintenance.

5.5.1 Usage Patterns/k-means

In the context of the MANTIS project, a small pilot experiment was per-
formed by Liebher on a dataset containing log files with messages and time
stamps for about 900 machines of two types. Assume a machine is a stochas-
tic message generator, assume for the time being that the order is not impor-
tant (in other words, that the order is of secondary importance if compared
to the presence vs absence of a message). The message patterns emitted by
the machine are a function of machine type, part characteristics, usage condi-
tions, possibly by the conditions of repair (quality of the servicer/mechanic).
This research attempted to answer the following questions.

• Are there groups (clusters) of message pattern generators?
• Are there machines that have a pattern of message generation?



5.5 Examples 217

• How many of such groups do exist in the data? Is there a relation to the
service mechanic? Is there a relation to the customer? Is there a relation
to the type of the machine?

5.5.1.1 Data analysis
Data were preprocessed in the following sequence;

• Extracting machine-specific information;
• Computation of message histogram row counts and message probabili-

ties per machine;
• Use of own K-means clustering script for computing k centroid vec-

tors for the message probabilities to identify patterns in the machine
generators;
• Computation of an optimal number of clusters (machine groups).

Figure 5.19 shows the Euclidean distance between cluster centroids
and the input data. The figure represents the error curve for cluster-
ing results as a function of the expected number of customer groups.
Average Euclidean distance between message histograms of k-means
centroids and machine instances, respectively, was used. Each clustering
attempt for a value k was performed 20 times and the mean curve as
well as the standard-deviation band are shown. There is no ‘knee’ or
convincing discontinuity indicating the optimal number of clusters. The
variants of this method showed a similar behaviour (silhouette method,

Figure 5.19 Error curve for clustering results as a function of the expected number of
clusters k.
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gap statistic). Hence, a chi-square was experimented with, which has,
to our knowledge, not been used in this manner before. The rationale is
that if there is an underlying distribution of k clusters in the data, there
should be a distribution of instances over clusters that is deviating from
a uniform or expected distribution. Conversely, if there is no underlying
cluster structure, the assignment of instances to clusters is random over
several Monte-Carlo clustering attempts and a statistical frequency test
should yield non-significant results;
• Using χ 2 for testing cluster independence;
• Computation of factors such as : machine type, customer ID, servicerID;
• Random trials of k-means estimations for a range of k;
• Analysis of contingency table significance of interesting factor interac-

tions. For this step, the research question was: what will be the average
estimate of the significance of the count independence in the selected
table (cls x cust or cls x serv)? In order to get reliable results, the average
p values are calculated over one hundred (100) independent k-means
model estimations for each of the k = [2, . . . , 25] values. For instance,
Table 5.4 reports the ClusterID vs MachTyp: cls x typ (the other, cust
and srv tables would be too big horizontally to fit here);
• The p value was extracted from the contab log file and was averaged over

the 100 random retries of the kmeans estimation. In Table 5.4, p equals
‘zero’, because of the trivial fact that the messages for MachTyp=1 and

Table 5.4 ClusterID vs MachTyp contingency table
typ2 typ1 Totals

c1 115 0 115
c2 267 9 276
c3 103 0 103
c4 4 0 4
c5 27 6 33
c6 53 0 53
c7 4 0 4
c8 52 1 53
c9 142 34 176
c10 38 67 105
Totals 805 117 922
Analysis for cls x typ:

chisq 323.812158 df 9 P 0.000000
Cramer’s V 0.592627

Source: cls typ
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MachTyp=2 are significantly different: These are physically different
machines, each type sending messages with its own pattern statistics;
• Average expected significance probability: compute the averages for

p values, their standard deviation (sd) and standard error (se). The results
obtained are discussed in the next section.

5.5.1.2 Results
Average significance of clustering results for different k, for interaction
‘cluster x customer’ in Table 5.5.

5.5.1.2.1 Plotting
The data information from column 1 and 3 in Table 5.5 are plotted in a
histogram as shown in Figure 5.20, with k on the x axis and avg p signif
on the y axis. The left plot of Figure 5.20 is the average p-significance
levels as a function of k (number of groups) for the interaction (clusters
x customers). There is a clear minimum at k = 7, indicating that for this
number of groups the distribution of machines over (clusters x customers) is
not likely to be random, in case of seven groups of prototypical message gen-
erators. Although the minimum value (p = 0.0588) is above the commonly
maintained ‘0.05’, the result is sufficiently different from the other values
to be actually meaningful (error = 0.0143). The right plot is the average p-
significance levels as a function of k (number of groups), for the interaction
(clusters x servicers) There is no tendency for non-random distributions,
thus it is highly unlikely to find significant differences in the distribution of
machines over bins defined by (clusters x servicers).

Table 5.5 Results of multiple Monte Carlo experiments (N = 100), for different k. A low
average p-significance level indicates an underlying structure for this value of k

k N Avg p signif sd se
2 100 0.2674 0.3294 0.0329
3 100 0.1627 0.2307 0.0231
4 100 0.1763 0.2902 0.0290
5 100 0.1340 0.2811 0.0281
6 100 0.1245 0.2708 0.0271
7 100 0.0588 0.1426 0.0143 <==
8 100 0.1543 0.2932 0.0293
9 100 0.2029 0.3608 0.0361
. . . . . . . . . . . . . . .
25 100 0.2630 0.3748 0.0375
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Figure 5.20 Average p-significance levels as a function of number of groups for interactions
(clusters × customers) on the left, and (clusters × servicers) on the right.

5.5.1.2.2 Replicability of results
Since the k-means algorithm entails random initialisation and the data scatter-
ing is noisy by itself, the question is warranted what a repetition of the whole
procedure would yield. When repeating the complete procedure 24 times, the
average value for k was 6.6 with a standard deviation of 1.5 (see Table 5.6).

However, apart from the ‘best’ number of clusters, the most interesting
finding is the contrast between the ‘Customers’ and ‘Servicers’ factors, where
the latter do not seem to induce a clear clustering of message patterns
generated by the machine instances.

5.5.1.2.3 Summary of results
There is a very strong relation p < 0.000001 between cls x typ (cluster-
ID x machine type) i.e., the algorithm detects that machine type 1 and 2

Table 5.6 Results of k-means algorithm repetition
k Freq
4 1 *
5 2 **
6 12 ************
7 4 ****
8 2 **
9 2 **
10 0
11 1 *
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generate different message patterns, in all possible cluster forms, with k in
the range [2, 25]. There are no different messaging patterns for the machines
in the clusters with respect to Servicer-ID. There is a clear significance if the
counts in the clusters are based on Customer-ID. This occurs when the data
is segmented into k = 6 ± 1 clusters (see Table 5.6).

Since there are only two machine types, a grouping into six or seven
prototypical message patterns cannot be the result of machine type alone.
Customers may be using machines differently, leading to different message
patterns for each of the user groups. On the other hand, for the Servicers, no
indications are found for a cluster structure with different machine-messaging
patterns for different clusters. Clustering results varies slightly over several
estimations, but not drastically. Repeated runs (i.e., again a full set of 100
tests per value of k from 2–25) yielded comparable results.

5.5.2 Message Log Prediction Using LSTM

An efficient approach to time-series prediction of message code sequences
generated from the Litronic machine (for Liebherr) is proposed. For this
aim, the choice fell on an Integrated Dimensionality-Reduction LSTM (ID-
LSTM) that mainly consist of one encoder LSTM, a chain decoder with three
LSTMs, one repeat-vector that connects the encoding and decoding sections
of the network architecture, and a time-distributed wrapper. Preliminary
experiments were carried out using separate single layer predictive models
(SL-LSTM or SL-GRU) and ID-LSTM for predicting two or more forms
of the message code representations. The best approach from this earlier
investigation is used to analyse all the message codes by considering ten
unique subsets of the same size that sum up to the entire message codes.
The results show that ID-LSTM using one-hot-encoding data-representation
yields a performance that surpasses all other approaches on the small sample
of the data. Additionally, the average prediction accuracy for the ten unique
subsets of the entire message codes during training and testing phases of the
proposed method is very good.

There exist groups of message pattern generator, and there is a need
to know how well a neural network can predict this pattern. The resulting
questions to be answered regard how we should encode arbitrary nominal
machine codes to be useable in a vectorial processing paradigm, and whether
we can predict error codes or not.
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5.5.2.1 Data interpretation and representation
This section describes the Litronic dataset, and provides a brief description
for each of the message code data-representations passed as input to the
different predictive models.

5.5.2.1.1 Litronic dataset
This dataset contains several machine code generator. Each row within the
dataset describes nine unique data fields that provide the machine ID, mes-
sage code, time information and some other industrial properties. The total
number of timestamps present in the dataset is 15, 461, 890 (i.e., 15M) which
also corresponds to the total-time counts.

In the experiments, we considered two forms of data sizes:

• A small number of samples: this data size contains one machine ID
(mach4545) over a short duration of 10,000 time-counts;
• A more significant number of samples: this data size involves a col-

lection of different machine IDs with unique message codes for ten
different subsets but with the same amount of data samples. Note that
each subset uses the same number of time-counts 1.546×106. This sam-
ple size is convenient for a memory-based model estimation. We remark
that the sum of each subset time-counts yields the total time-counts of
15.46 × 106, which is ten times as large.

5.5.2.1.2 Data representation
We considered three forms of data-representation, individually passed as
input to the predictive models.

• Raw Code: only the raw message code is used for the time-series
prediction with no transformation or pre-processing on the raw code.
Some of the unique sets of message code include: {464, 465, 466, ...,
946, ...., 31662};
• OHE Code: these codes are obtained by transforming the RC to an index

encoded integers; then the output is further processed to a categorical
representation of the message codes. Note the final versions of these
message codes contain binary values {0, 1}. Note that the dimension-
ality of the feature vector of the encoding is dependent on the amount
of the index codes for a given number of time counts. Note that for the
entire 15,461,890 samples of codes, the vector matrix of the OHE is
R15,461,890×1304, that is, there are 1304 codes (unique index);
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• PCA Code: these codes are obtained by using a linear dimensionality
reduction (DR) algorithm to reduce the feature dimensionality of the
OHE codes into a reduced feature space that contains the most important
information, based on the covariance structure of the data.

5.5.2.2 Predictive models
We employed Single Layer Predictive Models, namely LSTMs and GRU,
which are mainly designed to avoid the long-term dependency problem.

An approach to sequence prediction using an integrated dimensionality
reduction LSTM model was devised. The model is set-up using one encoder
LSTM interconnected to a decoder section (that comprises three LSTMs)
using a repeat-vector algorithm. The first-two LSTMs in the decoder section
help in the reconstruction process of the squeezed feature vector output
from the encoding section into a lower dimensional feature space. Later on,
the final feature x from the last LSTM is wrapped with a time distributed
algorithm that presents the reproduced data in a sequential series; this was
achieved using a fully connected layer f (x) = Wx + b, that is activated
using a rectified linear units, or RELU, activation function max(0,f (x)). Note
that all the LSTMs use a return sequence (that is set to TRUE). Moreover,
each of the LSTM uses 10 output nodes except for the last LSTM that
contains output nodes that corresponds to the exact number of the input
feature dimension, and is dependent on the input data-representation if they
exist as either OHE or PCA codes. Figure 5.21 shows the block diagram of
the integrated dimensionality-reduction LSTM architecture. The bold lines
indicate the network connection while the dotted lines show the non-network
connection, which represent data copying.

The network is compiled using an Adam optimizer [Kingma and Jimmy,
2014], while training for specific conditions depending on the data represen-
tation and data-size:

• Small sample data represented in OHE codes: trained for 100 epochs
and setting the batch size to 10;
• Small sample data represented in PCA codes: trained for either 100 or

200 epochs and setting the batch size to 10;
• Large sample data represented in OHE codes: trained for 100 epochs and

setting batch size to 10,000, presents a significant computational benefit
as it computes faster using higher batch size compared to lower batch
size (which require more extended training time).
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Figure 5.21 Block diagram describing the predictive recurrent neural network using an
Integrated Dimensionality LSTM architecture applied on Litronic message codes.

Note that training the proposed network on the PCA codes presents varying
trainable parameters, and this is due to the variation in the PCA feature
dimensions {1, 2, 3, 4, 5, 10, 20, 40} on the small data samples. In this
method, we consider 70% samples of the data-distribution for training and
the remaining 30% for testing, for each of the used data sizes (small or large).

5.5.2.3 Results
This section reports on performances of the various predictive models with
respect to the used data sizes.

5.5.2.3.1 Evaluation of predictive models on small number of
samples

The performances (accuracies and output-target plots) for the proposed pre-
dictive method on OHE codes are represented graphically in Figure 5.22. The
experiments considered a small number of samples, and featured 10 K time
samples, of 64 possible message codes. The upper left graph (Figure 5.22a)
shows the ID-LSTM prediction accuracy for both training and testing
phases while training the network for 100 epochs. The upper right graph
(Figure 5.22b) shows a plot of the index prediction in the training and
testing phases to their corresponding target values. The bottom left graph
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(Figure 5.22c) and bottom right graph (Figure 5.22d) represent the confusion
matrix, by showing the plot of the output predictions against their target
values for both training and testing phases respectively. Additionally, the
several predictive model’s evaluations on the different data representations
are reported in Table 5.7.

ID-LSTM Evaluation on OHE Codes

As can be observed from Table 5.7, the use of ID-LSTM on OHE yields a per-
formance that surpasses all other approaches: the method shows a high level
of precision in the predictive values compared to their corresponding target
values. Other interesting techniques involve the use of ID-LSTM examined
on high order dimensional PCA codes, which persistently outperform both
ID-LSTM or single layer predictive models when applied on one-dimensional
PCA versions or raw codes.

The second best approach is the ID-LSTM on 20-dimensional PCA codes;
this is due to their performance in the testing phase. There exist some failure
in the prediction for few epoch instances in the testing phase. An exception

Figure 5.22 Result on small pilot test 10K time samples, 64 possible message codes.
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Table 5.7 Training performance metrics on the different approaches using a batch size of 10
Method Train Accuracy Test Accuracy
ID-LSTM-I-OHE-Codes 0.9957 0.9920
ID-LSTM-I-20-DIM-PCA-Codes 0.9763 0.9843
ID-LSTM-I-40-DIM-PCA-Codes 0.9760 0.9733
ID-LSTM-I-10-DIM-PCA-Codes 0.9316 0.9727
ID-LSTM-I-5-DIM-PCA-Codes 0.9139 0.9593
ID-LSTM-I-4-DIM-PCA-Codes 0.9424 0.9410
ID-LSTM-I-3-DIM-PCA-Codes 0.9463 0.9593
ID-LSTM-I-2-DIM-PCA-Codes 0.9424 0.9590
ID-LSTM-I-1-DIM-PCA-Codes 0.8729 0.9340
SL-LSTM-I-1-DIM-PCA-Codes 0.8757 0.9340
SL-GRU-MSE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-GRU-MAE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-MAE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-MSE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-I-Raw-Codes 1.429 × 10ˆ-4 0.0000
SL-GRU-MSE-SI-Raw-Codes 2.858 × 10ˆ-4 0.0000
SL-GRU-MAE-SI-Raw-Codes 2.858 × 10ˆ-4 0.0000
SL-LSTM-MSE-SI-Raw-Codes 2.858 × 10ˆ-4 0.0000
SL-LSTM-MAE-SI-Raw-Codes 1.429 × 10ˆ-4 0.0000

to this is the ID-LSTM on 20 or 1-dimensional PCA codes. Based on this
observation, it can be deduced that it is essential to optimize PCA codes with
different feature dimensionality to solve a large-scale sequence prediction
problem; this will aid to provide a predictive model that will be free from
prediction failure in the testing phase. Moreover, this allows to retain useful
covariance information that can provide an alternative basis for good temporal
prediction. Even the external cases of applying PCA and only using largest
eigenvector yielded a reasonable performance of 93%.

Hence the experimental result indicates that the use of OHE or PCA codes
with their respective index provide a better basis for temporal prediction.
Due to the performance of the best approach, ID-LSTM only was employed
to examine OHE codes from the more significant amount of the message
sequence.

5.5.2.3.2 Evaluation of the ID-LSTM on OHE codes for more
significant number of samples

In this subsection, the proposed network was trained on ten different sub-
sets that sum up to the entire message codes. The ID-LSTM evaluation on
196 machines from subset 9, is shown in Figure 5.23 with subfigures that
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describe the prediction accuracy curve, index prediction, and the confusion
matrix plot in both training and testing phases respectively. In particular,
the upper left graph (Figure 5.23a) shows the ID-LSTM prediction accuracy
for both training and testing phases while training the network on subset 9
for 100 epochs. The upper right graph (Figure 5.23b) shows a plot of the
index prediction in the training and testing phases to their corresponding
target values. The bottom left graph (Figure 5.23c) and bottom right graph
(Figure 5.23d) represent the confusion matrix, by showing the plot of the
output predictions against their target values for both training and testing
phases respectively. The performance metrics obtained after 100 epochs for
the different subsets are reported in Table 5.8. In the training phase each of
the models performed very well with an average accuracy of 0.9844, while
the average test performance is 0.9506. The proposed predictive model can
handle very complex sequential problem irrespective of the size of data (time-
counts). Please note that the lower performance in the test phase may have
arisen due to variation in the codes that were used during training of the

Figure 5.23 ID-LSTM prediction accuracy for both training and testing phases while
training the network on subset 9 for 100 epochs.
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Table 5.8 Train and Test performance assessment on the different subsets using a batch size
set to 10,000

No. of Index Train Test
Data Type Time counts No. of Machines (class label) Accuracy Accuracy
Subset 1 0.00-1.54M 20 948 0.9826 0.9751
Subset 2 1.54-3.09M 30 606 0.9979 0.9695
Subset 3 3.09-4.63M 36 535 0.9886 0.9624
Subset 4 4.63-6.18M 48 619 0.9961 0.9021
Subset 5 6.18-7.73M 62 620 0.9837 0.9806
Subset 6 7.73-9.27M 109 675 0.9962 0.9347
Subset 7 9.27-10.8M 64 648 0.9205 0.9293
Subset 8 10.8-12.3M 95 679 0.9973 0.9576
Subset 9 12.3-13.9M 196 717 0.9943 0.9681
Subset 10 13.9-15.4M 263 624 0.9871 0.9268
Average 0.9844 0.9506

proposed network. Both the training and testing phases show outliers. Some
of the outlier points represent few instances of absolute average accuracy
error in prediction is < 5% for both phases. This performance measure
indicates that the proposed method yields a good result.

5.5.2.4 Discussion
This research has addressed the two questions in Section 5.5.2: The research
demonstrated the transformation of arbitrary machine codes (raw data) into
a useable vector representation, with the objective to identify correlated
patterns. To deal with this problem, OHE was used to convert the nominal
codes to a vector representation. However, the vector dimensionality is high,
and correlations are to be expected between message patterns. To reduce the
dimensionality to a lower feature space, PCA was employed to select the most
informative dimensions. The best result was obtained on OHE code, however
with the risk of overfitting depending on the number of message sample and
lexicon sizes. Additionally, the results obtained with PCA transformed data
are very good, as the use of only 20-dimensional PCA yielded a prediction
accuracy of 98%. However, the use of raw codes with no transformation
yields the worst result; this implies that the raw codes are not suitable or
sensible to the neural networks.

Furthermore, we investigated whether predictive recurrent neural net-
works can be trained and tested on datasets of varying samples sizes,
message lexicon size, and underlying machines. For the experiment led to an
integrated dimensionality reduction LSTM (ID-LSTM) and external LSTM
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(SL-LSTM or SL-GRU) for predicting the discussed data. The results show
that in the pilot experiment on the small samples, the use of the proposed
method (ID-LSTM on OHE codes) yields performance that surpasses all
other approaches. ID-LSTM also obtain better performance on higher order
dimensional PCA codes than on one-dimensional PCA or raw codes. It is
possible to conclude that, for a large data sample with PCA code, there is
the is a need to optimize the dimensionality to obtain good performance.
Moreover, the ID-LSTM on OHE codes obtained< 5% error on the predicted
codes in a realistically large dataset.

The research suggests that it may be possible to combine the proposed
model with an early anomaly detection algorithm to allow continuous pre-
diction of physical problems in the machines generating the message logs.
Finally, with advance knowledge on the message log data, it is possible to
develop a precise system that can handle detection of an anomaly in the
message log, and hence providing a comprehensive basis for the root-cause
analysis.

5.5.3 Metal-defect Classification

This section describes using deep learning techniques for predicting textures
of metal surface, which is very useful for maintenance. The defects on the
surface of, e.g., a cutting tool in a production line are detrimental to the
quality of the end product produced by the tool. Therefore, it is important to
inspect the cutting tool regularly to maintain the quality of the product, which
is usually done manually by human experts. However, manual inspection of
cutting tools on production line is costly and difficult whereby the entire
process slows down. Some defects are hard to measure by digital sensors,
but might be easily spotted by the naked eye. For example, the pollution of
tool surface due to scraped metal particles can be detected by a camera. Visual
inspection is a promising way to automatically find out defects in the cutting
surface in real-time in production lines. Images of metal surfaces of cutting
tools can be obtained with sensors, such as the digital microscope. Different
defects on metal surfaces result in different types of textures and recognizing
the textural surface helps to reveal original (root) causes. For example, if a
burnt texture is found on the metal surface, the possible reason is that the
temperature is high and the cooling system is failing. The defect textures
of metal surfaces are usually different on different metal materials. However,
there are some generally known and well-documented defect textures in metal
surfaces, which provide a good indication of the root causes. In this pilot
project, CNNs are used for metal texture classification. Since data sets with



230 Providing Proactiveness: Data Analysis Techniques Portfolios

labels are hard to collect from the real-word production line, a public metal
surface defect data set was used and later a new data set from metal images
with different textures was collected.

5.5.3.1 Data collection
The NEU surface defect database is a public data set5, which contains six
kinds of typical surface defects of the hot-rolled steel strip. It has 300 images
per surface defect type and 1800 greyscale images in total, where the size
of each image is 200x200 pixels. This image size is very suitable for the
application of CNNs. Examples of images are shown in Figure 5.24 (left).
A new data set named MTEXTURE was also collected. Example images
are shown in Figure 5.24 (right).This data set has seven texture attributes,
which are related to defect textures on metal surface. The size of images
is 100 × 100 with greyscale. Table 5.9 below shows the attributes of each
data set.

5.5.3.2 Experiments
The AlexNet [Krizhevsky et al., 2012] CNN has five convolutional layers
with Leakly-ReLU as activation function. The Leakly-ReLU is defined as:

Figure 5.24 Example of images in the NEU data set (left) and the newly collected
MTEXTURE data set (right).

Table 5.9 Attributes in the two data sets

Database
Attribute

1 2 3 4 5 6 7
NEU Rolled-in scale Patches Crazing Pitted Inclusion scratches

MTEXTURE Worn Debris Dented Rough Rust Scratched Crumpled
Attribute Database

5http://faculty.neu.edu.cn/yunhyan/NEU surface defect database.html
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Figure 5.25 Performance of VGGnet and AlexNet on NEU6

(left) and the collect set (right) with different epochs.

y = max(x,λ x), where x is the input, y is the output and λ is a constant
parameter which is set to 0.25. After each convolutional layer, a max-pooling
layer is used with kernel size 2x2 and stride 2. Three fully-connected layers
are applied on the output and the cross-entropy softmax loss is used to train
the model. The total number of trained parameters for AlexNet is 26.4M.
VGGNet [Simonyan and Zisserman, 2014] is deeper than AlexNet. It consists
of sixteen convolutional layers, five max-pooling layers and three fully-
connected layers. The training procedure is the same as AlexNet. There are
50.8M parameters in VGGNet. The performance of AlexNet and VGGNet
on the two datasets with different epochs is shown in Figure 5.25. The
performance looks promising and the precision of metal texture recognition
is higher than 95%. The performance of AlexNet and VGGNet has no signifi-
cant difference, but the number of parameters of AlexNet is much smaller and
therefore it is easier to be trained and applied in real-world product lines. The
defect textures in metal surface can be detected by a sliding-window strategy.
Each patch on the metal image is classified into different defect textures. Once
the texture attributes are detected, the related root causes may be found, such
as an external (metal) element, which is affecting the surface of the tool.
This is an exploratory result and more wear and tear textures can be added if
available.

5.5.3.3 Discussion
Hunting for root causes of metal surface defects can be performed by an
analysis of the textural attributes of metal surfaces. Textural attributes can
be learned from an annotated data set. This experiment gives initial results
useful for RCA where damage of metal surfaces is involved. From the initial
results of two small data sets, it is clear that textural analysis on metal surface
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can provide information for maintenance of product lines with classification
of 95%.

Several issues should be solved to apply this method in the real-word:

• Real data set collection and annotation. The challenge of using deep
learning in general on metal surfaces concerns the labelled data set. The
number of parameters in the network is very large and thus the system
provides higher performance when more data is available or the network
is pre-trained on other large-scale databases;
• Running the complex deep neural network takes computing time and

memory. Networks that are more efficient might be investigated, such as
quantizing the parameters of the network;
• Continuous learning is also very important because unseen causes are

coming in over time. The system should learn new things when new
labels are added and operators may need to perform this additional task
before valid results can be obtained.
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