
Some Seeds are Strong: Seeding Strategies for Search-based
Test Case Selection

AITOR ARRIETA,Mondragon University
PABLO VALLE,Mondragon University
JOSEBA A. AGIRRE,Mondragon University
GOIURIA SAGARDUI,Mondragon University

The time it takes software systems to be tested is usually long. Search-based test selection has been a widely
investigated technique to optimize the testing process. In this paper, we propose a set of seeding strategies for
the test case selection problem that generate the initial population of pareto-based multi-objective algorithms,
with the goals of (1) helping to find an overall better set of solutions and (2) enhancing the convergence of the
algorithms. The seeding strategies were integrated with four state-of-the-art multi-objective search algorithms
and applied into two contexts where regression-testing is paramount: (1) Simulation-based testing of Cyber-
Physical Systems and (2) Continuous Integration. For the first context, we evaluated our approach by using six
fitness function combinations and six independent case studies, whereas in the second context we derived a
total of six fitness function combinations and employed four case studies. Our evaluation suggests that some of
the proposed seeding strategies are indeed helpful for solving the multi-objective test case selection problem.
Specifically, the proposed seeding strategies provided a higher convergence of the algorithms towards optimal
solutions in 96% of the studied scenarios and an overall cost-effectiveness with a standard search budget in
85% of the studied scenarios.

CCS Concepts: • Software and its engineering→ Software testing and debugging;

Additional Key Words and Phrases: Test Case Selection, Search-based Software Testing, Regression Testing

ACM Reference Format:
Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui. 2020. Some Seeds are Strong: Seeding
Strategies for Search-based Test Case Selection. 1, 1 (May 2020), 49 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Generally, verification and validation activities are time consuming on large software systems.
Companies that have a large code-base require a huge number of tests to be executed in many
servers, taking hours or even days to complete [15]. In systems like Cyber-Physical Systems
(CPSs), testing is time consuming as it requires execution at different levels, even for the same
software versions [8, 18]. In other contexts, such as Software Product Lines (SPLs), there are a large
number of potential configurations, which makes it infeasible to test every single configuration
thoroughly [17, 80]. To deal with all these problems, search algorithms have been proposed in
the last few years with the goal of increasing the cost-effectiveness of several verification and

Authors’ addresses: Aitor Arrieta, Mondragon University, Goiru 2, Mondragon, Spain, 20500, aarrieta@mondragon.edu;
Pablo Valle, Mondragon University, Goiru 2, Mondragon, Spain, 20500, pablo.valle@alumni.mondragon.edu; Joseba A.
Agirre, Mondragon University, Goiru 2, Mondragon, Spain, 20500, jaagirre@mondragon.edu; Goiuria Sagardui, Mondragon
University, Goiru 2, Mondragon, Spain, 20500, gsagardui@mondragon.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
XXXX-XXXX/2020/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

validation activities. These activities include several optimization aspects, including automated test
case generation [1, 2, 4, 20, 40, 52, 62, 66–68, 74, 87], test case selection/minimization [8, 75, 94, 97–
99, 101] and test prioritization [14, 36, 38, 53].
A widely investigated technique for increasing the cost-effectiveness of the verification and

validation processes has been regression test selection [35, 100]. The test case selection problem is
multi-objective in nature. On the one hand, adding a new test to a given test suite cannot decrease
fault detection or the overall test suite adequacy [26], but it increases the overall test execution
cost. On the other hand, the test execution cost can be reduced by removing tests from the test set,
but this cannot increase fault detection or test set adequacy [26]. For these reasons, multi-objective
search algorithms have been widely studied in the last few years to solve the test case selection
problem [7, 8, 50, 75, 81, 94, 95, 98]. These approaches have already been successfully deployed
in industry [41, 73]. In the last few years, test selection based on evolutionary algorithms have
gained attention. Most of them have focused on comparing either (1) which adequacy criteria
could fit best for integrating it in the fitness functions [7, 8, 46, 50, 98] or (2) which algorithm
performs best when selecting test cases (when having one specific fitness function) [11, 81, 94, 95].
Additionally, most of them compare their approaches with a baseline algorithm, such as, Random
Search (RS) [7, 8, 11, 81, 94, 95] or Greedy [98].

It is important to reiterate that applicable regression testing approaches (e.g., search-based test
case selection) need to be significantly faster than the run-them-all approach to be beneficial [15].
Faster search-based test case selection approaches could be achieved by developing techniques
that allow a faster convergence. A common practice in other search-based software engineering
problems has been to seed the initial population with certain seeding strategies. The results of this
have been positive in several applications, including test generation [39, 58, 60, 84] and service
composition [21, 22]. In the case of test case selection, many studies have proposed either different
algorithms or fitness functions [8, 10, 27, 41, 73, 95, 98, 99]. However, little attention has been paid
to propose seeding strategies for multi-objective test case selection. For instance, Panichella et al.
proposed a diversity-based genetic algorithm that seeded the initial population with orthogonal
arrays by employing a Hadamard matrix [75]. Nevertheless, the approach presented by Panichela
et al. [75] was algorithmic, and the seeding strategy for initializing the population needed to be
accompanied by other mechanisms that injected diversity during the search process.

This paper is an extension of our previously published TheGenetic and Evolutionary Computation
Conference (GECCO) 2020 paper [6]. Specifically, we build upon our conference paper from the
following perspectives:

• We propose an additional seeding strategy for the multi-objective test case selection prob-
lem [6].
• The original paper integrated our approach in the context of multi-objective black-box test
case selection of simulation models of CPSs. Besides this context, our extension involves
the integration of the approach within the Continuous Integration (CI) context. Within this
new context, we used four new real-world case studies with real faults. Three of these new
case studies were industrial case studies (one from Google [34, 54, 82, 83, 91], two from ABB
Norway [15, 82, 83, 91]), and an open-source project (i.e., Rails [54]). This allowed us to
validate that the proposed seeding strategies could work in different contexts.
• In the original GECCO paper we evaluated the seeding strategies solely in the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) algorithm [32]. In this extension we included three
additional multi-objective search algorithms (i.e., IBEA [104], SPEA2 [105] and PESA-II [29])
in the evaluation, which allowed us to validate that the proposed seeding strategies do not
only work with a single algorithm.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :3

• We include an additional evaluation metric to study how the seeding algorithms help the
search algorithms converge towards optimal solutions.
• We enrich background and related work sections.

In this paper, we present four seeding strategies designed for population-based search algorithms
for test selection (one of which is configurable). In addition, we re-implement the strategy for
automatically generating the initial population by Panichella et al. [75]. The seeding strategies
are focused on generating the initial population of the algorithm, which gives a high flexibility
when using any state-of-the-art population-based search algorithm. However, for the empirical
evaluation, we integrated our seeding strategies with the four multi-objective search algorithms
mentioned above. In addition, the evaluation was performed in two contexts where regression test
selection might bring significant benefits to the software engineering productivity: (1) the context
of simulation-based testing of CPSs, where we used as a base our previous studies [7, 8] and (2) the
context of CI development environments. We can summarize the main contributions of this paper
as follows:

• We propose a total of four seeding strategies for initializing the population of Pareto-efficient
algorithms for the test case selection problem.
• We integrated the approach on top of PlatEMO [93], and instantiated it to solve the multi-
objective test case selection into two different application domains: (1) Black-box test case
selection of simulation models and (2) regression test selection in continuous integration
environments. Within the first application domain, we have integrated the proposed seeding
strategies in the framework for test case selection proposed in our previous work [7, 8],
which is an open-source framework. Within the second application domain, we used openly
available datasets of industrial and real-world case studies [34, 82, 83, 91].
• We perform an empirical evaluation using six case studies in the first application domain
and four in the second one. For both domains we derived a total of six fitness combinations.
In addition we used the above mentioned four multi-objective search algorithms. For the
first domain we used a total of 144 experimental scenarios to compare the different seeding
strategies, whereas in the second domain we used a total of 96 experimental scenarios.
• We make all our sources available for replication by other researchers.

To assess the proposed seeding strategies we employed mutation testing within the first context
and real faults within the second. This allowed us to determine the fault-revealing capabilities of
the solutions. Two evaluation metrics were employed: the Hypervolume (HV) and the Average
Convergence, which measures how fast the algorithms converged. The results showed that two of
the proposed seeding strategies helped the multi-objective search algorithms produce solutions
with higher cost-effectiveness in both application domains, allowing a faster converge towards
optimal solutions. Specifically, these two strategies allowed a faster convergence of the algorithms
in 96% of the studied experimental scenarios with statistical significance. When the entire search
process was considered, these seeding strategies outperformed the non-seeded technique for 85%
of the scenarios with statistical significance.

The rest of the paper is structured as follows. General background is presented in Section 2. The
proposed seeding strategies are presented in Section 3. The application domains are presented in
Section 4. Section 5 explains how we evaluated the proposed seeding strategies. The evaluation
results are analysed and discussed in Section 6. Section 7 discusses the threats to validity of our
empirical evaluation and how we mitigated them. We position our work with other similar works
in Section 8. We conclude the paper in Section 9.

, Vol. 1, No. 1, Article . Publication date: May 2020.

:4 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

2 BACKGROUND
In this section we present the basic background and terminology related to our paper.

2.1 Multi-objective search algorithms
2.1.1 Search algorithms. Search-based Software Engineereing (SBSE) aims at formulating a

software engineering problem as a mathematical optimization problem [13]. SBSE has been widely
applied to solve a wide variety of software engineering problems, including requirements engineer-
ing [42], software-effort estimation [88] and software-product line configurations sampling [47].
Software testing is one of the primary areas where SBSE techniques have been applied at sev-
eral software testing stages (e.g., test generation [1, 4, 40, 68, 84], test case selection/minimiza-
tion [94, 95, 98, 99, 101] and test case prioritization [13, 36, 53, 90, 96]).
The search algorithms used in this study are evolutionary, meaning they aim at mimicking

natural evolution processes [19]. Firstly, these algorithms generate an initial population. This stage
is where our seeding strategies are applied. While evolutionary algorithms usually generate the
initial population purely randomly, we generate it by using certain seeding strategies applied to
the test case selection problem (Section 3). After generating the initial population, evolutionary
algorithms apply three operators: (1) selection, (2) crossover and (3) mutation. These operators
are applied until the search budget is exceeded (e.g., a time budget is exceeded or the number of
fitness evaluations reaches a limit). The first operator (i.e., selection) aims at selecting individuals
to be involved in the reproduction, typically by using the fitness functions so as to enable stronger
solutions to survive [20]. The crossover operator recombines two individuals (i.e., solutions) based
on a randomly selected crossover point (or set of crossover point). 1 The mutation operator changes
the genes in each individual with certain probability, typically 1/N, where N is the number of genes
in the solution [20].

2.1.2 Pareto optimality. Multi-objective search algorithms are based on the notion of Pareto
optimality. This states that with multiple objectives, a solution 𝑠𝑎 provided by the search algorithm
is better than another solution 𝑠𝑏 only when 𝑠𝑎 dominates 𝑠𝑏 in at least one objective while
not being worse than 𝑠𝑏 in the rest of the objectives [53]. Based on this, multi-objective search
algorithms can be applied to find solutions (𝑠𝑘) that optimize a set of 𝑃 objective functions (𝑂𝐹 =

{𝑜 𝑓1 (𝑠𝑘), 𝑜 𝑓2 (𝑠𝑘), ..., 𝑜 𝑓𝑃 (𝑠𝑘)}). These objective functions are usually in conflict with each other [98].
In multi-objective search algorithms, assuming the above mentioned objective functions need

to be maximized in order to produce more optimal solutions, a solution 𝑠𝑎 is said to dominate
the solution 𝑠𝑏 (𝑠𝑎 ≻ 𝑠𝑏) if and only if their objective functions (𝑜 𝑓𝑖 (𝑠𝑎) and 𝑜 𝑓𝑖 (𝑠𝑏)) satisfies the
following [98]:

𝑜 𝑓𝑖 (𝑠𝑎) ≥ 𝑜 𝑓𝑖 (𝑠𝑏)∀𝑖 ∈ {1, 2, ..., 𝑃}; and ∃𝑖 ∈ {1, 2, ..., 𝑃}|𝑜 𝑓𝑖 (𝑠𝑎) > 𝑜 𝑓𝑖 (𝑆𝑏)
Unlike single-objective search algorithms, which provide the best single solution based on an

individual function, the goal of multi-objective algorithms is to provide a set of solutions that are not
dominated by any other in the population. These solutions are said to form the ParetoOptimalSet [98].
Their corresponding objective functions form the ParetoFrontier [98]. The multi-objective optimiza-
tion problem is defined as follows [98]. For a given vector of decision variables 𝑥 , and a set of
objective functions 𝑜 𝑓𝑖 (𝑥), where 𝑖 = 1,2,...,P, maximize {𝑜 𝑓1 (𝑥), 𝑜 𝑓2 (𝑥), ..., 𝑜 𝑓𝑃 (𝑥))} by finding the
Pareto optimal set over the feasible set of solutions.

1In our study we employ a single-point crossover operator

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :5

2.2 Multi-objective test case selection and notation
The multi-objective test case selection problem can be formulated in two ways [97], by using a
weighted fitness function, where a multi-objective problem is converted into a single-objective
problem [94], or by adoptingmultiple objectives [98]. In this paper we opted for the second approach,
although the proposed seeding strategies can be used with any kind of population-based search
algorithm that is applied to solve the test case selection problem, including single-objective search
algorithms. The multi-objective test case selection problem has as a goal to select a Pareto efficient
subset of the test suite based on multiple criteria [98].

In the remainder of the paper we will use the following notation. 𝑇𝑆 = {𝑡𝑐1, 𝑡𝑐2, ..., 𝑡𝑐𝑁 } is a Test
Suite of N test cases (𝑡𝑐). To measure the quality and cost of a test suite, let 𝑂𝐹 = {𝑜 𝑓1, 𝑜 𝑓2, ..., 𝑜 𝑓𝑝 }
be a set of p objective functions (𝑜 𝑓) to be satisfied when selecting test cases [75]. The test case
selection algorithm aims at selecting a subset of test cases from𝑇𝑆 , such that𝑇𝑆 ′ = {𝑡𝑐1, 𝑡𝑐2, ..., 𝑡𝑐𝑀 }
is a subset of 𝑇𝑆 (i.e., 𝑇𝑆 ′ ⊆ 𝑇𝑆), that is Pareto-optimal with respect to the objective functions in
𝑂𝐹 and 𝑀 ≤ 𝑁 [75]. Like most multi-objective test selection studies [7, 8, 75], we used a binary
coding representation of solutions. In this case, if the i-th digit of the binary string is 1, it means
that the test case 𝑡𝑐𝑖 from 𝑇𝑆 is included in the solution. Conversely, if the i-th digit is 0, it means
that the test case 𝑡𝑐𝑖 has not been selected.

Let us consider as an example the code snippet in Listing 1 aiming to return the maximum value
of two input parameter (i.e., 𝑛 and𝑚). Let us assume that two objective functions are used by a test
selection algorithm: (1) the quality objective is line coverage (i.e., number of lines executed by the
selected test cases in the 𝑇𝑆 ′) and (2) the cost objective is the number of selected test cases. Thus,
a test selection algorithm would aim at increasing the line coverage, while reducing the number
of selected test cases. Let us also assume that we have an initial Test Suite 𝑇𝑆 of four test cases
(i.e., 𝑇𝑆 = {𝑡𝑐1, 𝑡𝑐2, 𝑡𝑐3, 𝑡𝑐4}), where 𝑡𝑐1 = {𝑛 = 2,𝑚 = 1}, 𝑡𝑐2 = {𝑛 = 1,𝑚 = 1}, 𝑡𝑐3 = {𝑛 = 5,𝑚 = 1},
𝑡𝑐4 = {𝑛 = 2,𝑚 = 5}.

The search algorithm returns a series of solutions represented a binary coding. For instance, the
following solution 𝑠𝑘 = {1, 0, 0, 0} selects only 𝑡𝑐1 from 𝑇𝑆 ; assuming lines 2-5 are considered to
compute the line coverage, such test will cover a 75% of line coverage (i.e., line 4 is not covered),
and the cost function, which refers to number of test cases, will be 1. In terms of line coverage,
one could argue that the following solution 𝑠 𝑗 = {0, 0, 0, 1} is better, since test case 𝑡𝑐4 from 𝑇𝑆

would exercise line 4, which is not covered by any other test case in 𝑇𝑆 , achieving this way a line
coverage of 100%. Meanwhile, the test cost would remain the same (i.e., number of test cases equal
to 1). Thus, for this specific objective function, solution 𝑠 𝑗 dominates solution 𝑠𝑘 (i.e., 𝑠 𝑗 ≻ 𝑠𝑘).
Naturally, one could argue that 𝑠 𝑗 is not an appropriate test suite, because it does not test the

situation where n is higher than m (i.e., the condition in line 3 is not negated). Thus, if the quality
metric would be changed to condition coverage, both 𝑠𝑘 and 𝑠 𝑗 would have the same coverage
percentage (i.e., 50%). This condition coverage could be further improved by selecting, for instance,
test cases 𝑡𝑐1, and 𝑡𝑐4. The algorithm would encode this in solution 𝑠𝑙 as follows: 𝑠𝑙 = {1, 0, 0, 1}. In
such a case, the condition in line 3 is set both to false (when executing 𝑡𝑐1) and true (when executing
𝑡𝑐2); therefore, solution 𝑠𝑙 would obtain a condition coverage of 100%, while its cost would increase
to 2 test cases. 𝑠𝑙 would not dominate neither solution 𝑠 𝑗 nor 𝑠𝑘 , since the cost for executing the
test suites represented by 𝑠 𝑗 and 𝑠𝑘 are lower. Therefore, for the first example (line coverage) the
Pareto optimal set is 𝑠 𝑗 , whereas the second example (condition coverage) the Pareto optimal set
would then be 𝑠 𝑗 , 𝑠𝑘 and 𝑠𝑙 .

, Vol. 1, No. 1, Article . Publication date: May 2020.

:6 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

1 i n t max (i n t n , i n t m) {
2 i n t max = n ;
3 i f (m>n)
4 max = m;
5 r e t u r n max ;
6 }

Listing 1. Code snippet of a function for returning the highest value from two integer inputs

The search space for test case selection is 2𝑁 , which means that it grows exponentially with the
number of tests in the initial test suite. For example, for an initial test suite of 100 test cases, there
can be a total of 1.27× 1030 solutions. It is impracticable to computationally determine the objective
functions for such a large search space. Therefore, using search algorithms as an alternative to
brute force in order to solve the test case selection problem is a sensible option.

3 SEEDING STRATEGIES
In this section we explain the proposed four seeding strategies and the seeding strategy proposed
by Panichella et al. [75].

3.1 Dynamic Test Suite Size-based Random Seeding
Pareto-efficient test case selection algorithms aim at producing a set of non-dominated solutions
that provide a trade-off between effectiveness (e.g., achieve certain degree of coverage) and cost
(e.g., the time it takes a test suite to be executed or its size). Usually, solutions encompassing test
suites with a larger number of test cases have higher probabilities of detecting faults [75], whereas
solutions with a lower number of test cases are less costly. With this seeding strategy, we aim at
providing solutions over the entire initial population with different number of test cases. To this
end, we propose to uniformly distribute the test suite size of the solutions over the population. This
would allow for several advantages. Firstly, solutions that are very effective (but costly) will be
produced, along with solutions that are less effective but with lower cost. Secondly, this could allow
for exploring solutions in broader directions within the search space, leading overall solutions to
be fitter.

The pseudocode in Algorithm 1 shows how we implemented this seeding strategy. As an input,
the Number of test cases (N) and the population size (nPop) is given. As an output, the algorithm
returns the initial population, which is a two-dimensional array (each row being a solution). We
build the initial population (initialPop) as follows: for each solution in the population (Line 1), the
probability of a test being included in the solution is i/nPop (Line 3), i being the index of a solution
in the initial population. A test is included in the j-th position of the i-th solution, if the function
𝑟𝑎𝑛𝑑 () returns a number lower or equal to i/nPop. If the contrary is observed, the test case will not
be included in the test suite. Subsequently, the probabilities of a test being selected increases as the
solution index of the initial population increases. This way, the solutions at the beginning of the
population will have a low number of test cases selected, whereas the solutions in the last positions
of the initial population will have a high number of test cases. This algorithm permits a generation
of an initial population of solutions that include test suites of a different variety of sizes. There is a
high likelihood that when 𝑖 is low, there might be solutions with no test cases, which results in
no test execution (i.e., no cost), but also not testing anything (i.e., no effectiveness). However, this
is not considered an issue. Firstly, from the algorithmic perspective, this can be positive because
during the generations of the search algorithm, these type of solutions can help other when doing
the crossover, removing a large amount of test cases from the suite. From the practical aspect, this
might be useful in different contexts. For instance, in the context of Continuous Integration (CI), if

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :7

two subsequent commits are performed fastly (e.g., due to having forgotten to add something), the
developer might not want to test the first commit. Another example could be when using a fitness
function measuring coverage, and having no test cases covering a newly added line. Furthermore,
it is important to highlight that the targeted search algorithms are multi-objective, what means
that there will very likely be more than one solution in the Pareto-frontier which can be selected
and which will have test cases.

Algorithm 1: Algorithm for the dynamic test suite size-based random seeding
Input: N //Number of test cases
nPop //Population size
Result: initialPop(nPop,N) // initial population

1 for i← 1 to nPop do
2 for j← 1 to N do
3 if rand() ≤ i /nPop then
4 initialPop(i,j) = 1;
5 else
6 initialPop(i,j) = 0;
7 end
8 end
9 end

Figure 1 shows the example of the objective space covered in two random runs of the seeding
strategies (i.e., without running the rest of the algorithm), one by the Dynamic Test Suite Size-based
Random Seeding strategy proposed in this section (the left figure) and a non-seeded approach (the
right figure). As can be seen, the proposed seeding strategy covers a wider area in the objective
space compared to the non-seeded approach. This is due to a wider variety in the test suite sizes.

In the remainder of the paper, we refer to this seeding strategy as “Dynamic”.

Fig. 1. Example of two random runs of the population execution for the proposed dynamic test suite size-based
random seeding strategy and a non-seeded strategy

, Vol. 1, No. 1, Article . Publication date: May 2020.

:8 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

3.2 Static Test Suite Size-based Random Seeding
Test engineers who have domain knowledge might guess the typical size required for detecting all
faults. To this end, we propose a strategy where a predefined test suite size could be selected by
the test engineer, in order for the initial population to include solutions that will have sizes that
are close to the predefined test suite size. This would allow the search algorithm to exploit the
search in an area predefined by the test engineer. Algorithm 2 shows how we implemented this
seeding strategy, which is similar to the algorithm explained in the previous subsection but with
the difference that the probability of a test case to be included is static. As can be seen in Line 3,
the probability of a test case to be included is of the desired test suite size (desiredTestSuiteSize),
which is a value (in percentages) provided as input to the algorithm.

Algorithm 2: Algorithm for the static test suite size-based random seeding
Input: N //Number of test cases
nPop //Population size
desiredTestSuiteSize // Percentage of the test suite size
Result: initialPop // initial population

1 for i← 1 to nPop do
2 for j← 1 to N do
3 if rand() ≤ desiredTestSuiteSize /100 then
4 initialPop(i,j) = 1;
5 else
6 initialPop(i,j) = 0;
7 end
8 end
9 end

Figure 2 shows how the solutions are distributed for two independent runs of the static test suite
size-based random seeding that was configured to have a test suite size of 30 and 70%. As can be
seen, the objective area covered by the 30% test suite size strategy covers an area of lower cost but
also lower test quality as compared with the 70% test suite size strategy.
In the remainder of this paper, we refer to this strategy as Static30 or Static70, being 30 and 70

two independent configurations of this strategy for the desiredTestSuiteSize parameter.

3.3 Adaptive Random Population Generation
In previous studies, it has been shown that injecting diversity into the population improves perfor-
mance of test case selection [75], as it leads the algorithm to have lower probability of being trapped
in some local optimum [31]. Inspired by the Adaptive Random Testing (ART) algorithm [25], we
propose the Adaptive Random Population Generation (ARPG) algorithm to generate an initial
population that promotes diversity between solutions. The hypothesis behind the ART algorithm
is that the higher the diversity of test cases, the higher the probability of detecting faults [25]. This
algorithm has been widely used to generate test cases [23–25], and thus, we believe it can also be
appropriate to generate an initial population considering diversity.

Algorithm 3 shows the pseudocode of the implemented ARPG algorithm to generate the initial
population. Initially, a first solution is randomly generated and included in the first index of the
initial population (Line 1). For the remaining solutions in the population, the process works as
follows. A set of candidate solutions to be included in the initial population is generated (Lines 3-5).

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :9

Fig. 2. Example of two random runs of the population execution for the proposed Static Test Suite Size-based
Random Seeding strategies (configured to the 30% and the 70% of the test suite size)

Typically, the size of this set of candidates is 10 [24, 25], so we used this number in our evaluation.
Among these set of candidate solutions, the one which is farthest (i.e., the most dissimilar) from
the solutions that are already included in the initial population is selected (Lines 6-17), as proposed
by Chen et al. [25]. We used the Hamming Distance to measure the distance between a candidate
set and a solution of the population due to its simplicity. This process is repeated until the entire
initial population is generated.

An issue this seeding strategy could have involves its running time, especially when the number
of population tends to increase. Its big O complexity for this strategy would be 𝑂 [(𝑛𝑃𝑜𝑝 − 1) ∗
(𝑛𝐶𝑎𝑛𝑑+(𝑛𝐶𝑎𝑛𝑑 (𝑛𝑃𝑜𝑝2−𝑛𝑃𝑜𝑝)/2))], which makes the running time exponential to the population
size. However, usually the population size in the context of test case selection is around 100 [7, 8, 98],
which makes this strategy applicable in practice. In the remainder of the paper, we refer to this
strategy as ARPG. Some distance measures might have also a strong influence in the execution time
of this seeding strategy in those cases where the number of tests is long. We therefore recommend
distance functions who have linear execution time based on the number of test cases, as we do
with the Hamming Distance.

3.4 Adaptive Random Population Generation with Dynamic Test Suite Size
This algorithm complements the Dynamic Test Suite Size-based Random Seeding with the Adaptive
Random Population Generation Seeding strategy. We conjecture that having solutions in the
population with a different test suite size and the more diverse as possible will increase the
performance of the multi-objective test case selection approach.
Algorithm 4 shows the procedure to generate the initial population by following this strategy.

In a first step, an initial solution is generated and included in the initial population, where the
probability of including a test case in this solution is 1/𝑛𝑃𝑜𝑝 (Lines 1-7). For the remaining solutions
in the population, the process works as follows. A set of candidate solutions to be included in
the initial population is generated, where the probability of selecting a test case in a candidate
solution is 𝑖/𝑛𝑃𝑜𝑝 , 𝑖 being the index of the solution being generated in the population (Lines 9-17).
Among these set of candidate solutions, the one which is farthest (i.e., the most dissimilar) from the
solutions that are already included in the initial population is selected and included in the solution
(Lines 18-29). As with the previous strategy, we use the Hamming Distance to measure the distance

, Vol. 1, No. 1, Article . Publication date: May 2020.

:10 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

Algorithm 3: Algorithm for the ARPG seeding
Input: N //Number of test cases
nPop //Population size
nCandidate //Number of candidate solutions
Result: initialPop // initial population

1 initialPop(1,:) = randSol(N);
2 for i← 2 to nPop do
3 for j← 1 to nCandidate do
4 candidateSets(j,:) = randSol(N);
5 end
6 for j← 1 to nCandidate do
7 minDist = 1;
8 for k← 1 to i-1 do
9 distance = measureDistance(initialPop(k,:), candidateSet(j,:))

10 if distance < minDist then
11 minDist = distance;
12 end
13 end
14 distArray(j) = minDist ;
15 end
16 distIndx = max(distArray);
17 initialPop(i,:) = candidateSets(distIndx,:);
18 end

between a candidate set and a solution of the population. This process is repeated until the entire
initial population is generated.
Similarly to the Dynamic seeding strategy, in this case there is high likelihood that the initial

populations have no test cases selected. However, as previously explained in Section 3.1, this is not
considered an issue.

As can be seen, the difference between this strategy and the ARPG is the way the first solution
to be included in the population is generated and the way the candidate sets are generated. For
such generation, the probability of selecting a test case incrementally varies as the population
is being generated. This process for changing the size might make the generation of candidates
slightly slower when compared with the ARPG, because the algorithm needs to assign a test or not
based on a problability (Lines 2-6 and 11-15). Nevertheless, this cost is marginal when compared to
the cost of the entire execution of the algorithms. In the remainder of the paper, we refer to this
strategy as DynamicARPG.

3.5 Orthogonal Population Generation
To the best of our knowledge, the only work in the context of search-based test case selection where
an initial population is not generated in the standard way is that of Panichella et al. [75]. To this
end, we reimplemented their initial population generation approach to compare it with the seeding
strategies proposed in this paper. This strategy is based on the orthogonal arrays methodology [71]
that uses the Hadamard matrices to build orthogonal arrays. The underlying idea by Panichella
et al. [75] was to distribute and diversify the initial population in order the exploration to be

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :11

Algorithm 4: Algorithm for the ARPG seeding with dynamic test suite size
Input: N //Number of test cases
nPop //Population size
nCandidate //Number of candidate solutions
Result: initialPop // initial population

1 for i← 1 to N do
2 if rand() ≤ 1 /nPop then
3 initialPop(1,i) = 1;
4 else
5 initialPop(1,i) = 0;
6 end
7 end
8 for i← 2 to nPop do
9 for j← 1 to nCandidate do
10 for k← 1 to N do
11 if rand() ≤ i /nPop then
12 candidateSet(j,k) = 1;
13 else
14 candidateSet(j,k) = 0;
15 end
16 end
17 end
18 for j← 1 to nCandidate do
19 minDist = 1;
20 for k← 1 to i-1 do
21 distance = measureDistance(initialPop(k,:), candidateSet(j,:))
22 if distance < minDist then
23 minDist = distance;
24 end
25 end
26 distArray(j) = minDist ;
27 end
28 distIndx = max(distArray);
29 initialPop(i,:) = candidateSets(distIndx,:);
30 end

more effective. They conjecture that this diversification favours the search algorithm (a Genetic
Algorithm in their case) towards global optima.

Algorithm 5 shows the procedure to generate this population following the orthogonal population
generation method [75]. Given a population size (𝑛𝑃𝑜𝑝) and the number of test cases in the initial
test suite (N), Lines 1-4 aim at generating a Hadamard matrix of dimensions 𝐾 × 𝐾 . A Hadamard
matrix 𝐻 of order 𝑛 is an 𝑛 × 𝑛 matrix with the following property:

𝐻 × 𝐻𝑇 = 𝐻𝑇 × 𝐻 = 𝑛𝐼 (1)

, Vol. 1, No. 1, Article . Publication date: May 2020.

:12 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

where all the elements in 𝐻 are either +1 or -1 and I is the identity matrix. This matrix, except for
the first row and the first column, have the same number of +1 and -1 elements. The following is a
Hadamard matrix of 𝑛 = 4:

𝐻4 =

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 (2)

As proposed by Panichella et al. [75], we generate this matrix using the hadamard function
available in MATLAB. To generate K, Panichella et al., used 𝐾 = ⌈(𝐿 + 1)/4⌉ × 4, where ⌈(𝐿 + 1)/4⌉
refers to the smallest integer number greater or equal to𝐾 = ⌈(𝐿+1)/4⌉, 𝐿 being the highest number
of 𝑛𝑃𝑜𝑝 (i.e., number of population) or 𝑁 (i.e., number of test cases). However, in the MATLAB
version we used (i.e., MATLAB 2019b), K had to be K/12 or K/20 or power of 2. Subsequently, we
implemented the function getHadamardK which returned the lowest value equal or higher than
⌈(𝐿 + 1)/4⌉ × 4 that met that condition. As proposed by Panichella et al. [75], we remove the first
column of the matrix (Line 5) because it is the only one that contains only +1 elements, which
means that the first test case in 𝑇𝑆 will be selected by all the solutions in the population. Lines
6 to 14 convert the generated matrix into the population following the encoding we used (i.e.,
binary coding (see Section 2.2)). In the remainder of the paper we refer to this seeding strategy as
“Orthogonal”.

Algorithm 5: Algorithm for the Orthogonal Population seeding
Input: nPop //Population size
N //Number of Test cases
Result: initialPop // initial population

1 L=max(N,nPop);
2 K= getHadamardK(⌈(L+1)/4⌉ × 4)
3 𝐻𝑘= hadamard(K);
4 𝐻𝐾 = sortRowsAscendingOrder(𝐻𝑘);
5 𝐻𝐾 = deleteFirstColumn(𝐻𝑘);
6 for i← 1 to nPop do
7 for j← 1 to N do
8 if 𝐻𝑘 (i,j) == 1 then
9 initialPop(i,j) = 1;

10 else
11 initialPop(i,j) = 0;
12 end
13 end
14 end

4 APPLICATION DOMAINS
The proposed seeding strategy can be applied in any population-based search algorithm tackling the
test case selection problem. Test case selection has been applied in multiple software applications,
including C++ software [86], Java software [44] and Software Product Lines [94, 95]. This section
describes the two selected domains where we applied the proposed seeding strategies.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :13

4.1 Black-box test case selection of simulation models
Simulation models are typically used by engineers to model and simulate complex systems, such as
Cyber-Physical Systems (CPS) [18, 66]. This technology is largely employed as it supports engineers
in several activities, including automated test generation and early testing of CPSs without requiring
an initial prototype [68]. However, simulating some of these systems is commonly time-consuming,
where a single simulation may take hours to complete in some systems [68]. Furthermore, testing a
CPS requires several test levels, even with the same software version being tested. Usually, testing
starts at the Model-in-the-Loop (MiL) level, following with the Software-in-the-Loop (SiL) level
and lasting with the Hardware-in-the-Loop (HiL) level [8, 13], this being a real-time simulation.
Testing these systems by using simulation-based testing also poses several other difficulties, such
as the use of co-simulation, human test oracle, or several fidelity levels of the models [8, 18].
Consequently, test optimization is paramount, and recent approaches have proposed black-box
testing methodologies, including test case generation [65, 66, 68] and test case selection [10, 13].
With black-box testing we refer to focusing only on the inputs and outputs of the system, without
requiring either external data related to historical failures or white-box coverage. This technique
has been found to be appropriate to solve the test case selection problem, showing improvement
over traditionally employed white-box coverage techniques (i.e., Decision Coverage, Condition
Coverage, and Modified Condition/Decision coverage) [8].
In a previous work, we proposed a set of test adequacy criteria for multi-objective test case

selection adapted to the context of simulation-based testing of CPSs [8]. These adequacy criteria can
be categorized into two main parts: (1) test quality metrics, which measured a quantitative degree
of certain anti-patterns defined in previous works [63], and (2) a measure of distances between
test cases based on the Euclidean distance adapted to the context of simulation-based testing.
The hypothesis behind the former is that the higher the quantitative degree of an anti-pattern,
the higher the probability of finding faults. As for the latter’s, the hypothesis is that the more
dissimilar the selected test cases are, the higher the probability of finding faults. This hypothesis has
been widely investigated, showing positive results [37, 45, 46]. Four anti-patterns for simulation-
based testing were selected based on previous studies [7, 8, 63]: (1) instability, (2) discontinuity,
(3) growth to infinity and (4) the output minimum-maximum difference. Figure 3 illustrates the
first three. Instability refers to the anti-pattern where an output signal shows quick and frequent
oscillations [63]. Discontinuity is an anti-pattern in which an output signal shows a short duration
pulse [63]. The growth to infinity anti-pattern measures how an output signal grows to an infinite
value. The output minimum-maximum difference measures the difference between the minimum
and maximum output values [8]; this metric was inspired to overcome simulation-based specific
problems (e.g., not having specification for bounds and predicting how thoroughly a model has
been exercised) [8]. As for the similarity measures, two measures were used: (1) input-based test
similarity and (2) output-based test similarity. The former measures the similarity of a set of selected
test cases by considering the signals used to stimulate the model under test. The latter measures
the similarity of a set of selected test cases by considering the output signals of the model. The
Euclidean distance is used to measure this similarity as proposed in previous studies [64, 65]. All
the details of the fitness functions are explained in a prior work [8].

Besides multi-objective test case selection for simulation-based testing of CPSs being an impor-
tant challenge, we integrated our seeding strategies with our test case selection framework [8] for
different reasons. Firstly, the availability of an open source benchmark on Github along with exper-
imental material (including case studies, test cases, mutants, execution scripts, etc.). Secondly, we
provided more than one derived fitness function, which allows us to perform a more comprehensive
empirical evaluation, not only evaluating our seeding strategies with specific case studies, but also

, Vol. 1, No. 1, Article . Publication date: May 2020.

:14 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

Fig. 3. Anti-patterns for simulation models [8]

with different fitness functions. Based on the aforementioned anti-patterns and similarity metrics,
we derived six fitness function combinations, summarized in Table 1. We used only two objective
functions because we figured out that the provide a higher cost-effectiveness than when using
more objective functions [6, 8]. Furthermore, we evaluate more case studies and more algorithms
and having a larger amount of fitness function combinations would significantly increase the time
for executing experiments.

Table 1. Fitness function combinations integrated on the NSGA-II

Fitness
configuration ID Objetcive 1 Objective 2

c1 Discontinuity

Test
execution
time

c2 Growth to infinity
c3 Instability
c4 Input similarity
c5 Output similarity
c6 MinMax

Fitness functions for the black-box test case selection context
We now explain how the fitness functions where defined in the first application context.

Test Execution Time (TET): Define a set of test cases 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 = {𝑡𝑐𝑠1 , 𝑡𝑐𝑠2 , ..., 𝑡𝑐𝑠𝑁 }, that are
selected from the initial test suite 𝑇𝑆𝑖𝑛𝑖𝑡 = {𝑡𝑐𝑖1 , 𝑡𝑐𝑖2 , ..., 𝑡𝑐𝑖𝑀 }. Let 𝑇𝐸𝑇𝑠𝑎 denote the test execution
time of the test case 𝑡𝑐𝑠𝑎 from 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and 𝑇𝐸𝑇𝑖𝑏 be the test execution time of test case 𝑡𝑐𝑖𝑏 in
𝑇𝑆𝑖𝑛𝑖𝑡 . The total Test Execution Time (TET) of a set of selected test cases is:

𝑇𝐸𝑇𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1𝑇𝐸𝑇𝑠𝑎∑𝑀
𝑏=1𝑇𝐸𝑇𝑖𝑏

(3)

The search algorithm aims at minimizing this metric.
Discontinuity (D): Based on the above definition, let 𝐷𝑠𝑎 denote the discontinuity level of the

test case 𝑡𝑐𝑠𝑎 in 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and 𝐷𝑠𝑏 the discontinuity level of test case 𝑡𝑐𝑠𝑏 in 𝑇𝑆𝑖𝑛𝑖𝑡 , normalized from
0 to 1. The total discontinuity score of a set of selected test cases is:

𝐷𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1 𝐷𝑠𝑎∑𝑀
𝑏=1 𝐷𝑠𝑏

(4)

The search algorithm aims at maximizing this metric. More details of how the discontinuity level
of a test case is measured and its normalization procedure is explained in our prior study [8].

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :15

Growth to infinity (G): Based on the above definition, let𝐺𝑠𝑎 denote the growth to infinity level
of the test case 𝑡𝑐𝑠𝑎 in𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and𝐺𝑠𝑏 the discontinuity level of test case 𝑡𝑐𝑠𝑏 in𝑇𝑆𝑖𝑛𝑖𝑡 , normalized
from 0 to 1. The total growth to infinity score of a set of selected test cases is:

𝐺𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1𝐺𝑠𝑎∑𝑀
𝑏=1𝐺𝑠𝑏

(5)

The search algorithm aims at maximizing this metric. More details of how the growth to infinity
level of a test case is measured and its normalization procedure is explained in our prior study [8].

Instability (I): Based on the above definition, let 𝐼𝑠𝑎 denote the instability level of the test case
𝑡𝑐𝑠𝑎 in 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and 𝐼𝑠𝑏 the instability level of test case 𝑡𝑐𝑠𝑏 in 𝑇𝑆𝑖𝑛𝑖𝑡 , normalized from 0 to 1. The
total growth to infinity score of a set of selected test cases is:

𝐼𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1 𝐼𝑠𝑎∑𝑀
𝑏=1 𝐼𝑠𝑏

(6)

The search algorithm aims at maximizing this metric. More details of how the instability level of
a test case is measured and its normalization procedure is explained in our prior study [8].

MinMax (MM): Based on the above definition, let𝑀𝑀𝑠𝑎 denote the minimum-maximum differ-
ence level of the test case 𝑡𝑐𝑠𝑎 in 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and 𝑀𝑀𝑠𝑏 the minimum-maximum difference level of
test case 𝑡𝑐𝑠𝑏 in𝑇𝑆𝑖𝑛𝑖𝑡 , normalized from 0 to 1. The total growth to infinity score of a set of selected
test cases is:

𝑀𝑀𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1𝑀𝑀𝑠𝑎∑𝑀
𝑏=1𝑀𝑀𝑠𝑏

(7)

The search algorithm aims at maximizing this metric. More details of how the minimum-
maximum difference level of a test case is measured and its normalization procedure is explained
in our prior study [8].

Input similarity (disInput): Based on the above definition, let 𝑑𝑖𝑠𝐼𝑛(𝑡𝑐𝑠𝑎 , 𝑡𝑐𝑠𝑏) be the input
distance function between test cases 𝑡𝑐𝑠𝑎 and 𝑡𝑐𝑠𝑏 from𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and let 𝑑𝑖𝑠𝐼𝑛(𝑡𝑐𝑠𝑐 , 𝑡𝑐𝑠𝑑) be the input
distance function between test cases 𝑡𝑐𝑠𝑐 and 𝑡𝑐𝑠𝑑 from 𝑇𝑆𝑖𝑛𝑖𝑡 . The distance metric is based on the
Euclidean distance [8], and it ranges from 0 to 1, where 0 means that the two test cases are the
same and 1 means that they are completely different (based on the input signals). The total input
distance score of a set of selected test cases is:

𝑑𝑖𝑠𝐼𝑛𝑝𝑢𝑡𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1

∑𝑁
𝑏=𝑎+1 𝑑𝑖𝑠𝐼𝑛(𝑡𝑐𝑠𝑎 , 𝑡𝑐𝑠𝑏)∑𝑀

𝑐=1
∑𝑀
𝑑=𝑐+1 𝑑𝑖𝑠𝐼𝑛(𝑡𝑐𝑠𝑐 , 𝑡𝑐𝑠𝑑)

(8)

The search algorithm aims at maximizing this metric. More details of how the distance between
two test cases is measured is explained in our prior study [8]. It is assumed that there are dissimilar
test cases and therefore, the Equation does not divide by zero.

Output similarity (disOutput): Based on the above definition, let 𝑑𝑖𝑠𝑂𝑢𝑡 (𝑡𝑐𝑠𝑎 , 𝑡𝑐𝑠𝑏) be the
output distance function between test cases 𝑡𝑐𝑠𝑎 and 𝑡𝑐𝑠𝑏 from 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and let 𝑑𝑖𝑠𝑂𝑢𝑡 (𝑡𝑐𝑠𝑐 , 𝑡𝑐𝑠𝑑)
be the output distance function between test cases 𝑡𝑐𝑠𝑐 and 𝑡𝑐𝑠𝑑 from 𝑇𝑆𝑖𝑛𝑖𝑡 . The distance metric
is based on the Euclidean distance [8], and it ranges from 0 to 1, where 0 means that the two test
cases are the same and 1 means that they are completely different (based on the output signals).
The total output distance score of a set of selected test cases is:

, Vol. 1, No. 1, Article . Publication date: May 2020.

:16 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

𝑑𝑖𝑠𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1

∑𝑁
𝑏=𝑎+1 𝑑𝑖𝑠𝑂𝑢𝑡 (𝑡𝑐𝑠𝑎 , 𝑡𝑐𝑠𝑏)∑𝑀

𝑐=1
∑𝑀
𝑑=𝑐+1 𝑑𝑖𝑠𝑂𝑢𝑡 (𝑡𝑐𝑠𝑐 , 𝑡𝑐𝑠𝑑)

(9)

The search algorithm aims at maximizing this metric. More details of how the distance between
two test cases is measured is explained in our prior study [8]. It is assumed that there are dissimilar
test cases and therefore, the Equation does not divide by zero.

4.2 Regression test selection in continuous integration environments
Continuous Integration (CI) environments allow software engineers to continually integrate and
test their code [54]. This allows for reducing the amount of code rework required to evolve the
system by speeding up development time [34]. In this context, it is paramount to ensure that
enough testing is performed prior to code submission [34]. However, the codebase can be extremely
large, and it might not be possible to execute the entire test suite. Subsequently, regression test
selection approaches have been investigated to make continuous integration testing more cost-
effective [34, 49, 82, 83, 91, 102].

CI environments can provide a large amount of historical information in relation to the execution
of tests (e.g.., tested versions, verdict information, test case duration). Inspired by previous works [34,
82, 83, 95], we have defined the following objectives functions adapted to the multi-objective test
case selection context:
• Fault Detection Capability (FDC): CI environments allow for extracting information related
to the failure rate obtained by each test case. Based on information of the failure rate of
each test case, we define the FDC of a given 𝑇𝑆 ′ ⊆ 𝑇𝑆 as the sum of the failure rate of each
of the selected test cases in 𝑇𝑆 ′. The search algorithm aims at maximizing this objective
function. This metric has shown a high effectiveness in several regression test optimization
approaches [11, 13, 82, 83, 94, 95].
• Time Since Last Failure (TSLF): This metric was proposed by Elbaum et al. [34] to redefine
test case selection and prioritization in CI environments. In this paper we adapt it to the
search-based test case selection context. Specifically, it aims at favouring those test cases
that have failed in a recent version. Elbaum et al. [34] conjecture that those tests that have
failed in a recent version are “proxies” for code changes, targeting code that is churning. The
search algorithm aims at minimizing this objective function.
• Time Since Last Execution (TSLE): This metric was also proposed by Elbaum et al. [34], and
aims at favouring those tests that have not been executed in a while. The hypothesis is that
despite having minor effects initially, if a test suite is repeatedly ignored over time, it can
have a negative effect in the regression testing effectiveness. The search algorithm aims at
maximizing this objective function to favour those test cases that have not been executed in
recent versions.

Other commonmetrics in the context of regression testing are those related to white-box coverage.
However, we could not use this information because they were not available in the used dataset.
Conversely, the defined metrics have been used in other studies (e.g., [34, 82, 83, 95]) and these
have been found to be effective. For instance, the FDC metric directly obtains information of the
failures detected by the test cases, which is an information that is highly accurate in the context of
regression testing.
We selected this second context as an extension to our conference-version paper [6] due to

several reasons. Firstly, it is a context that has been widely investigated during the last few years in
the context of regression testing [15, 34, 49, 54, 61, 82, 83, 91, 102]. This is, to a large extent, due to
the importance that CI environments pose in current software engineering companies to develop

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :17

their software systems. Secondly, we found available dataset from large projects and industrial
companies, including Google [34, 54, 82, 83] and ABB [82, 83, 91]. Lastly, the context is very different
to the one used in the conference version paper [6] and presented in the previous version, which
helps validate that the proposed seeding strategies could work in other contexts. We derived six
fitness functiopn combinations (Table 2) by combining each of the objective functions defined above
with the test execution time by forming a bi-objective fitness combination. In addition, we used up
to three objectives by combining each of them with one another and with the test execution time.2

Table 2. Fitness function combinations integrated on the Regression test case selection algorithms

Fitness
configuration ID Objetcive 1 Objective 2 Objective 3

c1 FDC

Test
execution
time

c2 TSLF
c3 TSLE
c4 TSLF TSLE
c5 FDC TSLE
c6 FDC TSLF

Fitness functions for the regression test selection in continuous integration
environments
We now explain how the fitness functions where defined in the second application context.

Test Execution Time (TET): Define a set of test cases 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 = {𝑡𝑐𝑠1 , 𝑡𝑐𝑠2 , ..., 𝑡𝑐𝑠𝑁 }, that are
selected from the initial test suite 𝑇𝑆𝑖𝑛𝑖𝑡 = {𝑡𝑐𝑖1 , 𝑡𝑐𝑖2 , ..., 𝑡𝑐𝑖𝑀 }. Let 𝑇𝐸𝑇𝑠𝑎 denote the average test
execution time of the test case 𝑡𝑐𝑠𝑎 for all the CI cycles from 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and 𝑇𝐸𝑇𝑖𝑏 be the average test
execution time of test case 𝑡𝑐𝑖𝑏 for all the CI cycles in 𝑇𝑆𝑖𝑛𝑖𝑡 . The total Test Execution Time (TET)
of a set of selected test cases is:

𝑇𝐸𝑇𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1𝑇𝐸𝑇𝑠𝑎∑𝑀
𝑏=1𝑇𝐸𝑇𝑖𝑏

(10)

The search algorithm aims at minimizing this metric.
Fault Detection Capability (FDC): Based on the above definition, let 𝐹𝐷𝑅𝑠𝑎 denote the failure

detection ration of test case 𝑡𝑐𝑠𝑎 in𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 , and 𝐹𝐷𝑅𝑠𝑏 the failure detection ratio of test case 𝑡𝑐𝑠𝑏 in
𝑇𝑆𝑖𝑛𝑖𝑡 , normalized from 0 to 1. The total FDC score of a set of selected test cases is:

𝐹𝐷𝐶𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1 𝐹𝐷𝑅𝑠𝑎
𝑀

(11)

The Failure Detection Ration (FDR) of a test case refers to the number of times it has failed (i.e.,
triggered a failure) with respect to the number of times the test has been executed [82, 83]. The
search algorithm aims at maximizing this metric.

Time Since Last Failure (TSLF): Based on the above definition, let 𝐿𝐹𝐶𝐷𝑠𝑎 denote the time
difference since the test case 𝑡𝑐𝑠𝑎 in 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 triggered a failure in terms of cycle difference (e.g., if
the test is aimed to be selected at cycle 300, and the last time it triggered a fault was in cycle 250,
the difference will be 50). Let 𝑁𝑜𝐶 be the total number of cycles. If the test case has never failed,
the 𝐿𝐹𝐶𝐷𝑠𝑎 is set to 𝑁𝑜𝐶 . The total 𝑇𝑆𝐿𝐹𝑠𝑒𝑙𝑒𝑐𝑡 of a set of selected test cases is:

2The selected algorithms for the evaluation were multi-objective. Therefore it is not appropriate to use more than three
objective functions.

, Vol. 1, No. 1, Article . Publication date: May 2020.

:18 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

𝑇𝑆𝐿𝐹𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1 𝐿𝐹𝐶𝐷𝑠𝑎 + 𝑁𝑜𝐶 × |𝑀 − 𝑁 |

𝑀 × 𝑁𝑜𝐶 (12)

The search algorithm aims at minimizing this metric.
Time Since Last Execution (TSLE): Based on the above definition, let 𝐿𝐸𝐶𝐷𝑠𝑎 denote the time

difference since the test case 𝑡𝑐𝑠𝑎 in 𝑇𝑆𝑠𝑒𝑙𝑒𝑐𝑡 was executed in terms of cycle difference (e.g., if the
test is aimed to be selected at cycle 300, and the last time it was executed was in cycle 299, the
difference will be 1). Let 𝑁𝑜𝐶 be the total number of cycles. The total𝑇𝑆𝐿𝐸𝑠𝑒𝑙𝑒𝑐𝑡 of a set of selected
test cases is:

𝑇𝑆𝐿𝐸𝑠𝑒𝑙𝑒𝑐𝑡 =

∑𝑁
𝑎=1 𝐿𝐸𝐶𝐷𝑠𝑎
𝑀 × 𝑁𝑜𝐶 (13)

The search algorithm aims at maximizing this metric.

5 EMPIRICAL EVALUATION
In this section we discuss the experimental set-up we carried out to empirically evaluate the
proposed seeding strategies.

5.1 Research questions
To evaluate the proposed seeding strategies, we defined the following two Research Questions
(RQ):

RQ1: How do the proposed seeding strategies performwhen compared with non-seededmulti-objective
search algorithms? With this RQ we aimed at answering whether the seeding strategies do actually
perform better than search algorithms that did not have the initial population seeded. To this end,
we compared, for the first application context, a total of six fitness combinations along with four
search algorithms (i.e., NSGA-II, IBEA, SPEA2 and PESA-II) over six case studies (i.e., a total of 144
combinations). Additionally, for the second application context, a total of 6 fitness combinations
within four search algorithms over four case studies (i.e., a total of 96 combinations) were compared.
To answer this RQ, for each of all these 240 combinations, five seeding strategies (the static seed
had 2 independent configurations) were compared with a non-seeded approach. The non-seeded
approach generated the initial populations purely randomly.

RQ2: Among the proposed seeding strategies, which one fares best? The intention behind the second
RQ was to assess whether there is a seeding strategy that stands out over the rest in order to
recommend it to practitioners. To this end, we compared each of the seeding strategies with one
another for each of the 240 combinations (i.e., 144 combinations for the first application context
and 96 combinations for the second one).

RQ3: Do the proposed seeding strategies produce significant execution time overhead? The third
RQ aims at comprehensively analysing the overhead caused by the proposed seeding strategies.
To this end, we measure the time taken by the different algorithms with and without the seeding
strategies.

5.2 Case studies
This section briefly explains the details of the selected case studies in both of the selected application
contexts.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :19

5.2.1 Black-box test case selection case studies. Six case studies involving Simulink models of
different sizes, complexities and domains were employed, which provide a wide heterogeneity to
the experiment. Table 3 provides a summary of the selected case studies in terms of (1) number of
Simulink blocks, (2) number of inputs, (3) number of outputs, (4) number of test cases used in the
study, (5) the initial number of mutants and (6) the final number of mutants. It is noteworthy that
one of these case studies, i.e., The Electro-Mechanical Braking (EMB) system, was an industrial
case study developed by Bosch engineers [92]. This case study was previously used in other
evaluations [63]. The remaining case studies involve (1) CW, a model of four car windows with
its control software, (2) CC, the software in charge of automatically controlling the speed of the
car, (3) Tiny, a toy Simulink model, (4) AC Engine, an Alternating Current Engine with its control
software involving safety functionalities, and (5) Two Tanks, a case study involving a Simulink
model of Two Tanks. All these case studies have been previously used to evaluate Simulink testing
methods [7–9, 43, 63, 65, 66, 69, 72]. We used the same test cases provided by in our benchmark [8]
in order for the results to be compared with their approach.

Table 3. Key characteristics of the selected case studies in the first application context

Case
Study

of
Blocks

of
Inputs

of
Outputs

of Test
Cases

Initial set
of mutants

Final set
of mutants

CW 235 15 4 133 250 96
EMB 315 1 1 150 40 18
CC 31 5 2 150 60 20
Tiny 15 3 1 150 20 9
AC Engine 257 4 1 120 20 12
Two Tanks 498 11 7 150 34 6

5.2.2 Continuous-integration test case selection case studies. Four case studies involving real
test execution historical information of CI projects were used. Three of them were industrial case
studies from ABB Robotics Norway and Google. The ABB Robotics Norway’s case studies relate
to (i) ABB Paint Control and (ii) ABB IOF/RO, and provided information related to the tests for
testing robotic systems. These case studies have been previously used in other regression testing
studies [15, 82, 83, 91]. The case study from Google relates to the GSDTSR data set, which contains
test suite results executed over a sample of Google products. The dataset, originally used in the
paper [34] has also been used in other regression testing studies (e.g., [54, 82, 83]). The last case
study related to Rails, an open-source case study written in Ruby and hosted on Travis CI and used
in a previous work [54]. Table 4 provides a summary of the characteristics for the selected case
studies, which includes (1) the number of test cases that each case study has, (2) the number of CI
cycles, (3) the total number of verdicts (e.g., a test case might have been executed more than once)
and (4) the percentage of failed test cases (i.e., percentage of verdicts that returned a “fail”).

Table 4. Key characteristics of the selected case studies in the second application context

Case
Study

of
Test Cases

of
CI Cycles

of
Verdicts

% of Failed
Test Cases

ABB Paint Control 89 352 25,594 19.36%
ABB IOF/ROL 1,941 320 3,019 28.42%
Google GSDTSR 5,555 336 1,260,617 0.25%
Rails 2010 3,528,911 313,859,138 0.0051%

, Vol. 1, No. 1, Article . Publication date: May 2020.

:20 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

5.3 Evaluation metrics
We used the revisited Hypervolume (HV) metric to measure the effectiveness of our approach, as
employed in similar works [7, 8, 75]. For the first application context, for a set of solutions from the
Pareto-frontier, we used (1) the cost and (2) the percentage of faults revealed by each solution as
external utility functions. For the second application context, for a set of solutions from the Pareto-
frontier, we used (1) the cost and (2) the percentage of failures revealed by each solution as external
utility functions. Thus, to compute this revisited HV function, for the Pareto-frontier returned
by the search algorithm, each solution was individually assessed by obtaining their percentage
of faults/failures detected and the cost (i.e., the test execution time). By using this information,
a new Pareto-frontier was obtained aiming at maximizing the percentage of faults detected and
minimizing the test execution time. The derived Pareto-frontier was later employed to obtain the
HV measure, by having as a reference point 0% for the percentage of faults detected and the time
to execute the entire test suite for the cost. Notice that the higher the HV measure, the better the
performance of the algorithm.

For the first application context (i.e., black-box test case selection of simulation models) mutation
testing was employed to assess the fault revealing capability of a solution, as it has shown to
be a good substitute of real faults [48]. To this end, a set of mutants was generated for each of
the case studies, and the relation between test cases and killed mutants was obtained. With this
information, we removed (1) duplicated mutants (i.e., mutants equivalent to one another but not to
the original program) as recommended by Papadakis et al., [76], (2) mutants that were killed by all
test cases (as we considered them to be too weak mutants) and (3) mutants that were not killed
by any test case (to avoid the inclusion of equivalent mutants). We used the mutants available
in the framework [8], which employed the mutation operators proposed by Hann et al., [43] for
Simulink models. Information related to the number of mutants in the initial set and the final set
are available in Table 3. The distribution of the resulting mutants with respect to the test cases
can be found in Figure 4. As can be seen, there are different kind of distributions. For instance, the
ACEngine case study has a large number of test cases not detecting any single mutant, and only a
small portion of the test cases in the test suite detects mutants. However, it is noteworthy that in
many cases, there are test cases which are very long in time, subsequently, leading to detecting
more mutants. Therefore, in occasions, it is better to select a few test cases that have a small test
execution time than a single one having a long execution time. For the second application context
(i.e., regression test selection in continuous integration environments), similar to the other studies
using these datasets [82, 83], we used the information available for the evaluation cycle that was
used related to the real failures detected by the executed tests. Figure 5 depicts a histogram with
the relation between the number of test cases and the percentage of cycles that these have failed.
As can be seen, the type of failure distribution is different in the four case studies. In the Google
dataset, a high amount of failures are triggered by a few test cases. A similar pattern can also be
appreciated in the Rails case study, although not as exacerbated as in the Google’s dataset. In these
both datasets, there is a high amount of test cases that do not fail during the cycles. However, notice
that the distribution of both IOF and Paint datasets are completely different. It can be observed
that in the Paint dataset there is a high amount of tests that have failed between 75 and 85% of the
cycles. Conversely, in the IOF dataset, it can be appreciated that there are around 100 test cases
that have never failed, and there is a large amount of test cases that have failed in only a few cycles.
There are however, also, a large amount of test cases that have failed in most of the cycles; for
instance, there is a high number of test cases that have failed in 75% or more test cycles, unlike the
cases of Google and Rails. Subsequently, we believe that there is a high heterogeneity in the context
of failure distributions. More importantly, all this data comes from real-world and industrial case

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :21

studies. Unfortunately, in this second application context, information of the differences in faults
was not available. This means that a fault could be revealed by two different test cases, including
a bias in our evaluation (i.e., one can argue that a single test is enough to detect more than one
fault, and the second test is useless to execute). Nevertheless, maximizing the number of detected
failures is an important aspect of test selection too, and this metric has been also used in previous
works [82, 83, 91] using these case studies. Furthermore, we believe that there might be a strong
correlation between the percentage of failures detected and the number of faults detected.

Fig. 4. Histogram showing the distribution of faults among the test cases for the first application context

The HV was measured both, within the last set of Pareto-frontier solutions provided by the
search algorithms as well as during the search (every 500 generations). This not only provided us
information on how the proposed seeding strategies impacted on the final result but also allowed
us to observe how fast the algorithms converged. We measured how fast our algorithms converged
by using the Average Convergence metric, as proposed in other studies where the convergence of
different seeding strategies for search algorithms was measured [77–79]:

𝐴𝑣𝑔.𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 1 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠 −𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠
𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠

(14)

where, for each algorithm run, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠 refers to the average HV values obtained for the
ten measured iterations (i.e., every 500 iterations of the algorithm the modified HV is measured)
and 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠 refers to the known highest HV value for that case study (i.e., for each of
the case studies we checked for the highest HV obtained by our algorithms). A higher value of
𝐴𝑣𝑔.𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 means that the algorithm has found a set of optimal solutions faster, meaning
that it has converged faster.

5.4 Experimental scenarios and statistical tests
The evaluation was divided into different experimental scenarios for each of the selected application
domains. Each experimental scenario included:
• Case study: Six case studies in the first application domain and four case studies in the second
application domain

, Vol. 1, No. 1, Article . Publication date: May 2020.

:22 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

Fig. 5. Histogram showing the distribution between the test cases and the number of cycles where the test
failed for the second application context

• Multi-objective search algorithm: Four algorithms (NSGA-II, IBEA, SPEA2, PESA-II)
• Objective functions: A total of six fitness functions combinations (c1 to c6)

Subsequently, a total of 6 × 4 × 6 = 144 experimental scenarios were derived for the first
application domain and 4 × 4 × 6 = 96 for the second application domain. For all these scenarios, we
applied six seeding strategies and the non-seeded approach, which was the baseline of our study.
As suggested by Arcuri and Briand [3], for each of the experimental scenarios, the algorithm

along with the seeding strategy was run 50 times to account for random variations.
For each experimental scenario, we first executed the Kruskal-Wallis statistical test, which

performed a one-factor many-levels test. We assessed whether there was statistical differences
among the selected seeding strategies. If we found there were statistical differences (i.e., p-value
≤ 0.05), we used a post-hoc analysis for assessing the statistical difference between each of the
seeding strategy pairs. For the post-hoc analysis , we used the Holm’s method in order to avoid risks
with alpha inflation by applying corrections to the p-values. Furthermore, to assess the difference
between the seeding strategies, we employed the Vargha and Delaney Â12 value. The Â12 value
measures the probability that running the seeding strategy A yields better performance than
running the seeding strategy B. Thus, we used this to classify which of the seeding strategies were
better when there was statistical significance.

5.5 Algorithms setup
We implemented our seeding algorithms on top of PlatEMO [93], an open-source multi-objective
optimization platform that implements over 100 multi and many-objective search algorithms.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :23

For the selected algorithms, the population size was set to 100 and the total number of fitness
evaluations was 25,000. The crossover rate was set to 0.8, and a standard single point crossover
operator was employed. The mutation of a variable was done with the standard probability 1/N, N
being the number of test cases in the initial test suite. We chose these parameter values based on
other studies related to multi-objective test case selection [7, 8, 98] as well as guidelines [3]. As
in our previous work [7, 8], for the NSGA-II selection operator, we used the binary tournament
selection operator [16, 32]. The remaining algorithms’ configurations parameters were the default
ones provided in PlatEMO [93].
As for the seeding strategies, the number of candidate sets in the ARPG strategy was set to

10 based on the original paper [25]. In the case of the static seeds, we experimented with two
instance configurations, where we set one of the algorithm’s configuration for a desired test suite
size of 30% (coined as Static30), and the other one of 70% (coined as Static70). These configurations
were selected based on an initial preliminary experiment. Additionally, we wanted to analyze
configurations with larger and shorter test suites than 50% (as the non-seeded generated initial
population typically provides solutions that include the 50% of test cases).

6 ANALYSIS OF THE RESULTS AND DISCUSSION
To keep the paper at a reasonable size, we generated four tables summarizing the statistical results.
On the one hand, Tables 5 and 6 report the summary of the statistical tests for the first application
domain both for the HV metric as well as for the average convergence. On the other hand, Tables
7 and 8 report the summary of the statistical tests for the second domain. For each experimental
scenario, we first executed the Kruskal-Wallis test for a one-factor many-levels test, which assessed
whether there was statistical differences among the selected seeding strategies. If we found there
were statistical differences (i.e., p-value ≤ 0.05), we used a post-hoc analysis. This post-hoc analysis
was based on the Holm’s method to avoid risks with alpha inflation by applying corrections to the
p-values.

For each case study in each of the application contexts, we provide inside the column 𝐴/𝐵/= the
number of times each seeding strategy outperformed another one. The first number (i.e., the one in
the left) represents the number of experimental scenarios where the seeding strategy in column
“Strategy A” outperformed the seeding strategy in column “Strategy B” with statistical significance.
This meant that Â12 > 0.5 and the hypothesis was rejected based on the Holm’s method, for either
of the metrics (i.e., HV or Avg. Convergence).3 The second number (i.e., the one in the middle)
represents the number of experimental scenarios where the seeding strategy in column “Strategy
B” outperformed the seeding strategy in column “Strategy A” with statistical significance (i.e., Â12
< 0.5 and the hypothesis was rejected based on the Holm’s method). The third number (i.e., the
one in the right) represents the number of experimental scenarios where there was no statistical
significance between both strategies (i.e., it failed to reject the hypothesis, or the hypothesis was
accepted based on the Holm’s method). The column “Total” represents a summary of all the results
obtained for each of the case studies.

Besides, we analyzed the difference existing between two different seeding strategies by catego-
rizing their difference based on the Â12 values, as suggested by Romano et al. [85]. We categorized
the difference existing between the “Strategy A” and the “Strategy B” as negligible if 𝑑 < 0.147, as
small if 𝑑 < 0.33, as medium if 𝑑 < 0.474 and as large if 𝑑 >= 0.474, where 𝑑 = 2|Â12 −0.5|. These
values were obtained based on the study by Romano et al. [85]. These results are summarized in
Tables 12, 13, 14 and 15. For each case study, seven values are shown (i.e., A++, A+, A, =, B, B+ and
B++), divided by a slash (i.e., /). The first value (A++) means the number of experimental scenarios

3Note that the higher the value of these metrics, better the performance of the seeding strategy

, Vol. 1, No. 1, Article . Publication date: May 2020.

:24 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

that the difference between Strategy A and B was large, in favour of strategy A. The second value
(A+) means the number of experimental scenarios that the difference between Strategy A and
B was medium, in favour of strategy A. The third value (A) means the number of experimental
scenarios that the difference between Strategy A and B was small, in favour of strategy A. The
fourth value (=) means the number of experimental scenarios that the difference between Strategy
A and B was negligible. The fifth value (B) means the number of experimental scenarios that the
difference between Strategy A and B was small, in favour of strategy B. The sixth value (B+) means
the number of experimental scenarios that the difference between Strategy A and B was medium, in
favour of strategy B. Lastly, the seventh value (B++) means the number of experimental scenarios
that the difference between Strategy A and B was large, in favour of strategy B.
Besides, a higher level of details of the obtained results (e.g., statistical tests results, such as

specific results of the Â12 values between all the seeding strategies for all the experimental scenarios,
boxplots and other figures) is available in the following webpage: https://sites.google.com/alumni.
mondragon.edu/tosem-some-seeds-are-strong

Table 5. Summary of the performed statistical tests for the Hypervolume metric within the first application
context

CW EMB CC Tiny TwoTanks ACEngine Total
Seeding Strategy A Seeding Strategy B A/B/= A/B/= A/B/= A/B/= A/B/= A/B/= A/B/=

Non Seeded

Dynamic 1/22/1 0/24/0 0/22/2 0/24/0 0/23/1 2/7/15 3/122/19
Static30 0/23/1 0/24/0 0/24/0 0/24/0 0/24/0 2/10/12 2/129/13
Static70 23/1/0 24/0/0 24/0/0 24/0/0 24/0/0 17/0/7 136/1/7
ARPG 0/3/21 1/0/23 1/1/22 0/1/23 0/2/22 0/0/24 2/7/135
Orthogonal 5/1/18 16/0/8 5/0/19 13/0/11 13/0/11 0/0/24 52/1/81
DynamicARPG 1/22/1 0/24/0 0/22/2 0/24/0 0/24/0 2/8/14 3/124/17
Static30 16/2/6 19/2/3 16/3/5 21/0/3 20/3/1 0/4/20 92/14/38
Static70 23/1/0 24/0/0 24/0/0 24/0/0 24/0/0 17/2/5 136/3/5

Dynamic ARPG 22/1/1 24/0/0 22/0/2 24/0/0 22/0/2 6/2/16 120/3/21
Orthogonal 22/1/1 24/0/0 22/0/2 24/0/0 23/0/1 6/3/15 121/4/19
DynamicARPG 1/0/23 0/2/22 0/0/24 0/1/23 1/1/22 0/0/24 2/4/138

Static30

Static70 23/1/0 24/0/0 24/0/0 24/0/0 24/0/0 22/1/1 141/2/1
ARPG 23/1/0 24/0/0 24/0/0 24/0/0 24/0/0 10/2/12 129/3/12
Orthogonal 22/1/1 24/0/0 24/0/0 24/0/0 24/0/0 7/2/15 125/3/16
DynamicARPG 1/16/7 1/18/5 3/17/4 2/22/0 3/20/1 3/0/21 13/93/38
ARPG 0/23/1 0/24/0 0/24/0 0/24/0 0/24/0 0/18/6 0/137/5

Static70 Orthogonal 0/23/1 0/24/0 0/24/0 0/24/0 0/24/0 0/18/6 0/137/5
DynamicARPG 1/23/0 0/24/0 0/24/0 0/24/0 0/24/0 2/17/5 3/136/5

ARPG Orthogonal 10/0/14 17/0/7 4/0/20 17/0/7 11/0/13 0/0/24 59/0/85
DynamicARPG 1/22/1 0/24/0 0/22/2 0/24/0 0/24/0 2/7/15 3/123/18

Orthogonal DynamicARPG 1/22/1 0/24/0 0/22/2 0/24/0 0/24/0 3/6/15 4/122/18

6.1 RQ 1 – Comparison with the baseline
In general, both Dynamic and Dynamic ARPG seeding strategies outperformed the non-seeded
approach inmost cases for both application domains. Specifically, when considering themodifiedHV
metric, both seeding strategies outperformed with statistical significance the non-seeded approach
in most of the cases. The Dynamic seeding strategy outperformed it in 85% of experimental
scenarios, whereas the Dynamic ARPG for 85.8% of the experimental scenarios (Tables 5 and
7). When considering the Â12 values and the classification performed by Romano et al. [85], the
differences were large for 80% of the experimental scenarios for the Dynamic seeding strategy and
for 79.5% for the Dynamic ARPG as compared with the non-seeded approach. When considering the
convergence metric, the results were even stronger. Both strategies outperformed with statistical
significance the non-seeded approach in 96.25% of experimental scenarios (Tables 6 and 8). This
differencewas large for 95.8% of the experimental scenarios according to the classification performed

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://sites.google.com/alumni.mondragon.edu/tosem-some-seeds-are-strong
https://sites.google.com/alumni.mondragon.edu/tosem-some-seeds-are-strong

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :25

Table 6. Summary of the performed statistical tests for the Average Convergence metric within the first
application context

CW EMB CC Tiny TwoTanks ACEngine Total
Seeding Strategy A Seeding Strategy B A/B/= A/B/= A/B/= A/B/= A/B/= A/B/= A/B/=

Non Seeded

Dynamic 0/23/1 0/24/0 0/24/0 0/24/0 0/24/0 2/22/0 2/141/1
Static30 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 0/144/0
Static70 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 144/0/0
ARPG 2/0/22 0/0/24 1/0/23 1/1/22 1/2/21 1/0/23 6/3/135
Orthogonal 21/0/3 22/0/2 16/0/8 21/0/3 21/0/3 0/2/22 101/2/41
DynamicARPG 0/23/1 0/24/0 0/24/0 0/24/0 0/24/0 2/22/0 2/141/1
Static30 22/2/0 22/1/1 21/0/3 22/0/2 20/0/4 4/3/17 111/6/27
Static70 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 144/0/0

Dynamic ARPG 23/1/0 24/0/0 24/0/0 24/0/0 24/0/0 22/2/0 141/3/0
Orthogonal 23/0/1 24/0/0 24/0/0 24/0/0 24/0/0 22/2/0 141/2/1
DynamicARPG 0/0/24 0/1/23 0/0/24 0/0/24 0/1/23 0/0/24 0/2/142

Static30

Static70 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 144/0/0
ARPG 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 144/0/0
Orthogonal 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 144/0/0
DynamicARPG 1/21/2 0/22/2 0/21/3 0/22/2 0/22/2 3/5/16 4/113/27
ARPG 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 0/144/0

Static70 Orthogonal 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 0/144/0
DynamicARPG 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 0/144/0

ARPG Orthogonal 22/0/2 23/0/1 16/0/8 20/0/4 20/0/4 0/1/23 101/1/42
DynamicARPG 0/23/1 0/24/0 0/24/0 0/24/0 0/24/0 2/22/0 2/141/1

Orthogonal DynamicARPG 0/24/0 0/24/0 0/24/0 0/24/0 0/24/0 2/21/1 2/141/1

Table 7. Summary of the performed statistical tests for the Hypervolume metric within the second application
context

Google IOF Paint Rails Total
Seeding Strategy A Seeding Strategy B A/B/= A/B/= A/B/= A/B/= A/B/=

Non Seeded

Dynamic 4/20/0 0/24/0 0/22/2 1/16/7 5/82/9
Static30 7/0/17 15/0/9 1/11/12 9/6/9 32/17/47
Static70 16/4/4 5/0/19 17/0/7 6/3/15 44/7/45
ARPG 0/1/23 0/1/23 0/0/24 0/0/24 0/2/94
Orthogonal 3/5/16 1/1/22 2/0/22 4/0/20 10/6/80
DynamicARPG 4/20/0 0/24/0 0/22/2 1/16/7 5/82/9
Static30 20/0/4 24/0/0 20/0/4 21/1/1 85/1/10
Static70 20/4/0 24/0/0 23/0/1 27/1/6 84/5/7

Dynamic ARPG 20/4/0 24/0/0 22/0/2 28/0/6 84/4/8
Orthogonal 20/1/3 24/0/0 22/0/2 19/1/4 85/2/9
DynamicARPG 0/0/24 0/0/24 0/0/24 0/0/24 0/0/96

Static30

Static70 10/4/10 0/5/19 20/1/3 4/13/5 34/23/37
ARPG 2/9/13 0/16/8 8/1/15 9/8/7 19/34/43
Orthogonal 1/10/13 0/14/10 15/1/8 6/7/11 22/32/42
DynamicARPG 0/20/4 0/24/0 0/20/4 0/22/2 0/86/10
ARPG 4/16/4 0/7/17 0/18/6 4/3/17 8/44/44

Static70 Orthogonal 4/19/1 0/9/15 0/12/12 9/4/11 13/44/39
DynamicARPG 4/20/0 0/24/0 0/23/1 1/17/6 5/84/7

ARPG Orthogonal 4/4/16 2/1/21 2/0/22 5/0/19 13/5/78
DynamicARPG 4/20/0 0/24/0 0/22/2 0/17/7 4/83/9

Orthogonal DynamicARPG 1/20/3 0/24/0 0/22/2 1/19/4 2/85/9

by Romano et al. [85]. This means that the proposed seeding strategies help on obtaining a faster
convergence, which can be further observed in Figures 6 and 7.4 All these results suggest that both
of these seeding strategies are appropriate and outperform the non-seeded approach when dealing
with the test case selection problem.

Results differed when considering other seeding strategies against the non-seeded approach. For
instance, the static seed configured to build test suites of the 30% outperformed the non-seeded

4More figures of this type can be found in the website: https://sites.google.com/alumni.mondragon.edu/
tosem-some-seeds-are-strong

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://sites.google.com/alumni.mondragon.edu/tosem-some-seeds-are-strong
https://sites.google.com/alumni.mondragon.edu/tosem-some-seeds-are-strong

:26 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

Table 8. Summary of the performed statistical tests for the Average Convergence metric within the second
application context

Google IOF Paint Rails Total
Seeding Strategy A Seeding Strategy B A/B/= A/B/= A/B/= A/B/= A/B/=

Non Seeded

Dynamic 3/20/1 0/24/0 0/24/0 0/22/2 3/90/3
Static30 12/1/11 17/0/7 18/1/5 17/0/7 64/2/30
Static70 18/4/2 20/0/4 22/0/2 4/3/17 64/7/25
ARPG 0/1/23 0/1/23 0/0/24 1/0/23 1/2/93
Orthogonal 12/1/11 6/1/18 24/0/0 8/0/16 50/1/45
DynamicARPG 3/20/1 0/24/0 0/24/0 0/22/2 3/90/3
Static30 21/0/3 24/0/0 24/0/0 24/0/0 93/0/3
Static70 20/4/0 24/0/0 24/0/0 22/1/1 90/5/1

Dynamic ARPG 20/2/2 24/0/0 24/0/0 23/0/1 91/2/3
Orthogonal 20/0/4 24/0/0 24/0/0 22/0/2 90/0/6
DynamicARPG 0/0/24 0/0/24 0/0/24 0/0/24 0/0/96

Static30

Static70 14/4/6 1/4/19 17/5/2 1/18/5 33/31/32
ARPG 1/12/11 0/18/6 1/17/6 0/18/6 2/65/29
Orthogonal 6/8/10 0/11/13 8/6/10 0/11/13 14/36/46
DynamicARPG 0/21/3 0/24/0 0/24/0 0/24/0 0/93/3
ARPG 3/19/2 0/19/5 0/22/2 4/2/18 7/62/27

Static70 Orthogonal 4/11/8 0/12/12 2/14/8 12/0/12 18/38/40
DynamicARPG 4/20/0 0/24/0 0/24/0 0/22/2 4/90/2

ARPG Orthogonal 12/3/9 6/1/17 23/0/1 9/0/15 50/4/42
DynamicARPG 2/20/2 0/24/0 0/24/0 0/23/1 2/91/3

Orthogonal DynamicARPG 0/20/4 0/24/0 0/24/0 0/22/2 0/90/6

Fig. 6. Median HV obtained for the 50 algorithm runs at every 500 generations for the NSGA-II algorithm
configured with the C1 fitness combination within the first application domain

approach in the first application domain when considering both the modified HV metric (Table
5) as well as the convergence metric (Table 6). However, in the second application domain, the
non-seeded approach performed slightly better than this strategy, suggesting that this strategy
might only be applicable in some application domains, but not in others. This could be due to
the fact that in the first application domain, where simulation models of CPSs are involved, the
test cases take a long time to execute, whereas in the second domain, the tests take less time.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :27

Fig. 7. Median HV obtained for the 50 algorithm runs at every 500 generations for the NSGA-II algorithm
configured with the C1 fitness combination within the second application domain

Subsequently, in those cases where the time may be a relevant factor, the static seed configured to
build test suites of the 30% (or lower) could be an appropriate technique.

The ARPG strategy performed similarly to the non-seeded approach. On the one hand, in 95.4% of
all the experimental scenarios there was no statistical significance when considering the HV metric.
On the other hand, in 95% of the cases, there was no statistical significance when considering
the average convergence metric. This means that the proposed ARPG strategy did not have any
impact in the search algorithm, which might be due to three reasons. First, having diversity in the
population in terms of selected and not selected test cases might not have an impact when selecting
test cases. Second, the selected distance function (i.e., Hamming distance) might not be appropriate
for this context. Third, the number of candidate solutions, which was configured to have 10, did
not produce sufficiently distinct populations, and this number might need to be increased.
Unexpectedly, the orthogonal population strategy performed worse than the non-seeded ap-

proach. While the approach performed similarly when considering the HV metric, where there
was no statistical significance between the strategy and the baseline for 67% of the scenarios, when
considering the Average Convergence, the baseline approach outperformed the orthogonal seed in
63% of the experimental scenarios with statistical significance. This strategy, which was originally
proposed by Panichela et al. [75], aims at promoting diversity during the search process. Probably,
in order this technique to be effective, it requires additional mechanisms that inject diversity during
the search, as proposed in the original work [75]. Another technique that performed worse than the
baseline was the static seed configured to select around 70% of the test cases. For most experimental
scenarios, the baseline outperformed this technique, which means that the number of tests selected
in the initial population by this technique might be too large.
In any application of search algorithms, the appropriate selection of the fitness function is

fundamental. In our previous study [8], where different fitness function combinations were analyzed

, Vol. 1, No. 1, Article . Publication date: May 2020.

:28 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

for the context of search-based test case selection of simulation models, we noticed that some
fitness function combinations were stronger than others. For instance, we found that those fitness
functions that had some anti-patterns as effectiveness measures were stronger than those that were
based on test case similarity. Upon a closer look, we noticed that the cases where the non-seeded
approach outperformed the Dynamic and Dynamic ARPG strategies could be the result of the fitness
function not being appropriate enough. For instance, this was the case of the C3 fitness function
combination in the Google case study, which combines the TSLE fitness function as effectiveness
metric with the test execution time. As can be seen in Figure 8, in such case, the only seeding
strategy that converges towards better HV values is the Static70, while the remaining techniques’
performance degrade over the search. In a similar line, some search algorithms, in combination with
some fitness function combinations and the proposed seeding strategies that performed best (i.e.,
Dynamic and Dynamic ARPG) might not be appropriate to solve the test case selection problem.
For instance, this was the case in the Rails case study when using the IBEA algorithm and the C3
combination, or in the case of the ACEngine case study when using the IBEA algorithm alongside
the C4 combination (Figure 9).

Fig. 8. Median HV obtained for the 50 algorithm runs at every 500 generations of the fitness function
combination C3 along with the Google case study, where the seeding strategies had negative effects due to
the fitness function not working correctly

The combination of some seeding strategies, search algorithm and fitness function was not
particularly well suited. For instance, this was the case of the PESA-II algorithm with the Dynamic
and DynamicARPG seeding strategies along with the C4 fitness combination in the first application
domain, as can be seen in Figure 10. In this case, C4 combination combines the TET with the
input similarity. While the input similarity showed a low performance when compared to other
anti-patterns (e.g., discontinuity) [8], in our experiments with the PESA-II algorithm it showed

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :29

Fig. 9. Median HV obtained for the 50 algorithm runs at every 500 generations of two cases where the seeding
strategies had a negative effect

how the HV degraded over time. Conversely, the other algorithms (e.g., NSGA-II) along with the
C4 combination were able to maintain or improve the overall HV indicator. Subsequently, it can
be seen that in some cases the selection of the algorithm is as important as the selection of an
appropriate fitness function.

Fig. 10. Median HV obtained for the 50 algorithm runs at every 500 generations of the PESA-II algorithm in
the first application domain with the C4 fitness function combinations. As can be seen, the HV indicator
degrades as the search advances in number of generations.

Table 9 reports which were the combinations that for the 50 independent runs obtained highest
average HV values. As can be seen, in all of them, NSGA-II was the algorithm providing the
highest HV. Interestingly, for the fitness function combination, in the first application context,
the combination of Discontinuity and TET objectives were the ones performing best in all the
case studies, which is in line with the results obtained in our previous work [8]. In the second

, Vol. 1, No. 1, Article . Publication date: May 2020.

:30 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

application context, the combination of FDC and TET objectives where the ones performing best in
terms of the highest average HV indicator.

Table 9. Summary of the combinations showing highest average HV indicator

Case Study Algorithm Fitness
configuration Seeding Strategy

ACEngine NSGA-II C1 DynamicARPG
CC NSGA-II C1 DynamicARPG
CW NSGA-II C1 Dynamic
EMB NSGA-II C1 Dynamic
Tiny NSGA-II C1 Dynamic
TwoTanks NSGA-II C1 Dynamic
Google NSGA-II C1 DynamicARPG
IOF NSGA-II C1 DynamicARPG
Paint NSGA-II C1 Dynamic
Rails NSGA-II C1 Dynamic

For these cases, we analyzed the Pareto-frontier returned by the search algorithms, and took the
ones with highest mutation score (for the first application context) and the highest failure detection
ratio (for the second application context), and analyzed their TET. In the first application context,
both the non-seeded approach and the one with the seeding strategy obtained the maximum
mutation score, except for some outliers in the case study of the CW (for the case of the non-seeded
approach). Figure 11 shows the distribution of the TET obtained for each of the case studies by the
seeding strategy obtaining highest HV and the non-seeded approach. As can be seen, in the most
complex case studies in terms of number of blocks (i.e., EMB and TwoTanks), the seeding strategy
helped significantly in the reduction of the TET. For the TwoTanks case study, the test suites
obtained with the Dynamic seed took between 2 and 6% of the original TET to execute, whereas for
the non-seeded approach, the test suites took between 6 and 13% of the original TET. This means
that in this specific case study, the Dynamic seed could take less than half of the time taken by the
test suites provided non-seeded approach while detecting the same amount of mutants. In the case
of the EMB, the median value of the distribution for the seeded approach was around 7.5% of the
TET of the original test suite, whereas the median value for the non-seeded approach was around
13%; thus, the reduction in the overall TET was quite significant in this case too. In the remaining
four case studies, the TET values were similar between the seeded and non-seeded approaches. In
the Tiny and ACEngine case studies, the seeded approaches showed a lower TET median value,
but the distributions were slightly larger. In the CC case study, the median was similar, but the
distribution for the seeded approach was larger. Finally, the median TET value of the CW case
study was slightly lower, in addition to the overall distribution. However, in this specific case, the
distribution of the TET values were large in both cases. This might be due to a larger amount of
mutants being used. When having a closer look at the results, we noticed that for obtaining the
modified HV values, the number of non-dominated solutions in the seeded approaches were much
higher than those in the non-seeded approach. This means that in practice, where decision makers
are needed to select one specific solution from the Pareto-frontier returned by the algorithm (e.g.,
based on some time budget), when using the seeded approaches, the probabilities for selecting a
better solution is higher.
Results where quite different in the second application domain. This could be because in these

case studies, instead of measuring the percentage of faults detected, we focused on failures.5 As
can be seen in Figure 12, the seeding strategies favour a high failure detection ratio, selecting in
most of the solutions at least one solution that detects all the failures that are detectable by the
5Notice that the dataset do not have access to the faults

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :31

Fig. 11. Test Execution Time taken to obtain maximum mutation score of individual solutions for the configu-
ration from Table 9. In most of these cases, the mutation score was 100%, except for some outliers in the case
study of the CW in the case of the non-seeded approach

test suite. Instead, the non-seeded approach did not detect all failures in most of the cases. This
has a direct impact on the overall TET of the approaches, as can be appreciated in Figure 13. It can
be concluded that the seeded approaches favour the fault detection ratio, while the non-seeded
approach favours cost reduction. When having a closer look, a similar pattern to that from the first
domain was observed. The number of solutions in the derived Pareto frontier was longer for the
case of the seeded approach when compared with the non-seeded approach. This means that the
decision maker has more choices and better chances of selecting an adequate solution in the case
of the seeded approach.

Fig. 12. Maximum percentage of failures detected by individual solutions for the configuration from Table 9

, Vol. 1, No. 1, Article . Publication date: May 2020.

:32 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

Fig. 13. Maximum Test Execution Time (TET) by individual solutions to obtain the maximum failure ratio for
the configuration from Table 9

For both application domains, it could be appreciated that both the Dynamic and the Dynami-
cARPG seeding strategies outperformed the non-seeded strategy. Additionally, in the first applica-
tion domain, the Static30 also outperformed the non-seeded strategy. This means that from the
practical perspective, exceptions aside, the use of some of the proposed strategies can be beneficial
for the test case selection problem. However, when analyzing individual solutions with highest
mutation scores and highest failure rates, we saw that the execution time of the test cases is not
always beneficial for the seeded approach. While there were cases where the TET was reduced
down to the 50% when compared with the non-seeded approach while maintaining the mutation
score (e.g., EMB and TwoTanks case studies), this analysis suggest that effective decision makers
are required when selecting solutions from the Pareto-frontier, which remains for future work. We
therefore recommend the use of either the Dynamic or the DynamicARPG strategies for the test
case selection problem. Subsequently, the first RQ can be answered as follows:

The Dynamic and DynamicARPG seeding strategies outperformed the non-seeded approach
with statistical significance for around 85% of the experimental scenarios when considering the
modified HV metric and for around 96% of the experimental scenarios when considering the
Average Convergence.

6.2 RQ 2 – Best seeding strategy
In the previous RQ, three of the selected strategies outperformed the baseline (non-seeded ap-
proach) with statistical significance for most of the experimental scenarios when considering the
first application domain: Dynamic, Static30 and DynamicARPG. Conversely, the Static30 seeding
strategy did not outperform the baseline technique in the second application context, while both
Dynamic and DynamicARPG strategies did. When considering the first application scenario, both
the Dynamic and DynamicARPG outperformed the Static30 strategy with statistical significance
for most of the experimental scenarios too. Specifically, when considering the modified HV metric,

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :33

the Dynamic seed outperformed the Static30 technique with statistical significance for 63.8% of
the experimental scenarios, whereas the DynamicARPG for 64.5% of the experimental scenarios.
These results were even stronger when considering the Average Convergence metric (i.e., 77% of
the experimental scenarios for the Dynamic seed and 78% of the cases for the DynamicARPG). This
means that even in an application domain where the Static30 technique outperformed the baseline,
both the Dynamic and DynamicARPG strategies are better. As for the second application domain,
the Dynamic strategy outperformed this seeding strategy in 88% of the scenarios when considering
the HV metric, and in 96.9% of the scenarios when considering the Average Convergence metric.
Similarly, the DynamicARPG outperformed the Static30 seed in 89.6% of the experimental scenarios
when considering the modified HV metric and in 96.9% of the scenarios when considering the
Average Convergence metric. Overall, all this means that both the Dynamic and DynamicARPG
techniques are stronger than the Static30 seed.
As expected from the results of RQ1, both the Dynamic and DynamicARPG performed better

than the Static70, ARPG and Orthogonal seeding strategies for most of the cases. There were only
some few experimental scenarios where these three approaches outperformed the Dynamic and
DynamicARPG techniques with statistical significance. This could be because the combination
between some search algorithm with some fitness function combinations might not be appropriate
for test case selection. For instance, this was the case in the Rails case study when using the IBEA
algorithm and the C3 combination, or in the case of the ACEngine case study when using the IBEA
algorithm alongside the C4 combination. These two examples are shown in figure 9, and have been
discussed in the previous RQ.

When comparing the Dynamic and the Dynamic ARPG strategies, results were generally indis-
tinguishable. On the one hand, when considering the modified HV metric, there was no statistical
significance in 97.5% of the experimental scenarios. On the other hand, when considering the
Average Convergence, there was no statistical significance in 99.2% of the experimental scenarios.
It is noteworthy that in the second application domain, there was no statistical significance in
any of the experimental scenarios. All this means that the cost-effectiveness of both techniques is
mostly the same.
From the practical perspective, generally both the Dynamic seed and the DynamicARPG tech-

niques outperformed the remaining seeding strategies. When compared among them, the results
were in indistinguishable. Nonetheless, the DynamicARPG seed combines both, the ARPG seed and
the dynamic seed strategies. While the DynamicARPG seed is competitive when compared with
the non-seeded approach, the fact that the ARPG performed close to the non-seeded approach (see
discussion on RQ1) suggests that it is the varying test suite size factor that makes this algorithm
perform better than the non-seeded approach. Furthermore, computationally, the Dynamic seed
is faster than the DynamicARPG, although both techniques are fast enough to be applicable in
practice. Having this discussed, we can answer the second RQ as follows:

The Dynamic and DynamicARPG seeding strategies outperformed the remaining seeding
strategies in at least 73.75% of the experimental scenarios when considering the modified HV
metric and in 85% of the experimental scenarios when considering the Average Convergence
metric. Despite not having significant differences between themselves, the Dynamic seed is
recommended for use by practitioners dealing with the multi-objective test case selection
problem.

, Vol. 1, No. 1, Article . Publication date: May 2020.

:34 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

6.3 RQ 3 – Algorithms Running Times and Overhead
The third RQ aims at analyzing the effects of the seeding strategies in the execution time of the
search algorithms. To this end, in each run, we measured the time required by the algorithms to
execute and compared it with the non-seeded approach. We run the same statistical tests as in the
cases of RQ1 and RQ2. Table 10 summarizes the results of the statistical tests for the first application
domain whereas Table 11 does the same for the second application domain.

Table 10. Summary of the performed statistical tests for the execution time within the first application
context

ACEngine CC CW EMB Tiny TwoTanks TOTAL
Seeding Strategy A Seeding Strategy B A/B/= A/B/= A/B/= A/B/= A/B/= A/B/= A/B/=

Non seeded

Dynamic 11/5/8 11/8/5 14/1/9 7/7/10 24/0/0 23/0/1 90/21/33
Static30 0/24/0 0/24/0 0/24/0 0/22/2 0/20/4 15/8/1 15/122/7
Static70 24/0/0 24/0/0 24/0/0 24/0/0 24/0/0 23/0/1 143/0/1
ARPG 20/2/2 6/1/17 5/4/15 1/13/10 16/0/8 20/0/4 68/20/56
Orthogonal 7/4/13 3/8/13 1/11/12 8/0/16 12/1/11 17/0/7 48/24/72
DynamicARPG 17/1/6 21/1/2 17/0/7 11/3/10 24/0/0 23/0/1 113/5/26

Table 11. Summary of the performed statistical tests for the execution time within the second application
context

Google IoF Paint Rails Total
Seeding Strategy A Seeding Strategy B A/B/= A/B/= A/B/= A/B/= A/B/=

Non seeded

Dynamic 8/16/0 9/15/0 5/12/7 11/12/1 33/55/8
Static30 0/24/0 0/24/0 0/21/3 0/24/0 0/93/3
Static70 24/0/0 24/0/0 23/0/1 24/0/0 95/0/1
ARPG 24/0/0 24/0/0 22/0/2 23/0/1 93/0/3
Orthogonal 24/0/0 11/9/4 2/0/22 1/20/3 38/29/29
DynamicARPG 8/16/0 17/7/0 20/1/3 15/7/2 60/31/5

As can be seen, there was statistical significance between some of the seeding strategies and the
non-seeding approach. For instance, the Static30 seed outperformed the non-seeding approach,
whereas Static70 was outperformed by the non-seeded approach. This suggests that the number
of test cases that have been selected in the solution has an impact in the running time, probably
because it takes more time to compute the fitness of the solutions with a higher amount of test
cases being selected.
From RQ1 and RQ2, we derived that the Dynamic and DynamicARPG seeding strategies were

the ones performing best. In the case of Dynamic, the non-seeded approach seemed to perform
better in the first application domain, outperforming it with statistical significance in 62.5% of
the experimental scenarios; in such application domain, the Dynamic seed was faster in 14.6% of
the experimental scenarios. Conversely, in the second application domain, the Dynamic seeding
strategy outperformed the non-seeded approach in terms of running times in more experimental
scenarios; specifically, for 57.3% of the experimental scenarios, the Dynamic seed was faster with
statistical significance, whereas the non-seeded approach outperformed this strategy in 33.4% of the
scenarios. In the case of the DynamicARPG seeding strategy, results were worse when compared
against the non-seeded approach. In both application scenarios, the non-seeded approach was faster.
Specifically, in the first application context, the non-seeded approach was faster with statistical
significance in 78.5% of the scenarios, whereas in the second application context in 63.5% of them.
However, while there is statistical significance, when considering the actual running times

between Dynamic and DynamicARPG against the non-seeded approach, it can be seen that the
differences are not large. The largest difference in the mean time of the 50 runs for all the scenarios

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :35

were 6.49 seconds between the DynamicARPG and the non-seeded approach (Google case study,
SPEA2 algorithm, C4 fitness function combination). In addition, when considering the Dynamic
seed, the maximum average running time difference with regard to the non-seeded approach
was 2.65 seconds (AC Engine case study, NSGA-II algorithm, C2 fitness function combination).
The average running time difference of the mean running times between the Dynamic and the
non-seeded algorithm was 0.38 seconds. In the case of the DynamicARPG, the average running
time difference of the mean running time (for the 50 runs) against the non-seeded algorithm was 0.8
seconds. Therefore, the overhead that these algorithms might provoke is not a reason that should
prevent their usage in practice.6
Furthermore, from RQ1, we have seen that the proposed seeding strategies help the search

algorithms converge faster. This means that if the execution time of algorithms is a critical factor
when deployed a test selection algorithm in practice, the seeding strategies can be used together
with a lower number of generations, requiring this way a lower running time of the algorithms. For
instance, in Figure 6, it can be seen that the algorithms obtain the maximum HV value by the 500th
generation, or even before. This means that by using 500 generations, the results will be similar to
using the 2500. However, around an 80% of time could be saved when compared to the non-seeded
approach. Therefore, this RQ can be answered as follows:

The proposed seeding strategies do not produce significant overhead in the running times of
the algorithms. While there is statistical significance when comparing the running times (both,
in favour and against the seeding algorithms), when considering the overall running times
of the algorithms showing best performance in RQ1 and RQ2, the difference on average was
not longer than 2.65 seconds between the Dynamic and the non-seeded algorithm, which is
a time that can be assumed in practice. Furthermore, both the Dynamic and DynamicARPG
seeds help the search algorithms converge faster, which could be combined with having a lower
number of generations should the algorithms’ running times is critical.

Summary of the results and practical implications
In our evaluation, we have aimed at assessing whether the proposed techniques are appropriate for
the test case selection problem. To this end, we have carried out an empirical evaluation by using two
application domains, four search algorithms and different fitness function combinations. We now
summarize some of the insights found that need to be considered when applying a multi-objective
test case selection algorithm in practice:
• Two of the seeding strategies (i.e., Dynamic and DynamicARPG) stood out over the rest.
More importantly, the performance of these two techniques was better than the traditionally
employed non-seeded approach. Due to its simplicity and lower running time, we recommend
the use of the Dynamic seeding strategy.
• In terms of the algorithms’ running times, we could see that these two seeding strategies do
not provoke significant overhead in the algorithms’ running times when compared against
the non-seeded approach. The small overhead provoked by the seeding strategies in some of
the cases, does not prevent our techniques from being applicable in practice.
• These two seeding strategies converge fast towards optimal solutions. If the running times
of the algorithms is an issue when applying test selection approaches in practice, the number
of generations can be reduced when using the proposed seeding strategies.

6All this data is available in: https://sites.google.com/alumni.mondragon.edu/tosem-some-seeds-are-strong/appendix-
b/running-time

, Vol. 1, No. 1, Article . Publication date: May 2020.

:36 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

• The combination of some algorithms along with some fitness functions are not reliable.
For instance, the PESA-II algorithm performed wrongly when using the C4 fitness function
combination in the first application context. IBEA algorithm did not also perform as expected
in the Rails case study with the C3 fitness function combination or the ACEngine C4 fitness
function combination. Before applying a search algorithm in practice, it is highly important
to detect cases like these ones.
• Some fitness function combinations do not work correctly in specific systems. For instance,
the C3 fitness function combination did not perform well in the Google case study. Before
applying any test case selection algorithm in practice, it is important to detect which are the
appropriate fitness function combinations.
• NSGA-II has been the algorithm traditionally used for the multi-objective test case selection
problem [8, 81, 95, 98]. While the study was not exhaustive because we focused on the
assessment of the seeding strategies, we found that NSGA-II was the algorithm that provided
highest average HV values. Furthermore, unlike the cases of PESA-II or IBEA, the NSGA-II
found to be a reliable algorithm. Moreover, this algorithm has been extensively studied in the
test case selection context. Therefore, we recommend the use of this algorithm along with
one of the two proposed seeding strategies when applying test case selection in practice.
• The Dynamic and DynamicARPG seeding strategies ensure a high fault and failure detection
ratio. Conversely, the non-seeded approaches did not always provide a solution that detected
all the failures in the second application scenario.
• In practice, decision makers are required. We found that for measuring the modified HV, the
Dynamic and DynamicARPG seeding approaches provided more non-dominated solutions
than the non-seeded approach. Therefore, we believe that decision makers have higher
probabilities of selecting better solutions when using one of such seeding approaches.
• While it was not the main objective of the study, in the first application domain the C1 fitness
function combination was the one who obtained the highest average HV values. This fitness
function combines the discontinuity anti-pattern with the test execution time. This is in-line
with the findings of our previous study [8]. In the second application domain, the C1 fitness
function combination was the one who obtained the highest average HV. This combination
combined the Fault Detection Capability (FDC) with the Test Execution Time, which would
suggest that this metric is more effective when selecting test cases than the TSLE or the TSLF.

7 THREATS TO VALIDITY
Internal validity: An internal validity threat in our study could be related to the generated
mutants, which relates to the first application context. In Simulink models, employing mutation
testing is extremely expensive because the physical layer encompasses complex mathematical
equations. Subsequently, it was not feasible to generate a large set of mutants. To reduce this
threat, we employed the same mutants generated in our previous studies [7, 8]. Furthermore,
notice that the amount of mutants used in this study was similar to those used in other empirical
evaluations of testing methods for Simulink models [11–13, 43, 51, 55–57, 64–66]. Additionally, we
removed duplicated mutants as recommended by Papadakis et al. [76] to further mitigate this threat.
Another internal validity threat in this study is referred to the parameters of the algorithms (e.g.,
population size), which were not changed. To mitigate this threat we configured the algorithms
considering related guidelines and works that included Pareto-based search algorithms for test
case selection [98]. Also, some of our seeding strategies are configurable. The number of candidate
sets in the ARPG strategy was set to 10. Another value could have changed our results, but we
selected this number based on the original ART paper [25]. Additionally, for the static seeding
strategies, we selected two instances of this algorithm (i.e., the test suite size parameter at 30 and

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :37

70%) based on initial preliminary algorithm runs. Another threat of our study could be related to
the selection of the search algorithms. As in the original version paper [6], we used the NSGA-II
due to its wide usage in the context of test case selection [8, 75, 98]. Furthermore, we included
three additional search algorithms (i.e., IBEA, SPEA2 and PESA-II) due to their wide usage by the
search community. The use of other algorithms could have another implication in the results of
the algorithms, which means that we cannot generalize our finding to all multi-objective search
algorithms. Nevertheless, we believe that the selected algorithms are a good representation of
multi-objective search algorithms, and their implementation is available in different programming
languages, thus, practitioners can easily use them.

External validity: As in any search-based software engineering evaluation, an external validity
threat exists related to the generalization of results. We tried to mitigate this threat by using several
case studies applied within two different application contexts. For the first application context, six
case studies involving Simulink models of different sizes and characteristics were used. As for the
sizes, according to a study of 391 public Simulink models, more than half of the analyzed models
had less than 100 blocks, and around 75% of models had less than 300 blocks [28]. Four of the case
studies we used had from 235 to 498 blocks, which means that most of our case studies were larger
than most public subject models. With regards to the second application contexts, four different case
studies where used, three of which were industrial case studies and one a real-world open-source
case study. The characteristics of these case studies were also different (e.g., the number of test
cases ranged from 89 to 5,555). Another external validity threat is related to how the faults and
failures are distributed, which might have an influence in the performance of the algorithms, as
discovered by Zhu et al. [103]. As discussed in Section 5.3, in our case studies, both the fault and
failure distribution is quite different from the different case studies. In addition to the application
context and the case studies mentioned above, the performance of the proposed seeding strategies
were evaluated in four multi-objective search algorithms.

Conclusion validity: A conclusion validity threat in our study might be related to the non
deterministic nature of evolutionary algorithms. This threat was mitigated by running each algo-
rithm 50 times to account for random variations, as recommended in guidelines [3]. Additionally,
we carefully analyzed the results by applying appropriate statistical tests. As a pre-hoc analysis,
we used the Kruskal-Wallis test to assess whether there were statistical differences. Only in one
scenario there was no statistical significance (i.e., AC Engine, scenario 13 (p-value = 0.186)). In
most of the scenarios the p-values were far from the specified threshold (i.e., p-value ≤ 0.05) for
the Kruskal-Wallis statistical test. As a post-hoc analysis, we used the Holm’s method to assess
the statistical significance between the different seeding strategies. This permits correcting the
p-values based on the alpha inflation. Furthermore, to complement the Holm’s method, to assess
the difference between the seeding strategies, we employed the Vargha and Delaney Â12 values.
To assess this difference, we further used different cut-off measures based on the classification
performed by Romano et al. [85], to assess whether the difference existing between the seeding
strategies were negligible, small, medium or large.

Construct validity: In randomized algorithms, construct validity threats arise when the mea-
sures used are not comparable across the algorithms. We mitigated this threat by using the same
stopping criterion for all the algorithms (i.e., we set the total number of fitness evaluations at
25,000).

8 RELATEDWORK
Test case selection. Test case selection has been widely studied in the current literature for
different application areas (e.g., Java applications [44], software product lines [95], deep learning
systems [59]). Yoo and Harman identified and analysed the positive and negative aspects of 12

, Vol. 1, No. 1, Article . Publication date: May 2020.

:38 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

different approaches based on an extensive analysis of the state-of-the-art [100]. Engströem et
al. identified 28 techniques for regression test selection [35]. Besides evolutionary search-based
approaches, other techniques have been proposed for test case selection, including multi-objective
lineal programming techniques [97], greedy-based algorithms [33], or reinforcement learning [91].
Our approach is intended to support population-based search-based test case selection techniques.
In addition, test case selection is performed by following certain criterion, such as, white-box criteria
which aim at ensuring certain degree of code coverage [33, 70, 98], criteria based on historical
data [34, 81, 83, 95] and black-box criteria (e.g., similarity-based test selection) [7, 8, 30, 46, 70].
These criteria are employed as fitness functions in the search-based test selection context, and
typically combined with a cost function (e.g., estimated test execution time of the selected test cases).
While in this paper we focused on two application domains, one using black-box test selection
approaches (first application context) and the other one using historical data (second application
context), the proposed seeding strategies do not consider such metrics and can therefore be used
with any kind of technique.

Multi-objective test case selection.Multi-objective algorithms to solve the test case selection
problem was first proposed by Yoo and Harman [98]. They evaluated the use of the NSGA-II
algorithm integrated with objective functions that included (1) coverage, (2) historical informa-
tion related to faults and (3) testing costs. The same authors later extended this study, where
they proposed an hybrid approach [99]. In the last few years, several new approaches have been
proposed to adapt the test case selection problem to different emergent areas, including defence
software [41, 73], or compute-intensive CPSs [7, 8]. Most multi-objective test selection approaches
aim at proposing effective objective functions and study whether they act as a reasonable surrogate
for fault detection capabilities [7, 8, 46, 50, 98]. Unlike all these studies, our approach aims at
comparing how different strategies for seeding the initial population perform in the context of
multi-objective test case selection algorithms.

Other approaches compare the performance of evolutionary algorithms for selecting test cases in
different context, such as time-constrained scenarios [81], or product lines [11, 94, 95]. However, all
these approaches consider non-seeded initial population generation approaches. Other approaches
have proposed algorithms where the initial population is particularly seeded following a specific
strategy. For instance, Panichella et al., proposed including diversity in genetic algorithms to
improve optimality of multi-objective test case selection. To this end, they proposed mechanisms of
orthogonal design and orthogonal evolution with the aim of increasing diversity during the search
process [75]. A similar approach was proposed by De Lucia et al., which proposed enhancing the
NSGA-II algorithm by increasing population diversity in the obtained Pareto frontiers during the
search [31]. The difference between these approaches and the one we propose in this paper is that
in their case, diversity is included during the entire search process, whereas our solution is intended
solely to seed the initial population. As previously commented, this provides high flexibility in
practice, as our seeding strategies can be applied in any population-based algorithms, including
the ones proposed in test case selection specific multi-objective search algorithms [31, 75].

Seeding strategies. Seeding strategies have been proposed for solving other search-based soft-
ware engineering problems. From the testing perspective, several approaches have been proposed
in the past. Fraser and Arcuri proposed three seeding strategies (e.g., seeding of constants extracted
from source code) for search-based test generation of unit testing, showing a positive impact when
compared to non-seeded algorithms [39]. This study was further extended, confirming the positive
impact of the seeding strategies in further subject programs [84]. Seeding was also applied on
SAPIENZ [60], a test generation tool for testing Android programs. Specifically, SAPIENZ statically
analyses some files to extract strings to seed the multi-objective search algorithm in charge of
generating test cases. Lopez-Herrejon et al., proposed a total of three seeding strategies for pairwise

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :39

software product lines testing [58], showing a positive impact both, in the final solutions returned
by the search algorithms as well as the time it takes the algorithm to converge. Besides search-based
testing, seeding has also been successfully applied to solve other software engineering problems,
including service composition problems [21, 22], software improvement [5] and software product
line configuration [89]. In contrast to all these studies, the proposed seeding strategies proposed in
this paper are designed for the test case selection problem. To the best of our knowledge, there are no
previous papers that have proposed and studied the impact of seeding strategies for multi-objective
test selection.

9 CONCLUSION
In this paper we propose a set of seeding strategies for initializing the population of search-based test
case selection algorithms. The proposed techniques are both domain and algorithm agnostic. In an
empirical evaluation with four multi-objective search algorithms, two different application domains
and several case studies in each of these application domains, we demonstrated that at least two of
the seeding strategies (Dynamic and DynamicARPG) show significant improvement over the non-
seeded approach. Specifically, these two seeding strategies provide a higher convergence towards
optimal solutions, which might be beneficial in cases where the search algorithms take a long time to
compute. Furthermore, the overall cost-effectiveness of two of the proposed seeding strategies was
still higher than the non-seeded approach when using a common amount of fitness evaluations (i.e.,
those used in other search-based test case selection problems [7, 8, 98]). The proposed techniques
do not pose any kind of disadvantages (e.g., higher computation time, development complexity),
and subsequently, they are recommended to be used by practitioners that use multi-objective test
case selection strategies for regression test optimization problems.

Replication package: For the sake of replicability, our replication package is available in the
following link: https://doi.org/10.5281/zenodo.5795353

ACKNOWLEDGEMENTS
We would like to thank Jose Antonio Parejo, from University of Seville, for his help and feedback
on the carried out statistical analysis. We would also like to thank the anonymous reviewers for
their insightful comments and for helping us increase the quality of this paper. The authors are part
of the Software and Systems Engineering research group of Mondragon Unibertsitatea (IT1326-19),
supported by the Department of Education, Universities and Research of the Basque Country.

REFERENCES
[1] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-Walawege. 2010. A systematic review

of the application and empirical investigation of search-based test case generation. IEEE Transactions on Software
Engineering 36, 6 (2010), 742–762.

[2] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Jānis Benefelds. 2017. An industrial evaluation
of unit test generation: Finding real faults in a financial application. In Proceedings of the 39th International Conference
on Software Engineering: Software Engineering in Practice Track. IEEE Press, 263–272.

[3] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests to assess randomized algorithms
in software engineering. In Software Engineering (ICSE), 2011 33rd International Conference on. IEEE, 1–10.

[4] Andrea Arcuri and Gordon Fraser. 2014. On the effectiveness of whole test suite generation. In International Symposium
on Search Based Software Engineering. Springer, 1–15.

[5] Andrea Arcuri, David Robert White, John Clark, and Xin Yao. 2008. Multi-objective improvement of software using
co-evolution and smart seeding. In Asia-Pacific Conference on Simulated Evolution and Learning. Springer, 61–70.

[6] Aitor Arrieta, Joseba Andoni Agirre, and Goiuria Sagardui. 2020. Seeding strategies for multi-objective test case
selection: an application on simulation-based testing. In Proceedings of the 2020 Genetic and Evolutionary Computation
Conference. 1222–1231.

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.5281/zenodo.5795353

:40 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

[7] Aitor Arrieta, Shuai Wang, Ainhoa Arruabarrena, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. 2018.
Multi-objective Black-box Test Case Selection for Cost-effectively Testing Simulation Models. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO ’18). ACM, New York, NY, USA, 1411–1418. https:
//doi.org/10.1145/3205455.3205490

[8] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Ainhoa Arruabarrena, Leire Etxeberria, and Goiuria Sagardui. 2019. Pareto
efficient multi-objective black-box test case selection for simulation-based testing. Information & Software Technology
114 (2019), 137–154. https://doi.org/10.1016/j.infsof.2019.06.009

[9] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. 2017. Search-Based Test Case
Generation for Cyber-Physical Systems. In Evolutionary Computation (CEC), 2017 IEEE Congress on. 688–697.

[10] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. 2018. Employing Multi-Objective
Search to Enhance Reactive Test Case Generation and Prioritization for Testing Industrial Cyber-Physical Systems.
IEEE Transactions on Industrial Informatics 14, 3 (2018), 1055–1066.

[11] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2016. Search-based Test Case Selection of Cyber-
physical System Product Lines for Simulation-based Validation. In Proceedings of the 20th International Systems and
Software Product Line Conference. 297–306.

[12] Aitor Arrieta, ShuaiWang, Goiuria Sagardui, and Leire Etxeberria. 2016. Test Case Prioritization of Configurable Cyber-
Physical Systems with Weight-Based Search Algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016 (GECCO ’16). ACM, New York, NY, USA, 1053–1060. https://doi.org/10.1145/2908812.2908871

[13] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2019. Search-Based test case prioritization for
simulation-Based testing of cyber-Physical system product lines. Journal of Systems and Software 149 (2019), 1 – 34.
https://doi.org/10.1016/j.jss.2018.09.055

[14] Wesley Klewerton Guez Assunção, Thelma Elita Colanzi, Silvia Regina Vergilio, and Aurora Pozo. 2014. A multi-
objective optimization approach for the integration and test order problem. Information Sciences 267 (2014), 119–139.

[15] Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel Briand. 2021. Reinforcement learning for test case prioritization.
IEEE Transactions on Software Engineering (2021).

[16] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2018. Testing Vision-Based Control Systems
Using Learnable Evolutionary Algorithms. In Proceedings of the 40th International Conference on Software Engineering
(ICSE ’18). 12.

[17] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated analysis of feature models 20 years later:
A literature review. Information Systems 35, 6 (2010), 615 – 636.

[18] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bianculli. 2016. Testing the Untestable: Model Testing
of Complex Software-intensive Systems. In Proceedings of the 38th International Conference on Software Engineering
Companion (ICSE ’16). ACM, 789–792. https://doi.org/10.1145/2889160.2889212

[19] J Brownlee. 2012. Cleverl Algorithms: Nature-Inspired Programming Recipes. lulu.com.
[20] Jose Campos, Yan Ge, Gordon Fraser, Marcello Eler, and Andrea Arcuri. 2017. An Empirical Evaluation of Evolutionary

Algorithms for Test Suite Generation. In Symposium on Search-Based Software Engineering.
[21] Tao Chen, Miqing Li, and Xin Yao. 2018. On the effects of seeding strategies: a case for search-based multi-objective

service composition. In Proceedings of the Genetic and Evolutionary Computation Conference. ACM, 1419–1426.
[22] Tao Chen, Miqing Li, and Xin Yao. 2019. Standing on the Shoulders of Giants: Seeding Search-based Multi-Objective

Optimization with Prior Knowledge for Software Service Composition. Information and Software Technology (2019).
[23] Tsong Yueh Chen, F-C Kuo, Robert G Merkel, and Sebastian P Ng. 2004. Mirror adaptive random testing. Information

and Software Technology 46, 15 (2004), 1001–1010.
[24] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. 2010. Adaptive random testing: The art of test case

diversity. Journal of Systems and Software 83, 1 (2010), 60–66.
[25] Tsong Yueh Chen, Hing Leung, and IK Mak. 2004. Adaptive random testing. In Annual Asian Computing Science

Conference. Springer, 320–329.
[26] Yiqun T Chen, Rahul Gopinath, Anita Tadakamalla, Michael D Ernst, Reid Holmes, Gordon Fraser, Paul Ammann,

and René Just. 2020. Revisiting the Relationship Between Fault Detection, Test Adequacy Criteria, and Test Set Size.
In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 237–249.

[27] Ankur Choudhary, Arun Prakash Agrawal, and Arvinder Kaur. 2018. An effective approach for regression test case
selection using pareto based multi-objective harmony search. In Proceedings of the 11th International Workshop on
Search-Based Software Testing. ACM, 13–20.

[28] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane, Taylor T Johnson, and Christoph
Csallner. 2018. Automatically finding bugs in a commercial cyber-physical system development tool chain with
SLforge. In Proceedings of the 40th International Conference on Software Engineering. ACM, 981–992.

[29] David W Corne, Nick R Jerram, Joshua D Knowles, and Martin J Oates. 2001. PESA-II: Region-based selection in
evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1145/3205455.3205490
https://doi.org/10.1145/3205455.3205490
https://doi.org/10.1016/j.infsof.2019.06.009
https://doi.org/10.1145/2908812.2908871
https://doi.org/10.1016/j.jss.2018.09.055
https://doi.org/10.1145/2889160.2889212

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :41

Computation. Morgan Kaufmann Publishers Inc., 283–290.
[30] Emilio Cruciani, Breno Miranda, Roberto Verdecchia, and Antonia Bertolino. 2019. Scalable approaches for test suite

reduction. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 419–429.
[31] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and Annibale Panichella. 2012. On the role of diversity

measures for multi-objective test case selection. In Proceedings of the 7th International Workshop on Automation of
Software Test. IEEE Press, 145–151.

[32] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE transactions on evolutionary computation 6, 2 (2002), 182–197.

[33] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2015. Coverage-based regression test case
selection, minimization and prioritization: A case study on an industrial system. Software Testing, Verification and
Reliability 25, 4 (2015), 371–396.

[34] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for improving regression testing in continu-
ous integration development environments. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’14). ACM, 235–245.

[35] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A systematic review on regression test selection techniques.
Information and Software Technology 52, 1 (2010), 14–30.

[36] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015. Empirical Evaluation of Pareto Efficient
Multi-objective Regression Test Case Prioritisation. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 234–245.

[37] Robert Feldt, Simon M. Poulding, David Clark, and Shin Yoo. 2016. Test Set Diameter: Quantifying the Diversity of
Sets of Test Cases. In 2016 IEEE International Conference on Software Testing, Verification and Validation, ICST 2016,
Chicago, IL, USA, April 11-15, 2016. 223–233. https://doi.org/10.1109/ICST.2016.33

[38] Javier Ferrer, Peter M. Kruse, Francisco Chicano, and Enrique Alba. 2012. Evolutionary Algorithm for Prioritized
Pairwise Test Data Generation. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’12). ACM, New York, NY, USA, 1213–1220. https://doi.org/10.1145/2330163.2330331

[39] Gordon Fraser and Andrea Arcuri. 2012. The seed is strong: Seeding strategies in search-based software testing. In
2012 IEEE Fifth International Conference on Software Testing, Verification and Validation. IEEE, 121–130.

[40] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE Transactions on Software Engineering 39, 2
(2013), 276–291.

[41] Vahid Garousi, Ramazan Özkan, and Aysu Betin-Can. 2018. Multi-objective regression test selection in practice: An
empirical study in the defense software industry. Information and Software Technology 103 (2018), 40–54.

[42] D Greer and G Ruhe. 2004. Software release planning: an evolutionary and iterative approach. Information and
Software Technology 46, 4 (2004), 243 – 253.

[43] Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung. 2016. A Novel Fitness function of metaheuristic
algorithms for test data generation for simulink models based on mutation analysis. Journal of Systems and Software
120, C (2016), 17–30.

[44] Mary Jean Harrold, James A Jones, Tongyu Li, Donglin Liang, Alessandro Orso, Maikel Pennings, Saurabh Sinha,
S Alexander Spoon, and Ashish Gujarathi. 2001. Regression test selection for Java software. In ACM Sigplan Notices,
Vol. 36. ACM, 312–326.

[45] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achieving scalable model-based testing through test case
diversity. ACM Transactions on Software Engineering and Methodology 22, 1 (2013), 6:1–6:42.

[46] Hadi Hemmati and Lionel Briand. 2010. An industrial investigation of similarity measures for model-based test case
selection. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium on. IEEE, 141–150.

[47] Christopher Henard, Mike Papadakis, and Yves Le Traon. 2014. Mutation-based generation of software product line
test configurations. In International Symposium on Search Based Software Engineering. Springer, 92–106.

[48] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and Gordon Fraser. 2014. Are mutants a
valid substitute for real faults in software testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 654–665.

[49] Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Söder, Agneta Nilsson, and Magnus Castell. 2015. Supporting
continuous integration by code-churn based test selection. In Proceedings of the 2nd International Workshop on Rapid
Continuous Software Engineering (RCoSE’15). IEEE Press, 19–25.

[50] Remo Lachmann, Michael Felderer, Manuel Nieke, Sandro Schulze, Christoph Seidl, and Ina Schaefer. 2017. Multi-
objective black-box test case selection for system testing. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 1311–1318.

[51] Khuat Thanh Le Thi My Hanh and Nguyen Thanh Binh Tung. 2014. Mutation-based test data generation for
simulink models using genetic algorithm and simulated annealing. International Journal of Computer and Information
Technology 3, 04 (2014), 763–771.

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1109/ICST.2016.33
https://doi.org/10.1145/2330163.2330331

:42 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

[52] Xuelin Li, W. Eric Wong, Ruizhi Gao, Linghuan Hu, and Shigeru Hosono. 2017. Genetic Algorithm-based Test
Generation for Software Product Line with the Integration of Fault Localization Techniques. Empirical Software
Engineering (2017), 1–51. https://doi.org/10.1007/s10664-016-9494-9

[53] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for regression test case prioritization. IEEE
Transactions on software Engineering 33, 4 (2007), 225–237.

[54] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining prioritization: continuous prioritization for
continuous integration. In Proceedings of the 40th International Conference on Software Engineering. 688–698.

[55] Bing Liu, Lucia, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2016. Simulink fault localization: an iterative
statistical debugging approach. Software Testing, Verification and Reliability 26, 6 (2016), 431–459.

[56] Bing Liu, Lucia Lucia, Shiva Nejati, and Lionel Briand. 2017. Improving Fault Localization for Simulink Models using
Search-Based Testing and Prediction Models. In 24th IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER 2017).

[57] Bing Liu, Shiva Nejati, Lionel C Briand, et al. 2018. Effective fault localization of automotive Simulink models:
achieving the trade-off between test oracle effort and fault localization accuracy. Empirical Software Engineering
(2018), 1–47.

[58] Roberto E Lopez-Herrejon, Javier Ferrer, Francisco Chicano, Alexander Egyed, and Enrique Alba. 2014. Comparative
analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of software
product lines. In 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 387–396.

[59] Wei Ma, Mike Papadakis, Anestis Tsakmalis, Maxime Cordy, and Yves Le Traon. 2021. Test selection for deep learning
systems. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 2 (2021), 1–22.

[60] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for Android applications. In
Proceedings of the 25th International Symposium on Software Testing and Analysis. ACM, 94–105.

[61] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test case prioritization for continuous regression testing: An
industrial case study. In Proceedings of the 2013 IEEE International Conference on Software Maintenance (ICSM’13). IEEE
Computer Society, 540–543.

[62] Reza Matinnejad, Shiva Nejati, Lionel Briand, Thomas Bruckmann, and Claude Poull. 2015. Search-based automated
testing of continuous controllers: Framework, tool support, and case studies. Information and Software Technology 57
(2015), 705 – 722.

[63] Reza Matinnejad, Shiva Nejati, and Lionel C. Briand. 2017. Automated Testing of Hybrid Simulink/Stateflow Con-
trollers: Industrial Case Studies. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2017). ACM, New York, NY, USA, 938–943. https://doi.org/10.1145/3106237.3117770

[64] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2015. Effective test suites for mixed
discrete-continuous stateflow controllers. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 84–95.

[65] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2016. Automated Test Suite Generation for
Time-continuous Simulink Models. In Proceedings of the 38th International Conference on Software Engineering (ICSE
’16). ACM, New York, NY, USA, 595–606.

[66] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2019. Test Generation and Test Prioritization
for Simulink Models with Dynamic Behavior. IEEE Trans. Software Eng. 45, 9 (2019), 919–944. https://doi.org/10.1109/
TSE.2018.2811489

[67] Phil McMinn. 2004. Search-based software test data generation: a survey. Software testing, Verification and reliability
14, 2 (2004), 105–156.

[68] Claudio Menghi, Shiva Nejati, Lionel C Briand, and Yago Isasi Parache. 2020. Approximation-Refinement Testing of
Compute-Intensive Cyber-Physical Models: An Approach Based on System Identification. In International Conference
on Software Engineering (ICSE).

[69] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019. Generating automated and online test
oracles for Simulink models with continuous and uncertain behaviors. In Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2019, Tallinn, Estonia, August 26-30, 2019. 27–38. https://doi.org/10.1145/3338906.3338920

[70] Debajyoti Mondal, Hadi Hemmati, and Stephane Durocher. 2015. Exploring test suite diversification and code coverage
in multi-objective test case selection. In 2015 IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 1–10.

[71] Douglas C Montgomery. 2017. Design and analysis of experiments. John wiley & sons.
[72] Shiva Nejati, Khouloud Gaaloul, Claudio Menghi, Lionel C. Briand, Stephen Foster, and David Wolfe. 2019. Evaluating

model testing and model checking for finding requirements violations in Simulink models. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. 1015–1025. https://doi.org/10.1145/3338906.3340444

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1007/s10664-016-9494-9
https://doi.org/10.1145/3106237.3117770
https://doi.org/10.1109/TSE.2018.2811489
https://doi.org/10.1109/TSE.2018.2811489
https://doi.org/10.1145/3338906.3338920
https://doi.org/10.1145/3338906.3340444

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :43

[73] Ramazan Özkan, Vahid Garousi, and Aysu Betin-Can. 2017. Multi-objective regression test selection in practice: an
empirical study in the defense software industry. In Proceedings of ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM).

[74] Annibale Panichella, Fitsum Kifetew, and Paolo Tonella. 2017. Automated test case generation as a many-objective
optimisation problem with dynamic selection of the targets. IEEE Transactions on Software Engineering (2017).

[75] Annibale Panichella, Rocco Oliveto, Massimiliano Di Penta, and Andrea De Lucia. 2015. Improving multi-objective
test case selection by injecting diversity in genetic algorithms. IEEE Transactions on Software Engineering 41, 4 (2015),
358–383.

[76] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial compiler equivalence: A large scale empirical
study of a simple, fast and effective equivalent mutant detection technique. In Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE Press, 936–946.

[77] P Victer Paul, N Moganarangan, S Sampath Kumar, R Raju, T Vengattaraman, and P Dhavachelvan. 2015. Performance
analyses over population seeding techniques of the permutation-coded genetic algorithm: An empirical study based
on traveling salesman problems. Applied soft computing 32 (2015), 383–402.

[78] P Victer Paul, A Ramalingam, Ramachandran Baskaran, P Dhavachelvan, K Vivekanandan, and R Subramanian. 2014.
A new population seeding technique for permutation-coded Genetic Algorithm: Service transfer approach. Journal of
Computational Science 5, 2 (2014), 277–297.

[79] P Victer Paul, A Ramalingam, R Baskaran, P Dhavachelvan, K Vivekanandan, R Subramanian, and VSK Venkatachala-
pathy. 2013. Performance analyses on population seeding techniques for genetic algorithms. International Journal of
Engineering and Technology (IJET) 5, 3 (2013), 2993–3000.

[80] Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon. 2012. Pairwise testing
for software product lines: Comparison of two approaches. Software Quality Journal 20, 3-4 (2012), 605–643.

[81] Dipesh Pradhan, Shuai Wang, Shaukat Ali, and Tao Yue. 2016. Search-Based Cost-Effective Test Case Selection Within
a Time Budget: An Empirical Study. In Proceedings of the Genetic and Evolutionary Computation Conference 2016
(GECCO ’16). ACM, New York, NY, USA, 1085–1092. https://doi.org/10.1145/2908812.2908850

[82] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen. 2018. REMAP: Using rule mining and
multi-objective search for dynamic test case prioritization. In 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 46–57.

[83] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen. 2019. Employing rule mining and multi-
objective search for dynamic test case prioritization. Journal of Systems and Software 153 (2019), 86–104.

[84] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding strategies in search-based unit test generation.
Software Testing, Verification and Reliability 26, 5 (2016), 366–401.

[85] Jeanine Romano, Jeffrey Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda Devine. 2006. Exploring methods for
evaluating group differences on the NSSE and other surveys: Are the t-test and Cohens d indices the most appropriate
choices. In Annual meeting of the Souther Association for Institutional Research.

[86] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. 2000. Regression test selection for C++ software. Software
Testing, Verification and Reliability 10, 2 (2000), 77–109.

[87] Alireza Salahirad, Hussein Almulla, and Gregory Gay. 2019. Choosing the fitness function for the job: Automated
generation of test suites that detect real faults. Software Testing, Verification and Reliability 29, 4-5 (2019), e1701.

[88] Federica Sarro, Alessio Petrozziello, and Mark Harman. 2016. Multi-objective software effort estimation. In Proceedings
of the 38th International Conference on Software Engineering. ACM, 619–630.

[89] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. 2013. Scalable product line configuration: A
straw to break the camel’s back. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 465–474.

[90] Seung Yeob Shin, Shiva Nejati, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. 2018. Test Case Prioritization
for Acceptance Testing of Cyber Physical Systems: A Multi-Objective Search-Based Approach. In Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’18).

[91] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Reinforcement learning for automatic
test case prioritization and selection in continuous integration. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 12–22.

[92] T. Strathmann and J. Oehlerking. 2015. Verifying Properties of an Electro-Mechanical Braking System. In In 1st and
2nd International Workshop on Applied veRification for Continuous and Hybrid Systems. 49–56.

[93] Ye Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin. 2017. PlatEMO: A MATLAB platform for evolutionary multi-
objective optimization. IEEE Computational Intelligence Magazine 12, 4 (2017), 73–87.

[94] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. 2013. Minimizing test suites in software product lines using weight-
based genetic algorithms, In Proceedings of the 2013 Genetic and Evolutionary Computation Conference. GECCO
2013 - Proceedings of the 2013 Genetic and Evolutionary Computation Conference, 1493 – 1500.

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1145/2908812.2908850

:44 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

[95] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. 2015. Cost-effective test suite minimization in product lines using
search techniques. Journal of Systems and Software 103, 0 (2015), 370 – 391.

[96] Shuai Wang, David Buchmann, Shaukat Ali, Arnaud Gotlieb, Dipesh Pradhan, and Marius Liaaen. 2014. Multi-
objective Test Prioritization in Software Product Line Testing: An Industrial Case Study. In Proceedings of the 18th
International Software Product Line Conference - Volume 1 (SPLC ’14). ACM, New York, NY, USA, 32–41. https:
//doi.org/10.1145/2648511.2648515

[97] Yinxing Xue and Yan-Fu Li. 2020. Multi-objective Integer Programming Approaches for Solving the Multi-criteria
Test-suite Minimization Problem: Towards Sound and Complete Solutions of a Particular Search-based Software-
engineering Problem. ACM Transactions on Software Engineering and Methodology (TOSEM) 29, 3 (2020), 1–50.

[98] Shin Yoo and Mark Harman. 2007. Pareto efficient multi-objective test case selection. In Proceedings of the 2007
international symposium on Software testing and analysis. ACM, 140–150.

[99] Shin Yoo and Mark Harman. 2010. Using hybrid algorithm for pareto efficient multi-objective test suite minimisation.
Journal of Systems and Software 83, 4 (2010), 689–701.

[100] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and Prioritization: A Survey. Softw. Test.
Verif. Reliab. 22, 2 (March 2012), 67–120.

[101] Shin Yoo, Mark Harman, and Shmuel Ur. 2011. Highly scalable multi objective test suite minimisation using graphics
cards. In International Symposium on Search Based Software Engineering. Springer, 219–236.

[102] Tingting Yu and Ting Wang. 2018. A study of regression test selection in continuous integration environments. In
2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE). IEEE, 135–143.

[103] Yuecai Zhu, Emad Shihab, and Peter C Rigby. 2018. Test re-prioritization in continuous testing environments. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 69–79.

[104] Eckart Zitzler and Simon Künzli. 2004. Indicator-based selection in multiobjective search. In International conference
on parallel problem solving from nature. Springer, 832–842.

[105] Eckart Zitzler, Marco Laumanns, Lothar Thiele, et al. 2001. SPEA2: Improving the strength Pareto evolutionary
algorithm. In Eurogen, Vol. 3242. 95–100.

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1145/2648511.2648515
https://doi.org/10.1145/2648511.2648515

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :45

, Vol. 1, No. 1, Article . Publication date: May 2020.

:46 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

A SUMMARY OF THE RESULTS OF THE VARGHA AND DELANEY Â12 VALUES
BASED ON THE CLASSIFICATION OF LARGE (A++, B++), MEDIUM (A+, B+), SMALL
(A, B) AND NEGLIGIBLE (=)

Table 12. Summary of the performed statistical tests for the Hypervolume metric within the first application
context

C
W

EM
B

C
C

T
in
y

Tw
oT

an
ks

A
C
En

gi
ne

To
ta
l

Se
ed

in
g
St
ra
te
gy

A
Se
ed

in
g
St
ra
te
gy

B
A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

N
on

Se
ed
ed

D
yn

am
ic

0/
1/
0/
1/
0/
1/
21

0/
0/
0/
0/
0/
1/
23

0/
0/
0/
2/
0/
0/
22

0/
0/
0/
0/
0/
1/
23

0/
0/
0/
1/
0/
1/
22

0/
0/
2/
15
/0
/4
/3

0/
1/
2/
19
/0
/8
/1
14

St
at
ic
30

0/
0/
0/
1/
0/
0/
23

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

2/
0/
0/
12
/0
/5
/5

2/
0/
0/
13
/0
/5
/1
24

St
at
ic
70

2/
8/
13
/0
/0
/1
/0

0/
0/
24
/0
/0
/0
/0

0/
4/
20
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

0/
1/
23
/0
/0
/0
/0

16
/1
/1
/6
/0
/0
/0

18
/1
4/
10
5/
6/
0/
1/
0

A
RP

G
0/
0/
0/
21
/3
/0
/0

1/
0/
0/
23
/0
/0
/0

1/
0/
0/
22
/1
/0
/0

0/
0/
0/
23
/1
/0
/0

0/
0/
0/
22
/2
/0
/0

0/
0/
0/
24
/0
/0
/0

2/
0/
0/
13
5/
7/
0/
0

O
rt
ho

go
na
l

5/
0/
0/
18
/1
/0
/0

14
/2
/0
/8
/0
/0
/0

5/
0/
0/
19
/0
/0
/0

13
/0
/0
/1
1/
0/
0/
0

11
/2
/0
/1
1/
0/
0/
0

0/
0/
0/
24
/0
/0
/0

48
/4
/0
/9
1/
1/
0/
0

D
yn

am
ic
A
RP

G
0/
1/
0/
1/
0/
1/
21

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
2/
0/
0/
22

0/
0/
0/
0/
0/
1/
23

0/
0/
0/
0/
1/
1/
22

0/
0/
2/
14
/0
/4
/4

0/
1/
2/
17
/1
/7
/1
16

St
at
ic
30

0/
2/
14
/6
/0
/1
/1

3/
0/
16
/3
/0
/0
/2

0/
1/
15
/5
/1
/1
/1

0/
4/
17
/3
/0
/0
/0

3/
1/
16
/1
/0
/0
/3

0/
0/
0/
20
/1
/1
/2

6/
8/
78
/3
8/
2/
3/
9

St
at
ic
70

0/
0/
23
/0
/0
/0
/1

0/
0/
24
/0
/0
/0
/0

1/
0/
23
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

6/
3/
9/
4/
0/
0/
2

7/
3/
12
7/
4/
0/
0/
3

D
yn

am
ic

A
RP

G
1/
3/
18
/1
/0
/0
/1

2/
1/
21
/0
/0
/0
/0

1/
1/
20
/2
/0
/0
/0

0/
2/
22
/0
/0
/0
/0

0/
0/
22
/2
/0
/0
/0

2/
1/
3/
16
/0
/0
/2

6/
8/
10
6/
21
/0
/0
/3

O
rt
ho

go
na
l

1/
0/
21
/1
/0
/0
/1

0/
3/
21
/0
/0
/0
/0

0/
1/
21
/2
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

0/
1/
22
/1
/0
/0
/0

3/
2/
1/
15
/0
/1
/2

4/
7/
11
0/
19
/0
/1
/3

D
yn

am
ic
A
RP

G
1/
0/
0/
23
/0
/0
/0

0/
0/
0/
22
/1
/1
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
23
/1
/0
/0

1/
0/
0/
22
/0
/1
/0

0/
0/
0/
24
/0
/0
/0

2/
0/
0/
13
8/
2/
2/
0

St
at
ic
30

St
at
ic
70

0/
0/
23
/0
/0
/0
/1

0/
0/
24
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

6/
7/
9/
1/
0/
1/
0

6/
7/
12
8/
1/
0/
1/
1

A
RP

G
2/
5/
16
/0
/1
/0
/0

0/
0/
24
/0
/0
/0
/0

0/
1/
23
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

6/
1/
3/
12
/2
/0
/0

8/
7/
11
4/
12
/3
/0
/0

O
rt
ho

go
na
l

0/
1/
21
/1
/1
/0
/0

0/
0/
24
/0
/0
/0
/0

1/
2/
21
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

0/
0/
24
/0
/0
/0
/0

4/
1/
2/
15
/2
/0
/0

5/
4/
11
6/
16
/3
/0
/0

D
yn

am
ic
A
RP

G
0/
1/
0/
7/
0/
0/
16

1/
0/
0/
5/
1/
1/
16

2/
1/
0/
4/
1/
0/
16

2/
0/
0/
0/
0/
1/
21

2/
1/
0/
1/
0/
0/
20

1/
2/
0/
21
/0
/0
/0

8/
5/
0/
38
/2
/2
/8
9

A
RP

G
0/
0/
0/
1/
0/
1/
22

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
1/
23

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
5/
5/
7/
7

0/
0/
0/
6/
5/
9/
12
4

St
at
ic
70

O
rt
ho

go
na
l

0/
0/
0/
1/
0/
4/
19

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
1/
23

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
5/
3/
6/
10

0/
0/
0/
6/
3/
11
/1
24

D
yn

am
ic
A
RP

G
0/
0/
1/
0/
0/
0/
23

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
2/
4/
2/
2/
14

0/
0/
3/
4/
2/
2/
13
3

A
RP

G
O
rt
ho

go
na
l

10
/0
/0
/1
4/
0/
0/
0

16
/1
/0
/7
/0
/0
/0

4/
0/
0/
20
/0
/0
/0

17
/0
/0
/7
/0
/0
/0

9/
2/
0/
13
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

56
/3
/0
/8
5/
0/
0/
0

D
yn

am
ic
A
RP

G
0/
0/
1/
1/
0/
2/
20

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
2/
0/
0/
22

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
1/
1/
22

0/
0/
2/
15
/2
/0
/5

0/
0/
3/
18
/3
/3
/1
17

O
rt
ho

go
na
l

D
yn

am
ic
A
RP

G
0/
0/
1/
1/
0/
1/
21

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
2/
0/
0/
22

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
1/
0/
23

1/
0/
2/
15
/0
/1
/5

1/
0/
3/
18
/1
/2
/1
19

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :47

Table 13. Summary of the performed statistical tests for the Average Convergence metric within the first
application context

C
W

EM
B

C
C

T
in
y

Tw
oT

an
ks

A
C
En

gi
ne

To
ta
l

Se
ed

in
g
St
ra
te
gy

A
Se
ed

in
g
St
ra
te
gy

B
A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

A
++

/A
+/
A
/=
/B
/B
+/
B
++

N
on

Se
ed
ed

D
yn

am
ic

1/
0/
0/
0/
0/
0/
23

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

1/
0/
1/
0/
0/
1/
21

2/
0/
1/
0/
0/
1/
14
0

St
at
ic
30

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
14
4

St
at
ic
70

0/
0/
1/
23
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
1/
4/
19
/0
/0
/0

0/
1/
5/
13
8/
0/
0/
0

A
RP

G
7/
0/
0/
13
/4
/0
/0

12
/0
/0
/1
1/
0/
1/
0

14
/0
/0
/7
/3
/0
/0

10
/0
/0
/9
/5
/0
/0

14
/0
/0
/8
/2
/0
/0

17
/0
/0
/5
/2
/0
/0

74
/0
/0
/5
3/
16
/1
/0

O
rt
ho

go
na
l

14
/1
0/
0/
0/
0/
0/
0

12
/9
/3
/0
/0
/0
/0

22
/2
/0
/0
/0
/0
/0

13
/1
0/
1/
0/
0/
0/
0

13
/8
/2
/1
/0
/0
/0

4/
0/
0/
14
/5
/1
/0

78
/3
9/
6/
15
/5
/1
/0

D
yn

am
ic
A
RP

G
1/
0/
0/
0/
0/
0/
23

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

1/
1/
0/
0/
0/
1/
21

2/
1/
0/
0/
0/
1/
14
0

St
at
ic
30

1/
2/
0/
19
/1
/0
/1

2/
1/
0/
19
/2
/0
/0

1/
1/
2/
20
/0
/0
/0

0/
0/
1/
23
/0
/0
/0

2/
0/
0/
22
/0
/0
/0

7/
4/
7/
3/
0/
1/
2

13
/8
/1
0/
10
6/
3/
1/
3

St
at
ic
70

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
1/
0/
23
/0
/0
/0

0/
1/
0/
14
3/
0/
0/
0

D
yn

am
ic

A
RP

G
0/
0/
1/
22
/0
/1
/0

0/
0/
0/
24
/0
/0
/0

0/
1/
0/
23
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
2/
2/
18
/0
/1
/1

0/
3/
3/
13
5/
0/
2/
1

O
rt
ho

go
na
l

1/
0/
1/
22
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
1/
23
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

1/
2/
2/
17
/0
/0
/2

2/
2/
4/
13
4/
0/
0/
2

D
yn

am
ic
A
RP

G
14
/0
/0
/9
/1
/0
/0

14
/0
/0
/7
/2
/1
/0

19
/0
/0
/5
/0
/0
/0

17
/0
/0
/6
/1
/0
/0

16
/0
/0
/6
/1
/1
/0

10
/0
/0
/1
3/
1/
0/
0

90
/0
/0
/4
6/
6/
2/
0

St
at
ic
30

St
at
ic
70

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
14
4/
0/
0/
0

A
RP

G
0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
1/
5/
18
/0
/0
/0

0/
1/
5/
13
8/
0/
0/
0

O
rt
ho

go
na
l

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
2/
5/
17
/0
/0
/0

0/
2/
5/
13
7/
0/
0/
0

D
yn

am
ic
A
RP

G
1/
0/
0/
1/
1/
0/
21

1/
0/
0/
1/
0/
1/
21

2/
0/
0/
0/
1/
0/
21

2/
0/
0/
0/
0/
0/
22

2/
0/
0/
0/
1/
1/
20

3/
0/
0/
4/
4/
1/
12

11
/0
/0
/6
/7
/3
/1
17

A
RP

G
0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
14
4

St
at
ic
70

O
rt
ho

go
na
l

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
14
4

D
yn

am
ic
A
RP

G
0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
14
4

A
RP

G
O
rt
ho

go
na
l

13
/9
/2
/0
/0
/0
/0

15
/8
/1
/0
/0
/0
/0

24
/0
/0
/0
/0
/0
/0

15
/8
/1
/0
/0
/0
/0

14
/7
/2
/1
/0
/0
/0

4/
0/
0/
10
/8
/2
/0

85
/3
2/
6/
11
/8
/2
/0

D
yn

am
ic
A
RP

G
1/
0/
0/
0/
0/
0/
23

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

1/
0/
1/
0/
0/
1/
21

2/
0/
1/
0/
0/
1/
14
0

O
rt
ho

go
na
l

D
yn

am
ic
A
RP

G
0/
0/
0/
0/
1/
0/
23

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
1/
1/
0/
1/
0/
21

0/
1/
1/
0/
2/
0/
14
0

, Vol. 1, No. 1, Article . Publication date: May 2020.

:48 Aitor Arrieta, Pablo Valle, Joseba A. Agirre, and Goiuria Sagardui

Table 14. Summary of the performed statistical tests for the Hypervolumemetric within the second application
context

G
oo

gl
e

IO
F

Pa
in
t

R
ai
ls

To
ta
l

Se
ed

in
g
St
ra
te
gy

A
Se
ed

in
g
St
ra
te
gy

B
A
++

/A
+/
A
=/
B
/B
+/
B
++

A
++

/A
+/
A
=/
B
/B
+/
B
++

A
++

/A
+/
A
=/
B
/B
+/
B
++

A
++

/A
+/
A
=/
B
/B
+/
B
++

A
++

/A
+/
A
=/
B
/B
+/
B
++

N
on

Se
ed
ed

D
yn

am
ic

4/
0/
0/
0/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

1/
0/
0/
1/
0/
2/
20

1/
1/
0/
1/
2/
5/
14

6/
1/
0/
2/
2/
7/
78

St
at
ic
30

18
/0
/0
/1
/5
/0
/0

23
/1
/0
/0
/0
/0
/0

5/
0/
0/
6/
5/
5/
3

8/
1/
0/
3/
8/
2/
2

54
/2
/0
/1
0/
18
/7
/5

St
at
ic
70

10
/3
/6
/1
/0
/3
/1

23
/0
/0
/1
/0
/0
/0

18
/3
/2
/1
/0
/0
/0

9/
4/
5/
15
/1
/0
/0

60
/1
0/
13
/8
/1
/3
/1

A
RP

G
10
/0
/0
/1
3/
1/
0/
0

12
/0
/0
/1
0/
2/
0/
0

11
/0
/0
/1
1/
2/
0/
0

16
/0
/0
/5
/3
/0
/0

49
/0
/0
/3
9/
8/
0/
0

O
rt
ho

go
na
l

13
/0
/0
/3
/3
/3
/2

11
/0
/0
/8
/4
/1
/0

21
/0
/0
/3
/0
/0
/0

13
/8
/0
/3
/0
/0
/0

58
/8
/0
/1
7/
7/
4/
2

D
yn

am
ic
A
RP

G
3/
1/
0/
0/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

1/
0/
0/
1/
0/
4/
18

1/
1/
0/
1/
4/
4/
13

5/
2/
0/
2/
4/
8/
75

St
at
ic
30

5/
2/
7/
10
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

11
/4
/6
/3
/0
/0
/0

10
/7
/1
/6
/0
/0
/0

26
/1
3/
14
/4
3/
0/
0/
0

St
at
ic
70

0/
0/
0/
20
/0
/0
/4

0/
0/
0/
24
/0
/0
/0

3/
1/
4/
16
/0
/0
/0

2/
3/
7/
11
/0
/0
/1

5/
4/
11
/7
1/
0/
0/
5

D
yn

am
ic

A
RP

G
0/
2/
6/
12
/1
/2
/1

0/
0/
0/
24
/0
/0
/0

4/
4/
7/
9/
0/
0/
0

9/
3/
1/
9/
1/
1/
0

13
/9
/1
4/
54
/2
/3
/1

O
rt
ho

go
na
l

1/
2/
5/
15
/1
/0
/0

0/
0/
0/
24
/0
/0
/0

2/
4/
9/
9/
0/
0/
0

2/
3/
7/
10
/0
/1
/1

5/
9/
21
/5
8/
1/
1/
1

D
yn

am
ic
A
RP

G
14
/0
/0
/9
/0
/0
/1

12
/0
/0
/9
/3
/0
/0

16
/0
/0
/8
/0
/0
/0

17
/0
/0
/4
/3
/0
/0

59
/0
/0
/3
0/
7/
0/
0

St
at
ic
30

St
at
ic
70

13
/2
/3
/2
/0
/0
/4

6/
0/
0/
9/
4/
3/
2

7/
8/
6/
1/
2/
0/
0

8/
0/
0/
5/
5/
3/
3

34
/1
0/
9/
17
/1
1/
6/
9

A
RP

G
6/
0/
0/
5/
9/
3/
1

0/
0/
0/
4/
9/
10
/1

17
/1
/0
/5
/0
/1
/0

14
/1
/0
/5
/2
/2
/0

37
/2
/0
/1
9/
20
/1
6/
2

O
rt
ho

go
na
l

7/
0/
0/
4/
7/
4/
2

1/
0/
0/
4/
2/
8/
9

19
/3
/1
/0
/0
/1
/0

14
/2
/0
/3
/2
/2
/1

41
/5
/1
/1
1/
18
/1
5/
34

D
yn

am
ic
A
RP

G
0/
0/
0/
3/
1/
0/
20

0/
0/
0/
0/
0/
0/
24

1/
0/
0/
1/
1/
4/
17

1/
0/
0/
2/
6/
3/
12

2/
0/
0/
6/
8/
7/
73

A
RP

G
4/
0/
0/
1/
4/
3/
12

2/
0/
0/
4/
11
/5
/2

1/
0/
0/
3/
4/
9/
7

4/
0/
0/
0/
5/
3/
12

11
/0
/0
/8
/2
4/
20
/3
3

St
at
ic
70

O
rt
ho

go
na
l

0/
1/
3/
1/
1/
3/
15

5/
0/
0/
2/
6/
7/
4

4/
0/
0/
2/
8/
5/
5

9/
0/
0/
3/
2/
0/
10

18
/1
/3
/8
/1
7/
15
/3
4

D
yn

am
ic
A
RP

G
0/
0/
2/
2/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

1/
0/
0/
0/
0/
1/
22

1/
0/
0/
1/
0/
2/
20

2/
0/
2/
3/
0/
3/
86

A
RP

G
O
rt
ho

go
na
l

11
/0
/0
/7
/3
/1
/2

13
/0
/0
/5
/5
/1
/0

19
/0
/0
/5
/0
/0
/0

14
/3
/2
/4
/1
/0
/0

57
/3
/2
/2
1/
9/
2/
2

D
yn

am
ic
A
RP

G
3/
0/
1/
0/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

1/
0/
0/
1/
0/
1/
21

2/
0/
0/
0/
4/
6/
12

6/
0/
1/
1/
4/
7/
77

O
rt
ho

go
na
l

D
yn

am
ic
A
RP

G
2/
0/
0/
2/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
1/
1/
0/
22

1/
1/
0/
0/
0/
2/
20

3/
1/
0/
3/
1/
2/
86

, Vol. 1, No. 1, Article . Publication date: May 2020.

Some Seeds are Strong: Seeding Strategies for Search-based Test Case Selection :49

Table 15. Summary of the performed statistical tests for the Average Convergence metric within the second
application context

G
oo

gl
e

IO
F

Pa
in
t

R
ai
ls

To
ta
l

Se
ed

in
g
St
ra
te
gy

A
Se
ed

in
g
St
ra
te
gy

B
A
++

/A
+/
A
=/
B
/B
+/
B
++

A
++

/A
+/
A
=/
B
/B
+/
B
++

A
++

/A
+/
A
=/
B
/B
+/
B
++

A
++

/A
+/
A
=/
B
/B
+/
B
++

A
++

/A
+/
A
=/
B
/B
+/
B
++

N
on

Se
ed
ed

D
yn

am
ic

4/
0/
0/
0/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

1/
0/
0/
1/
0/
0/
22

5/
0/
0/
1/
0/
0/
90

St
at
ic
30

19
/1
/0
/2
/2
/0
/0

23
/1
/0
/0
/0
/0
/0

7/
5/
3/
7/
2/
0/
0

18
/4
/0
/2
/0
/0
/0

67
/1
1/
3/
11
/4
/0
/0

St
at
ic
70

4/
7/
7/
2/
1/
3/
0

18
/5
/0
/1
/0
/0
/0

3/
4/
14
/3
/0
/0
/0

15
/2
/0
/3
/3
/1
/0

40
/1
8/
21
/9
/4
/4
/0

A
RP

G
10
/0
/0
/1
1/
3/
0/
0

12
/0
/0
/9
/3
/0
/0

17
/0
/0
/6
/1
/0
/0

15
/0
/0
/6
/3
/0
/0

54
/0
/0
/3
2/
10
/0
/0

O
rt
ho

go
na
l

12
/3
/1
/2
/5
/1
/0

16
/0
/0
/6
/0
/0
/0

8/
9/
6/
1/
0/
0/
0

18
/4
/0
/1
/1
/0
/0

54
/1
6/
7/
10
/8
/1
/0

D
yn

am
ic
A
RP

G
4/
0/
0/
0/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

1/
0/
0/
0/
1/
0/
22

5/
0/
0/
0/
1/
0/
90

St
at
ic
30

4/
1/
3/
16
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

1/
4/
7/
12
/0
/0
/0

5/
5/
10
/7
6/
0/
0/
0

St
at
ic
70

0/
0/
20
/0
/0
/0
/4

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

1/
0/
6/
16
/0
/1
/0

1/
0/
6/
84
/0
/1
/4

D
yn

am
ic

A
RP

G
0/
0/
2/
18
/2
/1
/1

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

2/
3/
6/
13
/0
/0
/0

2/
3/
8/
79
/2
/1
/1

O
rt
ho

go
na
l

3/
0/
21
/0
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

0/
0/
0/
24
/0
/0
/0

2/
0/
2/
20
/0
/0
/0

5/
0/
2/
89
/0
/0
/0

D
yn

am
ic
A
RP

G
13
/0
/0
/1
0/
0/
0/
0

12
/0
/0
/1
0/
1/
1/
0

15
/0
/0
/9
/0
/0
/0

11
/0
/0
/9
/3
/0
/0

51
/0
/0
/3
8/
5/
1/
0

St
at
ic
30

St
at
ic
70

13
/1
/2
/4
/0
/0
/4

15
/0
/0
/4
/2
/3
/0

10
/2
/6
/1
/1
/2
/2

4/
0/
0/
0/
4/
4/
12

42
/3
/8
/9
/7
/9
/1
8

A
RP

G
5/
0/
0/
3/
9/
5/
2

0/
0/
0/
2/
10
/1
0/
2

4/
0/
0/
3/
1/
3/
13

1/
0/
0/
4/
7/
9/
3

10
/0
/0
/1
2/
27
/2
7/
20

O
rt
ho

go
na
l

11
/1
/0
/2
/5
/4
/1

3/
0/
0/
5/
8/
6/
2

8/
1/
1/
7/
2/
2/
3

8/
0/
0/
4/
5/
3/
4

30
/2
/1
/1
8/
20
/1
5/
10

D
yn

am
ic
A
RP

G
0/
0/
0/
0/
3/
1/
20

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
1/
23

0/
0/
0/
0/
3/
2/
91

A
RP

G
4/
0/
0/
0/
2/
2/
16

1/
0/
0/
0/
5/
11
/7

0/
0/
0/
1/
1/
2/
20

7/
0/
0/
6/
6/
3/
2

12
/0
/0
/7
/1
4/
18
/4
5

St
at
ic
70

O
rt
ho

go
na
l

1/
0/
4/
3/
3/
1/
12

3/
0/
0/
3/
4/
6/
8

2/
0/
0/
7/
2/
7/
6

12
/2
/0
/2
/6
/2
/0

18
/2
/4
/1
5/
15
/1
6/
26

D
yn

am
ic
A
RP

G
0/
1/
2/
1/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

1/
0/
0/
0/
0/
1/
22

1/
1/
2/
1/
0/
1/
90

A
RP

G
O
rt
ho

go
na
l

13
/6
/0
/2
/1
/2
/0

12
/0
/0
/8
/3
/1
/0

9/
7/
8/
0/
0/
0/
0

17
/2
/1
/2
/2
/0
/0

51
/1
5/
9/
12
/6
/3
/0

D
yn

am
ic
A
RP

G
3/
0/
1/
0/
0/
0/
20

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
2/
1/
21

3/
0/
1/
0/
2/
1/
89

O
rt
ho

go
na
l

D
yn

am
ic
A
RP

G
1/
0/
0/
0/
2/
1/
20

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
0/
0/
24

0/
0/
0/
0/
2/
0/
22

1/
0/
0/
0/
4/
1/
90

, Vol. 1, No. 1, Article . Publication date: May 2020.

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-objective search algorithms
	2.2 Multi-objective test case selection and notation

	3 Seeding Strategies
	3.1 Dynamic Test Suite Size-based Random Seeding
	3.2 Static Test Suite Size-based Random Seeding
	3.3 Adaptive Random Population Generation
	3.4 Adaptive Random Population Generation with Dynamic Test Suite Size
	3.5 Orthogonal Population Generation

	4 Application Domains
	4.1 Black-box test case selection of simulation models
	4.2 Regression test selection in continuous integration environments

	5 Empirical Evaluation
	5.1 Research questions
	5.2 Case studies
	5.3 Evaluation metrics
	5.4 Experimental scenarios and statistical tests
	5.5 Algorithms setup

	6 Analysis of the Results and Discussion
	6.1 RQ 1 – Comparison with the baseline
	6.2 RQ 2 – Best seeding strategy
	6.3 RQ 3 – Algorithms Running Times and Overhead

	7 Threats to validity
	8 Related Work
	9 Conclusion
	References
	A Summary of the results of the Vargha and Delaney Â12 values based on the classification of Large (A++, B++), Medium (A+, B+), Small (A, B) and negligible (=)

