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Abstract
Residual stresses and surface roughness have been recognized to play a critical role in the fatigue strength of metal components. 
Machining processes can induce different roughness and residual stress conditions depending on the parameters used in the 
process. Therefore, it is essential to develop knowledge that helps to predict the residual stresses and roughness that would 
be obtained from different machining conditions. Due to the growing interest from the industry in the use of 42CrMo4 steel 
because of its excellent mechanical properties, the main objective of this work is to establish two phenomenological models to 
accurately predict the residual stress and roughness values in turned specimens of this material. The models are derived from 
data of four process variables: (a) insert tip radius; (b) feed rate; (c) cutting speed; and (d) depth of cut. For this purpose, a wide 
experimental campaign has been developed, which includes the machining of 68 specimens under various cutting scenarios, 
and their subsequent measurement of residual stresses and roughness. Once the experimental data were obtained, the response 
surface method based on the central composite design was used to fit the models, obtaining a correlation index R2 higher than 
0.9 in both cases. In this article, it is concluded that feed rate and insert radius have a greater effect on the residual stress and 
roughness obtained, while cutting speed and depth of cut have a lesser impact on the results. It is hoped that the findings will 
establish a groundwork for the machining of this material type, ensuring controlled conditions of residual stress and roughness.

Keywords Turning process · Roughness · Residual stresses · Response surface methodology

Nomenclatures
RSM  Response surface methodology
CCD  Central composite design
CNC  Computer numerical control
fn   Feed rate
VC   Cutting speed
ap   Depth of cut
R   Insert radius
E   Elastic modulus
�   Poisson’s modulus

hkl   Diffraction plane
d   Interplanar distance
�   Tilt angle
�   Scattering angle
Ra   Average roughness
�c   Selected cut-off length
�RSL   Longitudinal residual stress
Rm   Ultimate tensile strength
HRb  Rockwell B hardness
r   Pearson correlation coefficient

1 Introduction

Different standards, such as DIN 50100 [1] / ASTM E466-15 
[2] / ISO 1099 [3] establish the conditions for fatigue life 
characterization testing of metallic materials. Among the 
geometries available in these standards, cylindrical cross-
sections are the most widely used, since stress concentrators 
and sharp corners are reduced. For this reason, the turn-
ing process, used to manufacture the cylindrical specimens, 
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takes on special relevance in the characterization of fatigue 
life. Nevertheless, turning processes invoke two effects that 
can largely condition the characterization of fatigue life: sur-
face roughness and residual stresses.

On the one hand, the optimal cutting conditions in the last 
machining passes must be studied to mitigate the residual 
stresses, since tensile residual stresses can decrease fatigue 
life, while compressive residual stresses can increase it [4]. 
Both scenarios are inadvisable during a material charac-
terization phase, where material properties should be estab-
lished without the effect of residual stresses.

The residual stresses generated during the machining pro-
cess and the magnitude of these stresses depend mainly on 
the cutting conditions and on the material under study. Dur-
ing turning, specimens are subjected to thermal gradients and 
heterogeneous plastic deformations, which conduce to the gen-
eration of thermo-mechanical loads, hence inducing residual 
stresses in the specimens [5, 6]. The influence of the different 
turning parameters (tool tip radius, cutting speed, feed rate, 
and depth of cut, among others) has been studied in previous 
works [7, 8]. Among these parameters, depth of cut is found to 
have the least impact on residual stresses, while cutting speed, 
feed rate, and tool tip radius are the most influential parameters 
[8, 9]. However, there is still no clear consensus regarding the 
effect of each of these three parameters. Although most authors 
agree that an increase in feed rate results in an increase in 
axial residual stresses and hence in a decrease in fatigue life, 
[10, 11], other works reveal that an increase in feed rate leads 
to an increase in compressive residual stresses [11]. Unfortu-
nately, until this date, there are no physical models that relate 
the machining parameters to the residual stresses generated, so 
it is necessary to resort to experimentation and the fitting of 
empirical models to solve the problem.

On the other hand, a high surface roughness has a nega-
tive influence on the fatigue life, shortening it significantly. 
In addition, other properties such as tribological behavior or 
corrosion resistance are affected by the variation of surface 
roughness [12]. Cutting conditions play a critical role on the 
surface roughness of the workpiece, mainly cutting speed, feed 
rate, depth of cut, and tool radius [13, 14]. In the literature, 
predictive analytical equations to estimate the roughness as a 
function of the turning conditions (depth, feed, and tip radius) 
can be found [15]. However, these equations need to be revised 
for extreme cutting conditions, where feeds or depths may be 
outside the usual range of application of the tool, and which 
may be necessary to adopt to achieve low residual stresses. In 
these circumstances, characterized by the high plasticity of the 
material, these analytical relationships may not be applicable.

In the turning process, the presence of residual stresses 
alongside surface roughness significantly influences the fatigue 
endurance and mechanical properties of the final product. 
Therefore, achieving optimal performance depends heavily 
on the precise adjustment of turning parameters. However, 

conventional experiments which are based on trial-and-error 
techniques are not only expensive but also frequently fail 
to yield the desired results. Hence, there is a pressing need 
for more efficient estimation and optimization strategies to 
enhance the durability and overall quality of the machined 
components. To overcome this, researchers now utilize ana-
lytical and mathematical models, providing a more precise 
and efficient path to estimation and optimization. Response 
surface methodology (RSM) emerges as a powerful tool in 
this regard, streamlining experimentation and facilitating the 
exploration of variable interactions. Its adaptability shines 
through diverse applications, such as enhancing formability 
in friction stir welded blanks [16], refining laser micromachin-
ing techniques [17], and optimizing turning parameters [18]. 
These examples underscore RSM's effectiveness across vari-
ous experimental scenarios, providing a structured framework 
for process analysis and optimization across different domains.

The main objective of this paper is to establish analyti-
cal relationships between the parameters of the turning pro-
cess, residual stresses, and surface roughness for a 42CrMo4 
quenched and tempered steel (in the following referred to as 
42CrMo4 + QT). For this purpose, the effect of the main turn-
ing parameters (cutting speed, feed rate, tool tip radius, and 
depth of cut) on residual stress and surface roughness has been 
studied. The residual stresses were measured by means of an 
X-ray diffractometer, while a confocal microscope was used 
to evaluate the surface roughness. The experimental campaign 
has been designed employing a central composite design 
(CCD) of experiments, one of the most widely used methods 
within RSM. Thanks to the use of this design of experiments, 
it was possible to obtain acceptable information to build a 
predictive model, which allows to estimate the roughness and 
residual stress as a function of those turning parameters.

The manuscript is structured as follows. Firstly, a section 
devoted to introducing the methods and material used in this 
research is presented, which includes a description of the 
material selected, the geometry of the samples, the machin-
ing conditions, the design of experiments, the manufacturing, 
the measurement procedures used for both residual stress and 
roughness and the evaluation of the results. Subsequently, the 
results obtained are presented in detail. After that, the method-
ology to derive the phenomenological models is explained and 
the results obtained from the model are critically discussed. 
Finally, the main conclusions of this work are highlighted.

2  Methods and material

This section is intended to explain the experimental proce-
dure followed in the development of this work according to 
the flowchart shown in Fig. 1. First, the properties of the 
material under study are introduced. Next, the dimensions 
of the specimens that will be manufactured are presented. 
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The ranges of cutting conditions have been selected and 
the design of experiments that establish the different com-
binations of machining parameters to be used have been 
presented. After that, the roughness and residual stress 
measurement methods are explained in detail. Finally, the 
results evaluations through the RSM are described.

2.1  Material selection

The material used in this work was a quenched and tempered 
42CrMo4 steel. The mechanical properties of this medium 
carbon ferritic-pearlitic steel include its high resistance to 
fatigue and impact. These properties, together with its high 

machinability, make it suitable for a wide range of applica-
tions in the automotive, aeronautical, and energy industries. 
Some of these applications include the manufacture of high-
strength components such as shafts, gears, screws, or pins, 
thanks to their excellent mechanical properties [19, 20].

For the development of this experimental campaign, a 
35-mm diameter 42CrMo4 + QT steel round bar, obtained 
from the same casting T46157/2020 produced by TŘINECKÉ 
ŽELEZÁRNY, a.s., was used to reduce the existing inhomo-
geneities between the different machined specimens. The 
chemical composition and the mechanical properties of the 
material are shown in Table 1 and Table 2, respectively.

2.2  Samples geometry

The geometry of the specimens selected to perform this 
research is shown in Fig. 2. This geometrical configuration 
was selected according to the following requirements. The 
first and most decisive of these was to facilitate the surface 
characterization of the specimens, which implied the need 
to machine a region of constant cross-section. The second 
requirement was to obtain a region in which the cutting con-
ditions were homogeneous.

2.3  Selection of machining parameters

The main parameters governing the turning process are 
shown in Fig. 3. The crucial machining parameters utilized 
here are as follows: feed rate, cutting speed, depth of cut, 
and insert radius. These four variables were selected to study 
their impact on roughness and residual stress measured in 
the final specimens. The range in which each parameter will 
be tested is presented in the next paragraphs.

Regarding cutting speed, it is conditioned by the capacity 
of the lathe used for the manufacture of the specimens and 
by the diameter of the samples. In this research, a JATOR 
TAJ-42 computer numerical control (CNC) lathe was used, 
whose technical specifications can be seen in Table 3. Tak-
ing this into consideration, the range of the cutting speeds 
was defined between 76 and 200 m/min.

Fig. 1  Experimental campaign flowchart

Table 1  Chemical composition 
of 42CrMo4 + QT steel used 
(wt. %)

C Mn Si P S Cu Cr Ni Al Mo V Ti Sn

0.42 0.64 0.21 0.013 0.009 0.02 1.04 0.06 0.026 0.185 0.006 0.0013 0.003

Table 2  Mechanical properties of 42CrMo4 + QT

Mechanical properties Value

Yield stress (MPa) 1001.5
Tensile stress (MPa) 1097
Hardness (HV10) 310–370 (see [21])
Impact toughness (KV) 83.5 at 20 °C
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To take the impact of tool radius on machining into 
account, two finishing inserts with two different tip radii 
(0.4 mm and 0.8 mm) were selected. The technical and 
dimensional characteristics of both inserts used together 
with the operating regions recommended by the insert manu-
facturer are shown in Table 4.

Finally, the ranges of the depths of cut and feed rates 
were defined between (0.05–0.25 mm) and (0.1–0.25 mm/
rev), respectively. A resume of the machining parameters 
ranges is shown in Table 5. As can be seen, the tools will 
not always work within their optimum operating range, 
which will give new insights into the impact of these con-
ditions on both roughness and residual longitudinal stress.

2.4  Design of experiments

A design of experiment methodology based on the response 
surface method was used for the scheme of the experimental 

campaign. The RSM is a set of mathematical and statistical tech-
niques that allow the study of the impact of one or more input 
variables on the response variables of a given problem through 
an empirical model [22]. Due to its versatility and capacity, this 
methodology is used in numerous areas of knowledge, from the 
medical to the industrial field, for the design of experiments or 
the adjustment of processes. In the field of manufacturing engi-
neering, it has been widely used to study the impact of the cut-
ting conditions of material removal processes (turning, milling, 
etc.) as well as to optimize these conditions in order to reduce 
tool wear and to study the surface finish [23, 24].

Among the different designs of experiments available, 
a CCD, also known as the Box-Wilson CCD, has been 
selected. This type of design consists of central points 
(normally between 4 and 6), which enable the correct 
fit of the model to be analyzed and the pure experimen-
tal error estimation. These central points are extended 
with axial or star points, by means of which the quadratic 
effects can be analyzed. Thanks to this design, the first- 
and second-order terms can be efficiently estimated [25].

The experimental design used for this work was done 
through Design Expert v13 software. The inputs of the model 
are 4 factors: feed rate ( fn ), cutting speed ( Vc ), depth of cut 
( ap ), and insert radius ( R ). The first three factors are numeri-
cal variables while the last one is a categorical variable (there 
are few values, and only two of them are used in the pro-
posed experimental campaign). There are also 2 responses: 
roughness and residual stress. Both responses are numerical 
continuous variables. From these input variables, 4 equations 
will be obtained (2 equations for each tool radius used) with 
which the value of the residual stress and roughness can be 
predicted. The ranges of input parameters of the model are 
shown in Table 6. The use of the CCD (central composite 
design) in experiments involves defining three groups of 
design points: two-level factor points (min. level and max. 
level as shown in Table 6), center points (center in Table 6), 
and axial points (axial min. and axial max. in Table 6). The 
two-level factor points and the center points define the pri-
mary design space where predictions are expected to be reli-
able. In contrast, the axial points are crucial for accurately 

Fig. 2  Specimen final geometry

Fig. 3  Principal parameters of the turning process

Table 3  JATOR TAJ-42 CNC lathe technical specifications

CNC lathe Jator TAJ-42

Machine software Fagor 8055 T
Main speed engine power 11/15 kW
Max. spindle speed 3000 rpm
Spindle nose DIN 55026 (A5)
Bar trough 42 mm
Automatic tool changer 12 tools
Working area (Z/X) 500/200 mm
Rapid feed (Z/X) 15/12 m/min
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identifying the response surface curvature and capturing the 
model's behavior in extreme cases. However, predictions at 
these axial values may be less accurate due to the lower den-
sity of points in this region and their position outside the 
primary design space defined by the factor and center points.

2.5  Turning process

For the machining process, a parametric numerical control 
program was developed to reduce programming times. Dur-
ing the process, several roughing passes were performed on 
the 35 mm bar. Thereafter, at least the 3 finishing passes were 
performed in each specimen employing the finishing inserts 
selected in Section 2.3. In order to ensure that tool wear does 
not affect the roughness or residual stresses obtained, the tool 
was changed every 2 machined specimens. The environmental 
conditions in the laboratory during the machining process 
were 25.1 °C and a relative humidity of 68%.

2.6  Residual stresses measurement

The longitudinal residual stresses derived from the machined 
process were measured by means of a Stresstech 3000-G3R 

X-ray diffractometer. The {221} gamma lattice plane was 
examined under a 2θ angle of 156.1°, utilizing the Kα chro-
mium wavelength (0.2291 nm).

To obtain the values of the residual stresses, the sin2� 
technique [26] was implemented by means of the following 
equation:

where E and ν are the elastic modulus and Poisson’s ratio of 
the 42CrMo4 + QT steel, in the measured crystallographic 
plane, taken as 206 GPa and 0.296, respectively, while d 
is the interplanar distance of the selected diffraction plane 
(hkl), � is the tilt angle, and � the angle in the same plane. 
Table 7 reflects the configuration of the diffractometer used 
for the determination of the residual stresses. 

2.7  Roughness measurement

A Leica DCM3D confocal microscope was used to measure 
the surface roughness of the specimens. In comparison with 
other methods used for surface roughness assessment, the 
use of a confocal microscope allows a better three-dimen-
sional description of the measured surface [27]. As one of 
the most commonly used, average roughness value ( Ra ) 
was selected as the reference parameter to evaluate surface 
roughness in this experimental campaign. Ra measurements 
were carried out at three different points in the central area of 
the specimen in accordance with the UNE-EN-ISO 21920–3 
standard [28]. The cut-off filter, �c , was equal to 0.8 mm, and 
7 repetitions were made, which conducts to the evaluation 

(1)�� =

(

E
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Table 4  Insert technical 
specifications

Insert specifications

Insert manufacturer Sandvik Coromant Sandvik Coromant
Reference DCMX 11 T3 04-WF 4325 DCMX 11 T3 08-WF 4425
Tip radius (mm) 0.4 0.8
Main cutting edge angle (º) 93 93
Recommended depth of cut (mm) 0.3–3 0.3–3
Recommended cutting speed (m/min) 345–475 305–420
Recommended feed rate (mm/rev) 0.07–0.30 0.12–0.4

Table 5  Machining parameter ranges selected for the machining pro-
cess

Experimental campaign parameters

Insert radius (mm) 0.4 and 0.8
Depth of cut (mm) 0.05–0.25
Cutting speed (m/min) 76–200
Feed rate (mm/rev) 0.1–0.25

Table 6  Input parameters and 
corresponding levels used for 
the model

Input Type Factor Units Axial min Axial max Design point space

Min. level Center Max. level

Feed rate Numerical fn mm/rev 0.05 0.25 0.1 0.15 0.2
Cutting speed Numerical Vc m/min 76 200 107 138 169
Depth of cut Numerical ap mm 0.05 0.25 0.1 0.15 0.2
Insert radius Categorical R mm 0.4 0.8 – – –
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length of 5.60 mm. Once again, the measurement direction 
was longitudinal, as in the case of the residual stresses. The 
main configuration of the equipment can be found in Table 8.

2.8  Results evaluation

The design of experiments addressed in Section 2.4 allows 
not only to establish the experimental campaign, but also 
to analyze the results of these experiments thanks to its 
built-in statistical tools. Figure 4 summarizes the RSM 
developed in this work, highlighting the relation between 
the design of experiments explained in Section 2.4 and the 
final predictive equations. Four predictive equations were 
obtained (2 for each response and insertion radius), which 
allow for estimating both residual stress and roughness 
values as a function of the 4 input factors.

3  Experimental results

This section presents the results of the experimental cam-
paign designed in Section 2 (see Table 16 in the Appendix). 
Furthermore, a critical and pivotal analysis of the results is 
carried out in which the discrepancies obtained in some of 
the samples show a different roughness or residual stress, 
despite being machined under the same cutting conditions, 
are discussed.

3.1  Critical analysis of results

A closer inspection of the results reveals discrepancies in the 
experimental values obtained. This is the case for specimens 
45 and 46, which, despite being machined in the same sce-
nario, show significant differences in terms of roughness and 
residual stresses as shown in Table 16 in the Appendix. Fig-
ure 5 establishes a comparison between the surface obtained 
for specimen 45 (a) and for specimen 46 (b), showing the 

presence of large grooves along the length of specimen 45, 
which may have induced the high roughness measured in 
this specimen. Figure 5c, d shows the Ra roughness numeri-
cal values measured in the longitudinal direction of speci-
mens 44 and 45, respectively.

Scatter of the results is always expected when an experimen-
tal campaign is performed. Nevertheless, it is always necessary 
to identify the results that are out of the scope, which must be 
treated as outliers. These outliers can be produced by numer-
ous causes, such as equipment failure, human errors, or meas-
urement errors [29]. Identifying those specimens that could 
be classified as outliers is of vital importance for the correct 
modeling of the subsequent response surface. For this purpose, 
powerful statistical tools are required to determine whether such 
experimental outputs can be treated as outliers or they cannot. 
Including them in the model without carrying out this prior 

Table 7  Experimental parameters for residual stress measurements

Stresstech 3000-G3R X-ray diffractometer setup

Maximum voltaje (kV) 30
Exposure time (s) 20
Tilt Ψ (º) 5 points  (− 45º 

to + 45º)
Noise reduction Parabolic
Filter of Kα radiation Vanadium
Maximun intensity (mA) 6.7
Collimator diameter (mm) 2 (short type)
Goniometric rotation (measurement direction) Ø (º) 0
Peak adjustment Pseudo-Voigt

Table 8  Experimental parameters for roughness measurements

Leica DCM3 confocal microscope setup

Used standard ISO-21920–3
Objective magnification 10x
Measured parameter Ra

Selected cutt-off ( λc) (mm) 0.8
Evaluation length (mm) 5.60 
Evaluation width (mm) 0.95
Evaluation area ( mm2) 5.32

Fig. 4  Outline of the response surface method designed with inputs 
and outputs
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analysis may result in an incorrect fitting of the model. The sta-
tistical tools used to identify those samples are described below.

In order to identify and analyze these outliers, the meth-
odology shown in Fig. 6 was implemented. Once the residual 
stress and roughness were measured, a preliminary fit of the 
model was done, which was then analyzed by means of the 
statistical diagnostic tools which are explained as follows.

The first statistical tool allows the user to determine 
whether the externally studentized residuals are normally 
distributed. To do this, the percentiles of the theoretical nor-
mal distribution are plotted against the percentiles of the 
experimental residuals. If the externally studied residuals 
follow a normal distribution, the plot of the theoretical per-
centiles of the normal distribution overlaps with the plot 
of the observed percentiles of the sample. The second tool 
presents the externally studied residuals against the expected 
residuals as the output parameters (in this work, roughness 
and residual stresses) increase, allowing the hypothesis of 

homogeneity of variances to be tested independently of the 
value of the response [30]. Similar to the previous one, the 
third statistical tool consists of plotting the externally stu-
dentized residuals against the residuals obtained in each of 
the samples of the experiment, thus allowing to identify hid-
den variables that may have influenced the response. The 
externally studied residual, also known as the outlier t-value 
or RStudent, is calculated by excluding one series at a time 
from the analysis and predicting the response based on the 
remaining series. This involves estimating the response 
without the contribution of each specific series. The result-
ing t-value represents the difference, in terms of standard 
deviations, between the predicted value and the actual 
response. Essentially, this assessment determines whether 
the excluded run fits the model using coefficients derived 
from the remaining runs [30]. In other words, it tests whether 
the omitted run is in harmony with the overall pattern of data 
for the specified model. Finally, the Box-Cox Plot is used 

Fig. 5  Surface defects generated during the turning process of two specimens machined in the same scenario: a 3D representation of the surface 
of specimen 45; b 3D representation of the surface of specimen 46; c Measured R

a
 values along the surface for 45 specimens; and d measured R

a
 

values along the surface for 45 specimens
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to determine whether any transformation of the response 
is necessary [31]. The latter tool shows the recommended 
transformation based on the actual lambda value applied to 
the response and the lower point of the curve generated by 
the natural logarithm of the sum of the squares of the residu-
als, been the difference between both values directly related 
to the required transformation. The implementation of the 
methodology described above can be seen in Section 4.

If a potential outlier is observed by using any of the pre-
sented statistical tools, the first step is to check whether any 
transformation of the response is necessary before consid-
ering the sample as an outlier. Regardless of the followed 
path, a readjustment of the previous model is therefore 
essential. This iterative process is applied until the outliers 
identified are eliminated, pursuing a compromise between 
having no outliers and not biasing the model. Tables 9. 
and 10 show, respectively, the outliers identified for each 
response.

4  Proposed predictive models

The following section presents the models obtained for 
both residual stress and roughness. Section 4.1 presents the 
complete statistical summary of the model according to the 
methodology explained above, the correlations between 
roughness and machining parameters, and, finally, two 
predictive equations for the surface roughness estimation 
model, one for the 0.4 mm insert radius and one for the 
0.8 mm insert radius. In Section 4.2, a similar approach is 
adopted for the residual stress estimation model.

4.1  Predictive model for roughness

The impact of the different machining factors on the surface 
roughness is graphically shown in Fig. 7. On the one hand, 
among the numerical variables, the variable with the greatest 
impact on the surface roughness is the feed rate with a correla-
tion coefficient of 0.737, while the cutting speed and depth have 
a much lesser influence on the surface roughness of the samples, 
with a correlation coefficient of − 0.053 and − 0.191 respectively. 
On the other hand, an analysis of the categorical variable shows 
that as the tool radius increases, roughness decreases.

The aforementioned correlation coefficients are obtained 
using the Pearson correlation coefficient ( r) , which is math-
ematically defined as follows:

where xi and yi are the individual values of the variables x 
and y , x , and y are the means of the variables x and y , respec-
tively, and finally, n represents the number of data pairs. The 
Pearson correlation coefficient can take values between − 1 
and 1, where a value of 1 indicates a perfect positive correla-
tion, − 1 indicates a perfect negative correlation, and 0 indi-
cates no correlation between the two variables under study.

Figure 8 presents the diagnostic plots after iteratively apply-
ing the statistical methodology explained in the previous section 
for the detection of possible outliers where a natural logarithmic 
transformation of the roughness was required. Figure 8a shows 
the correct fit of the externally studentized residuals to a normal 
distribution. Figure 8b, c show how the externally studentized 
residuals conform to the principle of homogeneity in variances 
independently of the increase in response (b) or the run number 
(c). Finally, Fig. 8d shows the result of the Box-Cox plot for 
the evaluation of the possible transformations required in the 
response after applying the recommended logarithmic transfor-
mation. It shows that no transformation is necessary.

Model coefficients are shown in Table 11. The signifi-
cance level used to consider a term significant or not is 0.05. 
Thus, those terms whose associated p-value is below the 
threshold of 0.05 are considered significant. Those terms 
included in the model with an associated p-value greater 
than 0.05 are necessary to maintain the hierarchy of the 
model (in this case, Vc ∙ R , and Vc

2 ); hence, they are retained. 
On the other hand, the model shows a non-significant lack 
of fit with an associated p-value of 0.1547. Table 12 shows 
a difference of less than 0.2 between the predicted R2 and 
the adjusted R2 . Furthermore, the value of Adeq. precision 
(which measures the signal to noise ratio) of 34.5 is much 
higher than the minimum value of 4.0 estimated for this 

(2)r =

∑n

i=1
(xi − x)(yi − y)

�

∑n

i=1

�

xi − x
�2∑n

i=1

�

yi − y
�2

Fig. 6  Proposed methodology to assess the experimental data in order 
to identify the suitable outliers
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parameter, so that the model is able to make accurate predic-
tions within the design space.

Figure 9 shows the roughness response surfaces for the 
0.4 mm tool radius insert (Fig. 9a) and for the 0.8 mm 
radius insert (Fig.  9b), derived for fixed depth of cut 
of 0.15 mm, which corresponds to half of the range of 
values that the depth variable takes in the experimental 
campaign. Taking into account that the depth of cut is 
the variable that has a lower impact on the results, the 
response surfaces obtained for other depths inside the 
workspace would be similar to the ones represented in 
Fig. 9. A more detailed analysis of both response surfaces 
reveals a completely opposite behavior in terms of cutting 
speed. On the one hand, for those specimens machined 
with a 0.4 mm insert, it can be observed that at the same 
feed rate, the roughness reaches its maximum for a cut-
ting speed of around 126 m/min, decreasing for cutting 
speeds higher or lower than this value. On the other hand, 
for those samples machined with a 0.8 mm insert, it can 
be observed that at the same feed rate, the estimated 
roughness reaches its minimum when the cutting speed is 
around 150 m/min, increasing as the cutting speed moves 
away from this value. Moreover, the highest roughness 
values are expected for those specimens machined with the 

0.4 mm inserts under high feed rates. Figures 10 and 11 
establish a comparison between the experimental results 
and the values obtained on the basis of the predictive mod-
els developed previously, showing the correct adequacy of 
these for the prediction of roughness.

Finally, the equations of the predictive model are intro-
duced to estimate the roughness value as a function of the 
turning process parameters:

For insert radius (R) = 0.4

For Insert radius (R) = 0.8

where Ra corresponds to the roughness parameter expressed 
in µm, fn is the feed rate in mm/rev, Vc is the cutting speed 
expressed in m/min, and ap is the depth of cut in mm.

(3)

ln
(

Ra + 0.5
)

= −0.936195 + 4.79502 fn + 0.008349 Vc

− 0.287258 ap − 0.016195 (Vc ⋅ ap) − 0.000023 (Vc)
2

+ 6.26819 (ap)
2

(4)

ln
(

Ra + 0.5
)

= 0.407991 + 2.34984 fn − 0.00756 Vc

− 1.09785 ap − 0.016195 (Vc ⋅ ap)

− 0.000034 (Vc)
2
+ 6.26819 (ap)

2

Table 9.  Identified outliers for the roughness model

Run Factor R : insert 
radius (mm)

Factor ap : depth of 
cut (mm)

Factor Vc : cutting 
speed (m/min)

Factor fn : feed 
rate (mm/rev)

Response 1: Ra 
roughness (µm)

Response 2: residual 
stresses (MPa)

14 0.4 0.15 138 0.05 0.657 -513.3
36 0.8 0.05 138 0.15 1.069 496.4
45 0.8 0.15 76 0.15 3.235 133.0
61 0.8 0.2 107 0.2 1.259 669.6
65 0.8 0.2 169 0.1 0.54 24.8

Table 10  Identified outliers for the residual stresses model

Run Factor R : insert 
radius (mm)

Factor ap ∶ depth of 
cut(mm)

Factor Vc ∶ cutting 
speed (m/min)

Factor fn : feed 
rate (mm/rev)

Response 1: Ra 
roughness (µm)

Response 2: residual 
stresses (MPa)

10 0.4 0.1 169 0.1 0.561 122.3
12 0.4 0.15 76 0.15 0.806 102.5
15 0.4 0.15 138 0.15 0.796 141.3
27 0.4 0.2 107 0.2 1.002 519.7
38 0.8 0.1 107 0.1 0.551 -253.1
52 0.8 0.15 138 0.15 0.41 545.9
53 0.8 0.15 138 0.15 0.475 538.7
66 0.8 0.2 169 0.1 0.372 374.9
67 0.8 0.25 138 0.15 0.367 67.2
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4.2  Predictive model for residual stresses

The analysis performed for residual stresses is analogous 
to that performed for roughness. Thus, Fig. 12 introduces 
the correlations between the input variables and the residual 
stress measured after the experimental campaign. As in the 
case of roughness, the variable that seems to have the great-
est impact on the residual stresses generated on the surface 
of the feed rate, with a Pearson correlation coefficient factor 
(obtained by means of Eq. (2)) of 0.838, while the corre-
lations coefficients for cutting speed and depth are 0.062 
and − 0.028, respectively. Moreover, a change in tool radius 
does not seem to have a significant influence on the longitu-
dinal residual stresses.

The diagnostic plots show a correct normal distribution of 
the externally studentized residuals (Fig. 13a) as well as the 
homogeneity of the observed variances independent of resid-
ual stress values and sample number (Fig. 13b, c) once the 
recommended transformation has been applied. The trans-
formation used to adjust the residual stresses data is a power 
law one, with lambda equal to 1.85 and a constant k equal to 
627.645 according to the Box-Cox plot recommendations.

The coefficients of the different terms of the model 
are shown in Table 13. The lack of fit shows an associ-
ated p-value of 0.5996, while the model has an associated 
F-value of 58.63, which indicates the significance of the 
model. Table 14 shows the coefficients of variation asso-
ciated with the model, where the difference between the 

Fig. 7  Correlation between factors and roughness: a feed rate vs roughness; b cutting speed vs roughness; c depth of cut vs roughness; and d 
radius vs roughness
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predicted R2(0.9162) and the adjusted R2 value (0.8976) is 
less than 0.2, thus showing a reasonable agreement.

Figure 14 shows the residual stress response surfaces for 
the specimens machined with the 0.4 mm tip radius insert 
(Fig. 14a) and the 0.8 mm insert (Fig. 14b). As regards the 
response in residual stress values, the depth is again the low-
est weight value for both tool radius, so to obtain the response 
surface its value is set to 0.15 mm. A more detailed analysis 
of both response surfaces shows the existence of significant 
differences between them with respect to the influence of the 
cutting speed. On the one hand, the response surface for the 
specimens machined with the 0.4 mm tool shows how the 
variation of the cutting speed has hardly any influence for 
low feed rates, while for higher feed rates some impact can 

be seen can be seen. By setting a feed rate of 0.2 mm/rev, the 
tensile residual stresses reach their maximum value, while 
they decrease for higher cutting speeds. On the other hand, 
the response surface for the specimens machined with the 
0.8 mm tool shows how the variation of the cutting speed 
has hardly any influence on high feed rates, whereas it does 
for low feed rates. Thus, by setting the feed rate to 0.1 mm/
rev, it can be seen that for low cutting speeds compressive 
residual stresses are obtained, while for higher cutting speeds 
the residual stresses are positive. In both surfaces, it can be 
seen that an increase in the feed rate leads to higher residual 
stresses. Figure 15 shows a correct fit of the phenomenologi-
cal models obtained for both the 0.4 and 0.8 radii, with all 
results falling in the central area of the graph.

Fig. 8  Diagnostic plots for Roughness: a externally studentized residuals vs normal % probability; b externally studentized residuals vs pre-
dicted; c externally studentized residuals vs run number; and d Box-Cox plot for power transforms
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Finally, the two predictive equations obtained for the deter-
mination of the longitudinal residual stresses are presented.

For insert radius ( R) = 0.4 mm

For Insert radius ( R) = 0.8 mm

where �RSL corresponds to the longitudinal residual stress 
expressed in MPa, fn is the feed rate in mm/rev, Vc is the 
cutting speed expressed in m/min and ap is the depth of 
cut in mm. A more exhaustive comparison between the 
experimental results and the proposed models can be seen 
in Fig. 16, showing the correct fit of the models for each 
insert radius.

5  Discussion

In this section, a comparative analysis is conducted between 
the results obtained from the models proposed in this study 
and those proposed in the literature for the same purpose.

On the one hand, the most widespread model to predict 
the estimated value of surface roughness, Ra , as a function 
of cutting parameters [15] is as follows:

where Ra corresponds to the average roughness param-
eter expressed in µm, while fn and R refer to the feed 
rate expressed in mm/rev and the tool tip radius in mm, 

(5)

(

�RSL + 627.65
)1.85

= −780996 + 9569110fn + 4687.59618Vc

+ 315040ap − 21069.41(fn ⋅ Vc) − 14143.15(Vc ⋅ ap)

− 13474900
(

fn
)2

+ 5651830
(

ap
)2

(6)

(

�RSL + 627.65
)1.85

= 856760 + 6203690fn + 5989.03239Vc

+ 315040ap − 21069.41(fn ⋅ Vc)

− 14143.15(Vc ⋅ ap) − 981032(fn)
2 + 5651830

(

ap
)2

(7)Ra =
1000 fn

2

32 R

Table 11  Analysis of variance for roughness predictive model

Source Sum of 
squares

df Mean square F-value p-value

Model 3.04 11 0.2761 67.17  < 0.0001
fn – feed rate 1.83 1 1.83 445.13  < 0.0001
Vc – cutting 

speed
0.0177 1 0.0177 4.30 0.0431

ap – depth of 
cut

0.1556 1 0.1556 37.86  < 0.0001

R – insert 
radius

0.6111 1 0.6111 148.68  < 0.0001

fn ∙ R 0.2143 1 0.2143 52.13  < 0.0001
Vc ∙ ap 0.0187 1 0.0187 4.55 0.0377
Vc ∙ R 0.0002 1 0.0002 0.0522 0.8201
ap ∙ R 0.0233 1 0.0233 5.67 0.0210
Vc

2 0.0021 1 0.0021 0.5029 0.4815

ap
2 0.0198 1 0.0198 4.81 0.0328

Vc
2 ∙ R 0.0642 1 0.0642 15.61 0.0002

Residual 0.2096 51 0.0041
Lack of fit 0.0941 18 0.0052 1.49 0.1547
Pure error 0.1155 33 0.0035
Cor total 3.25 62

Table 12  Regression parameters for roughness model

Std. dev 0.0641 R2 0.9354
Mean 0.1580 AdjustedR2 0.9215
C.V. % 40.56 PredictedR2 0.8966

Adeq.precision 34.5101

Fig. 9  Response surfaces for roughness: a response surface for 0.4 mm insert radius and b response surface for 0.8 mm insert radius



2909The International Journal of Advanced Manufacturing Technology (2024) 134:2897–2919 

respectively. A graphical comparison based on the results 
found before has been made in Fig. 17, showing again the 
good results obtained with the roughness model for both the 
0.4 mm (a) and 0.8 mm (b) tool insert radius. Table 17 in 
the Appendix compares the predictions made by the model 
proposed in this paper with the ones derived from Eq. (7). 
The results shown in Table 17 in the Appendix, reveal that 
Eq. (7) gives rise to significantly higher relative errors com-
pared to the models proposed in this study, which highlights 
the effectiveness of the model developed in the prediction 

of the surface roughness parameter, Ra , under the selected 
machining conditions. It is important to mention that Eq. (7) 
is expected to be valid for the finishing cutting conditions 
recommended by the manufacturer. The deviations in Ra 
observed between our experimental results and Eq. (7) are 
attributed to the use of cutting conditions outside this recom-
mended range. Therefore, it is not our intention to suggest 
that Eq. (7) is invalid in other scenarios. We have only dem-
onstrated that, within the space of cutting parameters tested, 
the proposed models yield better predictions than Eq. (7).

On the other hand, the models obtained in this study to 
estimate the residual stresses have been compared with those 
proposed in the research carried out by Capello [9], which is 
one of the most cited in the literature. He established that the 
residual stresses can be obtained by the following:

where HRb corresponds to the general Rockwell B hardness 
value of the steel under study obtained by Capello, while 
fn and R refer to the feed rate expressed in mm/rev and the 
tool tip radius in mm respectively. Coefficients h1,h2 , and 
h3 are the regression parameters for the 42CrMo4 steel, 
which can be seen in Table 15. The reader should note that 
there are some discrepancies between the values of the 
mechanical properties measured by Capello (in terms of 
ultimate strength (Rm) and HRb) in his work and those pro-
posed here based on measurements made by the authors for 
42CrMo4 + QT steel in previous works [21]. However, since 
hardness is one of the most critical parameters in Capello’s 
predictive equation and in order not to bias the results, the 
comparison here has been made using the hardness value 

(8)
�RSL = �rm(HRb) + �rp

(

fn,R
)

= 1000[h1HRb + log
(

fn
h2Rh3

)

]

Fig. 10  Predicted vs measured roughness parameters

Fig. 11  Comparison of experimentally measured and predicted roughness according to the model proposed by the authors: a for 0.4 mm insert 
radius and b For 0.8 mm insert radius
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proposed in his original paper. This comparison of results is 
also shown graphically in Fig. 18, where Fig. 18a is devoted 
to the 0.4 mm insert radius values and Fig. 18b to those 
specimens machined with the 0.8 mm insert radius tool. In 
both cases, it can be seen how the model proposed in Capel-
lo’s work fails for residual stresses close to zero or negative, 
while for higher values, the models tend to predict similar 
behavior. Analogously to what was previously proposed for 
the study of roughness, Table 18 in the Appendix shows the 
comparison of the relative percentage errors obtained in the 
prediction of residual stress with the model proposed here 
compared to those obtained with the model proposed by 
Capello [9], demonstrating the improvement achieved in this 

case. Once again, it is important to remark that the deviation 
between the experimental results obtained in this work and 
the predictions obtained by Capello’s model can be caused 
by the values used to machining the samples, which, in some 
cases, are out of the scope of the Capello’s work, which sup-
poses an extrapolation of his model.

A detailed analysis of the two equations proposed in 
the literature underlines that among all the variables of the 
turning process that can affect both roughness and resid-
ual stresses, feed rate, and tool radius are the most critical 
parameters, being these results clearly aligned with those 
obtained in this experimental campaign.

Fig. 12  Correlation between factors and residual stresses: a feed rate vs residual stress; b cutting speed vs residual stress; c depth of cut vs 
residual stress; and d radius vs residual stress
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6  Conclusions

In this work, four models have been developed to estimate 
surface roughness and longitudinal residual stresses based 
on the turning conditions for 42CrMo4 + QT steel. It is 
important to highlight that, while these models can be cru-
cial for machining parts or fatigue characterization speci-
mens of this material, they are only valid within the range of 
cutting parameters defined in this study and for the selected 
material. Therefore, any extrapolation beyond these ranges 
is not guaranteed.

To obtain these models, a design of experiments was car-
ried out using the central composite design method. Based 
on this design, 68 specimens were machined under 30 dif-
ferent machining scenarios in order to have sufficient infor-
mation on the impact of the turning process on the surface 
integrity of the specimens. Subsequently, a statistical meth-
odology was applied to identify potential outliers, which 
were removed from the model, thus eliminating their impact 
and improving the model fit. This elimination may be due to 
various factors such as non-uniform chips that occur during 
the turning process or unexpected phenomena that could 

Fig. 13  Diagnostic plots for residual stresses: a externally studentized residuals vs normal % probability; b externally studentized residuals vs 
predicted; c externally studentized residuals vs run number; and d Box-Cox plot for power transforms
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affect the response. Further exploration and examination 
are required to identify and mitigate these potential influ-
ences effectively. Due to the implementation of the insert 

tip radius as a categorical variable in the analysis, four final 
equations were obtained, two dedicated to the prediction 
of the roughness evaluated in terms of the Ra parameter 
divided for each categorical factor (here insert radius, 
0.4 mm, and 0.8 mm), and as the same mentioned factors, 
two for the evaluation of the residual stress were obtained.

Finally, a comparison was made between two of the most 
widely used equations in the literature to predict roughness 
and longitudinal residual stress, showing the advantages of 
the model designed here to predict both parameters under 
the proposed machining scenarios.

Table 13  Analysis of variance for residual stresses predictive model

Source Sum of 
squares

df Mean square F-value p-value

Model 1.390E + 12 11 1.263E + 11 58.63  < 0.0001
fn – feed rate 1.174E + 12 1 1.174E + 12 544.86  < 0.0001
Vc – cutting 

speed
1.598E + 08 1 1.598E + 08 0.0741 0.7866

ap – depth of 
cut

4.741E + 08 1 4.741E + 08 0.2200 0.6412

R – insert 
radius

1.273E + 11 1 1.273E + 11 59.09  < 0.0001

fn ⋅ Vc 2.931E + 10 1 2.931E + 10 13.60 0.0006
fn ⋅ Ir 5.443E + 09 1 5.443E + 09 2.53 0.1187
Vc ⋅ ap 1.317E + 10 1 1.317E + 10 6.11 0.0171
Vc ⋅ Ir 2.218E + 10 1 2.218E + 10 10.29 0.0024
fn
2 2.777E + 10 1 2.777E + 10 12.89 0.0008

ap
2 1.537E + 10 1 1.537E + 10 7.13 0.0104

f 2
n
⋅ R 2.307E + 10 1 2.307E + 10 10.71 0.0020

Residual 1.013E + 11 47 2.155E + 09
Lack of fit 3.589E + 10 18 1.994E + 09 0.8842 0.5996
Pure error 6.540E + 10 29 2.255E + 09
Cor total 1.491E + 12 58

Table 14  Regression parameters for the residual stress model

Std. dev 46,422.78 R2 0.9321
Mean 3.828E + 05 AdjustedR2 0.9162
C.V. % 12.13 PredictedR2 0.8976

Adeq precision 29.4998

Fig. 14  Response surfaces for residual stresses: a response surface for 0.4 mm insert radius and b response surface for 0.8 mm insert radius

Fig. 15  Predicted vs measured residual stresses
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Appendix    See Table 16See Table 17See Table 18

Fig. 16  Comparison of experimentally measured and predicted longitudinal residual stress according to the model proposed by the authors: a for 
0.4 mm insert radius and b for 0.8 mm insert radius

Fig. 17  Comparison of roughness estimated by the model proposed in this paper and the most used proposal in the literature (Eq.  (6)): a for 
0.4 mm insert radius and b for 0.8 mm insert radius
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Fig. 18  Comparison of residual stresses estimated by the model proposed in this paper and by Capello’s model [9]: a for 0.4 mm insert radius 
and b for 0.8 mm insert radius

Table 15  Estimated parameters proposed in Capello’s predictive 
model [9]

Principal mechanical properties and regression parameters for 
42CrMo4

Rm(MPa) HRb h
1

h
2

h
3

1000 107 0.011 0.278 0.135
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Table 18  Expected relative errors for the two longitudinal residual stresses predictive equations under study

Factor R : 
insert radius 
(mm)

Factor ap : 
depth of cut 
(mm)

Factor Vc : cut-
ting speed (m/
min)

Factor fn : feed 
rate (mm/rev)

Response 2: 
residual stresses 
(MPa)

Estimated 
value (8) 
(MPa)

Relative 
error (8) 
(%)

Estimated value 
((5) and (6) 
(MPa)

Relative error 
((5) and (6)) 
(%)

0.4 0.05 138 0.15 488.4 525.9 8% 568.5 16%
0.4 0.1 107 0.1 223.2 413.2 85% 207.0 7%
0.4 0.1 107 0.2 675.3 605.9 10% 678.1 0%
0.4 0.1 169 0.2 588.2 605.9 3% 605.6 3%
0.4 0.1 169 0.1 337.2 413.2 23% 328.1 3%
0.4 0.15 76 0.15 549.3 525.9 4% 550.4 0%
0.4 0.15 138 0.05 -477.2 220.5 146% -292.6 39%
0.4 0.15 138 0.15 553.0 525.9 5% 500.7 9%
0.4 0.15 138 0.25 710.1 667.9 6% 665.3 6%
0.4 0.15 200 0.15 441.9 525.9 19% 449.0 2%
0.4 0.2 107 0.1 312.3 413.2 32% 291.7 7%
0.4 0.2 107 0.2 685.2 605.9 12% 737.3 8%
0.4 0.2 169 0.2 540.6 605.9 12% 556.3 3%
0.4 0.2 169 0.1 368.2 413.2 12% 266.3 28%
0.4 0.25 138 0.15 575.0 525.9 9% 583.9 2%
0.8 0.05 138 0.15 334.7 619.5 85% 401.2 20%
0.8 0.1 107 0.1 28.9 506.8 1653% -108.4 475%
0.8 0.1 107 0.2 657.8 699.5 6% 537.9 18%
0.8 0.1 169 0.2 514.2 699.5 36% 567.2 10%
0.8 0.1 169 0.2 613.8 699.5 14% 567.2 8%
0.8 0.1 169 0.1 249.4 506.8 103% 214.8 14%
0.8 0.15 76 0.15 309.6 619.5 100% 251.6 19%
0.8 0.15 138 0.05 -479.3 314.1 166% -458.0 4%
0.8 0.15 138 0.15 209.2 619.5 196% 323.3 55%
0.8 0.15 138 0.25 678.2 761.5 12% 717.0 6%
0.8 0.15 200 0.15 339.7 619.5 82% 390.7 15%
0.8 0.2 107 0.1 32.5 506.8 1458% 12.1 63%
0.8 0.2 107 0.2 579.9 699.5 21% 602.9 4%
0.8 0.2 169 0.2 536.0 699.5 30% 516.6 4%
0.8 0.25 138 0.15 389.5 619.5 59% 418.5 7%
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