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Abstract

The number of people worldwide affected by Parkinson’s disease (PD) is increasing every year.
This is a worrying trend, which requires new biomarkers to better diagnose and monitor the
disease. Research to date has demonstrated that, in addition to brain neurodegeneration, there is
a dysfunction of the retina in PD patients.

Promisingly, several studies have shown that retinal changes in PD can be detected using optical
coherence tomography (OCT) imaging. However, there is no conclusive agreement on the potential
of OCT as a reliable biomarker for PD. As a key limitation, most research has focused on a small
set of features and standard OCT image analysis. Applying more advanced methods could help
identify the specific aspects of the retina affected in PD and potentially uncover new biomarkers.

Given this context, the present body of work has two main objectives: 1) to improve and
advance existing OCT image analysis techniques and 2) to apply the developed methods to be able
to study the retina of PD patients in more detail.

First, novel methods were developed for OCT image alignment, quality control, and feature
extraction. The developed methods were integrated into an open-source toolbox called RETIMAT,
which forms the backbone of this work and is freely available to the community.

Subsequently, data from healthy controls was utilized to evaluate the impact of age and sex on
retinal morphology and create a normative dataset. The potential of OCT features for the diagno-
sis, severity assessment, and monitoring of PD was then evaluated, employing both conventional
and novel features. Data for this purpose was obtained from two of the largest longitudinal cohorts
to date.

Our findings reveal that the explored OCT features contain information related to cognitive
and motor impairment. Furthermore, the evidence suggests a differential evolution of the retina
of PD patients over time. However, accurate diagnosis, severity assessment, and monitoring at an
individual level using OCT features does not appear feasible. In can thus be concluded that OCT
may be a better tool for understanding general aspects of PD than for guiding clinical decisions
on individual patients.
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Resumen

El número de personas en todo el mundo afectadas por la enfermedad de Parkinson (EP) aumenta
cada año. Ante esta tendencia, es vital desarrollar nuevos biomarcadores para diagnosticar y
monitorizar mejor la enfermedad. Gracias a investigaciones previas se sabe que, además de la
neurodegeneración cerebral, existe una disfunción de la retina en los pacientes con EP.

Prometedoramente, varios estudios han mostrado que los cambios retinianos en la EP pueden
detectarse utilizando imágenes de tomografía de coherencia óptica (OCT, por sus siglas en inglés).
Sin embargo, no existe un consenso en cuanto al potencial de la OCT como un biomarcador robusto.
Como limitación clave, gran parte de las investigaciones se han centrado en un conjunto pequeño de
características y en el análisis estándar de imágenes de OCT. Así, aplicar métodos más avanzados
podría ayudar a identificar los aspectos específicos de la retina afectados en la EP y potencialmente
descubrir nuevos biomarcadores.

Dado este contexto, el presente trabajo tiene dos objetivos principales: 1) extender las técnicas
existentes de análisis de imágenes de OCT y 2) aplicar los métodos desarrollados para estudiar la
retina de los pacientes con EP con mayor detalle.

En primer lugar, se han desarrollado nuevos métodos para la alineación de imágenes de OCT,
el control de calidad y la extracción de características. Los métodos desarrollados se han integrado
en un software de código abierto llamado RETIMAT, que constituye la columna vertebral de este
trabajo y está disponible de forma libre para la comunidad.

Posteriormente, se han utilizado datos de controles sanos para evaluar el impacto de la edad
y el sexo en la morfología retiniana y establecer valores normativos. Finalmente, se ha evaluado
el potencial de las características de OCT para el diagnóstico, la evaluación de la severidad y el
monitoreo de la enfermedad, empleando tanto características convencionales como novedosas. Para
este propósito se han empleado dos de las cohortes longitudinales de pacientes más grandes hasta
la fecha.

Los hallazgos revelan que las características de OCT exploradas contienen información rela-
cionada con el deterioro cognitivo y motor. Además, la evidencia sugiere una evolución diferencial
de la retina de los pacientes a lo largo del tiempo. Sin embargo, el diagnóstico, la evaluación de la
gravedad y el monitoreo preciso a nivel individual utilizando las características de OCT no parecen
ser factibles. Por lo tanto, se puede concluir que la OCT puede ser una mejor herramienta para
comprender aspectos generales de la enfermedad que para guiar decisiones clínicas sobre pacientes
individuales.
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Laburpena

Munduan, Parkinson gaixotasuna duten pertsonen kopurua handitzen ari da urtero. Joera hor-
ren aurrean, premiazkoa da biomarkatzaile berriak garatzea gaixotasuna zehaztasunez diagnos-
tikatzeko eta monitorizatzeko. Gaur egun, jakina da garuneko neuroendekapenaz gain gaixoek
erretinaren disfuntzioa garatzen dutela.

Izan ere, hainbat ikerketa lanek erakutsi dute gaixotasunak erretinan sorrarazten dituen al-
daketak koherentzia optikoko tomografia (OCT, ingelesez) irudien bidez detektatu daitezkeela.
Hala ere, OCT irudiak biomarkatzaile fidagarri gisa erabil daitezkeela frogatzear dago oraindik.
Hobekuntza puntu gisa, ikerketa gehienek erretinaren ezaugarrien multzo txiki bat baino ez dute
ikertu eta OCT irudi analisirako teknika estandarrak erabili dituzte gehienetan. Hemen, ezaugarri
eta metodo aurreratuagoak erabiltzeak gaixotasunak eragindako erretina aldaketa konkretuak iden-
tifikatzen eta biomarkatzaile berriak garatzen lagun lezake.

Aurrekoa kontuan hartuta, lan honek bi helburu nagusi ditu: 1) OCT irudi analisirako teknikak
hobetu eta aurreratu, eta 2) garatutako metodoak aplikatu Parkinson gaixotasuna dutenen erretina
xehetasun gehiagoz aztertzeko.

Lehenik, metodo berriak garatu dira OCT irudiak lerrokatzeko, irudi kalitate ona bermatzeko
eta erretina ezaugarri berriak kalkulatzeko. Sortutako metodoak RETIMAT izeneko softwarean
integratu dira. Software horrek ikerketa lan honen oinarria osatzen du, eta era librean dago es-
kuragarri komunitate zientifikoarentzat.

Ondoren, gizaki osasuntsuen datuak erabili dira adinak eta sexuak erretinan duten eragina
aztertzeko eta datu base normatibo bat sortzeko. Azkenik, OCT ezaugarri konbentzional eta
berriak balioztatu dira gaixotasunaren hiru aplikazio esparruetan: diagnostikoa, larritasunaren
ebaluazioa eta monitorizazioa. Azken kasuan, gaur arte jarraipen luzeena duten bi datu base
longitudinalak erabili egin dira.

Emaitzen arabera OCT ezaugarriek Parkinson gaixotasunak eragindako kalte kognitibo eta
motorrarekin loturiko informazioa dute. Gainera, gaixoen erretinak aldaketa diferentzialak izaten
ditu denborak aurrera egin ahala. Hala ere, norbanako bakoitza zehaztasunez diagnostikatzea eta
ebaluatzea OCT ezaugarriak erabiliz ez dirudi bideragarria. Horrela, gaixo indibidualen erabaki
klinikoak gidatu baino gehiago, OCTk gaixotasunaren alderdi orokorrak ulertzeko tresna hobea
izan daitekeela ondorioztatu daiteke.
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1 Introduction

The hereby presented research work has one high level purpose: to investigate new imaging
biomarkers for neurodegenerative diseases with Parkinson’s disease (PD) as a specific case. That
is, to use medical images to derive quantitative measurements of the anatomy and explore their
link with the disease.

Although research on neurodegenerative diseases has been traditionally focused on the brain,
as a particularity of this work, we use images of the retina instead of neuroimaging. This perhaps
surprising idea stems from two facts: 1) the retina contains neurons and is directly connected to
the brain, and 2) there is solid research evidence demonstrating an involvement of the retina in
neurodegenerative diseases such as PD.

Importantly, the examination of the retina in-vivo is nowadays possible by means of optical
coherence tomography (OCT) imaging. This technique is capable of imaging the retina in a non-
invasive fashion and with high-resolution. For these reasons, it was the imaging method used in
this research.

In broad terms, the work presented in this thesis involved developing a robust pipeline for OCT
feature extraction, and evaluating the potential of the computed features as a biomarker for PD.

To further contextualize the research subject, this chapter introduces the fundamental concepts
underlying the thesis. First, Section 1.1 describes the retina and its connection with the brain.
Secondly, the working principle of OCT imaging and existing image processing methodologies are
presented in Section 1.2. Finally, Section 1.3 provides a general description of PD, and establishes
the connection between the retina, PD and OCT imaging.

1.1 The retina and the visual system

The retina is located on the inner surface of the posterior part of the eye (Figure 1.1). It is a
photosensitive layered tissue that captures incident light and transforms it into nerve impulses
that are transmitted to the brain via the optic nerve.

To achieve the 120◦ field of view (FOV) of the human eye [1], the retina must cover most of the
ocular globe. This is because incoming light hits the retina at a different point depending on the
angle of entry. However, visual capability is not uniform across the entire FOV and is diminished
in the peripheral areas which are further away from the central region [2]. These differences are
a consequence of the non-uniform distribution of the two main photoreceptor cells in the retina:
cones and rods (Figure 1.2). Cones are related to color perception and visual acuity in daylight
conditions, while rods are highly sensitive photoreceptors specialized in night vision [3].

The photoreceptors are located all across the retina. These generate signals in response to
incident light, that are ultimately transmitted to the brain by neuronal axons that merge together
forming the optic nerve. This nerve is directly connected to the brain and is located at 17◦
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Chapter 1. Introduction 1.1. The retina and the visual system

Figure 1.1: Eye and retina. Left1: axial drawing of the eye and its main landmarks. Right: color
photography of the eye fundus (i.e., interior surface of the back of the eye).

horizontally from the fovea.

The number of cones is noticeably higher for the central 17◦ of our FOV [4]. Anatomically, this
range of our vision field corresponds to the macula, a 6mm diameter circular region that surrounds
the center of vision and plays a major role in visual function (Figure 1.1). The central subregion
of the macula, where the cone density reaches its maximum, is called the fovea and is a highly
specialized region where the cell layers that are usually on top of photoreceptors are not present.
This architecture allows light to reach photoreceptors without obstacles and gives the fovea its
convex shape.

Figure 1.2: Distribution of cone and rod density2. The horizontal axis represents the angle of the
field of view measured from the center of vision, which is located at the fovea.

The distribution of rods follows a different pattern. The greatest difference is that there are
far fewer rods than cones in the center of vision. This clearly shows that, in the fovea, color and
daylight vision prevails over low contrast visual acuity [5]. In fact, the point of highest visual
sensitivity under poor illumination reaches its maximum at 7◦ from the fovea. Altogether, the
joint distribution of both cones and rods is the underlying reason the thickness of the retina ranges

1Adapted from Diagram of the human eye in English by Rhcastilhos and Jmarchn. CC BY-SA 3.0 license.
2Adapted from Distribution of Cones and Rods on Human Retina by Jochen Burghardt. CC BY-SA 3.0 license.
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from 0.08mm at the ora serrata up to 0.32mm close to the center of vision [6], as illustrated in
Figure 1.1.

At a microscopic level, the retina possesses a complex architecture comprised of numerous
neurons responsible for processing and transmitting information. Each neuron is composed of a
cell body, dendrites that receive signals from other neurons, and an axon that carries signals to
other neurons or target cells. The neurons in the retina are organized into multiple horizontal
layers of two main categories: cell body layers, made of neurons bodies, and synapse layers, which
contain neuron axons and interconnect cell body layers.

Figure 1.3 shows a cross-sectional representation of the layers that comprise the retina. Each
layer has different cells that fulfill a specific function. The communication between layers takes
place in a bottom-up fashion, i.e., signals generated by photoreceptors are transmitted upwards,
layer by layer, by means of several synapse processes until they are finally sent to the brain.

Figure 1.3: Retinal layers and cells3. Retinal layers are listed in the left while the cellular elements
that comprise each layer are labeled in the right.

The bottom boundary of the retina is the Bruch’s membrane (BM) and is located just below the
retinal pigment epithelium (RPE), the outermost cell layer of the retina. Epithelial cells serve as
ground tissue for cones and rods, and reflect light before it reaches the photorecepthor layer (PHR),
which contains the inner and outer segments of both cones and rods. Photoreceptor cell bodies
are located just above, in the so-called outer nuclear layer (ONL). The junction between PHR and
ONL is called the outer limiting membrane, and contains adherents between photoreceptor cell
inner segments and Müller cells. The latter are a special type of glial cells that prevent retinal
detachment by keeping photoreceptors in their position.

3Reprinted with permission from [7] © Elsevier (2017).
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The layer on top of the ONL is a synapse layer called the outer plexiform layer (OPL), in
which axons from photoreceptors, bipolar and horizontal neurons are intertwined and communicate
with each other. Every bipolar cell receives information from one or more photoreceptors, while
horizontal cells help the information integration process. Both bipolar and horizontal neurons,
together with amacrine cells and Müller cell bodies, are located in the inner nuclear layer (INL).
The layer where synaptic connections between bipolar, amacrine and ganglion neurons take place
is the synapse layer called the inner plexiform layer (IPL). In this information exchange, bipolar
cells directly communicate with ganglion cells with the help of amacrine cells. These ganglion cells
comprise the ganglion cell layer (GCL), the innermost cell layer of the retina that ultimately sends
the information forward to the brain via the nerve fiber layer (NFL), a layer composed only of
ganglion cell axons running from every point of the retina to the optic nerve. Finally, just on top
of the NFL, Müller cell endpoints create the inner limiting membrane (ILM), an upper boundary
between the retina and the vitreous humor.

It is important to note that the retina is just one of the building blocks of the human visual
system. The whole system (Figure 1.4) comprises several anatomical elements and a series of
complex steps until the signal generated by the retina reaches the cerebral cortex. Electrical signals
sent by NFL axons travel via the optic nerve to the optic chiasm. At that point optic nerves from
both eyes intersect. After that, the signals continue through the so-called optic radiations to the
lateral geniculate nucleus and the visual cortex, located at the occipital lobe of the brain.

As a distinctive characteristic, the left visual field is processed by the right hemisphere of the
brain (red and yellow in Figure 1.4, and the right visual field is processed by the left hemisphere.
This is because the nasal fibers of each retina (i.e., closer to the nose) cross over to the opposite
side of the brain, while the temporal fibers remain on the same side. This arrangement allows
for the integration of visual information from both eyes and enables depth perception and a more
complete understanding of the visual environment.

Figure 1.4: Axial view of the human visual system4. The retina transforms the light entering the
eye into nerve impulses that are transmitted to the brain via the optic nerve. In the optic
chiasm optic nerves partially cross over so that the information from the left visual field of
both eyes is sent to the right brain hemisphere. Accordingly, the information from the right
visual field is processed by the left hemisphere.

The entire visual system can be visualized with medical imaging techniques with different levels
of resolution. While neuroimaging is commonly used to evaluate cortical and subcortical structures,
retinal layers can be imaged with high resolution by using OCT.

4Adapted from Human visual pathway by Miquel Perello Nieto. CC BY-SA 4.0 license.
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1.2 Optical Coherence Tomography

Working principle

OCT is a non-invasive imaging technique that generates high resolution depth images of tissues or
materials. It uses low coherence light and is based on the echo-location principle. As in ultrasound
imaging, a tissue is scanned in-depth by measuring the round-trip delay and intensity of successively
sent pulses. In OCT, however, near-infrared light pulses are normally used due to their remarkable
penetration, high resolution, and harmless properties [8].

The technique was conceived in the 1980s and the first in-vivo retina image was published
in 1991 [9]. Since then, it has undergone constant development and has proved useful for many
applications, of which ophthalmology is one of the most significant. The key advantage of OCT
is the ability to acquire high quality images of the retinal layers in a non-invasive manner and
within a few minutes. The micrometric resolution of these images enables detailed qualitative and
quantitative examination of the retina. For these reasons, OCT is one of the most widely used
tools for both research and clinical ophthalmology.

Figure 1.5 illustrates the OCT scanning process, which is carried out in a point-wise fashion.

Figure 1.5: OCT scanning process5. The top-left image shows the eye fundus (i.e., the interior surface
of the back of the eye) with several OCT scanning points. Each of the points is known as
A-scan and is transformed into a grayscale image column to create 2D images known as
B-scans.

Each scanning point begins with the transmission of several pulse that penetrates the tissue and
travels through different cellular layers. This signal generates reflections at each layer boundary.

5Created using Diagram of the human eye in English by Rhcastilhos and Jmarchn. CC BY-SA 3.0 license.
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From the delay and intensity of each reflection it is possible to obtain a reflectivity profile that
encodes the depth and reflectivity of each tissue layer (see bottom-left of Figure 1.5). This one-
dimensional signal, also known as A-scan, can then be mapped into a grayscale as a column in an
image. When several A-scans are stacked in parallel, a cross-sectional image of the retina, called
a B-scan, is generated. By acquiring distinct B-scans a volume scan of the tissue can be obtained.
The entire scanning process comprises the acquisition of multiple A-scans following a certain spatial
sampling distribution. Although multiple acquisition patterns exist, the most commonly employed
is the horizontal raster pattern, in which horizontal B-scans are acquired sequentially.

As a consequence of the propagation speed of near-infrared pulses, the time delays of reflected
signals are extremely short (in the order of nano seconds) and cannot be measured directly by
conventional electronic devices. To overcome this problem OCT technology relies on interferometry
and low coherence light which, operating together, permit the receptor to measure the reflected
time delays indirectly.

The whole OCT system involves several stages of reflection, interference, and reception. To fully
grasp its operation, it is essential to analyze the evolution of the signal through the acquisition
process from an analytical perspective. The explanation presented here closely follows a more
comprehensive description from the reference work by Drexler et al. [10].

The most common OCT set-up is a Michelson interferometer and includes a light source, a
beam splitter, a mirror, and a detector (Figure 1.6).

Figure 1.6: Basic OCT set-up. Shown elements: light source (left), beam splitter (middle), mirror
(top), tissue sample (right), and detector (bottom).

The scanning process begins with a continuous low coherence light source, usually a laser,
which emits an electromagnetic plane wave whose electric field is Esource. A beam splitter is used
to divide the wave into two equal beams, which are sent to two arms:

• Reference Arm: the wave follows a distance zR until it is completely reflected in a mirror
with reflectivity rR. After reflecting, the signal that reaches the beam splitter is Eref .

• Sample Arm: the wave follows this path until it reaches the tissue sample. As the light
travels through the tissue, differences in the refraction index between layers result in different
reflections. The tissue can be modeled as a set of N layers with a particular depth (zSn)
and reflectivity (rSn). The signal that returns to the splitter (Esamp) is the sum of the N
reflections caused by every tissue layer.

Light from both arms is then recombined in the beam splitter resulting in an interference
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phenomenon, from which it is possible to determine the reflectivity and depth of the layers that
form the tissue sample. The photocurrent generated at the detector (ID(k)) in the frequency
domain (i.e., as a function of the wave-number k) can be described as:

ID(k) ∝ S(k)
N∑

n=1
rRrSncos(2k(zR − zSn)) (1.1)

Essentially, the result of the whole process described above is that the source spectrum S(k) is
modulated by a series of sinusoids, each corresponding to a reflection in a certain tissue layer. The
amplitude and frequency of these sinusoids encode both the reflectivity and depth of each layer,
respectively.

As an example, Figure 1.7 shows how interference modifies the source spectrum depending on
the reflective layers of the tissue sample. In the simplest scenario, a sample with only one layer
is scanned. There is only one reflection and thus the fringe pattern has a single frequency. The
amplitude of the oscillations is proportional to the reflectivity of the layer.

Figure 1.7: OCT signal formation examples. The gaussian spectrum of the light source (S(k) in the
left) gets modulated differently depending on the image tissue layers generating a different
photocurrent ID(k) in each scenario.

As the scanned layer becomes deeper, the resulting modulation pattern increases its frequency.
The second row of the figure shows that a reflective layer located at three times the first layer
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generates oscillations of three times higher frequency. When two or more layers are scanned,
modulations generated by each layer are added up to form the resulting pattern.

Finally, the last row depicts a more realistic example in which 50 layers are randomly located
at depths zSn ∼ U(0, 200µm) with reflectivity following rSn ∼ U(0, 0.1). The measured spectrum
is the composite of all modulations.

At this point, it is important to note that all the previous reasoning is only possible due to the
low coherence of light. This means that the light source is not monochromatic but consists of a
set of frequencies usually forming a gaussian spectrum, as shown in Figure 1.7:

Without this property, the modulation patterns of Figure 1.7 would not be generated, and
the received spectrum would comprise a single frequency from which it would not be possible to
retrieve any depth or reflectivity information.

Modern OCT scanning devices decode this information by means of fourier-domain OCT (FD-
OCT) [11,12], a technology that aims to first recover the whole received spectrum and then derive a
layer reflectivity profile from the modulation pattern. Depending on the method used for measuring
the received spectrum, FD-OCT systems can be divided into two categories:

• Spectral Domain: the light source has is broadband and covers a wide spectrum. The
received signal is then decomposed based on a spectrometer which splits the signal into
different frequencies.

• Swept Source: the light source consists of a single tunable frequency that sweeps across
frequencies. With each sweep, a single frequency is sent and measured. The received spectrum
is then recovered by combining all independent measurements acquired during the sweeping
process.

Using either of these methods, once the spectrum ID(k) is measured, the corresponding intensity
profile ID(z) is obtained with the inverse Fourier transform. Then, the final intensity profile (i.e.,
A-scan) is retrieved by further processing steps.

Image analysis

OCT images allow to analyze the retina both qualitatively, by inspecting the image, and quanti-
tatively, by computing features such as thickness and volume. This quantitative analysis usually
comprises three image processing tasks: preprocessing, layer segmentation, and feature extraction
(Figure 1.8). In addition to these, quality assessment can be added after every step to detect errors
and prevent unreliable results.

Preprocessing

Initial image preprocessing tasks intend to improve or simplify posterior processing steps. There
are three main preprocessing steps in OCT: display distortion correction, image denoising, and
image registration.

Traditionally, OCT images are displayed and analyzed in a rectangular format even though
A-scans are not acquired in parallel but in a fan-beam angular pattern. This rectangular display
introduces a bias known as display distortion, which affects eye curvature and thickness mea-
surements, especially for larger eccentricities [13]. Display distortion can be corrected by using
optical ray-tracing simulations to relocate each A-scan position according to its real optical path.
Problematically, these simulations require information about eye biometry (axial length, corneal
curvature, etc.) and optical properties of the device [14,15]. This information is often not available
and therefore display distortion correction is not always applied in OCT research.
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Figure 1.8: OCT image analysis pipeline. The acquired image is enhanced by means of preprocessing.
Then, the retinal layers are segmented and used to compute thickness en-face maps. An en-
face map (shown in color in the right image) is a 2D map containing the thickness values of a
certain layer computed for each scanning point or A-scan. From the thickness maps multiple
retinal features can be computed.

Image denoising aims at reducing the speckle noise present in OCT images as a consequence of
the interference between multiple forward and backward scattering of light waves that are mutually
coherent [16]. The reason behind this technique is that enhanced image quality results in better
performance of subsequent tasks such as grading or segmentation. Denoising is a complex task
that can be performed by statistical methods [17, 18] as well deep learning models [19, 20]. The
benefits of denoising are dependent on the original image quality and the intended task and it is
therefore not always necessary [17,19]).

Image registration serves to align images so that anatomically equivalent locations overlap.
Accurate alignment is key for reliable groupwise analysis and change detection. In the latter,
the goal is to compare images of the same eye acquired in different moments. For this purpose,
both classical image registration methods [21] and custom OCT algorithms [22] have shown good
performance. In addition, the built-in software of scanning devices often provides registration func-
tionalities. For instance, Heidelberg devices include a follow-up registration function that ensures
that the device images the same location in every visit, which has proven to reduce measurement
variability [23].

On the other hand, groupwise registration is a more difficult task that is especially challenging
in OCT. Part of the difficulty lies in the scarcity of anatomical landmarks in the retina. Apart
from the fovea and the optic disk, there are no anatomical structures that are logically coherent
across the population and which could be used to aid registration. Existing solutions for groupwise
registration involve complex 2D and 3D non-rigid registration models that are still under research
[24, 25]. Alternatively, a coarse alignment of images can be attained by aligning the foveal center
of all subjects under study. This is partially achieved during acquisition by centering the image at
the fovea. However, fixation errors can cause the center of the fovea and the center of the image
to become misaligned. The solution to this is to locate the foveal center and use it as a new origin
of coordinates. For this, automatic centering algorithms are a very compelling option to correct
centering errors in a fast and reproducible way.

Segmentation

After preprocessing, the first step is usually retinal layer segmentation. Images can be manually
segmented, but this is a time-consuming process subject to inter-rater variability. To overcome
this problem, the development of automatic segmentation algorithms has been a subject of much
study. Algorithms based on graph-search have shown particularly good performance [26–28]. These
methods exploit the contrast difference between retinal layers and consist of two steps: 1) vertical
image gradients are computed to enhance the boundaries between layers and accordingly assign
weights to pixels, and 2) layer boundaries are sequentially segmented by finding horizontal paths
following pixels with the highest gradient value. In addition to graph-search, approaches based
on machine learning and boundary classification have also been proposed [29]. More recently,
research on retinal segmentation has shifted to a data-centric approach, in which deep learning
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models are directly trained from annotations [30–33]. Most of these models are based on U-Net,
a neural network architecture that has demonstrated outstanding performance across multiple
domains [34].

Automatic segmentation methods have gained traction in recent years, achieving a performance
close to inter-rater accuracy [35]. For this reason, they are commonly preferred over manual seg-
mentation. Indeed, most scanning OCT devices incorporate built-in retinal layer segmentation soft-
ware. For instance, Heidelberg and Topcon devices rely on Heidelberg Eye Explorer (HEYEX) [36]
and Topcon Advanced Boundary Segmentation (TABS) [37], respectively. Although the inner
workings of these proprietary algorithms are not disclosed, they have demonstrated good perfor-
mance [35] and are easy to use as they are usually integrated with the device.

Quality assurance

Ensuring both images and segmentation results are of sufficient quality is crucial to obtain
reliable results. In the context of OCT, at least six issues should be considered in quality assurance:

• Poor image contrast: acquired B-scans may show poor contrast between layers (Figure
1.9a) due to ocular conditions such as cataracts, vitreous floaters, or system misconfiguration.
Poor contrast images can complicate downstream tasks such as segmentation. Devices usually
provide both a quality metric as well as a recommended minimum threshold for an image to
be considered of acceptable quality.

• Motion artifacts: when the subject under examination does not maintain a constant fixa-
tion, the imaged area may include overlapping regions. For instance, Figure 1.9b shows an
example of a subject who changed fixation mid-acquisition which resulted in the foveal region
being imaged twice.

• Blink artifact: if a subject blinks during acquisition, some B-scans may be not image
the retina but appear totally empty as shown by black horizontal B-scans in Figure 1.9c.
The severity of this artifact depends on the speed at which B-scans are acquired and the
mechanisms of the acquisition device to detect and correct the problem.

• Off-center artifact: it is caused by a mismatch between the scan depth range and the
depth of the eye under examination. As a result, the retina is cropped and cannot be
analyzed completely (Figure 1.9d). In fact, often a mirror artifact appears in the cropped
region, which is a consequence of the FD-OCT device not being able to distinguish between
positive and negative reflectance delays [38].

• Segmentation errors: automatic segmentation algorithms may fail because of poor image
contrast or ocular lesions. Detecting and correcting these errors is a difficult task that often
needs to be done manually. An example error is shown in Figure 1.9e.

• Ocular pathologies: there is a plethora of ocular lesions that can affect the integrity of
the retina. When such lesions are not part of the research question, they can heavily bias
measurements as depicted in Figure 1.9f.

Correcting these errors can be difficult for segmentation failures or even impossible in images
with poor contrast or artifacts. Therefore, to ensure that computed retinal features are reliable,
images with errors need to be identified and excluded. Detecting these problems, however, requires
accounting for multiple sources of errors, which is not straightforward. Although solutions based
on automatic algorithms are being investigated [39,40], image quality assurance still requires visual
inspection of the data in many cases.

Feature extraction

The main goal of quantitative OCT analysis is to compute features that describe the retina.
These features range from simple thickness values to more complex metrics such as fractal dimen-
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Figure 1.9: Common problems affecting OCT images. a) B-scan with poor contrast. b) En-face
thickness map with the fovea duplicated due to a motion artifact. c) En-face reflectance map
showing a few B-scans totally black (empty) due to blinking. d) B-scan cropped at the top
left corner due to an off-center artifact. e) Segmentation error of the NFL-GCL boundary
(yellow). f) Ocular pathology affecting the retinal structure.

sion. Each feature describes a concrete aspect of the retina and involves a specific set of processing
steps. Depending on the aspect of the retina under study, features can be grouped into three main
categories:

• Thickness: reflects the spatial distribution of each retinal layer. Changes in thickness are
of high interest as they might capture variations in the inner cellular structure. For instance,
neurodegeneration may result in thinning [41] while pathologies such as age-related macular
degeneration (AMD) can lead to thickening [42].

• Foveal pit morphology: the foveal pit is a singular region whose morphology can be
geometrically analyzed. These type of features describe high-level properties of the fovea
such as width, depth, or slope.

• Texture: accounts for local statistical and structural properties of a thickness map or image
volume. These features provide more complex information that can be used to identify
patterns or structures within an image.

From OCT features it is possible to perform statistical analyses to determine how a certain
pathology affects the retina. In the particular case of this thesis, multiple features are used to
investigate retinal changes in PD.

1.3 Parkinson’s Disease

PD is a heterogeneous neurodegenerative disease that causes a severe movement disorder as well
as a broad range of non-motor symptoms. Its motor symptoms—resting tremor, rigidity and
bradykinesia—were described for the first time by James Parkinson in 1817 and constitute a
syndrome called parkinsonism [43]. The disease is typically manifested as a slow deteriorating
process [44]. As the disease progresses, PD patients can develop numerous non-motor clinical
features related with cognition, visual function and mental health [44]. For instance, cognitive
decline is associated with PD and results in around 40% of PD patients developing dementia [43].
Depression and sleep disorders are also common in PD, and visual impairment affecting color vision
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and contrast sensitivity has also been described [45]. In addition to a worsening in the quality of
life, the life expectancy of PD patients is shorter and can be reduced by more than 6 years at 65
years-old [46].

Only surpassed by Alzheimer’s disease (AD), PD is currently the second most common neu-
rodegenerative disease [47], with a prevalence of around 0.5% among 70-year-old people [48]. While
men are 1.4 times more likely to develop PD, the principal risk factor is age [48]. In fact, as a
consequence of the progressive ageing of the population, there has been a 144% increase in the
total number of PD patients between 1990 and 2016 [48], and the number of people with PD
could dramatically rise up to 14 million by 2040 [49]. This makes PD diagnosis and treatment a
worldwide healthcare challenge.

Except for a few variants associated with specific gene mutations, the underlying cause of PD
remains unknown [44]. As a result, most PD cases are typically classified as idiopathic Parkinson’s
disease (iPD), a category that encompasses patients with a wide variety of symptoms and factors.
Although there are no established causal mechanisms for iPD, the current research view is that
the cause is probably an intricate combination of genetic and extrinsic factors [44].

Unlike the etiology, the pathophysiology of the disease is better understood. Parkinsonian
symptoms are deemed to be a consequence of a loss of dopaminergic neurons in the substantia
nigra [43], a small midbrain region with a high density of dopaminergic neurons (Figure 1.10).
These neurons secrete a dopamine neurotransmitter through the so-called nigrostriatal dopamin-
ergic pathway that extends across the brain and is associated with motor control [50]. Neuronal
death in the substantia nigra disrupts this dopaminergic pathway resulting in a malfunction. In-
terestingly, motor symptoms are not experienced until 50%-80% of the neurons are lost [43]. The
neurodegeneration process is caused by protein accumulations called Lewy bodies and Lewy neu-
rites that grow inside neurons and ultimately cause their death. These bodies are mainly made up
of α-synuclein and have been found not only in the substantia nigra, but in other regions of the
brain such as the cortex or the amygdala [43]. Moreover, in addition to the nigrostratal pathway,
several other motor and non-motor circuits are affected in PD [44].

Figure 1.10: Substantia nigra and Lewy bodies6. Left and middle drawings show the location of
the substantia nigra in coronal and sagital axes, respectively. The right image shows Lewy
bodies (red) and Lewy neurites (pink) observed under the microscope.

Regarding treatment, the drug that has proven to be the most effective is an amino acid called
Levodopa that increases dopamine concentrations in the brain [51]. However, in severe cases with
no response to drugs, highly-invasive surgical treatments such as thalamotomy and deep brain
stimulation can be used [44,52].

One of the main challenges of PD is its diagnosis, which nowadays is entirely clinical. After
excluding alternative causes of motor symptoms, clinicians employ a clinical criteria and a grading

6Adapting and combining Basal Ganglia by Mikael Häggström and Andrew Gillies, Dopaminergic pathways by
Patrick J. Lynch, and Lewy bodies (alpha synuclein inclusions) 2 by Suraj Rajan. CC BY-SA 3.0 license.

12

https://commons.wikimedia.org/wiki/File:Basal_ganglia.svg
https://commons.wikimedia.org/wiki/File:Dopaminergic_pathways.svg
https://commons.wikimedia.org/wiki/File:Lewy_bodies_(alpha_synuclein_inclusions)_2.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en


Chapter 1. Introduction 1.3. Parkinson’s Disease

scale that measures the diagnosis certainty based on observed symptoms and response to treat-
ment [44, 53]. However, definite diagnosis can only be made by autopsy [44]. As a consequence,
diagnostic errors are common in PD, specially in early disease stages or in presence of comorbidity
complicating the diagnosis [44]. In addition, not all patient evolve equally, which makes prognosis
difficult. Thus, the development of new biomarkers for PD is critical to aid diagnosis and monitor
the evolution of the disease more accurately. In this sense, the use of neuroimaging and other
imaging techniques has been extensively investigated and many promising biomarkers have been
proposed [54–56]. However, most of these biomarkers have not been fully validated for clinical use
or are only used as ancillary tests [54,56].

As an alternative, imaging modalities that do not look directly into the brain are also being
explored. In recent years, retinal OCT imaging has gained attention as a new tool for studying
PD. The examination of the retina and the visual pathway in PD is motivated by the known visual
impairment associated with the disease. In fact, PD patients often experience visual symptoms
such as a decline in contrast sensitivity, impaired color discrimination, poorer visual acuity, and
perception problems such as blurring [57].

Importantly, research suggests that visual symptoms are related to a functional dysfunction
of the retina. More concretely, early studies examining the electrical function of the retina found
abnormal evoked potentials and a specific malfunction of ganglion cells in PD patients [58,59]. Fur-
ther research has also shown this retinal dysfunction to be improved in patients under medication,
suggesting a direct correlate with the disease [60].

The involvement of the retina in PD is further supported by post-mortem studies that have
observed a decreased dopamine levels in human retinal tissue [61]. Later work has reported similar
findings in animal models and has observed a retinal dopaminergic cell degeneration [57,62]. These
findings are in line with one of the primary pathological hallmarks in PD: a dopaminergic neuron
loss. Notably, a presence of abnormally phosphorylated α-synuclein as well as Lewy neurite struc-
tures has also been found in PD retina [63]. These discoveries are of great importance as they
suggest that retinal changes parallel brain pathology.

Building upon this histological evidence, several studies have sought to examine the retina by
means of OCT imaging. The first wave of OCT studies in PD has provided accumulated evidence
of specific retinal changes in PD [41]. Despite these encouraging results, it remains uncertain
whether the observed changes can be reliably used as biomarkers. This is because there is a high
heterogeneity in the literature regarding the spatial location and the effect size of the changes.
Moreover, a clear link between retinal changes measured by OCT and clinical progression in PD
is yet to be ascertained.

Accordingly, there is still research to be conducted to establish or dismiss OCT as a clinical
tool for PD. As a key point of improvement, it is crucial that new research linking OCT and PD
makes use of richer datasets. To this end, in the present body of research we: 1) explore new OCT
features to enhance the description of retinal changes, and 2) use larger datasets with longitudinal
follow-up and clinical information to evaluate the clinical utility of OCT in PD.
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2 State Of The Art

This chapter provides a literature review of the topics addressed by the main contributions of this
work. In Section 2.1, the elements of the OCT analysis pipeline investigated in the thesis are
examined, including automatic foveal center location, quality assurance, feature extraction, foveal
pit morphology analysis, and OCT analysis software. Section 2.2 summarizes studies investigating
how demographic factors affect the retina. Then, a comprehensive review of studies linking OCT
with PD is presented in sections 2.3 and 2.4.

The aim of this chapter is twofold: 1) to identify areas of improvement in OCT processing, and
2) describe the findings and limitations of existing OCT studies in both healthy and PD cohorts.
The main conclusions of the literature review as well as existing gaps in knowledge are summarized
in Section 2.5. Finally, Section 2.6 states the specific objectives of this research project.

2.1 OCT image analysis

Automatic foveal center location

Correctly locating the foveal center reduces the impact of misalignment errors and improves the
reliability of thickness measurements [64]. Although the foveal center can be located manually, it
is highly desirable to perform this step automatically to increase reproducibility and reduce human
involvement.

The simplest automatic approach involves locating the fovea at the point of minimum thickness
[64]. However, this approach is not reliable in retinas where the absolute minima does not lie at the
foveal center, for instance, due to ocular pathologies or imaging artifacts [65]. To account for this,
Niu et al. proposed an algorithm based on saliency maps computed from both local and global
features [65]. The algorithm showed good performance in both healthy eyes and eyes with AMD.
As a limitation, it is technically complex and requires fine-tuning of hyperparameters, which makes
it difficult to implement. Moreover, the used test dataset included only 64 different eyes imaged
with a high-resolution protocol with 128 B-scans. It is therefore not clear how it would perform in
datasets with a larger variety of ocular conditions and acquisition protocols.

Alternatively, Liefers et al. proposed a deep learning model based on pixel-wise classification
and a convolutional neural network that showed good performance in a cohort of 400 AMD eyes [66].
More recently, in [67], the authors developed a pixel-wise distance regression model based on spatial
location priors and a U-net architecture. The model uses a whole OCT image volume as input and
generates a distance map from which the fovea is located. The model was trained and tested in
a large dataset of 5586 OCT volumes including cases with AMD and macular edema. According
to the results, the model worked well in all cases and outperformed the previous deep learning
model by Liefers et al. [66]. As a limitation, the model was trained only on Heidelberg images
and it is unknown how it would extrapolate to other devices. In addition, since it is not openly
available, using such a model would require a new model to be trained from scratch following the
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architecture of the paper.

Quality assurance

To address OCT quality problems, the community has adopted a quality control standard criteria
called OSCAR-IB [68] that provide validated guidelines for image quality assurance in research
linking OCT and multiple sclerosis (MS). The criteria account for: (O) obvious problems, (S) poor
signal strength, (C) centering problems, (A) algorithm failure, (R) retinal pathology not related
with MS, (I) illumination, and (B) beam placement. Although the criteria were developed for MS,
they can be directly extended to diseases measuring similar changes such as PD or AD.

For the criteria to be as robust as possible, one would want to reduce subjectivity by setting
quantitative inclusion rules that can be automatically applied. Such a rule can only be directly
defined for image contrast. Indeed, OSCAR-IB criteria establish a signal strength > 15 as a
threshold for image inclusion. This threshold, however, was derived from and for Heidelberg
devices and cannot be applied to other devices. Moreover, the actual derivation of the quality
metrics of each imaging device is often not disclosed, which makes it difficult to interpret them.
As an alternative, a few research works have tried to develop and validate other image contrast
metrics. For instance, in [69], the authors proposed a quality index that showed to be closely
related to human grading. Later, Huang et al. developed a metric called maximum tissue contrast
index that generalized well to multiple devices [70].

Despite the utility of these metrics, poor image contrast is only one of the problems in OCT, and
additional solutions are needed for full quality assurance. In this direction, in recent years several
automated solutions have been proposed to account for more than one problem. For instance, Wang
et al. used deep learning models to classify B-scans as good, off-center (cropped retina), signal-
shielded (poor or no image contrast), and other (problems not covered by previous cases) [39]. The
best performing model was a ResNet-50 and obtained an overall accuracy of 96.25%. Additionally,
the authors also showed that using this model for quality exclusion improved the performance
of diabetic retinopathy detection in the same dataset. More recently, Kauer-Bonin et al. have
proposed a method based on modular neural networks [40]. Their approach uses dedicated deep
learning models to 1) detect image fixation (macula, disc, other), 2) evaluate if images are aligned,
and 3) detect image contrast and cropping problems. The proposed model achieved an accuracy
above 96% for all three tasks. In addition, they also describe a fourth algorithm to flag potential
segmentation errors based on segmentation plausibility. This work is now part of a commercial
solution offer by a company called Nocturne.

These two methods have demonstrated the potential of deep learning for quality assurance.
However, relying on neural networks has shortcomings. First, the proposed algorithms cannot be
directly reproduced by other researchers unless an entirely new model is trained from scratch. More
problematically, deep learning models are known to be very sensitive to distribution shifts, and
may not generalize well to images acquired from with different devices and protocols. To overcome
this problem, Kauer-Bonin et al. used transfer learning to fine tune a model trained on Heidelberg
images to perform well with Zeiss images. However, fine tuning a model to every possible image
device and protocol is hard to envision and further evidence is needed to demonstrate that the
models work for devices and protocols not used during training.

Feature extraction

Retinal layer thicknesses are the most analyzed OCT features. After segmentation, thickness
calculation only involves computing the distance between the boundaries of the layer of interest for
each A-scan. Computed thickness values are then used to build an en-face thickness map like the
one colored in the left of Figure 2.1. At this point, it is common to add an extra sectorization step
where point thickness values are averaged over several predefined sectors. This helps summarize
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thickness information into a set of values that are more amenable for analysis. The most common
sectorization is the Early Treatment Diabetic Retinopathy Study (ETDRS) [71], which consists of
nine sectors arranged in a central region and two rings divided in four angular quadrants (nasal,
superior, temporal and inferior) (Figure 2.1).

Figure 2.1: ETDRS sectorization of the right eye.. Left: a grayscale fundus image and a thickness
map in colors. A thickness map is obtained by computing the thickness of a certain layer after
segmenting its boundaries in all OCT images. Right: dimensions and naming convention of
ETDRS sectors.

The foveal pit can be quantitatively analyzed by computing features that describe its morphol-
ogy. These features describe geometrical properties of the fovea such as slope or depth. Alterna-
tively, custom mathematical models can also be employed to model the foveal pit shape and use
the fitted equation coefficients as features.

Foveal pit features can be classified into radial and global features. Radial features are computed
separately for each angular direction and, as shown in Figure 2.2a, include four types of features:

• Height: vertical measurements at anatomically meaningful landmarks such as the point of
maximum slope or the rim.

• Width: horizontal measurements at different foveal heights measured from total retinal thick-
ness (TRT) values.

• Slope: measurements of foveal steepness between the foveal center and the rim (e.g., maximum
or mean slope).

• Pit area: the surface covered by the the foveal pit area.

Combining estimations from different directions, radial maps of variation can be generated
(Figure 2.2b). These maps characterize the foveal pit radially visualizing differences between
angular directions.

On the other hand, global features describe the foveal pit as a whole with a single value and
include:

• Central foveal thickness (CFT): retinal thickness at the foveal center.
• Disk area: area of the foveal disk generated at different heights (Figure 2.2c).
• Pit volume: measures the volume of the foveal pit.
• Average values: obtained by averaging radial parameters across angular directions.

The analysis of the foveal pit involves three main steps: flattening, model fitting and feature
calculation. Flattening is achieved by calculating the TRT from previously segmented ILM and
BM boundaries. This step sets the BM as a horizontal reference thus removing the difficulty of
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(a) Radial geometrical features. (b) Radial variation map of the rim height.

(c) Foveal disk at different depths7.

Figure 2.2: Foveal pit morphology features. The geometrical features shown in a) can be computed
for multiple angular directions to derive a radial map of variation such as the one shown in
b). Additionally, features can also derived from the disks formed by the fovea at different
heights illustrated in c).

defining width and height in a curved retina.

At this point, to properly analyze the foveal pit in various directions, all B-scans must cover
the foveal center. Therefore, if B-scans were not acquired radially, it is necessary to introduce an
intermediate interpolation step to transform TRT values into a radial pattern.

The second main step is mathematical model fitting. This step is not strictly necessary to
compute geometrical features, but allows to 1) reduce segmentation noise, and 2) use the fitted
coefficients of the mathematical model as features. Mathematical models were first applied to study
the foveal pit in 2009 by Dubis et al. [73], who used a model based on a difference of Gaussians to
analyze the slope, depth, and width of the fovea. After that, several models have been proposed
(see Table 2.1). There are two main differences between models: fitted region and mathematical
principle. Regarding the former, the fitting process can be performed at different scales. For
example, the model proposed by Ding et al. models the whole TRT surface [74], while others fit
each B-scan separately [73,75,76]. The latter involves a higher number of fittings but a presumably
higher fitting accuracy. There are also models that go beyond and perform the fitting for half a
B-scan [77] or even quarter of a B-scan separately [72]. These approaches are able to characterize
the foveal pit radially by fitting single angular directions individually [77].

The mathematical principle is an important feature of each model. Due to the convex shape of
the fovea, Gaussian curves are behind most models. For instance, the model by Dubis et al. relied
on the difference between a narrow and a wide Gaussian [73]. A problematic aspect of this model
is that it enforces symmetry and thus is not able to capture well-known foveal pit asymmetries
(e.g., nasal and temporal asymmetry) [72]. As an alternative, Ding et al. added a polynomial term
and modeled the foveal pit as the subtraction between a second order polynomial surface and a
bivariate Gaussian [74]. In a similar vein, Liu et al. proposed a sloped piecemeal Gaussian equation
that models each B-scan by a first order polynomial and a Gaussian [75]. The piecemeal nature

7Reprinted with permission from [72]. © The Optical Society (2017).
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Scheibe, 2014 [77] 8/B-scan 1

2
B-scan Second derivative of Gaussian y(x) = µσ2rγe−µrγ + α(1 − e−µrγ )

Liu, 2016 [75] 6/B-scan B-scan Sloped piecemeal Gaussian

y(x) = g − (aḠ + fx)

Ḡ =


e−(x−µ)2/σ2

x < µ − λ/2
max(e−(x−µ)2/σ2

) µ − λ/2 ≤ x ≤ µ + λ/2
e−(x−µ)2/σ2

x > µ + λ/2

Yadav, 2017 [72] 8/B-scan 1
4
B-scan Bezier Curves Q(t) =

∑n
i=0 Pi,nBi,n(t), 0 ≤ t ≤ 1

Breher, 2019 [76] 9/B-scan B-scan Sum of three Gaussians y(x) =
∑3

i=1 aie
−( x−bi

ci
)2

Table 2.1: List of mathematical models describing foveal pit morphology. Existing models are compared in terms of the number of parameters of the equation
defining the model, the region of the retina modeled, and the underlying mathematical principle. TRT: total retinal thickness.
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of this model makes it possible to fit foveas with a flat bottom [75]. Another alternative to model
foveal asymmetries is the inclusion of more parameters as in the model presented by Breher et al.,
based on the sum of three Gaussians [76]. Finally, it is also possible to model each angular direction
individually, as it is done in [77] and [72]. The former proposes a four parameter model based on a
second derivative of Gaussian where each parameter is related to a certain morphological feature
of the fovea. The approach of Yadav et al., on the contrary, uses Bezier Curves to model the foveal
pit. This approach aims for a high accuracy but fitted coefficients lack any intuitive meaning [72].

Although there is no comprehensive model comparison in the literature, Liu et al. [75] reported
that their model outperformed the one by Dubis et al. [73] by more than 3µm in root mean
square error (RMSE). Similarly, Yadav et al. reported an RMSE value of their model of 2.5µm,
smaller than the 4µm and 8µm measured for Ding et al. [74] and Dubis et al. [73], respectively.
Importantly, there has been no research investigating the benefits of mathematical modeling to
compute geometrical features of the fovea such as radius and slope.

Texture analysis is a broad topic and spans a large set of features aimed at characterizing high-
order local properties of images. In OCT, it can used to analyze en-face thickness maps. Within
the large range of texture features, the following methods have been used on OCT images:

• Gray-level co-occurrence matrix (GLCM): pixels in a gray-scale image are compared to their
neighbors to build a GLCM matrix. This matrix is effectively a 2D histogram representing
the prevalence of each pair of values. From that matrix, several features can be computed,
the most common being Haralick features [78].

• Local binary patterns (LBP): for every neighbor of a pixel, a binary value of 0 or 1 is computed
if the value of the pixel of interest is larger or smaller than that of its neighbor. These binary
digits are used to build a histogram from which to compute classical statistical measures such
as mean, standard deviation, or skewness [79].

• Wavelet analysis: an image is decomposed into smaller components by means of the two-
dimensional discrete wavelet transform. The estimated coefficients of its transformation can
be used as features describing image properties at different scales [80].

• Fractal analysis: fractal features try to describe the complexity of the thickness map surface.
While fractal dimension is related to roughness [81], lacunarity [82] describes the distribution
of gaps in the thickness pattern.

It is worth mentioning that, although texture analysis is almost always applied to en-face
thickness maps, 3D volumes can also be studied by texture features, for instance, to detect fluid-
filled regions in macular images [83].

OCT analysis software

Computational OCT image analysis is a complex process that involves multiple steps between image
acquisition and formal analysis. To facilitate the process, it is key to have high-quality software
libraries that can be used to perform tasks such as file reading, preprocessing, and segmentation.
Unlike in other imaging modalities such as magnetic resonance imaging (MRI), there are very few
openly available libraries for OCT image analysis, and existing tools have a strong focus on retinal
layer segmentation rather than building end-to-end analysis pipelines. Existing software for OCT
analysis is listed in Table 2.2.

One of the most used tools is OCT Explorer [26, 87–89], a graphical user interface (GUI) de-
veloped by the Iowa Institute for Biomedical Imaging. The GUI incorporates a layer segmentation
algorithm and works with multiple file formats. Nevertheless, generated output is limited to seg-
mentation values and computing additional features is left to the user. Moreover, the code is not
directly accessible via an application programming interface and, therefore, it cannot be used to
build custom pipelines.
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Software Type Last
release

Supported formats
Heidelberg Zeiss Topcon RGB∗

ReLayNet [84] Algorithm 2018 ✓
Dufour [85,86] GUI (.exe) 2012 ✓
OCT Explorer [26,87–89] 2017 ✓ ✓ ✓ ✓
AMPAO [90]

GUI
(MATLAB)

2019 ✓ ✓
Caserel [91] 2021 ✓
OCTSEG [92] 2016 ✓ ✓
Livelayer [93,94] 2021 ✓

AURA tools [29,95] MATLAB
toolbox 2015 ✓ ✓

∗Image formats such as tiff or jpg.

Table 2.2: Openly available OCT analysis software tools. The table only lists software libraries
that can be freely downloaded. The last release date refers to the date in which the last major
update was made to the code. GUI: graphical user interface.

Another important software is AUtomated Retinal Analysis tools (AURA tools), a MATLAB
toolbox that incorporates a boundary classification segmentation algorithm as well as basic thick-
ness calculation capabilities [29, 95]. As a limitation, it only supports vol (Heidelberg) and img
(Zeiss) file formats, and it does not have a comprehensive documentation explaining how to use it.
More recently, Kafieh et al. released another MATLAB software called Automatic Multifaceted
Matlab Package for Analysis of Ocular Images (AMPAO) that includes a GUI as well as several
functions for file reading, denoising, and feature extraction [90]. The proposed software was re-
leased in bulk within the paper without extensive documentation. In addition to these, there are
other less used software libraries developed exclusively for retinal layer segmentation [84,85,91–93].

Overall, existing software solutions are limited in terms of supported features. Except for OCT
Explorer, there is no software able to read all the main proprietary file formats. Moreover, none of
the existing libraries includes a full range of functions for file reading, preprocessing, and feature
extraction that are documented in detail. More worryingly, most of the tools are not actively
maintained, which may cause them to become obsolete and cease to function properly in the near
future.

2.2 Retinal changes in healthy subjects

Although a big part of OCT research is focused on pathological retina, it is also of interest to
study how the retina is structured in healthy subjects. At the microscopic level, this is typically
conducted using histology, which provides high-resolution data but is limited in terms of sample
size and the area covered. These limitations are overcome by OCT images, which are an efficient
method of analyzing greater regions of the retina in a larger cohort of subjects. Based on OCT,
it is possible to investigate how the retinal structure evolves along lifespan and how it varies as
a function of other demographic factors such as sex or ethnicity. This kind of research aims to
establish a normative description of the retina in order to better understand pathologies. The
following section describes previous research investigating the effects of age and sex on retinal
thickness and foveal pit morphology.

Thickness

Multiple studies have analyzed the effect of aging on the TRT. A systematic review of 49 studies
concluded that the TRT decreases with age [96]. Moreover, this thinning effect is not uniform
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across the macula: while it is more noticeable for eccentricities larger than 0.5mm, the central
region appears to remain unchanged or slightly thickened as a consequence of age [96]. A similar
thinning pattern was also observed in a study of 40000 subjects from the UK Biobank (UKBB)
dataset, which measured a central and whole macular annual thinning rates of -0.17µm/year
and -0.19µm/year, respectively [97]. More recent publications have also demonstrated an overall
thinning in both inner and outer rings of the macula [98–101]. The estimated thinning rates range
from -0.19µm/year [99] to -0.61µm/year [101].

Of greater interest than the TRT analysis, is the determination of the individual layers—with
specific cellular architectures and spatial distributions—that drive the thinning effect. Regarding
the innermost layers of the retina, histological studies have observed an age-related decrease in the
number of fibers that conform the optic nerve and the NFL [102,103]. However, not all OCT studies
analyzing the NFL agree with these findings. While some studies have reported an NFL thinning
in the macula [104–106], others have observed no statistically significant changes [99,100], or even
thickening [98, 107]. Among these, the largest study reported a small yet statistically significant
thinning rate of -0.06µm/year [106]. These discrepancies might be explained by the very low
thickness of the NFL in the macular region, which may be more susceptible to segmentation errors.
In fact, studies examining the NFL in the optic nerve region have shown more robust results. For
instance, Demirkaya et al. observed a significant negative correlation (r=-0.3) of peripapillary
NFL (pNFL) thickness and age [108], a finding also found by other cross-sectional and longitudinal
studies [109, 110]. The longitudinal study reported a loss of -0.14µm/year equivalent to a 0.61%
thickness loss per year [110].

Regarding the GCL, histological evidence points to an age-related decrease of ganglion cell
density [103], which is in agreement with most OCT studies [104–106,108]. However, a few studies
reported that there is no statistically significant age-related effect [111, 112]. Observed thinning
rates range from -0.07µm/year to -0.33µm/year. Differences between macular regions do exist,
being the inner and outer rings much more affected than the central region. In this regard,
several authors suggest that these regional differences only reflect differences in absolute GCL
thickness [113, 114]. More concretely, they reported a 0.28% decrease in GCL thickness uniform
across the whole macula. Despite that, results of a longitudinal study did observe differences in
the relative thinning rates of the ganglion cell-inner plexiform layer (GCIPL) [110].

The IPL parallels GCL results closely. In fact, many studies chose to analyze both layers as a
single complex (GCIPL). Measured thinning rates range from -0.33µm/year [98] to -0.15µm/year
from a study including 42044 UKBB subjects [106]. Nevertheless, no effect was found in [115].

As an important remark, most studies rely on the assumption of linearity to perform both
regression and correlation analyses and do not report any check of the validity of this assumption.
However, as stated in [113], a segmented linear regression fits the data better, and GCL thickness
might not start to decline until the 40s. The lack of long-term longitudinal studies, however, makes
it difficult to conclude on this matter.

As for the INL, previous work has also reported a thinning effect [98, 99, 101, 116]. Although
outermost layers of the retina have been less studied, reported results point to a thickening effect
[96].

The effect of sex on the retinal structure has also been investigated. Several studies have found
a thicker retina in men [97, 99, 117, 118]. Differences in average TRT range from 2.7µm [97] to
7.1µm [100]. In all studies the differences were higher for the inner macular ring and diminished
for the outer ring, where a large cohort study even measured a 0.1µm greater TRT in females [97].

As with the aging effect, it is of interest to analyze which layers might explain differences in
TRT. In this respect, the macular NFL has been studied with diverse results. Some studies have
measured a thicker NFL in males [99, 101, 105, 119], while others have observed it to be thicker in
females [100,104,106].

Regarding the GCL, most studies observed a higher thickness in males [99–101,105,119]. How-
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ever, a study on 42000 subjects measured a 1µm thicker GCL in females [106]. Results for the
IPL layer are similar. While several studies showed a thicker IPL in males [100, 101, 105], others
observed it to be thinner [106]. The few studies analyzing the INL measured it to be thicker in
males [100]. Similarly, sex differences have been reported for the outer retinal layers [100,105].

In addition to sectorized thickness, Nunes et al. showed that texture can also help discriminate
female and male retina [120]. More concretely, GLCM and wavelet features of the GCL, IPL, OPL,
and ONL were able to discriminate sexes. This may indicate that sexual differences exist beyond
average thickness.

As pointed out by previous work, thickness measurements are influenced by the axial length
based on the so-called ocular magnification problem [121]. In longer eyes, light entering the eye
travels a longer distance, which increases the separation between adjacent A-scans (i.e. the lateral
scale) [122]. As a consequence, each eye has a specific lateral scale that must be considered
when computing sectorized thickness values. However, not all commercial scanners correct it
automatically and the fact that females have a slightly shorter axial length [123] may introduce a
bias in sex comparisons.

As an important limitation, most studies studying either age or sex have relied on the standard
ETDRS sectorization [97–101, 105, 106, 112, 117, 118]. This reduces the description of the macula
to nine values and might undermine the ability to describe age and sex effects with high spatial
detail. As an alternative, recent studies have begun to use smaller sectors. For instance, an 8 x 8
square grid has been used to determine clustered spatial patterns of age changes and establish a
normative database of macular thickness in [119, 124]. Additionally, a radial grid with 61 sectors
has also been used to examine age changes in retinal thickness [116].

Foveal pit morphology

Although to a lesser extent than retinal thickness, several studies have analyzed foveal morphology
in healthy populations. In a study investigating normative foveal pit shape, Scheibe et al. evidenced
the asymmetric shape of the foveal pit [125]. The nasal sector has both the widest radius and the
highest rim, while superior and inferior sectors show the highest slope and the smallest radius.
These differences are a direct consequence of the presence of the optic nerve and the distribution
of nerve fibers (Figure 2.3).

Figure 2.3: NFL fiber distribution8. The macula and the optic disk are depicted in red and white,
respectively. Temporal and nasal sides are encoded from left to right. Black lines depict the
direction of NFL fibers running from the optic nerve to each retinal region.

8Adapted from Pattern of Retinal Nerve Fibers by Maria Sieglinda von Nudeldorf. CC BY-SA 3.0 license.
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In addition, foveal morphology has also been related to other macular features. For instance,
Barak et al. found that foveae with steeper slope, less symmetry and higher mathematical modeling
complexity are associated with a higher risk of developing macular holes [126]. On the other hand,
Dubis et al. reported that the pit depth and diameter are two independent factors that influence
the size of the foveal avascular zone [127]. The weak correlation between pit depth and diameter
might point to different factors driving the development of the foveal pit.

On another note, only a few studies have investigated the effect age on foveal morphology (see
Table 2.3). A direct comparison between studies is complicated by the diversity of metrics and
processing steps among studies. Tick et al. did not find any correlation between age and foveal
morphology [128]. However, only 57 subjects of 45 years-old or younger were included in the study
so any effects after that age were not assessed. In a larger study Nesmith et al. found age to be
associated with an increased maximal slope, a higher mathematical complexity, and a decrease in
foveal volume [129]. Contrary to these results, in a study including only subjects older than 40
years-old, slope was found to decrease with age [130]. These discrepancies might be explained by
differences in the slope calculation procedure. In fact, while in [129] slope was measured in 50µm
eccentricity steps, in [130] it was calculated for a predefined 500µm eccentricity. Moreover, neither
of these studies used a mathematical model to fit the foveal surface. In a later study with only 30
subjects [131], a model presented in [77] was used but no age effect was observed. However, foveal
width was estimated to decrease with age although the differences were not statistical significant.
Finally, a study that mixed ghanaians and caucasian subjects did observe changes in the foveal pit
associated with age, specially in ghanaians [132].

Regarding sex, studies that have compared both male and female fovea are listed in Table
2.4. This topic was addressed for the first time in 2001 by Wagner-Schuman et al. [133]. In
this reference work, the model proposed by Dubis et al. [73] was used to compare foveal depth,
width and slope between males and females. Observed differences, despite not reaching statistical
significance, estimated a sharper, narrower, and deeper foveal pit in males. In a posterior study
using the same model, similar slope differences were observed [127]. However, diverging results
were reported as well, as males were found to have a much larger pit depth and a wider fovea. The
small sample size of these studies might explain those differences. In the most exhaustive study so
far, Scheibe et al. used their previously proposed model to study a larger cohort of 109 males and
111 females [125]. In this case, clear differences were observed regarding height, width, slope, and
area, pointing to a sharper foveal pit in males. Results in this direction were also recently found
by Zouache et al. [132]. More recently, a large UKBB study conducted by Olvera-Barrios et al.
also found sex differences in foveal curvature [134].

As with thickness measurements, the axial length can have a confounding effect on foveal pit
morphology metrics [133]. In fact, it has been reported to affect horizontal metrics such as pit
diameter [128]. However, not all studies assessed that factor equally. While some studies corrected
the lateral scale based on each subject’s axial length [127,133], no explicit correction was reported
in others [125, 132]. Alternatively, Zouache et al. carried out a Monte Carlo simulation to ensure
the robustness of the results despite not having performed any axial length correction [132].

2.3 Retinal changes in Parkinson’s disease

The measurement of retinal changes in PD aims to find out if the well-known brain neuronal death
caused by PD is also present in the retina. This is supported by both histological and physiological
studies that have found a retinal involvement in PD [57].

OCT images were first used to study PD in 2004 by Inzelberg et al. [135]. In that work,
a significant pNFL thinning was reported. Those results motivated a large number of studies
investigating retinal thickness in PD. These studies have been aggregated by several meta-analyses
concluding that there is a thinning of the TRT, GCIPL, and pNFL in PD [41, 136–139]. More
concretely, the estimated standardized mean differences (i.e., Cohen’s d) are: -0.22 (TRT), -0.53
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Study Group N Age CFT Rim height Pit depth Rim radius Slope
Mean± σ Range (µm/10 years) (µm/10 years) (°/10 years)

Tick, 2011 [128] 57 - 18-45 NAF NAF NAF NAF -
Nesmith, 2014 [129] 390 52.6 13-97 - - - - Increase*
Gella, 2015 [130] 668 ≥ 40 - - - - Decrease*

Sepulveda, 2016 [131] young 20 24-33 NAF NAF - Decrease -
old 10 62-76

Zouache, 2020 [132] ghanaian 84 65.1 ± 11.5 41-85 - - -4.8 -46* -0.054*
caucasian 37 56.0 ± 8.0 45-82 - - -1.5 +30 -0.012

Olvera-Barrios, 2022 [134] 63939 56 ± 8.0 40-69 - - - - Increase in
females*

∗ statistically significant (p < 0.05)

Table 2.3: List of studies linking age and foveal morphology. For each study the sample size (N), the age range of the participants, and the estimated age effect
for several foveal features are shown. CFT: central foveal thickness. NAF: no association found.

Study Group Nmale Nfemale
Age CFT Rim height Pit depth Rim radius Slope

Mean ± σ Range (µm) (µm) (µm) (µm) (°)

Wagner-Schuman, 2011 [133] 47 43 27.8 ± 9.0 ≥ 18 - - +1 −15 +0.4*
Dubis, 2012 [127],2012 26 16 26.5 18-67 - - +13 +79 +0.5
Scheibe, 2016 [125] 109 111 44 ± 13 21-77 +4.2 +6.0* - −27.5* +0.5*

Zouache, 2020 [132] ghanaian 30 54 65.1 ± 9.4 45-82 - - +7 -145 +2.26
caucasian 9 28 61.9 ± 11.5 41-85 - - +10 -180 +1.05

Olvera-Barrios, 2022 [134] 28842 35097 56 ± 8.0 40-69 +6.8* - - - +0.87*
∗ statistically significant (p < 0.05)

Table 2.4: List of studies linking sex and foveal morphology. For each study the sample size (N), the sex distribution of the participants, and the estimated age
effect for several foveal features are shown. CFT: central foveal thickness. NAF: no association found.
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(pNFL), and -0.43 (GCIPL) [139]. These differences correspond to small-medium effect sizes and,
therefore, it would be difficult to spot them with a naked eye. The TRT thinning has been found in
all macular sectors, suggesting that the effect is not limited to a single small region. Nevertheless,
differences appear to be smaller in the central 0.5 mm radius circular region, where inner retinal
layers are not present [41]. In fact, GCIPL thinning is present in both inner and outer macular
rings [137]. The pNFL, however, appears to be more clearly affected in superior, inferior and
temporal sectors rather than nasal [41]. Existing meta-analyses could not conclude on the INL
and outer retinal layers, mostly because of the scarcity of studies investigating these layers.

Despite the meta-analytical evidence, discrepancies between studies do exist. Not all studies
measured the same effect size nor agreed on the retinal region with more prominent changes
[140,141]. Observed discrepancies might be attributed to the heterogeneity of the literature, where
studies exhibit differences regarding scanning device, inclusion criteria, racial differences, and age
ranges [140]. Moreover, the cross sectional nature of most of these studies prevents from reaching
definite conclusions out of their findings.

Trying to address those limitations, a few longitudinal studies have already been carried
out [142–145] (see Table 2.5). Although with different thinning rate estimations, all studies inves-
tigating the TRT found a higher thinning rate in patients. On the other hand, a pNFL thinning
effect was observed in [142,145] but not in [144]. This last study, however, had a shorter follow-up
time and a smaller dataset. On the contrary, both [145] and [142]—with a large follow-up time—
measured pNFL thinning rates up to four times higher in patients. Finally, the only study that an-
alyzed the GCIPL [145] concluded that patients lose thickness three times faster (-0.67µm/year vs
-0.23µm/year) than healthy control (HC) subjects. These differences were higher in the parafoveal
region (i.e., 1-3mm inner ring).

Study Layer Subjects Follow-up
(years)

Rate of change
(µm/year)

HC PD HC PD

Satue, 2017 [142]
TRT

30 30 5 −0.36 −1.28
Ma, 2018 [143] - 22 2.5 - −2.80
Hasanov, 2019 [144] 19 19 1.75 +0.94 −4.63
Satue, 2017 [142]

pNFL

30 30 5 −0.28 −0.50
Ma, 2018 [143] - 22 2.5 - −2.40
Hasanov, 2019 [144] 19 19 1.75 −0.98 +0.84
Murueta-Goyena, 2020 [145] 17 50 3 −0.15 −0.55
Murueta-Goyena, 2020 [145] GCIPL 17 50 3 −0.23 −0.67

Table 2.5: List of longitudinal studies linking OCT and PD. Studies are grouped by the investi-
gated retinal layer. The number of subjects was relatively small in all studies with a maximum
of 50 patients. HC: healthy control. PD: Parkinson’s disease. TRT: total retinal thickness.
pNFL: peripapillary nerve fiber layer. GCIPL: ganglion cell-inner plexiform layer.

Although a big part of previous work has relied on inference, there has also been research
trying to develop diagnostic models based on retinal features. Here, rather than concluding if an
effect is present or not, the aim is to build a classification model based on OCT features. Existing
studies of this kind are listed in Table 2.6. One of the first models of this kind was presented
by Garcia-Martin et al. in 2014 [146]. In their work, the authors trained a linear discriminant
analysis (LDA) model on pNFL and TRT thickness features that achieved an area under the
curve (AUC) of 0.902. Later studies, however, were not able to achieve such a good performance
despite using similar features [147–150]. For instance, in [147] and [148], thickness features only
showed classification power when combined with electrophysiology and visual function, respectively.
Alternatively, in [149], thickness features reached an AUC of 0.718 that was further improved
to 0.849 when adding OCT angiography (OCTA) vasculature features. The most recent study
reported an AUC of 0.796 using thickness features and linear discriminant analysis [150].
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Study Subjects Features Model Accuracy AUC
HC PD (%)

Garcia-Martin, 2014 [146] 200 111 Thickness LDA - 0.90
Ding, 2014 [74] 27 27 Foveal pit LR 74 0.70
Slotnick, 2015 [154] 72 24 Foveal pit PCA 65 0.65
Miri, 2016 [147] 8 10 Thickness LR - 0.43
Huang, 2018 [148] 41 53 Thickness ROC curve - 0.40

Nunes, 2019 [157] 27 28 Thickness
Reflectance SVM > 90 -

Young, 2019 [155] 40 33 Thickness
Foveal pit LR - 0.80∗

Pinkhardt, 2020 [156] 176 184 Foveal pit ROC curve 62 0.60
Zou, 2020 [149] 35 35 Thickness ROC curve - 0.72
Satue, 2022 [150] 146 42 Thickness - 80
∗ including sex

Table 2.6: List of PD diagnosis models based on OCT features. or each model, the sample
size, the type of features, the model, and the reported results are described. LDA: linear
discriminant analysis. LR: logistic regression. PCA: principal component analysis. ROC:
receiver operating characteristic. SVM: support vector machine.

In addition to thickness features, the foveal pit morphology might provide valuable information
in PD. This hypothesis is supported by the thickness decrease observed in the literature. As a
consequence of this thinning, it has been proposed that the foveal pit is remodeled in PD, resulting
in thinner and wider pits [151, 152]. Furthermore, the visual impairment associated with the
disease [153] might be related with changes in the foveal structure, which is located at the center
of the vision field.

To date, there have been a few works exploring foveal pit features in PD. Ding et al. presented
a 2D model based on a polynomial surface and a bivariate Gaussian [74]. Adjusted parameters of
the model were used for classification, reporting a 26% error rate using seven model parameters
and logistic regression (LR). A subsequent study carried out by the same research group applied
the same model on a new dataset this time achieving a minimum error rate of 33% and an AUC
of 0.7 [154]. It must be pointed out that no cross-validation procedure was applied in either
studies and thus reported results might be overoptimistic. More recently, Young et al. applied
the mathematical model developed by Dubis et al. [73] to calculate metrics of slope, width and
height [155]. Group comparisons, however, did not yield any significant result and the performance
of a diagnostic model only improved when adding sex as a feature. Similarly, Pinkhardt et al. used
the model proposed by Ding et al. in a larger dataset and obtained a best accuracy of 61.86%, not
fully reproducing the original results [156].

As an alternative to structural features, Nunes et al. used texture features derived from thick-
ness and reflectance en-face maps to train support vector machine (SVM) diagnostic models for
PD and AD [157]. More concretely, the authors used GLCM and wavelet features to train several
SVM models achieving an accuracy of 80.8%. Similar approaches have also been applied in other
neurodegenerative diseases with good results. For instance, GLCM, wavelet, and LBP features
have shown to differentiate well between MS patients and HC SUBJECTS [158, 159]. Similarly,
fractal dimension has already been used in AD [160]. Finally, lacunarity has also been used in
OCTA analysis in PD [161].

2.4 Linking OCT and disease severity

In addition to disease diagnosis, the greatest potential of OCT lies in using it as a biomarker to
assess and monitor the disease. That is, to use OCT to support clinical decisions regarding a
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patient. Here two main use cases can be distinguished: 1) clinical assessment, to determine the
disease severity of a patient, and 2) prognosis, to predict the clinical evolution of the disease. In
both cases, clinical variables related with motor impairment, cognition, and visual impairment
need to be measured, and their relationship with OCT features needs to be demonstrated.

Here it is important to describe the main clinical tests used to assess the status of a patient.
First, the Unified Parkinson’s Disease Rating Scale (UPDRS) comprises of a set of standard tests
evaluating motor symptoms, mental health, behavior, and complications of therapy in PD patients
[162]. From this battery of tests, the third part (UPDRS-III) focuses on motor impairment and
is used as a measure of motor disability. Alternatively, motor impairment can also be evaluated
by the Hoehn-Yahr (HY) scale, which classifies PD patients according to the following stages: 1
(unilateral affection), 2 (bilateral affection without balance problems), 3 (bilateral affection with
balance problems), 4 (severe impairment), and 5 (confinement to bed or wheelchair) [163]. As for
cognition, a common test is the Montreal Cognitive Assessment (MoCA), a cognitive impairment
screening test that assesses attention, memory, language, visuospatial abilities, executive functions,
and orientation to time and place [164]. The test provides a result in a scale of 0 to 30 and was
designed as an screening tool for cognitive impairment. In fact, a MoCA score below 26 has been
used as cut-off value for mild cognitive impairment in the literature [165]. Similarly, even lower
values of MoCA can be used as an indicator for dementia (MoCA < 22). The choice of cut-off
values results in different sensitivity and specificity values and establishing normative thresholds
for different groups of subjects is a research topic in itself [165,166].

Several works have tried to relate thickness measurements to clinical features. In the first series
of OCT studies, Altintaş et al.—in a study of 17 PD patients—reported an inverse correlation of
-0.66 between foveal TRT and UPDRS-III [167]. Later on, Jiménez et al. measured a similarly
strong relationship between UPDRS III and pNFL thickness, and proposed an estimation formula
based on it [168]. In much larger databases, an inverse relationship between HY score and the
thickness of both pNFL [169] and GCL [146] has also been found. The relationship between retinal
thickness and HY has been subsequently reported for the TRT [142,170,171], pNFL [138,152,170–
172], GCIPL [138, 145, 170–172], and more recently, the INL and OPL [171]. The latter results
were derived by Wang et al. in a total of 397 PD patients, the largest study of this kind to date.
Nevertheless, there are also studies that have not been able to replicate these results [156,173,174].

In addition to motor impairment, several works have linked OCT features and cognitive func-
tion. For instance, a positive relationship between scores in MoCA and thickness features has been
reported for the TRT [174], pNFL [175], and GCIPL [145, 174]. In the large dataset mentioned
before, Wang et al. found a similar positive relationship between cognition evaluated by the Mini-
Mental State Examination and pNFL, GCL, and photoreceptor layer [171]. On the other hand,
associations between retinal thinning and visual function have also been reported by a few stud-
ies. For example, in [176] the authors found GCIPL parafoveal thickness to be a good predictor
for visual acuity. Moreover, baseline GCIPL thickness was found to be a good discrminator of
visual impairment. In a similar fashion, Pinkhardt et al. also found a correlation between the
restructuring of the fovea and visual contrast sensitivity loss [156].

Perhaps the most interesting use of a biomarker is disease prognosis. Predicting the evolution
of a patient is key for deciding treatment. The development of prognostic models is challenging
as it requires longitudinal data to prove their reliability, which is especially difficult in diseases
with a reduction in life expectancy. Moreover, the evolution of a disease is rarely determined
by a single parameter and establishing the causal mechanisms behind disease progression is not
straightforward. Despite this difficulties, there is some evidence of the potential of OCT for PD
prognosis. First, Satue et al. reported a moderate association between NFL thickness changes
and worsening of visual function and motor impairment [142]. Additionally, Murueta-Goyena
et al. recently showed that baseline retinal thickness can predict cognitive decline in PD [145].
More concretely, patients with lower parafoveal GCIPL and pNFL thickness had a relative risk of
3.49 and 3.28 of cognitive decline, respectively. These effects, however, were not found for motor
impairment.
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2.5 Critical analysis of the state of the art

After surveying the existing literature, here we summarize and identify existing gaps of knowledge
regarding OCT image analysis and its application to research with healthy individuals and PD
patients.

First, although retinal OCT has existed for some decades, certain technical parts of OCT
image processing are not fully developed. There is no standard end-to-end analysis pipeline, and
existing software tools have limitations: most of them only work for specific devices and features,
and are not actively maintained. Moreover, existing algorithms for automatic foveal location
and quality assurance are difficult to implement and seldom used by the community. Similarly,
multiple approaches to analyze the foveal pit morphology have been proposed, but there has been
no research into evaluating which is the most appropriate methodology. New research should target
these issues.

On another note, retinal layer thickness has been extensively studied in healthy populations.
Based on current evidence, inner retinal layer thickness decreases with aging and the male retina
is slightly thicker. However, most studies relied on the ETDRS sectorization, which limits the
description of the macula to only nine regions. Increasing the number of sectors could substantially
improve the understanding of age and sex effects on the retina by visualizing a more detailed
pattern.

Additionally, foveal pit morphology analysis is an emerging OCT image analysis technique
that, despite its potential, has received little practical attention. The relationship between the
foveal pit and demographic factors such as age and sex has been little investigated and is not fully
understood. Existing works point towards a sharper and narrower foveal pit in males, but more
studies are needed to confirm this relationship and explore age effects.

Regarding the study of PD, there has been a large effort on analyzing retinal layer thicknesses,
and current evidence supports a PD-related thinning effect of the TRT, pNFL, and GCIPL. Never-
theless, there is a large heterogeneity across studies and a lack of consistency regarding the specific
region affected in PD. Notably, retinal thinning has also been reported in AD [177] and MS [140]
and it is crucial to determine specific hallmarks related to PD that could provide a differential
diagnosis. In spite of this need, most studies relied on small sample sizes and focused on a relatively
small set of retinal features, namely thickness values averaged over the ETDRS grid. Although
this choice simplifies the analysis, it may mask smaller changes happening in early disease stages.
Moreover, there may be features with a higher discriminative power that have not been fully ex-
plored yet. In this sense, there is some evidence pointing to foveal pit and texture features as an
alternative, but new research is needed to evaluate their potential.

The relationship between OCT features and disease severity is not entirely established. Several
works have measured a correlation between retinal thicknesses and motor impairment, cognitive
function, and visual impairment. However, not all the studies agreed on the findings, and it is not
clear if the measured effect is sufficient to be reliably used in a clinical setting. To overcome this,
new research should evaluate conventional and novel OCT features to determine the potential of
OCT for disease assessment.

Finally, very few longitudinal studies have investigated changes in the retina of PD patients.
Preliminary studies support an accentuated thinning rate in patients, but are limited in terms of
sample size and the number of retinal features explored. In fact, longitudinal research so far has
only explored changes in a few retinal layers without looking into other retinal features. More
importantly, it is not clear whether longitudinal changes in the retina hold information about
disease progression. Larger and richer longitudinal datasets could shed light into this matter.
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2.6 Objectives of the thesis

The main goal of this doctoral research project is to evaluate the potential of advanced OCT retinal
features as a biomarker for PD. This is, to study how and to what extent OCT images can provide
valuable information on disease status and progression beyond what has been shown to date.

In pursuit of this objective, it is also essential to advance in both the way in which OCT images
are analyzed, and our understanding of the link between the retina and demographic factors.
Including these two aspects, the scope of the thesis is further defined by the following objectives:

1. Improve OCT processing algorithms: this includes four smaller objectives aimed at
establishing the best strategies to develop a robust OCT feature extraction pipeline:
• Build an OCT quality assessment model that flags an image volume to be excluded in

presence of poor image contrast, ocular lesions, or artifacts.
• Determine the best method for an accurate automatic foveal location.
• Compare existing methodologies to analyze foveal pit morphology from a quantitative

point of view.
• Develop an open-source OCT image analysis toolbox capable of reading different pro-

prietary file formats and extracting a comprehensive set of retinal features.
• Apply the developed methods to compute a comprehensive set of features from the

datasets used in this work.

2. Describe the effect of age and sex in the macula with high spatial detail: analyze
how retinal thicknesses and foveal pit morphology vary as a function of age and sex. This
provides the baseline knowledge needed to differentiate the normal evolution of the retina
from abnormal changes caused by PD. The improvement over previous work lies in the use
of smaller macular sectors and a radial foveal analysis.

3. Evaluate the potential of advanced OCT features for PD evaluation: this involves
evaluating a comprehensive set of OCT features including both conventional (i.e., ETDRS
thickness) and novel features (e.g., foveal shape and texture analysis) for two tasks:

• Diagnosis: training and evaluation of PD diagnostic models based on OCT features.
• Severity assessment: using OCT as a biomarker for cognitive function and motor im-

pairment in a regression setting.

4. Evaluate OCT as a tool for disease monitoring in PD: the first goal is to identify the
retinal layers and regions primarily affected in PD by measuring longitudinal retinal changes
as the disease evolves. Additionally, we seek to assess the potential of OCT features as a
reliable tool for monitoring disease progression by establishing a link between retinal changes
measured by OCT and the clinical progression of patients

The next part of the thesis is structured as follow: Chapter 3 describes the datasets used
throughout this research work. Then, Chapters 4, 5, 6, and 7 describe the work carried out to ad-
dress each of the aforementioned objectives. Finally, Chapter 8 summarizes the main contributions
and conclusions.
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3 Databases

Sections 3.1 and 3.2 provide an overview of the two databases used throughout this research work:
Biobizkaia Health Research Institute (BHRI) and AlzEye. Then, the specific data subsets used in
each analysis are described in Section 3.3.

3.1 Biobizkaia Health Research Institute

Over the past decade, extensive efforts have been made to collect OCT images at BHRI in
Barakaldo, Spain. Subject recruitment and image acquisition have been funded through several
research projects, each with a specific duration and cohort type. A summary of the total number
of PD patients and HC subjects imaged can be found in Table 3.1.

Project Duration Center Device Subjects
HC PD

Michael J. Fox 2015 - 2018 BHRI Heidelberg 37 49
Virtual Games 2018 - 2018 BHRI Heidelberg 10 4
EiTB maratoia 2018 - present BHRI Heidelberg 439 26

Begipark 2020 - present
BHRI Heidelberg 42 56

Bioaraba Heidelberg - 27
Biodonostia Topcon - 26

Total 528 188

Table 3.1: Subjects enrolled in each BHRI project. Each project was funded separately and in-
cluded a different number of subjects. Notably, Begipark included images acquired at three
hospitals.

The first project was funded by the Michael J. Fox Foundation and aimed at building the largest
longitudinal dataset of OCT images of PD patients. Later, in the Virtual Games project a small
cohort of patients and controls was also acquired. Additionally, EiTB maratoia project received
public funding to build a large dataset of controls. Ongoing efforts are now focused on Begipark,
a multi-centric project with PD patients recruited in three health research centers of the Basque
Country: Biobizkaia, Bioaraba, and Biodonostia.

The aggregated database includes a total of 528 controls and 188 PD patients. Healthy controls
were 62.4% female and had an age of 55.4 ± 12.4 years in range [21, 88]. Conversely, PD patients
were older (64.8 ± 8.6 [41, 80]) and only 35.6% female. The average disease duration was 5.9 ± 4.5
with a maximum of 22.8 years.

In addition to the cross-sectional dataset, a total of 169 subjects were followed-up longitudinally
(Table 3.2). The average follow-up time was 2.89 years with a maximum of 5.7 years for subjects
from the Michael J. Fox project. Importantly, subjects from this project were scheduled to be
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Chapter 3. Databases 3.1. Biobizkaia Health Research Institute

Group Baseline Longitudinal

N Age∗ (years) Male
(%) N Follow time

(years)∗ Visits∗

Control 528 55.4 ± 12.4 [21, 88] 37.6 58 2.8 ± 1.7
[1, 5]

2.4 ± 0.5
[2, 3]

Parkinson 188 64.8 ± 8.6 [41, 80] 64.4 111 2.6 ± 1.7 [1, 5] 2.4 ± 0.5 [2, 3]
∗ mean ± σ [range].

Table 3.2: Subjects with OCT imaging in BHRI dataset. The table shows first the age and sex
statistics of the subjects with at least one visit (Baseline). From that dataset some subjects
(N) were imaged more than once and followed-up more than two and a half years on average.

imaged three times: baseline, year 3, and year 5.

All subjects were Caucasian and underwent a screening process that consisted of an ophthalmo-
logical examination and a comprehensive questionnaire on neurological, systemic, and eye-related
diseases. Exclusion criteria were: history of heavy smoking (more than 20 cigarettes/day), heavy
alcohol use (more than 4 drinks/day for men or 3 drinks/day for women), diagnosis of any type
or grade of diabetes, uncontrolled or resistant elevated blood pressure, obesity (body mass index
higher than 30), history of consumption of drugs or medications known to induce retinal toxicity,
chronic inflammatory systemic diseases, history of traumatic brain injury, or neurological diseases.
Additionally, subjects with spherical equivalent refractive error higher to 4.00 diopters, lower than
-4.00 diopters, and higher than 3.00 diopters of astigmatism were excluded. In cases where only one
of the eyes of a participant was excluded, the other eye was included. Following the tenets of the
Declaration of Helsinki, all participants gave written informed consent prior to their participation.

In acquisitions made with Heidelberg devices (Heidelberg Engineering, Heidelberg, Germany),
three main OCT acquisition protocols were used: macular raster, macular star, and peripapillar
(Figure 3.1).

(a) Macular raster (b) Macular star (c) Peripapillar

Figure 3.1: OCT protocols used in BHRI dataset. The macular raster protocol is comprised of 25
horizontal B-scans of 512 A-scans imaging a 6 x 6 mm2 region. Macular star images image
a slightly smaller region with 12 radial B-scans. The peripapillary protocol is used to image
the area surrounding the optic disc with a single B-scan.

Each acquisition protocol consisted of the set of B-scans described in Table 3.3 and a grayscale
fundus image. While both macular raster and optic disk peripapillar scans were always acquired,
not all subjects underwent macular star images acquisition. Additionally, two subsets of 10 and 12
healthy subjects were imaged twice the same day with both the standard and a higher resolution
macular raster protocol, respectively. These smaller datasets were used to evaluate test-retest
repeatability and the impact of using different resolutions. In all cases, for each final B-scan a
total of 49 slices were averaged to improve image quality.
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Protocol Region B-scan A-scan Subjects Images
HC PD HC PD

Macular raster 6 x 6mm2 25 512 514 159 1149 592
Macular star � 4.3mm 12 768 264 109 604 367
Peripapillar � 1.7mm 1 768 519 159 1168 602
Macular raster (test-retest) 6 x 6mm2 25 512 10 - 20 -
Macular raster (high density) 6 x 6mm2 97 1024 12 - 24 -

Table 3.3: Number of images and subjects in BHRI by protocol. In addition to the three main
protocols two smaller datasets were acquired to evaluate test-retest repeatability and the
impact of scanning resolution. HC: healthy control. PD: Parkinson’s disease.

All the images were visually inspected and those not fulfilling OSCAR-IB criteria were ex-
cluded [68]. Additionally, the images were segmented by HEYEX 1.9.10.0 software. Segmentations
were reviewed by three specialists and evident errors within the 3mm radius macular region were
manually corrected.

In addition to OCT imaging and demographic data, additional variables were collected. These
included the years of education in all subjects as well as the Levodopa equivalent daily dose in
patients. Moreover, some of the subjects undergone an assessment of motor and cognitive function
in which the UPDRS-III, HY, and MoCA were measured.

3.2 AlzEye

AlzEye is a retrospective dataset of 353157 subjects who attended Moorfields Eye Hospital NHS
Foundation Trust (MEH) between January 2008 and April 2018 [178]. Included individuals were
aged 40 years and over and attended the glaucoma, retina, neuro-ophthalmology, or emergency
services of any of the clinical sites part of MEH. The dataset includes three sources of information:

• Ophthalmic health variables: patient-level data variables extracted from MEH data ware-
house including: date of birth, sex, ethnicity, socioeconomic status measured by the Index
of Multiple Deprivation decile, and both clinical appointment and operation dates.

• Retinal imaging: color fundus photographs as well as OCT images. Two algorithms were
used to segment fundus images and extract vasculature features: The Vascular Assessment
and Measurement Platform for Images of the Retina [179,180], and AutoMorph [181]. OCT
images were also automatically segmented as described later in this section.

• Systemic health variables: labels regarding systemic diseases were obtained by linking MEH
data with the larger National Health Service database of Hospital Episode Statistics (HES).
This HES database includes routinely collected data following patient admission to any site
part of the healthcare system. These data are translated to International Classification
of Diseases (ICD) codes by clinical coders (e.g., G20 and G30 are used for PD and AD,
respectively). These codes can ultimately be used as labels for data analysis.

From the entire cohort, AlzEye currently contains data from 149108 subjects. The drop in
subject number is related with subjects who did not have a HES or opted out of using their data
for research. From the included subjects, 1404 have an ICD code for PD (Table 3.4). Some
of the subjects included in AlzEye visited MEH more than once and have longitudinal imaging
acquired. There is a large heterogeneity in the number of visits and total follow-up time of these
subjects. This is because each subject attended MEH for a different clinical reason and had a
specific appointment schedule based on the severity of their case.

Regarding OCT imaging, the vast majority of images were acquired with Topcon devices (Top-
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Group Baseline Longitudinal
N Age (years)∗ Male (%) N Follow time (years)∗ Visits∗

All 149108 66.1 ± 13.7
[30, 110] 47.7 81904 4.7 ± 2.9

[0.002, 11]
7.7 ± 10.2
[2, 153]

Parkinson 1404 76.5 ± 8.5
[37, 97] 57.7 828 3.0 ± 2.1

[0.01, 8.6]
7.3 ± 9.3
[2, 80]

∗mean ± σ [range].

Table 3.4: AlzEye subject summary. From the 149108 subjects included in AlzEye 1404 had a label
for Parkinson’s disease from which 518 had more than one visit.

con Corporation, Tokyo, Japan). The acquisition protocol most often employed and intended to be
used for analysis is a macular cube (Figure 3.2). In total, there were 1348934 images of this kind.
It consists of 128 horizontal B-scans covering an area of 6 x 6mm2. Each B-scan consisted of 512
A-scans and was automatically segmented by TABS algorithm [37]. This proprietary algorithm
is able to segment 10 retinal layers based on dual-scale gradient graph search. In addition to the
segmentation, TABS also estimates the foveal center location and computes a set of quality metrics
related with image contrast, artifacts and segmentation failures.

Figure 3.2: Macular cube protocol used in AlzEye. In each Alzeye acquisition a color fundus image
is acquired along with the OCT protocol. The latter is shown in green and conists of 128
horizontal B-scans with 512 A-scans each.

3.3 Selected databases

From the aforementioned large databases, different data subsets have been used throughout the
thesis. The datasets used in each analysis are listed in Table 3.5 and described below:

• Automatic image assessment: a total of 4000 images from AlzEye were used to develop a
model to detect OCT quality problems. The AlzEye database was selected for this task
because of its high prevalence of quality issues.

• Automatic foveal center location: a dataset including all BHRI subjects was used to validate
automatic foveal location algorithms. Additionally, a smaller test-retest dataset was employed
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to evaluate the improvement of the repeatability when locating the foveal center correctly.

• Robust foveal pit morphology analysis: this dataset included 185 BHRI healthy subjects im-
aged twice in the same day with both macular raster and macular star protocols. These two
acquisitions were used to evaluate different automatic methodologies for foveal pit morphol-
ogy analysis.

• Validation or raster acquisition protocol: a small dataset of 12 subjects imaged twice us-
ing different resolution protocols was used to evaluate the bias introduced when using the
standard raster protocol with 25 B-scans instead of an higher-density acquisition pattern.

• Retinal morphology in a healthy population: 444 healthy subjects used to evaluate the impact
of age and sex on the retina.

• Diagnosis and severity assessment: HC subjects were matched with PD patients based on age
and sex. This dataset was used to develop a diagnostic model for PD and evaluate regression
models for disease severity prediction.

• Longitudinal analysis: subjects from both BHRI and AlzEye datasets were used to evaluate
how the retina evolves over time in PD. The Table 3.5 reflects the finally included number
of AlzEye subjects after applying the inclusion criteria detailed in Chapter 7.

As an important detail, in the datasets derived from BHRI only images derived from Spectralis
devices were included, thus excluding images acquired with a Topcon device at Biodonostia center.
This was decided to prevent the potential bias resulting from adding 26 subjects that were all PD
patients and were acquired with a device that differed notably from the rest of the BHRI dataset
(refer to Table 3.2 for a summary).
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Analysis Section Dataset Protocol Group Subjects/
Eyes Age∗ Male

(%)
Automatic image assessment Section 4.1 AlzEye Macular raster - 4000/4000 67.6 ± 13.8 47.9

Automatic foveal center location Section 4.2 BHRI Macular raster - 724/1388 57.8 ± 12.4 44.8
HC 10/20† 35.2 ± 9.9 30.0

Robust foveal pit morphology analysis Section 4.3 BHRI Macular raster
Macular star HC 185/185 54.8 ± 11.9 40.0

Validation or raster acquisition protocol Section 4.6 BHRI Macular raster HC 12/24 37.0 ± 13.3 25Macular raster‡

Retinal morphology in a healthy population Chapter 5 BHRI Macular raster HC 444/855 54.9 ± 12.7 36.7

Diagnosis and severity assessment Chapter 6 BHRI Macular raster HC 174/334 65.0 ± 8.5 61.5
PD 174/341 64.9 ± 8.5 59.8

Longitudinal analysis Chapter 7
BHRI Macular raster HC 72/138 61.3 ± 7.6 42.3

Peripapillar PD 158/309 64.9 ± 8.6 65.2

AlzEye Macular cube HC 873/1134 75.7 ± 9.4 60.6
PD 167/217 76.7 ± 8.6 55.7

∗ mean ± σ (years)
† acquired twice with the same protocol (test-retest)
‡ high density protocol

Table 3.5: Datasets used in each analysis. From the two large datasets described in this chapter (BHRI and AlzEye) several smaller subsets of data were used in
each of the analyses carried out as part of this research work. HC: healthy control. PD: Parkinson’s disease.

35



4 OCT processing
algorithms

In this chapter the technical work carried out to develop a robust OCT image analysis pipeline is
described. First, Section 4.1 describes the development of an automatic quality control model for
OCT images. Secondly, a new method for automatic foveal center location is presented in Section
4.2. Then, different strategies for foveal pit morphology analysis are compared in Section 4.3. Next,
Section 4.4 presents RETIMAT, an open-source toolbox designed to facilitate OCT image analysis
that integrates all previously developed methods. Subsequently, Section 4.5 describes how we
applied RETIMAT to process the databases described in Chapter 3. Finally, a sensitivity analysis
carried to validate the standard macular raster acquisition protocol used in BHRI is described in
Section 4.6. Some of the results presented in Sections 4.2, 4.3, and 4.6 have already been published
by the author in [182,183].

4.1 Automatic image assessment

Quality assurance is a key step in OCT imaging. Before formal analysis, images need to be visually
inspected to identify quality problems. This step is crucial as poor quality data can dramatically
impact any statistical analysis or model trained on such images. With large databases, however,
rather than manually inspecting the data it would be beneficial to develop an algorithm capable
of automatically excluding invalid images. A difficulty in this regard is the highly multifaceted
nature of the problem. That is, images can be unsuitable for analysis for a variety of reasons
such as poor contrast, artifacts, segmentation errors, or ocular lesions. Moreover, the intricate
relationship between these factors makes it difficult to develop an independent solution for each
factor. To address this problem, we developed a more general machine learning model that could
screen OCT volumes and detect anomalies caused by quality problems.

Image processing and labeling

A random subset of 4000 macular images from the AlzEye database were included (Table 4.1).

Images Subjects/Eyes Age (years)∗ Male (%)

4000 4000/4000 67.6 ± 13.8 47.9
∗mean ± σ

Table 4.1: Subjects used for foveal pit model comparison. In this analysis a single image was
included for each subject.

The images were derived from 4000 randomly selected subjects. For each subject only one
image was randomly included to avoid the statistical dependence between left and right eyes. The

36



Chapter 4. OCT processing algorithms 4.1. Automatic image assessment

images had been previously segmented by the Topcon proprietary TABS algorithm, and included
a wide range of cases with poor contrast, artifacts, and ocular pathologies.

The images were visually inspected by a biomedical engineer and those showing obvious macular
anomalies (i.e., fovea not clearly present) or artifacts affecting the central macular region were
labeled as exclude. The labeling process was carried out with the MATLAB GUI shown in Figure
4.1. Using this GUI, images can be successively annotated based on both raw and range-normalized
TRT maps. TRT maps were used instead of actual B-scans because they provide a quick general
overview of an entire OCT volume and help identify overall quality problems that could be missed
by looking into single B-scans.

Figure 4.1: GUI used for quality labeling. The layout displays the TRT thickness map in the original
and normalized scales. To speed up the process a new image is automatically shown after
labeling an image. GUI: graphical user interface.

As a result of the labeling process, a total of 1760 images (44%) were labeled as exclude. This
high value of bad images can be attributed to the nature of the AlzEye dataset, which consists of
images routinely acquired in an ophthalmological hospital. Examples TRT maps of each class are
shown in Figure 4.2.

(a) Normal (b) Abnormal

Figure 4.2: Examples of normal and abnormal TRT maps. Normal thickness maps show a clearly
visible fovea. Conversely, poor image quality, artifacts, and ocular pathologies result in highly
distorted maps in which the fovea is not clearly recognizable.
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Data analysis

For every annotated OCT volume, 7 numerical features were derived (Table 4.2). The first 5 are
part of the image metadata provided by the scanning OCT device (Topcon). According to technical
documentation, the quality metric is related to image contrast. The ilm indicator measures the
edge strength around the ILM boundary over the weakest region of the scan and is useful to
identify blinks. Similarly, max motion delta, min motion correlation, and max motion factor are
derived from thickness values (NFL and TRT), and are used to identify blinks, motion artifacts,
and segmentation failures. These features have been used as part of the data curation pipeline in
research analyzing OCT images from the UKBB [37,97].

Feature Description

quality Topcon metric
ilm indicator Topcon metric
max motion delta Topcon metric
min motion correlation Topcon metric
max motion factor Topcon metric
pit depth Average radial TRT
pit depth range Radial foveal pit depth range

Table 4.2: Tabular features used to build the anomaly detection model. The first 5 features
are part of Topcon metadata and are used to detect problems related to poor contrast and
artifacts. Conversely, we designed the last two features to characterize foveal abnormalities.
TRT: total retinal thickness.

The last two features (foveal pit depth and pit depth range) were custom designed for the
task and are related to the foveal pit structure. They were included under the assumption that
anomalous maculae have abnormal foveal shapes. To compute them, the TRT maps were resampled
into a radial grid with 24 angular directions. For each direction the pit depth was computed as
the difference between the highest and the lowest TRT values. An illustration of the highest TRT
values is shown in Figure 4.3. From these radial values, the two final features were computed as
the mean (final pit depth feature) and the total range (pit depth range) of all 24 values.

Figure 4.3: 3D view of the foveal rim used to compute pit depth. The surface is a 3D visualization
of the thickness maps shown in Figure 4.2. The red contour delineates the foveal rim (i.e.,
perimeter of highest retinal thickness) used to compute pit depth and pit depth range features.
TRT: total retinal thickness.
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As a first exploratory analysis, the distributions of all features were inspected to find missing
values and outliers. Similarly, the relationship between each pair of features was examined to
detect highly correlated features.

Then, the computed features were used first to train a LR classifier with individual features.
Then, LR, SVM and random forest (RF) models were trained combining all features. In both
univariate and multivariate settings, 80% and 20% of the images were used for training and testing,
respectively. Both SVM and RF models were fine tuned by optimizing several hyperparameters by
means of randomized search and 5-fold cross-validation. The optimization procedure was configured
to minimize the balanced accuracy (BAC) to account for the existing class imbalance. Model
performance was assessed based on the AUC, BAC, sensitivity, and specificity. The latter three
are defined in terms of the true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) as:

sensitivity = TP

TP + FN
(4.1)

specificity = TN

TN + FP
(4.2)

balanced accuracy = sensitivity + specificity

2
(4.3)

To reduce the variability caused by data partition, the model training and evaluation was
repeated 500 times with different partitions. For each model performance matric, a 95% confidence
interval (CI) was obtained as the 5 and 95 percentiles of the 500 score distribution. Images labeled
as exclude were considered as the positive class.

Finally, the calibration of the trained multivariate LR, SVM, and RF models was evaluated by
inspecting individual calibration curves. The curves were computed using uniform bins and for
test samples only. More concretely, a 5-fold cross-validation procedure was employed to obtain
probabilistic predictions for the entire dataset. These predictions were then compared against the
fraction of positives in each bin.

Results

Individual feature distributions are shown in Figure 4.4. The data revealed that max motion
delta, max motion factor, and min motion correlation followed a skewed distribution. Therefore,
these features were normalized using the Yeoh-Johnson transformation to eliminate any potential
bias [184].

The max motion factor feature followed a zero-inflated distribution (68.8% of the values were
0) and strongly correlated with max motion delta (Pearson correlation r=0.995). For that reason,
it was excluded from further analyses.

The performance of each model is reported in Table 4.3. The best individual predictor was pit
depth range (AUC: 0.88 [0.86, 0.90], BAC: 0.82 [0.80, 0.84]), followed by max motion delta (AUC:
0.84 [0.81, 0.86], BAC: 0.66 [0.64, 0.68]). On the other hand, quality feature obtained the worst
results with an AUC of 0.64 [0.61, 0.68] and a BAC of 0.61 [0.58, 0.63]. All the LR models trained
on individual features showed a notable difference in the performance for each class. Indeed, the
specificity was always higher than the sensitivity, likely as a consequence of the existing class
imbalance.

When using all the features together, the performance improved for all three LR, SVM and
RF models. The best point estimate was obtained by the latter with an AUC of 0.95 [0.93, 0.96]
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Figure 4.4: Distribution of each feature used for quality assessment. The distributions are
normalized to represent a probability density function. Max motion delta, max motion factor,
and min motion correlation features follow a highly skewed distribution that was normalized
later. As observed, small values of pit depth are associated with an abnormal shape. Similarly,
a large pit depth range is a clear indicator of an eye to be excluded.

and a BAC of 0.88 [0.85, 0.90]. As shown in Figure 4.5 all three multivariate models showed
good calibration. Although the RF tended to overestimate low (0.1-0.35) and high probabilities
(0.65-0.95), the differences with a perfectly calibrated model were always below 0.1 points.

Figure 4.5: Model calibration curves. The curves show the relationship between the average score
(i.e., predicted probability of being an image to be excluded) and the actual fraction of
positives with that score. All three models showed good calibration.
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Model Features AUC BAC Sensitivity
(label=exclude)

Specificity
(label=include)

LR

quality 0.64 [0.61, 0.68] 0.61 [0.58, 0.63] 0.41 [0.37, 0.46] 0.80 [0.75, 0.84]
ilm indicator 0.74 [0.71, 0.78] 0.70 [0.67, 0.73] 0.62 [0.57, 0.66] 0.78 [0.74, 0.81]

max motion delta 0.84 [0.81, 0.86] 0.66 [0.64, 0.68] 0.38 [0.33, 0.43] 0.95 [0.92, 0.96]
min motion correlation 0.81 [0.79, 0.84] 0.68 [0.65, 0.70] 0.45 [0.40, 0.49] 0.90 [0.88, 0.93]

pit depth 0.68 [0.64, 0.71] 0.68 [0.66, 0.71] 0.45 [0.40, 0.49] 0.92 [0.88, 0.94]
pit depth range 0.88 [0.86, 0.90] 0.82 [0.80, 0.84] 0.71 [0.66, 0.75] 0.94 [0.92, 0.96]

LR all 0.92 [0.90, 0.94] 0.85 [0.83, 0.87] 0.77 [0.73, 0.81] 0.93 [0.90, 0.95]
RF all 0.95 [0.93, 0.96] 0.88 [0.85, 0.90] 0.85 [0.80, 0.89] 0.90 [0.87, 0.93]
SVM all 0.94 [0.92, 0.95] 0.87 [0.85, 0.89] 0.83 [0.78, 0.87] 0.92 [0.89, 0.94]

Table 4.3: Model performance in anomaly detection. First 6 rows display the performance of individual features. Last three rows show how this performance
was improved when combining all the features. LR: logistic regression. RF: random forest. SVM: support vector machine. AUC: are under the curve. BAC:
balanced accuracy.
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Based on the results it can be concluded that the RF achieved the best performance without
undermining calibration. To further investigate its behavior, a new RF model was trained using the
entire dataset and the hyperparameter tuning approach described previously. From this model, the
feature importances were extracted based on impurity decrease. These values, shown in Figure 4.6,
confirmed that the pit depth range was the feature contributing the most to accurate prediction.
In a second level of significance, max motion delta, min motion correlation, and pit depth features
reported moderate importance. Finally, both quality and ilm indicator features demonstrated low
influence on prediction.

Figure 4.6: Feature importance for automatic quality control models. Left vertical axis depicts
the importance of each feature. Right vertical axis shows the cumulative importance as
features are combined.

Discussion

The results show that a relatively simple model can be used to automatically detect quality prob-
lems in OCT images. Interestingly, there were differences between the performance of each indi-
vidual feature. The pit depth range feature obtained the best results, which could indicate that
this feature is especially suitable for anomaly detection as it captures localized changes in the
foveal structure. For instance, ocular lesions affecting concrete macular regions may not impact
the overall foveal pit depth, but may be more clearly reflected by the pit depth range. This would
also explain the poor individual performance of the pit depth feature by itself.

On the other hand, pure image contrast measured by the quality feature did not yield good
results. This highlights that low signal to noise ratio (SNR) is only one aspect of OCT image
quality control. In fact, combining all the features improved the performance, thus showing that
more than one feature are needed to capture all sources of problems. In this regard, a RF model
achieved the best performance. In any case, differences between multivariate models were not
huge, which highlights that even a simple LR model can capture most of the signal. Importantly,
all models showed good calibration on their probabilistic predictions. This observation opens up
possibilities for utilizing these models beyond a binary classification. For instance, researchers
working with large datasets may utilize model scores to exclude images only when the model
exhibits high confidence in their exclusion (e.g., p > 0.8). Similarly, from a more conservative
perspective, one could decide to directly include all images with high probability of being correct
(e.g., p < 0.2) and review the rest.
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Previous work has addressed OCT quality control before. As a common trait, state of the art
methods have mostly relied on deep learning models to classify single B-scans [39,40]. In contrast,
we trained a simpler model to perform quality control at a volume level. This approach parallels a
standard research workflow in which the goal is deciding if an entire volume needs to be excluded.
In addition, existing approaches have a strong focus on poor image contrast and cropping artifacts,
and disregard other sources of problems such as movement artifacts and ocular lesions. Admittedly,
by limiting the scope of quality control to those factors, they were able to achieve an accuracy
equal to or higher than 96% [39,40].

Despite its benefits, the simplicity of our method could also present limitations. We only used
the information contained in TRT maps under the assumption that it captures most of the problems
affecting both inner and outer retina. However, smaller ocular lesions and segmentation errors may
not be captured by TRT maps and would not be flagged by our model. Finally, most of the features
used to train the model are part of Topcon device metadata and cannot be extrapolated to other
devices directly. Nonetheless, we engineered a general (pit depth range) feature that outperformed
all Topcon features and can be used with macular OCT images from any device.

4.2 Automatic foveal center location

During macular OCT acquisition, the scanning beam is placed roughly at the foveal center by the
device operator. However, the actual scanning center may not lay precisely at the foveal center
due to fixation errors or incorrect centering (see Figure 4.7 for an example of incorrect centering).

Figure 4.7: Example of incorrect centering. The center of the acquired image was 0.6 mm higher
than the actual foveal center. Assuming the acquired center to be the fovea would result in
an incorrect estimation of retinal features.

Such centering errors can bias any computation that relies on an accurate foveal center location
(e.g., sectorized thickness measurements). As an alternative, automatic foveal center location
algorithms can provide a fast and reproducible solution to this problem. However, existing methods
for this task are either complex to implement or rely on deep learning models tailored to specific
acquisition protocols. Hence, in this section we present a novel automatic foveal center location
algorithm and evaluate its performance.

Images and data annotation

A total of 1388 images from 724 subjects in BHRI dataset were used (Table 4.4). The subjects
included both healthy individuals and patients with PD. All the images were acquired using a
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macular raster acquisition protocol. Although most of the subjects had both eyes included, a total
of 60 eyes were excluded from analysis due to ocular pathologies.

Subjects Images Age (years)∗ Male (%)

724 1388 57.8 ± 12.4 [21, 88] 44.8
∗ mean ± σ [range].

Table 4.4: Demographic characteristics of subjects used in foveal analysis.

From the retinal layer segmentation, TRT maps were computed as the difference between the
ILM and the BM. These TRT maps were the input for the subsequently developed foveal location
algorithm. Before data annotation, all TRT maps were resampled to generate images of 256 x 256
pixels using 2D cubic interpolation. These images were then used to manually locate the foveal
center with Label Studio platform. More concretely, the fovea was located at the center of the
darkest blue region surrounded by the foveal rim (see Figure 4.7). The obtained coordinates of
the manually located foveal center were considered as the ground truth and used to evaluate the
performance of the algorithm.

In addition, a smaller subset of images was included to evaluate the improvement on test-retest
repeatability as a result of locating the foveal center correctly. This dataset contained images
of both eyes of 10 subjects that were acquired twice in the same week following the exact same
macular raster acquisition protocol.

Foveal center location algorithm

The developed algorithm leverages the convex shape of the foveal pit and locates the foveal center
at the position with the deepest point compared to the foveal rim. The entire process consists of
two steps.

First, a coarse location of the foveal center is achieved by means of the flooding algorithm
described in Algorithm 1. Initially, several particles are randomly placed around the macula.
Then, the location of each particle is iteratively modified by finding the neighbor with the highest
negative TRT gradient. This process forces the particles to descend the foveal surface towards a
local minima. After several iterations, the particles either reach the foveal center or a location
near the edge of the TRT map (Figure 4.8). Particles close to the edge are assumed not to be the
fovea and are discarded. The remaining particle locations are then used to build a 2D histogram
and the fovea is coarsely located at the pixel with the highest histogram value.

Figure 4.8: Foveal location flooding algorithm. Left: particle trajectories from starting point (black
dots) to end points (red dots). Right: 2D histogram of particle end location.
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Algorithm 1 Flooding algorithm: coarse foveal center location
Inputs:

TRT map: Z (N x N matrix)
Number of particles: np

Number of steps: ns

Margin gap: m
Procedure:
H = hi,j = 0 (N x N matrix)
for p = 1 : np do

Random pixel location: i, j
for s = 1 : ns do

i′ = [i − 1, i, i + 1, i − 1, i + 1, i − 1, i, i + 1]
j′ = [j − 1, j − 1, j − 1, j, j, j + 1, j + 1, j + 1]
for n = 1 : 8 do

if i′[n] < 1 or i′[n] > N or j′[n] < 1 or j′[n] > N then
d[n] = 0

else
d[n] = Z[i′[n], j′[n]] − Z[i, j]

end if
end for
if min(d) >= 0 then

break
else

nnext = arg min
n

(d)

i = i′[nnext]
j = j′[nnext]

end if
end for
if i ≤ m or i > N − m or j ≤ m or j > N − m then

break
else

H[i, j] = H[i, j] + 1
Z[i, j] = Z[i, j] + 1

end if
end for
ifovea, jfovea = arg max

i,j
(H)
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The code implementation of the flooding algorithm has four inputs: the TRT map resampled
into a 64 x 64 pixel grid, the number of particles to generate (np =3000), the maximum number of
steps before stopping (ns =30), and the margin gap used to exclude particles with an end location
at the edge of the image (m=15).

In the second stage, the location of the foveal center obtained by the flooding procedure is
refined. To this end, the original TRT map is resampled into a high density grid and smoothed
with a filter with a 0.05mm radius circular kernel. The foveal center is located at the point of
minimum TRT in a circular 0.5mm radius region surrounding the coarse foveal center position.

Performance evaluation of the algorithm

The error of the algorithm was measured as the euclidean distance between the located foveal center
and the ground truth. This metric was computed for every image to obtain an error distribution.

To evaluate the improvement of the algorithm over simpler strategies, four additional foveal
location methods were evaluated:

• None: consider the acquisition center as the foveal pit center.

• Min: locate the foveal center at the A-scan point of minimum TRT in the central 0.85mm
radius region.

• Interpolation + min: resample the central part of the TRT map to a regular grid of 0.85
x 0.85mm2. Then, locate the foveal center at the grid point with minimum TRT.

• Smooth + min: resample the central part of the TRT map to a regular grid of 0.85 x
0.85mm2, and smooth it before locating the foveal center at the grid point with minimum
TRT. We used the implementation of AURA tools (foveaFinder.m function) [29,95] to smooth
the resampled TRT map by applying a filter with a 0.05mm radius circular kernel (same
smoothing procedure as that used in the second stage of the proposed algorithm).

The error distribution of each method is plotted in Figure 4.9 and summary results are presented
in Table 4.5. The average error when assuming the images to be correctly centered (None method)
was 109µm with a maximum of 0.6mm. This error was reduced by all the other methods to
different extents.

The proposed algorithm outperformed all simpler strategies and reduced the default misalign-
ment by 72%. The difference with the second best strategy (smooth + min) was 7.8µm (Mann-
Whitney U test, p= 10−14), which corresponded to a 20% reduction in average error. This dif-
ference remained significant when including a single image per subject (Mann-Whitney U test,
p= 10−7), which confirmed that the potential statistical dependence between both eyes of each
subject did not affect the results.

Method Error (µm)∗

None 109.9 ± 74.5 [4.0, 600.3]
Min 58.3 ± 39.3 [2.9, 293.7]

Interpolation + min 52.3 ± 37.2 [3.3, 291.4]
Smooth + min 38.3 ± 19.3 [1.7, 115.1]

Proposed 30.5 ± 16.8 [0.4, 112.3]
∗ mean ± σ [min, max]

Table 4.5: Foveal location error of each method. The error is defined as the euclidean distance
between the located foveal center and the labeled ground truth.
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Figure 4.9: Foveal location error distribution of each method. The error is defined as the euclidean
distance between the located foveal center and the labeled ground truth. For comparison,
the error is given in logarithmic scale.

Repeatability improvement

In this second analysis we investigated the impact of correctly locating the foveal center in terms
of test-retest repeatability. We computed TRT and GCIPL thicknesses averaged over both the
whole macula and ETDRS sectors. This computation was done twice with and without locating
the foveal center using the proposed algorithm.

The results are displayed in Table 4.6 and highlight how the mean absolute difference (MAD)
between test and retest measurements diminished for all sectors when correctly locating the fovea.

For instance, properly locating the fovea reduced the expected MAD from 1.7µm to 1.5µm
(∆=12%) for macular TRT. This effect was even more noticeable for the central and outer sec-
tors, which showed an overall improvement above 20% with a maximum of 45.5%. Although the
improvement effect appears to be evident it should be mentioned that the limited sample size
(N=10) prevented any formal statistical test.

Applicability and comparison with previous work

Macular OCT images are not always perfectly centered at the fovea. In the analyzed dataset the
misalignment error ranged up to 0.6mm. It is important to note that this error is present even
though the images were acquired as part of a research study and careful attention was devoted
into ensuring an accurate alignment. This suggests that images acquired in a clinical setting would
likely have more severe alignment problems and benefit more from the foveal location step.

Importantly, we showed that misalignment errors can be considerably reduced by automatic
foveal center location methods, which suggests it is advisable to incorporate such a step in any
quantitative OCT analysis pipeline. More specifically, we developed and evaluated a novel two-
stage algorithm that outperformed simpler methods and whose improved performance can be
attributed to three main aspects:

1. Two-stage procedure: the first stage of the proposed algorithm aims to locate the foveal
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Layer Sector MAD (µm) ∆ (%)
None Proposed

TRT

Macula 1.70 1.50 12.1
Central 3.28 2.65 19.2

Inner nasal 1.94 1.62 16.5
Inner superior 1.99 1.65 17.1
Inner temporal 2.06 1.65 19.8
Inner inferior 3.17 2.36 25.4
Outer nasal 1.97 1.95 0.9

Outer superior 2.63 1.89 28.2
Outer temporal 3.04 2.27 25.1
Outer inferior 2.74 1.57 42.6

GCIPL

Macula 0.76 0.73 4.2
Central 2.07 1.21 41.5

Inner nasal 1.76 1.30 26.1
Inner superior 2.01 1.87 6.7
Inner temporal 1.71 1.56 8.69
Inner inferior 2.51 1.79 28.7
Outer nasal 1.82 1.41 22.4

Outer superior 1.92 1.04 45.5
Outer temporal 2.11 1.57 25.4
Outer inferior 2.57 1.86 27.5

Table 4.6: Test-retest results of foveal location methods. Repeatability is measured as the mean
average difference (MAD) between test and retest acquisition. The last column shows the
improvement atained by correctly locating the foveal center.

center approximately. The search space of the second stage can thus be limited to a small
region of interest and the foveal center can be located more accurately. Moreover, contrary to
the simpler methods—which limit the search space a priori to a small 0.85mm radius region—
, the proposed algorithm explores a larger macular region and could locate the foveal center
in cases with a misalignment much larger than that observed in our dataset.

2. Interpolation: when the number of B-scans is relatively low (in this case 25), resampling
the data into a higher density grid might help locate the foveal center in cases where the
central B-scan does not capture it.

3. Smoothing: the filtering operation aggregates information across adjacent pixels and is
likely more robust against segmentation errors.

It is worth mentioning that locating the fovea precisely has a positive impact on thickness
measurements. In fact, we measured an up to 45% improvement in the test-retest repeatability
of certain ETDRS thickness measurements. This suggests that an accurate centering reduces
measurement error, which would likely result in a higher statistical power.

While some previous researchers have also studied automatic foveal location, there remain some
differences. For instance, Niu et al. [65] proposed a method based on saliency maps that conceptu-
ally bears some resemblance to our approach. Rather than relying on the complex mathematical
modeling featured in their work, our approach stems from the intuitive idea of flooding and does
not require fine-tuning, which may make it easier to understand and implement. Moreover, we
used a considerably larger database.

Deep learning approaches have also been proposed [66, 67]. Although these approaches have
shown great potential, we opted not to explore them for two reasons: 1) since our proposed
algorithm successfully fulfilled the task, there was little incentive to pursue more complex models,
and 2) our algorithm does not rely on either image intensity or TRT scaling, which arguably results
in better generalizability. Furthermore, differences in scanning devices and protocols are known to
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hinder the performance of deep learning models. It is true, however, that locating the foveal center
in pathological cases with a distorted fovea may require a model as complex as a neural network.

As mentioned, the subjects included in the analysis did not present any ocular pathology.
Therefore, the obtained results may not extrapolate to subjects with ocular lesions affecting the
macular structure (e.g., when the fovea is not clearly recognizable). This factor makes it difficult
to numerically compare the results with previous research, which did include pathological cases
[65–67]. We did not address this point in the present work because the main objective was to
develop a robust foveal location method for the BHRI dataset, which does not include any cases
with ocular pathology.

4.3 Robust foveal pit morphology analysis

The foveal pit morphology can be studied by either computing geometrical features (e.g., mean
slope, depth, etc.) and/or by fitting mathematical models to the foveal shape. The mathematical
models can potentialy be used in two ways: 1) to smooth the foveal pit before computing geo-
metrical parameters, and 2) to use estimated equation coefficients as features describing the fovea.
With this aim, multiple models have been proposed [72–77]. However, geometrical features can be
directly computed from raw TRT maps [128, 130, 185], and there is no conclusive evidence of the
benefits of using mathematical models as a previous smoothing step. Moreover, to the best our
knowledge, existing models have not been compared quantitatively.

To address this, here we investigate the advantages and limitations of introducing a modeling
step prior to the computation of geometrical parameters. Specifically, we quantitatively compared
six mathematical models and two smoothing approaches in terms of their ability to harmonize
measurements from different acquisitions of the same eye.

Dataset and image processing

The dataset used is described in Table 4.7 and consisted of a total of 185 eyes from 185 healthy
subjects imaged twice in the same day using raster and star acquisition protocols. Raster and star
scans were treated as test and retest, respectively.

Subjects/Eyes Age (years)∗ Male (%)

185 54.8 ± 11.9 46.8
∗ mean ± σ [range].

Table 4.7: Subjects used for foveal pit model comparison.

All the images were processed following the pipeline illustrated in Figure 4.10. First, the TRT
maps is computed. This step is useful to define a common flat reference from which to compute
geometrical parameters and disregard the effect of the eye curvature. The obtained TRT profile
can be considered as the raw curve delineating the foveal surface. This signal, usually noisy, is the
one that will be subsequently modeled. Secondly, the foveal center was automatically detected (see
Section 4.2) and used to align TRT maps by means of 2D translation. From centered TRT maps,
raster scans were transformed into a star grid with 24 angular directions and a 2.5mm radius.
This was necessary to radially characterize the foveal shape.

Next, six mathematical models developed by Dubis et al. [73], Ding et al. [74], Scheibe et
al. [77], Liu et al. [75], Yadav et al. [72], and Breher et al. [76] were fitted to the data (refer to
Table 2.1 for a detailed list). This fitting process employed the non-linear least squares method,
allowing a maximum of 1000 iterations and setting a tolerance of 10−6 for both the residuals and
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Figure 4.10: Model comparison pipeline. In the first step the retina is flattened by computing the
total retinal thickness (TRT). Then the foveal center is located and used to interpolate the
thickness map into a radial grid. Finally, mathematical models are fitted to the data and
used to derive geometrical features. Adapted from [182].

model coefficients. The initial coefficient values were manually adjusted, and the option yielding
the lowest fitting error was chosen. In addition, locally estimated scatterplot smoothing (LOESS)
was also used based on a second-degree polynomial and a span ranging from 1% to 50%. It is
important to note that the smoothing procedure was applied individually to each B-scan.

From the fitted data, four geometrical parameters were derived for each OCT volume: rim
height (highest TRT value), rim radius (horizonal distance from the fovea to the point of maximum
TRT), maximum slope (maximum of the firs derivative of the TRT profile between the fovea and
the rim), and CFT (TRT at the located foveal center). The first three—with a different value for
each angular direction—were averaged across all 24 angular directions to compute a single value
per image.

Model comparison

Both mathematical models and smoothing methods were compared based on the following metrics:

• Fitting error: measured as the RMSE between the raw TRT maps and the TRT maps
obtained after model fitting.

• Absolute agreement between raster and star: used to determine the ability of each
strategy to enhance agreement between two distinct acquisitions of the same eye (raster and
star). This assessment was carried out for each morphological parameter and involved the
use of the intra-class correlation coefficient (ICC) based on a single measurement and a 2-way
mixed-effects model (ICC (2,1), [186]). In addition to the mean ICC, 95% confidence intervals
were computed using the percentile bootstrap method resampling the data 104 times.

• Estimation bias: used to evaluate the effect of the modeling/smoothing step on each pa-
rameter estimation. This was calculated as the relative difference between the estimation of
each parameter before (xraw) and after model fitting or smoothing (xmodel):

Bias(%) = 100 xmodel − xraw

xraw
(4.4)

Separate calculations were performed to determine the RMSE and estimation bias for both
raster and star scans.

The results of the model comparison can be found in Tables 4.8 and 4.9. Two representative
instances of LOESS are showcased, corresponding to a low degree of smoothing (span=20%) and
a high degree of smoothing (span=50%).
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Model RMSE ICC
Raster Star CFT Rim height Rim radius Maximum slope

None - - 0.976 [0.966, 0.983] 0.990 [0.987, 0.992] 0.894 [0.865, 0.919] 0.307 [0.236, 0.381]
Dubis et al. [73] 3.6 ± 0.7 4.1 ± 0.7 0.988 [0.984, 0.992] 0.995 [0.994, 0.996] 0.949 [0.934, 0.962] 0.968 [0.957, 0.977]
Ding et al. [74] 5.3 ± 0.9 5.9 ± 0.9 0.988 [0.984, 0.992] 0.995 [0.994, 0.997] 0.957 [0.945, 0.966] 0.969 [0.958, 0.977]

Scheibe et al. [77] 2.6 ± 0.6 3.2 ± 0.6 - 0.995 [0.994, 0.997] 0.949 [0.933, 0.962] 0.956 [0.939, 0.969]
Liu et al. [75] 11.5 ± 2.7 11.5 ± 2.7 0.987 [0.983, 0.991] 0.994 [0.992, 0.996] 0.961 [0.949, 0.970] 0.959 [0.944, 0.971]

Yadav et al. [72] 1.6 ± 0.3 2.5 ± 0.4 - - - 0.958 [0.943, 0.970]
Breher et al. [76] 2.9 ± 0.6 3.6 ± 1.3 0.986 [0.979, 0.990] 0.995 [0.993, 0.996] 0.941 [0.924, 0.955] 0.958 [0.942, 0.971]
LOESS (20%) 0.9 ± 0.1 1.7 ± 0.3 0.985 [0.980, 0.989] 0.994 [0.992, 0.996] 0.901 [0.875, 0.924] 0.953 [0.936, 0.966]
LOESS (50%) 5.9 ± 1.5 6.5 ± 1.6 0.989 [0.984, 0.993] 0.995 [0.994, 0.997] 0.960 [0.947, 0.970] 0.986 [0.981, 0.990]

Table 4.8: Fitting error and agreement of each foveal pit modeling approach. The error is measured as the root mean square error (RMSE) between the raw
and modeled foveal shape. The agreement is evaluated by the intraclass correlation coefficient (ICC). CFT: central foveal thickness. From [182].

Model
Bias (%)

CFT Rim height Rim radius Maximum slope
Raster Star Raster Star Raster Star Raster Star

Dubis et al. [73] 1.3 ± 1.3 1.4 ± 1.9 -0.2 ± 0.2 -0.5 ± 0.3 -7.8 ± 3.7 -8.2 ± 4.1 -14.1 ± 4.1 -34.0 ± 9.7
Ding et al. [74] 1.1 ± 1.4 1.2 ± 2.1 -0.5 ± 0.3 -0.8 ± 0.3 -7.8 ± 3.8 -8.1 ± 4.1 -13.9 ± 3.9 -33.9 ± 9.7

Scheibe et al. [77] - - -0.1 ± 0.3 -0.3 ± 0.3 -3.8 ±2.4 -3.5 ± 2.4 -19.8 ± 4.2 -38.6 ± 7.8
Liu et al. [75] -1.1 ± 1.2 -1.1 ± 1.8 -3.6 ± 0.9 -3.9 ± 0.9 35.0 ± 7.4 36.4 ± 8.0 -5.3 ± 4.6 -27.1 ± 9.8

Yadav et al. [72] - - - - - - -9.1 ± 4.8 -29.7 ± 11.9
Breher et al. [76] 0.8 ± 1.1 0.9 ± 1.8 -0.4 ± 0.2 -0.6 ± 0.2 -6.5 ± 2.9 -6.6 ± 3.2 -11.9 ± 3.4 -32.1 ± 9.4
LOESS (20%) 0.3 ± 0.5 0.4 ± 1.4 -0.1 ± 0.1 -0.4 ± 0.1 -0.1 ± 0.9 -0.1 ± 1.5 -9.1 ± 2.3 -29.2 ± 10
LOESS (50%) 6.0 ± 2.7 6.6 ± 3.3 -0.3 ± 0.3 -0.5 ± 0.3 2.2 ± 2.7 2.5 ± 2.8 -28.8 ± 6.1 -46.6 ± 8.2

Table 4.9: Estimation bias of each foveal pit modeling approach. The bias is computed as the relative difference between the estimations obtained by the raw
and modeled data. The results are presented separately for raster and star patterns. CFT: central foveal thickness. From [182].

51



Chapter 4. OCT processing algorithms 4.3. Robust foveal pit morphology analysis

When no model was utilized, there was a high level of agreement between raster and star
estimations for both the CFT (ICC=0.976) and the rim height (ICC=0.990). The rim radius also
exhibited a good level of agreement (ICC=0.894), while the maximum slope yielded the poorest
results (ICC=0.307). The limited agreement observed for the maximum slope was attributed to
a consistent overestimation in the star scans (Figure 4.11).

Figure 4.11: Raster vs. star estimation without using any model. A systematic overestimation
of the maximum slope was observed only for star acquisitions. From [182].

With the exception of the model proposed by Liu et al. [75], all the other models successfully fit
the data with an RMSE below 6µm. Of these, the model presented by Yadav et al. [72] fitted the
data best. Figure 4.12 displays representative examples of a low, medium, and high fitting errors.

Figure 4.12: Examples of fitting errors. While a small error reduces the noise without altering the
foveal structure, larger errors derived from inadequate modeling misrepresent the actual
foveal shape. From [182].

It is worth noting that, on average, star scans presented a higher fitting error and exhibited
more noise as depicted in Figure 4.13.

Figure 4.13: Raster and star TRT profiles. Star acquisitions are noisier, which can result in an
overestimation of the slope. From [182].

The introduction of the modeling step resulted in an overall improvement in the agreement
between raster and star scans. However, this was primarily notable for the rim radius and, partic-
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ularly, the maximum slope, where the agreement substantially increased beyond an ICC of 0.95.
The improvement of the ICC came at the cost of an estimation bias that varied between parame-
ters: a slight overestimation of the CFT, a minimal underestimation of the rim height, and a more
substantial underestimation of both the rim radius and maximum slope.

Figure 4.14 depicts the relationship between the introduced bias and the ICC through the
LOESS curve. There was a rapid increase in ICC, particularly for the maximum slope, as the bias
increased until reaching a point where the improvement became marginal. In this bivariate com-
parison, models introducing higher biases did not consistently result in proportionally improved
ICC. For example, the model proposed by Scheibe et al. [77] introduced the highest bias in esti-
mating the maximum slope (-19.8%), yet it achieved lower ICC agreement compared to approaches
with smaller biases.

Figure 4.14: ICC as a function of the bias in raster scans. Each modeling strategy improves
the agreement between acquisition at the cost of a certain bias in the estimation of foveal
features. Adapted from [182].

On the other hand, LOESS smoothing demonstrated similar performance to most of the models.
Specifically, even a mild degree of smoothing significantly improved the ICC of the maximum slope,
while a higher degree of smoothing led to an overestimation of the CFT.

Choosing the right methodology

The suitability of mathematical models for characterizing the foveal pit is a topic of debate, and
not all researchers opt to employ them. In principle, the rationale for the introduction of a math-
ematical model is twofold: firstly, it serves to reduce noise and obtain a smoother representation
of the data. Secondly, it enables parametrization, allowing for the characterization of foveal pit
morphology through the coefficients derived from the fitted equation.

As regarding the former, the strong agreement observed for both the CFT and rim height
suggests that these metrics are sufficiently robust to characterize the foveal pit without the need
for denoising. The slightly lower but still satisfactory agreement observed for the rim radius can be
attributed to its susceptibility to segmentation errors. As there is minimal thickness variation at
the foveal rim, even slight noise-induced irregularities can significantly affect the point of maximum
thickness, and consequently impac radius measurements.

On the other hand, the poor agreement observed for the maximum slope suggests that slope
metrics inherently exhibit more noise. Star scans, in particular, exhibited higher levels of irregu-
larities, resulting in an overestimation of the maximum slope and thus a lower agreement. This
behavior could potentially stem from interpolation errors during the resampling of the star pattern,
whose sampling density decreases for larger eccentricities.
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Importantly, the application of mathematical modeling or smoothing techniques improved the
agreement, supporting the justification for incorporating a smoothing/modeling step when calcu-
lating slope metrics for noisy data. This improvement came at the expense of introducing fitting
errors and estimation bias, however. Previous studies have compared models based on their fitting
errors, aiming to achieve better accuracy than existing models. For example, studies by Liu et
al. [75], Breher et al. and [76] demonstrated lower fitting errors than the model proposed by Dubis
et al. [73]. Similarly, Yadav et al. [72], showed superior fitting of their model compared to those
of Dubis et al. [73] and Ding et al. [74]. These differences were also observed in our study.

Nevertheless, in the context of denoising, the objective is not necessarily to achieve the best
possible fit, but rather to introduce the smallest possible bias that enhances reliability. Given
the absence of a ground truth reference, we adopted the following premise: when similar levels of
agreement are achieved, the method with the lowest bias is preferable.

The first model proposed in the literature (Dubis et al. [73]) exhibited a notable bias in estimat-
ing both the rim radius and maximum slope, consistent with its known limitations in accurately
capturing foveal asymmetries [75]. The model presented by Ding et al. [74] relied on a restricted
set of eight parameters to model the entire TRT map, resulting in an underestimation of both the
rim radius and maximum slope due to the inherent limitations of the model.

In the case of the radial model proposed by Scheibe et al. [77], although it achieved a low
fitting error, it also exhibited the highest underestimation of the maximum slope. This could be
attributed to the lack of flexibility of the model in capturing various foveal shapes effectively.

The model proposed by Liu et al. [75] yielded the best results for the maximum slope, with a
nearly maximum ICC value and the smallest bias among the models. However, it also displayed
the highest fitting error and a significant bias for the rim radius. This is likely because the model
was specifically designed to account for flat pit bottoms by focusing on fitting the foveal pit region
using a piecewise model. Consequently, its performance decreases when fitting data far from the
foveal center.

The model with the highest fitting accuracy, as proposed by Yadav et al. [72], performed well by
fitting the inner parts of each side of the B-scan separately. However, it should be noted that this
model uses the foveal center and rim as references, which means that metrics derived solely from
those landmarks, such as the CFT, rim height, or rim radius, are estimated as if no model were
applied. Additionally, the fitting of cubic Bézier curves in this model introduces more complexity
than the simpler equation fitting required by other models.

The model proposed by Breher et al. [76], which utilized the sum of three Gaussians, exhibited
rigidity in both the rim radius and maximum slope. We observed that the fitting process of this
model was highly sensitive to the initial coefficient estimation, possibly due to the higher number
of coefficients (nine) involved.

Interestingly, our findings indicated that a simple LOESS smoothing approach could signifi-
cantly reduce noise without introducing significant bias. The trade-off between bias and agreement
was evident in the ICC vs. bias curve of LOESS, as excessive smoothing could distort the estima-
tion while achieving high agreement.

When considering the utilization of model coefficients as parameters for characterizing foveal
pit morphology, it is often preferable for these parameters to correspond to specific features of
the foveal pit, so as to ensure clear interpretation of the analyses. In this regard, the coefficients
employed in the model proposed by Scheibe et al. [77] can be regarded as the most intuitive, as
they describe aspects of the fovea such as steepness. On a secondary level, certain coefficients
defined in the models presented by Ding et al. [74], Dubis et al. [73], and Liu et al. [75] still retain
interpretability. In contrast, the values defining Bézier curves [72] or the sum of three Gaussians [76]
can be more complex to interpret.

It is worth noting that the analysis of the foveal pit encompasses various potential approaches,
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and those reviewed in this study do not represent the entire spectrum. Therefore, future research
should aim to expand the analyses presented here to include other parameters related to the foveal
pit, as well as explore alternative modeling and smoothing techniques.

When analyzing foveal pit morphology using mathematical models, it is essential to approach
the task with careful consideration. In this regard, the following guidelines can be employed: if
the objective is to characterize the foveal pit using model coefficients, it is advisable to select a
model whose coefficients are easy to interpret or align closely with the research question at hand.
Alternatively, in cases where parametrization is not desired, such as when examining fundamen-
tal parameters like maximum slope or rim height, it is important to assess whether denoising is
necessary. This can be determined by visually inspecting the data. If denoising is required, it
is advisable to try first a simple smoothing technique and consider how it may bias parameter
estimation.

4.4 RETIMAT Toolbox development

Introduction

OCT image analysis involves multiple steps and usually requires the use of multiple software tools.
For instance, to compute thickness features it might be necessary to use different software for file
reading, segmentation, and feature extraction. Problematically, existing software libraries may not
be able to directly communicate between each other and custom code is often needed to bridge
this gap. Moreover, using more than one tool complicates the process and makes it difficult to
build reproducible pipelines (i.e., creating full end to end workflows that always produce the same
result).

Hence, there exists a need to develop a single software toolbox that could perform all or most of
the processing steps. To this end, we integrated all previously described OCT processing algorithms
into an open-source MATLAB toolbox called Retinal Image Analysis in MATLAB (RETIMAT)
(https://github.com/drombas/retimat). The toolbox has already been presented to the com-
munity in conferences [183,187] and the design is described below.

High-level design

An overview of RETIMAT is shown in Figure 4.15. It was designed as an easy-to-use application
programming interface composed of independent functions that fulfill specific tasks in the OCT
analysis pipeline. These functions are grouped into modules with similar logic (input/output,
visualization, etc.) so that custom OCT processing pipelines can be built depending on the use
case.

Target users are expected to be familiar with scripting languages to make use of advanced
features. However, the toolbox includes a detailed documentation in the form of tutorials to guide
less experienced users in the most common tasks.

Implemented functions

File reading

RETIMAT provides an interface to read proprietary OCT files from the main vendors: Heidel-
berg (e2e and vol), Topcon (fda), and Zeiss (img). It also supports segmentation data obtained
by the IOWA Reference Algorithm implemented in OCTExplorer 3.8.0 software (xml) [26,87–89].
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Figure 4.15: High-level design of RETIMAT. RETIMAT reads files from different devices and in-
cludes different modules for visualization and feature extraction. Each module comprises a
set of independent functions that can be used to create custom processing pipelines.

Data read from any of the supported formats is loaded into MATLAB with the same structure,
which facilitates building multi-vendor pipelines.

It is important to mention that most of the aforementioned file formats are not disclosed and
the implementation in RETIMAT has only been possible as a result of previous laudable efforts to
parse every file format: AURA tools [29,95], Unified OCT explorer [188], and OCT-Converter [189].

Visualization

Summary figures can be created with the visualization module as a quick way of looking into
an OCT volume to identify poor image quality, ocular lesions, or segmentation errors. The report
consists of a fundus image, several en-face reflectance and thickness maps, and actual B-scans with
segmentation. The number of layers shown can be fully specified by the user and the figure can
be either visualized interactively or saved into a png file. In addition, there are also functions to
visualize sectorized thickness or radial foveal pit parameters (see Figure 4.17).

Figure 4.16: Example summary figure generated by RETIMAT. The figure shows the fundus
image, a reflectance map, three thickness maps and 5 B-scans. The number of thickness
maps and B-scans can be customized. The figure can be either rendered or saved into
memory.
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Preprocessing

The preprocessing part consists of functions to segment retinal layers, detect the foveal center
automatically (Section 4.2), compute thickness from segmentation data, and resample 2D maps
into different grids (e.g., transforming a raster grid into a star grid for radial analysis). Retinal layer
segmentation is supported via an interface with the AURA tools segmentation algorithm [29, 95].
This algorithm was developed in MATLAB and has been widely used by the research community
since its validation. Using the developed interface, segmentation can be integrated into a single
processing pipeline without the need for external tools. In addition, several utility functions are
also available for internal file handling and data format conversion.

Feature extraction

The largest module of the toolbox includes functions to compute numerical features that de-
scribe different aspects of retinal images:

• Image quality: image contrast metrics computed from segmentation and pixel intensity
(SNR, contrast to noise ratio, etc.).

• Sectorized thickness: point thickness values averaged into arbitrary parcellations (see
Section 4.5).

• Foveal pit morphology: features from two categories: 1) geometrical features such as
maximum slope or rim height, and 2) mathematical coefficients derived from fitting the
models from the literature [72–77].

• Texture features: four types of metrics computed from 2D en-face maps: fractal dimension,
lacunarity, GLCM features, and LBP features.

• Reflectance: image intensity or reflectance used to build en-face maps from which sectorized
and texture features can be computed.

Applications of RETIMAT and future work

RETIMAT is the backbone of every analysis presented in chapters 5, 6 and 7. In particular, it
has been used to analyze all the images from the BHRI dataset and extract the features used
in data analyses. Additionally, part of RETIMAT has been translated into Python and used to
build the main OCT feature extraction pipeline for more than 1 million OCT images in the AlzEye
database [178]. The computed features have facilitated an important body of research investigating
multiple clinical conditions, part of which has already been published [190]. Both BHRI and AlzEye
feature extraction pipelines are described in Section 4.5.

These examples illustrate how quality scientific software facilitates research. Indeed, by releas-
ing RETIMAT as open-source software we intend to contribute to the community by providing a
tool that advances OCT image analysis.

As future lines of work, one of the main goals would be to integrate already implemented func-
tions into a single workflow that could be run without coding experience. This workflow would
automatically read the images, perform quality screening, generate exports for visualization, pre-
process the images, and compute a set of features for further analysis. As a limitation, RETIMAT
does not currently incorporate state of the art retinal layer segmentation models and relies on the
segmentation data stored in proprietary OCT images and AURA segmentation algorithm [29,95].
Implementing such a model is one of the future improvements that would make RETIMAT a more
efficient standalone tool.
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4.5 Enhanced parametrization

In this section we describe how we used RETIMAT to process the images from both BHRI and
AlzEye datasets to extract numerical features for data analysis. It is important to note that this
section describes the entire spectrum of computed features, but different subsets of them were used
throughout the thesis depending on the research question.

BBHRI

Preprocessing

To ensure proper alignment, all macular scans were automatically aligned by locating the foveal
center automatically (refer to Section 4.2). The lateral scale of macular images was adjusted for
ocular magnification by means of the built-in Spectralis software, who adjusts lateral resolution
of each eye based on an estimation of the refractive error [122]. Left eye scans were flipped
horizontally to match the orientation of the right eyes. From layer segmentation data provided by
the device, thickness values were computed for each A-scan and the following layers: TRT, NFL,
GCIPL, INL, outer nuclear and plexiform layer (ONPL), and external limiting membrane-Bruch’s
membrane (ELM-BM). Point thickness values were then interpolated onto a regular grid of 200 x
200 points covering the same macular region to ensure isotropic sampling.

From these thickness maps, features from three categories were computed: sectorized thickness,
foveal pit morphology, and texture.

Sectorized thickness

Retinal thickness is typically studied by averaging A-scan values across a certain macular re-
gion to reduce the number of values to analyze. The most commonly employed sectorization is the
so-called ETDRS. Although using this approach facilitates comparison across studies, it limits the
description of the macular region to only nine parameters. To obtain a more comprehensive char-
acterization of the macula, here we used 6 different macular grids with varying spatial resolution
(see Figure 4.17):

• Macula: fovea centered disk of 3mm radius.

• ETDRS: nine sectors split into four quadrants and two rings of 0.5, 1.5 and 3mm radii (9
features).

• ETDRS rings: parafovea (inner ring with 0.5 to 1.5mm radii), and perifovea (outer ring with
1.5 to 3mm radii) (3 features).

• 5 rings: a set of five concentric rings with a 0.5mm spacing between radii.

• 12 angles: radial sectorization with 12 angular directions.

• Regular: 20 x 20 square sectors.

The choice of sectorization depends on the research question and the initial hypothesis. For
instance, if the effect under study is expected to be localized in a concrete region it may be more
effective to use smaller sectors. All 6 grids were used to compute average thickness values for
previously listed retinal layers. The total number of obtained thickness values per layer was 430.
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Figure 4.17: Sectorizations of the macula. Left image shows a fundus image with a colored macular
thickness map. Right plots depict different sectorization grids used to analyze the raw
thickness map.

Foveal pit morphology

Foveal pit features can provide complementary information about the retinal structure. There
are two types of foveal features: geometrical parameters describing intuitive aspects of the fovea
(e.g., slope or depth), and equation coefficients derived by fitting a mathematical model to the foveal
pit shape. Here the shape of the foveal pit formed by both TRT and GCIPL layers was analyzed.
This is possible because the thickness distribution of both layers follows a convex shape that can
be analyzed by existing approaches. In either case, point thickness values were interpolated onto
a radial grid consisting of 24 angular directions, a radius of 2.5mm, and 100 points per direction.
This was necessary to characterize the foveal pit radially.

Initially, the CFT was computed as the thickness value at the foveal center. Then, to reduce
segmentation ripple, LOESS smoothing (span=50%) was applied individually to the thickness
profiles for each radial direction. These smoothed profiles were used to determine the following
features:

• Rim height: highest thickness value.

• Rim radius: lateral distance from the foveal center to the rim.

• Rim disk perimeter: perimeter of the disk created by all rim height points.

• Rim disk area: area of the disk created by all rim height points.

Finally, original thickness profiles were smoothed again using a lighter smoothing (span=15%).
The difference in the smoothing is in line with the results of Section 4.3 that highlight how a
larger smoothing is beneficial for radius determination but highly biases slope-related estimations.
Accordingly, this lightly-smoothed thickness profiles were used to estimate the next features:

• Mean slope: the average first derivative between the foveal center and the rim.

• Max slope: the maximum first derivative between the foveal center and the rim.

• Max slope height: thickness at the point of maximum slope.

• Max slope radius: lateral distance from the foveal center to the point of maximum slope.

• Pit area: area filled by the foveal depression.

• Max slope disk perimeter: perimeter of the disk created by all rim height points.
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• Max slope disk area: area of the disk created by all maximum slope height points.

Global features (i.e., CFT and any disk area/perimeter feature) were computed once for the
whole fovea. Conversely, radial features such as slope or radius were derived for each direction
separately as illustrated in Figure 4.18. These were then averaged over both the entire macula and
4 ETDRS quadrants. In addition to the mean, the standard deviation of the radial features was
also computed.

To complement geometrical features, the mathematical models developed by Dubis et al. [73],
Ding et al. [74], Scheibe et al. [77], and Breher et al. [76] were fitted to the data (refer to Table 2.1
for a detailed model description). The fitted coefficients of each model were extracted and used as
features. Although some of these features do not have a direct morphological interpretation, they
can potentially describe more subtle aspects of the foveal shape. As with geometrical features,
radial model coefficients were averaged across the same angular directions used for geometrical
features.

Texture

Texture features are effective to describe high-order statistical properties of thickness maps.
Here, we computed 5 types of features that have already been used in OCT analysis:

• Fractal dimension: computed using the box-counting algorithm [81].

• Lacunarity: computed for box sizes of 2, 4, 8, 16 and 32 following the procedure described
by Roy and Perfect [82].

• Standard deviation: derived as a simple measurement of the variability of thickness values in
a certain sector.

• LBP: the LBP histogram was built considering the surrounding 8 neighbors of each pixel.
Then, seven statistical measurements were derived from the histogram: mean, median, stan-
dard deviation, interquartile range, kurtosis, skewness, and entropy [79].

• GLCM : we computed a total of 21 GLCM features [78, 191, 192] from the average of four
GLCM matrices derived by comparing adjacent pixels horizontally, vertically, and in both
diagonals. The number of grayscale levels was set to 60. The derivation of each GLCM
feature is described below.

As a first step to compute GLCM features, the GLCM matrix (G) was transformed into a 2D
probability distribution as:

Pi,j = Gi,j∑N
i=1

∑N
j=1 Gi,j

(4.5)

where N=60, and i and j are the row and column indexes, respectively. From this matrix we
can already compute a first set of 11 features:

Autocorrelation =
N∑

i=1

N∑
j=1

Pi,j i j [191]

Contrast =
N∑

i=1

N∑
j=1

Pi,j(i − j)2 [78]

Dissimilarity =
N∑

i=1

N∑
j=1

Pi,j |i − j| [191]
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Figure 4.18: Foveal pit morphology analysis pipeline. After acquiring the images the foveal center is located. From this the central foveal thickness (CFT) is
directly estimated. Then, the original thickness map is interpolated into a star pattern. Obtained radial thickness profiles are smoothed by strong and
light LOESS. The former is used to estimate the position of the rim and derive features related to it. The latter is employed for slope measurements.
Radial parameters are finally averaged over multiple angles. Adapted from [183].
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Energy =
N∑

i=1

N∑
j=1

P 2
i,j [78]

Entropy = entropy of Pi,j [78]

Inverse Difference =
N∑

i=1

N∑
j=1

Pi,j

1 + |i − j|
[192]

Inverse Difference Normalized =
N∑

i=1

N∑
j=1

Pi,j

1 + |i−j|
N

[192]

Inverse Difference Moment =
N∑

i=1

N∑
j=1

Pi,j

1 + (i − j)2 [78]

Inverse Difference Moment Normalized =
N∑

i=1

N∑
j=1

Pi,j

1 + ( i−j
N )2

[192]

Joint V ariance =
N∑

i=1

N∑
j=1

Pi,j(i − autocorrelation)2 [78]

Maximum Probability = max(Pi,j) [191]

The derivation of a second set of features requires first the computation of the average index
for both rows (µi) and columns (µj), as well as the corresponding standard deviations (σi, σj):

µi =
N∑

i=1

N∑
j=1

Pi,j i (4.6)

µj =
N∑

i=1

N∑
j=1

Pi,j j (4.7)

σi =

√√√√ N∑
i=1

N∑
j=1

Pi,j (i − µi)2 (4.8)

σj =

√√√√ N∑
i=1

N∑
j=1

Pi,j (j − µj)2 (4.9)

From these quantities we derive 4 additional features as:

Cluster prominence =
N∑

i=1

N∑
j=1

Pi,j(i + j − µi − µj)4 [191]

Cluster shade =
N∑

i=1

N∑
j=1

Pi,j(i + j − µi − µj)3 [191]

Correlation =
∑N

i=1
∑N

j=1 Pi,jij − µiµj

σiσj
[78]
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Sum Of Squares =
N∑

i=1

N∑
j=1

Pi,j(i − µi)2 [191]

In a third category, we derive features from the distribution of index sum (Pi+j) and difference
(Pi−j). That is from two 1D histograms describing the occurrence of each possible values of |i − j|
and i + j:

Sum Average = average of Pi+j [78]

Sum Entropy = entropy of Pi+j [78]

Difference V ariance = variance of Pi−j [78]

Difference Entropy = entropy of Pi−j [78]

The final two GLCM features are derived from an information theory framework and require
computing the entropy of row index probability (Hi), column index probability (Hj), Pi,j matrix
(Hi,j), and the product distribution (H ′

i,j):

Informational Measure of Correlation 1 =
Hi,j − H ′

i,j

max(Hi, Hj)
[78]

Informational Measure of Correlation 2 =
√

1 − e−2(H′
i,j

−Hi,j) [78]

All the texture features were extracted for all the 490 sectors and retinal layers listed before
when describing sectorized thickness computation.

AlzEye

AlzEye dataset contains 1348934 macular images that were processed with a similar pipeline.
In this case, the foveal center was automatically located by Topcon proprietary TABS software.
Further preprocessing was the same as for BHRI dataset. As an important difference, Topcon
metadata did not provide any method to account for ocular magnification and, therefore, a fixed
lateral scale was assumed for all images. More importantly, in AlzEye only the following subset of
features were computed due to compute and memory constrains consequence of the large number
of images:

• Sectorized thickness: the analyzed layers were: TRT, NFL, GCIPL, INL, ONPL, and ELM-
BM. The used sectorizations were: macula, ETDRS, ETDRS rings, and 5 Rings (see Figure
4.17).

• Foveal pit morphology: four parameters were analyzed for both TRT and GCIPL layers: rim
height, rim radius, pit depth, and mean slope.

The obtained features were employed to investigate longitudinal changes in PD (see Chapter 7).
In addition, they have also been used to investigate multiple research conditions by other AlzEye
project members [190,193].
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4.6 Validation of the macular raster acquisition protocol

An important factor that may affect OCT features is the sampling density of the acquisition
protocol. The standard macular protocol used in BHRI consists of 25 B-scans, a number that is
significantly lower than existing high-density protocols. In this section we investigate the potential
bias introduced into OCT features by using this standard protocol.

A subset of 12 healthy subjects underwent an imaging session where both eyes were captured
twice in the same day using standard and high-density protocols (Table 4.10). All other scan
parameters remained unchanged.

Protocol Region B-scan A-scan

Standard 6 x 6mm2 25 512
High-density 6 x 6mm2 97 1024

Table 4.10: Comparison of standard vs high-density protocol. The high density protocol uses a
larger number of sampling points at the cost of a longer acquisition time.

The images acquired from both protocols were used to compute the next OCT features as
described in Section 4.5.

• Sectorized thickness: computed for the TRT, GCIPL, INL, ONPL, and ELM-BM. We eval-
uated both the average thickness using both the entire macular region and a 20 x 20 square
grid.

• Foveal pit features: CFT, rim height, rim radius, and mean slope computed from the TRT.

To measure the bias introduced by using the standard protocol, a mixed-effects model linear
regression was fitted to each parameter with a fixed term for the bias (βbias) and a random intercept
(γsubject) to account for inter-eye correlation:

y = β0 + βbiasisStandard + γsubject (4.10)

The estimated bias introduced in each average thickness and foveal parameter due to the
standard protocol is shown in Table 4.11. Corresponding results for the 20 x 20 sectorization are
presented in Figure 4.19.

The findings reveal a small bias for average macular thicknesses (< 1%) and the rim height.
However, in the case of the CFT and particularly the foveal slope, the bias was found to be non-
negligible for (3.02% and -6.57%, respectively). It should be noted that the use of smaller sectors
(i.e., 20 x 20 grid) resulted in an overall bias below 5%, with the greatest effect observed in the
center and outer regions of the NFL, INL, and GCIPL.

Figure 4.19: Sensitivity analysis results for the 20 x 20 grid. Top row shows the relative bias
introduced in each retinal layer and region.The NFL, GCIPL, and INL layers are more
affected by using a standard protocol. Adapted from [183].
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Layer /
Parameter

Absolute
bias

Relative
bias (%) p-value

TRT (µm) 0.1 [-0.93, 1.14] 0.03 [-0.31, 0.37] 0.84
NFL (µm) 0.11 [-0.37, 0.59] 0.36 [-1.19, 1.9] 0.64
GCIPL (µm) -0.4 [-0.88, 0.08] -0.57 [-1.26, 0.11] 0.099
INL (µm) 0.02 [-0.27, 0.32] 0.07 [-0.83, 0.97] 0.87
ONPL (µm) -0.18 [-0.59, 0.24] -0.19 [-0.64, 0.26] 0.4
ELM-BM (µm) 0.55 [0.11, 0.98] 0.69 [0.14, 1.24] 0.015∗

CFT (µm) 6.72 [4.88, 8.57] 3.02 [2.19, 3.84] 3·10−9∗

Rim height (µm) -0.79 [-2.34, 0.75] -0.23 [-0.67, 0.21] 0.31
Rim radius (mm) -0.01 [-0.04, 0.01] -1.26 [-3.23, 0.7] 0.2
Mean slope (°) -0.45 [-0.65, -0.25] -6.57 [-9.51, -3.64] 5·10−5∗

* statistically significant.

Table 4.11: Bias introduced by the standard macular raster protocol. The difference in the
estimation obtained by the standard and the high-density protocol (i.e., relative bias) is
below 1% for all macular thicknesses. However, this bias is not negligible for foveal pit
parameters. CFT: central foveal thickness. From [183].

Upon the results, it can be concluded that using only 25 B-scans undersamples the central
region, resulting in a systematic overestimation of central thicknesses and an underestimation of
foveal slope measurements. However, the introduced bias is relatively small in most cases, with
less than a 5% deviation from the true value. In conclusion, we considered the standard protocol
to be a appropriate because it introduces a small bias and requires a shorter scanning time, which
is particularly important when imaging subjects with neurodegenerative diseases.
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5 Retinal morphology in a
healthy population

Previous research conduced with PD patients has revealed retinal changes associated with the
disease. However, demographical factors such as age and sex may also influence structural aspects
of the macula. It is therefore crucial to accurately determine how the retina evolves on healthy
subjects to be able to discern disease-related changes. In this regard, literature investigating
the effect of age and sex on healthy cohorts is limited for several reasons. Firstly, most studies
examining macular thickness have relied on the standard ETDRS sectorization, and there is a lack
of comprehensive investigation into the impact of sex and age on the geometry of the foveal pit.

This chapter aims to bridge this knowledge gap by investigating age-related changes and sex
differences on the retinal morphology with high spatial detail. As a key factor, we studied macular
thickness with a 20 x 20 square grid sectorization and the foveal pit morphology using 24 angular
directions. This was performed to extend existing literature by providing a more detailed normative
database compared to the existing literature. All the results presented here were published by the
author in [183].

5.1 Subjects and OCT features

A total of 444 healthy subjects from the BHRI dataset were included in the analysis (see Table
5.1). All the images were acquired following a macula raster acquisition previously described in
Section 3.3.

Group Subjects Eyes Age (years)∗

All 444 855 54.9 ± 12.7 [21,88]
Female 281 543 54.3 ± 12.6 [22,88]
Male 163 312 56.0 ± 12.8 [21,87]

∗ mean ± σ [range].

Table 5.1: Subjects included in the healthy population study. Adapted from [183].

The investigated OCT features are illustrated in Figure 5.1 and were:

• Sectorized thickness: the investigated layers are depicted in Figure 5.1a and were: TRT,
NFL, GCIPL, INL, ONPL, and ELM-BM. For each layer, sectorized thickness values derived
from the whole macula as well as a 20 x 20 square grid were analyzed (see Figure 5.1c). The
latter sectorization excluded areas outside the fovea-centered circle of 3mm. Furthermore,
the thickness measurements of the NFL, GCIPL, and INL layers were not analyzed within
the central sectors (a region of 1.2 x 1.2mm at the center). This decision was made because
the inner layers in the central foveal region have almost zero thickness, and including these
sectors could introduce significant bias due to segmentation errors.
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• Foveal pit morphology: four features were analyzed: the CFT, rim height, rim radius, and
mean slope. These four were derived from the TRT profile were analyzed for the entire fovea
and 24 angular directions separately (see Figure 5.1d).

The concrete procedure followed to compute the aforementioned features is described in detail
in Section 4.5. The features were computed for both eyes of each subject.

Figure 5.1: Summary of parameters extracted from macular OCT images. A) Retinal layers.
B) ETDRS sectorization. C) 20 x 20 square grid sectorization. D) Segmentation of top and
bottom boundaries of the retina. E) Studied foveal pit geometrical features. F) Foveal pit
radial analysis. From [183].

5.2 Data analysis

The impact of sex and age on thickness maps and foveal pit parameters was analyzed in both
absolute and percentage terms. A mixed-effects multivariate regression analysis was employed,
incorporating fixed terms for age and sex. Females were set as the reference category in the latter.
A fixed term for the Spectralis scan focus variable was also included to address variations in ocular
shape. Determined by the scanner during image focusing, this variable accounts for the refractive
error specific to each eye, which can influence retinal measurements. To consider the correlation
between eyes, a random intercept (γsubject) was added for each subject. As a preliminary step in
model selection, two models were fitted with linear (Equation 5.1) and quadratic (Equation 5.2)
age effects. From these, the model with the lowest Akaike information criterion (AIC) value was
chosen.

y = β0 + βsexisMale + βageage + βsf scanFocus + γsubject (5.1)

y = β0 + βsexisMale + βageage + βage2age2 + βsf scanFocus + γsubject (5.2)
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To provide comparable results between linear and quadratic age models, a combined age effect
coefficient was estimated, representing the average yearly change between the ages of 40 and 80.
A 95% CI and a corresponding p-value were calculated for each coefficient. In cases where the
selected model was quadratic, a single p-value was computed to assess the combined linear and
quadratic age effect. This was done by means of an F-test, which compares a reference model
without any age term to the quadratic model.

To express the age coefficients in percentage values, absolute coefficients were divided by the
average parameter value in the youngest age group (age < 40), which included 51 subjects out of
the total 444. A similar procedure was carried out to obtain percentages for the sex coefficients,
i.e., these were divided by the estimate for females in the youngest age group (age<40, n=37).

The significance level was set at 0.05 and the Holm-Bonferroni correction was used to adjust
for multiple comparisons for the macular region analysis [194]. For both the ETDRS and high-
resolution sectorizations, a correction based on the false discovery rate (FDR) [195] was applied due
to the large number of sectors and potential statistical dependence between tests. The marginal
R2 was used to evaluate the model fit. This method measures the proportion of variance explained
by the fixed terms alone. Since changes measured on an annual basis were found to be minimal,
we report the age coefficient as changes per 10 year period.

5.3 Results

Thickness analysis

Figure 5.2 plots the average thickness of each retinal layer in the macular region with respect to
age. The corresponding regression coefficient estimates, p-values, and the R2 of the model are
presented in Table 5.2.

The results indicate that all layers showed a significant decrease in thickness with age. The
exception to this trend was the NFL, which exhibited non-significant thickening and high dispersion
. The thinning effect was most pronounced for the TRT, GCIPL, and INL layers. The GCIPL
reported the highest percentage loss (-2.41 [-2.90, -1.90]% per 10 years), contributing significantly
to the overall reduction in TRT (-1.05 [-1.32, -0.77]% per 10 years).

It was observed that male TRT was 4.14 [1.78, 6.50]µm greater than that of females. This
difference results from variations in all individual retinal layers, although statistically significant
differences between males and females were only found in the INL, ONPL, and ELM-BM layers.

The results of the analysis using the 20 x 20 grid are shown in Figure 5.3. The age-related
thinning of the TRT, GCIPL and ONPL appeared to be relatively consistent across the macular
region, indicating a homogeneous pattern. However, the age-related reduction in thickness for the
INL was more evident in the outer ring of the macula. The NFL maps reported mild thickening,
particularly in the temporal sector. Conversely, the changes in the ELM-BM layer were minor and
not statistically significant, except for the central foveal region where a slight to moderate thinning
was observed. The regions where a quadratic model was selected are illustrated in Figure 5.4.
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Layer Age
dependence R2 (%)

Age Sex
β [95% CI] p-value β [95% CI] p-value

µm/ 10 years % / 10 years µm (male) % (male)

TRT Quadratic 8.2 -3.25 [-4.09, -2.39] -1.05 [-1.32, -0.77] 9·10−13∗ 4.14 [1.78, 6.50] 1.34 [0.58, 2.11] 5·10−4∗

NFL Linear 0.2 0.22 [-0.04, 0.48] 0.69 [-0.14, 1.52] 0.1 -0.03 [-0.71, 0.65] -0.10 [-2.22, 2.03] 0.9
GCIPL Quadratic 11.9 -1.77 [-2.13, -1.40] -2.41 [-2.90, -1.90] 3·10−22∗ 0.57 [-0.41, 1.56] 0.78 [-0.56, 2.13] 0.3
INL Quadratic 7.1 -0.45 [-0.60, -0.30] -1.31 [-1.74, -0.88] 9·10−9∗ 0.87 [0.46, 1.28] 2.57 [1.36, 3.77] 3·10−5∗

ONPL Linear 2.6 -0.66 [-1.12, -0.19] -0.73 [-1.24, -0.21] 0.006* 1.80 [0.59, 3.02] 2.01 [0.66, 3.36] 0.004*
ELM-BM Quadratic 6.0 -0.45 [-0.63, -0.26] -0.56 [-0.78, -0.33] 2·10−4∗ 0.93 [0.48, 1.39] 1.17 [0.60, 1.74] 7·10−5∗

* statistically significant after Holm-Bonferroni correction (number of tests: 12, α=0.05).

Table 5.2: Regression results of mean macular layer thickness. Each row reports age and sex regression coefficients along with the obtained R2. Sex coefficients
are reported as the difference of male minus female. From [183].

Parameter Age
dependence R2 (%)

Age Sex
β [95% CI] p-value β [95% CI] p-value

X / 10 years % / 10 years X (male) % (male)

CFT (µm) Quadratic 4.8 -1.44 [-2.93, 0.03] -0.62 [-1.25, 0.01] 0.08 7.99 [4.22, 11.77] 3.47 [1.83, 5.11] 3·10−5∗

Rim height (µm) Quadratic 11.9 -3.42 [-4.34, -2.51] -0.97 [-1.22, -0.71] 10−11∗ 8.63 [5.94, 11.33] 2.46 [1.69, 3.23] 5·10−10∗

Rim radius (µm) Linear 8.4 -7.66 [-14.99, -0.33] -0.69 [-1.36, -0.03] 0.04 -59.4 [-78.34, -40.46] -5.24 [-6.91, -3.57] 10−9∗

Mean slope (°) Linear 4.1 -0.06 [-0.15, 0.02] -0.99 [-2.27, 0.29] 0.15 0.39 [0.18, 0.6] 6.23 [2.84, 9.63] 3·10−4∗

* statistically significant after Holm-Bonferroni correction (number of tests: 8, α=0.05).

Table 5.3: Regression results for foveal pit morphology. Each row reports age and sex regression coefficients along with the obtained R2. Sex coefficients are
reported as the difference of male minus female. CFT: central foveal thickness. From [183].
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Chapter 5. Retinal morphology in a healthy population 5.3. Results

Figure 5.2: Percentual change in macular thicknesses as a function of age. Thickness values
were computed for the 3 mm radius circular macular region. Individual absolute thickness
values were transformed into percentages as the relative difference with respect to the average
thickness in the youngest group (age < 40). From [183].
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Figure 5.3: Thickness analysis results for the 20 x 20 regular grid sectorization. A) Popula-
tion mean thicknesses. B) Age-related changes of retinal layer thicknesses measured as %
of change per 10 years (top) and corresponding p-values (bottom). C) Sex differences in
percentual units for males (top) and associated p-values (bottom). p-values are reported in
logarithmic scale after FDR correction. Thickness analysis results for the 20 x 20 regular
grid sectorization. From [183].
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Figure 5.4: Selected age model for each 20 x 20 grid sector. Adapted from [183].

In terms of sex differences, significant variations in the TRT were observed primarily in the
central region (radius < 1.5mm), with males exhibiting up to 4% thicker retina than females. The
differences between sexes in the NFL, GCIPL, and INL layers were more pronounced in the inner
ring (0.5mm ≤ radius ≤ 1.5mm), and males presented significantly higher thickness values than
females. However, as the radius increased, these differences reduced significantly and even reversed.
Differences between sexes in the ONPL and ELM-BM layers were less evident and presented a
relatively homogeneous pattern in percentage terms. Nevertheless, considerable differences were
observed in the outer ring (perifovea) for the ELM-BM and in the inner ring (parafovea) for the
ONPL.

Foveal pit morphology analysis

Both sex and age have an impact on the morphology of the foveal pit, as evidenced by the results in
Table 5.3. Overall, foveal parameters were more affected by sex than age. The rim height presented
a statistically significant decrease of 0.97 [0.71, 1.22]% per 10 years, indicating an age-related effect.
However, considerable inter-subject variability was found in the CFT, rim radius, and mean slope,
and thus no obvious age-related trend could be detected.

In all parameters there were clear variations between the sexes. The CFT was larger in males
(+7.99 [4.22, 11.77]µm) , the rim height was greater (+8.63 [5.94, 11.33]µm), the rim radius shorter
(-59.40 [-78.34, -40.46]µm), and the mean slope steeper(+0.39 [0.18, 0.60] °). The percentage
differences were most pronounced for the mean slope (6.23 [2.84, 9.63]%).

Radial examination of the foveal pit morphology also revealed age and sex differences as depicted
in Figure 5.5. Specifically, the rim height was found to reduce in all directions, ranging from 0.6%
to 0.8% per 10 year periods. The rim radius also decreases in all directions (1% decrease per 10
years), with a more pronounced effect in the inferior and nasal sectors. In contrast, sex-related
differences were evident in every angular direction and evenly distributed across sectors. Somewhat
larger variations were observed in the superior and inferior sectors of the rim radius, however.

5.4 Discussion

In this work, we examined the effect of age and sex on the structure of the retina. The study
was conducted using finely sectorized thickness maps of macular layers and foveal pit morphology
metrics obtained from OCT images of 444 healthy subjects (855 eyes). Our findings revealed a
consistent thinning of the TRT of 1.1% per 10 years, the primary cause of which is a decrease in
GCIPL thickness (-2.4%), followed by INL thinning (-1.3%), and ONPL thinning (-0.7%). The
foveal rim height also exhibited a significant decline of 1.0% every 10 years.

Furthermore, we observed that, male retinas were thicker than female retinas ( 4.1µm on
average), with more pronounced differences in the central region (radius < 1.5mm). A larger CFT,
higher rim height, shorter rim radius, and steeper mean slope were also found to be characteristic
of male retinas.
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Figure 5.5: Radial analysis of rim height, rim radius and mean slope. A) Population mean
(central colored line indicates the mean, shaded region depicts the 2.5 and 97.5 percentiles).
Percentual effect of age B) and sex C) are shown as the normalized regression coefficients
(βage and βsex) for each of the 24 angular directions. The shaded region illustrates the 95%
CI while the dashed black circle locates the origin (coefficients equal to zero). From [183].

The age-related decline in TRT that we observed indicates that the retina undergoes structural
changes over time. These results corroborate much of the published data [96–101]. Notably, a
previous literature review described the age-related thinning pattern as spatially dependent, with
a preserved or increased thickness in the central retina and the maximum thinning occurring in
the parafoveal region [96]. In terms of the loss of TRT in percentage terms, we found a relatively
consistent thinning effect for eccentricities larger than 0.5mm. This would seem to indicate that
variations in the rate of thinning, except in the central macula, can be attributed to differences in
the initial thickness of the TRT.

More critical than analysis of the TRT, however, is identifying the specific layers that con-
tribute to the thinning phenomenon. The published data lacks agreement, and various studies
have reported thinning [104, 106], no significant effect [99, 100], or even thickening [98, 107]. A
decline in the number of fibers comprising the optic nerve and the NFL as a consequence of aging
has also been found in some histological investigations [102,103]. Nonetheless, in the present study
we observed that the NFL either remained unaltered or exhibited thickening in certain temporal
regions. Such inconsistent outcomes could be attributed to the relatively thin nature of the NFL
in relation to the axial resolution, which increases its susceptibility to segmentation errors. Thus,
it can be concluded that peripapillary OCT might serve as a more appropriate tool for evaluating
the NFL than macular OCT.

Our findings in relation to the GCIPL are consistent with histological evidence suggesting a
decline in ganglion cell density with age [103]. Both the GCL [104, 106, 108] and the IPL have
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presented thinning in several OCT studies [98, 101, 105, 116]. In line with this, the GCIPL was
found to be the layer most affected by aging in our investigation, which would seem to suggest
its particular sensitivity to age-related changes. We also observed a consistent percentage loss
in GCIPL thickness across the macula, except in the central region, which is in line with previ-
ous research [113, 114]. Hence, regional differences in absolute thickness loss, such as the more
pronounced thinning in the parafoveal area [116], could be a result of disparities in the initial
thickness of the GCL rather than a spatially-dependent susceptibility to age-related decline. As
for the INL, previous studies have also reported thinning [98,99,101,116], and our results support
these findings. We observed that the INL exhibited the second most significant age-related decline,
primarily characterized by thinning in the outer regions.

In the case of the ONPL and the ELM-BM, a thinning trend was observed, which is in agreement
with recent studies [101, 107, 116]. Two notable thinning patterns were detected: a prevalent and
uniform thinning of the ONPL in the outer regions and a highly localized thinning of the central
region of the ELM-BM. These distinct patterns may be attributed to differences in the cellular
configuration of these layers.

The Spectralis device has been reported to exhibit excellent repeatability [196], and it is worth
noting that the observed yearly changes are generally small in comparison to the coefficient of
variation. As an example, the coefficient of variation (COV) for Spectralis TRT measurements
using eye-tracking mode (0.86%) [197] is equivalent to the expected age change over a decade.
From this we can conclude that: 1) natural age-related changes are likely to have a limited impact
on longitudinal studies with regular follow-ups, particularly those conducted within a span of
fewer than five years, and 2) despite the high repeatability of OCT measurements, detecting small
changes in the retina requires large sample sizes and groupwise statistical analysis.

Previous research has reported a thicker retina in males compared to females, both in adults
[97,99,117,118] and children [198]. These studies consistently found that the differences in thickness
were more pronounced in the inner macular ring and decreased in the outer ring, which corresponds
to the pattern we observed. Moreover, we measured spatially localized differences in all retinal
layers, indicating that sex influences the entire retina. Layer-specific differences have also been
reported in the literature, some studies have found a thicker NFL in males [99,101,105,119], while
others have observed it to be thicker in females [100, 104, 106]. Similarly, males present greater
thickness in males in the GCL [99,101,112,119], IPL [99,101,105], and INL [100]. Sex differences
have also been found in the outer retinal layers [100,105].

This the thicker retina observed in males could be explained by systematic macroscopic differ-
ence. In fact, MRI studies have consistently shown that males have larger ocular globes [199] and
it could thus be hypothesized that larger eyes are associated with a thicker retina. Conversely,
other studies have found a negative relationship between axial length and retinal thickness has
been reported [121], although it is possible this is due to the influence of ocular biometry on lateral
image scaling [13,14]. In other words, in larger eyes, the same field of view covers a larger region,
which could impact the relationship between axial length and retinal thickness.

In a similar vein, the fact that sex differences in inner layer thicknesses are localized in the inner
ring could be a result of a sex bias in the estimation of lateral image scale. While adjustments
for differences in axial length are typically made in lateral scaling [101, 133], imaging devices
often adopt a nominal corneal curvature value for both males and females (e.g., Spectralis uses a
7.7mm [122]). Considering that corneal curvature is positively related to lateral scaling and tends
to be smaller in females [127], this assumption could result in an overestimation of lateral scaling in
females. Consequently, this discrepancy could shift the peaks of TRT, GCIPL, and INL thickness
profiles in females to larger eccentricities, contributing to the observed pattern.

Turning to the influence of age on the foveal pit, no clear effect on the CFT has been reported
in the literature [128, 131] nor was evident in our own results (refer to Table 5.4). This could be
attributed to the absence of inner retinal layers in the central region, which are more susceptible
to thinning with age [96]. As for rim height, we observed a thinning of the rim, consistent with
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the known age-related TRT decline. Smaller previous studies, however, did not find a statistically
significant effect [128,131]. A decrease in the rim radius was also detected in our results, which may
be a result of the reduction in rim heigh and subsequent rim flattening. However, this finding did
not retain statistical significance after multiplicity correction. The mean slope exhibited high inter-
subject variability, leading to considerable uncertainty in the estimates. This likely contributes to
the lack of consistency in the published data [129,130,132].

To date various studies have investigated sex differences in the foveal pit. Although these have
employed different parameter definitions and mathematical models, one finding common to all and
the present study is a broader and shallower pit in females [125,127,132–134] (Table 5.5). Similar
to the observed thickness differences, the bias introduced by ocular magnification in lateral scale
estimation could contribute to an overestimation of lateral scaling in females and thereby explain
the differences observed in slope and radius. Our study also validates previous findings of greater
rim height in males [125]. It would seem that these differences are a result of a higher overall TRT
in males, given that foveal pit metrics are effectively thickness measurements.

Beyond its global morphology, the foveal pit is a radially asymmetric structure, with a broader
horizontal plane than the vertical directions [125]. Our analysis of the foveal pit in 24 individual
angular directions revealed relatively uniform percentage age and sex effects across all directions.
This suggests that the fovea undergoes homogeneous changes and evolves consistently, despite its
structural asymmetry.

The results of this study are subject to certain limitations. First, the number of used B-
scans is relatively low (25). However, as showed in Section 4.6, this choice has minimal impact on
thickness measurements. Secondly, we employed raster scans and interpolation to analyze the fovea
radially instead of using a radial acquisition pattern. While this approach may limit the accurate
reconstruction of the TRT profile in the vertical direction, we chose it to avoid potential biases
introduced by irregular sampling density in radial patterns, especially when measuring thicknesses
far from the central region or correcting fixation errors.

Display distortion was not corrected due to the unavailability of biometric and scanner optical
information, which are required for accurate correction [14]. Although such distortion has minimal
impact on thickness measurements and small fields of view, it can affect slope metrics [76]. For
this reason, we computed the slope after flattening the retina using the TRT, even though it does
not directly measure the slope observed in OCT images. This approach is commonly employed
and assists in mitigating the effects of retinal curvature and display distortion.

Axial length also has an impact on retinal measurements. To account for this, all regression
models were adjusted using the scan focus parameter, which is exported by the scanner and in-
corporates the refractive error of each eye during image focusing [122]. Considering the strong
correlation between refractive error and axial length (R2 > 0.72) [200], we assumed the scan focus
parameter to be a reasonable proxy for axial length. Additionally, we relied on the lateral image
scale estimation performed by the Spectralis scanner to address the issue of ocular magnification.
However, it is important to note that this procedure may have limitations when default corneal
curvature values are used [122]. On another note, we considered the horizontal direction as the
temporal-nasal axis instead of using the fovea-optic disc axis. This was because the limited field
of view of the images prevented from recovering the optic disc position precisely. Lastly, we did
not include an interaction term between sex and age in our analysis due to the high inter-subject
variability. This could reduce the statistical power to detect potentially very small effects.

5.5 Conclusions

Thinning of most retinal layers occurs over time, particularly in the GCIPL. The percentage
changes in both the TRT and GCIPL are consistent, including in small sector analyses. Males
generally tend to have thicker retinal layers compared to females, with more pronounced differences
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Study Cohort N Age CFT
(µm / 10y)

Rim height
(µm / 10y)

Pit depth
(µm / 10y)

Rim radius
(µm / 10y)

Slope†

(° / 10y)

Present study 444 21-88 -1.44 -3.42* - -7.66* -0.06
Tick et al. [128] 57 18-45 NAF NAF NAF NAF -
Nesmith et al. [129] 390 13-97 - - - - Increase*
Gella et al. [130] 668 ≥ 40 - - - - Decrease*

Sepulveda et al. [131] Young 20 24-33 NAF NAF - Decrease -Old 10 62-76

Zouache et al. [132] Ghanaian 84 45-82 - - -4.8 -46* -0.054*
Caucasian 37 41-85 - - -1.5 +30 -0.012

Olvera-Barrios et al. [134] 63939 40-69 - - - - Increase
in females*

* p < 0.05
† In the present study the mean slope was studied instead of the maximum slope. Olvera-Barrios et al. measured foveal curvature instead of slope.

Table 5.4: Comparison of studies analyzing the effect of age on the foveal pit. CFT: central foveal thickness. NAF: no association found, estimations not
reported. Adapted from [183].

Study Cohort Nmale Nfemale Age CFT
(µm)

Rim height
(µm)

Pit depth
(µm)

Rim radius
(µm)

Slope†

(°)

Present study 163 281 21-88 +7.99 +8.63* - -59.4* +0.39*
Wagner-Schuman et al. [133] 47 43 27.8 ± 9.0 - - +1 -15 +0.4
Dubis et al. [127] 26 16 18-67 - - +13 +79 +0.5
Scheibe et al. [125] 109 111 21-77 +4.2 +6.0* - -27.5 + 0.5

Zouache et al. [132] Ghanaian 30 54 45-82 - - +7 -145 +2.26
Caucasian 9 28 41-85 - - -10 -180 +1.05

Olvera-Barrios et al. [134] 28842 35097 40-69 +6.8* - - - +0.87*
* p < 0.05
† In the present study the mean slope was studied instead of the maximum slope. Olvera-Barrios et al. measured foveal curvature instead of slope.

Table 5.5: Comparison of studies analyzing the effect of sex on the foveal pit. CFT: central foveal thickness. Adapted from [183].
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in the inner ring. The primary age-related effect on the foveal pit is a reduction in rim height.
Notably, significant differences between males and females are observed in the fovea, with females
presenting a shallower and broader pit. Both sex and age effects are evident across all angular
directions. A more comprehensive description of the macula can be obtained with advanced analysis
techniques, such as detailed sector-based thickness assessment and radial geometrical analysis of
the foveal pit.
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6 Patient classification
and clinical assessment

Previous research has demonstrated the existence of retinal changes in PD using both OCT and
histology [41, 57]. However, whether the retinal changes measured by OCT are sufficiently pro-
nounced to accurately assess a patient clinically is still an open question. In this regard, there are
two main applications of OCT for evaluating the current state of a patient:

• Diagnosis: determining if an individual has PD.

• Severity assessment: determining the impairment of a patient in a certain domain (cog-
nitive, motor, visual, etc.).

Previous research addressing both topics has largely been focused on conventional thickness
features, yielding promising yet diverging results. To extend previous work, in this chapter we
investigate the potential of a larger set of OCT features to tackle these two tasks. First, Section
6.1 outlines the employed dataset. Then, in Section 6.2, we explain how we used the computed
features to train classifiers for PD diagnosis. Finally, Section 6.3 describes the development of
regression models for clinical variables related to cognitive and motor impairment.

6.1 Subjects and OCT features

A total of 174 PD patients and 174 healthy controls from the BHRI dataset were included (Table
6.1). The controls were chosen to match patients based on age and sex. The matching process was
conducted iteratively, where each patient was paired with a control of the same sex and the closest
age. To prevent significant age disparities arising from a lack of male controls, in cases where no
same-sex control within a 5-year age difference was available, a control of the opposite sex was
selected if one with less than a 5-year age difference was present.

Group N Age
(years)

Male
%

Disease
duration
(years)

MoCA UPDRS
III

Hoehn
Yahr

PD 174 65.0 (8.5) 61.5 6.0 (4.7) 23.3 (4.5) 23.0 (11.4) 2.0 (0.6)
Control 174∗ 64.9 (8.5) 59.8 - 25.7 (3.5) - -
∗ From the 174 matched controls only 93 underwent MoCA assessment.

Table 6.1: Matched dataset used in diagnostic model development. Summary statistics are given
in format mean (σ).

A comprehensive set of 4909 OCT features were investigated. The features were selected based
on the existing literature with the aim of covering a broad spectrum of structural properties of
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the macula. Figure 6.1 shows an illustration of the retinal layers analyzed as well as the employed
features.

Figure 6.1: Overview of the explored features. Starting with the analyzed retinal layers in the left,
the figure shows how the different features are computed. Sectorized thickness and texture
features were computed from thickness maps. These were extracted for the four sectorization
grids shown in the right. Additionally, multiple foveal features were derived from foveal pit
morphology. These included both geometrical and mathematical features and were derived
using the three sectorizations showed in the bottom-right. GLCM: gray-level co-occurrence
matrix. LBP: local binary patterns.

The included features were derived from three families:

• Sectorized thickness: thickness features have been widely studied before with positive
results in PD [41]. Here the following layers were studied: TRT, GCIPL, INL, ONPL, and
ELM-BM. Average thickness measurements were computed for the aforementioned layers
using 4 different sectorization grids: Macula, ETDRS, 5 rings, and 12 angular directions (all
depicted in the top-right of Figure 6.1). We included multiple sectorizations as there is no
conclusive evidence about the precise localization of changes in PD. Considering all the layers
(5) and sectors (27), this family included a total of 135 features.

• Texture: these features included the fractal dimension, lacunarity, standard deviation, LBP
features, and GLCM features. All the texture features were computed for the same layers
and sectors investigated with sectorized thickness. The number of final computed texture
features were 4320, resulting from combining 5 layers, 27 sectors, and 32 texture feature
types.
The inclusion of these features is justified by the literature. Fractal dimension has recently
shown diagnostic potential in AD [160]. Similarly, lacunarity has proven to be useful in PD-
related retinal image analysis [161]. In addition, recent studies have also investigated the use
of LBP and GLCM features with positive results in MS, AD, and PD [157,159].

• Foveal pit morphology: these features can provide complementary information about the
retinal structure, with some evidence of a foveal remodeling in PD [74, 154]. Computed
geometrical features included: mean slope, maximum slope, CFT, rim height, rim radius, pit
depth, maximum slope height, max slope radius, pit area, rim disk perimeter, rim disk area,
and maximum slope disk area [72,77]. Additionally, features derived from four mathematical
models were also included [73, 74, 76, 77]. Both geometrical and mathematical features were
computed for two retinal layers: TRT and GCIPL. All radial features were averaged across
the entire macula, 4 ETDRS quadrants, and 12 angles. In addition, the standard deviation
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of each radial feature across all 12 directions was also computed. In total, 454 foveal pit
features were computed.

The complete OCT processing pipeline along with the concrete computation procedure of each
feature are described in detail in Section 4.5. In this analysis, features from left and right eyes
were averaged to obtain a single value per subject. When only one of the eyes was available the
features from that eye were considered as the subject average.

6.2 Diagnosis

In this section, we investigated the diagnostic potential of the aforementioned features. We began
by exploring each feature individually and subsequently proceeded to train multivariate classifica-
tion models.

6.2.1 Univariate feature exploration

As an initial step, we evaluated the individual ability of each feature to discriminate between
PD and HC subjects. To do this, three metrics were computed for each feature: 1) the effect
size measured as the standardized mean difference (i.e., Cohens’ d), 2) a p-value based on a two-
sample t-test, and 3) the AUC computed by using feature values as scores in a receiver operating
characteristic (ROC) curve analysis.

The analysis revealed that, overall, features showed a limited ability to distinguish between the
two groups. The greatest effect size was |d|=0.4, which is commonly considered a small-medium
effect. Accordingly, the highest AUC was 0.618, highlighting the difficulty of diagnosing PD from
individual OCT features.

To better understand which features performed best, Table 6.2 displays the best 5 features for
each sectorization grid and feature family. As shown, features derived from ETDRS sectors reached
better performance than those from other sectorizations. The best performance was achieved by a
foveal feature of the GCIPL, namely, the foveal radius at the point where the slope is maximized
within the temporal ETDRS quadrant. A similar performance was obtained by some texture
features (AUC=0.613) measured on outer-inferior and outer-nasal sectors. These features included
the GLCM Difference Variance of the TRT, the standard deviation of the ELM-BM thickness, and
the LBP Entropy feature derived from the INL.

Notably, conventional sectorized thickness features did not show great diagnostic performance.
The best results in this family were obtained by the GCIPL in the central ETDRS sector, which was
2.06µm thicker in PD patients and yielded an AUC of 0.586 (d=0.25, p=0.02). This was the only
thickness feature that showed statistically significant differences between the two groups (p= 0.02).
Indeed, all the other thickness features showed a much smaller effect size (|d| ≤ 0.10) that was not
sufficient to discriminate between groups. A detailed description of the group differences in all
ETDRS thicknesses can be found in Table 6.3.
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Grid Thickness Texture Foveal pit
Layer Sector AUC Layer Sector Name AUC Layer Sector Name AUC

Macula

ONPL - 0.538 ELM-BM - LBP entropy 0.586 GCIPL - Ding (s1) 0.583
TRT - 0.518 INL - LBP mean 0.584 TRT - Scheibe (α∗) 0.582

GCIPL - 0.511 INL - LBP σ 0.583 TRT - Ding (s2) 0.581
ELM-BM - 0.507 INL - LBP range 0.583 GCIPL - Max Slope Radius 0.580

INL - 0.506 INL - LBP kurtosis 0.581 GCIPL - Max Slope Disk Area 0.580

ETDRS

GCIPL C 0.586 TRT OI GLCM Dif. Variance 0.613 GCIPL T Max Slope Radius 0.618
ONPL OI 0.559 ELM-BM OI Standard deviation 0.613 GCIPL T Scheibe (µ) 0.585
INL IS 0.553 INL ON LBP Entropy 0.611 TRT N Max Slope Radius 0.574
TRT C 0.543 TRT OI GLCM Dif. Entropy 0.610 TRT S Scheibe (µ) 0.571
ONPL ON 0.543 TRT IN LBP iqr 0.608 TRT I Scheibe (µ) 0.568

5 rings

ONPL � 4-5mm 0.550 INL � 4-5mm GLCM IMC2 0.606 - - - -
ONPL � 5-6mm 0.543 INL � 2-3mm Lacunarity 0.605 - - - -
ONPL � 3-4mm 0.542 GCIPL � 1-2mm LBP median 0.602 - - - -
INL � 5-6mm 0.540 INL � 4-5mm GLCM correlation 0.599 - - - -

GCIPL � 1-2mm 0.536 INL � 3-4mm LBP mean 0.598 - - - -

12 angles

ONPL I3 0.550 INL S1 Standard deviation 0.599 GCIPL T3 Max Slope Radius 0.601
ONPL N1 0.546 ONPL N1 LBP mean 0.597 GCIPL T2 Max Slope Radius 0.600
ONPL I2 0.542 ONPL N1 LBP Std. Dev. 0.597 GCIPL T3 Scheibe (µ) 0.587
TRT N3 0.540 GCIPL T3 LBP median 0.593 GCIPL T1 Scheibe (µ) 0.584
ONPL T1 0.539 TRT S1 GLCM IMC1 0.591 GCIPL T1 Max Slope Radius 0.583

∗ Standard deviation of the feature.

Table 6.2: Best OCT features for diagnosis. Sectors: central (C), nasal (N), superior (S), temporal (T), inferior (I), inner-nasal (IN), inner-superior (IS), inner-
temporal (IT), inner-inferior (II), outer-nasal (ON), outer-superior (OS), outer-temporal (OT), outer-inferior (OI). Angular sectors are described in Figure
4.17. AUC: area under the curve. GLCM: gray-level co-occurrence matrix. LBP: local binary patterns.
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Layer Sector Thickness (µm)
∆ (µm) Cohen’s d p-value

Control Parkinson

TRT

C 278.0 (21.0) 280.5 (20.4) 2.55 0.12 0.25
IN 345.0 (15.3) 344.2 (15.7) -0.77 -0.05 0.64
IS 342.6 (14.8) 341.4 (15.2) -1.19 -0.08 0.46
IT 329.8 (14.8) 329.9 (14.3) 0.10 0.01 0.95
II 338.6 (14.7) 338.3 (14.7) -0.30 -0.02 0.85
ON 314.2 (15.0) 312.3 (14.6) -1.92 -0.13 0.23
OS 297.9 (13.6) 296.4 (12.7) -1.44 -0.11 0.31
OT 281.4 (12.8) 281.5 (12.6) 0.13 0.01 0.92
OI 287.4 (13.6) 286.9 (12.6) -0.58 -0.04 0.68

GCIPL

C 36.8 (8.2) 38.8 (8.2) 2.06 0.25 0.02∗

IN 93.3 (7.5) 93.5 (9.2) 0.24 0.03 0.79
IS 93.2 (7.2) 93.3 (8.3) 0.05 0.01 0.96
IT 89.6 (7.6) 90.1 (8.1) 0.45 0.06 0.60
II 91.8 (7.1) 91.7 (8.3) -0.05 -0.01 0.95
ON 66.8 (6.4) 66.4 (6.7) -0.38 -0.06 0.59
OS 63.1 (5.9) 63.3 (5.3) 0.20 0.04 0.74
OT 66.4 (6.3) 67.0 (6.2) 0.60 0.10 0.37
OI 60.6 (5.7) 60.7 (5.8) 0.08 0.01 0.90

INL

C 20.9 (5.7) 21.0 (5.6) 0.08 0.01 0.89
IN 41.0 (4.1) 40.5 (4.2) -0.54 -0.13 0.22
IS 40.7 (3.9) 40.0 (3.7) -0.70 -0.18 0.09
IT 37.8 (3.7) 37.8 (3.4) -0.09 -0.03 0.81
II 40.5 (4.0) 40.3 (3.9) -0.18 -0.04 0.68
ON 34.1 (2.5) 34.4 (2.5) 0.25 0.10 0.35
OS 30.8 (2.4) 30.9 (2.4) 0.08 0.03 0.75
OT 32.8 (2.3) 33.1 (2.3) 0.34 0.14 0.18
OI 30.7 (2.3) 30.7 (2.4) 0.02 0.01 0.94

ONPL

C 119.6 (9.3) 118.9 (9.1) -0.67 -0.07 0.50
IN 106.9 (7.5) 106.2 (7.8) -0.69 -0.09 0.40
IS 102.2 (7.1) 101.9 (7.5) -0.31 -0.04 0.69
IT 103.3 (7.1) 102.9 (7.5) -0.34 -0.05 0.66
II 100.8 (7.1) 100.4 (7.4) -0.40 -0.06 0.60
ON 86.4 (6.7) 85.4 (7.0) -0.97 -0.14 0.19
OS 86.4 (5.9) 85.4 (6.3) -0.97 -0.16 0.14
OT 84.4 (6.0) 83.7 (6.4) -0.62 -0.10 0.35
OI 79.4 (5.8) 78.4 (5.9) -1.06 -0.18 0.09

ELM-BM

C 88.6 (3.7) 89.1 (3.8) 0.46 0.12 0.25
IN 82.9 (3.1) 83.1 (3.2) 0.21 0.07 0.53
IS 81.7 (3.0) 81.8 (2.9) 0.09 0.03 0.77
IT 81.6 (2.9) 81.8 (2.8) 0.21 0.07 0.49
II 80.6 (2.9) 80.9 (2.8) 0.34 0.12 0.27
ON 78.8 (2.9) 78.8 (2.7) -0.01 0.00 0.97
OS 79.8 (2.9) 79.6 (2.8) -0.18 -0.06 0.55
OT 78.6 (2.7) 78.5 (2.5) -0.07 -0.03 0.81
OI 77.4 (2.8) 77.5 (2.8) 0.06 0.02 0.85

∗p ≤ 0.05

Table 6.3: Group differences in ETDRS thicknesses. Thickness estimates are given as mean (σ).
ETDRS sectors: central (C), inner-nasal (IN), inner-superior (IS), inner-temporal (IT), inner-
inferior (II), outer-nasal (ON), outer-superior (OS), outer-temporal (OT), outer-inferior (OI).
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6.2.2 Multivariate model development

After the initial univariate analysis, two machine learning models were trained using combinations
of features: LR and SVM. The selection of these two models is justified by their distinct strengths.
LR offers interpretability and efficiency, and was used to determine the performance of a purely
linear classification model. On the other hand, SVMs are better suited to model non-linear patterns,
maximizing margins for better generalization, and maintaining robustness against outliers. In total,
12 different models were trained and evaluated from all the combinations of the four sectorization
grids (Macula, ETDRS, 5 rings, and 12 angles), and the three feature families (thickness, texture,
and foveal pit morphology).

The training and evaluation pipeline was the same for each model and is shown in Figure 6.2.
First, the initial set of features were normalized to have zero mean and unit standard deviation. To
avoid a potential bias due to outliers, both the mean and standard deviation of each feature were
computed after trimming the lowest 5% and highest 95% percentiles of the distribution. Next, to
reduce the dimensionality, the best 50 features were selected based on the minimum-redundancy-
maximum-relevance algorithm [201, 202], a method designed to select a subset of non-redundant
features that maximize class separability. This was only applied to the configurations with more
than 50 initial features. For instance, when evaluating sectorized thickness over the macular grid
there were only 5 macular features and, therefore, this method was not necessary. The selected
features were then fed into a forward stepwise feature selection procedure to determine the best
feature combination. Starting with an empty model, the features yielding the highest diagnostic
accuracy were iteratively added. To do this, all the potential combinations of already selected and
new features were evaluated in each iteration based on a leave-one-out cross-validation. That is,
models were trained on N-1 samples and used to predict the remaining test sample. Then, the
feature showing the highest test accuracy was selected and added to the model. The maximum
number of features in the model was set to 10. The leave-one-out cross-validation strategy was
selected in view of the small sample size, as it reduces the bias due to not using the full dataset for
training [203]. As an important remark, SVM model training included hyperparameter fine-tuning
based on an internal 10-fold cross-validation. All the models were evaluated in terms of accuracy,
sensitivity, specificity, and AUC.

Figure 6.2: Multivariate diagnosis model training pipeline.

In addition to the 12 models described, four additional models were subsequently trained using
features from all three families combined. More concretely, the features finally selected by applying
the aforementioned pipeline to each family were used for this analysis. The goal of this experiment
was to determine if combining the best features in each family could improve performance.
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The obtained results are displayed in Table 6.4. With the exception of the models trained only
on macular features, the test accuracy ranged from 60% to 67%, with a maximum AUC slightly
higher than the one obtained by individual features (0.68 vs 0.62). The models using ETDRS
features showed better performance than those trained on macular features only (i.e., features
averaged over the entire macula). The results obtained by features computed over 5 rings and 12
angles grids were on par with those from ETDRS features.

Grid Metric Thickness Texture Foveal pit All
LR SVM LR SVM LR SVM LR SVM

Macula

Accuracy 0.57 0.60 0.56 0.61 0.58 0.59 0.57 0.61
Sensitivity 0.55 0.61 0.54 0.64 0.61 0.57 0.59 0.65
Specificity 0.59 0.58 0.59 0.57 0.55 0.61 0.58 0.56

AUC 0.58 0.60 0.53 0.62 0.55 0.58 0.59 0.62

ETDRS

Accuracy 0.61 0.62 0.66 0.67 0.61 0.64 0.66 0.67
Sensitivity 0.57 0.74 0.65 0.67 0.62 0.72 0.64 0.72
Specificity 0.65 0.49 0.68 0.67 0.60 0.55 0.69 0.62

AUC 0.59 0.61 0.66 0.66 0.60 0.64 0.67 0.69

5 rings

Accuracy 0.62 0.65 0.64 0.66 - - 0.66 0.66
Sensitivity 0.61 0.66 0.63 0.66 - - 0.60 0.61
Specificity 0.64 0.65 0.65 0.66 - - 0.69 0.68

AUC 0.61 0.66 0.62 0.68 - - 0.65 0.66

12 angles

Accuracy 0.66 0.63 0.65 0.64 0.60 0.60 0.65 0.64
Sensitivity 0.70 0.58 0.66 0.57 0.57 0.61 0.59 0.62
Specificity 0.64 0.66 0.64 0.71 0.64 0.59 0.70 0.65

AUC 0.68 0.62 0.66 0.65 0.61 0.60 0.66 0.66

Table 6.4: Diagnostic model performance. The performance is reported for each grid and feature
family. The All column refers to combining the best features of each three feature families.
AUC: area under the curve. LR: logistic regression. SVM: support vector machine.

Overall, texture features performed best in both Macula and ETDRS grids. The performance
was slightly better for SVM models. Although combining the best features of each family did not
result in a large improvement, the best performance was obtained by an SVM model using a total
of 9 ETDRS features from all families, which achieved a 69% accuracy and an AUC of 0.69. The
sensitivity and specificity of this model were 0.72 and 0.62, respectively. The included 9 features
and are listed in Table 6.5 and included three thickness features measured in outer ring sectors,
two texture features in the central region, and four foveal features.

Rank Family Layer Sector Feature

1 Thickness GCIPL Outer-superior Mean
2 Thickness INL Outer-inferior Mean
3 Texture TRT Central GLCM cluster prominence
4 Texture TRT Central GLCM joint variance
5 Fovea (model) GCIPL Nasal Scheibe (α)
6 Thickness ONPL Outer-inferior Mean
7 Fovea (geometry) GCIPL Temporal Max slope radius (mean)
8 Fovea (model) TRT Temporal Scheibe (γ)
9 Fovea (model) GCIPL Temporal Scheibe (µ)

Table 6.5: Features included in the best diagnostic model. TRT: total retinal thickness. GCIPL:
ganglion cell–-inner plexiform layer. INL: inner nuclear layer. ONPL: outer nuclear and
plexiform layer. GLCM: gray-level co-occurrence matrix.

As an additional illustration, Figure 6.3 shows the evolution of the performance of the best
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configuration (i.e., All family and ETDRS grid) as more features are added to the model. As
shown, the performance of both LR and SVM models improved as more features were included.
Although the absolute maximum performance was achieved by the latter, the LR model showed a
better balance between the performance of both classes (i.e., sensitivity and specificity were more
similar).

Figure 6.3: Best diagnostic model performance over feature count. The horizontal dashed black
line depicts the absolute maximum accuracy obtained by the SVM model. SVM: support
vector machine.

6.2.3 Alternative diagnostic strategies

In the previous analysis we made use of features computed as the average of both eyes (e.g., we
computed the mean foveal slope for left and right eyes and used the average of both as the final
value for each subject). However, the values derived from both eyes can also be used without
averaging. By adopting this approach, a model is trained considering both eyes of each subject as
different data samples and an independent prediction is made for each eye. This methodology has
previously been used under the assumption that changes may occur on a single eye and averaging
may hinder their detection. To explore this idea, in this section we investigated whether using
features from each eye individually resulted in different performance.

Using both eyes separately, however, raises a challenging methodological question, as it entails
generating two independent predictions that may not agree. Indeed, in the special case of PD
diagnosis, there are four possible scenarios depending on the predictions of left (OS) and right
(OD) eyes (see Table 6.6). In two of these scenarios opposite predictions are produced by each eye
and, therefore, there is no obvious prediction to be made on a subject level. This problem can be
omitted if model performance is reported only at an eye level. However, this disregards the real
goal of a PD diagnostic model, which is to diagnose a patient and not each eye separately. Thus, a
seemingly sensible alternative strategy could be not making a prediction when both eyes disagree.
This means training a model using both eyes but adding a rule so that when left and right eyes
produce opposite predictions, no label is assigned to the subject.

Prediction OS
HC PD

Prediction
OD

HC Agree Disagree
PD Disagree Agree

Table 6.6: Possible scenarios with individual eye prediction.
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To investigate the described strategy an additional SVM model was trained using both eyes
and the best features identified in the previous analysis (see Table 6.5). As before, features were
normalized and fed into a forward stepwise model selection procedure. As a key difference, in this
case the leave-one-out cross-validation procedure was performed on a subject level to ensure that
the eyes of the each subject were used only for either training or testing. Model performance was
evaluated in two ways:

• Eye-level: computed using all eyes as independent test samples. Although this metric dis-
regards the cases in which the predictions of both eyes did not align, it is computed for
comparison purposes.

• Subject-level: computed considering only those cases in which the prediction for both eyes of
the same subject was the same.

The obtained results are shown in Table 6.7. At an eye-level, the model obtained an accuracy
of 59.5%. Interestingly, this accuracy increased up to an 63.1% when predictions were only made
for subjects for which both eyes provided the same prediction. It is important to mention however
that the latter represented the 83.4% of the subjects, which means that, this approach failed to
provide a prediction for 16.6% of the subjects but improved the accuracy in those cases in which
both eyes were in agreement.

Eye-level Subject-level
Accuracy 59.5 63.1
Sensitivity 59.6 64.0
Specificity 59.5 62.4

Table 6.7: Diagnostic performance using both eyes. All the estimates are reported as %.

6.2.4 Patient stratification

After evaluating the overall diagnostic performance, we explored the potential of OCT features to
diagnose PD in patients at different disease stages. The goal was to determine if PD diagnosis
improved when comparing controls only with patients in a more advanced disease stage. To this
aim, we created different subgroups of patients based on disease duration, MoCA, and UPDRS-III.
For the disease duration variable, three groups were created based on distribution tertiles (3.20
and 7.04 years). As for MoCA, fixed cut-offs were established at 23 and 26 scores. These values
correspond to previously used thresholds for cognitive impairment screening [166], and allowed
us to split the sample into three groups of similar size. Regarding UPDRS-III, patients were
also split into three subgroups according to distribution tertiles (19 and 29). In all cases, control
subjects were correspondingly split into groups according to each patient-control matched pair.
This ensured that patient and control subgroups had the same sex and age distribution.

As in the previous sections, the features from thickness, texture, and foveal pit morphology
were used to train LR and SVM models. In this case, only features from the ETDRS sectorization
grid were used as they showed the best diagnostic performance. In total 4 models were trained for
each patient subgroup, one for each feature family (thickness, texture, and foveal pit morphology),
and one combining the best features of the three families. Model training and evaluation was
carried out following the same pipeline described in section 6.2.2. In this analysis all the features
were derived as the average between both eyes.

The performance obtained by the best diagnostic model in each patient subgroup is displayed in
Table 6.8. Overall, the performance improved significantly with respect to the previous diagnostic
yield. For instance, a model trained on the patient subgroup with the longest disease duration
reached an accuracy of 77% and an AUC of 0.79. This performance was achieved by an SVM
model combining 9 texture features. The sensitivity and specificity of the model were balanced
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(0.75 and 0.79, respectively). As for MoCA subgroups, a LR model trained on texture features
demonstrated an accuracy of 75% and an AUC of 0.71 to discern the patients with the highest
cognitive impairment. Similarly, UPDRS-III subgroups also improved the performance with an
accuracy above 70%.

Clinical
variable Threshold N Features P Model Acc. Sen. Spe. AUC

Disease
duration
(years)

x < 3.2 57 All 10 SVM 0.74 0.79 0.72 0.79
3.2 ≤ x < 7.04 57 Texture 9 LR 0.73 0.75 0.70 0.70

x ≥ 7.04 57 Texture 9 SVM 0.77 0.75 0.79 0.79

MoCA
x ≥ 26 62 Texture 2 LR 0.69 0.73 0.65 0.65

23 ≤ x < 26 55 All 6 LR 0.74 0.73 0.77 0.72
x < 23 55 Texture 9 LR 0.75 0.69 0.80 0.71

UPDRS-III
x ≤ 19 56 Texture 8 SVM 0.71 0.73 0.69 0.70

19 ≤ x < 29 58 All 10 LR 0.73 0.74 0.71 0.73
x ≥ 29 58 Texture 10 LR 0.73 0.76 0.67 0.75

Table 6.8: Best diagnostic model performance with patient subgroups. For each patient sub-
group the performance of the best model is reported. Additionally, the number of features
included in each model (P) as well as their type is reported. All feature family refers to
combining the best 10 features of each previous category. AUC: area under the curve. LR:
logistic regression. SVM: support vector machine.

The features included in the best models applied to the patients with the longest disease
duration, lowest MoCA, and highest UPDRS-III are listed in Table 6.9, 6.10, and 6.11, respectively.
As shown, texture features dominated these models. As a recurrent finding, most of the features
included in these models corresponded to the central ETDRS sector. Regarding the specific layers
of the features, most of the features were derived primarily from TRT.

Rank Family Layer Sector Feature

1

Texture

INL Outer-superior GLCM Sum of squares
2 TRT Inner-inferior GLCM Inverse difference moment
3 ELM-BM Central Fractal dimension
4 TRT Inner-inferior GLCM Inverse Difference
5 TRT Central GLCM Difference variance
6 TRT Central LBP range
7 GCIPL Central GLCM Energy
8 GCIPL Central GLCM IMC2
9 TRT Central LBP standard deviation

Table 6.9: Features included in the longest disease duration diagnostic model. Patients in
the group diagnosed by this model had a disease duration greater or equal than 7.04 years.
GLCM: gray-level co-occurrence matrix. LBP: local binary patterns.
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Rank Family Layer sector Feature

1

Texture

TRT Central GLCM Max probability
2 TRT Central GLCM IMC2
3 TRT Central LBP mean
4 TRT Central LBP standard deviation
5 TRT Central GLCM Cluster prominence
6 GCIPL Central GLCM Max probability
7 TRT Central GLCM Correlation
8 TRT Central LBP entropy
9 TRT Central GLCM Inverse difference

Table 6.10: Features included in the lowest MoCA diagnostic model. Patients in the group
diagnosed by this model had a MoCA lower than 23. GLCM: gray-level co-occurrence matrix.
LBP: local binary patterns.

Rank Family Layer sector Feature

1

Texture

ELM-BM Central GLCM Dif. Variance
2 TRT Inner-superior LBP interquartile range
3 ONPL Inner-superior GLCM Cluster shade
4 ONPL Inner-superior GLCM Cluster shade
5 INL Inner-temporal LBP mean
6 ELM-BM Outer-superior GLCM Inverse difference normalized
7 ELM-BM Central LBP mean
8 TRT Inner-inferior LBP median
9 GCIPL Inner-nasal GLCM Sum average
10 TRT Outer-temporal Lacunarity

Table 6.11: Features included in the highest UPDRS-III diagnostic model. Patients in the
group diagnosed by this model had a UPDRS-III higher or equal than 29.

6.3 Clinical assessment

In this second part of the chapter we developed and evaluated predictive models for MoCA,
UPDRS-III, and HY scores. The final objective was to evaluate how informative OCT features
are as a predictor of cognitive and motor impairment of PD patients. To assess this, we built
regression models for each variable following three strategies:

• Reference performance: using the age, sex, and disease duration of each patient for prediction.
The performance of this approach serves to establish a reference to compare against.

• Individual OCT features: using only individual OCT features for prediction. This was carried
out to identify associations between disease severity and specific features.

• Multivariate modeling: combining OCT features to explore how a using more than one feature
influences performance.

All the regression models described in the next sections were evaluated using the same leave
one out cross-validation strategy. Model training was different depending on the followed approach
and is described in each of the subsequent sections. Model evaluation was carried out by means
of the R2 as well as the RMSE obtained on the test set. Additionally, the AIC was also computed
for each training set. The obtained AIC values were then averaged to obtain a measurement on
the adequacy of each model.
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6.3.1 Reference performance

In this first approach, we fitted linear regression models with sex, age, age2, and disease duration
to predict MoCA, UPDRS-III, and HY scores. The age values were centered at 60 years old. In
addition, we also evaluated the performance of using the average value of each clinical variable
in the train set to predict the test sample. This was done to obtain a baseline reference for the
RMSE.

The regression results for each model are shown in Table 6.12. Age was the best predictor for
MoCA, explaining up to 22% of its variance and reducing the RMSE by 0.56 points. As evidenced
by the AIC and illustrated in Figure 6.4, the relationship between age and MoCA was better
modeled by a quadratic function. Indeed, a model with age and age2 was found to be better
than a constant model in both control (F-test p= 10−8) and PD patients (F-test p= 10−12). This
model was able to predict MoCA with an RMSE of 4.10, a 12% lower than that of a constant
model (RMSE=4.61). Conversely, neither sex nor disease duration showed an association with
MoCA.

On the other hand, it was not possible to accurately predict UPDRS-III scores from any of the
evaluated predictors, which were not able to reduce the RMSE of 11.49 obtained by a constant
model.

As for HY, although age and sex did not show any predictive performance, a larger disease
duration was with a higher HY score (R2 =0.07). This association resulted in a 3.5% reduction in
the prediction error (from an RMSE of 0.629 to 0.607).

Outcome Model R2 RMSE AIC p-value (β)

MoCA

constant∗ - 4.61 979 -
sex -0.02 4.63 980 0.42
age 0.20 4.10 939 1.4·10−10

age + age2 0.22 4.05 935 3.3·10−6, 0.013
disease duration -0.02 4.61 986 0.48

UPDRS-III

constant∗ - 11.50 1282 -
sex -0.01 11.49 1282 0.12-
age -0.02 11.57 1284 0.83
age + age2 -0.03 11.59 1285 0.47, 0.27
disease duration -0.03 11.59 1284 0.79

Hoehn-Yahr

constant∗ - 0.629 319 -
sex -0.03 0.633 321 0.91
age -0.01 0.629 319 0.19
age + age2 -0.02 0.632 321 0.36, 0.42
disease duration 0.07 0.607 302 1.1·10−4

∗ Predict the test sample as the average value on the training set.

Table 6.12: Regression results for reference approaches. The best model in each clinical variable
is highlighted in light blue color. p-values refer to each specific regression coefficient.

6.3.2 Individual OCT features

Here, we sought to explore which OCT features were more strongly related with clinical variables.
To investigate this, we fitted simple linear regression models using clinical variables as an outcome
and each individual OCT feature as a single predictor. In this regression analysis the test R2

and RMSE were computed following the leave-one-out cross-validation procedure. Additionally, a
Pearson correlation and a p-value were derived for each predictor using the entire dataset. The
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Figure 6.4: MoCA as a function of age for controls and patients. The data and regression results
in controls are shown for reference purposes. Except for this figure, all the results presented
in Table 6.12 and this part of the chapter were computed for PD patients only.

analysis was carried out using OCT features described previously in Section 6.1.

The 5 features showing the highest test R2 from each feature family are listed in Tables 6.13
(MoCA), 6.14 (UPDRS-III), and 6.15 (HY).

Regarding MoCA, a positive association was found mostly with GCIPL thickness. As shown in
Figure 6.5, this association was higher for the inner macular ring (maximum R2 =0.09). Related
with this finding, the GCIPL rim height also showed a similarly good performance both when
averaged across the entire macula and when measured separately for each angular directions.
Additionally, the A22 coefficient of the mathematical model proposed by Ding et al. [74] also
demonstrated predictive value (R2 =0.08). As for texture features, the standard deviation of
GCIPL thickness across the entire macula was the best feature of its kind.

Neither thickness nor texture features showed a clear association with UPDRS-III. In fact, the
only feature with a mild association with the outcome was the GCIPL CFT, that is, the GCIPL
point thickness at the very foveal center (R2 =0.06).

In a similar vein, thickness and texture features did not explain more than a 5% of the variance
in HY scores. This low yet non-negligible performance was mainly driven by a positive association
with ELM-BM thickness (see bottom-right part of Figure 6.5) and a negative association with
GCIPL standard deviation. Importantly, GCIPL foveal pit depth features outperformed the latter
two and achieved the highest predictive performance (R2 =0.08).

6.3.3 Multivariate modeling

After establishing a reference performance and investigating individual OCT features, in this last
section we explored if a combination of multiple features could improve prediction. This analysis
encompassed two approaches: the first involved combining exclusively OCT features, while the
second incorporated age as a fixed predictor in models using multiple OCT features. Age was
included in the model because it showed predictive value for MoCA and is a basic predictor.

Regarding the concrete regression models, three multivariate methods were evaluated:

• Least squares: in each iteration the best 5 features are selected from the training set (i.e.,
N-1 samples) based on the highest correlation with the outcome. These features are then
linearly combined to predict the outcome on the test subject.

• Least squares + Lasso: instead of selecting the features, in this approach a Lasso regular-
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Thickness Texture Foveal pit
Layer Sector R R2 RMSE Layer Sector Name R R2 RMSE Layer Sector Name R R2 RMSE

GCIPL IT 0.32 0.09 4.34 GCIPL Macula Std. Dev. 0.31 0.08 4.36 GCIPL I1 Rim height 0.34 0.10 4.31
GCIPL II 0.29 0.07 4.38 GCIPL I2 Std. Dev. 0.31 0.08 4.37 GCIPL T Rim height 0.34 0.10 4.32
GCIPL � 2-3 0.29 0.07 4.39 GCIPL T2 Std. Dev. 0.31 0.07 4.37 GCIPL T2 Rim height 0.34 0.09 4.33
GCIPL IN 0.28 0.06 4.40 GCIPL I3 Std. Dev. 0.30 0.07 4.39 GCIPL Macula Rim height 0.33 0.09 4.33
GCIPL IS 0.28 0.06 4.41 GCIPL T1 Std. Dev. 0.29 0.07 4.39 GCIPL N3 Rim height 0.33 0.09 4.34

Table 6.13: Best OCT features for MoCA prediction. Sectors are defined in Figure 4.17. Rings are defined by their diameter range (�) in mm.

Thickness Texture Foveal pit
Layer Sector R R2 RMSE Layer Sector Name R R2 RMSE Layer Sector Name R R2 RMSE

ELM-BM ON -0.15 0.00 11.37 ELM-BM Macula GLCM
Max prob. 0.20 0.02 11.26 GCIPL Macula CFT 0.29 0.06 11.00

ELM-BM � 4-5 -0.13 -0.01 11.41 ELM-BM Macula GLCM
Energy 0.19 0.02 11.28 TRT S2 Scheibe (α) -0.21 0.02 11.26

ONPL C -0.12 -0.01 11.41 ONPL � 1-2 Std. Dev. -0.21 0.02 11.28 GCIPL I2 Pit depth -0.20 0.02 11.27
ELM-BM N2 -0.12 -0.01 11.41 GCIPL I2 Std. Dev. -0.19 0.01 11.32 TRT I3 Scheibe (α) -0.20 0.02 11.28

ELM-BM S1 -0.13 -0.01 11.42 ELM-BM Macula GLCM
Sum entropy -0.16 0.00 11.34 TRT T1 Pit depth -0.20 0.02 11.28

Table 6.14: Best OCT features for UPDRS-III prediction. Sectors are defined in Figure 4.17. Rings are defined by their diameter range (�) in mm.

Thickness Texture Foveal pit
Layer Sector R R2 RMSE Layer Sector Name R R2 RMSE Layer Sector Name R R2 RMSE

ELM-BM N3 -0.25 0.04 0.619 GCIPL I2 Std. Dev. -0.27 0.05 0.614 GCIPL I2 Pit depth -0.31 0.08 0.605
ELM-BM S1 -0.24 0.04 0.621 GCIPL N3 Std. Dev. -0.22 0.03 0.619 GCIPL I1 Pit depth -0.29 0.06 0.611
ELM-BM ON -0.24 0.03 0.621 GCIPL Macula Std. Dev. -0.21 0.02 0.620 GCIPL N3 Pit depth -0.29 0.06 0.611
ELM-BM N2 -0.23 0.03 0.622 GCIPL I1 Std. Dev. -0.22 0.02 0.620 GCIPL I Pit depth -0.28 0.06 0.612
ELM-BM T1 -0.22 0.03 0.622 GCIPL I3 Std. Dev. -0.21 0.02 0.623 GCIPL Macula Pit depth -0.27 0.05 0.613

Table 6.15: Best OCT features for Hoehn-Yahr score prediction. Sectors are defined in Figure 4.17.
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Figure 6.5: R2 for each clinical variable and thickness feature over a 5 ring grid.
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ization term is added to the least squares regression. The amount of regularization (λ) is
selected by means of an inner 10-fold cross-validation.

• SVM + Lasso: same procedure as in the second method but using an SVM model instead
of least squares. The hyperparameters of the SVM are tuned using an inner 10-fold cross-
validation.

All the results are summarized in Table 6.16. Previously derived reference performance obtained
by either a constant model, age, and disease duration alone is also displayed for comparison.

Overall, combining multiple OCT features did not show a clear performance improvement. Re-
garding MoCA, models using OCT features obtained a maximum R2 of 0.09, notably below the per-
formance obtained by an age-only model (R2 =0.22). This latter performance was only marginally
improved when combining OCT features with age in a single least squares model (R2 =0.23).

As for UPDRS-III, OCT features showed low predictive power with a maximum R2 of 0.06.
Age and sex were not related with UPDRS-III either and, consequently, combining OCT features
with age did not yield better results.

Finally, HY score could not be predicted by age. However, OCT features showed to be somewhat
informative with an R2 of 0.08. As with UPDRS-III, combining age with OCT features did not
provide improvements in the predictive performance.

Strategy Model MoCA UPDRS-III Hoehn-Yahr
R2 RMSE R2 RMSE R2 RMSE

Reference
constant∗ - 4.58 - 11.5 - 0.629
age + age2 0.22 4.00 -0.03 11.5 -0.02 0.635
disease duration -0.02 4.61 -0.03 11.6 0.07 0.607

OCT
Least squares 0.09 4.34 0.06 11.0 0.08 0.605
Least squares + Lasso 0.09 4.34 -0.02 11.5 0.06 0.610
SVM + Lasso 0.07 4.39 0.02 11.3 0.03 0.620

OCT + Age†
Least squares 0.23 3.99 0.05 11.1 0.06 0.608
Least squares + Lasso 0.21 4.03 -0.02 11.5 0.06 0.610
SVM + Lasso 0.21 4.04 0.02 11.3 0.03 0.620

∗ Predict test value as the average value on the training set.
† Age was forced to be in all models.

Table 6.16: Regression results for different outcomes and modeling strategies.

6.4 Discussion

In this chapter we investigated whether conventional or advanced OCT features could provide
valuable information for PD diagnosis or severity assessment. First, we focused on PD diagnosis
and found that individual features showed a limited class separability (maximum AUC=0.62).
This likely indicates that OCT features do contain some information about PD changes yet not
enough to reach an accurate diagnosis individually.

From the explored individual features those derived from the ETDRS grid worked better than
those computed from the entire macular region. This suggests that averaging thickness points
over a region as large as the entire macula hinders the detection of PD-related changes. Similarly,
ETDRS features showed equal or similar performance than those derived from multiple rings or
angles. This could indicate that PD-related changes are not better captured by splitting the
macular area into more rings and angular sectors than the conventional ETDRS does.
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Combining multiple OCT features improved the diagnostic performance up to an AUC of 0.67.
This possibly reflects that, as no individual feature is able to accurately diagnose PD, the models
benefit from combining multiple features.

As an alternative approach, we also explored a diagnostic methodology using both eyes (without
averaging). This approach reached a lower accuracy than the one obtained averaging both eyes,
which may signify that using both eyes introduces higher variability into the model and averaging is
indeed beneficial. Nevertheless, we observed how the accuracy can be improved by only providing
a diagnosis when the prediction of both eyes are in agreement. This result suggests that inter-eye
agreement can be used as measurement of model uncertainty, which could be of value in settings
where data from both eyes is available.

On another note, the diagnostic performance improved further when patients were split into
subgroups based on disease duration, MoCA, and UPDRS-III. In fact, the obtained accuracy was
higher for patients with cognitive impairment (i.e., MoCA below 26). A potential explanation to
this effect is that as the cognition of patients worsens the retinal changes become more accentuated,
which in turn, results in a more accurate diagnosis.

PD diagnosis has been addressed by previous work with diverging results (refer to Table 2.6
in Chapter 2 for a detailed list of studies). Notably, most studies included less than 55 patients
[74,147–150,154,155,157], and showed a great variability in the reported performance. In fact, there
were studies reporting low [147, 148, 154], medium [74, 149, 155], and high diagnostic performance
[157]. This variability can be largely influenced by the small sample size. In addition, two larger
studies have investigated PD diagnosis from OCT features. Garcia-Martin et al. trained a LDA
model on ETDRS thickness features, achieving an AUC of 0.90 in a cohort with 200 controls
and 111 patients [146]. In a second study, Pinkhardt et al. investigated foveal pit features in a
cohort of 176 controls and 184 patients. The reported results were not as good (62% accuracy and
AUC=0.60) [156].

Compared to these previous studies, we explored a much wider range of OCT features in a
sample of similar or larger size. However, the achieved performance was not on par with the
best results reported in the literature (AUC=0.90). A first explanation for this discrepancy are
the existing methodological differences between the studies regarding OCT image processing and
diagnostic model development. These differences complicate direct comparisons and may have
impacted the results. Alternatively, the heterogeneity of the BHRI dataset could have had an
influence as well. In fact, the individuals included in this dataset were imaged by different operators
over a period of several years. Thus, certain differences between acquisitions are to be expected,
which may have have impacted the results negatively. This limitation can also be seen as a more
severe test to the hypothesis that OCT features can be reliably used to diagnose PD. That is,
any potential clinical use of an OCT-based diagnostic model would inevitably involve different
operators and acquisition protocols. Therefore, if such differences were to affect the performance
of the model so dramatically, this would be an indicator of low model stability that would make it
unsuitable for the task.

Beyond mere model performance, it is interesting to reflect on the features that worked best. In
the literature, thickness features have been by far the most investigated with somewhat consistent
results pointing towards an inner retinal thinning in PD [41]. Contrary to that, conventional
thickness features did not yield great performance in our dataset. In fact, the best features were
often derived from the central ETDRS sector, a macular area in which inner retinal layers are
practically non-existent. This may indicate that the central sector is capturing an effect related
with fixation problems in PD patients rather than a true biological effect.

In the second part of the chapter, we evaluated if OCT features could be used for an accurate
clinical severity assessment. As the main conclusion, OCT features convey some information about
cognitive status and motor impairment of a patient. However, the predictive performance is clearly
insufficient to be considered for clinical use. Indeed, age alone was a better predictor for MoCA than
any OCT feature. The age dependency of MoCA reflects the well-known cognitive deterioration
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associated with aging and has been extensively described in the literature [204]. Importantly, this
pattern is not confined to PD patients and is present also healthy subjects.

Nevertheless, it is important to further reflect on the features showing a highest association with
MoCA. In this case, we found a clear positive association between MoCA and GCIPL thickness, a
finding in line with previous literature investigating cognition in PD [145, 171, 174]. Interestingly,
Sung et al. investigated GCIPL thickness with different angular sectors and found all to be
positively correlated with MoCA [174]. Altogether, the evidence suggest that the GCIPL thinning
associated with MoCA decline is radially homogeneous, but largely confined to the 0.5 to 2mm
radius region.

In any case, the association between cognitive decline and GCIPL does not necessarily need to
be a causal relationship. Indeed, as we described in Chapter 5, GCIPL thickness decreases with
age, and, therefore, one could hypothesize that aging is the underlying phenomenon driving both
the GCIPL thinning as well as cognitive decline.

On the predictive modeling side, combining multiple OCT features either alone or with age did
not significantly improve predictive performance. This can indicate that the existing relationship
between MoCA and OCT features stems from a single effect well captured by GCIPL thickness
measurements and, consequently, adding other features does not effectively increase the amount of
information.

Regarding UPDRS-III, the best performance was obtained by the GCIPL CFT feature. It is
important to note that the CFT measures the thickness of a layer at the very center of the fovea.
Considering that the GCIPL thickness in that region is practically non-existent, it is possible that
the CFT is capturing some kind of centering artifact correlated with motor impairment rather
than a biological change. In this sense, it could be hypothesized that patients with worse motor
impairment may have higher difficulties maintaining a stable fixation, which could lead to poorer
centering. Nevertheless, all the images were manually reviewed to discard centering problems, so
the effect may be subtle. This effect shares similarities with previous diagnostic results, where
central thickness features showed the highest discriminative power.

Surprisingly, none of the conventional thickness features showed any clear association with
UPDRS-III. This is not in line with previous literature reporting a negative correlation with the
TRT [167] and GCIPL [145]. This difference may stem from dataset variability because, as already
mentioned, patients were assessed across various research projects, dates, and clinicians, potentially
impacting UPDRS-III measurements.

Finally, we found HY scores to be negatively associated primarily with GCIPL pit depth,
CFT, and more weakly with ELM-BM and GCIPL thickness. The former parallel the CFT-
UPDRS-III relationship described before and may be capturing a similar phenomenon related to
motor impairment and image fixation. Regarding the former, previous studies reported a negative
association with HY and the TRT [142,170,171], GCIPL [138,145,170–172], INL [171], and ONPL
[171], but no study has investigated ELM-BM thickness. As a consequence, it is difficult to
postulate an underlying biological mechanism and additional research is required to validate this
finding.

In conclusion, the explored OCT features capture certain aspects of PD but are not sufficient
to be considered for disease diagnosis or severity assessment in a real clinical setting. Never-
theless, although we explored a comprehensive set of features, other features and approaches not
investigated here might be able to capture PD-related changes more effectively. For instance, deep-
learning models trained on fundus images, thickness maps and even OCT volumes are starting to
be explored and may boost the clinical utility of retinal imaging for PD [205].
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7 Patient evolution and
monitoring

Previous cross-sectional studies have reported thinner inner retinal layers in PD [41]. However,
as observed in the literature and highlighted by Chapter 6, the differences between patients and
controls are small, and can be challenging to detect. This difficulty is partly a consequence of the
high inter-subject variability of retinal thickness, which may mask small changes at a patient level.
Therefore, it is of great interest to investigate how the retina evolves over time for the same eye
and subject.

With this aim, in this Chapter we leverage two longitudinal cohorts to examine the evolution
of the retina in PD patients and its relationship with disease progression. After describing data
curation and image processing, four separate analyses are presented. First, Section 7.2 focuses on
determining the structural aspects of the retina which change more prominently in PD. In Section
7.3 the estimated clinical evolution of the patients is described, and the link between retinal changes
and clinical evolution is then explored in Section 7.4. Finally, Section 7.5 investigates whether OCT
features measured in a single visit can be used to predict cognitive and motor evolution of a patient.

7.1 Subjects and OCT features

Subjects from both the BHRI and AlzEye datasets were used (Table 7.1). From the BHRI dataset,
a total of 158 patients and 72 controls were included. As previously described in Section 3.3, all
included BHRI subjects underwent a screening protocol to exclude those with potential confounding
factors which could affect OCT measurements and clinical outcomes. For every PD patient in BHRI
the following clinical variables were measured: MoCA, HY score, and UPDRS-III.

Dataset Group N Age (years)∗ Male
(%)

Follow-up∗

(years) Visits∗

BBHRI Control 72 61.3 (7.6) 42.3 2.8 (1.7) 2.4 (0.5)
PD 158 64.9 (8.6) 65.2 2.6 (1.7) 2.4 (0.5)

AlzEye Control 873 75.7 (9.4) 60.6 1.4 (1.6) 4.4 (5.6)
PD 167 76.7 (8.6) 55.7 1.3 (1.4) 4.7 (6.0)

∗mean (σ)

Table 7.1: Subjects included in the longitudinal analysis.

Two groups were initially formed with subjects from the AlzEye database who possessed macu-
lar OCT images ready for analysis: the PD group (N =1283) and the control group (N =125110).
The PD group was defined as individuals with at least one hospital admission labeled as PD (i.e.,
an entry in the HES database with an ICD code for PD). The data curation process is outlined in
Figure 7.1.
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Figure 7.1: AlzEye data curation process. The figure shows how many subjects remain and how
many are excluded in each step of the data curation process.

First, all PD images captured before the first HES date with a PD code were excluded. This
was to ensure that only images obtained after the onset of the disease were included for PD
patients. Subjects with Diabetes Mellitus were also excluded to align with the exclusion criteria
used in the BHRI dataset. Then, individuals with ICD codes indicating the neurological conditions
of AD, cerebral amyloid angiopathy, Huntington’s disease, motor neuron disease, MS, progressive
supranuclear palsy, schizophrenia, subarachnoid hemorrhage, and vascular dementia were removed.
Ophthalmological labels for AMD and glaucoma were considered for exclusion and OCT volumes
with poor contrast were subsequently eliminated based on the image quality metric provided by the
Topcon device metadata. The threshold for removal (set at < 29) was determined by maximizing
the Youden Index using a separate dataset that included manually graded Topcon OCT images from
the UKBB dataset [206]. Propensity score matching based on age, sex, ethnicity, and hypertension
was employed to select four control subjects for each PD subject. In the final step, the included
images were manually inspected by two experienced graders (i.e. a biomedical engineer and an
optometrist) to identify and remove cases with image artifacts, poor image centration, segmentation
errors, and ocular lesions. This inspection process relied on summary reports, an example of which
is presented in Figure 7.2. The final AlzEye cohort consisted of 167 PD patients and 873 controls.

It should be noted that the two final datasets were significantly different. BHRI subjects had
between 1 and 3 visits at fixed time points of around 1, 2, 3, and 5 years. Conversely, there was a
higher heterogeneity in AlzEye subjects, who had more visits but were unevenly distributed with
a shorter follow-up time. Additionally, the AlzEye dataset did not include any clinical variables
related to disease duration, cognitive status, and motor impairment. For this reason, the BHRI was
employed as the primary dataset and AlzEye was only used as a replication dataset for analyses
solely involving OCT measurements (Section 7.2).
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Figure 7.2: Example summary figure used for AlzEye image exclusion. A color fundus image
acquired along with OCT images is shown in the top-left corner to identify pathologies. Top-
center grayscale reflectance map is displayed to identify blinking artifacts. Then, multiple
thickness maps are shown. These were used to detect incorrect centration as well as ocular
pathologies. Finally, 8 B-scans uniformly selected are also displayed to further evaluate
segmentation errors and quality problems.

Both datasets underwent similar image processing as described in Section 4.5. The analyzed
OCT features were the same in both datasets and included:

• Sectorized thickness: analyzed retinal layers were the TRT, GCIPL, INL, ONPL, and ELM-
BM. We used three sectorizations: macula, ETDRS rings, and 5 rings.

• Foveal pit morphology: the following features were calculated for both the TRT and GCIPL:
rim height, rim radius, pit depth, and mean slope. A single average value for the entire fovea
was analyzed.

All the computed features were averaged between left and right eyes to obtain a single value
per subject and visit. In cases where only one eye was included, the values from that particular
eye were used as the subject average. Texture features were not investigated in this chapter, as the
primary focus was on discerning structural alterations within the retina and changes in textural
attributes lack a direct structural correlate.
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7.2 Longitudinal retinal changes

In a first analysis, longitudinal changes in retinal thicknesses and foveal pit morphology were
investigated to determine if any of the features evolved differently in PD patients. For each retinal
feature a mixed-effects linear regression model with an interaction term between follow-up time
and having PD was fitted (Equation 7.1). Models were adjusted for sex (βsex) and age at baseline
(βage). The latter was centered at 60 years old to obtain a meaningful intercept. The statistical
dependence across visits was modeled by a random intercept for each subject (γsub). No random
slope was used because many subjects had only 1 or 2 visits, which was insufficient to accurately
fit such a complex model.

y = β0 + βsexisMale + βageage60 + βhctime + βpdPD + β∆pdtimePD + γsub (7.1)

From the fitted model, two coefficients were studied: the annualized rate of change in controls
(βhc), and the difference in that change between controls and patients (β∆pd) (e.g., additional
annualized thinning of a certain layer due to having PD). For each coefficient a p-value and a 95%
confidence interval were reported. This analysis was carried out first for BHRI subjects and then
replicated in AlzEye.

The results for ETDRS sectors in the BHRI dataset are illustrated in Figure 7.3. Correspond-
ingly, Table 7.2 displays the estimated annualized rates of change for foveal pit morphology pa-
rameters and retinal thicknesses in the entire macular region, inner ring, and outer ring. Estimates
are given in µm/year for all features except the mean slope, which is measured in °/year.

The TRT was found to decrease an additional 0.56µm/year (p= 0.0001) in PD patients from
the BHRI dataset. The equivalent estimation for AlzEye was 0.72µm/year (p= 0.012). The
GCIPL also showed an increased thinning in PD. While in the BHRI dataset the differences
were statistically significant in all three regions, in AlzEye the effect was more evident in the
parafoveal region. Importantly, in this region the increased thinning estimate from both datasets
was very similar: 0.31µm/year (p= 0.0005) and 0.27µm/year (p= 0.0076) for BHRI and AlzEye,
respectively. Results from AlzEye did not reveal any other effect on either the INL, ONPL, or
ELM-BM layers. Conversely, results from the BHRI dataset did present a thinning effect of the
ONPL of up to 0.30µm/year (p= 0.006) in the parafoveal region.

Interestingly, a thinning effect was also observed in controls. For instance, macular GCIPL was
found to decrease at 0.21µm/year in BHRI. This phenomenon was accentuated in AlzEye, where
the TRT, GCIPL, INL, and ELM-BM were all found to become thinner in healthy subjects for
some of the sectors.

In addition to thickness differences, a few foveal pit measurements also showed significant
differences between controls and patients. The most consistent finding between both datasets was
a decrease in the rim height for both TRT and GCIPL. Specifically, TRT had an additional decrease
in PD patients of 0.72µm/year (p= 0.0001) and 1.00µm/year (p= 0.011) in BHRI and AlzEye,
respectively. As for the GCIPL, the increased annualized thinning in patients was 0.28µm/year
(p= 0.0053) and 0.35µm/year (p= 0.0012) in each dataset. Although no clear effect of any of the
remaining foveal features was observed in AlzEye, the GCIPL pit depth was found to significantly
decrease in BHRI PD patients.
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Figure 7.3: Longitudinal changes in ETDRS thicknesses in the BHRI dataset. Each column
shows the annualized rate of thickness change in control subjects (βhc) and PD patients
(βhc +β∆pd), respectively. Sectors in the second column are marked with asterisks depending
on the p-value of the interaction (β∆pd).

100



C
hapter

7.
Patient

evolution
and

m
onitoring

7.2.
Longitudinalretinalchanges

Category Layer Feature BBHRI AlzEye
βhc (X / year) β∆pd (X / year) p-value βhc (X / year) β∆pd (X / year) p-value

Thickness

TRT
Macula -0.15 [-0.39, 0.08] -0.56 [-0.85, -0.28] 0.0001∗ -0.54 [-0.76, -0.32] -0.72 [-1.27, -0.16] 0.012∗

Inner ring -0.06 [-0.33, 0.22] -0.75 [-1.09, -0.42] 1.1·10−5∗ -0.63 [-0.88, -0.38] -0.82 [-1.46, -0.18] 0.012∗

Outer ring -0.23 [-0.47, 0.01] -0.51 [-0.81, -0.22] 0.0007∗ -0.55 [-0.77, -0.33] -0.65 [-1.21, -0.09] 0.023∗

GCIPL
Macula -0.21 [-0.31, -0.11] -0.25 [-0.37, -0.13] 5.7·10−5∗ -0.24 [-0.30, -0.17] -0.16 [-0.34, 0.01] 0.064

Inner ring -0.28 [-0.42, -0.13] -0.31 [-0.49, -0.14] 0.0005∗ -0.38 [-0.46, -0.30] -0.27 [-0.47, -0.07] 0.0076∗

Outer ring -0.22 [-0.33, -0.10] -0.24 [-0.38, -0.11] 0.0006∗ -0.20 [-0.28, -0.13] -0.11 [-0.30, 0.07] 0.24

INL
Macula -0.00 [-0.06, 0.06] -0.03 [-0.10, 0.04] 0.45 -0.12 [-0.15, -0.07] -0.02 [-0.12, 0.09] 0.74

Inner ring 0.08 [-0.04, 0.20] -0.02 [-0.16, 0.13] 0.81 -0.17 [-0.22, -0.12] -0.10 [-0.24, 0.03] 0.13
Outer ring -0.04 [-0.09, 0.01] -0.03 [-0.10, 0.03] 0.29 -0.12 [-0.16, -0.08] 0.02 [-0.09, 0.13] 0.71

ONPL
Macula 0.03 [-0.11, 0.16] -0.26 [-0.43, -0.09] 0.003∗ 0.05 [-0.07, 0.16] -0.19 [-0.48, 0.10] 0.21

Inner ring 0.08 [-0.08, 0.25] -0.30 [-0.50, -0.10] 0.003∗ -0.09 [-0.21, 0.04] -0.17 [-0.48, 0.15] 0.30
Outer ring -0.01 [-0.16, 0.13] -0.25 [-0.42, -0.07] 0.006∗ 0.09 [-0.03, 0.21] -0.17 [-0.46, 0.13] 0.28

ELM-BM
Macula -0.04 [-0.14, 0.06] -0.10 [-0.22, 0.02] 0.11 -0.26 [-0.38, -0.15] -0.21 [-0.50, 0.07] 0.15

Inner ring -0.05 [-0.18, 0.08] -0.05 [-0.20, 0.11] 0.53 0.02 [-0.12, 0.16] -0.26 [-0.63, 0.10] 0.15
Outer ring -0.04 [-0.14, 0.06] -0.12 [-0.24, 0.00] 0.057 -0.35 [-0.47, -0.24] -0.22 [-0.51, 0.08] 0.15

Foveal pit
morphology

TRT

Rim height -0.09 [-0.39, 0.20] -0.72 [-1.08, -0.36] 0.0001∗ -0.59 [-0.89, -0.28] -1.00 [-1.77, -0.23] 0.011∗

Pit depth -0.46 [-1.04, 0.12] -0.09 [-0.79, 0.62] 0.81 -0.67 [-1.30, -0.04] -0.22 [-1.83, 1.40] 0.79
Rim radius -3.37 [-6.08, -0.65] -0.51 [-3.81, 2.80] 0.76 -2.01 [-4.31, 0.28] -2.96 [-8.83, 2.91] 0.32
Mean slope -0.00 [-0.04, 0.03] -0.00 [-0.05, 0.04] 0.88 -0.02 [-0.05, 0.01] 0.01 [-0.07, 0.08] 0.87

GCIPL

Rim height -0.33 [-0.49, -0.17] -0.28 [-0.47, -0.08] 0.0053∗ -0.42 [-0.50, -0.34] -0.35 [-0.56, -0.14] 0.0012∗

Pit depth 0.10 [-0.19, 0.39] -0.51 [-0.87, -0.16] 0.0047∗ -0.50 [-0.70, -0.29] 0.07 [-0.45, 0.60] 0.78
Rim radius -0.54 [-3.25, 2.17] -3.20 [-6.50, 0.10] 0.057 0.44 [-1.44, 2.31] -1.81 [-6.59, 2.96] 0.46
Mean slope 0.00 [-0.02, 0.03] -0.01 [-0.03, 0.02] 0.55 -0.03 [-0.04, -0.01] 0.01 [-0.02, 0.04] 0.53

* p < 0.05

Table 7.2: Annualized rates of change of retinal thicknesses and foveal parameters. βhc: annualized change rate in controls. β∆pd: additional change in
PD patients per year. The coefficients are measured in µm/year except for the mean slope (°/year). Each coefficient is shown with a corresponding 95%
confidence interval.
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As an illustration of the differences between layers, Figure 7.4 depicts the annualized thinning
rate for the GCIPL in each dataset.

Figure 7.4: Longitudinal GCIPL thickness changes. First two columns show the annualized rate
of change of GCIPL thickness in control subjects and PD patients, respectively. Each row
shows equivalent results for each dataset.

Corresponding numerical results are displayed in Table 7.3. As observed, the highest differences
in the BHRI dataset correspond to the 1-2mm radius ring. On the other hand, although the pattern
is similar, in AlzEye the strictly parafoveal ring (i.e., 0.5-1.5mm radius ring) shows the strongest
effect.

Ring
BBHRI AlzEye

βhc β∆pd p-value βhc β∆pd p-value

� 1-2mm
-0.13

[-0.32, 0.06]
-0.27

[-0.49, -0.04] 0.0217∗ -0.32
[-0.42, -0.23]

-0.27
[-0.51, -0.03] 0.028∗

� 2-3mm
-0.37

[-0.52, -0.22]
-0.34

[-0.52, -0.16] 3.1 · 10−4∗ -0.42
[-0.50, -0.34]

-0.27
[-0.48, -0.07] 0.0096∗

� 3-4mm
-0.33

[-0.48, -0.19]
-0.33

[-0.50, -0.15] 3.3 · 10−4∗ -0.33
[-0.41, -0.25]

-0.19
[-0.39, 0.02] 0.0074∗

� 4-5mm
-0.21

[-0.33, -0.08]
-0.23

[-0.39, -0.08] 0.0033∗ -0.22
[-0.29, -0.14]

-0.14
[-0.34, 0.05] 0.15

� 5-6mm
-0.15

[-0.26, -0.04]
-0.20

[-0.33, -0.07] 0.0024∗ -0.09
[-0.17, -0.02]

-0.16
[-0.35, 0.04] 0.11

* p < 0.05

Table 7.3: Annualized rates of change of GCIPL thickness βhc: annualized change rate in controls.
β∆pd: additional change in PD patients per year. Both coefficients are measured in µm/year.
Each coefficient is shown with a corresponding 95% confidence interval.

To further illustrate the effect on the GCIPL, Figure 7.5 shows the evolution of parafoveal
GCIPL (pfGCIPL) for each subject in the BHRI dataset. We highlight this feature as an example
feature with one of the highest increased thinning in patients in both datasets. Despite non-
negligible variation across measurements, the overall effect is visually apparent.
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Figure 7.5: Evolution of parafoveal GCIPL thickness in each subject. Each individual line
represents a single subject from the BHRI dataset. The thicker line represents the average
effect of age.

In addition to the numerical results it is of interest to visualize retinal changes directly in a
B-scan to contextualize the size of the changes. Figure 7.6 shows the longitudinal evolution of
the retina of a PD patient who had a clear decrease in GCIPL thickness (i.e., pfGCIPL values
were 105.7, 104.1, and 97.9µm at baseline, year 3 and year 5 visits). More concretely, the en-face
thickness map is depicted along with 5 B-scans covering the central part of the macula. As shown,
thickness changes can be slightly intuited in the thickness maps but are hard to pinpoint when
looking directly into B-scan segmentation.

In the previous analyses longitudinal changes have been analyzed in absolute units (i.e., using
µm for thickness changes). Nevertheless, it is known that the initial thickness varies for each layer,
subject, and sector. Therefore, it is of interest as well to investigate relative changes in thickness
values. To this aim, thickness values of each feature were transformed into % changes with respect
to the baseline visit. Then, the same regression analysis described before was carried out. The
results of this analysis are shown in Figure 7.7 (BHRI dataset) and Table 7.4 (both datasets).

When measuring the changes in percentage terms, the GCIPL layer showed the highest changes,
with an annualized decrease of 0.32% and 0.66% in macular thickness in controls and patients,
respectively. The decrease in the thickness of the other layers in patients was: TRT (0.23%),
ONPL (0.26%), and ELM-BM (0.15%). As observed when analyzing absolute thickness changes,
the INL did not reveal a clear thinning effect.

Respect to regional differences, normalized changes in GCIPL thickness were higher for the
nasal sector compared to the temporal (-0.79%/year and -0.40%/year for outer-nasal and outer-
temporal, respectively).
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Figure 7.6: Longitudinal evolution of the retina of a PD patient. Each column represents a
single visit. First and second rows depict the retinal fundus and the GCIPL thickness map,
respectively. Subsequent rows show centermost B-scans with the segmentation of the GCIPL.
The aspect ratio has been modified for visualization purposes but is the same for each image.
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Figure 7.7: Normalized longitudinal changes in ETDRS thicknesses. Each column shows the
annualized rate of thickness change in control subjects (βhc) and PD patients (βhc + β∆pd),
respectively. Sectors in the second column are marked with asterisks depending on the p-
value of the interaction (β∆pd).
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Category Layer Feature BBHRI AlzEye
βhc (% / year) β∆pd (% / year) p-value βhc (% / year) β∆pd (% / year) p-value

Thickness

TRT
Macula -0.05 [-0.11, 0.01] -0.18 [-0.26, -0.11] 1.3·10−6∗ -0.17 [-0.23 -0.12] -0.21 [-0.35 -0.06] 0.005∗

Inner ring -0.01 [-0.07, 0.05] -0.22 [-0.30, -0.15] 1.4·10−8∗ -0.20 [-0.26 -0.14 ] -0.21 [-0.36 -0.06] 0.007∗

Outer ring -0.22 [-0.30, -0.15] -0.17 [-0.25, -0.09] 1.8·10−5∗ -0.18 [-0.24 -0.12] -0.19 [-0.34 -0.04] 0.012∗

GCIPL
Macula -0.32 [-0.43, -0.21] -0.34 [-0.47, -0.21] 6.8·10−7∗ -0.32 [-0.39 -0.24] -0.26 [-0.47 -0.06] 0.012∗

Inner ring -0.30 [-0.41, -0.18] -0.33 [-0.48, -0.19] 5.2·10−6∗ -0.43 [-0.50 -0.36] -0.30 [-0.50 -0.11] 0.0019∗

Outer ring -0.35 [-0.49, -0.22] -0.36 [-0.53, -0.20] 2.2·10−5∗ -0.28 [-0.37 -0.19] -0.21 [-0.45 0.02 ] 0.073

INL
Macula 0.03 [-0.10, 0.16] -0.07 [-0.22, 0.09] 0.41 -0.32 [-0.41 -0.22] -0.11 [-0.36 0.13] 0.37

Inner ring 0.28 [0.05, 0.51] -0.03 [-0.31, 0.24] 0.8 -0.38 [-0.48 -0.28] -0.26 [-0.52 0.01] 0.056
Outer ring -0.09 [-0.22, 0.03] -0.10 [-0.25, 0.05] 0.21 -0.35 [-0.45 -0.25] -0.02 [-0.29 0.25] 0.88

ONPL
Macula 0.05 [-0.07, 0.17] -0.31 [-0.45, -0.16] 4.9·10−5∗ 0.10 [-0.01, 0.21] -0.20 [-0.48, 0.08] 0.16

Inner ring 0.10 [-0.03, 0.22] -0.30 [-0.45, -0.15] 0.0001∗ -0.07 [-0.17 0.03] -0.14 [-0.40 0.12] 0.29
Outer ring 0.01 [-0.13, 0.14] -0.31 [-0.47, -0.15] 0.00019∗ 0.16 [0.04 0.27] -0.19 [-0.50 0.12] 0.23

ELM-BM
Macula -0.05 [-0.15, 0.04] -0.10 [-0.21, 0.02] 0.1 -0.35 [-0.45 -0.24] -0.10 [-0.38 0.17] 0.46

Inner ring -0.07 [-0.19, 0.05] -0.02 [-0.16, 0.13] 0.84 -0.05 [-0.18 0.08] -0.08 [-0.42 0.27] 0.67
Outer ring -0.02 [-0.16, 0.13] -0.12 [-0.24, -0.01] 0.037∗ -0.45 [-0.56 -0.39] -0.13 [-0.42 0.16] 0.39

Foveal pit
morphology

TRT

Rim height -0.02 [-0.09, 0.04] -0.20 [-0.28, -0.12] 8.3e-07 -0.179 [-0.244 -0.114] -0.25 [-0.422 -0.078] 0.004∗

Pit depth -0.45 [-0.89, -0.02] 0.15 [-0.37, 0.68] 0.56 -0.94 [-1.34 -0.54] 0.33 [-0.74 1.39] 0.55
Rim radius -0.30 [-0.50, -0.10] -0.04 [-0.28, 0.20] 0.72 -0.21 [-0.37 -0.04] -0.27 [-0.71 0.17] 0.23
Mean slope -0.08 [-0.54, 0.39] 0.20 [-0.37, 0.76] 0.49 -0.48 [-0.83 -0.13] 0.83 [-0.11 1.77] 0.08

GCIPL

Rim height -0.32 [-0.44, -0.20] -0.27 [-0.41, -0.12] 0.00027∗ -0.43 [-0.50 -0.37] -0.34 [-0.52 -0.16] 0.00018∗

Pit depth 0.21 [-0.05, 0.46] -0.64 [-0.95, -0.34] 4.1·10−5∗ -0.582 [-0.79 -0.38] 0.38 [-0.16 0.91] 0.17
Rim radius -0.01 [-0.20, 0.17] -0.29 [-0.51, -0.06] 0.012∗ 0.01 [-0.11 0.13 ] -0.09 [-0.41 0.23 ] 0.58
Mean slope 0.22 [-0.12, 0.56] -0.27 [-0.68, 0.15] 0.2 -0.44 [-0.68 -0.22] 0.48 [-0.14 1.10] 0.13

* p < 0.05

Table 7.4: Annualized relative ates of change of retinal thicknesses and foveal parameters. βhc: annualized change rate in controls. β∆pd: additional change
in PD patients per year. Each coefficient is shown with a corresponding 95% confidence interval.
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After exploring overall longitudinal retinal changes, we further explored if the thinning observed
was homogeneous across subgroups of subjects. In this sense, one could hypothesize that the
thinning rate does not necessarily need to be similar for all the patients and may change across
lifespan and disease progression. To explore this idea we investigated if patients with a thinner
baseline pfGCIPL had a different thinning rate. We focused on the pfGCIPL thickness feature
because it showed the highest consistency between the two datasets (see Figure 7.4) and has also
been previously identified as an important target of PD in a previous work [176]. In addition, this
retinal feature reported the highest correlation with MoCA in the cross-sectional analysis presented
in Figure 6.5.

First, we built a normative distribution of pfGCIPL thickness in healthy controls. From this
distribution we defined the 25 percentile as the cut-off threshold and considered retinas below that
value to have low pfGCIPL. The computed cut-off values were 89.8µm and 78.7µm for BHRI
and AlzEye datasets, respectively. The differences in the cut-off value can be explained by the
differences in scanning devices and the older population in AlzEye. Regarding the number of
subjects, in BHRI the entire pool of healthy controls used in Chapter 5 was used. In AlzEye only
the controls described in Table 7.1 were considered becauase this was the subset of the dataset
that underwent careful quality assurance before inclusion.

Based on the cut-off value, PD patients and controls were separately split into two groups
with a low and high baseline pfGCIPL thicknesses. Then, a regression analysis was carried out to
estimate the annualized rate of change of pfGCIPL thickness. The same model was applied to each
subgroup (Equation 7.2). The model contained a fixed term for the effect of interest (follow-up
time (βt)) and was adjusted for sex (βsex) and age at baseline (βage). As in the previous section,
the model included a random intercept for each subject to model the statistical dependency across
visits of the same subject (γsub). This model was fitted to the four combinations of PD, HC, and
low/high pfGCIPL at baseline.

y = β0 + βsexisMale + βageage60 + βttime + γsub (7.2)

To formally compare both low and high groups in each category, an interaction term between
follow-up time and ocurrance of a low pfGCIPL was added to the model (βtLow) (see Equation
7.3). This model was fitted to PD and HC groups separately.

y = β0 + βsexisMale + βageage60 + βttime + βlowlow + βtLowtime · low + γsub (7.3)

The results of the analysis are reported in Table 7.5. The seventh column displays the results
obtained with Equation 7.2, while the last column shows the estimated interaction term in Equation
7.3.

When studying only the control group, the annualized pfGCIPL loss was found to be very
similar between low and high subgroups. In fact, the estimated interaction term was close to
zero in both BHRI (0.01µm/year, p= 0.93), and AlzEye (-0.05µm/year, p= 0.65). In contrast,
results in PD clearly showed that PD patients with a high baseline pfGCIPL thickness had a more
accentuated loss. For instance, BHRI patients belonging to the high group were estimated to
experience a faster thinning of 0.25µm/year (p= 0.036). AlzEye results followed a similar trend
with an estimation of a 0.32µm/year (p= 0.11) increased thinning in patients with high pfGCIPL.
However, in the latter case, statistical significance was not achieved.

In light of these results, we further investigated potential differences between PD patients in
low and high subgroups. As the main differentiating factor, patients in the low group were older on
average in both BHRI and AlzEye (Table 7.5). Regarding sex, both low and high groups contained
a different proportion of males. However, the differences in male proportion pointed in different
directions for BHRI and AlzEye, suggesting that sex may not influence the results.
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Dataset Class Group N Age
(years)

Male
(%)

βt
(µm/year)

βtLow
(µm/year)

BHRI

HC High 45 59.6 (7.2) 46.7 -0.29 [-0.42, -0.15] 0.01 [-0.26, 0.29]
p= 0.93Low 27 64.3 (7.3) 34.7 -0.26 [-0.48, -0.04]

PD High 92 62.0 (8.1) 72.8 -0.66 [-0.79, -0.53] 0.25 [0.02, 0.49]
p= 0.036∗Low 66 68.9 (7.8) 54.5 -0.40 [-0.58, -0.21]

AlzEye

HC High 665 74.7 (9.6) 60.3 -0.38 [-0.47, -0.29] -0.05 [-0.28, 0.18]
p= 0.65Low 218 78.7 (8.4) 61.5 -0.41 [-0.60, -0.21]

PD High 115 75.3 (8.8) 53.0 -0.73 [-0.93, -0.53] 0.32 [-0.07, 0.72]
p= 0.11Low 52 79.6 (7.2) 61.5 -0.40 [-0.71, -0.09]

∗p < 0.05

Table 7.5: Annualized pfGCIPL rates of change in low and high pfGCIPL groups. βt: annu-
alized pfGCIPL loss, βtLow: interaction term . Both coefficients are reported as β [95% CI].

7.3 Longitudinal clinical changes

In this analysis we explored the clinical evolution of PD patients by describing longitudinal changes
in MoCA, UPDRS-III, and HY scores. The aim was to determine the rate of change of each variable.
As a first visual illustration, Figure 7.8 depicts the raw clinical measurements and their evolution
for each PD patient in the BHRI dataset.

To obtain a numerical estimate of the evolution, a regression analysis was carried out to model
these measurements as a function of follow-up time (βt). All three models were adjusted for age
at baseline (βage) and sex (βsex), and a random intercept was included for each subject.

The results are shown in Table 7.6. The MoCA was estimated to decrease by 0.18 points/year
and, as shown in Chapter 6 was highly related with age. On the other hand, both the UPDRS-III
(1.28 points/year) and HY score (0.06 points/year) increased longitudinally.

Variable N βage βsex βt

MoCA 132 -4.24 [-5.73, -2.76]
(p= 10−93)

0.48 [-0.95, 1.91]
(p= 0.51)

-0.18 [-0.37, 0.02]
(p= 0.07)

UPDRS-III 157 2.84 [-0.32, 6.00]
(p= 0.08)

1.31 [-1.68, 4.31]
(p= 0.39)

1.28 [0.63, 1.92]
(p= 10−4)

Hoehn-Yahr 156 0.15 [-0.02, 0.32]
(p= 0.09)

-0.11 [-0.28, 0.05]
(p= 0.17)

0.06 [0.02, 0.09]
(p= 8·10−4)

Table 7.6: Regression estimates for each clinical variable. Each estimated regression coefficient is
reported as β [95% CI] (p-value).

Overall, the results highlight the expected worsening in the cognitive and motor function of the
patients as the disease progresses. Beyond that fact, it is important to reflect on the variability
in measurements illustrated in Figure 7.8. As shown, the evolution of subjects with more than 2
visits does not always follow a monotonic trend (e.g., the condition of a patient can worsen from
baseline to the second visit and improve from the second to the third visit). This variability likely
reflects the varying nature of patient status and the difficulty of obtaining stable measurements
of cognitive and motor function. Without undermining the conclusions obtained on a groupwise
level, this variability should be considered when evaluating patients individually.
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Figure 7.8: Longitudinal evolution of MoCA, UPDRS-III, and HY. Each PD patient is repre-
sented as a single line with dots corresponding to visits. Those patients whose last clinical
measurement was worse than the that of the initial visit are shown in red (e.g., the MoCA
scores at the first and last visits are 27 and 23, respectively). Remaining patients are shown
in gray. The black lines depicts the evolution as a function of age.

109



Chapter 7. Patient evolution and monitoring 7.4. Patient monitoring

7.4 Patient monitoring

In the previous analyses we showed that certain retinal features change more prominently in PD.
In addition, we confirmed the expected worsening in the clinical status of a patient associated with
disease progression.

Building upon those results, in this analysis we looked for a link between changes in both
domains. The objective was to determine whether OCT features can be used to monitor disease
progression at a patient level under the hypothesis that a change in the severity of a patient may
have a corresponding and synchronized change in the retina.

To this end, we first converted visit measurements into changes by subtracting the values
between subsequent visits. This procedure was applied both to retinal features and clinical variables
(MoCA, UPDRS-III, and HY). Then, we fitted regression models with the clinical change as the
outcome and retinal change as a single predictor. This model was fitted to all combinations of
the three clinical variables and high-level retinal features. These retinal features included the
sectorized thickness measured on three sectors (macula, parafovea, and perifovea) as well as foveal
pit morphology features.

∆clinical = β0 + β∆∆retinalF eature + γsub (7.4)

By adopting this approach, we are in effect testing whether a linear relationship exists between
clinical progression and retinal evolution. As in previous analyses, the data included more than
one value for several subjects and, hence, a mixed-effects model variant was used.

The results of this analysis are shown in Table 7.7. Overall, changes in retinal features presented
weak or no association with clinical changes. In the case of MoCA, a marginally positive relation-
ship was observed with ELM-BM thickness (R2 =3.5%). Similarly, a worsening in UPDRS-III
was weakly associated with a decrease in outer INL thickness and an increase in ONPL thickness
(R2 =5.5%). Finally, a worsening in motor status measured by the HY score was also weakly
associated with an increase in inner ONPL thickness, a decrease in TRT pit depth, a decrease in
both TRT and GCIPL mean slope, and an increase in GCIPL rim radius.

This analysis was carried out using absolute values (i.e., measuring thickness changes in µm).
Nevertheless, it could be argued that relative changes may better describe longitudinal evolution
(i.e., % change between subsequent visits). Thus, we repeated the previous analysis using percent-
age values to ensure that the use of absolute values did not preclude the detection of a stronger
association. The results of this additional analysis are displayed in Table 7.8 and did not reveal a
stronger relationship than those measured in absolute terms.

After the previous analyses, we focused again on patient subgroups with low and high pfGCIPL
and studied if the two groups of patients differed in either the baseline value or evolution of any
other clinical variable. This analysis was performed only on BHRI patients, as the AlzEye dataset
did not include clinical data. First, the baseline clinical characteristics of the two groups were
compared by means of a two-sample t-test. Then, a mixed-effects model regression was used to
estimate the longitudinal changes in clinical variables. As in the previous analysis, individual
models were first fitted for low and high groups and then a combined model with an interaction
term was employed to formally compute a p-value for the effect under test.
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Category Layer Feature MoCA UPDRS-III Hoehn-Yahr
R2 (%) β∆ p-value R2 (%) β∆ p-value R2 (%) β∆ p-value

Thickness

TRT
Macula 1.7 0.16 0.12 0.1 0.10 0.77 0.1 0.01 0.77

Inner ring 1.1 0.10 0.21 0.3 0.18 0.53 0.0 0.00 0.89
Outer ring 1.6 0.15 0.14 0.0 0.07 0.85 0.1 0.01 0.69

GCIPL
Macula 0.1 0.11 0.66 0.6 -0.78 0.35 0.0 0.01 0.84

Inner ring 0.2 -0.08 0.60 1.3 -0.73 0.18 0.6 -0.03 0.34
Outer ring 0.3 0.14 0.55 0.1 -0.33 0.67 0.5 0.03 0.41

INL
Macula 0.0 -0.05 0.90 2.1 -2.44 0.082 0.0 -0.02 0.81

Inner ring 0.1 -0.05 0.78 0.0 -0.07 0.91 0.1 0.01 0.75
Outer ring 0.0 -0.01 0.99 4.0 -3.78 0.016∗ 0.1 -0.03 0.73

ONPL
Macula 0.1 0.06 0.74 4.9 1.52 0.0079∗ 2.7 0.06 0.052

Inner ring 0.3 0.09 0.52 3.5 1.10 0.025∗ 2.1 0.04 0.0088∗

Outer ring 0.0 0.01 0.93 5.5 1.53 0.0050∗ 2.6 0.05 0.053

ELM-BM
Macula 2.8 0.46 0.047∗ 0.0 0.11 0.89 0.0 -0.00 0.96

Inner ring 3.5 0.40 0.024∗ 1.1 0.75 0.21 0.0 0.01 0.84
Outer ring 1.9 0.38 0.10 0.2 -0.44 0.58 0.0 -0.01 0.84

Foveal pit
morphology

TRT

Rim height 1.0 0.09 0.23 0.3 0.17 0.51 0.0 0.00 0.81
Pit depth 1.5 -0.07 0.14 0.1 -0.04 0.78 3.1 -0.02 0.037∗

Rim radius 0.6 0.0075 0.37 0.1 0.0105 0.72 0.3 0.0010 0.51
Mean slope 1.4 -1.07 0.16 0.0 -0.19 0.94 3.0 -0.27 0.038∗

GCIPL

Rim height 0.2 -0.08 0.60 0.4 -0.37 0.44 0.4 -0.02 0.44
Pit depth 2.2 -0.15 0.075 0.6 -0.27 0.35 1.6 -0.02 0.14
Rim radius 0.1 -0.0030 0.74 0.7 0.0309 0.32 2.8 0.0032 0.047∗

Mean slope 0.7 -1.16 0.33 2.0 -6.76 0.091 3.1 -0.43 0.036∗

∗ p < 0.05

Table 7.7: Longitudinal relationship between retinal changes and clinical changes. All regression coefficients (β) were measured as points/µm except for the
mean slope (points/°).
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Category Layer Feature MoCA UPDRS-III Hoehn-Yahr
R2 (%) β∆ p-value R2 (%) β∆ p-value R2 (%) β∆ p-value

Thickness

TRT
Macula 1.56 2.14 0.14 1.26 -8.76 0.42 0.27 -2.05 0.57

Inner ring 0.94 1.53 0.25 0.95 -4.54 0.65 0.38 -2.32 0.48
Outer ring 1.43 1.97 0.15 1.33 -9.02 0.39 0.16 -1.48 0.67

GCIPL
Macula 0.37 0.59 0.47 1.38 -5.57 0.37 0.19 -0.97 0.64

Inner ring 0.08 -0.23 0.74 1.91 -6.53 0.21 0.82 -1.81 0.29
Outer ring 0.46 0.55 0.42 0.95 -2.35 0.65 0.03 0.01 0.99

INL
Macula 0.15 -0.30 0.65 4.42 -11.20 0.02 0.37 -1.12 0.49

Inner ring 0.34 -0.24 0.49 2.52 -4.14 0.11 0.22 -0.44 0.61
Outer ring 0.03 -0.14 0.84 3.64 -10.73 0.04∗ 0.13 -0.67 0.71

ONPL
Macula 0.00 -0.00 0.99 3.72 10.86 0.04∗ 0.85 1.89 0.28

Inner ring 0.27 0.43 0.54 3.15 9.70 0.07 0.84 1.87 0.29
Outer ring 0.07 -0.20 0.75 3.81 9.77 0.04∗ 0.75 1.57 0.31

ELM-BM
Macula 2.24 1.53 0.07 1.73 -7.45 0.25 0.07 -0.48 0.82

Inner ring 3.22 1.46 0.03∗ 1.04 3.00 0.56 0.04 -0.15 0.93
Outer ring 1.44 1.20 0.15 3.24 -11.86 0.06 0.08 -0.52 0.81

Foveal pit
morphology

TRT

Rim height 0.95 1.48 0.25 0.92 -3.98 0.66 0.23 -1.66 0.60
Pit depth 1.26 -0.29 0.18 1.05 0.96 0.56 2.53 -1.01 0.06
Rim radius 0.58 0.38 0.36 0.87 0.96 0.76 0.06 0.19 0.85
Mean slope 1.43 -0.29 0.15 1.11 0.99 0.51 2.21 -0.87 0.08

GCIPL

Rim height 0.01 -0.08 0.91 1.10 -3.35 0.53 0.83 -1.80 0.29
Pit depth 1.87 -0.55 0.10 1.03 -1.43 0.57 1.38 -1.16 0.17
Rim radius 0.03 -0.09 0.85 1.45 3.44 0.34 1.31 1.59 0.18
Mean slope 1.00 -0.31 0.23 1.79 -2.34 0.24 1.78 -1.02 0.13

∗ p < 0.05

Table 7.8: Longitudinal relationship between relative retinal changes and relative clinical changes. All regression coefficients (β) were measured as %/%.
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The results of the comparisons are set out in Table 7.9. The analysis revealed that patients with
low pfGCIPL had a longer disease duration, lower MoCA, and a more severe motor impairment at
baseline. On the other hand, no conclusive evidence was found regarding differences in the rate of
change for any of the clinical variables.

Category Variable High† Low† p-value

Baseline

Disease duration 5.2 (4.1) 7.1 (5.2) 0.012
MoCA 24.3 (4.0) 21.3 (4.7) 9·10−5

UPDRS-III 23.2 (10.8) 24.8 (11.7) 0.37
Hoehn-Yahr 1.9 (0.6) 2.2 (0.7) 0.0045

Longitudinal
MoCA -0.12 [-0.34, 0.09] -0.39 [-0.79, 0.001] 0.28

UPDRS-III 1.30 [0.60, 2.01] 1.16 [-0.25, 2.57] 0.85
Hoehn-Yahr 0.08 [0.04, 0.12] 0.03 [-0.04, 0.10] 0.22

† Baseline estimates given as mean (σ). Longitudinal values as β [95% CI] (X/year).

Table 7.9: Differences in clinical variables for low and high pfGCIPL PD groups.

7.5 Disease prognosis

A very relevant clinical application of any biomarker is disease prognosis. That is, predicting if the
condition of a patient will worsen or improve over time based only on the information available at
a single visit.

In this last analysis, we investigated whether subject characteristics (age, sex, etc.) and OCT
features measured at baseline hold any relationship with cognitive and motor evolution. To this
aim, we restricted the analysis to the 46 PD patients from the BHRI MJFF database. These
patients had a second visit around 3 years after the first, which allowed us to evaluate the change
between the two time points. Based on these two visits, we first computed the change in both
MoCA and UPDRS-III for every subject. These changes are illustrated in Figure 7.9 as a function
of age. Notably, five patients did not complete follow-up. These patients were all on the older
group (> 70 years old in baseline).

Figure 7.9: 3-year evolution as a function of age. a) MoCA and b) UPDRS-III. Each PD patient
is represented horizontally. This graphic only includes patients from the MJFF project.

The computed 3-year change in both MoCA and UPDRS-III was used as the outcome in a
regression analysis. In this analysis several features were used as individual predictors including
age, sex, disease duration, MoCA, baseline UPDRS-III, and baseline OCT features. The latter
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included two types of features: 1) thickness values measured across the whole macula, inner ring,
and outer ring for the TRT, GCIPL, INL, ONPL, and ELM-BM layers, and 2) foveal features
including the rim height, rim radius, pit depth, and mean slope for both the TRT and the GCIPL.

The results of the statistical analysis can be found in Table 7.10. The evolution in the cognitive
status of a patient was only significantly correlated with age (i.e., being older was associated with
having a larger decrease in MoCA, p=0.028) and OCT features did not show any clear relationship
with the outcome. Similarly, changes in UPDRS-III could not be predicted by OCT features at
baseline. Indeed, the only significant predictor was the UPDRS-III value at baseline, which showed
a negative relationship with the evolution.

Category Layer Feature MoCA UPDRS-III
β p-value β p-value

Reference -

Age -0.16 0.028∗ -0.45 0.079
Sex 0.2 0.87 -1.3 0.77

Disease duration -0.13 0.43 -0.91 0.10
MoCA (baseline) 0.28 0.12 0.25 0.69

UPDRS-III (baseline) -0.064 0.25 -0.7 0.00008∗

Thickness

TRT
Macula -0.052 0.30 0.23 0.19

Inner ring -0.027 0.53 0.25 0.096
Outer ring -0.057 0.27 0.19 0.27

GCIPL
Macula 0.03 0.76 0.22 0.53

Inner ring 0.04 0.60 0.31 0.24
Outer ring 0.025 0.80 0.13 0.71

INL
Macula 0.13 0.64 0.94 0.33

Inner ring 0.1 0.57 0.78 0.21
Outer ring 0.12 0.68 0.64 0.53

ONPL
Macula -0.16 0.12 0.48 0.20

Inner ring -0.18 0.056 0.41 0.21
Outer ring -0.15 0.17 0.45 0.22

ELM-BM
Macula -0.43 0.11 0.56 0.55

Inner ring -0.45 0.082 -0.22 0.80
Outer ring -0.38 0.14 0.73 0.41

Foveal pit
morphology

TRT

Rim height -0.019 0.65 0.21 0.15
Pit depth -0.00012 0.99 0.053 0.56
Rim radius 0.00089 0.89 -0.02 0.35
Mean slope -0.15 0.76 2 0.23

GCIPL

Rim height 0.068 0.38 0.26 0.33
Pit depth 0.079 0.25 0.31 0.19
Rim radius -0.0015 0.80 -0.023 0.27
Mean slope 0.66 0.47 5.3 0.085

* p < 0.05

Table 7.10: Regression results for 3-year change prognosis.

7.6 Discussion

In this chapter, we have investigated longitudinal changes in the retina and their link with disease
progression. In a first analysis, we demonstrated that the thickness of both the TRT and GCIPL

114



Chapter 7. Patient evolution and monitoring 7.6. Discussion

decreases with time at a higher rate in PD patients. For instance, average GCIPL thickness was
measured to decrease at 0.21µm/year and 0.46µm/year in controls and patients, respectively. This
difference corresponds to a loss of around twice as fast in patients, which highlights the importance
of the effect.

Notably, the analysis confirmed that the thinning effect is not limited to patients and is also
present in healthy controls, a finding that is in line with the cross-sectional results presented in
Chapter 5. Together, both analyses suggest that two factors may be mediating the retinal thinning:
normal aging and PD-related neurodegeneration.

Importantly, we were able to replicate the observed GCIPL thinning pattern in a separate
cohort. Considering the notable dissimilarities between the two datasets, this successful replication
supports the idea that the effect is generalizable to a broader population. Nevertheless, important
differences between the results in both datasets were also observed. First, thinning estimates in
the control group were higher for AlzEye. This could be explained by the nature of the subjects
included in AlzEye, who were older on average and eminently presented a considerably worse state
of health, as they were imaged as part of regular clinical practice. Although we applied strict
data inclusion criteria to mitigate this potential confounder, some of the AlzEye subjects finally
included in the control group may still have conditions affecting the retinal structure.

In line with our results, previous studies investigating longitudinal changes in PD all found a
thinning effect of the TRT [142–144]. As for the GCIPL, a study using a smaller subset of BHRI
dataset found similar GCIPL changes [176]. It is important to note that all previous work relied on
either average measurements of the macula or the ETDRS sectorization. In contrast, we employed
a more detailed ring sectorization that enabled us to determine that the retinal area most highly
affected by PD was the GCIPL in the ring with 0.5mm to 2mm radii. This area mostly overlaps
with the commonly studied parafoveal ring, which has been identified as an important indicator of
changes in PD [176].

On another note, we found an ONPL thinning effect in the BHRI dataset that we could not
replicate in AlzEye. A possible explanation for this difference could be the lower statistical power
of AlzEye. In fact, although the total number of individuals included in AlzEye was greater,
the average follow-up period was relatively short (≤ 2 years), a fact that may have hindered our
capacity to accurately detect longitudinal effects. Nonetheless, to the best of our knowledge no
previous longitudinal study has reported changes in the ONPL. Likewise, cross-sectional studies
have largely focused on inner retinal layers. Further research should therefore explore the ONPL
to confirm our findings.

In addition to the thinning effect, we also explored changes in the foveal pit morphology.
This idea was largely motivated by previous works suggesting a foveal remodeling effect in PD
[74,151,154] and the lack of longitudinal studies investigating this hypothesis. Overall, the results
from both datasets showed a clear reduction of the rim height in PD patients. This effect was
present for both the TRT and GCIPL, and it is likely a consequence of the predominant thinning
effect of both layers in the inner ring of the macula. In addition, we found a slight reduction of the
GCIPL pit depth in BHRI, a result that is consistent with the reduction in rim height. However,
this finding was not evident in AlzEye. Again, the noisier nature of AlzEye as well as the lower
statistical power could explain these discrepancies.

Of perhaps more importance than the rim height—which conveys similar information to thick-
ness features—is the analysis of features that describe other aspects of the fovea. In this regard,
we did not find any changes in the mean slope, and only observed a slight increase of the GCIPL
rim radius in the BHRI dataset. As a conclusion, the results only support a remodeling of the
fovea in the vertical axis directly related to a thinning effect. It should be mentioned, however,
that slope and width measurements are inherently less reproducible and, as discussed in Section
4.3, detecting changes in these features is more challenging.

In the clinical domain, as expected, the condition of the PD patients worsened with time in
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terms of cognition (assessed by MoCA), and motor symptoms (measured by UPDRS-III and HY
scores). In a subsequent analysis we thus sought links between these clinical changes and previously
described retinal changes in PD.

As a first hypothesis we tested whether a change in a certain clinical variable could be predicted
by a change in retinal features. This analysis only revealed a few minor associations (maximum
R2 of 5.5%) with no clear link between anatomical and clinical realms. A possible explanation for
these results could be that changes in the retina do not parallel disease progression. This idea has
recently been posited [207] and would suggest that retinal changes may precede or follow clinical
changes without a clear association generalizable to all patients.

An alternative explanation is measurement error. When measuring a relationship between
changes in two variables, measurement error can easily distort that relationship and render an
association zero. Critically, the test-retest repeatability of individual OCT thickness measurements
is in the order of a few µm. This value is considered very high for absolute measurements as
it represents a small % of the value to be measured. However, longitudinal changes are much
smaller (typically below 1µm), and therefore, measurement error has a greater impact on these
measurements.

To quantitatively appraise the latter idea, we performed a simulation to estimate the COV
of thickness changes. The COV is defined as the standard deviation to mean ratio and is used
to determine the dispersion of a measurement. Oberwahrenbrock et al. calculated that GCIPL
thickness measurements with Spectralis follow-up function have at best a COV of 0.36% [196].
Based on the values presented in that work we simulated the actual COV for longitudinal GCIPL
thickness differences. The results are shown in Figure 7.10 and demonstrate that the effective COV
of thickness changes is much higher than that of single measurements.

Figure 7.10: Simulated coefficient of variation for GCIPL thickness changes. The plot shows
the real coefficient of variation (%) as a function of the thickness change intended to be
measured.

Altogether, it can be concluded that the repeatability of OCT measurements is likely insufficient
to measure very small changes accurately at a patient level. This, in turn, limits the potential of
OCT to monitor the disease for a single patient when the expected changes are small.

Considering the challenge of directly correlating retinal and clinical changes, we performed
a group-level analysis by creating subgroups of subjects with low and high baseline pfGCIPL
thickness. As the principal conclusion, PD subjects in the high group were younger on average and
had less deteriorated cognition and motor function. Annualized pfGCIPL thickness loss was also
higher in this group. Importantly, this effect was not present in the control group, which supports
the hypothesis of an effect circumscribed to patients.
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These results suggest that the effect of PD on the retina is not homogeneous across patients
and varies at different stages of the disease. In particular, retinal neurodegeneration may occur
primarily at early stages when patients have relatively mild clinical symptoms. As the disease
progresses, the retinal thinning rate may stabilize and clinical symptoms may worsen significantly.
Interestingly, the idea of an early accentuated GCIPL loss followed by stabilization differs notably
from the results presented in Chapter 5, which showed an accelerated thinning as a function of
age in healthy individuals. This could highlight the presence of two effects: a slowly progressing
thinning due to age, and an early neurodegeneration caused by PD. To confirm this hypothesis,
however, more longitudinal studies are needed with longer follow-up times and more visits.

Finally, these analyses are not without their limitations. First, we did not consider the effect
of axial length in any of the analyses. Although this fact is known to have an influence on OCT
measurements, its effect is not likely to critically impact longitudinal measurements as the eye
under comparison is the same. On the other hand, we chose not to adjust p-values for multiple
comparisons because of the exploratory nature of the analyses. Given the limited published litera-
ture on the topic, rather than confirming pre-existing hypotheses, we approached the matter with
the aim of uncovering new ideas to be more formally tested by subsequent studies.
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8 Conclusions

This last chapter summarizes the main contributions and findings of this doctoral study. First,
Section 8.1 lists the developments and analyses in which we have extended previous work. Then,
the main research conclusions are described in Section 8.2. Finally, Sections 8.3 and 8.4 list the
publications derived from the thesis and future research lines, respectively.

8.1 Main contributions

The purpose of this research work was twofold: 1) to improve existing methods for OCT image
analysis and build a robust feature extraction pipeline and 2) to explore the potential of the
computed OCT features as a biomarker for PD. The first set of contributions refer to the former
and involve the technical developments carried out to extend OCT analysis methods:

• Automatic foveal location algorithm: we developed a new foveal location algorithm based on
thickness maps and a flooding procedure. The algorithm performed well, and unlike existing
deep-learning models, could be directly generalized to other scanning devices.

• Image anomaly detection algorithm: we trained a classification model to flag OCT image
volumes to be excluded in the presence of imaging artifacts, poor image contrast, and ocular
pathologies affecting retinal measurements. The algorithm reported an accuracy of above
90% and can be used as a first screening step to detect problems in a dataset.

• RETIMAT toolbox: we created the first general purpose open-source toolbox for OCT image
analysis. The software includes functionalities for multiple file format reading, generating
reports, preprocessing, and feature extraction. RETIMAT has already been presented to the
community in conferences [187] and is freely accessible online.

• Large dataset processing: we used RETIMAT and previously developed methods to process
all macular images from the BHRI and AlzEye datasets. The computed retinal features
provided the basis for extensive research investigating multiple clinical conditions, part of
which has been published [161,178,208].

In the second part of the study, the OCT features derived previously were used to investigate
the retinal structure in both healthy subjects and PD patients.

• Healthy population study: we investigated the effect of age and sex on both retinal thick-
ness and foveal pit morphology. Our analysis was more spatially detailed than previously
published studies, in that we used small macular sectors and multiple angular directions.

• Normative database: the retinal measurements obtained in the healthy population study were
publicly released, and thus can be used as a reference population value (N=444).

• Diagnostic model evaluation: we evaluated the performance of multiple retinal features for
PD diagnosis. We extended previous work by exploring both conventional and novel retinal
features.
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• Severity assessment model evaluation: as with the diagnostic models, we made use of a
comprehensive OCT feature set to investigate the relationship between retinal features and
cognitive function and motor impairment.

• Longitudinal analysis: we made use of two of the largest longitudinal datasets compiled to
date to investigate retinal and clinical changes associated with PD progression.

8.2 Research conclusions

The research conclusions obtained in the course of this research project are as follows:

• Effect of age: most retinal layers become thinner with age, and the layer most affected is the
GCIPL. The thinning effect is homogenous when measured in % terms. The height of the
fovea changes with age in all angular directions.

• Sex differences: the male retina is thicker especially for inner sectors. The male fovea is also
deeper and sharper across every radial direction.

• PD diagnosis: our findings indicate that an accurate PD diagnosis from explored OCT
features is not possible. As illustrated by the literature and confirmed in this work, the
existing differences between control and PD groups are not large enough for it to be considered
for clinical use. Using advanced features does not significantly improve the performance.

• PD severity assessment: the retina holds some information about disease severity. Inner
GCIPL thickness is associated with cognitive status. However, the strength of the association
does not appear to be sufficient for reliable clinical application at an individual patient level.

• Longitudinal retinal progression: the retina becomes thinner with age in both healthy and
PD individuals. This thinning rate is notably faster in PD patients. The biggest differences
were found for inner GCIPL and foveal pit rim height.

• PD monitoring: using OCT to monitor the disease at a patient level is not supported by
the evidence. Even if a relationship existed, the longitudinal retinal changes are smaller
than the measurement error and challenging to determine accurately. On a subgroup level,
however, the results point towards a faster decline in GCIPL in early disease stages followed
by stabilization and then a clinical worsening.

8.3 Publications

Research articles

• Foveal Pit Morphology Characterization: A Quantitative Analysis of the Key Methodological
Steps. Entropy. 2021.
Romero-Bascones D, Barrenechea M, Murueta-Goyena A, Galdós M, Gómez-Esteban JC, Gabilondo I,
Ayala U.

• Spatial characterization of the effect of age and sex on macular layer thicknesses and foveal
pit morphology. PLoS ONE. 2022.
Romero-Bascones D, Ayala U, Alberdi A, Erramuzpe A, Galdós M, Gómez-Esteban JC, Murueta-Goyena
A, Teijeira S, Gabilondo I, Barrenechea M.

• Association of retinal thinning rate with the progression of cognitive decline in Parkinson’s
disease. Submitted.
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Wagner SK, Keane PA, Ayala U, Barrenechea M, Gómez-Esteban JC, Gabilondo I.

Conferences

• Caracterización de la morfología foveal: parametrización, diferencias de sexo y efectos de la
edad. CASEIB 2020.
Romero-Bascones D, Gabilondo I, Barrenechea M, Ayala U.

• RETIMAT: un Toolbox de MATLAB para el análisis de imágenes OCT de retina. CASEIB
2022.
Romero-Bascones D, Gabilondo I, Barrenechea M, Ayala U.

• Evaluación del potencial de las imágenes OCT maculares para el diagnóstico de la enfermedad
de Parkinson. CASEIB 2022.
Romero-Bascones D, Gabilondo I, Barrenechea M, Ayala U.

• RETIMAT: an open-source software for retinal OCT image analysis. ARVO 2023.
Romero-Bascones D, Murueta-Goyena A, Wagner SK, Struyven RR, Williamson DJ, Keane PA, Bar-
renechea M, Gabilondo I, Ayala U.

Related publications

Research and conference papers to which this research work has contributed on a smaller scale and
which are not described in the thesis.

• Foveal Remodeling of Retinal Microvasculature in Parkinson’s Disease. Front Neurosci. 2021.
Murueta-Goyena A, Barrenechea M, Erramuzpe A, Teijeira-Portas S, Pengo M, Ayala U, Romero-Bascones
D, Acera M, Del Pino R, Gómez-Esteban JC, Gabilondo I.

• Association Between Retinal Features From Multimodal Imaging and Schizophrenia. JAMA
Psychiatry. 2023.
Wagner SK, Cortina-Borja M, Silverstein SM, Zhou Y, Romero-Bascones D, Struyven RR, Trucco E,
Mookiah MRK, MacGillivray T, Hogg S, Liu T, Williamson DJ, Pontikos N, Patel PJ, Balaskas K, Alexander
DC, Stuart KV, Khawaja AP, Denniston AK, Rahi JS, Petzold A, Keane PA.

• Retinal thickness as a biomarker of cognitive impairment in manifest Huntington’s disease.
Journal of Neurology. 2023.
Murueta-Goyena A, Del Pino R, Acera M, Teijeira-Portas S, Romero-Bascones D, Ayala U, Fernández-
Valle T, Tijero B, Gabilondo I, Gómez-Esteban JC.

• Retinal optical coherence tomography features associated with incident and prevalent Parkin-
son disease. Neurology. 2023.
Wagner SK, Romero-Bascones D, Cortina-Borja M, Williamson DJ, Struyven RR, Zhou Y, Salil Patel,
Weil RS, Antoniades CA, Topol EJ, Korot E, Foster PJ, Balaskas K, Ayala U, Barrenechea M, Gabilondo I,
Schapira A, Khawaja AP, Patel PJ, Rahi JS, Denniston AK, Petzold A, Keane PA.

• Deep learning applied to retinal OCT images to differentiate Parkinson’s disease patients
from healthy controls. MDS 2022.
Barrenechea M, Romero-Bascones D, Murueta-Goyena A, Gomez-Esteban JC, Alberdi A, Erramuzpe A,
Ayala U, Gabilondo I.
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• Deep-learning fusion of OCT imaging and traditional risk factors to improve dementia de-
tection in AlzEye. ARVO 2023.
Struyven RR, Williamson DJ, Wagner SK, Romero-Bascones D, Zhou Y, Liu T, Wu Y, Balaskas K,
Cortina Borja M, Rahi J, Petzold A, Lee AY, Lee CS, Denniston AK, Alexander D, Keane PA.

• Bidirectional retinal oculomics in Parkinson’s disease: A cross-sectional analysis of two co-
horts. ARVO 2023.
Wagner SK, Romero-Bascones D, Cortina-Borja M, Williamson DJ, Struyven RR, Zhou Y, Foster P,
Ayala U, Barrenechea M, Gabilondo I, Khawaja AP, Patel PJ, Rahi JS, Denniston AK, Petzold A, Keane
PA.

• Retinal biomarkers for systemic diseases: an oculome-wide association study in 164,784 in-
dividuals. ARVO 2023.
Liu T, Wagner, Wagner SK, Struyven RR, Zhou Y, Williamson DJ, Romero-Bascones D, Gende M, Pon-
tikos N, Patel PJ, Cortina-Borja M, Rahi JS, Petzold A, Khawaja AP. Denniston AK, Balaskas K, Keane
PA.

8.4 Future lines of work

Building upon the findings and contributions of this work, four main avenues for future research
are identified:

• Full OCT quality control: the quality control model developed in this work approaches all
quality problems combined. However, an ideal solution would take an OCT volume as input
and first detect quality problems such cropping or shades at an A-scan level. In a second
step, entire B-scans could be analyzed for poor contrast issues. Then, problems affecting the
entire volume such as motion artifacts and incorrect alignment would be detected. Finally,
disease specific models would then be applied to identify ocular pathologies affecting the
retina. This framework would be able to handle every aspect affecting OCT at a level not
presently achieved. One drawback is that developing such a method would require a large
dataset with highly granular labeling as well as multiple methods to detect each problem.

• Extension to other neurodegenerative diseases: the methods developed in this work have
been mainly applied to PD only. Nevertheless, there is evidence of retinal changes in other
neurodegenerative diseases such as AD, MS, and Huntington’s disease. Therefore, a natural
continuation of the research would be applying similar methods to these diseases to determine
specific changes in each instance.

• Extension of the longitudinal analysis: as shown in this work, longitudinal datasets have
helped uncover an accelerated thinning rate of certain retinal layers in PD. However, both
our work and that of previous researchers has been limited in terms of the number of visits
and the follow-up period. Thus, a clear improvement could be attained by collecting a larger
database. Increasing the number of visits would help reduce the inherent variability of OCT
measurements and estimate longitudinal changes more accurately at a subject level.

• Multimodal imaging in PD: a key point not addressed in this study is the use of more
than one imaging modality to investigate PD. First, research has shown that OCTA images
can provide valuable information about the disease. It would therefore be of great interest
to combine both OCT and OCTA techniques to understand simultaneously structural and
vascular changes in PD. Second, PD is eminently a neurological disease and thus the main
research focus is centered around neuroimaging. This opens up an interesting line of research
linking OCT findings with measurements from MRI under the assumption that this could
help establish temporal relationships between changes in the retina and the brain. The
biggest challenge in this case lies in the difficulty of acquiring such a dataset.
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In addition to the aforementioned research lines, a largely overlooked line work involves the
development of software for OCT image analysis. Indeed, despite the remarkable need for auto-
mated tools in the field, existing open software solutions are quite limited and not widely used as a
standard. During this work we developed RETIMAT, which proved useful for facilitating research.
However, MATLAB has limited traction as a programming language and developing an alternative
in language like python would reach a larger user group.
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