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Application of Deep Learning in railway domain for train stop
operation

Mikel Etxeberria-Garcia1, Mikel Labayen2, Maider Zamalloa1 and Nestor Arana-Arexolaleiba3

Abstract— The purpose of this paper is to present .. De-
sign/methodology/approach - Short comings today... The paper
proposes an approach consisting of ... Findings - Results from
the ... shows that ... is capable of successfully ... Furthermore,
the paper presents future research and development suggestions
for XXX, which contributes to near-term industrial maturation
and implementation. Originality/value - The paper presents a
full-scale demonstration ... with particular focus on industrial
utilization and application.

I. INTRODUCTION
The application of Machine Learning has increased since

the applicability of some of its techniques has improved.
Deep Learning is one of the most growing techniques of
Machine Learning. The good results that have achieved in
recent researches and the increase of computational capacity
have lead to a time where Deep Learning can be applied to
a wide range of domains. From Medical technologies to the
Internet of Things through its mayor domain, robotics. The
power of Deep Learning in robotics lies in the potential it
has of making a system that can learn. The robotics com-
munity has identified and summarized several applications
for Deep Learning in robotics, such as, learning complex
dynamics, control operations, advanced manipulation, object
recognition or interpretation of human actions.

In this context, Deep Learning application has facilitated a
development in the autonomous driving industry as one of the
most important future business bets. Computer vision tech-
niques, using Deep Learning, have helped to create machine-
learning-based robots and cars that can predict and learn
how to drive in various environments. The researches carried
out recently on Intelligent Transportation Systems (ITS),
Advanced Driving Assistance Systems (ADAS), intelligent
infrastructures and autonomous driving have carried many
benefits to the transportation industry. These technologies
provide the vehicle its own decision-making capacity and
the ability to interpret its environment, and consequently,
enhance the control and signaling solutions. The irruption
of Artificial Intelligence techniques in general and Deep
Learning techniques, in particular, have allowed improving
the perception capacity of these systems and the knowledge
derived from the information perceived in the environment.
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The railway domain is also transforming towards the ITS
and ADAS industry. Nowadays, this sector is ready for
the next steps involving itself in different research projects
related to Computer Vision and Artificial Intelligence devel-
opment.

In a fully autonomous train system all the operations
involved in must be automatic, for example, visual odometry,
people and obstacle detection-identification in railroads, op-
erations such as train doors opening/closing, gauge control in
platforms, coupling or as is presented in this work, accurate
train stopping in train platforms.

This paper is divided into the following sections. Section
II presents a use-case of a company related to the railway
domain. Main approaches in train-robot localization using
Deep Learning are explored in Section III, followed by
the first use-case presentation in Section IV. Finally, some
expected results are drawn in Section V.

II. PROBLEM DEFINITION

Communication-Based Train Control (CBTC) is a standard
defined by the IEEE (IEEE 1474 [1]) which defines a
set of performance and functional requirements for track
and onboard equipment in order to enhance performance,
availability, operations and the protection of the involved
systems. A CBTC system could be defined as an automatic
train control system where the track and onboard subsystems
are continuously communicated. The main two functionali-
ties covered by those subsystems are the Automatic Train
Protection (ATP) and Automatic Train Operation (ATO).
ATP subsystems monitor the train speed and position in
order to guarantee a safe train operation. On the other hand,
ATO subsystems are dedicated to the operations devoted
to reaching a more autonomous and efficient train driving
experience, such as, driving assistance tasks or automatic
control of train brake and traction commands that aim to
ensure that train speed is lower than the limit established by
the ATP system [2].

Current CBTC systems, according to the standard IEC
62290-1, can be divided into pre-established Grades of
Autonomy (GOA). The GOA of a train implementing any
autonomous operation will have a value between 2 and 4:
GOA2 for a semi-automated Train Operation, GOA3 for a
driverless Train Operation and GOA4 for an unattended Train
Operation. In GOA3 and GOA4 systems, as there is not
a driver inside the train, an accurate train location system
is required. Precise positioning systems can reach a higher
grade of automation [3]. A train that implements GOA3 or
GOA4 level can be considered as a robot that navigates



through a track in indoor and outdoor environments including
underground stations. Therefore, it becomes essential to
implement precise and reliable train localization subsystems.
A GOA3 or GOA4 train must compute, among others, the
braking curve or the train stopping location with precision.

Accurate train localization and platform-train doors align-
ment is essential for a safe passenger transfer train operation.
Door equipped platform, which avoids human or undesirable
objects fall in railway area, are more common than in the
past. To align the doors and platform in a train stopping
point requires a precise localization information. Nowadays,
it is calculated using train speed data captured form different
odometry sensors. These sensor errors are corrected time-to-
time during train service using beacon information. However,
in a stopping point the driver eyes and experience are still
the key factors to align correctly the train with the platform
area and to remove final localization error.

On the railway domain, most researches focus on other
computer vision problems as object detection, although some
of this approaches may be applied for localization purposes.
The only research found using a monocular camera is DisNet
[4] proposed by Haseeb et al.. They proposed a CNN
to estimate the distance to previously detected objects by
a monocular camera installed on a train. For the object
detection part uses the standard YOLO [5] algorithm, also
based on CNNs. However, most approaches in this domain
are based on other type of sensors as stereo cameras [6], [7].

The main objective of this research is to explore the
capability of Machine Learning techniques, particularly Deep
Learning techniques, and computer vision for an accurate
train stopping in fully autonomous train stop operation.

III. RELATED WORK

Lately, the capacity of Computer Vision to address some
robotics problems has increased due to the rise of the ap-
plication of Deep Learning algorithms. One of the solutions
afforded efficiently by these strategies is the visual local-
ization estimation. The sensors used in visual localization
systems include monocular, stereo and RGB-D cameras.
When choosing a sensor, the scale is essential. In visual
problems some cameras are not able to calculate absolute
scale and therefore, scale drifts [8]. Stereo cameras provide
an immediate scale while requiring more calibration. RGB-D
cameras provide color and depth information for each pixel
in an image [9] but the cost is higher. In general, a lot of
research interest has been focused on dense and semi-dense
methods from a single camera [10]. In some researches, data
fusion is also proposed as an approach to complement each
sensor.

The use of Machine Learning approaches in Computer Vi-
sion problems has grown with the increase of computational
resources and Deep Learning progress. This situation also
comes from the promising results obtained by the application
of deep approaches in computer vision, specifically with
the use of Convolutional Neural Networks (CNN) on large-
scale image classification (Krizhevsky et al. [11]). This work
demonstrates the idea of the benefits of using CNNs on

Computer Vision problems. Additionally, it has been shown
that one of the potentials of CNN is their generalization
ability in visual recognition tasks. A CNN trained for another
purpose at first instance can be reused to solve another
purpose without the need for full training phase again. Most
systems use CNNs to find only local features or generate
descriptors of discrete proposal regions [12]. Several works
state that deep learning algorithms can model localization or
depth solutions by regression [13], [14].

Three main techniques can be distinguished in visual
localization problems: Visual Odometry (VO), Simultaneous
Location and Mapping (SLAM) and Depth Estimation. Some
of these techniques refer to the same problems, share view-
points and in some cases can not be clearly differentiated.

• Visual Odometry (VO). Odometry can be defined as the
use of data from motion sensors in order to estimate
changes in position over time [15]. Visual odometry
(VO) is a particular case of odometry where the position
information is acquired through camera images [8]. The
term Visual Odometry was first introduced by Niester
et al. [16] proposing a method for estimating camera
motion using RANSAC [17] outlier refinement method
and tracking extracted features across all frames. Before
that, feature matching was done just in consecutive
frames. Later researches have shown that VO methods
perform significantly better than wheel odometry in
robotics while the cost of cameras is much lower
compared to more accurate IMUs and LASER scanners
[8]. This scenario raises the need for exploration of
the applicability of VO in the railway domain and
autonomous driving trains.

• SLAM. Simultaneous Localization and Mapping
(SLAM) is a technique to reconstruct an unknown 3D
environment. It has become a popular research topic as
it is the base for autonomous robot navigation. Visual
SLAM (vSLAM) is the field of SLAM comprised of
methods that use visual information. Both vSLAM
and VO can handle the same localization estimation
problems and share a lot of components such as
feature extractors. The main difference between both
techniques is that VO centers on a relative part of the
map while vSLAM uses the full context and global
consistency is aimed [18].

• Depth estimation. Scene depth refers to the distance
from the camera optical center to the object along to the
optical axis [19]. The estimation of depth can contribute
to localization, and in many approaches is used as a
SLAM phase.

Since LeCun et al. [20] first explored the use of CNNs,
several networks have been designed for a wide variety of
problems. GoogLeNet/Inception was presented by Szegedy
et al. [21] as an architecture of Deep CNNs, increasing the
depth and width of previous architectures. Based on this
inception concept, Chollet et al. [22] presented Xception
CNN architecture based entirely on depthwise separable
convolution layers. Then, VGGNet was defined by Simonyan



et al. [23]. In this work, the authors evaluate the relevance
of CNN depth on image classification tasks. Popular object
detection network Fast R-CNN was presented by Girshick
et al. [24] and later improved by Ren et al. [25] presenting
Faster R-CNN. This two networks increased the training and
testing speed using a region-based strategy. Based on these
works, He et al. [26] presented ResNet, a residual learning
framework to ease the training of deeper networks for image
recognition, due to the difficulty of deeper neural networks
to be trained. All of these networks have become the basis
of most modern Deep Learning approaches.

Some recent works based on the ones previously men-
tioned, apply deep learning algorithms in VO solutions. They
can estimate the pose directly from an input image without
feature extraction or feature matching processes. In [27]
Kendall et al. proposed PoseNet, a robust and real-time
monocular re-localization system based on an end-to-end
trained CNN. This approach was improved by adding a fun-
damental treatment of scene geometry introducing geometric
loss functions [28]. Wang et al. [29] presented an approach
that mixes CNN and RNN called Recurrent Convolutional
Neural Network (RCNN). It takes the benefits of both
networks, the feature extraction capabilities of the CNN and
the sequential modeling from the RNN. In addition, Clark
et al. [13] extended PoseNet with a RNN in order to exploit
temporal dependencies and improve the monocular image
sequence localization accuracy. Some approaches that extend
the PoseNet system have been presented, ie. relative ego-
motion [30]. Later, in [31] Xiang et al. introduced PoseCNN,
a CNN for 6D object pose estimation. PoseCNN localizes an
object center in the image and predicts its distance from the
camera.

From all the explored techniques three of them has been
selected as the most interesting and relevant for our particular
use case:

• Disnet. It is the only approach based on the same
domain and is based on CNNs. Uses YOLO to detect
objects and then DisNet network to regress the distance
to those objects.

• PoseCNN. Detects the center of a known object and
estimates the distance from the camera to regress the
pose of that object using a CNN.

• DeepVO. Introduces Recurrent Networks to the local-
ization problem and takes advantage of the input videos
as it infers poses of objects directly from a sequence of
images.

The application of these techniques is foreseen in a real-
world use case from the railway environment as there are few
applications of deep learning approaches in this domain due
to strict railway regulation. The main goal is to explore the
applicability of Deep Learning for Visual Odometry, SLAM
and Depth estimation in a different domain.

IV. USE CASE: TRAIN STOP OPERATION
A. Use case definition

This section defines an Autonomous Urban Train use-case
where artificial intelligence and high-performance computa-

tional capabilities are used to increase the dependability and
the safety of the system. The objective is to apply Computer
Vision and Deep Learning techniques to improve different
autonomous train operation functionalities as precision stop,
rolling stock coupling operation or person and obstacle
detection-identification in railroads.

The selected use-case is the automatic accurate stop at
door equipped platforms aligning the vehicle and platform
doors. The goal is to perform precise localization inside
platform area using visual patterns detection, identification
and tracking in order to reach accurate stopping point and
managing automatic train operation (traction and brake com-
mands, ATO functionality). A contribution is foreseen to the
automatic train operation system, adding the visual localiza-
tion estimation information to the usual trains odometry data
calculations based on radars and encoders.

In the current train localization system, beacon positions
are known by trackside equipment and may be known by
train if previously announced. From beacon to beacon, a
localization error is accumulated that is proportional to
traveled distance. Each time the train crosses a beacon, the
localization and accuracy is reset. With the combination
of wheel odometry data, given by radars and encoders,
and Visual Odometry (VO) data, provided by our proposed
approaches, an improvement on the precision of the stop is
foreseen, where the localization error must be lower than the
current error given by beacon-based train localization system.

The main idea of our approach is to detect a pattern
that is always placed on the platform that will help us to
locate the train through Deep Neuronal Networks (DNN).
These patterns usually are used by train drivers to know the
stopping position of the train and have a regular form and
color. One example is shown in figure 1

Fig. 1. Signaling patterns are shown at the end of the platforms

B. Architecture

The architecture of the designed application for this use-
case is shown in figure 2. The videos are captured using a
camera that transfers the images to a capturer, which has two



workflows. First, transfers the videos to a database (DB) that
will be used to pre-process the videos and train a DNN. The
training process of the DNN will gave a model that will be
used later for real time processing. Secondly, the capturer
passes the streaming of frames to the previously trained
DNN that will output the desired result. Depending on the
selected approach, the pre-process done to the input videos,
the structure of the DNN and the output will be different.
Usually the pre-process phase is done using Computer Vision
techniques without Machine Learning.

Capturer

DB

Pre-process DNN

Pre-process
Model

Training  module

Real-time
streaming

DNN

Output

Processing module

Fig. 2. Architecture of the designed application for train localization using
Computer Vision and Deep Neural Networks (DNN)

C. Datasets and data collection

Deep Learning approaches require large amounts of data
for training. This data can be collected from different
sources: collected for this particular research, using sim-
ulated environments and from existing datasets. The first
option is to use data from the standard datasets created by
other institutions or researches previously. Having a properly
labeled ground truth in these datasets is essential as they are
the base for training DNNs and evaluating performances.
Depending on the selected approach the required ground
truth data is not the same. After an analysis of the most used
databases for visual localization researches, we have found
that only one database (Norland [32]) covers the railway
domain and it does not match our need for indoor images.
A brief summary of database analysis is shown in table I.
For each database, the used sensors, the domain it belongs
to, if they give pose or/and depth information and if it is an
indoor or an outdoor research is addressed.

To collect data, an appropriate environment is required,
where a camera can be used to take images from the front
of the train to the track. The advantage of this system is
that database can be designed to the particular use-case,
but it requires a lot of time of recording and permissions
for experimentation in the track. To overcome this problem,
simulated environments can be used, where no real railways
are involved. The drawback of simulated environments is that
we can not assure that an algorithm trained and validated in
a simulated environment will give the same results in a real
world scenario.

Although the first tests will be in a simulated 3D en-
vironment, we will eventually have access to real trains
to create a database to test the application of the selected
approaches. The data base collected to test the functionality
will contain enough variety in scenarios taking into account

unfavorable light conditions, pattern shape/color degradation
due to passing of time and partial occlusions (hidden patterns
because of people or object presence).

V. EXPECTED RESULTS AND CONCLUSIONS

The main goal of the research is to explore the application
of deep learning techniques in railway domain as there is
not much research in this domain, although we can make
use of approaches from other domain where the research
has increased lately, i.e. robotics or other autonomous ve-
hicles. This article presents a use-case for the application
of deep learning techniques in railway domain for precise
localization in an indoor environment. It also shows the main
architecture of the system build to solve the presented use-
case. Finally, shows the high data quantity required by deep
learning solutions, and the need of a dataset for our approach
that has not been found in current most used datasets.

Railway operators are interested in market more accessi-
ble and flexible solutions aligned with social sustainability
and mobility concerns fulfilling urban operators need. If
urban vehicles (metro) gain autonomy, system development
costs are reduced (install and maintenance costs) and oper-
ation flexibility is gained. Giving to vehicles autonomy and
decision-making capabilities complements the information
already received from railroad signaling modes as they can
observe and interpret the environment in an independent
manner.

As expected results, the use-case application must be
able to perform accurate automatic stop at door equipped
platforms, aligning the vehicle and platform for correct
passenger transfer. For that, a accurate localization is ex-
pected from selected approaches. According to the accuracy
requirements, alignment error should be lower than 5 cm
at 99,9% of times (measure errors must to be taken into
account).
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