DIALOGUE-BASED MANAGEMENT OF USER FEEDBACK IN AN
AUTONOMOUS PREFERENCE LEARNING SYSTEM*

Juan Manuel Lucas-Cuesta, Javier Ferreiros
Speech Technology Group, Universidad Politécnica de Madrid, Spain

Asier Aztiria
University of Mondragon, Spain

Juan Carlos Augusto, Michael McTear
School of Computing and Mathematics, University of Ulster at Jordanstown, Northern Ireland, UK

Keywords:

Abstract:

Spoken dialogue systems, Autonomous preference learning, User feedback, Human-computer interaction.

We present an enhanced method for user feedback in an autonomous learning system that includes a spoken

dialogue system to manage the interactions between the users and the system. By means of a rule-based
natural language understanding module and a state-based dialogue manager we allow the users to update the
preferences learnt by the system from the data obtained from different sensors. The design of the dialogue
together with the storage of context information (the previous dialogue turns and the current state of the
dialogue) ensures highly natural interactions, reducing the number of dialogue turns and making it possible to
use complex linguistic constructions instead of isolated commands.

1 INTRODUCTION

Ambient Intelligence (Aml), defined as ‘a digital en-
vironment that proactively, but sensibly, supports peo-
ple in their daily lives’ (Augusto, 2007), is the fo-
cus of intensive research within the Computer Science
community, as Aml systems provide significant op-
portunities for computers to improve the standards of
life for some segments of our society. Applications of
Aml are nowadays being developed in a variety of ar-
eas: automotive, healthcare, etc. (Cook et al., 2009).
All those applications have a common overar-
ching aim of serving people unobtrusively (Weiser,
1991; Aghajan et al., 2009). Spoken dialogue systems
(McTear, 2004) are particularly well suited to cover
this requirement as they allow humans to communi-
cate with a system in a natural way, without demand-
ing technical training. This provides a much more
natural interaction mode than, for example, forcing
users to use a PDA, a keyboard, a touch screen, re-

*This work has been partially supported by the Spanish

Ministry of Education under the Program of University Per-
sonnel Training (FPU), reference AP2007-00463.

330

mote controls, or other physical devices.

A natural interaction also implies the ability of the
system to adapt to different users. It is thus important
that the system can identify the habits and preferences
of each user, and learn this information to modify its
behaviour in order to offer each user the functionali-
ties that are most appropriate. The learning of these
usage patterns has to be carried out in a transparent
way for the user. State-of-the-art learning algorithms
would produce associations which are not entirely ap-
propriate for the user. Therefore, it is important that
such algorithms are coupled with a system which al-
lows a user to fine-tune those learnt preferences.

1.1 Preference Learning

Learning the habits and preferences of each user is an
essential feature in any Aml system. There exist dif-
ferent examples in the literature regarding this learn-
ing task. One of the first approaches concerned the
use of Artificial Neural Networks for inferring rules
for smart homes (Begg and Hassan, 2006). Other
techniques, such as Fuzzy-Logic (Hagras et al., 2004)

Manuel Lucas-Cuesta J., Ferreiros J., Aztiria A., Augusto J. and McTear M. (2010).
DIALOGUE-BASED MANAGEMENT OF USER FEEDBACK IN AN AUTONOMOUS PREFERENCE LEARNING SYSTEM.
In Proceedings of the 2nd International Conference on Agents and Atrtificial Intelligence - Artificial Intelligence, pages 330-336

DOI: 10.5220/0002732403300336
Copyright © SciTePress

DIALOGUE-BASED MANAGEMENT OF USER FEEDBACK IN AN AUTONOMOUS PREFERENCE LEARNING

and Case-Based Reasoning (Sadeh et al., 2005), have
also been used but, as Miiller pointed out (Miiller,
2004), ‘the overall dilemma remains: there does not
seem to be a system that learns quickly, is highly ac-
curate, is nearly domain independent, does this from
few examples with literally no bias, and delivers a
user model that is understandable and contains break-
ing news about the user’s characteristics’.

1.2 User Feedback

It is important that the user gets information regard-
ing the patterns learnt by the system, in such a way
that he/she can accept the correct ones and refine or
remove the wrong ones. To offer the user that intor-
mation, the system needs an interaction interface. It
is also important that the interaction between the user
and the system takes place as intuitively for the human
as possible. In that sense, it is a highly desirable goal
to allow users to interact with the system by speak-
ing with it, since speech is the most natural way of
communication between humans.

A speech-based system needs to understand what
the users say and to provide spoken answers to them.
It also has to gather the actions that users want to carry
out and deliver them to the proper set of actuators. We
will refer to a system that can perform all these tasks
as a Spoken Dialogue System (SDS, (McTear, 2004)).

To offer the user a flexible and natural interaction,
it is possible to design the dialogue manager (i.e. the
core of the SDS) as a finite state machine (FSM) that
offers the users the different actions to perform fol-
lowing a given command. However, more interesting
approaches offer the user more initiative when inter-
acting with the system. For instance, a Bayesian Net-
works (BN) approach (Ferndndez et al., 2005), makes
the system able to deal with incomplete information
situations, such as ellipsis or anaphora, thus allowing
the user to speak in a highly natural and friendly way.

Our approach of developing a complete spoken di-
alogue system makes use of a FSM strategy, enhanc-
ing the vocabulary that the recognizer is able to han-
dle. However, although we provide the users with the
ability to talk in a more natural way, the initiative of
the dialogue still relies on the system, which controls
the dialogue flow. To address this, we offer the user
the chance to skip several of the states, if he/she has
enough experience in interacting with the system.

1.3 Autonomous Learning System

Our approach aims at obtaining user patterns from
sensor data. For that we have developed a system,
called PUBS (Patterns of User Behaviour System)

SYSTEM

(Aztiria et al., 2008), which discovers user’s common
behaviours and habits from data recorded by sensors.
PUBS is made up of three different modules. A Lan-
guage (Lpyps) to represent the learnt patterns in a
clear and non ambiguous way; an Algorithm (Apyps)
that discovers patterns in data collected by sensors;
and an interaction system (Ipyps) which allows the
users to have a basic interaction with the system.

Our original HCI interface, Ipyps, was developed
using Sphinx-4 (Walker et al., 2004) for the Auto-
matic Speech Recognition (ASR) task, and FreeTTS
(Walker et al., 2002) to provide speech-based feed-
back to the user. This system had two main draw-
backs. On one hand, the user had to know the way
PUBS stored and represented the information. On the
other hand, the system-initiative approach for man-
aging speech interaction allowed the user to talk in a
very restricted way, using only isolated words (i.e. ac-
cept, reject, or closed answers), or simple commands,
such as device names or numbers.

Given that we want to provide the users with a
more natural and flexible speech interaction, our aim
is to develop a dialogue-based interaction system,
substituting the baseline keyword-based approach but
reusing the recognition and synthesis tools. The new
interaction system, which will be referred to as 1, ,%U BS>
is presented in the next Section.

2 DIALOGUE-BASED USER
FEEDBACK

The spoken dialogue system we have developed,
I}%UBS, makes use of the Sphinx-4 recognition soft-
ware and the FreeTTS synthesizer, as we have said
before. Therefore, our goal is to design the natural
language understanding (NLU) module, as well as the
dialogue manager (DM).

Although we have kept the ASR module, we have
modified the language models it makes use of, allow-
ing more complex sentences. We have collected a set
of sentences of the application domain (i.e. the con-
trol of the patterns learnt by the system), and used
them to train an n-gram based language model.

Each of the new modules works as follows. Once
the ASR has recognized the input utterance (i.e. iden-
tified the words which form the utterance), the NLU
extracts the semantics of those words. We will refer to
this semantics as the dialogue concepts. Using these
concepts, the DM obtains the user intentions, that is,
the commands that the user has said to the system. If
this information is enough to carry out the task the
user has requested, the system will perform it. Oth-
erwise, it will store this information, together with

331

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

the current dialogue state, in the Context Information
Memory, and will ask the user for the remaining data.

2.1 Natural Language Understanding

The NLU module extracts the semantics from the
recognized utterance. By semantics we refer to the
‘meaning’, related to the application domain, of the
different words or phrases which form the utterance.
We represent the semantic information as dialogue
concepts. Each concept consists of an attribute (a
concept identifier) and the value that the user has as-
signed to the attribute. In our domain, the values can
be literals (i.e. the name of a room), numbers (i.e. the
value measured by a sensor) or binary variables (i.e.
whether the user has requested some information).

The NLU module develops a two-step procedure.
First of all, each recognized word is categorized ac-
cording to different criteria. Once every word is cat-
egorized, the understanding step converts the catego-
rized words into dialogue concepts. Both the catego-
rization and the understanding submodules perform
their tasks using a set of rules defined by an expert.

We have defined a set of 20 different categories in-
cluding a GARBAGE tag, which is used to label those
words that do not carry semantic information.

A given word can be labeled with more than one
category, depending on its context (i.e., the closest
words in the utterance). We have developed a bottom-
up strategy to categorize the recognized utterance. We
first categorize the words with a single category (i.e.
numbers, rooms, or days). Then the analysis is ex-
tended to the neighbourhood of each word and the
already-tagged words. The combination of words or
categories can thus generate new categories.

Once all the words of the recognized utterance
have been uniquely labeled, the understanding mod-
ule applies a set of expert-defined rules to assign the
dialogue concepts (attributes and values) to the sen-
tence. We have defined 16 different concepts, which
are extracted by applying a specific subset of rules.

2.2 Dialogue Manager

The dialogue manager that we have developed for
II%UBS is a finite state machine (FSM). Depending on
the current state and using the information the user
provides (which the understanding module has ex-
tracted), the system takes a decision about what action
the user wants to fulfill. The system tries to perform
this action, using also the information stored in a con-
text memory, providing all this information is enough
for fulfilling the required action. Otherwise, the sys-
tem will ask the user for the information it needs.

332

As the architecture of the system is based on a
FSM, most of the initiative belongs to the system, as
in Ipyps. However, our system allows the user a cer-
tain degree of control of the dialogue. For instance,
the user does not need to follow each step of the dia-
logue. If the users have enough knowledge about the
system, they can avoid different states, making the di-
alogue more flexible. Furthermore, the users have the
chance to stop the current dialogue if they perceive
some wrong behaviour of the system. The state ma-
chine of the dialogue manager is shown in Fig. 1.

The full process of the dialogue management can
be viewed as the following algorithm:

state := BEGIN;
synthesize (greeting);
while (state != END) do
if (recognition_expected) do
recognize();
understand (output_recognition);
end if;
dialogue_management (output_understanding);
synthesize (output) ;
end while;

At the beginning of the interaction, the system
synthesizes a welcome and sets the state to BEGIN-
NING. If the user requests some information, the sys-
tem returns the number of devices and the number of
patterns learnt for each device. Now the user can ask
for a specific pattern or for a set of them. Depending
on that, the system will update the dialogue memory
with the patterns the user has requested. In any case,
the next state of the dialogue is ACTION_PATTERN.

For each pattern the user asks for, the system syn-
thesizes all the information related to it (that is, its
event, condition and action). The user can then per-
form an action over the pattern (i.e. accept, reject
or refine it). Accepting a pattern means that the user
finds it useful, so it is stored for using it proactively. A
rejection implies that the pattern is not useful, so it is
deleted. If the user wants to refine a pattern it means
that the pattern is useful for the user, but it need to be
tuned according to the user’s desires.

In the two first cases, the system updates the
state of the pattern, confirming the accepted patterns
and deleting the rejected ones. As the process for
the current pattern has finished, in the next state
(CHECK_PATTERNS) the DM will check whether
there are more patterns to be shown to the user.

When the user wants to modify a pattern, the sys-
tem (in the state MODIFY _PATTERN) asks the user
which of the three pattern fields he/she wants to mod-
ify. The user can ask for a single field, or for any
combination of them (i.e. the event and the condition,
or even the three fields at the same time).

Each field has a specific main state (MOD-

DIALOGUE-BASED MANAGEMENT OF USER FEEDBACK IN AN AUTONOMOUS PREFERENCE LEARNING

SYSTEM

BEGINNING

L

WAIT_PATTERN

“a

MODIEY
EVENT

. L

Y

|

Y

MODIFY_
CONDITION

Y

MODIFY_PATTERN

MODIFY | _—~
ACTION

& ik

MODIFY MODIFY_ MODIFY_ MOBIFY_

|LOCAT\ON‘ ‘ DEVIGE | ‘ MODIFY_ATTR_VAL | TIME ‘ | DEVICE |
‘

CONFIRM_ ‘ CONFIRM_ | CONFIRM_ I |coNF|RM_ ‘ CONFIRM_ ‘ CONFIRM_

LOCATION DEVICE ATTR
. 7 .

> 4 A

VAL TIME DEVICE

Y »

‘ CHECK_CONDITIONS |

‘ CHECK_ACTIONS |7

e

CHECK_FIELDS

e

> ‘ CHECK_PATTERNS }—» |END|

Figure 1: State machine of the Dialogue Manager.

IFY_EVENT, MODIFY_CONDITION, and MOD-
IFY_ACTION), which controls the different elements
that form the field. If the user wants to modify the
event, he/she can modify the device which triggers
the event, or the location in which he/she has to be
detected. If the user decides to refine the condition,
he/she can act over the attribute of the condition, or
the value this attribute takes. For modifying the ac-
tion, the user can select the device to act over, the ac-
tion to perform (to switch on/off the selected device),
or the moment in which the action will take place.
For each element of each field, once the user has
modified the desired setting, the system starts a con-
firmation step, providing spoken feedback to the user
to ensure that the recognition and understanding steps
worked properly. If the user confirms his/her se-
lection, the system will update the state of the pat-
tern. Furthermore, the dialogue manager will check
(at the dialogue memory) if any field of the cur-
rent pattern remains to be modified. In this case,
the system will repeat the previous steps for the new
field (in the state CHECK_FIELDS). Otherwise, the
procedure for the pattern is finished. The system
sets CHECK_PATTERNS as new state, and checks
whether the user asked for more patterns, in which
case it has to start again the dialogue steps for the new
pattern. When the user has evaluated all the desired
patterns, the system moves to the END state and says
goodbye to the user, finishing thus the interaction.

If the user detects some wrong behaviour of the
system (a misrecognition of his/her utterance, or
an incorrect understanding, which leads to a non-
expected state), he/she can abort the current dialogue
by asking the system to cancel the spoken interaction.
In each state, if the user wants to cancel the dialogue,
the system interrupts the normal dialogue flow by di-
rectly reaching the END state of the FSM. In this sit-
uation, the system informs the user about what the
problem has been, and finishes the interaction.

The system has a context memory for storing the
information related to every dialogue turn, as well as
the current dialogue state. Using this information, the
system can decide which action to take and which
state to reach. The dialogue memory acts thus as a
short-term memory, (i.e. it only takes into account
the information relevant for the pattern presented to
the user). Therefore, the information stored in the
context memory includes the device the pattern be-
longs to, the index of the pattern (provided that there
is more than one pattern learnt for this device), and the
current values of the three fields of the pattern (event,
condition and action). The system can easily check
which of these fields the user has already modified,
and which ones remain to be modified.

333

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

Table 1: Initial dialogue turns.

Dialogue turn

Next state Context memory

S. Hello, welcome to the feedback system. How can I help you?

U. How many patterns have you learnt?

S. There are three devices.
Device Lamp A has five different patterns.
Device Lamp B has two different patterns.
Device Lamp C has two different patterns.

BEGINNING 0

WAITING_PATTERN

Which pattern of which device do you want to listen to?

U. I want to listen to every pattern of Lamp A.
S. Pattern Lamp A.
userisin V A
Condition 0 time is earlier than seven a m twelve
then turn on Lamp A
What do you want to do with this pattern?
U. Accept it.

S. Pattern Lamp A.
(...)

ACTION_PATTERN device: Lamp A

pattern: 0

REMAINING
_PATTERNS
ACTION_PATTERN device: Lamp A

pattern: 1

3 INTERACTING WITH THE
SYSTEM

The examples we present next show different dia-
logue turns of both the user (U.) and the system (S.),
as well as the next state of the dialogue manager, and
the information stored in the context memory.

Table 1 shows the beginning of the interaction
with the system. Once the system synthesizes the
greeting message, the user requests some information.
This turn makes the system wait for information about
a specific pattern, or a set of patterns.

The user can ask not only for a single pattern, but
also for every pattern of a device, or even for every
pattern of all the devices. The context memory will
store the pattern presented and its associated device.

Once a pattern has been presented to the user,
he/she has to decide what to do with it. If the user
accepts or rejects it, the system confirms or deletes
the pattern. Then the system checks if there are more
patterns to show to the user. In this case, it updates
the context memory to present the next pattern.

Table 2 shows a situation in which the user wants
to refine a pattern. He/she can select any field of the
pattern, or a combination of them. In any case, the
system updates the context memory.

At any time, the system tries to offer the user the
information he/she would need to fulfill the current
action. This way, when the user wants to modify a de-
vice, the system shows a list of the available devices,
avoiding an additional dialogue turn in which the user
probably asks the system about the available devices.

334

We can thus complete the dialogue with fewer turns.

4 CONCLUSIONS

We propose an enhanced speech interface to allow
user feedback in a learning system by means of a
SDS. Our new approach not only deals with isolated
commands, but also allows speakers to use more nat-
ural linguistic constructions, achieving more dynamic
and user-friendly human-machine dialogues.

The inclusion of a context database which stores
the information regarding previous dialogue turns en-
ables the system to tackle incomplete utterances. This
way the naturalness of the dialogues is increased.

Currently we are designing a framework to evalu-
ate the performance of I3, ¢. Our aim is to develop
a set of feasible scenarios in which a user interacts
with the system fulfilling different actions regarding
the patterns learnt (selecting and asking for different
patterns; accept, refine, or delete them, and so on).
We can measure the goodness of our approach by an-
alyzing both objective and subjective metrics. Among
the objective ones, the most interesting metrics are
the recognition rates and the concept confidence, to-
gether with several dialogue variables: the number of
dialogue turns the system needs to fulfill a specific ac-
tion, or the number of turns in which the system needs
to ask the context memory for previous information.
The subjective metrics can be estimated by means of
a questionnaire in which we ask for different aspects
of the system, such as how natural the dialogue is per-

DIALOGUE-BASED MANAGEMENT OF USER FEEDBACK IN AN AUTONOMOUS PREFERENCE LEARNING

SYSTEM

Table 2: Example of pattern modification.

Dialogue turn Next state Context memory

S. Pattern Lamp A. (...) ACTION_PATTERN device: Lamp A
What do you want to do with this pattern? pattern: 0

U. Modify it.

S. What do you want to modify in this pattern? MODIFY _PATTERN

U. Could I modify the event and the action?

S. User location was V A. MODIFY_EVENT field: event
Which location do you want to be the new one?
Possible user locations are V A, V Bedroom. MODIFY_LOC

U. Please set V Bedroom as new user location.

S. Do you want to confirm V Bedroom as new user location? CONFIRM_LOC

U. Yes.

S. The action carried out was turn on the Lamp A. CHECK_FIELDS

What do you want to modify in the current action?

You can modify the device and the action.

U. I would like to modify the device and the action.

S. Possible devices are Lamp A, Lamp B, Lamp C.
Which device and action do you want to set?

U. Switch on Lamp B.

S. Do you want to confirm On as new action
and Lamp B as new device?

U. Yes.

S. Thank you for your collaboration.

MODIFY_ACTION

field: action

MODIFY_ACTION

CONFIRM_ACTION

END 0

ceived, the ease of interaction with the system, or the
advantages over the original approach.

Using user-related information (i.e. knowledge
about the identity of the user who has caused the
learning of each pattern) would be a highly attrac-
tive task. This information would allow the system to
show each user only those patterns related to him/her.
We could also modify on-line the behaviour of the di-
alogue system, adapting it to each user’s preferences.

Neither Ipyps nor Ipyps can know beforehand the
devices in the environment, so that grammars for the
recognizer could be dynamically created and loaded.
A simple way of doing that consists of mixing a static
grammar and different dynamic ones (Lucas-Cuesta
et al., 2009). The flexibility of Sphinx-4 will ensure a
good performance of the recognized sentences as long
as the vocabulary matches the dynamic grammar.

REFERENCES

Aghajan, H., Delgado, R. L.-C., and Augusto, J. (2009).
Human-Centric Interfaces for Ambient Intelligence.
Academic Press, Elsevier.

Augusto, J. C. (2007). Ambient Intelligence: The Con-
fluence of Pervasive Computing and Artificial Intel-
ligence. In Schuster, A., editor, Intelligent Computer
Everywhere, pages 213-234. Springer Verlag.

Aztiria, A., Augusto, J. C., and Izaguirre, A. (2008). Au-
tonomous Learning of User’s Preferences Improved

through User Feedback. In Gottfried, B. and Aghajan,
H. K., editors, BMI, volume 396 of CEUR Workshop
Proceedings, pages 72-86. CEUR-WS.org.

Begg, R. and Hassan, R. (2006). Artificial Neural Networks
in Smart Homes. Designing Smart Homes: The Role
of Artificial Intelligence, pages 146—164.

Cook, D. J., Augusto, J. C., and Jakkula, V. R. (2009).
Ambient Intelligence: applications in society and op-
portunities for Al. Pervasive and Mobile Computing,
5:277-298.

Fernandez, E., Ferreiros, J., Sama, V., Montero, J. M., Se-
gundo, R. S., and Macias-Guarasa, J. (2005). Speech
interface for controlling a Hi-Fi audio system based
on a Bayesian Belief Networks approach for dialog
modeling. In Proc. INTERSPEECH, Lisbon, Portu-
gal, September 2005, pages 3421-3424.

Hagras, H., Callaghan, V., Golley, M., Clarke, G., and
Pounds-Cornish, A. (2004). Creating an ambient-
intelligence environment using embedded agents.
IEEE Intelligent Systems, 19(6):12-20.

Lucas-Cuesta, J. M., Ferniandez, F., and Ferreiros, J.
(2009). Using Dialogue-Based Dynamic Language
Models for Improving Speech Recognition. In Pro-
ceedings of the 10th Annual Conference of the Inter-
national Speech Communication Association (Inter-
speech), Brighton, UK, pages 2471-2474.

McTear, M. (2004). Spoken Dialogue Technology: Toward
the Conversational user Interface. Springer Verlag.

Miiller, M. E. (2004). Can user models be learned at all?
Inherent problems in machine learning for user mod-
eling. The Knowledge Engineering Review, pages 61—
88.

335

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

Sadeh, N., Gandom, F., and Kwon, O. (2005). Ambient
Intelligence: The MyCampus experience. Technical
report, CMU-ISRI-05-123.

Walker, W., Lamere, P., and Kwok, P. (2002). FreeTTS
- A Performance Case Study. Technical report, Sun
Microsystems Laboratories (TR-2004-139).

Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gou-
vea, E., Wolf, P., and Woelfel, J. (2004). Sphinx-4: A
Flexible Open Source Framework for Speech Recog-
nition. Technical report, Sun Microsystems Laborato-
ries (TR-2002-114).

Weiser, M. (1991). The computer for the 21st century. Sci-
entific American, 265(3):94-104.

336

