A general approach to Software Product Line
testing

Elvira G. Ruiz!, Jon Ayerdi?, José A. Galindo', Aitor Arrieta?, Goiuria
Sagardui?, and David Benavides!

! Universidad de Sevilla, Dept. Lenguajes y Sistemas Informéticos, Av. Reina
Mercedes s/n Sevilla - Espana,
{egruiz, jagalindo, benavides}Qus.es
2 Mondragon Unibertsitatea, Dept. de Electrénica e Informética, Goiru 2,
Mondragon - Espana
jon.ayerdi@alumni.mondragon.edu, aarrieta@mondragon.edu,
gsagardui@mondragon.edu

Abstract. Variability is a central concept in Software Product Lines
(SPLs). It has been extensively studied how the SPL paradigm can im-
prove both the efficiency of a company and the quality of products. Nev-
ertheless, this brings several challenges when testing an SPL, which are
mainly caused by the potentially huge amount of products that can be
derived from an SPL. Different studies proposing methods for testing
SPLs exist. Furthermore, there are secondary studies reviewing and map-
ping the literature of the existing proposals. However, there is a lack of
systematic guidelines for practitioners and researchers with the different
steps required to perform a testing strategy of an SPL. In this paper,
we present a first preliminary version for a tutorial that summarizes the
existing proposals of the SPL testing area. To the best of our knowledge,
there is no similar attempt in existing literature. Our goal is to discuss
this tutorial with the community and enrich it to provide a more solid
version of it in the future.

Keywords: Software product lines, Software testing, Software reusabil-
ity.

1 Introduction

Software product lines and variability intensive systems benefits from a set of
techniques, tools and methods that are used to develop a set of different products
that share some commonalities [26]. The concrete functionality that varies across
products in the SPL is encapsulated using an abstraction known as feature.
Feature models are used to encode common and varying parts of SPLs [I7].
In the literature, we find real examples encoding a large number of products.
For example, the Linux Kernel [24] with more than 6,000 features or Debian
packaging systems [I1] with more than 27,000.

The large amount of products that an SPL can encode, makes its analysis
a time—consuming and error prone task. Then, researchers proposed the use of



automated analysis techniques [5] for a set of activities in which testing is usually
one of the most relevant [12].

SPL testing represents a new challenge for software testing practitioners and
researchers [23]. When testing SPL, each product shares some common func-
tionality with one or more products, while differing in at least one feature. SPLs
add testing complexity because they require testing a set of products rather
than a single product. These products, however, share common functionality or
artifacts, enabling the reuse of some tests across the entire SPL.

According to [23], several strategies can be used to test SPL products. These
testing strategies can be summarized as follows: i) testing product by product,
i1) incremental testing, and iii) reusable asset instantiation. Testing product by
product is a strategy that tests all products one by one, as if they were not part
of an SPL. With this strategy the test process covers all possible interactions
between features but grows exponentially in cost as a function of the number of
features in the SPL. Incremental testing is a strategy that starts by testing the
first developed product and creates new unit tests for each new feature added.
Using this strategy, the commonalities in the SPL are exploited to reduce testing
effort. However, when a new feature is introduced, all the interactions between
the new feature and the old ones have to be tested, which can be challenging for
large SPLs. Reusable asset instantiation relies on data captured in the domain
analysis stage of SPL creation to develop a set of abstract test cases that cover
all features (but not necessarily configurations) in the SPL. These abstract tests
cases are mapped to concrete requirements in the application engineering stage.
These last two testing strategies are designed to reduce the SPL combinatorial
explosion in testing cost as a function of the feature count.

Within SPL engineering, two different processes can be distinguished: (1)
domain engineering and (2) application engineering. Domain engineering is the
process of developing the platform for building products and defining the com-
monalities and the variability of the product line. Application engineering is the
process of deriving specific applications by using the platform defined in domain
engineering and binding the variability to satisfy the needs of each particular
application [22].

In [I5] authors propose an ideal path to follow when it comes to SPL testing,
which is a W testing model for SPLs that considers component, integration
and system testing for both domain and application engineering. This paradigm
maps every sub-process to either domain or application engineering. However,
and due to the complexity of the testing processes when variability is considered,
in many software projects there is not such a clear division of tasks. It is possible
to find some testing processes (i.e., component testing) that can be started in
the domain engineering phase and continued during the application engineering
phase — In fact, it is recommended to adapt the paradigm to the necessities of
each SPL. To the best of our knowledge, there is a lack of systematic guidelines
that prevents the practitioners from these peculiarities. Motivated by this, we
have formulated a first approach to what could be a flexible — yet still systematic
—approach. The approach is based on the principles stated by [23], and completed



with different strategies stated of the SPL testing literature, like mappings and
reviews [8I0I28]. Our goal is to begin a discussion around the model with the
community in order to enrich it and provide a solid version that can be used as
a reference for new and senior SPL developers.

The remainder of this paper is structured as follows: Section [2| presents the
information regarding the software developed for this article. Section [3] presents
background information on different SPL theoretical testing approaches. Our
proposed approach is described in Section [4] and detailed in Section [f] Finally
in Section [f] we present concluding remarks and lessons learned.

2 Running example

Online Shop

O
Product Search

Catalog Payment Security

’ E-coins‘ ’ Credit Card ‘ ’ Low ‘ ’ High ‘

’ Bank Account

¢ Mandatory /‘\ or

Credit Card implies High
& Optional A Alternative

Fig. 1. Online shop feature model [29].

Figure [I] shows the feature model of the online shop example that we will
use throughout this paper. It is a configurable online shop system with different
capabilities which are the system’s variability points, as proposed in [29]. One
of the most common methods for modelling variability in industry consist in
using feature models [6], in which variability points are mapped into features
and then represented in a hierarchical diagram that depicts the relationships
between features. The feature model from Figure [1] shows that all online shops
must have a catalog listing all the available products, a set of payment methods,
and a security level. Furthermore, an online shop can optionally have a search
feature which allows users to find products more easily. Further down the hier-
archy, we can see that there are three possible payment methods, at least one of
which needs to be selected: bank account, e-coins, and credit card. Note that the
{1..3} cardinality annotation is redundant in this case, since the or parent-child
relationship requires that at least one or more sub-features are selected. Finally,



the security level of the online shop must be either high or low, since the alter-
native parent-child relationship mandates that exactly one of the sub-features
has to be selected.

In addition to the parental relationships between features, feature models
may also have additional cross—tree constraints, which are propositional formulas
that further reduce the amount of valid configurations. In our example, the
“Credit Card implies High” constraint makes the feature High to be mandatory
when the feature Credit Card is selected. Taking all of this into account, we
can derive a total of 20 valid online shop variants. For more information about
feature modeling theory, refer to [4l5].

Product Selection

searchProduct

toCatalog

. Bank Account
. E-coins

. Credit Card

Product Search

searchProduct viewProductDetails
toCatalog
Catalog [ | Product Deta

viewProductDetails

addToCart

viewCartContent
toCatalog
removeProductFromCart

Cart Content

cancelOrder
/Checkout

toPaymentChoice

viewOrderSummary

Order Summary
Bank Account

selectECoins . validatePayment
E-coins
Credit Card

Fig. 2. Online shop 150% model.

\

invalidPayment

selectBankAccount validatePayment

validPayment

e

J Payment Validation

Payment Choice

selectCreditCard validatePayment

One way of modeling the behavior of a software system is by employing a
state machine model. This model could also be used to generate test cases if
we were using Model-Based Testing (MBT) techniques. In the case of SPLs, the
so-called 150% model can be built, which is a domain engineering asset that
represents the behavior of the whole product line. 150% models integrate all
the variability, i.e., the variability related to the whole product line into one
single model [2]. When a specific product variant is selected, the variability of
the 150% model is bound, forming the 100% model (i.e., the model specific to
that configuration) [2]. This approach is not only considered for models but can
also be used for generic code. Figure [2| shows the 150% state machine model of
the online shop example, where the links to the features from the feature model
have been represented with colors. Note that in many cases the 150% model



itself may not be a valid product variant, since it is not always valid to select all
the features on a single product.

Analogously to the 150% state machine model shown, other domain engi-
neering assets can be generated, such as use case diagrams, class diagrams, and
even the software source code itself. These assets should also be linked to the
feature model so that they can be automatically reused for different products.
In order to demonstrate how to manage an SPL project, we have implemented
a simple, Java based version of our online shops example using FeatureIDE [27],
a tool which can be used to develop SPLs using the feature-oriented software
development paradigm.

3 Top-down vs Bottom-up approach

Domain Domain
Engineering Engineering
Assets Assets

oat o Bottom-Up Product Line
eature mode! Test Generation Test Suite
Reusable Reusable
Components Components

Product Product
Selection Selection
Domain Engineering Domain Engineering

Feature model

i}

1
Application Engineering L Application Engineering

Application Application
Engineering Engineering

Assets Assets
Top-Down Product-Specific| Product-Specific
Test Generation Test Suites Test Suites
Products Products

Test Test
Execution Execution

Fig. 3. SPL testing Top-Down approach.  Fig. 4. SPL testing Bottom-Up approach.

There are two main approaches at the SPL testing: (1) the top-down approach
and (2) the bottom-up approach [29], which are also referred to as product-
centered and product line-centered respectively in some publications [19]. On
the one hand, the top-down approach consists in selecting and generating the
desired product variants first, and then generating a test cases for each derived
product individually. On the other hand, the bottom-up approach consists in
generating a database of generic test cases for the whole SPL based on the
domain engineering assets, such as the 150% model. Later, variability of these
test cases is bound to test individual product variants. Figures [3] and [4 show an
overview of these approaches.



toCatalog, searchProduct, viewProductDetails, searchProduct, toCatalog, view-
ProductDetails, addToCart, toCatalog, viewCartContent, removeProductFrom-
Cart, toCatalog, viewCartContent, viewOrderSummary, cancelOrder, toCata-
log, viewCartContent, viewOrderSummary, toPaymentChoice, (selectBankAc-
count OR selectECoins OR selectCreditCard), validatePayment, validPayment

Example 1. Bottom-up test case for online shops.

We define a test case as a specification of inputs used for software testing.
In this paper, they will consist of sequences of events that trigger transitions in
our example state machine model.

As an example of the bottom-up approach, if we wanted to generate a product
line test suite to obtain a high transition coverage for the online shops example,
we could come up with the test case shown in Example [1, where the colors
represent the same feature links as in the Figure [2] model.

toCatalog, searchProduct, viewProductDetails, searchProduct, toCatalog, view-
ProductDetails, addToCart, toCatalog, viewCartContent, removeProductFrom-
Cart, toCatalog, viewCartContent, viewOrderSummary, cancelOrder, toCat-
alog, viewCartContent, viewOrderSummary, toPaymentChoice, selectECoins,
validate Payment, validPayment

Example 2. Derived bottom-up test case for online shops.

After product selection, we can derive this test case into product-specific
test cases for every product, allowing us to reuse it. Note that this test case only
covers one of the payment methods, even if multiple are selected. If, for instance,
we selected a product with { ProductSearch, ECoins, LowSecurity}, its derived
product-specific test case would be Example

As for the top-down approach, the product-specific test suite will be gener-
ated after selecting the product variants, so we can just leverage existing software
testing techniques and tools.

It has been observed by some authors that the bottom-up approach seems
to scale better than the top-down approach in terms of test execution cost (con-
sidering the total test case count, number of steps and number of configura-
tions) [19]. Furthermore, considering that the top-down approach is similar to
the traditional testing system, this paper will be more focused in the bottom-up
approach.

4 Proposed Process Overview

This proposal is based on the strategy Design test assets for reuse [8]. This
means that test plans and test cases are created as soon as possible, usually in
domain engineering. Nevertheless, application engineering tests are still needed,



so it is also important to encourage the reuse of those product-specific test cases
defined in application engineering from one to another product.

Y Y S\
Asset Interaction Product Evolution
Testing Testing Testing Testing

Feature Model Consistency Checking

Domain
Engineering A4 A4 N N4
Sampling and Prioritization
Product Line Test Generation
Application
Engineering

Test Execution

Test Optimization (Optional)

Fig. 5. SPL testing process timeline proposal.

Figure 5] shows an overview of the activities involved in the testing process of
an SPL and their mapping into domain or application engineering. It is possible
to divide the SPL testing workflow in four different procedures: Asset Testing,
Interaction Testing, Product Testing and FEwvolution Testing. These procedures
are sorted in chronological order in Figure[5] but in high variability environments
it is usually impossible to avoid mixing them. One example is how in [23] it is
described how it is not necessary to develop and test every asset before starting
to test a product by applying testing prioritization.

There are SPL testing processes that are affected and modified by all of the
aforementioned procedures. They are represented by white boxes in Figure [5]
and the arrows represent the dependency between them. In order to achieve an
optimal test execution firstly we need to ensure that every feature selected (or
added to the SPL due to latter product needs) is consistent with the original
feature model — Feature model consistency checking [I]. After that, prioritization
of tests should be established for every single procedure. Most times, and because
of the variability of the SPL, sampling techniques have to be applied in order to
achieve good coverage of interaction testing between assets. This is referred to
as Sampling and Prioritization.



Once we have a clear view of which interactions and processes should be
prioritized on the SPL testing, a generic test plan is built. Named as Product
Line Test Generation, this process is heavily influenced by both domain and
application engineering, and depends on the already tested assets. It is essential
to unify and reuse test assets (test cases, test scenarios and test results) as much
as possible from one product to another. To achieve this, product-specific created
test assets are stored in the generic SPL testing plan as they appear, as this has
been proven to impact the effort reduction [§].

Finally, Test Optimization can optionally be performed on application engi-
neering to achieve an optimal Test Fxecution for every procedure.

5 Procedures

In this section, every sub-process from Figure [5] is define. Furthermore, some
glimpses about different techniques every process are given.

5.1 Asset Testing

Assets are defined as artifacts built for the development of different products of
the same SPL [3]. In the literature they are also referred to as domain artifacts
or core assets. These assets can be tested independently through unit testing
making use of traditional software techniques [8]. Results from these tests are
valuable for every product derived from a SPL. This process is usually performed
in domain engineering, although there are some assets that cannot be tested until
there is a product [23].

Depending on the perspective of the SPL development, different approaches
can be made. According to [23], it is highly recommended to test commonalities
first. Commonalities are those assets considered core in the SPL and that will be
present in every product. This will be useful in case that a reference application
[21] wants to be used at the interaction testing procedure. Once commonalities
are tested, the testing of variability-affected assets can begin. In order to achieve
an optimal coverage of interactions, there can be a prioritization of which variable
assets need to be tested first. This will allow interaction testing to start earlier
in the testing process.

Example [3| shows a test case for the ProductDetails class in our online shops
example, which checks the presence or absence of the ProductSearch option in
the user menu. Even if ProductDetails is a core asset that is always present, this
particular test case cannot be executed until a product is selected because the
transition to ProductSearch may or may not exist.

5.2 Interaction Testing

Asset testing is not enough for achieving a high quality SPL. In SPLs, interac-
tion between assets causes failures, bugs and inconsistencies that can only be



1 public void testSearchTransition() {

2 // Select menu option

3 input.println("2"); // 2. BACK TO CATALOG
4 // Run ProductDetails

5 productDetails.run() ;

6 List<String> lines = output.lines().collect();
7 // Check output

8 boolean searchProductPresent = false;

9 for(String line : lines) {

10 if (line.equals ("3. SEARCH PRODUCT")) {
11 assertFalse(searchProductPresent);

12 searchProduct = true;

13 }

14 }

15 // #if ProductSearch

16 assertTrue (searchProductPresent);

17 // #else

18 assertFalse(searchProductPresent);

19 // #endif

20 }

Example 3. Asset test for the ProductDetails class.

detected when certain feature combinations are present. For this reason, interac-
tion testing is used when testing SPLs. Variability is controlled on this stage of
SPL testing [7], and results will be valuable for every different products derived
from the SPL. Interaction testing includes integration testing — which belongs
to domain engineering [8] — and also binding testing [23], which belongs to ap-
plication engineering.

In high variability scenarios it is impossible to achieve a full coverage of every
interaction between assets. This is caused by the number of products an SPL can
have, that grows exponentially as the number of features increases. Therefore,
sampling is necessary to test as many different interactions as possible while
avoiding exhaustive testing [28]. The idea behind sampling is to derive a subset
of all possible products that collectively cover the behavior of the SPL and reveal
most of the faults by only them [28§].

To sample a product subset from the entire SPL, several approaches have
been proposed. Varshosaz et al., proposed a taxonomy to classify these ap-
proaches [28]. This taxonomy included (1) input data to the sampling approach
(e.g., feature model), (2) type of algorithm used for sampling products (e.g.,
from simple greedy-based algorithm to more sophisticated population-based al-
gorithms) and (3) type of coverage employed (e.g., feature-interaction coverage).
Out of the scope of this paper, the classification also included the evaluation
technique and the type of application of the approach, among which most of
them were focused on testing.



The input data covers the artifacts that the sampling approaches consider
for generating products. All the approaches considered feature models as input,
something that is quite sensible since this is the technique that is applied most in
industry [6]. However, according to [28], some approaches also combined feature
models with expert knowledge or implementation artifacts. The algorithm is
referred to the process that is behind the product sampling to search for relevant
products to test, which uses a specific type of coverage to guide this search. While
most of the approaches are based on Greedy algorithms (e.g., ICPL algorithm
[16]), in the last few years, more sophisticated techniques, such as population-
based algorithms (e.g., GAs) have been proposed [I4]. Most of these algorithms
are guided by certain criterion, which is mostly driven by feature-wise and pair-
wise coverage (i.e., they follow the principle of combinatorial interaction testing).
This is a way of measuring coverage in SPL sampling, which aims at, for every
combination of t assets, to cover all interactions at least once, which requires 2
test cases for each combination.

Combinatorial testing has been proven to produce good results in empirical
studies [9)25], mainly because points of interaction between software artifacts
have been proven [I§] to be key sources of errors. This type of sampling is
usually automatically performed by an algorithm which aims to minimize the
amount of samples selected to achieve the desired t-wise coverage, reducing the
testing cost while maximizing the test value.

— P, = {ECoins, LowSecurity}

— P> = {BankAccount, CreditCard, HighSecurity, ProductSearch}
— Ps; = {BankAccount, ECoins, HighSecurity, ProductSearch}

— Py = {CreditCard, HighSecurity}

— Ps = {BankAccount, LowSecurity}

— Ps = {ECoins, LowSecurity, ProductSearch}

— P; = {ECoins, CreditCard, HighSecurity}

Example 4. Pairwise product selection for online shops.

For our motivating example, seven out of twenty possible products have been
sampled in order to obtain the highest pairwise feature-interaction coverage. By
employing a feature model modeled in FeatureIDE as input, the ICPL [I6] and
as driving algorithm and pairwise as coverage criterion, the sampled products
listed in Example ] have been derived.

5.3 Product Testing

A good practice is to generate a general SPL testing plan and test suite for
product testing at a domain engineering level, just taking into account interac-
tion and asset testing results. Nevertheless, there is still a need of performing
a general testing for every product derived from an SPL before delivering it to

10



the customers after that. There are certain tasks — like acceptance testing or
non-functional testing [8] — that can only be fully tested when the product is
derived.

In this step, we are capable of generating a test-plan by consuming the results
from previous stages. For example, taking into account the features included
in the product, or guarantying that certain non-functional requirements meet
customers requirements.

toCatalog, viewCartContent, viewOrderSummary, toPaymentChoice, select-
BankAccount, validatePayment, invalidPayment, toPaymentChoice, selectCred-
itCard, validatePayment, validPayment

Example 5. Product-specific test case for online shops.

In Example [T} we proposed a reusable test case which can achieve a high
behavioral coverage for all cases. Nevertheless, that test case will only cover one
of the payment methods even if multiple are selected, and it also does not cover
the invalidPayment transition. Even though it is possible to make a reusable test
case with full coverage for our simple running example, it is easier to extend the
reusable test case with a product-specific test case once variability is resolved.
The test case in Example [5| could be generated for the product { BankAccount,
CreditCard, HighSecurity, ProductSearch} in order to compliment the test
case in Example[I] Note that this test case focuses on the Checkout states, since
the other states are already fully covered.

5.4 Evolution Testing

Evolution testing [20] is performed at more mature stages of the SPL life-cycle
to ensure that the behavior of the products and the whole SPL system remains
valid after modifications (such as bug fixes or functionality extensions). Even
though this paper is centered in testing on the developing stage of an SPL, it
needs to be noted that evolution testing should be performed in order to ensure
that the behavior of the system remains valid and consistent with the feature
model [13].

6 Conclusions

Although the existing literature already states that variability blurs the differ-
ence between domain and application testing processes [23|15], a testing paradigm
where this situation is clearly specified hadn’t been proposed yet. This article
proposes a generalist and non-technique-focused SPL testing approach to make
an advance reuse of test assets (Figure . In order to justify it, a brief com-
pendium of actual SPL testing techniques and their flaws have been exposed.
One of the benefits from this is that SPL developers do not need to change their

11



own procedures when developing, and that there is no tool dependency. Further-
more, this approach can be partially and conveniently applied depending on the
SPL complexity.

We felt that a conceptual approach was necessary in order to guide new
SPL practitioners into the SPL testing paradigm, but it is also certain that
this approach is highly conceptual. Some highlights of future work would be the
development of a more technique-specific and low-level procedure, as well as the
evaluation of this approach on high scale projects.

Acknowledgements

This work has been partially funded by the EU FEDER program, the MINECO project
OPHELIA (RTI2018-101204-B-C22); the Juan de la Cierva postdoctoral program;
the TASOVA network (MCIU-AEI TIN2017-90644-REDT); the Junta de Andalucia
METAMORFOSIS project and the Basque Government via TEKINTZE project.

Material

The prototype of the SPL we prsented as running example can be found at https:
//github.com/jonayerdi/OnlineShops

References

1. Mauricio Alférez, Roberto E Lopez-Herrejon, Ana Moreira, Vasco Amaral, and
Alexander Egyed. Supporting consistency checking between features and software
product line use scenarios. In International Conference on Software Reuse, pages
20-35. Springer, 2011.

2. Aitor Arrieta, Goiuria Sagardui, Leire Etxeberria, and Justyna Zander. Auto-
matic generation of test system instances for configurable cyber-physical systems.
Software Quality Journal, 25(3):1041-1083, 2017.

3. Felix Bachmann and Paul Clements. Variability in software product lines. Techni-
cal Report CMU/SEI-2005-TR-012, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA, 2005.

4. Don Batory. Feature models, grammars, and propositional formulas. In Interna-
tional Conference on Software Product Lines, pages 7-20. Springer, 2005.

5. David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Information Systems, 35(6):615—
636, 2010.

6. Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wasowski. A survey of variability modeling in
industrial practice. In Proceedings of the Seventh International Workshop on Vari-
ability Modelling of Software-intensive Systems, VaMoS 13, pages 7:1-7:8, New
York, NY, USA, 2013. ACM.

7. Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and adequacy in
software product line testing. In Proceedings of the ISSTA 2006 Workshop on Role
of Software Architecture for Testing and Analysis, ROSATEA 06, pages 53—63,
New York, NY, USA, 2006. ACM.

12


https://github.com/jonayerdi/OnlineShops
https://github.com/jonayerdi/OnlineShops

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado, John D. McGre-
gor, Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. A system-
atic mapping study of software product lines testing. Information and Software
Technology, 53(5):407 — 423, 2011. Special Section on Best Papers from XP2010.
S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and
B. M. Horowitz. Model-based testing in practice. In PROC. INTL. CONF. ON
SOFTWARE ENGINEERING (ICSE ’99), pages 285-294, 1999.

Ivan do Carmo Machado, John D. McGregor, and Eduardo Santana de Almeida.
Strategies for testing products in software product lines. ACM SIGSOFT Software
Engineering Notes, 37(6):1, November 2012.

José A. Galindo, David Benavides, and Sergio Segura. Debian packages repositories
as software product line models. towards automated analysis. In ACoTA, pages
29-34, 2010.

José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-
Fernandez, and Antonio Ruiz-Cortés. Automated analysis of feature models: Quo
vadis? Computing, Aug 2018.

Jianmei Guo, Yinglin Wang, Pablo Trinidad, and David Benavides. Consistency
maintenance for evolving feature models. Fxpert Syst. Appl., 39:4987-4998, 04
2012.

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. Multi-objective test generation for software product lines. In Proceedings of
the 17th International Software Product Line Conference, SPLC ’13, pages 62-71,
New York, NY, USA, 2013. ACM.

L. Jin-hua, L. Qiong, and L. Jing. The w-model for testing software product
lines. In 2008 International Symposium on Computer Science and Computational
Technology, volume 1, pages 690-693, Dec 2008.

Martin Fagereng Johansen, @Dystein Haugen, and Franck Fleurey. An algorithm
for generating t-wise covering arrays from large feature models. In Proceedings of
the 16th International Software Product Line Conference-Volume 1, pages 46-55.
ACM, 2012.

Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Technical
report, DTIC Document, 1990.

D.R. Kuhn, D.R. Wallace, and Jr. Gallo, A.M. Software fault interactions and
implications for software testing. Software Engineering, IEEE Transactions on,
30(6):418-421, 2004.

Hartmut Lackner, Martin Thomas, Florian Wartenberg, and Stephan Weiflleder.
Model-based test design of product lines: Raising test design to the product line
level. In 2014 IEEE Seventh International Conference on Software Testing, Veri-
fication and Validation, pages 51-60. IEEE, 2014.

Miguel A. Laguna and Yania Crespo. A systematic mapping study on software
product line evolution: From legacy system reengineering to product line refactor-
ing. Science of Computer Programming, 78(8):1010 — 1034, 2013. Special section
on software evolution, adaptability, and maintenance & Special section on the
Brazilian Symposium on Programming Languages.

Beatriz Pérez Lamancha, Macario Polo Usaola, and Mario Piattini Velthius. Soft-
ware product line testing. A Systematic Review. ICSOFT (1), pages 23-30, 2009.
Klaus Pohl, Giinter Bockle, and Frank J van Der Linden. Software product line
engineering: foundations, principles and techniques. Springer Science & Business
Media, 2005.

13



23.

24.

25.

26.

27.

28.

29.

Klaus Pohl and Andreas Metzger. Software product line testing. Commun. ACM,
49(12):78-81, December 2006.

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. The variability model of the linux kernel. In VaMoS, pages 45-51,
2010.

Ben Smith and Martin S. Feather. Challenges and methods in testing the remote
agent planner. In In Proc. 5th Int.nl Conf. on Artificial Intelligence Planning and
Scheduling (AIPS, pages 254-263, 2000.

Thomas Thum, Don Batory, and Christian Kastner. Reasoning about edits to fea-
ture models. In Software Engineering, 2009. ICSE 2009. IEEE 31st International
Conference on, pages 254-264. IEEE, 2009.

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. Featureide: An extensible framework for feature-oriented soft-
ware development. Science of Computer Programming, 79:70-85, 2014.

Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thiim, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. A classification of product sampling for
software product lines. In Proceeedings of the 22nd International Conference on
Systems and Software Product Line-Volume 1, pages 1-13. ACM, 2018.

Stephan Weifkleder and Hartmut Lackner. Top-down and bottom-up approach
for model-based testing of product lines. FElectronic Proceedings in Theoretical
Computer Science, 111, 03 2013.

14



	A general approach to Software Product Line testing

