
Vol.:(0123456789)

Software Quality Journal
https://doi.org/10.1007/s11219-023-09639-z

1 3

RESEARCH

A microservice‑based framework for multi‑level testing
of cyber‑physical systems

Iñigo Aldalur1 · Aitor Arrieta1 · Aitor Agirre2 · Goiuria Sagardui1 · Maite Arratibel3

Accepted: 25 April 2023
© The Author(s) 2023

Abstract
In the last years, the use of microservice architectures is spreading in Cyber-Physical
Systems (CPSs) and Internet of Things (IoT) domains. CPSs are systems that integrate
digital cyber computations with physical processes. The development of software for
CPSs demands a constant maintenance to support new requirements, bug fixes, and deal
with hardware obsolescence. The key in this process is code testing and more if the code
is fragmented during the development of CPSs. It is important to remark that this pro-
cess is challenging and time-consuming. In this paper, we report on the experience of
instantiating of the microservice-based architecture for DevOps of CPSs to test elevator
dispatching algorithms across different test levels (i.e., SiL, HiL and Operation). Such
an architecture allows for a continuous deployment, monitoring and validation of CPSs.
By integrating the approach with a real industrial case study, we demonstrate that our
approach reduces significantly the time needed in the testing process and consequently,
reduces the economic cost of the entire process.

Keywords Cyber-Physical Systems · Elevators · Testing

 * Iñigo Aldalur
 ialdalur@mondragon.edu

 Aitor Arrieta
 aarrieta@mondragon.edu

 Aitor Agirre
 aagirre@ikerlan.es

 Goiuria Sagardui
 gsagardui@mondragon.edu

 Maite Arratibel
 marratibel@orona-group.com

1 Mondragon Unibertsitatea, Mondragón, Spain
2 Ikerlan, Mondragón, Spain
3 Orona, Hernani, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-023-09639-z&domain=pdf

 Software Quality Journal

1 3

1 Introduction

Cyber-Physical Systems (CPS) are defined as an integration of digital cyber computations
with physical processes (Lee & Seshia, 2017). CPSs involve different aspects, such as dis-
tributed computing, communication, and automatic control, and they are applied in many
domains such as the automotive, railway, healthcare, entertainment, elevation and city
infrastructure (Stankovic, 2016). The software maintenance process of CPSs is constant,
and can last up to 30 years. Maintenance activities in such a context encompass, but are
not limited to correction of bugs, inclusion of new functionalities, dealing with hardware
obsolescence and new legislative changes (Ayerdi et al., 2020b). This is the example of our
industrial case study, i.e., the elevator dispatching algorithm. In such a context, releasing a
new software version takes between 6 and 12 months time. As compared to other type of
software systems (e.g., web applications, mobile apps), this time is long.

To a large extent, this period is long due to the high effort required by software engi-
neers when testing the software. When testing CPSs, several test levels exist (Ayerdi et al.,
2020b), namely, the Model-in-the-Loop (MiL), Software-in-the-Loop (SiL), Hardware-in-
the-Loop (HiL) and physical testing. Usually, there are interoperability issues when trying
to execute test cases at MiL and SiL at higher test levels (e.g., HiL). For instance, the tools
at MiL, SiL and HiL may vary, and therefore, significant manual effort is spent to adapt
test cases from a test level to another. Something similar happens with test oracles, which
require manual effort to be adapted from a test level to another. Despite several interoper-
ability standards having emerged (e.g., ASAM-XiL), these are only valid for some types of
CPS simulators.

To solve this issue, in this paper, we propose a multi-level testing approach for CPSs.
Multi-level testing is the use of different test cases that can be reused across test levels and
test platforms (Perez & Kaiser, 2009). When designing multi-level testing, the aim will be
to obtain the uppermost possible level of independence from the platform within the test
cases. To this end, we propose a solution that is based on microservices, which allows for
reusing test cases and test oracles across different test levels, i.e., SiL, HiL and Operation.
We develop a prototype of our approach and apply it in an industrial case study from the
elevation domain, which is provided by Orona, one of the largest elevator companies in
Europe. In the paper, we report on the experiences of applying this approach in the indus-
trial case study. Specifically, we make the following contributions:

• We propose a microservice-based framework that allows for executing test cases at
different test levels (SiL, HiL and Operation), and which is integrated with a DevOps
ecosystem for CPSs.

• We instantiate the approach in a real industrial case study encompassing the dispatching
algorithm of elevators, provided by Orona, one of the largest elevator companies in Europe.

• We carry out an evaluation (both qualitative and quantitative) of the adoption of the
approach by our industrial partner.

The rest of the paper is structured as follows. Section 2 analyses the problem we want to
solve, its causes and its consequences. Section 3 discusses the related work in order to give
the reader an idea of what has been done in this area. Section 4 presents the case study
of this contribution. Section 5 describes the defined concepts that verify and validate the
multi-level testing plan for CPSs. Sections 6, 7 and 8 describe the developed process for
testing our case study based on microservices. Section 9 evaluates our approach, by means

Software Quality Journal

1 3

of an industrial case study, demonstrating that our process saves considerably the time
needed in the multi-level testing process, and consequently it saves money for the company
that has implemented the process. Lastly, Section 10 concludes the paper and describes the
next steps for the future.

2 Problem analysis

2.1 Problem

There has been a rapid development of CPSs. Such systems operate in uncertain environ-
ments, and high Quality of Service (QoS) has become a mandatory prerequisite in industry.
The design of CPSs is inherently challenging and time-consuming due to their competing
requirements regarding affordability, performance, safety, security, sustainability, etc. (Masin
et al., 2017). Moreover, not only makes the lack of test automation in CPS engineering testing
activities time-consuming, but also they are time-consuming (Hu et al., 2020). Carrying out
appropriate mechanisms that handle faults in run-time demands a plenty of know-how, and it
is frequently error-prone (Hu et al., 2020).

2.2 Causes

The first cause is the lack of reusability and interoperability between test artifacts among
the different test levels. For example, one of robotics software main obstacles in industry
and academia is the lack of interoperability and reuse of software libraries (Bruyninckx,
2008). Being one of the main drawbacks in the robotics community, it is common to see
works that avoid the lack of code reuse and develop methods that facilitate the integration
of different components and interoperability (González-Nalda et al., 2017). Furthermore,
taking into account that CPS experiments are very time-consuming and economically
expensive, some works have developed methods that reuse components for experiments.
These components must be interoperable with each other (Neema et al., 2019). The second
cause is the strong focus and dependability on certain domain, for example, automotive
domain. The weakness in this domain is the dependability with the variety of complex and
heterogeneous architectures because they are exposed to several vulnerabilities (Veledar
et al., 2019). “Dependability represents the ability to deliver service that can justifiably be
trusted” (Avizienis et al., 2004). CPS’s goal is assuring dependability (Armengaud et al.,
2018). However, dependability is not innate in CPSs. At the beginning of the design pro-
cess, it is mandatory to provide feedback to the system to reduce the risk of late discovery
of dependability (Miele, 2014). System processes must be conducted adequately with no
interruptions, which makes assuring CPSs’ dependability a challenging activity to com-
plete satisfactorily (Sanislav et al., 2016).

The third cause is that in CPS, design-time methods are different from operation-time
methods. Different designers usually develop these methods. When designers are expert in
a field, and they focus on the main aspects of their expertise, they neglect or avoid consid-
ering other important aspects. This might cause that some requirements are not completely
fulfilled. Moreover, it is common a lack of communication between different designers
(Sundharam et al., 2018). Design-time methods are implemented the more efficient and
stable as possible. Operation-time methods, however, are concerned with integrating many

 Software Quality Journal

1 3

different applications onto the same target platform (Lampke et al., 2015). The last cause is
the lack of automatic oracles, PS domain test oracles are likely to be manual in operation-
time which is the main cost in testing (Matinnejad et al., 2019). Unfortunately, the decision
of whether a test case has succeeded or not is manual (Gartziandia et al., 2021). It is com-
mon in CPS the manual judge of the results whose success depends on the expertise and
availability of the expert, which is not practical (He et al., 2019). The main drawback is
that most testers are experts in one domain (automotive or space engineering), but they are
not necessarily experts in software engineering (Shin et al., 2021).

2.3 Consequences

The main consequence of the lack of test automation in CPS engineering multi-level test-
ing activities is that they are accomplished manually. Hardware-in-the-loop (HiL) testing
manipulates hardware, and they need a huge quantity of time to be developed and also
to be executed. It is extremely important that these test cases are correctly performed not
to damage the hardware and to be executed in a period of time (Shin et al., 2021). The
creation of these test cases for the experiments is time-consuming and error-prone, need-
ing a significant manual exertion before they can be utilized as HiL experiments (Wang
et al., 2015). Another consequence of the manual creation of test cases is the elevated eco-
nomic cost for companies. The more time a tester needs to develop test cases, the higher
the economic cost for the company. Additionally, solving testing errors prolongs the time
needed to create correct test cases. Even if it is complicated evaluating accurately the cost
of implementing and operating CPSs, models have been proposed to calculate this cost
(Bataev & Aleksandrova, 2020).

3 Related work

In the last few years, verification of CPSs has centered a large attention from the software
engineering research community (Sadri-Moshkenani et al., 2022). Different perspectives
have been tackled. One of the most studied perspectives is test generation. Since apply-
ing model-based testing in such systems is difficult due to the challenges of capturing the
physical behavior (Briand et al., 2016), many approaches advocated for search-based test
generation techniques for cost-effectively generating test cases (Matinnejad et al., 2019;
Menghi et al., 2020; Arrieta et al., 2017b, c; Khatiri et al., 2023; Humeniuk et al., 2022), as
it has been found to scale better for complex CPSs (Nejati et al., 2019). Other approaches
tackle the test oracle problem in the context of CPSs (Menghi et al., 2019; Ayerdi et al.,
2020a, 2021, 2022). There is another large group of studies that target regression testing
of CPSs with the goal of cost-effectively testing such systems by selecting appropriate test
cases and prioritizing them (Birchler et al., 2022; Shin et al., 2018; Arrieta et al., 2019a, b,
2023). Our approach is complementary to all of these, i.e., any of these approaches can be
combined with our framework. The core difference is that this paper, instead of focusing
on the generation of test artifacts (e.g., test cases, test oracles) and on their selection and/or
prioritization, focuses on their execution by leveraging a microservice-based architecture
that allows for (1) executing test cases and test oracles across all test levels and (2) integrat-
ing the approach within a DevOps ecosystem for CPSs (Gartziandia, 2021).

For the case of CPSs, different approaches propose test architectures for CPSs modeled
in MATLAB/Simulink (Arrieta et al., 2017a; Zander-Nowicka et al., 2006). However, in

Software Quality Journal

1 3

the field of CPSs, microservices for testing are still in their infancy. Gartziandia (2021)
proposes a microservice method based on Machine Learning algorithms to discover exe-
cution issues in CPSs in run-time when new software versions are deployed. We have
not used this kind of algorithm. They demonstrate that their approach reduces time and
effort of deployment by automating the process, and reduces maintenance costs like in our
approach. Moreover, they affirm that an architecture based on microservices offers the
flexibility to adapt to different test levels and installations, and permits scaling the system.
Our approach differs from Gartziandia (2021) in different perspectives. On the one hand,
our microservice-based framework is focused on design-time testing instead of run-time
testing. On the other hand, our microservice-based framework is focused on functional
properties of the system, whereas Gartziandia (2021) focuses on performance faults.

The problem of test reusability across different test levels (e.g., MiL, SiL and HiL)
is not new. This is well-acknowledged by industry, for which different interoperability
standards have appeared. For instance, in the context of CPSs, the ASAM-XiL (ASAM-
Ref, ASAMRef) standard is a well-known standard, which has been acquired by key CPS
simulation vendors (including, but not limited to Mathworks, National Instruments and
dSPACE). This permits reusing test cases at different test levels at design-time. However,
it does not permit the reusability of test cases and test oracles at operation, something that
our approach permits.

4 Case study

4.1 The system

Orona is a company dedicated to the elevator industry. Orona designs, manufactures,
installs, and maintains elevators, escalators and moving ramps. A system of elevators aim
at transporting passengers from a floor to another safely while trying to guarantee the max-
imum comfort as possible. A passenger arrives at a floor and calls for an elevator through a
push button. This button can be either conventional (i.e., provides an up or down direction)
or with destination control (i.e., provides the specific floor at which the passenger aims to
travel). This information is sent to the traffic master, which is the case study of this paper.
The traffic master receives this floor call, and, by considering different information (e.g.,
where each elevator is, which is the weight of each elevator), it provides an assignation
to the call. In advanced buildings, this traffic master also encompasses information about
access control, i.e., where each passenger can travel to. Figure 1 presents an overview of
the elements of this CPS.

4.2 Development and operation methodology

When the simulation of the traffic study is accomplished, the selection and configuration of
the different scenarios is complex and time extensive. In addition, there is not any automatic
feedback mechanisms to detect problems. As a consequence, when problems arise, the time
and effort are significant. Validation and deployment of the system are also semi-manual. As
for validation, information from the operation is not accessible, so it is not possible to repro-
duce real situations in the laboratory, and the decision of whether a test case has succeeded or
not is manual. With regard to the deployment, the maintainer is responsible for configuring
and updating new versions in the installation, which is also a manual process. In this paper, we

 Software Quality Journal

1 3

present the mechanism to reduce the time needed and consequently, the effort of the simula-
tion process. Furthermore, we will analyze the economic savings with the implementation of
the new process (consequences of the problem analysis in Section 2).

The traffic master is constantly evolving for different reasons (e.g., add new functionalities,
deal with hardware obsolescence, bug corrections). As a result, Orona, through the Adeptness
(H2020) project, is aiming to establish a DevOps pipeline that aims to automate the continu-
ous delivery of new software versions (i.e., when a change in the code is completed and com-
mitted, the automated test at different levels, automated deployment, run-time monitoring and
recovery in case the new version fails in operation). Because of this, our multi-level testing
framework had to be integrated with their DevOps methodology, which is based on micros-
ervices. Figure 2 presents an overview of the proposed architecture. The architecture includes
microservices at two computational levels: (1) the cloud and (2) the fog, i.e., a local network
close to the lift. The architecture can be divided into four main subsystems: (1) the automation
server, (2) the deployment subsystem, (3) the monitoring subsystem and (4) the validation
subsystem (Arrieta et al., 2022). This paper targets the validation subsystem of the DevOps
ecosystem. Sections 6, 7 and 8 describe the validation orchestrator, validation agent and the
external tool of the architecture.

5 Verification and validation test benches for CPS

OMG’s (Object Management Group, Inc.) working group developed in 2001 a UML
(Unified Modeling Language) configuration file designed for model-based testing,
called UML Test Configuration File 2 (UTP2). UTP2 is utilized to design, visualize,
specify, analyze, construct and record common and required artifacts in various test

Fig. 1 Overview of the architecture of the Elevators installation

Software Quality Journal

1 3

methods (especially model-based testing) (UMLTestingProfile, 2018). As UTP2 is part
of UML, UTP2 files can be used to communicate artifacts from different ecosystems,
facilitating the labor of different classes of engineers.

UTP2 has been designed for users with model-based testing knowledge. These
experts can be system/software engineers, stakeholder, certification authorities test
engineers, requirements engineers and domain experts. They will be in charge of
designing test models of different test levels, multi-level testing to address non-
functional requirements, integrate with SysML to achieve requirement traceability and test
generation, comply with relevant industry standards and the ability to reuse test logs for
further test evaluation (UMLTestingProfile, 2018).

UTP2 plans control the existing components and requirements, which can be used
to record, evaluate test ranges and calculate progress reports. At the end, UTP2 tries to
extract as much information as possible from test plans. Test cases are used to evaluate
the test quality of the project and verify whether the test project meets its specifications.

In this project, UTP2 standard has been used to define the concepts to define the
multi-level testing plan for CPSs. The elements needed in our validation plan are the
following:

• ValidationPlan: The validation is usually the document that contains the planning for the
validation system. The main element is ValidationPlan for this reason.

Fig. 2 Overview of the architecture for DevOps of the Traffic Master (Arrieta et al., 2022)

 Software Quality Journal

1 3

• ValidationPlan_Id: each ValidationPlan contains a unique identifier.
• TestCases: The UTP2 document defines a Test Case as a procedure that includes a set of

preconditions, inputs and expected results, developed to drive the examination of a test
item with respect to some test objectives. In the JSON, each test case contains this infor-
mation. The validation might contain more than one Test Case.

• TestCase_Id: a unique identifier identifies every single test case.
• TestCase_Priority: each test case has a different priority, and this must be included in the

JSON.
• TestCase_TestLevel: there are different levels in each test case (HiL, SiL in our case)
• SUT: It provides information about the version of the system that is being tested.
• Version_Id: a unique identifier identifies every single SUT.
• Configuration_Id: every single SUT contains a document that provides information about

the initial configuration.
• TestArtifacts: is defined as an object produced or modified during the execution of a pro-

cess. It is composed of different test inputs.
• TestDesingInput_Id: each Test Input contains a unique identifier that provides information

about the name of the document that will be used with the input values.
• TestDesingInput_Type: each test input file could be in a file with different formats. This

value provides information about the format of the document.
• Oracles: is a mechanism, different from the program itself, that can be used to verify the

correct functionality of a system. We may have more than one oracle.
• Oracle_Id: a unique identifier identifies every single oracle.
• Oracle_Type: the multi-level testing framework allows for three types of oracles: Asser-

tion, Metamorphic and Machine Learning-based test oracles. However, only Assertion and
Machine Learning-based oracles are applicable to run-time.

• Oracle_Criticity: the aim of this field is to inform the importance of the test failure. If the
test is important, the criticity will be high. As a consequence, if one test fails, we will con-
sider that the test has not passed.

• Oracle_Inputs: it contains the information about the input values needed to execute the
oracle.

• Oracle_Verdict: it informs about the final decision about the test, if it fails or passes.

The validation orchestrator microservice is in charge of managing the whole lifecycle of a
validation plan in the context of the DevOps ecosystem. Developed in Python, the valida-
tion orchestrator is capable of running in the major platforms where the Python interpreter or
Docker is supported. All the communications are made exclusively through APIs. The valida-
tion agent microservice is responsible for coordinating the execution of a validation plan and
components in an evaluation platform (HiL, SiL, an installation in operation, etc.). As it hap-
pens with the validation orchestrator, the validation agent is also developed in Python, sharing
the ability to be run on the majority of platforms.

6 Validation orchestrator

In this section, we explain a generic Agile Testing Framework. The framework imple-
ments microservices of one specific template that allows for integrating our framework
with other microservices that together tackle DevOps for CPSs (Gartziandia, 2021).
Figure 3 shows the general DevOps architecture for CPS, and it focuses on (1) the

Software Quality Journal

1 3

validation orchestrator; (2) validation agent and (3) external tool microservice (a con-
venience microservice developed with the integration of legacy, unsupported or out of
scope tools into the project ecosystem).

6.1 Architecture

The validation orchestrator microservice is in charge of managing the whole lifecycle of
a validation plan in the context of our ecosystem. The validation orchestrator is capable
of running in the major platforms where the Python interpreter or Docker is supported.
On request by the automation server, the validation orchestrator receives a validation plan
containing all the required information for performing a validation procedure via a REST
API call. The validation orchestrator interprets the validation plan, requesting additional
information of the components involved in the validation if necessary, and generates sub-
plans that contain the validation procedures to be delegated to each of the validation agents
(see Fig. 4).

The validation orchestrator is divided into four main blocks: The microservice core, the
parser, the agent manager, and the aggregation rules package.

The microservice core, developed on top of a microservice template (Gartziandia,
2021), is responsible for managing the interaction of the orchestrator with the other com-
ponents in the DevOps ecosystem. The microservice core implements the REST API end-
points exposed by the orchestrator, and serves as the entry point for accessing the function-
ality provided by the orchestrator. A microservice template in our context encompasses a
set of basic asynchronous and synchronous communication endpoints. These are provided

Fig. 3 All the elements of the architecture

 Software Quality Journal

1 3

regardless of the role of the microservice. These endpoints offer basic information about
the execution status, performance and health. On the one hand, the synchronous interfaces
allow other services to request microservices’ health status. On the other hand, asynchro-
nous interfaces allow microservices to publish relevant data without knowing the receiver
of the messages.

When a call is received on the validation plan setting endpoint, the microservice core
passes it to the parser component of the microservice. The parser component is responsible
for creating an internal representation of the elements represented in the validation plan.
As the structure and elements of the validation plan are shared among the validation agent
and orchestrator, the parser and the Python class hierarchy have been extracted to an exter-
nal library, that is shared and used between the validation agent, orchestrator, or any other
component that needs to make use of components represented in the validation plan. After
parsing the plan, the parser lends the parsed plan to the validation agent manager. The vali-
dation agent manager is responsible for managing the validation agents that are required for
the execution of the validation plan. Each of the validation agents is responsible for manag-
ing a test level on the edge.

From the main validation plan, the validation agent manager will extract the subset of
elements that need to be managed by each of the validation agents, and create sub-plans to
be sent to each of the validation agents. The validation agent manager will then perform the
required REST API calls to configure and start the validation on the validation agents, and
subscribe to the topics where the verdicts generated by each of the validation agents will be
published.

When receiving a verdict, the validation orchestrator determines the source agent for the
verdict, stores the received verdict and performs an aggregation procedure for the verdicts.
The aggregation procedures allow grouping verdicts raised by lower level components, and
generate verdicts for higher level validation elements. In the DevOps ecosystem, the evalu-
ation starts from oracles, which generate verdicts on their own, and then are aggregated
to generate a verdict common to the test case, continuing with the validation level, and
finally a global verdict for the validation plan. Several strategies have been developed for
aggregation:

Fig. 4 Validation orchestrator schema

Software Quality Journal

1 3

• Default Aggregation: The default aggregation strategy consists in marking the global
verdict as passed when all the aggregated verdicts have passed. Any failed verdict
would make the aggregated verdict to fail.

• Percentage Aggregation: Marks the aggregated verdict as passed if a certain percentage
of the aggregated verdicts have passed.

• Criticity Aggregation: Marks the aggregated verdict as passed if all the critical oracles
have passed.

6.2 Deployment

The validation orchestrator is shipped as a Docker container that is deployed on the cloud.
A new Docker image is automatically generated each time a new commit is uploaded to the
code repository via Gitlab CI/CD pipelines. As part of this process, the validation orches-
trator passes several QA procedures, by performing unit tests and automatically generating
the documentation for the project with the Sphinx documentation generation tool.

A single instance of the validation orchestrator manages all the validation agents that
are running on the edge. The validation orchestrator shares the same requirements as any
base microservice from our related DevOps ecosystem, being able to be executed on any
platform supporting Docker.

6.3 Test execution workflow

For the execution of all validation plans, the validation orchestrator follows a well-defined
execution workflow that includes the interpretation of the validation plan, the configuration
of child components and recollection of verdicts raised by the validation agents. Figure 5
shows a quick insight on this execution process.

6.3.1 Parsing of the input validation plan

The validation orchestrator exposes a REST endpoint for receiving validation plans. This
endpoint receives a JSON formatted validation plan, and performs a parsing procedure for
interpreting the contained validation elements.

The parser performs an initial interpretation of the validation plan and its contents. In
the case of the validation orchestrator, this parsing involves determining which are the vali-
dation agents to be configured, and which is the aggregation procedure to be followed for
combining the received verdicts and raising a global verdict for the validation plan. Given
that the validation procedure is delegated to the validation agents, the validation orches-
trator does not interpret the lower level validation elements, leaving that interpretation to
the parser on the validation agent. Thanks to this abstraction, the validation orchestrator is
agnostic to changes or additions in the lower layers of the validation plan.

6.3.2 Obtaining additional configuration from external data sources

In some cases, it is possible that during the interpretation of the validation plan, addi-
tional information about the validation agents could be required. This information could
include dynamically configured endpoints required to configure or communicate with

 Software Quality Journal

1 3

the validation agents. The validation orchestrator has been developed with such cases in
mind, and provides extendable abstract implementations in the validation plan parser for
communication with additional data sources.

6.3.3 Agent configuration and plan execution

When all the information from the validation plan has been parsed and understood, the
validation orchestrator determines the validation agents that will be used to run the vali-
dation, and starts the process of configuring the agents for the validation procedure to
be managed by each of them.

First, the subset of the validation plan corresponding to the agent is rendered as a
JSON. Once the validation plan to be sent to the validation agent has been generated,
the validation plan is sent to the agent. This process is repeated for each of the valida-
tion agents, sending the corresponding validation plan subset for each of the agents.

6.3.4 Verdict arrival, aggregation and publication

The validation orchestrator awaits verdicts published by validation agents through
MQTT. Upon reception of a verdict, the validation orchestrator checks the aggregation
rules defined on the validation plan, and computes a global verdict according to the
aggregation rules. If a global verdict is obtained from the aggregation, the global verdict
is published.

Fig. 5 Validation orchestrator validation plan execution workflow

Software Quality Journal

1 3

We selected MQTT because it fitted our needs (e.g., soft-real-time communication with
monitoring variables). With MQTT, it is possible to asynchronously provide data to other
related microservices via a publish and subscribe method. For instance, the verdicts of the
test oracle are consumed by other tools in order to be monitored.

7 Validation agent

In this section, we continue with the explanation about the generic Agile Testing Frame-
work developed for the DevOps ecosystem (Gartziandia, 2021). The framework imple-
ments microservices of such an ecosystem for the validation agent. The validation agent
will coordinate the Oracles, and external tools required to perform an evaluation, configur-
ing them, managing the execution and collecting the generated test results. The generated
results will then be aggregated and published, so that the validation orchestrator is able to
collect the results (see Fig. 6).

7.1 Architecture

The validation agent is divided into five main blocks: (1) the microservice core, (2) the parser,
(3) the oracle manager, (4) the external tool manager and (5) the aggregation rules package.

The microservice core is developed by making use of the APIs exposed by the micros-
ervice template, building the REST API endpoints. Calls for managing the execution of the
validation plan and the validation agent and retrieval of plan verdicts have been developed.
The callbacks for each of the REST API endpoints interact with the parser and managers to
implement the evaluation and execution logic.

The parser is responsible for interpreting the validation plans received from the REST
API endpoint. The parser is in charge of transforming the input payload to classes that
maintain all the attributes specified in the validation plan. It is important to mention that

Fig. 6 Validation agent microservice interaction overview

 Software Quality Journal

1 3

it contains the logic to transform the structures to be transferred to the child components.
In the validation orchestrator and the validation agent, all the structures are defined in an
external library shared between the validation orchestrator and validation agent in order to
maintain consistency between the structures. The validation orchestrator and agent are less
prone to integration issues thanks to the definition of a shared library.

The parser expects a JSON structure containing the URN (an identifier that will
uniquely identify the validation plan) for the parent validation plan, aggregation section
and a tests section containing each of the test cases to be run. For each of the test cases, a
SUT section, an oracles section, external tools section, and aggregation sections will exist.

The oracle manager is responsible for managing the child oracles, their execution and
the recollection of verdicts raised during the evaluation. Upon plan reception, the oracle
manager extracts the oracle structures from the validation plan. Each of the oracle struc-
tures contains a section defining the MQTT and REST API endpoints of the oracle. Addi-
tionally, it has an input structure that contains the binding of each of the supported inputs
on the oracle to monitors and sensors and an additional oracle settings structure containing
additional settings for the oracle. For each of the supported inputs, the oracle structure con-
tains the monitor and sensor where the data will be published.

The oracle manager subscribes to the verdict topic of each of the oracles and awaits ver-
dicts raised by the oracles. When a verdict is received, the verdict is stored on the internal
structure for each of the oracles and the aggregator is notified for performing the recalcula-
tion of the global verdict for the agent.

The external tool manager is responsible for managing the external tools defined on
the validation plan. For each of the external tools, calls to set up the tool and manage
its execution are issued. The internal structure of each external tool contains an end-
points section that contains endpoints for the external tool to be configured, the tool
type, and an additional tool settings section containing specific configuration for each
of the external tools.

Finally, the aggregation rules module is responsible for aggregating the received oracle
verdicts and generating a global verdict for the validation plan being run in the validation
agent. The aggregation is made according to the rules defined in the validation plan, with
the same aggregation strategies as in the validation orchestrator available.

7.2 Deployment

The validation agent is also shipped as a Docker container. A new Docker image is auto-
matically generated each time a new commit is uploaded to the code repository via Gitlab
CI/CD pipelines. As part of this process, as it happens with the validation orchestrator, the
validation agent also passes several QA procedures, by performing unit tests and automati-
cally generating the documentation for the project with Sphinx.

The validation agent is deployed on the edge, having one validation agent per test level
(HiL and SiL). The validation agent manages all the validation components of that test
level, with the ability to manage components that are deployed in the same node or in other
nodes that also conform to the same test level, as long as the agent is able to reach the end-
points of the managed components.

The reason for separating the validation process between agent and orchestrator is
twofold. First, thanks to this responsibility separation, the validation orchestrator is
agnostic to the validation components being run in the agent, simplifying the orchestra-
tor overall, and focusing the orchestrator in the coordination of high-level components.

Software Quality Journal

1 3

Secondly, having the agent on the edge allows for improved communication latencies
between the managed components and the agent, reducing the issues that could arise
from incorrect timing in validation components, reduce traffic to the cloud, having the
need to only forward global verdicts to the orchestrator. Finally, reducing the need for
the exposure of REST endpoints to components outside the edge, improving the security
posture of the test level.

7.3 Execution flow

In the following section, the execution flow followed by the validation agent for carrying
out a validation plan and coordinating child oracles and external tools will be described.
This execution starts with the reception of a validation plan from the orchestrator, con-
tinues with the configuration of child validation components and finishes with the recol-
lection of verdicts, aggregation and forwarding to the validation orchestrator. In Fig. 7, an
overview of the mentioned execution flow is shown.

7.3.1 Reception of validation plan

Initially, the validation agent is in idle state, waiting for reception of a validation plan from
the orchestrator to be executed. When the orchestrator sends a validation plan to the vali-
dation agent endpoint, the validation agent starts the interpretation and execution of the
received plan.

Initially, the validation agent will forward the validation agent to the parser component,
and the parser will interpret the plan and store it as an internal representation. This repre-
sentation will include the test to be run, with the structures for each of the child oracles and
external tools, their configuration, and verdict aggregation strategies.

If the parsing process is successful, the validation agent will send a positive response to
the orchestrator and continue with the next phases in the execution of the validation plan.

Fig. 7 Complete execution flow for validation agent

 Software Quality Journal

1 3

7.3.2 Child component configuration

After the interpretation of the validation plan, the agent and oracle managers will be notified,
and the configuration of each of the child components will start.

The oracle manager will extract the oracle structures from the tests in the parsed validation
plan, and for each of them, the oracle manager will send calls to set up the oracle.

The external tool manager follows a similar approach as the oracle manager does for
configuring oracles. When a new validation plan is received, the external tool manager will
be notified, and the configuration process for the required external tools will begin. The
external tool manager will extract the required external tools from the validation plan, and
send configuration requests.

7.3.3 Validation plan execution

After all the child elements have been configured, the validation procedure will start. For
this, both the oracle manager and the external tool manager will request status changes for
oracles and external tools. Each of the components will answer with a positive response
if the status change has been successful. The oracles will be the first components to be
started, as the external tools might cause the publication of values to be evaluated. This is
the case with the Elevate external tool, as the executed simulations trigger monitors that
publish operational values to be evaluated by oracles.

After all the oracles have been started, the external tool manager will be requested to
send status change requests to the external tools.

7.3.4 Verdict arrivals and aggregation

As part of the configuration procedure, the oracle manager will subscribe to verdicts to be
raised by child oracles. When an oracle verdict is received, the origin of the verdict will
be determined, and stored in the respective oracle internal structure. After the verdict is
stored, the corresponding verdict aggregators will be called. First, the aggregator for each
of the test structures will be called with all the verdicts for the oracles in that test case. If a
verdict for the test case is obtained, the test case structure will be updated with the updated
verdict, and the aggregator for the validation plan being run in the agent will be called.

7.3.5 Submission of verdicts

If the top-level aggregator reaches a verdict for all the test cases, the global verdict will be stored
in the validation plan internal structure, and then forwarded to the validation orchestrator, which
will run the corresponding aggregation for the parent validation plan.

8 Instantiation of the agile test execution framework on the elevation
case study

With the goal of demonstrating the feasibility of the approach with our industrial use-cases,
this section explains the instantiation of the DevOps ecosystem within the SiL test level of
Orona’s use-case (i.e., the elevation use-case).

Software Quality Journal

1 3

8.1 Introduction

The external tool microservice is a convenient microservice developed with the integra-
tion of legacy, unsupported or out of scope tools into the DevOps ecosystem (Gartziandia,
2021). The external tool microservice exposes a basic API and means of managing the
execution of a sub-process or external application. This API can be extended to provide
additional functionality and means to manage the tool being commanded by the external
tool microservice. For each tool that wants to be integrated on the DevOps ecosystem, an
ad hoc implementation of the external tool microservice is performed, creating external
tool subtypes for each of the integrated tools.

In the context of CPSs, testing is usually carried out through simulation-based testing
(Arrieta et al., 2019a, b, 2023; Briand et al., 2016; Birchler et al., 2022; Menghi et al.,
2019, 2020). Therefore, the external tool microservice would provide communication with
one such simulator. In the context of our industrial case study, such a simulator has been
Elevate, a domain-specific tool for elevator dispatching algorithms. However, in other
CPSs, this could be adapted to support other simulators, e.g., for general purpose software
systems MATLAB/Simulink (Arrieta et al., 2019a, b, 2023; Menghi et al., 2019, 2020), for
autonomous driving systems BeamNG (Birchler et al., 2022).

8.2 Architecture

To instantiate the Agile Test Execution framework within one of the industrial case
study, we have developed two external tools to execute test cases at the SiL and HiL
test levels respectively. The base external tool microservice is built on top of a Python
microservice template (Gartziandia, 2021), and it exposes basic API endpoints for
managing the execution of a command launched by the Python sub-process library,
and receiving feedback about the execution status. Figure 8 shows a high-level over-
view of the external tool for the SiL test level, which is the one developed ad hoc for
our case study.

Figure 9 shows the sequence diagram of the process. The validation agent will configure
the external tool microservice, defining the process to be launched. It will then start the

Fig. 8 Interaction of the external tool microservice with other validation components

 Software Quality Journal

1 3

execution of the desired process and expose its interaction paths. The validation agent will
interact with the launched process through these paths, collecting data from the external
process or sending data for interaction.

8.2.1 REST and MQTT API endpoints

The external tool microservice provides a very basic API to manage the execution of the
tool being managed by the microservice. The management of the execution status is per-
formed determining the status, which can be “running” or “stopped”. The execution status
can be consulted following the same process. This would be the same for any kind of simu-
lator, regardless of the type of CPS being used. Therefore, this decision is not ad hoc for
our case study.

8.2.2 Internal architecture

The external tool is divided into the microservice core and a sub-process manager com-
ponent, that is in charge of managing the execution of the sub-process launched by the
external tool. When receiving a status change request, the request is forwarded to the
sub-process manager, which launches a predefined shell command in a separate thread,
and waits for completion of the execution. Depending on the tool to be implemented,
additional care has to be taken, as some legacy applications tend to run in background
and return the control to the parent process, causing the standard sub-process library to
mark the process as terminated. This was the case of our case study, and could also be
the case of other CPS simulators.

Fig. 9 Sequence diagram of the external tool execution

Software Quality Journal

1 3

8.3 Execution flow

The external tool execution flow starts with the reception of a status change request
from the validation agent, and continues with the execution of the contained tool and
the reporting of the status changes. The following diagram (Fig. 10) shows an insight of
this execution process, which would be applicable to any kind of CPS simulator.

The external tool microservice awaits for status change requests. When receiving a
status change, the external tool starts its execution flow.

When the status change request is received, the external tool microservice checks the
current status of the sub-process. If the sub-process is idle, the external tool will pro-
ceed and request the sub-process manager to change the tool status.

8.3.1 Subtool execution

Upon request, the sub-process manager will start a new thread to manage the sub-pro-
cess, and launch the predefined command. The execution of the called command is syn-
chronous, so the thread launching the command will wait until the termination of the
tool. In the cases that the launched command immediately returns control to the launch-
ing application and runs in the background, a different approach has to be followed.
In these cases, the sub-process manager provides the ability to launch the process and
monitor the process.

8.3.2 Status reporting

The thread launching the tool will be in charge of updating the tool execution status.
Upon launch, the thread launching the external command will update the internal struc-
ture storing the tool execution status, and perform a publication.

Fig. 10 Execution flow for the validation agent on the elevation case study

 Software Quality Journal

1 3

8.4 Application to the elevation use‑case

In the Elevation use-case, Orona makes use of a legacy tool named Elevate. Elevate is
an elevator installation simulator, used by Orona as a platform for validating developed
traffic algorithms at SiL level. Elevate receives a configuration file that defines the
installation characteristics (e.g., building level quantity, number of elevators, dynamic
information of the elevators (e.g., speed, acceleration, jerk)) and a passenger list file,
containing a list of “passengers”, represented as calls to the elevators at different build-
ing levels and times. The passenger list can be built based on traffic captured from a real
installation or based on simulated statistical models.

In our industrial case study, the SUT is the traffic algorithm being developed for
Orona’s elevators. This algorithm is tested at the SiL test level using Elevate, which
supports loading an external traffic algorithm. As Elevate is a key part of the validation
workflow at Orona, it was desired to be able to automate the execution of test cases with
Elevate on the DevOps ecosystem (Gartziandia et al., 2021), so an external tool wrapper
for the Elevate simulator has been developed.

In the case of HiL, Orona uses a proprietary software that communicates with the
HiL test bench. The external tool was also adapted to manage the execution at the HiL
test level. As this tool is proprietary, due to Intellectual Property issues, we avoid giving
further details in the paper.

8.4.1 Elevate external tool

The Elevate external tool is an ad hoc implementation of the external tool microservice,
adapted to the Elevate simulator application. Based on the reference implementation for
the external tool, it provides an improved wrapper over the Elevate simulator.

Elevate is a Windows GUI application running on 32 bits. On launch, the applica-
tion creates a background thread and returns control back to the terminal, meaning that
additional checks need to be made to check the execution status of the tool. Elevate is a
perfect candidate for being wrapped in a microservice layer that ideally will serve as a
Simulation-as-a-Service tool for Orona.

8.4.2 Execution of the tool in validation example

Figure 11 shows an example execution of the Elevate application within our integrated
environment. A physical Windows machine where Elevate is installed is used for
launching the external tool microservice, where it awaits connections. After the exter-
nal tool microservice has received a request from the validation agent, we can see how
the microservice answers the validation agent with a positive response, after which the
Elevate simulator is launched. In this case, the building configuration file and passenger
list file are already placed on the target launch directory, and the target traffic algorithm
SUT placed on the Elevate installation folder as a DLL file. While the application is
running, operational values will be posted and collected by the oracles, that will per-
form the evaluation and raise a verdict for the tested conditions.

Software Quality Journal

1 3

9 Evaluation

This section evaluates and compares the previous approach in which tests were generated,
executed and checked manually with the actual automatic approach. Our solution impacts on
the consequences (economic and time cost) of the problem analysis described in Section 2.
Wang et al. (2015) demonstrate due to different experiments that CPS are time-consuming,
needing a significant manual exertion before they can be utilized as HiL experiments. Thanks
to our contribution, we will demonstrate that we can reduce the time needed. Furthermore,
we will demonstrate the reduction of economic cost following the models proposed by Wang
et al. (2015) to calculate the cost of CPS. Research questions are:

• RQ1: Has the time needed to execute and evaluate the tests been reduced?
• RQ2: Has the economic cost needed to execute and evaluate the test been reduced?

In this section will be described all steps needed in both approaches (manual and auto-
matic). Table 1 shows the differences in each step between the previous manual approach
and the actual automatic approach.

9.1 Comparison with manual test system generation

The steps needed to generate the test system are similar in the manual and in the validation
workflow or automatic approach. Nonetheless, there are some differences between both
approaches, which have been briefly described in Table 1. This section will explain those
differences with more detail.

Fig. 11 Execution of the elevate simulator with the external tool

 Software Quality Journal

1 3

Ta
bl

e
1

 C
om

pa
ris

on
 o

f t
he

 a
ut

om
at

ic
 p

ro
ce

ss
 w

ith
 th

e
pr

ev
io

us
 m

an
ua

l m
ul

ti-
le

ve
l t

es
tin

g
pr

oc
es

s

St
ep

s
M

an
ua

l
Va

lid
at

io
n

w
or

kfl
ow

D
iff

er
en

ce

St
ep

 1
M

an
ua

l t
es

t c
on

fig
ur

at
io

n
an

d
m

an
ua

l
in

pu
t c

re
at

io
n

M
an

ua
l t

es
t c

on
fig

ur
at

io
n

an
d

m
an

ua
l

in
pu

t c
re

at
io

n
Th

er
e

ar
e

no
 d

iff
er

en
ce

s

St
ep

 2
M

an
ua

l t
es

t d
efi

ni
tio

n
A

ut
om

at
ic

 te
st

de
fin

iti
on

In
 th

is
 st

ep
, t

es
ts

 th
at

 w
ill

 b
e

ex
ec

ut
ed

 a
re

 c
re

at
ed

. I
n

bo
th

 c
as

es
, t

he

co
nfi

gu
ra

tio
n

of
 th

e
te

sts
 th

at
 w

ill
 b

e
ex

ec
ut

ed
 a

nd
 th

ei
r i

np
ut

 v
al

ue
s

ar
e

se
le

ct
ed

 b
es

id
es

, t
he

 a
lg

or
ith

m
 th

at
 w

ill
 e

xe
cu

te
 th

e
te

sts
. T

he

di
ffe

re
nc

e
is

 th
at

 p
re

vi
ou

sly
 th

is
 w

as
 e

xe
cu

te
d

m
an

ua
lly

 a
nd

 n
ow

au

to
m

at
ic

al
ly

. M
or

eo
ve

r,
th

e
au

to
m

at
ic

 te
st

de
fin

iti
on

 in
cl

ud
es

 th
e

or
ac

le
 c

on
fig

ur
at

io
n

an
d

th
e

va
lid

at
io

n
str

at
eg

y
St

ep
 3

M
an

ua
l E

le
va

te
 e

xe
cu

tio
n

A
ut

om
at

ic
 E

le
va

te
 e

xe
cu

tio
n

Th
e

au
to

m
at

ic
 m

od
e

ex
ec

ut
es

 E
le

va
te

 a
ut

om
at

ic
al

ly
 in

ste
ad

 o
f m

an
ua

lly
St

ep
 4

M
an

ua
l r

es
ul

t e
va

lu
at

io
n

A
ut

om
at

ic
 re

su
lt

ev
al

ua
tio

n
Pr

ev
io

us
ly

, a
ll

re
su

lts
 w

er
e

an
al

yz
ed

 o
ne

 b
y

on
e

by
 a

 p
er

so
n

co
m

pa
rin

g
th

e
ob

ta
in

ed
 re

su
lts

 w
ith

 th
e

ex
pe

ct
ed

 re
su

lts
 sa

ve
d

in
 a

 ta
bl

e.
 T

he

au
to

m
at

ic
 p

ro
ce

ss
 c

he
ck

s t
he

se
 re

su
lts

 a
ut

om
at

ic
al

ly
 th

an
ks

 to
 o

ra
cl

es

Software Quality Journal

1 3

9.1.1 Step 1: Test configuration and input creation

The first step corresponds to the creation of the test configuration and inputs. This step is
exactly the same in both approaches. This process is completely manual and time-consuming,
but necessary. The first action is the creation of a file containing all the possible tests that can
be accomplished, the configuration of the tests. This procedure is important due to the fact
that all possibilities might be included to be used in the execution step when they are neces-
sary. After the creation of the configuration test, a file including all possible input values is
created. This procedure is also important to check all possibilities, and it is also manually car-
ried out in both approaches.

9.1.2 Step 2: Test definition

The second step corresponds to the definition of the tests that will be executed. The manual
approach includes three actions. The first action is the definition and selection of the tests
that will be executed from the configuration file created in the step before. A test group is
selected from the group created in step 1. The selection process is based on a state-of-the-
art technique.

Afterward, the second action consists of the selection of the appropriate inputs for
those selected test from the configuration file from step 1. The suitability of the test
inputs is decided based on the test scenario and configuration to be tested (installation
and number of elevators) and on the traffic profile that better exposes the functionality
to be tested (Ayerdi et al., 2020b). The final and third action consists of the selection of
the algorithm that will be used in step 3. This algorithm is contained in a Windows DLL
library built with an SDK provided by Elevate, being the SUT to be tested. While the
selection of the test inputs is relatively trivial based on the selected test configuration,
the preparation of the test input can span over a complete day. Usually, the traffic profile
is collected from a real installation, by recording the hall and cabin calls and extrapolat-
ing the passengers count and direction based on other measures, such as from the lift
weight meter (Siikonen, 1993).

The validation workflow implements the same action differently, and it includes addi-
tional ones. In the automated validation workflow, the test definition and the appropriate
input selection continue to be performed manually. However, thanks to the standardized
manner of defining the test strategies as validation plans, the validators are able to reuse
the defined test strategies in different test scenarios or in different executions of the same
validation. Validators define the validation JSON manually or assisted by tools that allow
selecting the test inputs and oracles to be used from the available ones. Once the validation
plan is defined, this plan can be stored and retrieved for posterior uses.

9.1.3 Step 3: Elevate execution

On a manual workflow, the execution of Elevate is made manually as a normal Windows
GUI application. On the GUI, several steps for configuring the simulation have to be per-
formed. From different menus and dialogs, the algorithm to be tested, the configuration of
the simulated building, and the selection of the passenger profile to be used as test input
has to be made. After the configuration phase, this configuration can be saved in an .elvx
file that can be later opened to load the settings on Elevate. After the configuration phase,
the execution of the simulation is performed. This simulation can be executed in real-time,

 Software Quality Journal

1 3

or in accelerated time, where the execution step is limited by the performance of the com-
puter on rendering the simulation and GUI elements. Finally, the results are shown on the
GUI, leaving the user with the option of exporting these results into PDF or CSV files.
Additionally, if logs have been defined on the algorithm, a log file is also stored on the
execution path of Elevate, having to also manually collect and interpret this log file.

On an automated workflow, the execution of elevate is made automatically from a com-
mand line interface, thanks to a built-in option to run simulations on batch. While still
being experimental, this option instructs Elevate to scan the root path of the current hard
disk drive for already defined .elvx files. For each .elvx file, Elevate runs the GUI and
executes the simulation in accelerated speed, storing the results of the simulation and logs
on the root of the hard drive.

9.1.4 Step 4: Checking multi‑level testing results

In the last step, the test evaluation results are checked. In the manual mode, the results
obtained in the evaluation are checked with the results included in a document. This pro-
cedure is carried out by a person checking each result one by one. The validation work-
flow performs this procedure automatically, checking each result by an algorithm instead
of a person. This reduces the time needed to check the evaluation drastically. Manual
tasks include the comparison of QoS metrics with previous simulations, manually review-
ing each results file, or interpretation of logs to verify values of internal variables of the
algorithm, performing the interpretation and evaluation of these values manually, based
on previous knowledge on the algorithm and code. On the automated workflow, oracles
automatically perform the required evaluations and publish verdicts that are automatically
aggregated until a global verdict is achieved.

9.1.5 Overall test system generation time

Based on the above-mentioned steps, we separated the time required by each approach
in two algorithms; one for the manual approach and another for the automatic validation
workflow. The time required to manually execute all the process is described in Equation 1.
Equation 2 gives the time required to automatically generate the same approach. The fol-
lowing list of terms describe, each action, in both equations (m being the number of tests, n
the number of inputs and l the number of executed tests):

• T_MAN: the total time needed in the manual process.
• T_VF: the total time needed in the automatic process.
• T_MConf: the manual configuration of all the tests.
• T_MInp: the manual creation of all the inputs.
• T_CTest: the configuration of the tests that will be executed.
• T_ITest: the definition of the inputs for the tests that will be executed.
• T_SUT: the selection of a file with which the algorithm that Elevate will use to run the

tests.
• T_COra: the configuration of the oracles.
• T_VStrat: the validation strategy that will be used for the executed tests.
• T_EleM: the manual execution of Elevate.
• T_EleA: the automatic execution of Elevate.
• T_MRes: the check of the evaluation results manually one by one.

Software Quality Journal

1 3

• T_ARes: the check of the evaluation results automatically.

The difference between the element with sub-index k and the same elements without
sub-index is that the action with sub-index is repeated k times and the others without sub-
index, just once.

9.2 RQ1: Has the time needed to execute and evaluate the tests been reduced?

The manual approach is a very time-consuming procedure, and it was mandatory to reduce
the time necessary in the multi-level testing process. The time needed in step 1 in both
approaches is exactly the same. The person who defines the tests and inputs needs a large
number of minutes to define all of them because the person must be very precise defining
them. The better the tests defined, the better the testing. Step 2 is different for the man-
ual and for the validation workflow. In this step, 3 actions are the same (test selection,
input selection and the evaluation algorithm selection) but one is executed manually and
the other automatically. The manual process is time-consuming and a tester is in charge
of selecting the better tests. Finally, the multi-level testing algorithm needs minutes to
complete the task. The automatic approach includes 2 more steps (oracle and validation
plan selection) but all are executed automatically, and the time needed to complete the
procedure is measured in milliseconds. Similarly, the manual execution of step 3 is time-
consuming because a person is required to configure Elevate and execute each test one

(1)
T_MAN =

m
∑

i=1

T_MConfi +

n
∑

j=1

T_MInpj +

l
∑

k=1

(T_CTestk + T_ITestk

+ T_SUTk + T_EleMk + T_MResk)

(2)
T_VF =

m
∑

i=1

T_MConfi +

n
∑

j=1

T_MInpj + T_CTest + T_ITest + T_SUT

+ T_COra + T_VStrat + T_EleA + T_ARes

Fig. 12 Comparison between the manual and automatic approaches

 Software Quality Journal

1 3

by one, which increases the time to minutes. However, the automatic process executes the
tests automatically, leading to an execution time in the range of milliseconds. The final
step has also been considerably reduced in time. The manual mode demands the check of
each result one by one, and this action is performed by a person that requires minutes to
complete the task. The validation workflow checks the results automatically, and the time
needed is measured in milliseconds.

Figure 12 shows graphically how since the beginning, the time needed in the process is
more elevated in the manual mode than in the automatic mode. At the beginning, the time
needed is almost the same, although the manual mode is more elevated. The difference
between the two modes is more elevated when the number of tests increases. The more
tests are executed, the more difference between the two modes is obtained. If 10 tests are
executed, the execution time is reduced to 56.91%.

9.3 RQ2: Has the economic cost needed to execute and evaluate the test been reduced?

It is important to remark that this multi-level testing process is performed every time a
code change is implemented. This means that it is executed every day or more than once
every week. This shows the importance of reducing the testing process and consequently,
the economic impact of this time reduction is clear. It is noteworthy that the stakeholders
who are involved are test engineers, whose cost is €30/hour.

Figure 13 shows the difference from the economic perspective of the automatic
(machines) and manual modes (human). All approaches are linear. Nevertheless, the
automatic approaches are under the manual approach and the difference between the
two (manual vs automatic) approaches is more elevated when the number of months
increases. The equation used to calculate the economic cost has been extracted from
the Bataev and Aleksandrova (2020) contribution. It has been utilized as follows
(Algorithm 3):

Fig. 13 Economic comparison between the manual and automatic approaches

Software Quality Journal

1 3

where:

• r is the number of machines
• Nred is the number of reduced jobs in the implementation of an industrial machine;
• Nadd is the number of additional jobs that occur when implementing an industrial machine;
• Sred is the salary of one reduced person;
• Tred is taxes on the salary of one reduced person;
• Sadd is the salary of one additional job created during the implementation of an industrial

machine;
• Tadd is taxes on the salary of one additional job created during the implementation of an

industrial machine.

Figure 13 exhibits the differences between automatic and manual approaches, but also
the difference between using one or more machines in parallel. The economic cost reduction
between a human and a machine is 53.3% per month. Each month that our proposal is used, it
will imply a very important cost reduction. In the case of using 4 machines, we would be talk-
ing about a cost reduction of 88.3% each month compared to the cost of one person. There-
fore, we are talking about an important cost reduction. We must bear in mind that scaling our
solution would have a minimal economic impact. Finally, we can see that the higher the num-
ber of machines, the cost reduction is not as significant. The reduction between one and two
machines is 50% while the reduction between 3 and 4 machines is 25%.

9.4 Threats to validity

External validity: As for the execution time, the main threat to validity is related with the
different execution time. Each execution needs a different period of time to be executed. For
example, T_ITest execution time is not always the same. However, the intervals are not ele-
vated and as a consequence we have used an average value to calculate the final execution
time.

Regarding the economic savings, the cost of the workers is different, it depends on the
worker status. However, differences are not important, and we have used an average salary for
the evaluation. In addition, we have not calculated the optimum number of machines for the
automatic process. Furthermore, based on Bataev and Aleksandrova (2020) contribution, we
have not calculated the cost of implementing a CPS and the costs of the components of the
production CPS. With this data, we would be able to calculate from what month the automatic
mode compensated the cost of the automation process of the CPS.

10 Conclusion and future work

The use of microservices for CPSs has been extended in the last years. In this work, we
report on the experience of instantiating of the microservice-based architecture for DevOps
of CPSs to test elevator dispatching algorithms across different test levels (i.e., SiL, HiL
and Operation). The first step has been the definition of a validation plan file based on
the UTP2 standard, in which all needed concepts for the multi-level testing process are
described. Afterward, we have described generic a Agile Testing Framework developed

(3)C =
1

1 + r
(Nred ∗ (Sred + Tred) − Nadd ∗ (Sadd + Tadd))

 Software Quality Journal

1 3

which is integrated in the DevOps ecosystem. The framework implements two microser-
vices for the validation orchestrator and validation agent. Furthermore, with the goal of
demonstrating the feasibility and scalability of the approach with our industrial case study,
we have explained the instantiation of the approach for the SiL test level of Orona’s dis-
patching algorithms. Finally, an evaluation has been conducted to demonstrate that the
consequences showed in the problem analysis, i.e., the huge quantity of time needed to exe-
cute test cases and the elevated economic cost for companies of developing tests for CPSs,
are palliated. This evaluation demonstrates that our proposal is able to reduce considerably
the time needed for the complete multi-level testing process and consequently, it reduces
the economic cost of this process.

In the future, we would like to tackle some of the causes of the problem shown in the
problem analysis. One of the causes is the lack of reusability and interoperability between
test artifacts among the different test levels. We will define some common criteria for dif-
ferent types of test levels and, consequently, permit the interoperability between differ-
ent test levels in different situations. Moreover, we desire to solve the difference between
design-time methods and operation-time methods. The reason is that these methods are
usually performed by different designers and when a designer is expert in a field, they
focus on the main aspects of their expertise. The consequence is that they neglect or avoid
considering other important aspects, causing some requirements to not be completely
fulfilled. The main goal would be the improvement and generalization of our process to
avoid this disadvantage.

Author contribution Aitor Arrieta, Maite Arratibel, Goiuria Sagardui and Aitor Agirre conceived the pre-
sented idea. Iñigo Aldalur, Aitor Arrieta, Maite Arratibel and Aitor Agirre developed the theory and per-
formed the computations. Iñigo Aldalur and Aitor Arrieta carried out the experiment. Iñigo Aldalur and
Aitor Arrieta wrote the manuscript with support from Maite Arratibel, Goiuria Sagardui and Aitor Agirre

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This
publication is part of a project that has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement no. 871319. Iñigo Aldalur, Aitor Arrieta and Goiuria Sagar-
dui are part of the Software and Systems Engineering research group of Mondragon Unibertsitatea (IT519-
22), supported by the Department of Education, Universities and Research of the Basque Government.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/

Software Quality Journal

1 3

References

Armengaud, E., Macher, G., Massoner, A., Frager, S., Adler, R., Schneider, D., Longo, S., Melis, M.,
Groppo, R., Villa, F., et al. (2018). Deis: dependability engineering innovation for industrial cps. In:
Advanced Microsystems for Automotive Applications 2017, 151–163. Springer.

Arrieta, A., Sagardui, G., Etxeberria, L., & Zander, J. (2017a). Automatic generation of test system instances
for configurable cyber-physical systems. Software Quality Journal, 25(3), 1041–1083.

Arrieta, A., Wang, S., Markiegi, U., Sagardui, G., & Etxeberria, L. (2017b). Employing multi-objective
search to enhance reactive test case generation and prioritization for testing industrial cyber-physical
systems. IEEE Transactions on Industrial Informatics, 14(3), 1055–1066.

Arrieta, A., Wang, S., Markiegi, U., Sagardui, G., & Etxeberria, L. (2017c). Search-based test case gen-
eration for cyber-physical systems. In: 2017 IEEE Congress on Evolutionary Computation (CEC),
688–697. IEEE.

Arrieta, A., Wang, S., Markiegi, U., Arruabarrena, A., Etxeberria, L., & Sagardui, G. (2019). Pareto
efficient multi-objective black-box test case selection for simulation-based testing. Information and
Software Technology, 114, 137–154.

Arrieta, A., Wang, S., Sagardui, G., & Etxeberria, L. (2019). Search-based test case prioritization for
simulation-based testing of cyber-physical system product lines. Journal of Systems and Software,
149, 1–34.

Arrieta, A., Agirre, A., Sagardui, G., & Arratibel, M. (2022). Design-operation continuum methods for
traffic master. In: 13th Symposium on Lift & Escalator Technologies, 13, 41–46.

Arrieta, A., Valle, P., Agirre, J. A., & Sagardui, G. (2023). Some seeds are strong: Seeding strategies
for search-based test case selection. ACM Transactions on Software Engineering and Methodology,
32(1), 1–47.

ASAMRef.: Asam xil. https:// www. asam. net/ stand ards/ detail/ xil/. Accessed: 2023-04-01.
Avizienis, A., Laprie, J., Randell, B., & Landwehr, C. E. (2004). Basic concepts and taxonomy of

dependable and secure computing. IEEE Trans. Dependable Secur. Comput., 1(1), 11–33.
Ayerdi, J., Segura, S., Arrieta, A., Sagardui, G., & Arratibel, M. (2020a). Qos-aware metamorphic test-

ing: An elevation case study. In: 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), 104–114. IEEE.

Ayerdi, J., Garciandia, A., Arrieta, A., Afzal, W., Enoiu, E., Agirre, A., Sagardui, G., Arratibel, M.,
& Sellin, O. (2020b). Towards a taxonomy for eliciting design-operation continuum requirements
of cyber-physical systems. In: 28th IEEE International Requirements Engineering Conference, RE
2020, Zurich, Switzerland, August 31 - September 4, 2020, 280–290. IEEE.

Ayerdi, J., Terragni, V., Arrieta, A., Tonella, P., Sagardui, G., & Arratibel, M. (2021). Generating meta-
morphic relations for cyber-physical systems with genetic programming: an industrial case study.
In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 1264–1274.

Ayerdi, J., Valle, P., Segura, S., Arrieta, A., Sagardui, G., & Arratibel, M. (2022). Performance-driven
metamorphic testing of cyber-physical systems. IEEE Transactions on Reliability.

Bataev, A. V., & Aleksandrova, A. (2020). Digitalization of the world economy: Performance evaluation
of introducing cyber-physical systems. In: 2020 9th International Conference on Industrial Tech-
nology and Management (ICITM), 265–269. IEEE.

Birchler, C., Khatiri, S., Bosshard, B., Gambi, A., & Panichella, S. (2022). Machine learning-based
test selection for simulation-based testing of self-driving cars software. arXiv preprint arXiv: 2212.
04769

Briand, L., Nejati, S., Sabetzadeh, M., & Bianculli, D. (2016). Testing the untestable: model testing of
complex software-intensive systems. In: Proceedings of the 38th international conference on soft-
ware engineering companion, 789–792.

Bruyninckx, H. (2008). Robotics software: The future should be open [position]. IEEE Robotics & Auto-
mation Magazine, 15(1), 9–11.

Gartziandia, A. (2021). Microservice-based performance problem detection in cyber-physical system
software updates. In: 43rd IEEE/ACM International Conference on Software Engineering: Com-
panion Proceedings, ICSE Companion 2021, Madrid, Spain, May 25-28, 2021, 147–149. IEEE.

Gartziandia, A., Arrieta, A., Agirre, A., Sagardui, G., & Arratibel, M. (2021). Using regression learn-
ers to predict performance problems on software updates: a case study on elevators dispatching
algorithms. In: SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing, Virtual Event,
Republic of Korea, March 22-26, 2021, 135–144. ACM.

https://www.asam.net/standards/detail/xil/
http://arxiv.org/abs/2212.04769
http://arxiv.org/abs/2212.04769

 Software Quality Journal

1 3

González-Nalda, P., Etxeberria-Agiriano, I., Calvo, I., & Otero, M. C. (2017). A modular cps architec-
ture design based on ros and docker. International Journal on Interactive Design and Manufactur-
ing (IJIDeM), 11(4), 949–955.

He, Z., Chen, Y., Huang, E., Wang, Q., Pei, Y., & Yuan, H. (2019). A system identification based oracle
for control-cps software fault localization. In: Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, 116–127. IEEE /
ACM.

Hu, T., Bertolotti, I. C., Navet, N., & Havet, L. (2020). Automated fault tolerance augmentation in
model-driven engineering for CPS. Comput. Stand. Interfaces, 70, 103424.

Humeniuk, D., Khomh, F., & Antoniol, G. (2022). A search-based framework for automatic generation
of testing environments for cyber-physical systems. Information and Software Technology, 149,
106936.

Khatiri, S., Panichella, S., & Tonella, P. (2023). Simulation-based test case generation for unmanned
aerial vehicles in the neighborhood of real flights. In: 16th IEEE International Conference on
Software Testing, Verification and Validation (ICST), Dublin, Ireland, 16-20 April 2023. ZHAW
Zürcher Hochschule für Angewandte Wissenschaften.

Lampke, S., Schliecker, S., Ziegenbein, D., & Hamann, A. (2015). Resource-aware control-model-based
co-engineering of control algorithms and real-time systems. SAE International Journal of Passen-
ger Cars-Electronic and Electrical Systems, 8(2015-01-0168), 106–114.

Lee, E. A., & Seshia, S. A. (2017). Introduction to embedded systems: A cyber-physical systems
approach. Mit Press.

Masin, M., Palumbo, F., Myrhaug, H., deOliveiraFilho, J. A., Pastena, M., Pelcat, M., Raffo, L., Regazzoni,
F., Sanchez, A. A., Toffetti, A., dela Torre, E., & Zedda, K. (2017). Cross-layer design of reconfigur-
able cyber-physical systems. In: Design, Automation & Test in Europe Conference & Exhibition, DATE
2017, Lausanne, Switzerland, March 27-31, 2017, 740–745. IEEE.

Matinnejad, R., Nejati, S., Briand, L. C., & Bruckmann, T. (2019). Test generation and test prioritization
for simulink models with dynamic behavior. IEEE Trans. Software Eng., 45(9), 919–944.

Menghi, C., Nejati, S., Gaaloul, K., & Briand, L. C. (2019). Generating automated and online test
oracles for simulink models with continuous and uncertain behaviors. In: Proceedings of the
2019 27th acm joint meeting on european software engineering conference and symposium on
the foundations of software engineering, 27–38.

Menghi, C., Nejati, S., Briand, L., & Parache, Y. I. (2020). Approximation-refinement testing of compute-
intensive cyber-physical models: An approach based on system identification. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, 372–384.

Miele, A. (2014). A fault-injection methodology for the system-level dependability analysis of multipro-
cessor embedded systems. Microprocess. Microsystems, 38(6), 567–580.

Neema, H., Sztipanovits, J., Steinbrink, C., Raub, T., Cornelsen, B., & Lehnhoff, S. (2019). Simulation
integration platforms for cyber-physical systems. In: Proceedings of the Workshop on Design Auto-
mation for CPS and IoT, DESTION@CPSIoTWeek 2019, Montreal, QC, Canada, April 15, 2019,
10–19. ACM.

Nejati, S., Gaaloul, K., Menghi, C., Briand, L.C., Foster, S., & Wolfe, D. (2019). Evaluating model testing
and model checking for finding requirements violations in simulink models. In: Proceedings of the
2019 27th acm joint meeting on european software engineering conference and symposium on the
foundations of software engineering, 1015–1025.

Perez, A. M., & Kaiser, S. (2009). Integrating test levels for embedded systems. In: 2009 Testing: Academic
and Industrial Conference-Practice and Research Techniques, 184–193. IEEE.

Sadri-Moshkenani, Z., Bradley, J., & Rothermel, G. (2022). Survey on test case generation, selection
and prioritization for cyber-physical systems. Software Testing, Verification and Reliability, 32(1),
e1794.

Sanislav, T., Mois, G., & Miclea, L. (2016). An approach to model dependability of cyber-physical systems.
Microprocessors and Microsystems, 41, 67–76.

Shin, S. Y., Nejati, S., Sabetzadeh, M., Briand, L. C., & Zimmer, F. (2018). Test case prioritization for
acceptance testing of cyber physical systems: a multi-objective search-based approach. In: Pro-
ceedings of the 27th acm sigsoft international symposium on software testing and analysis, 49–60.

Shin, S. Y., Chaouch, K., Nejati, S., Sabetzadeh, M., Briand, L. C., & Zimmer, F. (2021). Uncertainty-
aware specification and analysis for hardware-in-the-loop testing of cyber-physical systems. Journal
of Systems and Software, 171, 110813.

Siikonen, M. (1993). Elevator traffic simulation. Simul., 61(4), 257–267.
Stankovic, J. A. (2016). Research directions for cyber physical systems in wireless and mobile healthcare.

ACM Trans. Cyber Phys. Syst., 1(1), 1–1112.

Software Quality Journal

1 3

Sundharam, S. M., Navet, N., Altmeyer, S., & Havet, L. (2018). A model-driven co-design framework
for fusing control and scheduling viewpoints. Sensors, 18(2), 628.

UMLTestingProfile. (2018). Uml testing profile 2 (utp 2). https:// www. omg. org/ spec/ UTP2/2. 0/ PDF.
Accessed: 29 Nov. 2022.

Veledar, O., Damjanovic-Behrendt, V., & Macher, G. (2019), Digital twins for dependability improvement
of autonomous driving. In: Systems, Software and Services Process Improvement - 26th European
Conference, EuroSPI 2019, Edinburgh, UK, September 18-20, 2019, Proceedings, Communications
in Computer and Information Science, 1060, 415–426. Springer.

Wang, C., Pastore, F., Goknil, A., Briand, L. C., Iqbal, & M. Z. Z. (2015). Automatic generation of sys-
tem test cases from use case specifications. In: Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July 12-17, 2015, 385–396.
ACM.

Zander-Nowicka, J., Schieferdecker, I., & Perez, A. M. (2006). Automotive validation functions for on-line
test evaluation of hybrid real-time systems. In: 2006 IEEE Autotestcon, 799–805. IEEE.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://www.omg.org/spec/UTP2/2.0/PDF

	A microservice-based framework for multi-level testing of cyber-physical systems
	Abstract
	1 Introduction
	2 Problem analysis
	2.1 Problem
	2.2 Causes
	2.3 Consequences

	3 Related work
	4 Case study
	4.1 The system
	4.2 Development and operation methodology

	5 Verification and validation test benches for CPS
	6 Validation orchestrator
	6.1 Architecture
	6.2 Deployment
	6.3 Test execution workflow
	6.3.1 Parsing of the input validation plan
	6.3.2 Obtaining additional configuration from external data sources
	6.3.3 Agent configuration and plan execution
	6.3.4 Verdict arrival, aggregation and publication

	7 Validation agent
	7.1 Architecture
	7.2 Deployment
	7.3 Execution flow
	7.3.1 Reception of validation plan
	7.3.2 Child component configuration
	7.3.3 Validation plan execution
	7.3.4 Verdict arrivals and aggregation
	7.3.5 Submission of verdicts

	8 Instantiation of the agile test execution framework on the elevation case study
	8.1 Introduction
	8.2 Architecture
	8.2.1 REST and MQTT API endpoints
	8.2.2 Internal architecture

	8.3 Execution flow
	8.3.1 Subtool execution
	8.3.2 Status reporting

	8.4 Application to the elevation use-case
	8.4.1 Elevate external tool
	8.4.2 Execution of the tool in validation example

	9 Evaluation
	9.1 Comparison with manual test system generation
	9.1.1 Step 1: Test configuration and input creation
	9.1.2 Step 2: Test definition
	9.1.3 Step 3: Elevate execution
	9.1.4 Step 4: Checking multi-level testing results
	9.1.5 Overall test system generation time

	9.2 RQ1: Has the time needed to execute and evaluate the tests been reduced?
	9.3 RQ2: Has the economic cost needed to execute and evaluate the test been reduced?
	9.4 Threats to validity

	10 Conclusion and future work
	References

