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Abstract—In the context of Industry 4.0, the optimization of
manufacturing processes is a challenge. Although in recent years
many of the efforts have been in this direction, there is still
improvement opportunities in these processes. The optimisation
of the power consumed by the processes can be improved by
means of the parameters of control. To date, this challenge
has been addressed by Multi-Objective optimization techniques,
however, Reinforcement Learning based approaches are raising
with promising results in many industrial fields.

In this paper, we propose a Reinforcement Learning (RL)
based approach to optimize the active power consumption of a
machining process by the cutting conditions selection. Through
the application of Q-Learning algorithm, the agent self-learns
the optimal solution through interacting with the environment.
The approach was validated in three different scenarios demon-
strating the feasibility of RL application to determine the
cutting conditions values in order to optimize the active power
consumption.

Index Terms—Reinforcement Learning, Q-Learning, Manufac-
turing, Cutting Process

I. INTRODUCTION

To boost competitiveness and meet changing customer de-
mands, the manufacturing sector is taking advantage of Infor-
mation and Communication Technologies (ICT). Machining
processes are no exception, as they move towards a smarter,
connected network to become part of an industrial digital
ecosystem.

Despite the advances made to date, there are still consid-
erable opportunities for improvement because of the com-
plexity of machining processes. In this context, extracting
and analysing data from machining operations can provide
valuable information to optimise the control of these complex
systems.

In machining, the geometrical specifications of a component
are produced by the relative movements of the tool and the
workpiece. These processes can be presented as a set of
input elements and output elements. The input parameters
are physical components and quantitative parameters that de-
fine the process behaviour (i.e.: Cutting conditions, lubricant,
workpiece, tool, etc.), and two groups define the output of the
process, the industrial parameters and the scientific parameters.
Industrial parameters are those which are desired to control

or improve the actual industrial process i. e.: tool life-cost,
workpiece surface quality, energy consumption, etc. While
scientific parameters comprise intrinsic physical properties of
the system i.e.: spindle power, vibrations, cutting forces, etc.

The development of unmanned processes capable of per-
forming human operator tasks, can deliver significant improve-
ments in productivity, cost and quality. Machining processes
are a key factor in the manufacture of different parts, so it
is required to develop intelligent systems to facilitate bet-
ter decision making. Such processes are created in human-
machine collaborative environments, that allow machines to
gain autonomy from the operator experience through the use
of appropriate Machine Learning (ML) tools.

Reinforcement Learning (RL) can be defined as a type of
ML where the model is implemented as an agent that explores
an unknown state space through ”trial and error”. The agent,
with the aim to reach a goal state, determines which actions
must take to move to different states where the only feedback
is a scalar reward [1].

Sutton et al. divided in [2] the two main categories of RL
methods: (i) Model-based methods where the core component
depends on planning forward steps of the environment using
a physical model and (ii) Model-free methods which mainly
rely on the learning capability of the agent without planning.
Model-free algorithms take into account feedback provided
from the environment and never use calculated predictions
of next state and next reward to change agent’s behaviour,
whereas model-based algorithms leverage the predictions of
next state and reward with the aim of selecting the best actions.
One of the most widespread example of model-free off-policy
RL algorithm for temporal difference learning is Q-Learning.
Q-Learning algorithm is a straightforward way for the agent

to self learn how to act efficiently in controlled Markovian
environments [3]. This algorithm works in an iterative manner
improving the appropriateness of the action a taken by the
agent from a discrete action space A at the different evaluated
states s from a defined state space S, where a ∈ A and s ∈ S.

To date, RL is being increasingly used in optimization use
cases. However, it is a technique rarely used in industrial
environments. The agent should be trained on a simulated



controlled environment to gain knowledge from the process
[4]. Thus, the lack of such simulators of complex industrial
systems is the main bottleneck for RL application in manu-
facturing sectors.

It is however feasible to convert a machining process into
a RL problem. In such machining processes, the states can
be defined by scientific parameters mapped indirectly from
industrial parameters to achieve operator-defined objectives.
Therefore, it can be depicted as shown in Fig. 1. For a material-
tool combination, the action is performed on the cutting
conditions of the process. For each action, the process will
return an observation measured by the scientific parameters
and a reward, which indicates to the agent whether the action
performed has been adequate or not.

The main objectives of the present work are: (i) the creation
of an environment that simulates the behaviour of an industrial
machining process and it’s suitable for a RL approach. (ii) To
tune the conditions that minimize the active power consump-
tion of the machining process using RL techniques.

II. RELATED WORK

RL can be broadly described as a learning paradigm where
an agent is able to autonomously learn behaviour in a dynamic
environment based on rewards and penalties [5]. In recent
years, there has been growing interest in the application of
RL to different research areas. For example in Robotics to
self learn and adapt different routines [6], [7] or in Smart
Buildings to improve energetic efficiency autonomously [8],
[9].

The use of RL techniques in different industrial fields
has been examined in a number of recent works. In [10],
a Multi-Objective Reinforcement Learning based approach
for prescriptive analysis was proposed and then validated
in a real industrial scenario. The designed algorithm was
able to generate more accurate insights to each operator by
single optimal solution selection. In [11], authors presented
a methodology for real time production scheduling in smart
factories. Based on composite rewards the system self learn
efficiently to achieve multiple objectives in industrial produc-
tion processes. In [12], authors studied and then validated
the application of the Q-Learning algorithm to increase the
performance of parameter optimization in a dynamic job shop
scheduling problem taking into account process information
such us machine breakdowns and variations in shop floor
conditions. Real-time scheduling problem in manufacturing
scenarios was also addressed in [13] by the application of
Q-Learning algorithm to optimize production performance.

The field of Manufacturing is complex and dynamic. Sev-
eral authors have made a study of ML techniques and its
application to solve different optimization problems. So far,
however, there has been little discussion about the application
of RL from a theoretical point of view with same objective in
mind. In [14], a combination of ML and RL techniques was
presented to address the complexity of multi-pass CNC turn-
ing by designing and implementing a method for multi-task
parametric optimisation enhancing computation efficiency. In

Fig. 1: Generalized Reinforcement Learning model in machin-
ing

[15], by the combination of nearest-neighbors algorithm and
RL the authors presented a novel algorithm to suitable select
process parameters to enhance the productivity in milling
processes. Milling process optimization was also approached
with RL techniques in [16]. In this study, authors demonstrated
a successful application of RL to optimize workpiece clamping
position and orientation in complex milling processes.

Therefore, in this work we present a RL based approach
for a industrial process condition tuning. The main idea is to
present an approach to minimize the active power consumption
of the industrial process based on two actionable parameters.

III. PROBLEM DESCRIPTION

The combination of the working conditions of industrial
processes generates an observation or combination of obser-
vations that needs to optimize. Some of the conditions may
be fixed, or may have a higher cost of change (i. e. tool,
material, coolant, the machine itself, etc.). Other conditions are
variable: cutting speed (V c), feed speed (f ), depth of cut (ap),
and these are those in which we can take particular actions to
optimize one or more of the industrial parameters. Fig 2 shows
an example of a turning process in which these parameters
have a direct influence on energy consumption. In theory,
machine energy consumption should be transferred completely
to mechanics. In practice, taking into account the efficiency of
the machine, there will be power losses because of frictional
factors. Thus, with an adaptive automatic modification of
cutting parameters the idea is to reduce the power required
for material removal on these type of processes, as could be
milling or drilling.

In the problem in progress, a first approach is made with
a modifiable environment represented in Fig. 3 with possible
applications in the machining area. The mesh can be rotated or
the noise level increased or decreased to have different starting
points and different target states.

For this work, two different scenarios are proposed. (i) The
first one is the original mesh rotated by θ = 20◦ and τ = 0%
of Gaussian noise (Fig. 3 a). (ii) And the second one rotated
by θ = 70◦ and τ = 8% of Gaussian noise (Fig. 3 b). The
exploring starting point depends on the rotation of the mesh.
In the former there is more than one possible solution, while
in the latter there are fewer possible solutions given the noise
introduced.

For the current case study, the active power per chip flow
generated W by the machining process must be minimised.
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Fig. 2: Machining turning process.

(a) θ = 20◦, τ = 0%

(b) θ = 70◦, τ = 8%

Fig. 3: Environment representation by a mesh. The var1 and
var2 are min-max scaled values of original axes, θ is the
rotation degrees of the mesh and τ is the noise level introduced
to the mesh.

However, in order to simplify the problem, the simulation
environment returns a value (W ) by combining the variables
presented on Fig. 3. It should be made clear that this is a
first approach to the automatic selection of conditions for
machining processes. The data were obtained from a real
process and although the ranges of the observations (W )
are correct, the actionable conditions were scaled (min-max)

for a better interpretation of the actions taken by the agent.
Each point of the mesh represents an observation of the
environment.

IV. METHODOLOGY

In this section we present the designed approach to train
the agent in order to minimize the active power consumption,
based on the Q-Learning algorithm application (Algorithm 1).
Relied on Temporal Difference (TD) learning, the algorithm
performs the following sequential process until the goal state
is reached:

1) Initialize the Q-Table values arbitrarily, in the proposed
scenario Q-Table is initialized to zeros.

2) Observe the current state s (where s ∈ S).
3) For the current state s and depending on E , which defines

the exploration/exploitation ratio, select a random action
a ∈ A (Exploration phase) or select the action a ∈ A
with max(Q-value) (Exploitation phase).

4) Once the action a is selected and taken, observe the
reward R and the following state st+1.

5) Update the Q-Table values for the state s using Bellman
equation (described in equation 2).

6) Set the state s to the new state st+1.
In the current study, the action to be taken by the agent

during the training process is determined by the parameter
E . This parameter determines whether an action will be
performed by the learned Q-values or whether an action
is selected randomly (exploration/exploitation ratio). When
E = 1 the agent explores the environment taking random
actions, whereas when E = 0 the agent takes the action
with maximum Q value for a specific state. The value of this
parameter is decayed as a function of the equation 1. This
means that in the initial stages of training, the value of E will
approach Emax by exploring the entire state space S. This
value will decrease exponentially until it reaches Emin by the
decay rate (d) per each episode.

E = Emin + (Emax − Emin) · e−d·episode (1)

Once the action a to be taken on the environment has been
determined, the environment will return the state st+1, the
reward R and if the objective has been reached or not. With
this information the Q(s, a) is updated according to equation
2.

Q(s, a) = (1−α) ·Q(s, a)+α · (R+ γ ·Q(st+1, at+1)) (2)

Where α is the learning rate, which takes into account the
immediate reward, ranging between [0,1], and γ is the discount
factor, also between values [0,1]. The value γ is the one that
computes the future reward.

The problem presented in this work is a discrete state space,
the value functions are stored in a Q-Table, with the x- and
y-axes being the states and actions. A visual representation of
the Q-Table for a system with 143647 states and 4 actions is
shown in table I.



Algorithm 1 Q-Learning Agent

1: Initialize Q-Table
2: for each episode in episodes do
3: Initialize s
4: while s is not goal state do
5: for each t in episode do
6: Select (exploration or exploitation) with E
7: if exploration then
8: a ⇐ select random action a ∈ A
9: else

10: a ⇐ select action a with max(Q(s, a))
11: end if
12: R, st+1 ⇐ Observe(a)
13: Q(s, a) = Q(s, a) + α · [R + γ ·

maxQ(st+1, at+1)−Q(s, a)]
14: s ⇐ st+1

15: end for
16: end while
17: end for

The action space is A = {a1, a2, a3, a4}, where each
of the actions are, a1 : increase var1, a2 : decrease var1,
a3 : increase var2, a4 : decrease var2. The state space is
represented by the combination of the number of observation
and the 4 actions that can be applied on each observation
S = {1, 2, ..., 143647}.

Three tests have been performed to validate the feasibility of
Q-Learning Algorithm application. The agent hyperparameters
(γ, α, E , d) of each of the tests and environment specifications
defined by θ, mesh rotation angle, and τ , Gaussian noise can
be shown on Table II.

The agent searches through the state space finding all
possible solutions to reach the goal state. Fig. 4 shows the
agent exploration process for the first, thirteenth and the one
hundredth episodes in Test #2. It can be seen how the agent
moves through the state space until it reaches the possible
solutions. The black areas shown in Fig. 4 are those that the
agent has not yet explored and the white areas are those that
the agent has explored throughout the episodes. In episode
1 the agent is not able to find the combination of parameter
modifications needed to reach one of the possible targets. As
the agent explores the entire state space, the number of white
areas grows until the agent explores an increasing number of
possible solutions. At this point the agent starts to reduce the
number of epochs needed per episode to reach the required
solution in the most optimal way.

As the agent explores the entire state space, the Q-Table is
updated, and the agent uses the learned Q-values by a ratio
of 1 − E . The convergence of Q-Table during training phase
was measured by the return/epochs per episode.

V. RESULTS AND DISCUSSION

This paper has evaluated the possible application of rein-
forcement learning in machining environments. The results
indicate that this type of application can contribute to the

TABLE I: Q-Table example for the state space (S) and action
space (A) combination

S
A

a1 a2 a3 a4

1 Q[1,1] Q[1,2] Q[1,3] Q[1,4]

2 Q[2,1] Q[2,2] Q[2,3] Q[2,4]

... Q[...,1] Q[...,2] Q[...,3] Q[...,4]

143647 Q[143647,1] Q[143647,2] Q[143647,3] Q[143647,4]

TABLE II: Agent hyper-parameters, and environment specifi-
cations defined by mesh rotation and Gaussian noise

Test γ α E d θ τ

#1 0.96 0.81 0.7 0 0 0
#2 0.96 0.81 1-0.01 0.01 0 0
#3 0.96 0.81 1-0.01 0.01 20 8

optimisation of the active power consumed by these processes
through the autonomous selection of the cutting conditions.

The convergence rates (return/epochs) of the training
phase are shown in Fig. 5 for the three tests performed in this
work. Test #1 and Test #2 were run with the same agent and
the same environment and the E parameter was modified to
compare the training performance regarding this E parameter.
While for Test #3 a different environment was used and the
hyperparameters of the best performing test between Test #1
and Test #2 were used.

Keeping the E fixed (Test #1), convergence rate and the
stabilization of the curve is given earlier (around 13000
episodes). The Test #2 having a decaying E , from 1 to 0.01
takes approximately 17000 episodes to converge. The last
test (Test #3), having a lower number of possible objective
states, and with a decaying E , also from 1 to 0.01 (same
hyperparameters as Test #2), takes around 40000 episodes to
reach the optimum convergence rate.

The number of episodes needed to converge can be seen in
the table III. Also the number of epochs needed to reach an
optimum target state of the state space during the evaluation
phase.

Although the Tests #1 and #2 were carried out on the
same environment, in Fig. 5 it can be seen that the indicator
return/epochs is around 45 for Test #1 and 195 for Test #2.
With both tests requiring a similar number of epochs during
the evaluation phase, the return obtained in Test #2 is higher
than in Test #1. So decaying the E parameter gets a higher
return than keeping it fixed. With reference to the Test #3, in
which the same hyperparameters are used as in the Test #2, a
higher number of epochs are needed to reach the target state
during evaluation phase.

The optimal trajectories obtained in each of the tests per-
formed can be seen in Fig. 6. The orange dots in each of
the figures represent the space of possible solutions for each
of the environments tested in this work. The black rectangle
in each of the graphics represents the observation space, and
the white trajectory represents the changes on the variables
to achieve the most optimal solution of the process in the
evaluation phase.



(a)

(b)

(c)
Fig. 4: Agent’s exploration phase over different episodes for
the Test #2 (γ = 0.96, α = 0.81, E = [1 − 0.01], d = 0.01,
θ = 20◦ and τ = 0%). a) Episode #1, b) Episode #30 c)
Episode #100. White areas are those explored by the agent,
whereas black areas are those that have not yet been explored.

TABLE III: Number of episodes to convergence (Ce) and
number of epochs needed by the agent to reach the goal during
evaluation phase.

Test Ce epochs

#1 13000 505
#2 17000 509
#3 40000 634

The trajectories of Fig. 6 a) and Fig. 6 b) are close to each
other. The trajectory taken by Test 3 is different given the
limited number of possible solutions. In this case the minimum
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Fig. 5: Convergence rate during training phase of the agent in
the different tests: i) Test #1 (γ = 0.96, α = 0.81, E = 0.7,
d = 0, θ = 20◦ and τ = 0%), ii) Test #2 (γ = 0.96, α = 0.81,
E = [1− 0.01], d = 0.01, θ = 20◦ and τ = 0%) and iii) Test
#3 (γ = 0.96, α = 0.81, E = [1 − 0.01], d = 0.01, θ = 70◦

and τ = 8%).

point of the mesh presented in Fig. 3 is at a centred point of
the state space S. Therefore, a larger number of epochs is
needed to arrive at the optimal solution.

Signal acquisition to control the cutting process has gained
importance in recent decades. In addition to reducing man-
power, it allows information to be obtained on the status of
the cutting process. This means cost and time reduction.

VI. CONCLUSIONS AND FUTURE LINES

Reinforcement Learning (RL) is a learning paradigm that
has the potential to face optimization problems for a wide
range of applications. Agent’s ability to self learn by inter-
action with the environment through the only feedback of the
reward can lead greater efficiency and power consumption op-
timization in the machining processes. Hence, the development
of this kind of approaches can contribute to face the energy
crisis that most companies are experiencing nowadays.

In the present paper we have tested and validated the feasi-
bility of applying RL techniques, more specifically Temporal
Difference (TD) learning by Q-Learning algorithm, to select
the most proper cutting conditions of a turning process. For
this purpose, an environment with a large number of states
has been created, indeed, a 143647 state space that has been
tested in three different scenarios (Test #1, Test #2 and Test
#3) demonstrating the validity of the proposed approach. Data
gathered from the experimental phase proves that the agent
self learns in the different scenarios, obtaining the cutting
conditions values that optimizes the power consumption.

Further research could be undertaken to further enhance
the proposed approach. One potential area of investigation is
the application of Deep Reinforcement Learning (DRL) tech-
niques to improve the convergence rate in such environments
with a large number of states. Furthermore, the state space
exploration process could be enhanced by the application of
a multi-agent approach. This would deliver, a more effective
method to explore the state space, and thus, the optimization
of machining process power consumption.
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Fig. 6: Solution found by the Q-Learning Algorithm in the
different conducted tests: a) Test #1 (γ = 0.96, α = 0.81,
E = 0.7, d = 0, θ = 20◦ and τ = 0%), b) Test #2 (γ = 0.96,
α = 0.81, E = [1 − 0.01], d = 0.01, θ = 20◦ and τ = 0%)
and c) Test #3 (γ = 0.96, α = 0.81, E = [1−0.01], d = 0.01,
θ = 70◦ and τ = 8%).

Optimisation of production systems through digitisation is
currently focused on reducing production time, costs, and
increasing production quality. For a wider use of the proposed
approach and to obtain more robust models it is necessary to
carry out a larger number of tests and obtain a larger amount
of data. It is also necessary to validate the proposed approach
on a real machining process in order to determine the energy
cost savings of implementing the proposed methodology.
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