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ABSTRACT

The establishment of collaborative Al pipelines, in which multi-
ple organizations share their data and models, is often compli-
cated by lengthy data governance processes and legal clarifications.
Data sovereignty solutions, which ensure data is being used un-
der agreed terms and conditions, are promising to overcome these
problems. However, there is limited research on their applicability
in Al pipelines. In this study, we extended an existing Al pipeline
at Mondragon Corporation, in which sensor data is collected and
subsequently forwarded to a data quality service provider with
a data sovereignty component. By systematically reflecting and
generalizing our experiences during the twelve-month action re-
search project, we formulated ten lessons learned, four benefits,
and three barriers to data-sovereign Al pipelines that can inform
further research and custom implementations. Our results show
that a data sovereignty component can help reduce existing barriers
and increase the success of collaborative data science initiatives.

CCS CONCEPTS

« Security and privacy — Privacy protections; « Software and
its engineering — Data flow architectures.
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1 INTRODUCTION

The prevalence of machine learning (ML) and artificial intelligence
(AI) solutions is growing exponentially and has moved from hype
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to reality [6, 27]. Vast amounts of available data have led to a demo-
cratization of Al and companies of different sizes and from different
industries have started their own Al initiatives and experiments
[10]. However, despite their broad adoption, Al and ML have not
yet delivered on their promises in industrial practice [27]. The
shift from prototypical projects to production-ready development
is challenging, and many promising initiatives remain insular and
isolated from other processes and systems [10, 27].

Since there is "no Al without data" [27] (p.98), data related chal-
lenges, including management, governance, and democratization,
are the major obstacles for successful Al initiatives [5, 27]. They
hinder organizations from leveraging potentially useful data sets
and from fully exploiting the benefits of cooperatively working on
joint AI workflows [27]. Hereby, the establishment of collaborative
Al (e.g., a car manufacturer and its supplier working on a shared
Al model) could help overcome insular initiatives and take full
advantage of the benefits offered by Al

The work on collaborative Al pipelines requires the ability to
easily share data with partners [15, 44]. However, current processes
of data sharing are often lengthy, cumbersome, and can result in
the establishment of ’data governance anti-patterns’ [44]. When
external partners like consultancies or suppliers are involved, the
data processing is particularly difficult and requires a significant
amount of organizational, technical, and legal clarification [44].
Even within a single organization, data is often treated as an asset
for individual business functions and only shared reluctantly with
other departments and projects [27]. Furthermore, there is often no
technical guarantee for what purpose data is used once it has been
shared with others. This leads to situations in which organizations
rather not share their data to avoid losing control [15].

Several technological components that offer data sovereignty
functionalities have emerged from science and practice to address
these problems (e.g., [17, 21, 23, 34]). However, there is still limited
research on their applicability in existing Al pipelines and a con-
crete socio-technological context. Moreover, the current body of
literature lacks the prescriptive knowledge needed for implement-
ing data-sovereign Al pipelines. To understand how such pipelines
can be realized, we formulated three research questions:

e RQ1: What practices are applied to realize data-sovereign Al
pipelines?

e RQ2: What are the benefits of data sovereignty in Al pipe-
lines?

e RQ3: What are the barriers to data-sovereign Al pipelines?

To investigate the proposed research questions, we conducted
a twelve-month empirical action research study on a real-world
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Al project at Mondragon, a large Spanish corporation. We closely
collaborated with Mondragon on the adoption of a data sovereignty
solution in an industrial Al setting. Throughout the project, we
qualitatively analyzed and systematically reflected on the design
decisions and challenges we experienced, abstracted these, and
formulated generalizable findings. For the presentation of our re-
sults, we used the recent data challenges model by Groger [27]
as a framework. The main contributions of our study are the pre-
sentation of generalized lessons learned and the presentation of
benefits and barriers to realizing data-sovereign Al pipelines. This
way, our study contributes to answering some of the challenges for
engineering Al systems raised by recent studies [6, 10, 27, 40, 44].
Our study, furthermore, paves the way for further research in the
area of data-sovereign Al pipelines by highlighting issues that re-
quire further research attention. Finally, practitioners can use our
findings to inform their own Al architectures and solution designs
and to establish data sovereignty in their pipelines.

The remainder of this paper is structured as follows. First, we
present the theoretical background in Section 2. In Section 3, we
outline the methodological approach we followed for our research
and describe our course of actions. We present and discuss our
findings in the form of lessons learned, benefits, and barriers in
Section 4. In Section 5, we conclude our study by summarizing our
contributions, limitations, and outline paths for future work.

2 BACKGROUND & RELATED WORK

High quality data sets are vital for the success of any Al initiative
and a highly valuable asset for companies [27, 52]. However, only
through enrichment with additional information and the collabora-
tive processing, Al initiatives can leverage their full economic value
and lead to innovation [27, 29]. Thus, “data exchange between [and
within] companies is an essential feature of digitization and data
economy“ [29] (p.1) — always facing challenges of data management,
quality, or governance [27, 35].

Hereby, the most significant problem is that the data owners are
often not comfortable sharing their data. Even if contracts and agree-
ments exist, which state how the shared data will be used, the data
provider can never be sure of how and for what purpose the shared
data will actually be used [13], and is constantly “afraid of losing
control® [15] (p.1). In particular, technically ensuring the interests
of the data provider and, consequently, building trust is challenging.
With regard to this, we want to focus on data sovereignty in the
following.

2.1 Data Sovereignty & Al

Since data sovereignty is a very young field of research, there are
different definitions according to the respective domain and area
of focus [30, 66]. Jarke et al. [36] (p.550) describe the term data
sovereignty in the context of data ecosystems as follows:

"Data sovereignty refers to the self-determination of individuals
and organizations with regard to the use of their data. In contrast to
data privacy as defined, e.g., in the European General Data Protection
Regulation (GDPR), which sees the citizen in a rather passive role
to be protected against powers they cannot confront on an equal
footing, data sovereignty aims at enabling «data richness» by clearly
negotiated and strictly monitored data usage agreements".
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This means that the data owners and providers can define terms
and conditions for the exchange and use of their data [52, 58], and
that these interests are ensured along the entire data supply chain.
Data sovereignty enables the sharing of data between multiple
organizations or within a larger data space and should be considered
in such scenarios. For example, an automotive supply chain consists
of multiple actors who mutually benefit from shared data. A car
manufacturer could share data on its material stock with different
suppliers to avoid a stop of production. To ensure data sovereignty,
the manufacturer could specify that the data is only accessible for
a certain amount of time and deleted afterwards.

The literature shows that the need for sovereign data sharing
does not solely exist in one domain, but can be found across domains
in both industry and research: logistics [24], energy [35], mobility
[18, 36], health [15, 36], or smart city [54]. Wherever data assets
exist and are gathered to create value, the same questions and
problems [26] arise: How can trust be established between data
sharing partners? How can data be exchanged interoperably? How
can data sovereignty be ensured? The challenge of answering these
questions becomes even greater when data should be shared with
an unknown number of potentially interested parties and across
different legacy systems.

“Industrial IoT systems are characterized by data flowing from
sensors to services and applications and possibly back to actu-
ating devices. These data flows span several physical platforms,
including resource-constrained sensors, mobile devices, and cloud
backends“ [59] (p.289). Thereby, technical challenges are already
predetermined. Moreover, the use of heterogeneous data processing
applications and Al algorithms is the key to heterogeneous and
complex data flows that need to be made auditable and transparent
according to data sovereignty principles.

Many systems merely focus on the implementation of access
control by restricting access to data and e.g., linking it to an au-
thentication mechanism. However, this way, the actual use of the
data cannot be viewed and monitored [45, 59]. Following this, there
is a need to define and explicitly delineate usage control, which
“extends access control by the dimension of time and is able to
continuously monitor and control the usage of resources such as
files or services“ [59] (p.289). With an increasing number of data
assets to be transferred between sensors and cloud infrastructure
in distributed systems, the implementation and integration of us-
age control as a technical implementation of data sovereignty is a
challenge [59], but nevertheless a necessity [66].

2.2 Data Sovereignty Solutions

To address open questions in the area of data sovereignty and the
development of technical solutions, projects such as FIWARE [46],
the International Data Spaces (IDS), and Gaia-X have been built up.

The IDS, formerly Industrial Data Space, comprises multiple
projects that have been driven since the end of 2014 [52] in cooper-
ation with meanwhile more than 100 companies from industry and
research [7], and since 2016 under the organization of the Interna-
tional Data Spaces Association (IDSA) [52]. Its goal is to define and
specify the establishment of sovereign data ecosystems in the form
of multi-sided platforms [51] and common governance rules, and
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to create a suitable environment for appropriate software develop-
ments [35]. These ecosystems focus primarily on peer-to-peer data
provisioning, exchange, and processing [2].

The IDS Reference Architecture Model [52] describes the ontol-
ogy [9] and the key components within a data ecosystem that are
required to create a “secure, trusted, and semantically interoperable*
[9] (p.1) data exchange between two stakeholders. The IDS differs
from other projects by focusing on enriching data with terms of
usage (hereafter usage policies) and the automated negotiation of
these.

The core of the IDS data ecosystem is the IDS Connector, which
is responsible for the exchange of all necessary information: data
assets, meta information, and data processing applications. It serves
as a gateway to existing proprietary systems and encapsulates their
structure, functionalities, and APIs from external environments
[24, 48]. The IDS Connector offers the possibility to define and
provide usage policies and data flows, and negotiates agreements
within a given framework to achieve an agreed consensus. It also
ensures that data is transferred and processed all the way from the
data source on the provider side to the data sink on the consumer
side in accordance with the negotiated agreement. Therefore, it is
able to intercept data processing applications, prohibit access, and,
if necessary, delete data. The IDS define their own ontology for this
purpose, based on standards such as the Data Catalog Vocabulary
(dcat) and the Open Data Rights Language (ODRL) [9].

In addition to the IDS Connector, the IDS define central systems
for cataloguing capabilities, a trusted identity management, a trans-
parent monitoring of all information flows, the possibility to extend
the systems with use case specific data processing applications, and
the option to enrich the used data model.

Besides defining the structure of a data ecosystem, the IDS also
specifies the authenticated and encrypted communication protocol
that is used by the technical components. In this context, every
company should be able to enter an existing data ecosystem with
their systems and applications without any major entry barrier. This
requires an appropriate identification and the deployment of an IDS
Connector with a connection to existing systems. Subsequently,
data offers can be created and data from other connectors can be
consumed.

Gaia-X is focusing on building a distributed data infrastructure
in Europe [11]. In addition to adopting IDS concepts for sovereign
data exchange, Gaia-X focuses on the creation of common stan-
dards, trusted identity management, and a technology agnostic
architecture that focuses primarily on cloud infrastructures and
includes federation services [11]. Hence, the goals and core aspects
of the European [16] data strategy, which aims at balancing societal,
economic, and private interests and power in a fair data ecosystem,
is to be realized.

Currently, one of the most advanced reference implementations
of an IDS Connector is the Dataspace Connector (DSC) from the
Fraunhofer Institute for Software and Systems Engineering (ISST).
As open source software, provided by the IDSA organization on
GitHub [34], the DSC is recently being used in projects like the
Mobility Data Space [18], the Energy Data Space [35], and the
Bauhaus.MobilityLab [33].

Driven by the success and adoption of the development of this
software, an Eclipse project was launched in summer 2020 by a
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group of eight organizations. Administered by the Eclipse organi-
zation, the Dataspace Connector will be further developed as open
source software that aims to provide a highly scalable, modular, and
extensible framework for sovereign data exchange [23]. It primarily
addresses new challenges such as connection and interoperability
with multiple data spaces and identity management across multiple
jurisdictions [11]. Core issues, that are also reflected in projects
like IDS and GAIA-X, being addressed are data sharing and data
sovereignty in cloud-native environments.

The modular, secure system offers fully asynchronous, highly
available, and permanently auditable processes. Similar to systems
like the Open Policy Agent (OPA) [17], LUCON [59], and MYDATA
[31], it strives for cloud-agnostic policy management and enforce-
ment to ensure data sovereignty.

2.3 Related Work

To the best of our knowledge, no study has yet investigated how
data sovereignty can be integrated in collaborative Al pipelines.
Hence, no systematic explanatory knowledge exists on the im-
plementation of such pipelines. However, apart from Al initia-
tives, there are several other projects that have implemented data
sovereignty principles. For example, Alonso et al. [3] describe the
implementation of the IDS Reference Architecture for Industry 4.0
scenarios in the FIWARE European project [21]. In the discussed use
case, a pilot was developed to improve the manufacturing process
of a factory. It obtains data from a milling machine and a coordinate-
measuring machine via an IDS Connector. Afterwards, the data is
analyzed in two systems for maintenance and quality control. All
three IDS Connectors use a central identity access management
system and act in their role as data provider and consumer.

Another IDS Connector reference implementation is the Trusted
Connector [60] developed by the Fraunhofer Institute for Applied
and Integrated Security (AISEC). To create trust in an IDS ecosys-
tem, multiple requirements must be fulfilled: On the one hand, a
trusted identity provider and on the other hand, an IDS Connector
implementation with a secure software stack are required. Brost
et al. [12] define such a system from the hardware layer, through
the kernel and virtualization layers, to the container layer. While
primarily focussing on IoT systems, the Trusted Connector imple-
ments the specified layers based on the Open Service Gateway
Initiative (OSGi) framework to execute all applications as “isolated
service or a service bundle in a separate execution environment®
[12] (p.44). Data flows can be defined and controlled using Apache
Camel [22] to ensure that usage control is implemented at each
stage of data processing.

3 THE ACTION RESEARCH CASE STUDY

To investigate the proposed research questions, we conducted an
action research case study in collaboration with Mondragon. Action
research is a well suited research method for industry-academia col-
laborations in software engineering and helps "to make academic
research relevant” [8] (p.94). It can assist to develop innovative solu-
tions and gain an in-depth understanding of novel phenomenons in
real situations [53]. The same approach was used by similar studies
in the field of engineering data-intensive applications (e.g., [41, 42]).
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The collaboration with Mondragon lasted twelve months. In reg-
ular virtual working sessions, the team members discussed design
decisions, open issues, and reflected on the experiences they have
made. Notes and protocols of these working sessions form the pri-
mary source of data for deriving the lessons learned, benefits, and
barriers. During project execution, the team followed the action
research cycle, which consists of five iterative steps: Diagnosis, Ac-
tion Planning and Design, Action Taking, Evaluation, and Specifying
Learning [53, 62].

3.1 Diagnosis

The Mondragon Corporation is a large Spanish federation of co-
operatives with over 80,000 employees where different research
centres, companies, and a university interact to promote new busi-
ness initiatives. Mondragon is active in several business domains,
including industry, finance, retail, and knowledge. Mondragon com-
panies have started a process of digital adaptation to face the great
transformation that business, processes, and jobs are experienc-
ing. Collaborations among industrial companies within and outside
Mondragon Corporation have increased in recent years. Within
these collaborations, pipelines are created in which industrial assets,
sensors, and processes produce large amounts of data that need
to be collected in different repositories for analysis. The number
of companies participating in these initiatives leads to a complex
network of distributed data sources and lengthy data management
and governance processes.

In this case study, we focus on a production plant at Mondragon
where data from several processes is collected. Each process is
a sequence of actions involving devices that collaborate in the
production of goods. During production, the devices involved in
each process generate data in the form of messages related to (1)
production parameters measured by the machines involved (e.g.,
temperature, pressure, etc.), and (2) event data to monitor process
performance (e.g., start time, end time, etc.).

Mondragon collects these messages to monitor and evaluate
industrial production conditions and process performance. Con-
ditions and performance are satisfactory when parameter values
meet the estimated operating requirements or thresholds. How-
ever, under those situations, faulty products might appear at any
time. Consequently, it is important to determine the cause for de-
fective products and relate it to undesired production conditions
or poor process performance. To do so, an anomaly detection step
is introduced to the data processing. This step finds irregularities
and investigates the root cause of a faulty product. With this data-
driven approach to product quality, Mondragon aims to reduce the
number of faulty products, the amount of manual quality work,
and ultimately achieve the goal of zero-defect manufacturing [47].

While data collection, preparation, and simple data analysis is
usually done locally at the plant level, more advanced ML and Al
methods often require the assistance of internal or external service
providers (see Figure 1). These service providers might be used for
several reasons: (1) the technologies and tools for data analysis are
not available locally, (2) expert knowledge is required for complex
algorithms, or (3) complex data enrichments and integrations are
necessary for a more useful result.
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To enable the integration of external parties in the data pro-
cessing, a trusted environment is needed that ensures data is used
only by the desired company and under the negotiated conditions
for access and use. For Mondragon, a Non-Disclosure Agreement
(NDA) was not sufficient to create this level of trust. They aimed
to extend the existing legal binding of an NDA with a technical
solution that guarantees data are handled in accordance with the
agreed policies.

Factory
(message mgtm. Platform)

Internal / External

Service Provider

Machine
Learning

Artificial
Intelligence

Visualization

)

Process 1

Process 2

Process n

Figure 1: Separation of Data Analysis Tasks at Mondragon

In the case at hand, Mondragon collaborated with a research
facility that provides Al services for data quality analysis (see Fig-
ure 2). Specifically, it was Mondragon’s goal to conduct an outlier
and concept drift analysis on data collected from a process involv-
ing a press machine. The data quality analysis helps Mondragon
validate their data streams and ensure the correctness of consec-
utive decision making [19, 25]. The research facility uses the data
provided by Mondragon to continuously train an Al model that
is used for data quality estimation. This model is made available
under the same terms and conditions as the data stream. The result
is a collaborative, data-sovereign Al pipeline that helps Mondragon
leverage their data sets and enables a new business model for the
data quality service provider [51].

The action research team that investigated the proposed research
questions consisted of three researchers, two practitioners, and
four project stakeholders. The researchers and practitioners collab-
orated on the realization of the desired data-sovereign Al pipeline
at Mondragon [53, 62]. Two researchers and the two practitioners
formed the core development team. The third researcher provided
methodological and architectural guidance. Travel restrictions due
to Covid-19 hindered the team from directly working together. To
overcome this problem, regular virtual working sessions were used
to clarify open questions, for pair programming, and resolving
technical and management problems. The project stakeholders in-
cluded members of Mondragon’s senior management and helped
the development team prioritize functionalities and mitigate risks.

3.2 Action Planning and Design

Following Petersen et al. [53], the Action Planning and Design phase
is used to identify and discuss different approaches for problem
solving and to choose a suitable approach. In this case, two parties,
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Figure 2: Collaborative and Sovereign Data Analysis at Mon-
dragon

Mondragon and the research facility, collaborated on a federated,
collaborative Al pipeline (see Figure 3). Hereby, Mondragon speci-
fied the desired model and collected and prepared the data (indicated
by the green area). The research facility acted as an Al consultancy
and was responsible for training, evaluation, deployment, and mon-
itoring of the AI model used for data quality estimation (blue area).
Both parties required data sovereignty for their artifacts, which is
the raw data at Mondragon and the trained Al model at the research
facility (grey area). Specifically, the partners raised the following
four data sovereignty requirements for their respective artifacts:
(1) the data can only be used under agreed terms, (2) data access
can be revoked at any time, (3) both partners share the same secure
execution environment to avoid data loss, and (4) participants can
be forced to delete data if necessary.

To realize the desired data-sovereign Al pipeline, the action
research team analyzed and compared existing data sovereignty
solutions. The IDS principles, as a solution for an implementation
of sovereign data processes, appeared to be a good approach to
implement the defined requirements. As a concrete implementation
of these principles, the action research team selected the DSC [34]
as basis for the project. We made this decision for several reasons.
The DSC is a reference implementation of an IDS Connector and
ensures a sovereign data exchange by following defined standards
and rules. As an up-to-date and community-driven open source
project, it provides the possibility of continuous exchange, support,
and active development. Unlike other open source projects, the DSC
is developed and maintained under administration and supported
by an official association, the IDSA [7].

With regard to the IDS Reference Architecture Model, the DSC is
one of the most advanced connector implementations. It uses state-
of-the-art technologies and standards, such as X.509 certificates
and a REST API following the RFC 7231 standard [20]. In addition,
it implements best practices (e.g., following code style guides, high
level of test coverage) and well-known software development pat-
terns (MVC, Factory) to provide high code quality. Thereby, it offers
a simple out-of-the-box solution with clearly defined interfaces and
a simple deployment. In contrast to other implementations, as pre-
sented in Section 2.3, it encapsulates the IDS logic from connected
legacy systems and strives for a user-friendly implementation of
usage policies and their enforcement.
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3.3 Action Taking

The action research cycle continues with the Action Taking step
in which the implementation of the previously selected approach
is described [62]. The implementation requires the realization of
three different components. First, both parties need to implement
an instance of the Dataspace Connector (DSC) [34] to participate in
the data space. Second, Mondragon needs to implement a backend
component that gathers the data and publishes it using the DSC.
Third, the research facility needs to offer their Al application for
data quality analysis as a service within the IDS data space, a so
called DataApp [52].

The Dataspace Connector (DSC) is an open-source Java ap-
plication that enables the participation in an IDS-based data space
[34]. By using a containerized deployment, it can be easily set up
in different system landscapes. The DSC guarantees compliance
with agreed data sharing terms in three ways. First, via its REST
AP, the offered resources are provided with meta information such
as data sharing policies (see Figure 4). Before data is shared, a con-
tract negotiation takes place between two connectors to ensure the
data sharing follows these policies. Therefore, a potential data con-
sumer either adopts an initial contract offer or provides a counter
offer. Its validity is checked by means of syntax, content, and sig-
nature. The negotiation concludes with a contract agreement. For
increased trust, the IDS Clearing House is included as an attesting
third party [52]. Second, to ensure that the containers adhere to the
data sharing terms, the IDSA (i.e., the independent trustee) certi-
fies the connector technologies. For this, each DSC must, besides a
number of other specifications (see [32]), be equipped with IDS and
TLS certificates (both SSL) to be able to share data via a secured
communication protocol. Third, the DSC receives consumed data in
an internal database and enforces the agreed-on data sharing terms
(e.g., deletion after n-times usage) using this database if necessary.
Currently, usage control ends at the DSC and is not enforced in
other systems. These kinds of usage controls are part of future work
(see also Section 4.3). Overall, the DSC attains the necessary level
of trust by combining technical and governance measures.

The Backend Component (Mondragon) is a data collection,
management, and sharing platform based on open-source technolo-
gies deployed at Mondragon. The platform consists of three main
components: (1) a messaging system based on RabbitMQ, (2) a data
flow integration framework implemented with NodeRED, and (3) a
data repository constructed with MongoDB. Hereby, the backend
collects messages from the processes running in the production
plant in JSON format. The messages carry data produced by the
devices and assets deployed in the plants. To receive the messages,
there are NodeRED data flows subscribed to the RabbitMQ message
broker that extracts those messages and locally validates if their
values are within the correct thresholds. The messages received
are then stored in different MongoDB collections depending on the
process they originated from. Based on the nature of a message and
the intended data analysis task, the correct Al pipeline is selected.
For example, data from a press machine that is intended for external
analysis is stored in a corresponding MongoDB collection. Since
the interaction with the DSC is REST-based, we collected messages
for a time period of 15 minutes and added a unique identifier to the
data set. The identifier connects the messages in a data set with the
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Figure 3: Collaborative Data-Sovereign Al Pipeline, adapted from Amershi et al. [6]

identifier of the AI model created by the external data quality ser-
vice provider. A typical data set produced this way is a structured
JSON file that contains numerous messages with sensor values and
is about 1MB in size.

The DataApp (Research Facility) contains the Al functionality
for data quality analysis as a service. It is realized as a Python appli-
cation and uses Apache Spark as the analytical framework. For data
quality calculation, we combined four different measures that are
suitable for sensor-based inputs and cover the quality dimensions
accuracy, completeness, and validity [1, 38]. The calculation of data
accuracy is two-fold. First, we used an Isolation-Forest algorithm to
determine the commonness of outliers in the data set. Second, we
assessed a potential concept drift by learning the boundaries and
averages of each sensor as an approximation. This approximation
can be compared to the approximations of subsequent data sets
leading to a measure of concept drift [25]. For completeness, we
used a "No Value’ measure that identifies sensors which do not pro-
vide data. Finally, we assessed the validity of the data by detecting
sensors that stay constant over multiple data sharing cycles.

Catalog

$ link
Iir;k/l Resource (offer)

WK

Representation Contract
$ link $ link
Artifact Rule

Figure 4: Required Artifacts as Specified by the IDS Informa-
tion Model [52]

Table 1 summarizes the message flows of the components in the
architecture depicted in Figure 2. Hereby, the DSC at Mondragon

is referred to as the data source and the one at the research facility
as the data sink. A typical cycle time of this process (steps 1 to 7)
takes about one minute.

3.4 Evaluation

The Evaluation step of the action research cycle measures the ef-
fectiveness of the previous Action Taking step by conducting focus
group discussions, interviews, or questionnaires [53, 62]. To eval-
uate the implemented data-sovereign Al pipeline at Mondragon,
we presented and discussed the final version of our solution with
the whole action research team as part of a qualitative focus group
discussion. Focus group discussions are well-suited for efficiently
gathering relevant data and taking advantage of the group inter-
action [28]. The meeting included nine participants and lasted for
60 minutes. One of the authors demonstrated the functionality
of the Al pipeline, presented the overall architecture, and asked
for feedback regarding functional and non-functional characteris-
tics. Furthermore, we asked for potential future developments and
missing features.

Overall, we received positive feedback for the Al pipeline from
the different stakeholders. Specifically, the participants agreed that
our solution is a step in the right direction to enable collabora-
tive Al initiatives with external partners and overcome current
data governance and trust issues. This way, our developments help
Mondragon to better exploit their available data sets and improve
business operations. We included the feedback from this group
discussion in our findings, which are presented in Section 4. Re-
garding the future development of the tool, Mondragon is currently
discussing internally how to proceed and what suitable follow-up
use cases could be implemented.

3.5 Specifying Learning

In the final step of the action research cycle, the general learnings
are identified and formalized based on the previous evaluation [62].
After the evaluation step, the core development team conducted a
full-day workshop to reflect on the design decisions, downsides, and
success factors they experienced during the twelve-month project.
Based on these experiences we formulate generalizable lessons
learned, benefits, and barriers. We used different data sources to
draw our conclusions, including architecture documents, meeting
notes and protocols, and email correspondence [57]. To reach a
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Table 1: Message Flows for the Implemented Solution

Step  Mondragon to Service Provider

Service Provider to Mondragon

1

Data set Preparation: Data/factory owner configures
system to collect sensor messages for 15 minutes and
stores them in a data set. Data owner offers that data set
through an API and prepares the IDS Connector offering
that resource.

Contract Agreement: Data/factory owner and con-
sumer agree on certificates. Certificates are issued by
the IDS certification authority. This is the first step to-
wards a contract agreement for data exchange.

Data Subscription: The service provider (Data Sink)
subscribes to the resource offering the data set through
its IDS Connector.

Data Provision: The application created by the Data
owner produces a data set and offers it through its API
and the IDS Connector installed in its premises.
Notification: The data owner’s IDS Connector notifies
the data sink’s IDS Connector (service provider) about
an updated resource.

Data Request: The data set is requested by the service
provider after a notification is received.

Data Sharing: Usage Policies are checked so that the
data set flows only to the IDS Connector complying with
the contract. Finally, the data is transferred to the service

provider.

Data Quality Analysis: The service provider conducts
a data quality analysis from the latest data set using its Al
tools. The service provider offers those results through
an API and prepares the DSC offering a resource.

Contract Agreement: Data/factory owner and con-
sumer agree on certificates. Certificates are issued by the
IDS certification authority. This is the first step towards
a contract agreement for data analysis result exchange.
Data Subscription: Mondragon subscribes to the re-
source offering the data quality results through its DSC.

IDS Resource Update: The Service Provider updates
the resource associated to its IDS Connector with the
API holding the latest analysis results.

Notification: The service provider notifies the factory
owner about new results available (resource update)
through the DSC.

Result Request: The analysis results are requested by
the factory owner after a notification is received.
Result Sharing: Usage Policies are checked so that the
results are collected only in the DSC complying with the
contracts. Finally, the data quality result is transferred
from the service provider to the factory owner.

consensus, we discussed, grouped, and merged different learnings
until recurring patterns emerged. We imposed these recurring pat-
terns onto the case at Mondragon and formulated findings that
feed into the process of generalization of the class of problem [56].
This means that our findings are not only relevant to Mondragon,
but can inform the establishment of data-sovereign Al pipelines
in different companies and business domains. We elaborate and
discuss these findings in the upcoming Section 4.

4 LESSONS LEARNED, BENEFITS & BARRIERS

After completing the action research project, the project team suc-
cessfully developed a data-sovereign Al pipeline that supports Mon-
dragon in cooperating with external Al service providers. To struc-
ture the presentation of our findings, we used the recently published
data challenges model by Groger [27] for categorization. We noted
to what data challenge (i.e., data management, data democratiza-
tion, and data governance) our findings correspond and how we
addressed these challenges.

4.1 Lessons Learned

Based on the aforementioned approach, we formulated ten lessons
learned which consist of recurring practices, experiences, and de-
sign decisions we made during the project (see Table 2). These
lessons learned serve as our response to RQ1.

Need for Data Traceability We soon realized that we needed
a solution to link the data sets at Mondragon with their corre-
sponding Al model provided by the research facility. For example,

Table 2: Lessons Learned for Data-Sovereign Al Pipelines

# Lessons Learned Data Challenge [27]

1 Need for Data Traceability

2 Need for an Independent Trustee

3 Need for Quality-Driven Data

Sharing

Need for a Data Catalog

Need for Real-Time Support

Need for a Separation of Control

and Data Plane

7  Need for Access and Usage Con-
trol Enforcement

8 Need for Standardization

9  Need for a Common Definition
of User Roles

10 Need for a Trusted and Secure
Deployment Environment

Data Management
Data Governance
Data Democratization

Data Democratization
Data Management
Data Governance

N U1

Data Management

Data Management
Data Governance

Data Management

it was difficult for the Al developers at the research facility to re-
solve mismatches in the data schema due to a lack of data domain
knowledge. In accordance with Amershi et al. [6], we found that
the ’debuggability’ of Al pipelines is an important aspect for its
success and usefulness. Especially for complex architectures [6] or
safety critical operations [10] such a ’data trail’ is vital. In our case,
we wanted to be able to track down errors to specific data sets to
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identify the source of an error (e.g., data errors, wrong formatting,
etc.) and ensure reproducibility. To achieve this goal, both partners
extended their data structures and included matching identifiers
for corresponding data sets and resulting Al models.

Need for an Independent Trustee One of the biggest obstacles
of collaborative Al applications is data privacy [39]. The potential
revelation of sensitive or personal information is often seen as too
much of a risk, and companies omit the opportunities offered by
collaboration. Technical solutions for this problem (e.g., multiparty
computation or anonymization) often come with reduced model
performance [39]. Another approach is to increase the level of
trust between participants and share data on the same terms and
conditions, which are guaranteed by an independent trustee. For
us, an important motivation to use the DSC was that the IDSA [52]
served as such an independent trustee and guaranteed that both
parties used the same connector technologies, information models,
and terminologies. Technically, this guarantee is realized using IDS
certified software components and uniquely identifying the two
DSCs using IDS certificates. Without these, data sharing would not
be possible within the trusted data space.

Need for Quality-Driven Data Sharing Although Mondragon
outsourced the data quality analysis to an external partner in our
case, we experienced that an initial data cleaning and preparation
step is obligatory before data sharing. Otherwise, simple errors like
null values, schema mismatches, or pattern inconsistencies can lead
to errors further down the Al pipeline. Data quality is an important
aspect of Al pipelines and it is vital to ensure high quality data
is shared [6, 27, 42]. Several studies (e.g., [4, 42, 63]) conducted
research on realizing data validation in the form of data quality
rules, integrity constraints, or 'data tests’. In our case, we specified
data schema and pattern validations as ’data tests’ to spot changes
in the data format and value inconsistencies. This way, we ensured
that data and results can be processed by the external party that
lacks the necessary data domain knowledge.

Need for a Data Catalog Reusing existing data sets and models
has become an important part of Al to reduce duplicate efforts and
speed up data science projects [6, 10]. However, reusing data sets
requires the ability to find and access suitable data sets. For this,
a data catalog, which stores metadata for data artifacts, is a viable
solution as it supports the data discoverability and accessibility
[27, 44]. In our case, a data catalog was not required because all
data sets were known and clearly specified in advance. However,
while discussing potential future developments, we found that a
data catalog would be beneficial in exploratory Al projects where
not all data sets are known a priori. It could, for example, be located
at a data space level to bring data providers and consumers together
and reduce the usually high efforts associated with data search,
access, and preparation [44, 51, 64]. We argue that a data catalog
should be considered in more complex Al architectures to facilitate
the reuse and sharing of existing data sets.

Need for Real-Time Support During project execution, we
were able to confirm the current trend for real-time support on
different levels of the AI pipeline. Specifically, the action research
team noted that there is a need for supporting data sharing for
data streams and a need for the fast deployment and continuous
integration of Al models. At Mondragon, we forwarded messages
to the Al service provider every 15 minutes, because the DSC REST
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APIs do not offer real-time support. However, in time-critical use
cases this is not an option. Towards this end, Muiruri et al. [44]
provide examples of using gRPC (Google Remote Procedure Calls)
to realize a real-time, low latency data exchange. With MLOps
it has become increasingly popular to connect data science and
deployment and overcome typical problems like the imbalance of
data scientists and deployment personnel, management of multiple
versions of Al models, or training and production skew [37, 43].

Need for a Separation of Control and Data Plane To realize
real-time support with a low latency, software has to meet certain
technical requirements, as mentioned above. The communication
protocols defined by the IDS, for example, can fulfil these require-
ments only to a certain extent. To enable data sovereignty, this
also involves the exchange of additional meta information and the
verification of usage policies. For this reason, the data transfer is
slower than one without these additional processes. This results
in the need to separate the control and data flows in a sovereign
system. While steps 1 to 6 from Table 1 are not time-bound and
can be implemented using for example an IDS communication pro-
tocol, the actual data transfer (step 7) can be implemented using
any protocol without losing the added value of data sovereignty.
At Mondragon a separation was not required as the usual data
transfer was relatively small. It can be important when integrating
data-sovereign Al pipelines with very large systems and amounts
of data [6].

Need for Access and Usage Control Enforcement What char-
acterizes sovereign systems is not only the possibility to restrict
access to the data, but also to define and check its actual usage up
to the data consumer. This means that simple authentication and
authorization mechanisms through systems such as Keycloak [55]
are supplemented by the enforcement of terms of use. The clear
definition and control of usage terms helps organizations address
prevailing data governance issues [27]. In this context, our data
sovereignty solution not only offers the possibility to define usage
policies, but also to negotiate them. This increased the level of trust
between Mondragon and the research facility and was a major suc-
cess factor for our project. The negotiated contracts are similar to
those specified in data governance protocols. However, the condi-
tions defined with the DSC not only create a general agreement, but
can actually be implemented technically. This way, they contribute
to the open question of how to implement the usually ill-defined
data governance aspects within an organization [27].

Need for Standardization Early in our project, we discovered
that there is a lack of experience and standards with regard to
data-sovereign Al pipelines (see also Section 2). Although, there
are de-facto standards or standardization efforts for data structures
(IDS Information Model [9]) and contract negotiation [65], there
are still some white spaces. The realization of insular projects with
regard to data sovereignty, but also Al in general, hinders the stan-
dardization and consequently the proliferation of these concepts
[27]. Specifically, we experienced a lack of standardization for devel-
opment and deployment processes. For example, while it was clear
to us what messages the two DSCs needed to exchange (see also
Table 1), we had difficulties figuring out how to implement these
messages. Other examples include difficulties in integrating our
developments with the DSC or problems on connecting our DSC
instance with backends. Towards this end, further documentation,
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guidelines, and practice reports would be beneficial and help to
move from insular projects to a wide application.

Need for a Common Definition of User Roles Data access is
a common aspect of the data governance challenge in Al engineer-
ing and usually solved by the specification of user roles [27, 64]. In
the context of data governance, the literature has defined a num-
ber of user roles, such as data steward or data owner, which are
widely accepted and used [27, 50]. These roles are usually derived
from the structures within a company and then mapped onto their
applications and systems. In order for two data sharing systems
to negotiate data usage control agreements, the understanding of
the included rules must be the same. For example, a data steward
might be granted access to an Al model but might have less rights
at Mondragon than at the research facility. We experienced this
phenomenon when we specified usage controls for the other part-
ner respectively. There needs to be a mutual agreement between
the partnering companies on the used user roles. A common defini-
tion of these roles, for instance in industry or ecosystem wide data
catalogs, would help to achieve this goal.

Need for a Trusted and Secure Environment The recent crit-
ical log4j vulnerability [49] showed us once more that software is
only as secure as the environment in which it is running. Even if
an Al pipeline implements data sovereignty by using encryption
and authentication mechanisms and enforcing usage control, this is
of limited value if the overall environment has been compromised.
Especially, in a collaborative or federated Al initiative, this can be
a threat to the mutual trust [10]. Consequently, there is a need to
not only implement data sovereignty but also security through all
layers, from the software stack to the deployed hardware, e.g., by us-
ing Trusted Platform Modules (TPM). Ideally, the data sovereignty
component would, hereby, not only guarantee data sovereignty
but also enforce system security. The IDS includes “strict container
isolation, integrity-protected logging, encryption of all persisted
data, protection against accidental misuse by administrators® [32]
(p.7) as part of their certification criteria for a trusted IDS Connector.
Currently, first developments on technically enforcing these prin-
ciples are made [34], but there are many opportunities for further
developments.

4.2 Benefits

During project execution we observed that a data-sovereign Al
pipeline offers several benefits to both partners. We derived these
benefits from discussions within the core development team and
evaluations with the project stakeholders. Afterwards, we general-
ized our experiences to formulate common benefits, which serve
as a response to RQ2 (see Table 3).

Increased Trust among Participants One of the main ben-
efits of data-sovereign Al pipelines is the increased trust among
participants. Having an independent trustee who certifies that all
participants are operating under the same terms, conditions, and
processes, helps to overcome non-technical obstacles to data shar-
ing that are rooted in a lack of trust. With an increased level of
trust, there is a higher willingness for data sharing, which creates a
win-win situation for both parties. One team member summarized
this benefit as follows:
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Table 3: Benefits of Data-Sovereign Al Pipelines

# Benefits Data Challenge [27]

1 Increased Trust among Partici- Data Governance
pants

2 Minimization of Data Gover- Data Governance
nance Work

3 Technically Restricted Data Ac- Data Management
cess

4 Appliance with Various Tech- Data Democratization
nologies and Execution Environ-
ments

Having a guarantee that all participants are certified and using
the same technological components and ontologies, makes us feel safe
and overall easier to share data sets with partners.

Minimization of Data Governance Work The use of a com-
mon framework and information model and the technical enforce-
ment of data usage constraints and sharing contracts reduces the
amount of manual data governance work. Considerably, it helps to
simplify lengthy processes containing legal clarifications, contract
negotiations, and discussions, because all partners are operating
on the same basis. As one team member stated:

Sharing data models with external partners is a complicated process
including several people and departments, and it can easily take weeks
or months until clearance.

Towards this end, a data sovereignty component can help to
avoid the establishment of ’data governance anti patterns’ [44] and
ease data access.

Technically Restricted Data Access In addition to the mini-
mization of data governance work, the technical restriction of data
access and the inseparable metadata exchange can help to avoid
data management work [27]. The use of a common and machine-
readable metadata structure, such as the IDS Information Model
[9], enables the technical implementation of this. Guidelines and
specifications such as those of the IDS provide a framework and en-
rich existing pipelines that are based on data sharing. One member
of the development team stated the following:

Limiting access to a certain amount simplifies the data manage-
ment and makes the system more secure by avoiding illicit data access.

Appliance with Various Technologies and Execution Envi-
ronments Our experiences over the course of this project showed
us that data sovereignty is not limited to certain data, technologies,
or deployment environments. It can add value in both IoT systems
and cloud environments. Moreover, it can integrate new and com-
plex Al processes in a way that does not compromise security and
trust in data processing, or result in a modification of existing im-
plementations. It facilitates the reuse and sharing of Al models with
other companies and creates new business models [10]. By using
complementary software such as the DSC, companies can quickly
expand existing systems and integrate them into a data ecosystem
without any major effort. Thereby, topics such as data processing
and data sovereignty can be easily reconciled. One team member
summarized this benefit as follows:



CAIN’22, May 16-24, 2022, Pittsburgh, PA, USA

The realization of data sovereignty offers many new opportunities
for inter-organizational collaboration to us.

4.3 Barriers

In contrast to the benefits we also observed that there are some bar-
riers to data-sovereign Al pipelines. These are problems, downsides,
or limitations of our current solution and provide opportunities
for future research and developments. We summarized the derived
barriers in Table 4 as a response to RQ3.

Table 4: Barriers to Data-Sovereign Al Pipelines

# Barriers Data Challenge [27]

1 Limited Support for Existing Data Democratization
Technologies

2 Potential Performance Issues Data Management

3 Challenging Implementation of Data Management
Usage Control

Limited Support for Existing Technologies One of the ma-
jor problems we identified is that current data sovereignty solutions
are still in their infancy and it can be difficult to connect them with
existing technologies. Especially, when these technologies do not
support REST APISs, such as legacy systems, an integration is cur-
rently not possible. This imposes limitations on the automated data
acquisition, which hinders an adoption of MLOps [37]. To overcome
this problem, an intermediary broker (e.g., Apache Kafka) or custom
glue code is necessary to connect the incompatible components.
Such an intermediary component could be valuable in any case to
realize quality-driven data sharing (see also Section 4.1). In our case,
Mondragon used NodeRED as an integration framework to connect
and distribute messages between different backend systems.

Potential Performance Issues An important conceptual down-
side of our current solution is that all shared data is transferred
through the DSC. This makes sense with regard to the aspect of
ensuring data sovereignty, but the additional step can lead to perfor-
mance issues and an increased latency. At Mondragon, we were able
to avoid this issue by transferring only small amounts of data and
realizing a non time-critical application. However, for big data and
time-critical scenarios the current concept could cause problems.
A potential solution for this is a separation of concerns between
data transferring and handling usage constraints. However, further
technical and conceptual developments are necessary. The EDC
project [23] is currently conducting research in this direction.

Challenging Implementation of Usage Control In the pre-
vious sections, we elaborated on the need for data sovereignty in
the form of common information models, guidelines, and access
and usage control. However, for Mondragon and the research facil-
ity data sovereignty ends at the DSC. A guaranteed usage control
across the whole data lifecycle is very difficult to realize technically
[45, 64, 66]. With the IDS Usage Control Language [61] and frame-
works such as OPA [17] or LUCON [59], and the implementation
of the DSC [34], first steps have been taken. However, how access
and usage control along the entire data processing chain can be
guaranteed has not yet been comprehensively solved. Even if a
system has been implemented securely and trusted at all layers [12]
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and is integrated into a sovereign ecosystem, the sovereign data
will probably leave these systems at some point. It might end up
in associated Al applications, existing databases, or other systems
that do not have a native usage control implementation. First ap-
proaches [14, 23] have addressed this issue, but so far there is no
viable solution.

5 CONCLUSION

The guiding objective of our empirical action research case study
was to implement an Al pipeline at Mondragon that enables the
sovereign data exchange with external Al service providers. To
derive generalizable contributions, we reflected and synthesized
the experiences and evaluation results of the twelve-month project.

Following Petersen et al. [53], action research is a suitable ap-
proach for "transferring research results into practice” (p.61). The
generalized findings can be used by other practitioners to imple-
ment data sovereignty in Al pipelines in their respective contexts
and avoid the emergence of ’data governance anti-patterns’ [44].
Furthermore, by presenting our course of actions, we are able to
provide insights on the internal perspective of implementing data
sovereignty, which can help to raise awareness for sovereign data
sharing [15].

From a scientific perspective, our work contributes to the body
of knowledge on Al engineering. Specifically, it offers details on a
solution to common challenges in federated, distributed Al infras-
tructures, highlighted by several studies (e.g., [6, 10, 27, 40, 44]). By
categorizing our findings in the context of the AI challenges frame-
work by Groger [27] and highlighting gaps in current solutions,
we offer concrete opportunities for future research. Addressing
these gaps would help to advance the field and address the pre-
vailing data challenges for Al Through the continuous interplay
of researchers and practitioners, our derived knowledge is both
theoretically grounded and practically inspired and constitutes a
sound contribution to the scientific community [8, 53].

Our work is subject to several limitations, which are based on
the nature of the action research project and the qualitative data
analysis [8, 53]. Most importantly, our study faces organizational
bias as we conducted our research within a single organization,
and is of limited external validity. In other contexts (e.g., smaller
companies, different industries, etc.), a solution might look different
and lead to other findings. Additionally, the process of reflecting
and synthesizing the findings is subjective and other researchers
might come to different conclusions.

Further empirical studies in other contexts could help to over-
come these limitations and add validity to our findings. Moreover, by
investigating further cases, we could advance our findings from gen-
eral lessons learned to concrete design patterns for data-sovereign
Al pipelines. Finally, we plan to address the barriers we identified
as part of the further development of our solution to create a more
sophisticated data-sovereign Al pipeline.
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