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a b s t r a c t 

Fuzzing is nowadays one of the most widely used bug hunting techniques. By automatically generat- 

ing malformed inputs, fuzzing aims to trigger unwanted behavior on its target. While fuzzing research 

has matured considerably in the last years, the evaluation and comparison of different fuzzing proposals 

remain challenging, as no standard set of metrics, data, or experimental conditions exist to allow such 

observation. This paper aims to fill that gap by proposing a standard set of features to allow such com- 

parison. For that end, it first reviews the existing evaluation methods in the literature and discusses all 

existing metrics by evaluating seven fuzzers under identical experimental conditions. After examining 

the obtained results, it recommends a set of practices –particularly on the metrics to be used–, to allow 

proper comparison between different fuzzing proposals. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Fuzzing is an automated testing technique that allows vulner- 

bility detection by generating malformed inputs to trigger un- 

anted behaviors and find bugs against different systems, gener- 

lly software applications. 

Since the inception of the first fuzzer in 1990 by 

iller et al. (1990) , fuzzing research has evolved vastly. This 

volution has occurred mainly in two different directions: On 

he one hand, fuzzing is being applied to audit targets that are 

ery different, ranging from large-scale distributed applications 

o low-power embedded devices. On the other hand, fuzzer in- 

ernals have been in constant improvement, searching for more 

fficient vulnerability discovery from the initial randomly mutating 

lack-box fuzzers. 

These evolution have led to the creation of a plethora 

f different fuzzers (refer to surveys Chen et al. (2018) ; 

iang et al. (2018a) for a wide exploration of the field). How- 

ver, even if the field of fuzzer creation has evolved rapidly, re- 

earch on the means of comparing and evaluating different fuzzers 

sing an objective set of criteria has not evolved at the same 

ace ( Hazimeh et al., 2020 ). 
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The lack of standard assessment criteria has led to the issue 

hat it is often not feasible to objectively compare different fuzzers, 

s experimental conditions or used metrics vary between propos- 

ls ( Aschermann et al., 2019; Lemieux and Sen, 2017; Liang et al., 

018b; Yue et al., 2019 ). 

This paper aims to fulfill this gap by analyzing existing fuzzing 

valuation methods and proposing a standard set of metrics and 

xperimental conditions to be used when evaluating fuzzers. To 

his end, the current literature has been analyzed to identify the 

urrent status of fuzzing evaluation. Particularly, the review focuses 

n the set of metrics, data, and experimental conditions used in 

he literature. Next, seven widely used fuzzers are executed and 

ompared under identical experimental conditions to compute the 

etrics previously identified. Finally, those results are analyzed, 

nd the most relevant metrics are identified, as well as outlining 

ome recommendations when comparing fuzzers. In summary, the 

ain objective of the manuscript is to describe and define an ob- 

ective and standard evaluation methodology for fuzzers. 

The main contributions of the paper are the following: 

• Identification and analysis of existing fuzzing evaluation meth- 

ods to detect the necessary elements for fuzzing algorithms as- 

sessment. 

• Definition of the experimental environment, where the re- 

sources used to perform the experiments and the conditions 
under the CC BY-NC-ND license 
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under which the tests are carried out are specified. The re- 

sources are online available. 1 

• A case study based on the experimentation of seven different 

widely used fuzzers. 

• Experimental identification of the most relevant fuzzing metrics 

for fuzzer evaluation and comparison. 

For this purpose, the paper has been organized as follows: 

ection 2 analyzes the features of current techniques to evaluate 

he fuzzing algorithms and the current evaluation methodologies. 

ection 3 presents the experimental setup: fuzzers, metrics, data, 

nd experimental conditions. Section 4 explains the analysis of the 

esults, and in Section 5 , we give some recommendations to assess 

uzzers. Finally, Section 6 concludes the paper. 

. The current state of experimental evaluation of fuzzers 

Fuzzing is an automated testing technique that allows finding 

ulnerabilities in different systems. For this end, it generates mal- 

ormed inputs to break the system and find bugs that trigger such 

ehavior. 

A wide variety of fuzzers have been created since 1990, when 

rofessor Miller created the first fuzzer. This fuzzer generated the 

nputs randomly and was a black-box type fuzzer. Since then, 

uzzers have evolved using different techniques such as instrumen- 

ation or taint analysis, giving rise to other types of fuzzers: white- 

ox and gray-box. 

Black-box fuzzers do not need any feedback or knowledge about 

he internal workings of the system under test (SUT) to test 

hem ( Chen et al., 2018 ). White-box fuzzers, on the other hand, 

eed complete visibility to operate correctly since they use the ad- 

itional information to generate new inputs ( Liang et al., 2018a ). 

inally, gray-box fuzzers need to have some knowledge about the 

UT, but what they need to know will depend on the technique 

hey use, as gray-box fuzzers may be closer to the black-box or 

hite-box scope ( Jun Li and Zhang, 2018 ). Therefore, there is a 

onsiderable variety of fuzzers, each with its own characteristics. 

From the conception of the first fuzzing algorithm, different 

ethods have been defined and used to evaluate them. These 

ethods are based on a set of measurements or metrics under a 

et of experimental conditions that score the performance of the 

lgorithm. The authors of each fuzzer have mainly defined these 

ethods on an ad hoc basis. Due to this lack of consensus in the 

valuation of fuzzers, there are many experimental conditions and 

etrics used in the literature. This is not a purely scientific is- 

ue, as it also affects practitioners by complicating the choice of a 

uzzer in constrained scenarios where it is not feasible to evaluate 

 set of fuzzers to choose the best performing one. It is necessary 

o define a set of metrics known to best represent the actual per- 

ormance of the fuzzers. 

Moreover, in an attempt to solve this issue, several specific au- 

omated assessment frameworks have been developed to automate 

his process. In the following sections, we will describe metrics, 

xperimental conditions, and the automation frameworks found in 

uzzing-related literature. 

.1. Fuzzing metrics 

In order to measure the performance of fuzzing algorithms, a 

ide range of metrics have been defined in the literature. This set 

f metrics is shown and compared in Table 1 . Among the thirty-six 

nalyzed papers, metrics can be categorized into three groups: 

• Bug detection: these metrics are aimed to account for the num- 

ber of detected bugs. In the analyzed literature, most works 
1 https://www.github.com/Mai722/FuzzingResults . 

2 
consider a bug as any unwanted behavior in a system or pro- 

gram ( Chen et al., 2018 ). Such unwanted behavior does not nec- 

essarily mean that a crash happens, nor the exploitable nature 

of the bug. Measuring bug exploitability may require further 

(manual) analysis ( Hazimeh et al., 2020 ) which would require 

an additional step to fuzzing itself. Moreover, any seemingly 

minor bug can be the cause of a future larger issue in some 

systems (particularly resource-constrained ones) because they 

do not react instantly to inputs ( Muench et al., 2018 ). There- 

fore, in this paper, we will be using the more generic definition 

of bug –prevalent in the literature– instead of only consider- 

ing the directly exploitable crashes. While the main objective 

of fuzzing is to detect bugs, the literature shows different man- 

ners to measure the performance of a fuzzer in bug finding. For 

instance, it is possible to count the number of found bugs that 

other fuzzers have failed to detect ( B.2 ) or the total number of 

target crashes while testing ( B.3 ). 

• Coverage: metrics belonging to this category aim to quantify 

the percentage of the code that has been executed at least 

once during fuzz testing. These metrics can only be measured 

in scenarios where it is possible to instrument the source 

code in such a way that it is possible to detect the execu- 

tion of the program with different levels of granularity, such as 

lines, branches, paths, or even functions. In black-box based ap- 

proaches is not possible to measure coverage metrics, because 

there are not resources and/or access to measure them. How- 

ever, in white-box and gray-box based approaches it is usually 

possible to measure them. 

• Performance: this group of metrics measures fuzzer perfor- 

mance in terms not directly related to the previous two groups. 

These metrics include the number of tests or runs that it can 

execute within a specific time frame, the time needed to find 

the first bug, or the execution speed. 

Analyzing Table 1 , it can be observed that the most used met- 

ics are the ones related to bugs. Only twelve of the proposals do 

ot explicitly count the number of found bugs. Metrics related to 

overage come second. Nineteen proposals use at least one cov- 

rage metric, while six measure over one. This is because of the 

mportance of coverage to assess the quantity of executed code, as 

t is not possible to detect bugs in its unexecuted parts. Finally, it is 

hown that performance-related metrics are used in eight papers. 

he number of tests metric ( P.1 ) is the only metric used more than

nce. 

.2. Experimental conditions 

Apart from the metrics used, other factors can strongly influ- 

nce the outcome of the assessments. As such, a set of experimen- 

al conditions must be defined to ensure that all experiments are 

erformed under the same conditions. This equality in the exper- 

mental conditions allows a fair comparison between different ex- 

eriments. In the case of fuzz testing, experimental factors can be 

isted as follows: 

• Datasets: In the case of fuzzers, data corresponds to the soft- 

ware tested in the fuzzing session. While any program can be 

tested, its nature and characteristics, such as its algorithmic 

complexity, will dictate the difficulty of finding bugs. It will 

be easier to find bugs in simple, known-to-be-buggy software, 

whereas it will be more challenging in robust programs with 

complex algorithmic. Therefore, the results of the fuzzer are 

highly linked to the system under test. Therefore, to evaluate 

and compare fuzzers, it is necessary to use a common set of 

applications. 

• Repetitions: The stochastic nature of fuzzers implies that results 

can vary from one execution to another. That means that each 

https://github.com/Mai722/FuzzingResults
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Table 1 

Metrics set in fuzzing literature. (These reference cited in this table ( Godefroid et al., 2008; Grieco et al., 2017; Jitsunari and Arahori, 2019; McNally et al., 2012; Ognawala et al., 2017; Takanen et al., 2008; IFuzzer, 2016; Wang 

and Cartmell, 1997; Xie et al., 2019; Zhao et al., 2011 )). 
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Table 2 

Testing time used in fuzzing literature. 

2h 5h 6h 8h 12h 24h 45h 4d14h 5d 10d 2w 864h 10 0 0h Long. Unexpecified 

AFL( Rawat et al., 2017 ) � � � � � � � � � � � � � �
AFLfast ( Klees et al., 2018 ) � � � � � � � � � � � � � �
AFLgo( Klees et al., 2018 ) � � � � � � � � � � � � � �
Angora( Chen and Chen, 2018 ) � � � � � � � � � � � � � �
BFF( Cha et al., 2015 ) � � � � � � � � � � � � � �
BUZZFUZZ( Ganesh et al., 2009 ) � � � � � � � � � � � � � �
Dowser( Istvan et al., 2018 ) � � � � � � � � � � � � � �
Driller( Stephens et al., 2016 ) � � � � � � � � � � � � � �
FIE( Davidson et al., 2013 ) � � � � � � � � � � � � � �
FuzzSim( Woo et al., 2013 ) � � � � � � � � � � � � � �
GWF ( Godefroid et al., 2008 ) � � � � � � � � � � � � � �
IoTFuzzer( Chen et al., 2020 ) � � � � � � � � � � � � � �
kAFL( Schumilo et al., 2017 ) � � � � � � � � � � � � � �
Learn&Fuzz( Godefroid et al., 2017 ) � � � � � � � � � � � � � �
MoWF( Pham and Böhme, 2016 ) � � � � � � � � � � � � � �
PAFL( Liang et al., 2018b ) � � � � � � � � � � � � � �
Peach( Luo et al., 2020 ) � � � � � � � � � � � � � �
RedQueen( Aschermann et al., 2019 ) � � � � � � � � � � � � � �
S2E( Chipounov et al., 2011 ) � � � � � � � � � � � � � �
SAGE ( Godefroid et al., 2012 ) � � � � � � � � � � � � � �
Skyfire( Klees et al., 2018 ) � � � � � � � � � � � � � �
SLF( You et al., 2019 ) � � � � � � � � � � � � � �
SmartFuzz ( Molnar et al., 2009 ) � � � � � � � � � � � � � �
Steelix( Li et al., 2017 ) � � � � � � � � � � � � � �
SYMFUZZ( Cha et al., 2015 ) � � � � � � � � � � � � � �
Syzkaller( Li and Chen, 2019 ) � � � � � � � � � � � � � �
T-fuzz ( Peng et al., 2018 ) � � � � � � � � � � � � � �
V-fuzz( Li et al., 2019 ) � � � � � � � � � � � � � �
zzuf( Lin et al., 2016 ) � � � � � � � � � � � � � �
TOTAL 1 2 1 1 1 13 1 1 1 1 1 1 2 2 
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repetition will yield different results, even if the used fuzzer, 

the tested code, and all other conditions are kept the same. 

Therefore, to analyze the full potential of a fuzzer, it is neces- 

sary to execute more than one fuzzing run. However, in most of 

the analyzed papers, this number is not specified, nor whether 

more than one repetition is performed. 

• Testing time: This factor refers to the duration of the fuzzing 

session. That is, it ranges from the moment the first input is 

generated until the last response is collected. Table 2 lists dif- 

ferent testing times found across different fuzzing proposals, 

ranging from 2 to 10 0 0 hours. However, 24-hour long tests are 

the most popular option, while ten of them set a longer testing 

time, and six of the papers specify it as less than twelve hours. 

.3. Automated fuzzing assessment frameworks 

The complex landscape of fuzzing is related to the difficulties of 

uzzing evaluation, and the lack of proper tools has motivated the 

evelopment of evaluation frameworks to facilitate and automate 

he evaluation of fuzzers: 

• MAGMA evaluation framework ( Hazimeh et al., 2020 ): pub- 

lished at the end of 2020, this evaluation framework contains 

seven real-world targets. Regarding the experimental condi- 

tions, Magma offers two possibilities for choosing the testing 

time, the runs could be 24 hours or 7 days, which are repeated 

ten times. Regarding the metrics, it measures the number of 

bugs and the time to bug ( Hazimeh et al., 0 0 0 0 ). 

• FuzzBench evaluation framework ( Metzman et al., 2020 ): a free 

service and application launched by Google, FuzzBench permits 

to evaluate fuzzers automatically, either by using the service it- 

self or by running it locally It includes 24 real-world programs 

to test fuzzers against them. The executions are 24 hours long, 

and 20 repetitions are made. The results are returned in a re- 
port where the coverage is analyzed. 

4 
However, in most published articles regarding fuzzing, authors 

esign their ad-hoc framework. This has lead to the proliferation of 

 wide range of experimental conditions (see Table 2 ) and metrics 

see Table 1 ). In each of the papers, they with no additional infor-

ation to justify their choice. In contrast to previous cases, there 

s more consensus when considering the testing time because most 

uthors set it at 24 hours. 

. Experimental set up 

In this section, we describe the experimental environment used 

o assess different fuzzers in a fair and repeatable manner, as well 

s to compare them and identify the necessary standard set of ex- 

erimental aspects for a fair comparison. To reach this aim, several 

spects need to be defined: 

1. Candidate fuzzing algorithms: To conduct the experimentation, 

we have selected seven fuzzers, which, although they are all 

graybox ones, they use different techniques to generate the test 

cases. This way, we will be able to observe which metrics can 

be evaluated more fairly. Even so, we have also considered that 

with the selected fuzzers, we could calculate all the metrics 

mentioned in Table 1 , as not all fuzzers are able to yield the 

information needed to compute the listed metrics. 

• AFLfast ( Böhme et al., 2017b ): It is a coverage-based gray- 

box fuzzer based on AFL. This fuzzer introduces several sig- 

nificant changes to different parts of AFL. Firstly, the cover- 

age is carried out by exploring the state space of a Markov 

chain which models the probability of generating an input 

that exercises a specific path by randomly mutating a previ- 

ous input that exercises another path. Secondly, new power 

schedules are introduced with the aim of exercising a larger 

number of low-frequency paths. Finally, unlike the classical 

policy of selecting a seed based on the number of times a 

seed has been fuzzed, AFLfast introduces two new search 

strategies: Prioritize small s(i) focused on selecting those in- 
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puts such that the number of times that the input has been 

fuzzed being minimal and Prioritize small f(i) which those 

seeds that the number of generated inputs that exercise a 

specific path is minimal. 

• AFLgo ( Böhme et al., 2017a ): This fuzzer is the real-world 

implementation of the Directed Graybox Fuzzing (DFG). DFG 

is a coverage-based graybox fuzzer that, unlike other alter- 

natives, is designed to target specific program locations effi- 

ciently. On a high level, the efficient reachability of specific 

locations is considered an optimization problem. As such, 

DFG uses a specific meta-heuristic called Simulated Anneal- 

ing to minimize the distance of the generated seeds to the 

targets. In order to carry out the computation of the dis- 

tance, a value is assigned to each node in the call graph on 

the function level and in the intra-procedural control-flow 

graphs on the basic-block level. Based on the assigned val- 

ues, the function distance is defined as the number of edges 

along the shortest path between functions in the call graph 

which is used as the basis among other factors to compute 

the normalized seed distance , that is, the distance of a seed 

to the set of target locations. 

• AFLplusplus ( Fioraldi et al., 2020 ): This is a novel fuzzing 

framework that integrates multiple novel features rather 

than a new fuzzing algorithm. This framework incorporates 

novelties in the mechanisms involved in the fuzzing process. 

Firstly, this framework incorporates different seed schedul- 

ing mechanisms such as fast, coe, explore ,etc. Secondly, new 

mutators have been incorporated, such as Input-to-State mu- 

tator and Mopt mutator, but it also provides a Custom Mu- 

tator API . Finally, AFL++ supports several backends for in- 

strumenting code, such as LLVM, GCC, QEMU, Unicorn, and 

QBDI . In addition to this, AFL++ facilitates the researchers 

the development of new fuzzers by incorporating an exten- 

sible API to build upon. 

• Fairfuzz ( Lemieux and Sen, 2017 ): It is a coverage-based 

graybox fuzzer built on top of AFL. This algorithm in- 

tegrates two main novelties into AFL associated with 

the selection and mutation stages. Regarding the se- 

lection process, Fairfuzz, has a different approach than 

AFL as it never removes inputs from the queue and it 

also replaces isWorthFuzzing with a function called 

HitsRareBranch which returns true if the input hits a 

rare branch. A branch is considered rare if it has been hit 

by a number of inputs less than or equal to a dynamically 

chosen threshold. Regarding the mutation process, this is 

carried out in two stages: first a branch mask is calculated, 

which designates at which positions in the input can bytes 

be (1) overwritten, (2) deleted, or (3) inserted based on the 

coverage information; secondly, the mutation is performed 

at a position if the branch mask indicates the resulting in- 

put can still hit the target branch. 

• LearnAFL ( Yue et al., 2019 ): It is a coverage-based graybox 

fuzzer based on AFL that is characterized by the fact that 

it does not require any prior knowledge of the application 

or input format. This fuzzer is able to learn partial format 

knowledge of some paths by means of the analysis of the 

test cases that traverse the paths. In order to accomplish 

this task, two algorithms are proposed: a first 1 aimed to 

generate the format or enhanced expression of magic bytes 

which is based on the longest substring searching algorithm, 

and a second 1 aimed to improve the mutation process with 

the format knowledge assistant mutation algorithm . 

• MoPT ( Lyu et al., 2019 ): It is a coverage-based graybox 

fuzzer based on AFL that improves the process by intro- 

ducing a novel mutation scheduler algorithm. MOpt aims to 

choose the next optimal mutation operator by finding the 
5 
optimal probability distribution of mutation operators. This 

search is carried out by optimizing the optimal probabil- 

ity of each operator and then optimizing the global optimal 

probability distribution of mutation operators. In order to 

accomplish this task, the Particle Swarm Optimization (PSO) 

is leveraged to find the optimal distribution. 

• Superion ( Wang et al., 2019 ): It is a grammar-aware 

coverage-based graybox fuzzer approach that processes 

structured inputs. This fuzzer takes as input the target pro- 

gram and the grammar of the test input and parses each 

test input into an abstract syntax tree (AST). Using these 

ASTs the fuzzer implements two novel strategies for im- 

proving the fuzzing. Firstly, a strategy allows trimming test 

inputs while maintaining the valid input structure. Sec- 

ondly, two grammar-aware mutation strategies, a first strat- 

egy dictionary-based to insert and overwrite tokens in a 

grammar-aware manner, and a tree-based mutation strategy 

that replaces one subtree in the AST of a test input. This 

fuzzer has been implemented as an extension to AFL. 

2. Target programs: this dataset is one of the critical factors when 

evaluating a candidate algorithm. In this sense, we have in- 

cluded a total of 15 real-world programs that are based on 

varying types of input: image, network, text, audio, XML, or 

binary (see Table 3 ). We have based our target selection by 

choosing the most frequently used targets in the analyzed lit- 

erature while also trying to keep the input types as varied as 

possible. This variety allows a fairer comparison by not favor- 

ing fuzzers that might be more proficient in generating inputs 

of a particular type. 

3. Experimental conditions: this aspect is especially relevant for 

having fair and comparable results. To this aim, we have estab- 

lished the following common set of conditions for all combi- 

nations of candidate fuzzing algorithms and target programs as 

follows: 

• Number of repetitions: the random nature used by many 

fuzzers to mutate means that a single-run experiment does not 

yield significant enough results to assess fuzzer performance. It 

is necessary to perform several repetitions. However, this aspect 

is often overlooked in the literature, as most fuzzing contribu- 

tions do not mention the number of repetitions/runs used to 

achieve the presented results. Therefore, establishing a canoni- 

cal repetition number based on the previous consensus remains 

challenging. Nevertheless, fuzzing frameworks do mention this 

number: MAGMA ( Hazimeh et al., 2020 ) mentions ten repeti- 

tions, and FuzzBench ( Metzman et al., 2020 ), twenty. It is im- 

portant to note that to obtain statistically significant results, it 

is necessary to perform at least 15 repetitions ( Belle and Mil- 

lard, 0 0 0 0 ). In addition, considering that each extra repetition 

consumes computing resources, it is advisable to perform the 

minimum number of required repetitions while, at the same 

time, maximizing bug hunting. Therefore, we defined fifteen as 

the most convenient number of repetitions to start and statisti- 

cally analyze the results. 

• Testing time: based on the values in Table 2 , the testing time is 

set at 24 hours. 

Regarding existing automatic frameworks, such as MAGMA or 

uzzBench, while they provide a standard environment for fuzz 

esting, they do not provide the necessary means to obtain all the 

reviously covered metrics ( Table 1 ). They are, thus, not suitable 

or the task at hand. 

Concerning the technical setup, all combinations of fuzzers and 

arget programs have been considered under the previously de- 

ned experimental conditions. In order to facilitate experimen- 

ation and reproducibility, the candidate fuzzers have been de- 

loyed and executed in Docker containers, and a Docker image has 
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Table 3 

Real targets. 

Code Version Type Works where it is used as target 

libjpeg-turbo: jpegtran ( lib, 0000 ) 1.5.2 IMAGE Chen et al. (2019b) ; Jung et al. (2019) ; Lemieux and Sen (2017) ; 

Metzman et al. (2020) ; Rawat et al. (2017) ; Rebert et al. (2003) ; 

Yue et al. (2019) 

libpng: pngtest ( lib, 0000 ) 1.2.45 IMAGE Chen et al. (2019b) ; Hazimeh et al. (2020) ; Jung et al. (2019) ; 

Lemieux and Sen (2017) ; Li et al. (2017) ; Metzman et al. (2020) ; 

Peng et al. (2018) ; Rawat et al. (2017) ; Yue et al. (2019) 

tcpdump: tcpdump ( tcp, 0000 ) 4.9.0 NETWORK Chen et al. (2019a) ; Lemieux and Sen (2017) ; Li et al. (2017, 2020) ; 

Metzman et al. (2020) ; Rawat et al. (2017) ; Yue et al. (2019) 

pcre2: pcre2test ( pcr, 0000 ) 10.19 TEXT Chen et al. (2019b) ; Jung et al. (2019) ; Lia (2021) ; 

Liang et al. (2018b) 

sqlite3: sqlite3 ( sql, 0000 ) 3.30.1 TEXT Chen et al. (2019b) ; Hazimeh et al. (2020) ; Li et al. (2020) ; 

Metzman et al. (2020) 

mp3gain: mp3gain ( mp3, 0000 ) 1.5.2-R2 AUDIO Li et al. (2020, 2019) ; Rawat et al. (2017) ; Rebert et al. (2003) 

libtiff: tiffsplit ( lib, 0000 ) 4.0.9 IMAGE Chen et al. (2019a) ; Jung et al. (2019) ; Li et al. (2017, 2020) ; 

Peng et al. (2018) ; Wang et al. (2010) ; You et al. (2019) 

libxml2: xmllint ( lib, 0000 ) 2.7.7 XML Chen et al. (2019a,b) ; Hazimeh et al. (2020) ; Lemieux and 

Sen (2017) ; Metzman et al. (2020) ; Wang et al. (2017) 

libxml2: xmlcatalog ( lib, 0000 ) 

xpdf: pdftops ( Lopez, 2018 ) 4.0 TEXT Li et al. (2020, 2019) ; Rebert et al. (2003) ; Yue et al. (2019) 

xpdf: pdftotext ( Lopez, 2018 ) 

binutils: objdump ( bin, 0000 ) 2.28 BINARY Böhme et al. (2017a,b) ; Chen et al. (2019a) ; 

Cho, Mingi (Yonsei University); Kim, Seoyoung (Yonsei University); 

Kwon (2019) ; Lemieux and Sen (2017) ; Li et al. (2020) ; Yan and 

Lu (2017) ; Yue et al. (2019) 

binutils: nm-new ( bin, 0000 ) 

binutils: strings ( bin, 0000 ) 

binutils: size ( bin, 0000 ) 

Table 4 

A sample that represents the format of the complete.csv. 

Algorithm SUT Repetition number Time Crashes Hangs Exec/s 

AFLfast jpegtran 0 6 0 0 421 

... ... ... ... ... ... ... 

AFLplusplus string 14 86,167 0 6 1 
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een created containing a fuzzing algorithm. The execution of the 

uzzers in this environment allows using more than one fuzzer si- 

ultaneously with a high grade of isolation and without influenc- 

ng other executions (e.g., other fuzzers or different instances of 

he same fuzzer running in parallel) 

Once the tests are finished, the algorithm itself generates sev- 

ral files reporting the results, allowing analysis of the session: 

• fuzzer_stats.csv . This file summarizes the statistics of the 

process, that is, the total time of the process, the speed of exe- 

cution, and a summary of everything that has been detected. 

• plot_data.csv . This file contains the value of all variables 

(time, crashes, hangs, execution speed...) that the fuzzer collects 

continuously. 

• Crashes . This directory contains the data patterns that cause 

a target crash, as well as the signals that have been activated 

when causing the crash. 

• Hangs . This directory collects the use cases that cause the tar- 

get application to hang, as well as the timeouts. 

• Queue . This is a directory containing the collection of all test 

cases. 

After the experimentation, it is necessary to post-process the 

ata to measure some metrics, where the results of each of 

he repetitions of all the fuzzer-code combinations are stored 

n a CSV file. First, a file collects the results obtained di- 

ectly from the fuzzers ( complete.csv ), and its structure can 

e seen in Table 4 . while another file gathers the coverage 

ata ( covresults.csv ), which is structured as shown in 

able 5 . 
6 
. Analysis of the results 

The objective of the analysis is to determine which metrics and 

xperimental conditions are valid to assess a fuzzing algorithm. For 

his purpose, in this section, we have analyzed a set of metrics 

or each of the groups that have been categorized previously in 

able 1 . 

.1. Bugs 

With five different existing metrics in the literature, bug-related 

etrics remain important as they are directly related to the main 

oal of a fuzzer, that is, to find bugs. This section analyzes the bug- 

elated metrics based on the obtained results. 

.1.1. B.1.Bugs detected 

This metric rates the performance of the fuzzing algorithm (by 

ounting the number of bugs) independently of the used approach 

acilitating the use of this metric not only in white-box or gray- 

ox approaches, also in black-box approaches. When measuring the 

umber of bugs, undesired system behavior is measured, i.e., any 

esult that is not as expected is considered a bug. 

Although this metric rates the algorithm correctly, there are 

ome drawbacks if only one execution is considered. Firstly, an 

arly selection of winners can take place if the only execution is 

ery successful compared with the rest of the alternatives. How- 

ver, it can be something casual and not a general behavior of the 

lgorithm. Secondly, an early rejection, if the only execution is par- 

icularly poor due to the stochastic nature of the algorithm, we can 

e rejecting a fuzzer that in other executions performs very well. 
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Table 5 

A sample that represents the format of the coverage.csv. 

Algorithm SUT Repetition 

number Line % Lines Branch % Branches Function % Function Bugs 

Fairfuzz jpegtran 0 17 2606 23.8 161 25.9 1490 2 

... ... ... ... ... ... ... ... ... ... 

MoPT xmlcatalog 14 0.1 9 0.1 2 0.1 1 - 

Fig. 1. Results of the number of bugs found during 15 repetitions of Fairfuzz fuzzing pdftotext and tiffsplit codes. 

T

e

L

p

f

d

t

r

t

r  

m

t

o

t

t

c

s

i

i

d

t

n  

t

w

t

r

O

r

n

w

h

t

2

s

f  

c  

r

Fig. 2. Fairfuzz fuzzing strings during 15 repetitions. 
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hus, several repetitions are required, showing significant differ- 

nces between repetitions. Fig. 1 shows the results of the fuzzers 

earnAFL and Fairfuzz with the SUT tiffsplit . This is an exam- 

le of how the results vary between repetitions (using the same 

uzzer with the same code). In each repetition, the number of bugs 

etected is different. However, in the case of Fairfuzz (see Fig. 1 ), 

here is a higher variation because the number of detected bugs 

anges from 1 to 225 in different runs. 

Thus, it is necessary to set a minimum number of repetitions 

hat can show the potential of the fuzzer. Because, looking at the 

esults in Fig. 1 , more specifically Fig. 1 , it is possible to see that

ore than one execution is required for each fuzzer-code combina- 

ion. On the one hand, considering the fourth and fifth repetitions 

f the figure, they have significant differences. In the fourth repe- 

ition, 225 bugs have been detected, but only one bug is found in 

he fifth repetition. On the other hand, if repetitions 12 and 13 are 

onsidered, would be found 95 bugs in both cases. So, there is a 

ignificant difference between repetitions. 

Moreover, every single repetition is valuable. The bugs found 

n each repetition could be different from those in other runs. For 

nstance, if a repetition detects more bugs than others does not 

irectly mean that the one that finds more repetitions detects all 

he bugs that are found by the other repetitions, including some 

ew bugs as well. Fig. 1 shows that if all the repetitions are not

aken into account, it will not be possible to know how the fuzzer 

orks. No error has been detected in five of the repetitions, and in 

wo, only a single bug has been detected. If we only consider these 

epetitions, it seems that the fuzzer is not able to detect anything. 

n the other hand, at least fifteen bugs are detected in each of the 

emaining eight repetitions. Therefore, when running a fuzzer, it is 

ecessary to consider all the repetitions to know how it works. 

It is not helpful to measure the mean or the median, as there 

ould be bugs not being considered, as each of the repetitions is 

ighly variable. These variables will be analyzed in more detail in 

he Stability finding bugs metric. 

Additionally, testing a single target is not enough (see Fig. 1 and 

 ) because the number of bugs found depends on the used target 

ystem. It is necessary to run different types of programs to assess 

uzzers, as it may be the case that a fuzzer works well with a spe-

ific type of target but not with the rest. Looking at Fig. 1 , both

esults are of the same fuzzer, but the amount of found bugs are 
7 
ifferent. For instance, if there are ten bugs in one target and one 

undred in another, finding ten bugs means that 100% of the bugs 

re found in the first case. However, finding ten bugs in the sec- 

nd case means that only 10% of the bugs are detected. Neverthe- 

ess, testing different programs makes it possible to see if a fuzzer 

orks better with some targets belonging to a specific domain. 

In conclusion, this metric can provide interesting information 

bout the fuzzing performance whenever the experimental condi- 

ions are correct, and several repetitions are performed against dif- 

erent targets. 

.1.2. B.2.Distinct bugs 

The goal of this metric is to account for the bugs that only a 

uzzer can find, that is, it is a differential measure between fuzzers. 

n order to compute this metric, two fuzzers are required to com- 

ute the score. 

This metric is problematic from its conception concerning the 

oal of the fuzzing for the following reasons: 

• It is not possible in some cases to establish a clear and fair 

ranking when several fuzzers are being assessed. A simple ex- 

ample can show this effect, let us assume that we have a set of 

fuzzers: A, B, C, D, and E, and the bugs are identified by lower- 

case letters (see Table 6 ). 
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Table 6 

Distinct bugs. 

Fuzzer A Fuzzer B Fuzzer C Fuzzer D Fuzzer E 

a b c d e 

b c d e f 

c d e f g 

Table 7 

Analysis of distinct bugs fuzzing strings . 

AFLfast AFLgo Fairfuzz Superion 

Total 15 16 21 6 

Distinct bugs between repetitions 4 5 7 6 

Distinct bugs 3 - - 4 
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Based on the table, if the metric is computed between fuzzers 

A, B, and E, the result shows that Fuzzer A has only one distinct 

bug compared with Fuzzer B, but three different bugs compared 

with Fuzzer E as well as Fuzzer B compared with Fuzzer E. In 

this situation, if we only consider A and B, these are not the 

best fuzzers. However, if we consider A and E or B and E, these 

are the best. 

• This metric is focused on the differences and not on the global 

accountability of bugs that can incorrectly score a set of fuzzers. 

There can be situations where a fuzzer that finds more bugs 

globally is poorly scored by this metric because these are not 

distinct from the alternative. Table 7 shows the real results 

of the experimentation of the distinct bugs detected with the 

strings target. The fuzzers AFLplusplus, LearnAFL, and MoPT 

have not detected anything in strings , so they are not shown 

in the table. Regarding the number of bugs detected, the fuzzer 

that detects the most is Fairfuzz, and the one that detects the 

least is Superion. However, if we consider the bugs that only 

one of the fuzzers has found, i.e., distinct bugs, Superion is the 

one that detects the most, even if it is not the fuzzer with the 

best total bug detection count. 

.1.3. B.3.Number of crashes 

Crashes are external expressions of a bug where the program 

tops from running, and therefore it is easily detected. The ac- 

ounting of these events is the goal of this metric. So, it estimates 

he number of bugs, but these will always be lower than the real 

umber of bugs. In the best cases, this metric will provide the 

ame result as the metric B.1.Bugs Detected . However, in the worst 

ases, this metric will not provide any result even when bugs are 

resent. Therefore, the use of this metric seems secondary in na- 

ure to the B.1 Bugs Detected and thus redundant. 

In Table 8 we summarize the results of the metrics B.1.Bugs De- 

ected, B.3.Number of crashes and B4.Vulnerability Speed . These re- 

ults show previously exposed drawbacks of this metric. That is, 

rstly, in all cases, the number of crashes is always equal (see Lear- 

AFL and Farfuzzz with codes tiffsplit ) or lower ( jpegtran ) 
han the number of found bugs (see rows 2 and 3). Secondly, there 

re many cases where the number of crashes is even zero for dif- 

erent fuzzers, but there are bugs ( jpegtran ) that have not been 

ccounted (see rows 6 and 7). Finally, the worst case is when a 

uzzer obtains more crashes than the alternative, but the number 

f bugs shows the opposite (see rows 9 and 10). 

.1.4. B.4.Vulnerability speed 

This metric aims to estimate the speed for finding bugs com- 

uted as the ratio of the number of bugs found during a period of 

ime. 

 B = 

Bugs 
(1) 
�t 

8 
The main drawback of this metric lies in the definition of the 

eriod of time. A partial period of time can provide a too opti- 

istic and wrong value, whereas a period of time that considers 

he whole testing time will always be more precise and closer to 

he final results. Partial periods of time can have the risk of con- 

idering as better a specific fuzzer with regard to the competi- 

or when the final results demonstrate the opposite. On the other 

and, if the period of time corresponds to the total experimenta- 

ion time, the metric does not provide any additional information 

ecause it is directly proportional to metric B.1.Bugs detected . Un- 

er these conditions, this metric becomes redundant and does not 

rovide any additional information. These drawbacks can occur for 

he same fuzzer in different repetitions and when comparing dif- 

erent fuzzers. 

Examples of the previous situations can be observed in the ex- 

eriments when plotting the evolution of the number of bugs over 

ime in different situations. Fig. 3 shows the results of the evo- 

ution of the number of bugs in different repetitions of the same 

lgorithm-code combination and also for different fuzzers. Fig. 3 (a) 

s well Fig. 3 (b) show examples of the risk of considering differ- 

nt periods of time. Fig. 3 (a) shows three different periods where 

he same fuzzer scores better, worse, or equal, which can be used 

hen comparing with other alternatives. This situation is even 

orse in Fig. 3 (b) where there are many periods of time where 

hanges the best scoring execution. 

On the other hand, Fig. 3 (c) and Fig. 3 (d) show examples of the

isk of considering wrong periods of time for two different combi- 

ations of fuzzer-program. In the first case, a repetition finds more 

ugs in the first moments of the run, and later, the second repeti- 

ion overcomes it near the middle of the run. In the second case, 

his lead change takes place earlier. In both cases is a problem if 

his metric is used without considering the total testing time, as 

artial duration can lead to misinterpretations. 

However, as a collateral consequence, these plots can show 

hether a fuzzer is systematically more effective in a short-time 

n contrast to other alternatives. This information can be used in 

hose scenarios where it is necessary to maximize fuzzer perfor- 

ance in a shorter testing duration. 

.1.5. B.5.stability finding bugs 

The stochastic nature of fuzzing causes differences between the 

esults of each execution, which in turn shows a certain degree 

f uncertainty in the usage of the fuzzer. Therefore, the goal is to 

easure this uncertainty when different fuzzers are being com- 

ared. A fuzzer is considered more stable than another when the 

rst one shows a low variability in different executions, that is, a 

ow uncertainty. The goal of this metric is precisely to quantify the 

imension of the variability in different executions and use this 

alue to establish a relative order when comparing with other al- 

ernatives that find the same quantity of bugs. 

This metric was proposed in Li et al. (2020) and in statistics is 

nown as Relative Standard Deviation (RDS) or Coefficient of varia- 

ion and is defined as: 

 v = 

σ

μ
(2) 

his value is a standardized measure of the dispersion of a proba- 

ility distribution or, in other words, the extent of variability con- 

erning the mean of the population. 

In general, this is a good estimator of variability and could pro- 

ide an insight of the fuzzer. However, this metric shows some is- 

ues: 

• This metric should be computed on a ratio scale, that is, it must 

be defined as a zero value as a reference, which involves that 

values close to zero or zero excludes from the application of 

this metric. Furthermore, this situation can worsen because, in 
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Table 8 

The analysis of vulnerability detection speed of LearnAFL and Fairfuzz in tiffsplit and jpegtran . 

Fuzzer Code Repetition Bugs Found Number of crashes Number ofhangs Vulnerability detectionspeed (bugs/h) 

LearnAFL tiffsplit 9 352 352 0 14.667 

LearnAFL tiffsplit 14 141 139 2 5.875 

Fairfuzz tiffsplit 3 7 7 0 0.333 

Fairfuzz tiffsplit 6 149 149 0 6.208 

LearnAFL jpegtran 1 1 0 1 0.041 

LearnAFL jpegtran 14 15 0 15 0.625 

Fairfuzz jpegtran 3 25 0 25 1.042 

Fairfuzz jpegtran 6 0 0 0 0 

LearnAFL pdftops 0 104 24 80 4.333 

AFLgo pdftops 3 67 37 30 2.792 

AFLfast pdftops 2 27 21 6 1.125 

AFLfast pdftops 3 34 14 20 1.417 

Fig. 3. Results of the vulnerability detection speed. 
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Table 9 

Bugs detected and RDS values of AFLgo and MoPT fuzzing sqlite3 . 

sqlite3 

Repetitions MoPT AFLgo 

Bugs RDS Bugs RDS 

2 0 - 3 141.42 

3 0 - 3 173.21 

4 0 - 3 200 

5 1 223.61 3 223.61 

6 1 244.95 3 244.95 

7 1 264.58 3 264.57 

8 1 282.84 3 282.84 

9 1 300 3 300 

10 1 316.23 3 316.23 

11 1 331.66 3 331.66 

12 1 346.41 3 346.41 

13 1 360.56 3 360.56 

14 1 374.17 3 374.17 

15 1 387.30 3 387.30 

M

t

4

e

most fuzzing scenarios, it is impossible to know the number of 

bugs to be found beforehand. In the best case, that is, the last 

case, this metric is very sensitive, providing high values. 

• The use of this metric lies in the number of repetitions, in sta- 

tistical terms, a sufficient number of executions are required to 

have enough samples to compute c v . The variability of the c v 
itself considering a different number of executions is, in turn, a 

problem and must be considered. 

The experiments show some examples of these drawbacks, in 

able 9 we show an example of the effect of the proximity of the 

alues close to zero for sqlite3 . In this example, we also show 

he number of bugs and the computed value of RDS. The results 

how high values of RDS when the number of bugs is low but dif-

erent. 

On the other hand, we show in Tables 10 and 11 the effect of

he number of repetitions on the computation of RDS with differ- 

nt combinations of fuzzers and programs. In Table 10 , it is possi- 

le to observe the high variability of c v in different executions such 

s in pngtest and Superion. In the first case, there is an increase 

f 2700% with the same algorithm, this may be the most repre- 

entative case of the impact of considering an insufficient num- 

er of repetitions. Secondly, in Table 11 there are cases where this 

hange can involve an incorrect relative order in terms of perfor- 

ance among fuzzers, such as in pdftops and AFLFast, AFLgo, 

nd MoPT. In these cases, the worst initial value corresponds to 
9 
oPT, which ends after 15 repetitions, as the best, but this is not 

he case if the number of repetitions does not reach 11 repetitions. 

.2. Coverage 

The metrics that belong to the coverage category are line cov- 

rage, branch coverage, and function coverage. Collectively, they 
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Table 10 

Results of Relative Standard Deviation fuzzing jpegtran and pngtest . 

jpegtran 

Repetitions AFLFast AFLgo AFLplusplus Fairfuzz LearnAFL MoPT Superion 

2 0.00 109.99 99.30 28.28 106.07 141.42 94.9 

3 0.00 90.14 87.89 130 96.44 96.44 62.98 

4 66.66 88.83 91.51 148.76 104.45 103.44 58.48 

5 91.28 79.47 77.60 156.21 126.49 85.14 54.80 

6 77.45 78.42 78.46 174.68 126.49 78.63 49.79 

7 68.31 69.14 85.75 177.39 141.75 81.63 54.52 

8 82.80 83.57 86.49 185.16 155.33 73.22 65.57 

9 75.00 80.92 81.94 180.24 167.71 67.76 62.39 

10 131.74 74.95 78.06 164.05 151.34 64.79 57.93 

11 117.02 69.53 75.56 164.56 147.66 70.79 55.81 

12 107.66 66.51 77.11 161.43 156.79 67.34 53.91 

13 115.64 68.11 72.78 155.03 165.37 69.24 52.70 

14 107.54 70.31 92.93 141.64 173.51 66.31 52.67 

15 100.88 70.11 88.75 137.39 181.27 63.54 67.00 

Pngtest 

Repetitions AFLFast AFLgo AFLplusplus Fairfuzz LearnAFL MoPT Superion 

2 - 141.42 - 28.28 0 - 4.56 

3 - 114.56 - 130 19.39 - 71.00 

4 - 141.42 - 156.44 43.22 - 55.75 

5 - 154.88 - 178.34 40.47 - 56.09 

6 - 173.31 - 197.59 41.26 - 77.62 

7 - 149.54 - 215.00 43.20 - 77.76 

8 - 163.30 - 231.05 54.52 - 91.66 

9 - 175.89 - 246.02 59.32 - 100.06 

10 - 179.80 - 187.83 66.28 - 99.15 

11 - 177.12 - 198.80 65.91 - 102.74 

12 - 181.49 - 209.16 72.59 - 108.39 

13 - 190.63 - 202.27 74.90 - 113.41 

14 - 177.55 - 185.30 79.57 - 120.82 

15 - 178.52 - 193.31 83.49 - 124.83 

Table 11 

Results of Relative Standard Deviation fuzzing pdftops . 

Pdftops 

Repetitions AFLFast AFLgo AFLplusplus Fairfuzz LearnAFL MoPT Superion 

2 0 41.59 31.43 141.42 66.38 141.42 414.42 

3 0 149.39 26.82 162.04 52.86 152.89 124.90 

4 0 119.47 34.26 110.40 45.16 105.91 97.59 

5 0 139.41 80.87 87.92 99.12 86.45 119.52 

6 0 155.38 74.91 106.32 115.10 102.00 123.29 

7 44.10 170.95 72.93 121.52 111.35 111.73 125.57 

8 74.17 184.40 72.51 134.78 102.65 124.93 107.63 

9 70.36 197.32 84.47 146.71 91.47 136.71 119.31 

10 72.98 208.68 94.67 151.30 98.67 137.18 106.27 

11 227.33 172.56 100.91 131.88 95.96 122.17 115.76 

12 190.18 149.26 108.18 118.39 89.66 110.67 105.26 

13 196.51 157.46 108.18 126.42 85.91 117.12 113.24 

14 182.05 163.14 107.17 118.88 83.14 114.51 120.65 

15 189.98 170.69 113.82 125.82 90.19 121.42 127.60 
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efer to the specific part of the target that has been executed at 

east once during the fuzzing session. However, coverage metrics 

annot be measured in all cases. It is necessary to have resources 

nd access to specific tools that provide this data, thus in black- 

ox approaches is not possible to measure it. Moreover, it cannot 

e measured in black-box environments since, to measure it, it is 

ecessary to be able to instrument the code in order to know what 

s the structure of the target, that is, the total number of lines, 

ranches, and functions ( Rash, 0 0 0 0 ). 

Depending on the structure of the code, getting a high 

ode coverage with fuzzing is a difficult task ( Jun Li and 

hang, 2018 ). Furthermore, reaching a %100 coverage does not in- 

olve that all possible execution paths have been performed, and 

s a consequence, all possible errors could not have been de- 

ected ( Inozemtseva and Holmes, 2014 ). In other words, the cov- 

rage is a necessary condition but not sufficient. 
t

10 
An (extreme) example of this type of situation is shown in 

lgorithm 1 . In such an algorithm, the bug will only appear when 

lgorithm 1 Example of covering code without detecting any bug. 

1: function FLOAT div (float x, float y) 

2: return 

x 
y 

3: end function 

he value of y is 0, but it will work correctly, and there will be no

rror with any other value. Therefore, if it first passes with any 

alue different than y = 0 through that function in the coverage 

nalysis, it will already count as executed, but no error has been 

ound. 

Fuzzers must not only deal with previous difficulties, but with 

ime constraints, experimental conditions represent an additional 
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Table 12 

Line coverage results of Fairfuzz, LearnAFL and MoPT fuzzing jpegtran . 

Fuzzer SUT Repetition Line (%) Bugs 

Fairfuzz jpegtran 1 17 2 

jpegtran 2 15.1 3 

jpegtran 3 13.2 25 

jpegtran 4 16 1 

jpegtran 5 14.9 2 

jpegtran 6 14.6 0 

jpegtran 7 14.6 2 

jpegtran 8 15.2 1 

jpegtran 9 14.2 3 

jpegtran 10 15.1 6 

jpegtran 11 15 2 

jpegtran 12 15.2 3 

jpegtran 13 14.8 4 

jpegtran 14 14.6 8 

jpegtran 15 15.8 4 

LearnAFL jpegtran 1 17.3 1 

jpegtran 2 16 4 

jpegtran 3 15.5 3 

jpegtran 4 17.5 3 

jpegtran 5 15.4 1 

jpegtran 6 15.4 2 

jpegtran 7 15.3 3 

jpegtran 8 15.4 2 

jpegtran 9 15.8 10 

jpegtran 10 15.4 1 

jpegtran 11 15.7 1 

jpegtran 12 15.4 4 

jpegtran 13 15.3 5 

jpegtran 14 15.3 15 

jpegtran 15 16.3 10 

MoPT jpegtran 1 17.1 4 

jpegtran 2 16.5 0 

jpegtran 3 15.4 3 

jpegtran 4 17.4 11 

jpegtran 5 15.2 6 

jpegtran 6 15.3 4 

jpegtran 7 15.4 2 

jpegtran 8 15.4 6 

jpegtran 9 15.4 5 

jpegtran 10 15.4 4 

jpegtran 11 15.6 1 

jpegtran 12 15.3 8 

jpegtran 13 15.3 2 

jpegtran 14 15.4 8 

jpegtran 15 16.5 5 
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limitations. 
dded difficulty. This depicts a landscape where the fuzzers must 

how their potential, knowing a priori all previous difficulties. 

.2.1. C.1.Line coverage 

This metric measures the coverage in terms of the percentage of 

ines that have been tested. For valid code coverage, it is necessary 

o exceed 70% coverage Cornett (0 0 0 0) . 

The results of the experiments analyzing this metric have been 

ummarized in Table 12 where the columns describe the fuzzer, 

epetition, percentage of line coverage, and the corresponding bugs 

ound. The results show relevant aspects: 

• The maximum coverage does not reach 30%, that is, more time 

would be required to reach 70% of coverage. This poor coverage 

is justified by the constraints regarding the experimental con- 

ditions that limit the execution time to 24 hours. In general, 

the fuzzers can generate millions of tests, therefore, it is not a 

problem generating enough tests but rather the available test- 

ing time. 

• The results also show no clear relationship between the cover- 

age and the number of bugs under the specified experimental 

conditions. Indeed, after computing Pearson’s correlation coef- 

ficient for the three fuzzers, the results are: -0.59, -0.09, and 

0.22, respectively. This consolidates that the coverage is a nec- 
11 
essary condition but not sufficient to find bugs and especially 

with limited periods of testing time. 

• The algorithmic complexity of a program with many branches, 

complex conditions, and lines can hinder the usefulness of such 

a metric by giving a partial view. This aspect is illustrated in 

Algorithm 2 where it can be seen how only measuring the line 

lgorithm 2 Example of code where there is necessary to mea- 

ure two coverage metrics. 

1: if i ≥ 5 then 

2: i ← i − 1 

3: X ← X − 3 

4: i ← i ∗ X 

5: i ← i 2 

6: i ← i − 8 

7: i ← i/ 2 

8: i ← i + 2 

9: i ← i − 1 

0: X ← X/ 2 

11: i ← i − 1 

2: i ← i + X 

3: i ← DIV (X, i ) 

4: i ← i 2 − X 

5: i ← DIV (X, i ) 

6: i ← i − 1 

17: X ← DIV (i, X ) 

18: X ← X/ 2 

9: i ← i ∗ X 

0: i ← i 2 

1: i ← DIV (X, i ) 

2: i ← i − 1 

3: else 

4: if i ≤ 3 then 

5: i ← i + 2 

6: end if 

27: if X ≤ 5 then 

8: X ← X + 2 

9: else 

0: if i ≥ 3 then 

1: i ← DIV (X, i ) 

2: end if 

3: end if 

4: end if 

5: function FLOAT div (float x, float y) 

6: return 

x 
y 

37: end function 

coverage does not show the complete picture of executed pro- 

gram logic. If the value of i is greater than or equal to 5 all the

time, more than 65% line coverage is achieved, but if it is less 

than 5, only 40% can be explored. It is worth noting that it is on

the lower line coverage section where all the decision making 

logic of the program is. That is, while most of the program lines 

are executed, most branching logic is not. However, higher line 

coverage numbers could lead to the belief that most program 

logic is executed as more lines have been executed. As illus- 

trated with the example at hand, this is not always the case. 

Therefore, it is necessary to complement this metric with other 

specific ones to depict a clearer view of the exploration level of 

the code and dispel potential misunderstandings. 

• When two fuzzers discover the same quantity of bugs, the cov- 

erage is useful for scoring them, considering previously exposed 
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Table 13 

Branch coverage results of Fairfuzz, LearnAFL and MoPT fuzzing 

jpegtran . 

Fuzzer SUT Repetition Branch (%) Bugs 

Fairfuzz jpegtran 1 25.6 2 

jpegtran 2 21.3 3 

jpegtran 3 17.2 25 

jpegtran 4 23.8 1 

jpegtran 5 20.8 2 

jpegtran 6 19.8 0 

jpegtran 7 20 2 

jpegtran 8 23.3 1 

jpegtran 9 19.1 3 

jpegtran 10 21.2 6 

jpegtran 11 20.9 2 

jpegtran 12 22.7 3 

jpegtran 13 22 4 

jpegtran 14 20.1 8 

jpegtran 15 23.2 4 

LearnAFL jpegtran 1 28 1 

jpegtran 2 25.2 4 

jpegtran 3 24.2 3 

jpegtran 4 28.3 3 

jpegtran 5 23.8 1 

jpegtran 6 23.7 2 

jpegtran 7 23.6 3 

jpegtran 8 23.8 2 

jpegtran 9 24.4 10 

jpegtran 10 23.7 1 

jpegtran 11 24.2 1 

jpegtran 12 23.7 4 

jpegtran 13 23.6 5 

jpegtran 14 23.7 15 

jpegtran 15 24.5 10 

MoPT jpegtran 1 27.7 4 

jpegtran 2 26.7 0 

jpegtran 3 23.8 3 

jpegtran 4 28.6 11 

jpegtran 5 23.4 6 

jpegtran 6 23.6 4 

jpegtran 7 23.8 2 

jpegtran 8 23.7 6 

jpegtran 9 23.7 5 

jpegtran 10 23.7 4 

jpegtran 11 24.2 1 

jpegtran 12 23.6 8 

jpegtran 13 23.7 2 

jpegtran 14 23.8 8 

jpegtran 15 26.8 5 
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.2.2. C.2.Branch coverage 

Unlike the previous metric, this metric is aimed to estimate the 

overage of the branches of a program. However, as well as the 

revious metric, we observe in our experimentation similar prob- 

ems that have been summarized in Table 13 : 

• The maximum coverage does not reach 30%, it is only 23.8% 

being necessary to spend more time to reach 70% of coverage 

and like in the previous case for the same reasons. 

• The results also show no clear relationship between the cover- 

age and the number of bugs under the specified experimental 

conditions. Indeed, after computing Pearson’s correlation coeffi- 

cient for the three fuzzers, the results are: -0.57, -0.17, and 0.19, 

respectively consolidating that the coverage is a necessary con- 

dition but not sufficient to find bugs, especially with limited 

periods of testing time. 

• As well as with the previous metric, the algorithmic complex- 

ity can hinder the interpretation of this metric. As it is the case 

with line coverage, branch coverage provides a partial view of 

the percentage of executed code. For instance, let us consider a 

program has two main branches, one with a large set of lines 

and the other with less lines but more sub-branches. Measuring 
12 
only branch coverage may give partial results because if only 

the branch with many sub-branches has been tested, this cov- 

erage will be significantly higher than when the other main 

branch is tested. Nevertheless, a large section of the program 

would remain unexecuted, even if the branch coverage is high. 

Again, as it is the case with line coverage, this can lead to mis- 

interpretations. Analyzing Algorithm 2 , when the value of i is 

greater than 5, no complete branch is executed, while if it is 

less than 5, 75% of the branches can be executed. Nevertheless, 

in this second case, most of the program remains unexecuted, 

while the high value of the branch coverage metric might lead 

us to think otherwise. As in the case with line coverage, it is 

necessary to complement this metric with other specific ones 

to better represent the actual exploration level of the target 

code. 

• When two fuzzers discover the same quantity of bugs, the 

branch coverage helps to score them, taking into account pre- 

viously exposed limitations. This scoring must consider the ex- 

perimental conditions and the same procedure to score a fuzzer 

based on the number of bugs detected. 

.2.3. C.3.Function coverage 

This metric aims to estimate the coverage based on the num- 

er of functions that have been executed but does not provide in- 

ormation regarding the part of the code that has been executed 

ithin the function. Therefore, it is a weaker estimator of coverage 

han the previous metrics. This metric does not provide informa- 

ion regarding the lines of code of the function or the branches 

hat are being executed, that is, it is a metric that has more uncer- 

ainty. 

In our experimentation that has been summarized in Table 14 , 

e observe almost similar problems. However, new additional 

roblems emerge in this case, so we will only highlight the new 

roblems. When two fuzzers discover the same quantity of bugs, 

he function coverage is not useful for scoring them. If several 

uzzers execute the same percentage of functions and exactly the 

ame functions, it is not possible to ensure whether they have ex- 

cuted the same sequence of instructions. So, it is not possible in 

he best case to score better a fuzzer concerning the rest, as this 

etric introduces a particular uncertainty. 

Nevertheless, a high line and branch coverage will implicitly 

rovide information regarding the function coverage, although it is 

ecessary to consider low coverage. When the coverage increases 

ignificantly, the correlation emerges between the first two metrics 

nd the function coverage. 

Finally, the values computed by this metric implicitly include 

ine and/or branch coverage, a function is a set of lines and 

ranches. 

.3. Performance 

In this category, metrics that do not belong to the previous two 

ategories are analyzed, mainly related to data patterns or test cre- 

tion, successful tests, and efficiency in finding bugs concerning 

he number of tests, among others. 

.3.1. P.1.Number of tests. 

This metric shows the number of data patterns/tests created 

uring a specified period of time, that is, 24 hours. The experimen- 

al results show no relationship between the capability of finding 

ugs and the number of tests created (or data patterns). Indeed, 

here is no direct or indirect relationship. 

This absence of relationship can be seen in Fig. 4 where we 

how a more revealing result with two plots where each point rep- 

esents the results of a single execution for LearnAFL and Fairfuzz. 

he trend of the dispersion of the bugs found is linear but clearly 
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Fig. 4. Relation between executions and bugs during 15 repetitions of LearnAFL and Fairfuzz fuzzing tiffsplit code. 

Table 14 

Function coverage results of Fairfuzz, LearnAFL and MoPT fuzzing 

jpegtran . 

Fuzzer SUT Repetition Function (%) Bugs 

Fairfuzz jpegtran 1 23.8 2 

jpegtran 2 22.6 3 

jpegtran 3 22.3 25 

jpegtran 4 23.8 1 

jpegtran 5 22.3 2 

jpegtran 6 22.6 0 

jpegtran 7 22.3 2 

jpegtran 8 22.3 1 

jpegtran 9 22.9 3 

jpegtran 10 22.3 6 

jpegtran 11 22.8 2 

jpegtran 12 22.3 3 

jpegtran 13 22.3 4 

jpegtran 14 22.3 8 

jpegtran 15 22.8 4 

LearnAFL jpegtran 1 23.8 1 

jpegtran 2 22.6 4 

jpegtran 3 22.63 3 

jpegtran 4 22.8 3 

jpegtran 5 23.3 1 

jpegtran 6 22.6 2 

jpegtran 7 22.3 3 

jpegtran 8 22.3 2 

jpegtran 9 22.9 10 

jpegtran 10 22.3 1 

jpegtran 11 22.8 1 

jpegtran 12 22.3 4 

jpegtran 13 22.3 5 

jpegtran 14 22.3 15 

jpegtran 15 22.8 10 

MoPT jpegtran 1 23.7 4 

jpegtran 2 22.9 0 

jpegtran 3 22.3 3 

jpegtran 4 23.7 11 

jpegtran 5 22.2 6 

jpegtran 6 22.3 4 

jpegtran 7 22.3 2 

jpegtran 8 22.3 6 

jpegtran 9 22.3 5 

jpegtran 10 22.3 4 

jpegtran 11 22.3 1 

jpegtran 12 22.3 8 

jpegtran 13 22.3 2 

jpegtran 14 22.3 8 

jpegtran 15 22.9 5 

i

c

b

Table 15 

Density results of LearnAFL and Fairfuzz in tiffsplit code. 

Fuzzer SUT Repetition Density Density normalized 

LearnAFL tiffsplit 3 6.73 ∗10 −5 0.259 

LearnAFL tiffsplit 6 3.84 ∗10 −5 0.148 

Fairfuzz tiffsplit 5 1.22 ∗10 −6 0.005 

Fairfuzz tiffsplit 6 5.57 ∗10 −5 0.215 
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ndependent of the number of tests. As a consequence, this metric 

an not be used to assess or qualify the performance of a fuzzer, 

ut only the number of tests it is able to generate. 
13 
.3.2. P.2.Density 

It relates the number of bugs with the executions, i.e., the ratio 

f bugs to executions performed (see Eq. 3 ). 

ensit y = 

Bugs 

Number of test s 
(3) 

lthough in this analysis this metric has been only used with gray- 

ased approaches it can be used with other approaches such as 

ith black-box based approaches. 

The results of density can see in Table 15 , where there is no 

lear relation between the number of bugs and the executions. 

onsidering the density, the repetitions that will need fewer tests 

o find the bugs are going to be more effective. 

In conclusion, density is an interesting metric that will provide 

dditional information about whether the fuzzer can generate good 

nputs to detect bugs more efficiently, as the fewer inputs that 

eed to be generated to detect a bug means that the fuzzer is able 

o generate better inputs. 

.3.3. P.3.Execution speed (discrete) 

This is the ratio between the tests that have been performed 

uring a specific time and that time, as shown in Eq. 4 . 

 xecution speed = 

�E xecutions 

�t 
(4) 

Fig. 5 shows the evolution of the speed during the fuzzing pro- 

ess. In both cases, the number of executions per second decreases 

onsiderably from the first hour onwards. This decrease is more 

vident when working with jpegtran , but with tiffsplit its 
ignal is much noisier, so the results are less clear. This may be be- 

ause the fuzzer generates better inputs, which need more time to 

xecute and are not directly ejected. 

So, knowing the executions made at a specific time does not 

ndicate how the fuzzer is working because knowing what happens 

t a specific instant of the process does not indicate that it will 

ork better or worse. Moreover, if the testing time is predefined 

rom the beginning, therefore, the execution speed gives the same 

nformation like the number of executions. 
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Fig. 5. Relation between executions and bugs during 15 repetitions of LearnAFL and Fairfuzz fuzzing jpegtran and tiffsplit code. 

Table 16 

Performance results of LearnAFL and Fairfuzz in tiffsplit code. 

Fuzzer SUT Repetition Time to crash Bugs Number of executions Executions speed 

LearnAFL tiffsplit 2 1508 166 3,938,464 4.95 

LearnAFL tiffsplit 5 2583 158 3,828,011 52.16 

LearnAFL tiffsplit 9 1753 352 8,951,351 176.31 

LearnAFL tiffsplit 12 74 217 3,772,847 52.06 

LearnAFL tiffsplit 14 784 141 3,323,951 69.47 

Fairfuzz tiffsplit 3 2226 7 998,650 9.38 

Fairfuzz tiffsplit 5 83,271 1 821,728 34.61 

Fairfuzz tiffsplit 7 883 115 2,838,407 54.47 
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.3.4. P.4.Execution speed (total) 

It is the ratio between the tests that have been performed and 

he testing time, as shown in Eq. 5 . 

 otal Execution speed = 

T otal number of executions 

T est ing t ime 
(5) 

Table 16 shows the mean execution speed of each fuzzing rep- 

tition. However, as the testing time is predefined before starting 

he tests, the speed will not give additional information than P.1 . 

To sum up, this metric will not give additional information 

bout the fuzzing efficiency, and it is also redundant to other met- 

ics when experimental conditions are fixed between runs. 

.3.5. P.5.Time to crash 

It is the time needed to detect the first crash. It is worth noting

hat not all bugs cause crashes, and therefore this time may be 

ifferent to B.4 . The matter about measuring bugs or crashes has 

lready been covered previously, so we will not cover it again. 

Table 16 collects the time to crash of LearnAFL and Fairfuzz 

ith tiffsplit . Analyzing the table, although repetition 5 of 

airfuzz finds the least number of bugs is the one that takes the 

ongest to cause the crash, this is because the crash occurs at the 

nd of the execution. We conclude with the other values that there 
14 
s no direct relationship between the number of detected bugs and 

hen the first crash is detected. 

.3.6. P.6.Time to bug 

This metric represents the time needed to find the first bug 

ithout considering the type of bug. 

Table 6 shows the minimum times for detecting bugs of Fair- 

uzz and MoPT fuzzers and the total bugs found on each repetition. 

t can be observed that there is no clear relationship between the 

nstant at which the first bug is detected and the number of bugs 

ound. In Fairfuzz (see Fig. 6 a), two repetitions find their first bug 

n less than half an hour. However, one of them finds two bugs and 

he other twelve. Moreover, Fig. 6 (b) shows that the repetition that 

etects more bugs is the one that detects the first bug latest. 

In conclusion, there is not any relation between finding a bug 

aster and finding more. 

. Recommendations 

The metrics aim to fair and objectively qualify and therefore 

ank the performance of any fuzzing algorithm. The experiments 

ave shown positive and negative aspects of the metrics as well as 

he different aspects of the relevant experimental conditions. We 
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Fig. 6. Time to the first bug and the bugs find in each repetition of Fairfuzz and MoPT fuzzing pdftops code. 

p

c

o

p

s

5

e

 

5

f

p

ropose a set of general recommendations based on the results to 

ompare fuzzers. For this purpose, we have divided this set of rec- 

mmendations into two groups: recommendations related to ex- 

erimental conditions and recommendations associated with the 

election of the best metrics that best qualify a fuzzing algorithm. 

.1. Experimental conditions 

Regarding the experimental conditions, three factors impact the 

valuation of fuzzers: 

• Datasets: The results show the high variability of results de- 

pending on the program and the difficulty of having a reference 

set of programs. Therefore, we propose the following: 

• Public access. A set of public and accessible programs to be 

used for the reference datasets to be tested. One of the main 

difficulties that we have found is precisely the impossibility 

of accessing a broader set of programs. 

• Quantity. It is necessary to test every candidate fuzzer with 

enough quantity of program in order to demonstrate the 

potential of the algorithmic approach. The experimentation 

with enough quantity of programs can reveal whether a 

fuzzer provides good performance with specific programs or 

not. 

• Diversity. It is necessary to test every candidate fuzzer with 

programs of different nature and complexity. The nature 

of some programs is most susceptible to having specific 

types of bugs which leads to providing advantages to spe- 

cific fuzzers. There is an exception to this point for cases 

aimed at measuring the performance of different fuzzers in 

a single domain (e.g., web browsers). In that case, the vari- 

ety of the targets would be limited to a single domain, but 

targets with different complexity levels should still be con- 

sidered. 

• Testing time: The most important aspect of this factor is us- 

ing the same period of time predefined in 24 hours as the pri- 

mary recommendation for a fair comparison. The experiments 

show that this period of time is adequate because the main 

metric (the number of bugs) tends to stabilize before 24 hours. 

In contrast, shorter periods of time do not show this stabiliza- 

tion. This confirms the predilection of many authors for select- 

ing this period of time. Nevertheless, we must consider and as- 

sume that in some situations (such as in continuous develop- 

ment and delivery), some other time constraints can exist for 

different reasons. In these cases is necessary to know the be- 

havior of the fuzzers (some fuzzers are good at the beginning 

but not globally) to take advantage of this. 

• Repetitions: The stochastic nature of most fuzzers leads to a 

high variance of results depending on the program to be fuzzed 
15 
or the repetition. Thus, to make a decision based on a single 

repetition will lead to incorrect assessment of the fuzzer. The 

execution of several repetitions in order to reduce the variance 

is essential to determine whether a fuzzer is excelling or is 

something coincidental. Therefore, we recommend the several 

possible alternatives: 

• Statistical estimation of repetitions. This is the most strict 

case based on a numerical estimation of variance reduction. 

That is, we recommend the use of a coefficient ρ which 

computes the differences of the variances from cumulative 

repetitions in order to detect the stabilization of the vari- 

ance. 

ρ(r + 1) = | σ 2 (r + 1) − σ 2 (r) | with ρ(1) = σ 2 (1) (6)

This computation shows whether the repetitions are enough 

or necessary to execute more repetitions providing some 

clues of the algorithm’s performance. The use of this coeffi- 

cient in our experimental setup is shown in Fig. 7 where the 

majority of the variance of the fuzzers for the same program 

tends to be stabilized before reaching 15 repetitions (for the 

sake of clarity, only the results of two programs are shown) 

when the stability is not reached means that are necessary 

more repetitions. 

• Fixed number of repetitions. In some cases, it is impossible 

to spend so much time performing repetitions, which leads 

to fixing a number of repetitions. There should not be less 

than ten repetitions, in our setup, we have selected 15 rep- 

etitions, although it will depend on the specific scenario be- 

cause there can be some constraints in time or resources. 

• Improved fixed number of repetitions. In those cases where 

the number of repetitions can not be increased due to the 

costs of performing repetitions is possible to use a very 

known statistical technique typically used in machine learn- 

ing called Bootstrapping. The basic idea is that inference 

about a population from sample data can be modeled by 

resampling the sample data. This would allow to infer the 

expected performance. 

.2. Fuzzing metrics 

The metrics are the main factors to assess the performance of 

uzzing algorithms, according to the goal of fuzzing, these must be 

rioritized as follows: 

• Priority I. Bugs. Based on the experiments, we recommend the 

use of the metric B.1 Bugs Detected since the rest of the bug- 

related metrics (B.2 to B.5) fail in some way for the previously 

exposed reasons. However, this metric must be computed ac- 

cording to the new experimental conditions. This metric must 
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Fig. 7. Evolution of ρ during 15 repetitions. 

 

be computed as the cumulative sum of the unwanted behaviour 

found through all repetitions for all predefined programs, aver- 

age values shall not be used. This method of computation takes 

into account the stochastic nature of the fuzzers without giv- 

ing any kind of advantage to fuzzers that have found many 

bugs in a specific repetition but few in the rest of the repe- 

titions. This metric looks for assessing a general performance 

and not local or specific performance independently of the used 

approach which represents an advantage when comparing dif- 

ferent methods with different approaches. 

Furthermore, the values obtained by this metric can be used 

even to detect whether there is a predilection of a fuzzer for 

specific types of programs or not and demonstrate the preva- 

lence of the fuzzer in any condition. Finally, this metric can be 

used in all scenarios (black-box, gray-box, and white-box). 

When two or more fuzzers obtain the same values, is when is 

necessary to proceed with the metrics of Priority II. 

• Priority II. Coverage. This category of metrics provides informa- 

tion regarding the performance of the exploration process car- 

ried out by the fuzzers to find bugs. Although 100% of cover- 

age does not involve 100% of bug detection, a low capability of 
16 
covering code is an indirect estimator of the capability of find- 

ing bugs. Hence, these metrics will be useful for assessing the 

performance of a fuzzer. The experimental results and previous 

simple examples show that more than one metric is necessary 

to quantify the coverage. The combination of the required met- 

rics is the following: 

• C.1 Line Coverage. 

• C.2 Branch Coverage. 

As in the previous case, the computation of these metrics must 

be the cumulative sum of the coverage through all repetitions 

for all predefined programs. This can limit the effect of causal 

success and reflect the overall performance in terms of cov- 

erage. Finally, these metrics can be applied in white or gray 

scenarios, but not in black-box scenarios. Therefore, this met- 

ric will be measured as additional information when it is pos- 

sible to measure it, i.e., in the black-box scenario it will not be 

possible to measure it. 

Additionally, the use of these two metrics is aligned with what 

is required to comply with the safety requirements of the 

IEC61508 standard, which specifies the coverage requirements 

for a system to be considered safe ( LLC, 0 0 0 0 ). It specifies that
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in systems with a high SIL, it is necessary to achieve 100% cov- 

erage of both branches and lines. 

When the fuzzers that are being compared obtain the same val- 

ues, is when is necessary to proceed with the metrics of Prior- 

ity III. 

• Priority III. Performance: This category is aimed to reflect the 

efficiency of the fuzzer finding bugs, that is, the number of gen- 

erated data patterns to find bugs. In this sense and based on 

the experimental results, the metric P.2 Density is the recom- 

mended metric. Density is a metric that computes the ratio of 

the tests performed with regard to the number of bugs inde- 

pendently of the used approach which facilitates the use of this 

metric specially with black-box approaches. A fuzzer that needs 

fewer runs to detect a bug will be able to detect more bugs and

will overload the SUT less. As in previous cases, the computa- 

tion of this metric will be carried out by summing the values 

of all repetitions and programs. 

. Conclusions 

In this paper, we propose a set of recommendations regarding 

he experimental methodology and the metrics based on exten- 

ive experimentation with different algorithms, metrics, and ex- 

erimental conditions. The extensive experiment has shown gaps, 

imitations, weaknesses, and strengths when assessing a fuzzing 

lgorithm. Indeed, we show that from an experimental perspec- 

ive, significant gaps can influence the scoring of an algorithm, but 

hese are not unique. We have also identified problems regarding 

he metrics revealing that some of these can not be used to as- 

ess a fuzzing algorithm or the weaknesses of valid metrics that 

equire a better experimental methodology. In addition, we have 

lso identified that the quantity and diversity of target programs 

re also relevant when scoring different fuzzers. 

The goal of these recommendations is, in essence, to cover the 

etected gaps, improve the experimental methodology, including 

arget programs, as well as to select the right metrics. 
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