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Abstract—Cyber-Physical Systems (CPSs) combine digital cy-
ber technologies with parallel physical processes. On the one
hand, verification methods of such systems mostly rely on (sys-
tem level) simulation-based testing. This technique is expensive
because complex mathematical models are used to model the
physical part of CPSs. On the other hand, test cases of CPSs are
usually formed by long test inputs that aim at mimicking real-
world scenarios. As a result, when a failure is exhibited, it is
highly important to isolate the failure-inducing inputs to provide
the developers with the minimal test input. This allows reducing
debugging costs by (1) reproducing the failure in the minimal
time and (2) reducing the test coverage of the system, making
the fault localization easier. In this paper we adapt the well-
known delta debugging algorithm to isolate the failure-inducing
inputs of CPSs modeled in Simulink. By means of three Simulink
models, we analyzed whether Delta Debugging is effective enough
to isolate failure-inducing inputs in CPSs.

Index Terms—Simulink Models, Debugging

I. INTRODUCTION

Cyber-Physical Systems (CPSs) combine digital cyber tech-
nologies with physical processes [1]. The software of such
systems is embedded in a real-time target, which allows for
interacting with the physical environment through sensors and
actuators. Simulation is the driving technology to test the soft-
ware of such systems, as it allows for raising the abstraction
level at which testing is permitted [2]. However, executing
tests in simulation is time consuming because the physical
layer of the CPS is modeled through complex mathematical
models [3]. For instance, in the industrial example reported
in [4], when simulating autonomous vehicles, a simulation
run is taken down to 10% of real-time factor (e.g., simulating
1 minute takes 10 minutes). Similar to testing, debugging
is a cumbersome activity too, due to the same problems of
requiring a long test execution time.

MATLAB/Simulink has become the leading tool for mod-
eling and simulating CPSs [5]. The test inputs in simulation-
based testing using Simulink are signals over time that stim-
ulate the CPS’s model [3], [5]. Typically, such test inputs are
long in time because (1) they intend to reproduce realistic
scenarios of the CPS and (2) in CPSs the software system

interacts with the physical layer and the environment in which
the system operates, thus, the system might need to get into
certain states by means of these interactions. This makes
debugging hard due to two main reasons. Firstly, the test
cases are long, and developers might need to wait long times
every time they intend to reproduce a failure. Secondly, these
long test inputs might lead to large test coverage, which can
result on difficulties when aiming to localize the fault by
using state-of-the-art techniques (e.g., Spectrum-based Fault
Localization [6], [7]).

This problem might be partially solved simplifying the test
cases by automatically isolating the difference that causes the
failure. In this paper, we adapt the technique Delta Debug-
ging [8] to the context of CPSs. This way, CPS developers
are provided with the minimal test input to reproduce the
fault. Specifically, we adapt this algorithm for CPSs modeled
in MATLAB/Simulink. To assess the effectiveness of this tech-
nique, we carried out an empirical evaluation by using three
Simulink models.1 Furthermore, we discuss the limitations of
our approach and open challenges to adapt the technique in
other kind of CPS simulators.

II. DELTA DEBUGGING ALGORITHM FOR SIMULINK

Context: Simulation is referred to the process of creating a
digital model to predict its performance in the real world. CPS
modeling and simulation tools (e.g., Simulink) are dataflow
models, where each model contains a set of blocks [9]. Each
block accepts data through its inputs and may pass output
through its output ports after performing a set of operations
(e.g., mathematical, logical, etc.). In our context, we limit the
adapted version of the Delta Debugging algorithm to Simulink-
like models, where a test case is referred to a set of input
signals stimulating the model.

Formalization: Let SM = (I,O) be a simulation model,
where I = {i1, i2, ..., iN} is a subset of inputs and O =
{o1, o2, ..., oM} is a subset of outputs [10]. Each input and

1Both, the experimental material and the algorithm are publicly available
in Zenodo: https://zenodo.org/record/5841608#.Yd783WjMKUk

https://zenodo.org/record/5841608##.Yd783WjMKUk


output of the simulation model is a signal (i.e., a function of
time), which is stored as a vector where elements are indexed
by time [10]. The simulation time (T ) is divided into a set of
equal sample time steps (∆T ) [10]. A signal (sig) is a function
in time of a set of k number of observed simulation steps (i.e.,
sig : {0,∆T, 2×∆T, ..., k×∆T}). For instance, a simulation
of 10 seconds (i.e., T=10), with a sample time of 0.05 seconds
(i.e., ∆T = 0.05) would have a total of 10/0.05+1 (i.e., k=201)
simulation steps. The lower the sample time is, the higher
the precision of the simulation. However, the time required
to simulate the system will also be lengthier. In our study,
for each model being tested, we consider a fixed simulation
sample time (i.e., the same for all the test cases).

Isolation algorithm: Algorithm 1 describes the adapted
version of the Delta Debugging algorithm to the context of
CPSs modeled in Simulink. As input, it receives the initial
failure inducing Test Input (TI), and its Failing Time (FT ),
which indicates the exact time at which the Oracle returned the
failing verdict. As output, it provides TI ′, which corresponds
to the minimal failure-inducing test input. This is obtained by
following the next procedures. In the first step (Line 1, Alg.
1), the algorithm splits the test input so that the test execution
stops by the time it fails. Figure 1 illustrates this first function
for a test input of a single signal taking 8 seconds and with
a step size of 1 second, where the Failing Time (FT) is 6. As
can be seen, the test input is reduced from 8 to 6 seconds,
which reduces 2 simulation steps out of 9.2 The provided Test
Input (TI ′) will fail, because from second 0 to second 6 of
the test input, everything remains the same as TI .

The following process is to Split this Test Input (TI ′) by
minimizing it (Line 2), obtaining TINEW . In such case, the
test input signal from second dFT/2e to FT is taken (in the
example from Figure 1, from second 3 of TI ′ to second 6).
After, the algorithm enters into a while loop that follows the
following process. First, it executes the test TI ′ in MUT,
which returns a verdict.3 If the verdict reveals there is a
Failure, we assign the test input in TINEW to TI ′ (Line
6), as its size (i.e., number of simulation steps) is less, and
thus, the test input is more isolated. If the verdict does not
reveal any failure, the test input is splitted by maximizing
it (Line 9), which is done by the splitMaximizing function,
which takes as input parameters TI ′ and TINEW . Figure 1
depicts an example of the returned test input by this function
when considering a test input of 7 simulation steps and
another one of 4. As can be seen, the function returns the
last d(size(TI ′)+size(TINEW ))/2e steps of TI ′, size being
the number of simulation steps of the test case. This process
is iteratively repeated until the simulation steps of TI ′ and
TINEW are the same.

III. PRELIMINARY EVALUATION

This section explains the preliminary evaluation we carried
out to assess the performance of delta debugging for isolating

2Notice that second 0 also computes as simulation time
3We assume that a test oracle is available

Algorithm 1: Delta Debugging for Simulink Models
Input: MUT //Model Under Test
TI //Initial failure inducing test input
FT // Failing Time
Output: TI’ //Minimized input signal over time

1 TI’ = split(TI,FT);
2 TINEW = splitMinimizing(TI’);
3 while size(TI’) 6= size(TINEW) do
4 Verdict=executeTest(TINEW, MUT);
5 if Verdict == Failure then
6 TI’=TINEW;
7 TINEW = splitMinimizing(TI’);
8 else
9 TINEW = splitMaximizing(TI’,TINEW );

10 end
11 end

faults in Simulink models. To this end, we aimed at answering
the following two Research Questions (RQs):
• RQ1 – To what extent can Delta Debugging isolate

failure-inducing inputs in CPSs when considering the test
input size? Since in CPSs test cases are usually long, this
RQ aims at analyzing the reduction rate of the test inputs
provided by the algorithm. From the practical perspective,
this would provide the developers with the minimal test
case to reproduce the fault.

• RQ2 – To what extent do the test inputs provided by Delta
Debugging reduce test coverage? In CPSs test cases are
usually long and they achieve a relatively high coverage.
This RQ aims at investigating to what extent the test input
provided by the algorithm reduces test coverage. From the
practical perspective, this would help narrowing down the
search space to localize the fault.

A. Experimental set-up

1) Studied models: We used three study models involving
three open-source Simulink models. Table I summarizes the
key characteristics of these three models, which have been
used in other prior studies [3], [11], [12]. The first model
involves a two tanks system where a controller regulates the
incoming and outgoing flows of the tanks. The second model is
related to a model of a Cruise Controller (CC). The third model
is an open source industrial model developed by Bosch [13],
which involves an Electro Mechanical Break (EMB). We chose
two relatively large model (i.e., TwoTanks and EMB) and a
smaller one (i.e., CC) to see how the algorithm performs with
models of different characteristics.

TABLE I: Key characteristics of selected models.

Model # of Blocks # of Inputs # of Outputs # of Mutants
TwoTanks 498 11 7 34
CC 31 6 2 20
EMB 315 1 1 17



Fig. 1: The different test input transformations that are performed by our algorithm for a test input of a single signal and a
duration of 8 seconds. For illustration purposes, we consider a sample time of 1 second, having a total of 9 sample times. FT
refers to the time at which the system reveals a Failure.

2) Fault seeding and test generation: We used mutation
testing to simulate the faults in the CPSs’ models. Specifically,
the mutants generated by Arrieta et al. [3] were re-used.
These mutants used the operators by Hanh et al., for Simulink
models [14]. The Delta Debugging algorithm assumes the
availability of a test oracle to determine the test verdict. As
we used mutation testing, for each model we employed the
original Simulink model and compared whether the outputs
differed with respect to the mutants. Thus, as in traditional
mutation testing, we cataloged the verdict of a test case as
fail if the outputs from the mutant and the original Simulink
model differed, and as passed otherwise.

We generated a total of 25 test cases per model. This was
because we wanted to have longer test cases than those used
by Arrieta et al. [3]. These test cases were randomly generated
by adapting some functions defined in a prior work [12].
After generating these tests, we executed them in the mutants
for pairing the failing test cases with their detected mutants.
These pairs were used in our evaluation to assess the proposed
adaption of the delta debugging algorithm. For the TwoTanks
model, 79% of the mutants were detected, for the CC all
of them and for the EMB 88% of the mutants. In total, we
had 131 pairs of test cases and mutants for the TwoTanks
model, 135 pairs for the CC model and 244 pairs for the
EMB. All these pairs were the inputs for the Delta Debugging
algorithm. Notice that in this classification, we filtered those
pairs where the tests detected the mutant at second 0, and
therefore, isolation algorithm was not necessary.

3) Evaluation Metrics: We used two evaluation metrics to
answer the RQs. On the one hand, the Test Input Reduction
Ratio (TIRR), which measures the test input reduction rate
obtained by the delta debugging algorithm. We used two
variants of this metric: firstly, the test case reduction ratio with
respect to the original test case (TIRRorig), which measures
the test execution time difference between the initial Test Input
(TI) and the Test Input provided by the delta debugging

algorithm (TINEW ). Secondly, the test case reduction ratio
with respect to the original failing time (TIRRft), which
measures the percentage of time reduction obtained by the
Test Input provided by the delta debugging algorithm until the
failure is detected with respect to the time taken by the original
Test Input (TI) to fail (i.e., FT ). The higher these metrics, the
higher the performance of the proposed isolation algorithm, as
it means that a higher isolation has been achieved.

On the other hand, we used the Test Coverage Reduction
Ratio (TCRR), which measures the reduction percentage
obtained by the delta debugging algorithm. This metric is
also important because the lower the test coverage is for the
isolated test input, the lower the number of lines of code
(or Simulink blocks in this case) that need to be checked
by the debugger. We used two coverage metrics, which were
accessible through the MATLAB API to measure the coverage
on Simulink models: the Decision Coverage and the Condition
Coverage. Thus, we have also divided this metrics into TCRR
for Decision Coverage (TCRRDC) and TCRR for Condition
Coverage (TCRRCC). The higher these metrics, the higher
the performance of the proposed isolation algorithm, as it
means that less Simulink blocks are exercised to reproduce
the fault, thus, reducing the search space for its localization.

B. Analysis of the Results and Discussion

Table II summarizes the obtained results and Figure 2 shows
the distribution of the different metrics for each of the models.
As can be seen, the test input reduction ratio was quite high
when considering the original test case (i.e., TIRRorig). The
average ranged from 0.75 to 0.98 depending on the model.
This ratio was reduced when considering the original failing
time (i.e., TIRRft). Specifically, while the delta debugging
algorithm managed to have a reduction rate of 0.79 for the CC
model and 0.86 for the EMB model, the average reduction rate
for the TwoTanks model was 0.34. Nevertheless, in this case,
the standard deviation was higher, meaning that at some cases,
the reduction was high too. A possible reason behind these



Fig. 2: Distribution of the test input and test coverage reduction ratio obtained for the selected three models

TABLE II: Summary results of the reduction ratios for the performed experiment (Mean (µ), Median (m) and Std. Dev. (σ))

TIRR orig TIRR ft TCRR cc TCRR dc
µ m σ µ m σ µ m σ µ m σ

TwoTanks 0.75 0.84 0.25 0.34 0.26 0.23 0.30 0.17 0.28 0.16 0.15 0.15
CC 0.88 0.89 0.03 0.79 0.81 0.07 0.03 0.00 0.10 0.04 0.00 0.14
EMB 0.98 0.99 0.03 0.86 0.87 0.10 0.44 0.40 0.37 0.29 0.31 0.24

results might lie on the complexity of the TwoTanks model,
where more logic is involved, and more test steps might be
required to trigger some failures. Thus, the first RQ can be
answered as follows:

The overall test input can be significantly reduced,
between 75 and 98% on average for the models used
in our evaluation. However, this reduction might not be
that significant when considering the time to reproduce
the fault. While two models showed an average reduc-
tion between 79 to 86%, another one showed only an
average reduction of 34%. This could be due to the
complexity of this model.

To answer RQ2, we measured the test coverage reduction
ratio by considering two coverage metric (i.e., decision and
condition coverage). The reduction ratio was higher in the
large models (i.e., TwoTanks and EMB). When considering
the condition coverage, the average reduction rate for the
codition coverage was 0.3 for the TwoTanks model and 0.44
for the EMB. The reduction rate for the decision coverage was
lower, 0.16 for the Two tanks model and 0.31 for the EMB.
Nevertheless, for the CC model, on average, the reduction
rate was marginal for both metrics, although it showed a high
standard deviation, meaning that at some cases, the reduction
was high. The hypothesis behind these results is that since the
CC model is small, it is easy to obtain a high test coverage
even when the test inputs are minimal. Subsequently, we can
answer the second RQ as follows:

Based on our evaluation, for large models, the average
coverage reduction rate is modest (on average, 30 and
44% of reduction for the condition coverage, 16 and
29% for the decision coverage in the case of our
models). However, if the model is small, the reduction
ratio is marginal.

IV. OPEN CHALLENGES AND LIMITATIONS

In this paper we have adapted the delta debugging algorithm
for the context of CPSs modeled in Simulink. This adap-
tion considers the idiosyncrasy of test cases being signals.
Nevertheless, another particularity of CPSs when compared
to general-purpose software is its tight interaction with the
environment. By means of a preliminary evaluation based on
three different models, we have shown that in some cases, this
approach is able to provide a significant reduction rate on the
time for reproducing the fault. However, in some models (e.g.,
TwoTanks), the reduction was not that significant. A similar
thing happened with test coverage, which the maximum aver-
age reduction was 44% for the condition coverage and 29%
for decision. Towards this direction, we identified three main
challenges.

Challenge 1 – To consider the environment to further help
the isolation of test inputs: To trigger a failure, the system
might need to enter in certain state, which might depend
on the environmental status in which the CPS operates. For
instance, in the TwoTanks model, one of the tanks might need
to be filled in order to trigger the fault, therefore, needing this
scenario to be modeled by the test case. Our hypothesis is that
if we monitor the environment and have access to changing
it (e.g., changing the level of the tank), the failure-inducing
input can be reduced even more.

Challenge 2 – To consider further states of the system:
Similar to the previous point, it might be possible that the
system depends on other states of the system to trigger
the fault. These states are not usually changeable from the
outside, and therefore, different test sequences signals might
be necessary in order the CPS to enter those states. A potential
solution could be to monitor system states prior these to fail.
These states could be later obtained by a search algorithms
which generates test cases in order the system to get into
them. After, some of the test sequences of the original test
case would be executed to trigger the fault. A challenge for this



case could be that (1) domain knowledge is needed to extract
relevant system states and (2) the search approach might suffer
scalability problems because CPSs are compute-intensive [12].

Challenge 3 – Other kind of simulators: This study is
centered on those CPSs that are modeled in Simulink. Nev-
ertheless, other simulators are also used for testing CPSs.
Simulink is based on signals, but other CPS simulators are
based on events over time. Different strategies need to be
considered to adapt the delta debugging algorithms to these
simulators (e.g., iterate based on events or based on the time
that events happen). We believe that further investigation is
required to isolate faults of CPSs modeled in other simulators.

V. RELATED WORK

Different techniques have been proposed in the last few
years in the context of automated debugging [7], including
fault localization and test input reduction. For the latter, the
Delta Debugging algorithm [8] has shown to be an effective
technique to isolate the failure inducing inputs in different
type of systems. However, CPSs face several idiosyncrasies
when compared to other software systems, such as the tight
interaction of the software with the physical part of the CPS
and the interaction of the CPS with its environment. In this
paper we have adapted the algorithm to the context of CPSs
modeled in Simulink and analyze its performance, which, to
the best of our knowledge, has not been tackled before.

Debugging of CPSs modeled in Simulink has also been
studied in the last few years. Liu et al., focused on fault
localization [6], [15]. Deshmukh et al., aimed at localiz-
ing faults provoked by missconfigurations in the context of
Simulink models by using Spectrum-based Fault Localiza-
tion [16]. Bartocci et al. [17] proposed CPSDebug, which
combines testing, specification mining, and failure analysis, to
automatically explain failures in Simulink models. All these
areas are different to what we are tackling in this paper, which
is centered on the automated isolation of failure-inducing
inputs.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed an adaption of the Delta Debug-
ging algorithm for the isolation of failure-inducing inputs in
CPSs modeled in Simulink. A preliminary evaluation shows
that the reduction rate based on this technique might be large
in some cases, but not in others. We summarize in a set
of challenges potential possibilities to further improve this
technique. In the future, we would like to extend this work
from different perspectives. Firstly, we would like to compare
the performance of the algorithm in terms of running time
when compared with other baselines. Secondly, we would like
to apply this technique to other CPS simulators that are based
on events. Lastly, we would like to explore novel strategies
that consider the system environment to further reduce the
failure-inducing inputs in the context of CPSs.
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