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Abstract

The reliability and energy production of wave power plants (WPPs) depend on sea-state con-
ditions, operation efficiency and degradation of its constituent assets. Air turbines are key
assets for the efficient and reliable operation of WPPs and ensuring their correct operation
leads to enhance the efficiency of WPPs. However, the lack of run-to-failure data and scarce
fault records hampers the development of predictive condition monitoring solutions. In this
context, focusing on unsupervised health monitoring methods, this paper presents an air
turbine conditional anomaly detection (CAD) approach with a practical case study tested
and validated on the Mutriku wave power plant. In contrast to anomaly detection models,
which model the health-state without taking into account the influence of the operating con-
text, the proposed CAD approach learns the expected air turbine operation conditioned on
specific sea-states information modelled through wave energy flux concepts. This is achieved
through an ensemble of Gaussian Mixture models and the expectation-maximization algo-
rithm. Results show that, the integration of sea-states in the anomaly detection learning pro-
cess improves the discrimination capability of the CAD model compared with the anomaly
detection model without sea-state information, reducing false positive events and improving
the accuracy of the CAD model.
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1. Introduction1

The ocean environment hampers the commercial viability of Marine Renewable Energy2

(MRE) technologies owing to the complexity to conceive balanced designs with the capacity3

to maximise energy harnessing and survivability, without excessive over-engineering. The4

harsh ocean environment accelerates the degradation of the different components of MRE5

devices and maintenance operations for offshore plants are significantly more complex and6

costly due to the limited accessibility, and the highly specialised vessel and crew require-7

ments. Therefore, condition monitoring of MRE technologies is crucial because apart from8

the high maintenance cost, no energy is generated during longer downtimes.9

In fact, production losses due to unavailability can result in downtime losses of up to10

24 kN/MW (12 MN/year for a 500 MW offshore wind farm) Rinaldi et al. (2021b). As a11

consequence, operation and maintenance (O&M) costs associated with an offshore farm are12

estimated to be approximately 30% of the total income (for a 20-year lifetime), as opposed13

to 10-15% O&M costs associated with onshore farms Sorensen & Sorensen (2012).14

However, due to the vast energy resource available in the ocean and more appealing15

characteristics of this resource, e.g. predictability and consistency, MRE systems are foreseen16

to be a key resource in the short- and long-term roadmaps towards a carbon-neutral energy17

system European Commision Communication (2020, 2019). The annual energy generation18

potential for offshore wind and wave is estimated in 420,000TWh IEA (2019) and 29,500TWh19

Mørk et al. (2010), respectively, representing together 19.5 times the current global electricity20

demand approximately.21

Therefore, in order to make MRE technologies commercially viable, the development of22

intelligent and efficient O&M strategies is vital. These strategies should include, at least,23

the following four aspects:24

1. Prediction of resource characteristics to assess plant accessibility.25

2. Evaluation of MRE plant availability updated with condition-monitoring models.26

3. Prediction of energy generation capabilities of the MRE plant.27

4. Assessment of downtime and O&M costs.28

The literature shows studies on some of these aspects, especially focusing on the more ma-29

ture offshore wind industry. The accessibility of offshore wind farms is covered by Guanche30

et al. (2016), where a methodology to assess the accessibility to a floating wind turbine is31

evaluated concluding that the accessibility-limiting wave height threshold is highly depen-32

dent on wave direction and peak period. More recently, Gilbert et al. (2021) suggests a novel33

probabilistic method focused on forecasting safety-critical accessibility conditions.34

Similarly, several condition monitoring approaches for offshore wind turbines components35

are present in the literature, such as turbine blades Martinez-Luengo et al. (2016), power36

transmission systems Feng et al. (2013), electric generators Vedreño-Santos et al. (2014)37

and power electronic components Jlassi et al. (2015). In addition to the component-level38

solutions, system-level methods have been also developed analysing component interactions39
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and their impact on the system Santos et al. (2015). Overall, Mérigaud & Ringwood (2016)40

provides a comprehensive review of different methodologies and applications.41

The prediction of energy generation capabilities have also been widely covered in the42

literature for different MRE technologies. Based on the wave climate of a specific location,43

the energy generation capabilities have been predicted using the capacity factor of the de-44

vice/plant for longer periods Yue et al. (2019), power curves Gupta & Nem (2016) methods,45

or more sophisticated dynamic models that are usually suggested for floating offshore wind46

turbines (FOWTs) Cottura et al. (2021).47

The economical evaluation of downtime and O&M services is also widely covered for48

wind turbines, including offshore wind turbines. A common metric of the economic aspects49

is the Levelised Cost of Energy (LCoE), which has been analysed in the literature for fixed50

offshore wind turbines Ioannou et al. (2018) and FOWTs Martinez & Iglesias (2022). In51

fact, Rinaldi et al. (2021a) incorporated the O&M models into the techno-economic analysis52

of FOWTs.53

While some of the methodologies suggested for offshore wind have a direct application on54

the wave energy sector, e.g. accessibility models and part of the cost analysis, differences in55

the energy harnessing process makes necessary to develop novel methods. Energy generation56

prediction models, for example, are widely covered for different devices, with a wide variety57

of modelling techniques and complexities Penalba & Ringwood (2016). However, mainly due58

to the immaturity of the wave energy sector, prognostics and health management (PHM)59

solutions are scarce. In fact, operational data covering relatively long periods of time is60

often used for the different PHM studies, which does not exist in the case of wave energy.61

This data can also be replaced with run-to-failure data generated in laboratory environment62

through accelerated ageing tests, but these datasets are very limited to the best of authors’63

knowledge.64

One of the very few exceptions worldwide is the Mutriku Wave Power Plant (WPP),65

further described later in Section 4. The Mutriku WPP is a wave energy conversion plant66

based on the oscillating water column (OWC) technology commissioned by the Basque67

Energy Agency in 2011 Torre-Enciso et al. (2009). It is one of the pioneer grid-connected68

WPPs worldwide. It has been operating for the last 10 years, reporting different degradation69

and failure events for different components. Due to the easily accessible location of the WPP,70

maintenance operations are not the most critical aspect. However, the generated data is71

highly valuable to develop PHM applications that will be vital for the reliable operation of72

future WPPs located far from shore.73

The authors intentionally focus on the anomaly detection problem, motivated by the lack74

of run-to-failure data and scarce fault records. The operation of WPPs is highly variable, as75

is the ocean resource, and accordingly, the anomaly detection problem becomes a challenging76

task. Usually, anomalies are identified by comparing the plant operation against pre-defined77

normal behaviour. When a variable differs from what is expected under normal operating78

conditions, it may flag an anomaly. However, when the normal behaviour is highly-variable,79

the definition of conditions that represents the normal behaviour is a challenging task.80

Therefore, an accurate anomaly detection technique for WPPs requires information about81

the operation context to reduce false positives.82
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In fact, to the best of authors’ knowledge, such a context-informed anomaly detection83

framework for WPPs has never been suggested in the literature. Hence, this paper presents84

a novel conditional anomaly detection approach focused on air turbines operated in OWC85

devices, where the context information is represented by sea-state conditions. The approach86

has been tested in the Mutriku WPP and results show that the integration of environmental87

sea-state information along with WPP parameters in the anomaly detection learning pro-88

cess, improves the discrimination capability of the CAD model compared with the anomaly89

detection model without sea-state information, reducing false positive events and improving90

the accuracy of the conditional anomaly detection model.91

The remainder of this paper is organised as follows. Section 2 presents the integrated92

PHM framework for WPPs and reviews more specific state-of-the-art for anomaly detection93

problems. Section 3 presents the conditional anomaly detection model developed within the94

PHM framework. Section 4 presents the Mutriku WPP case study and Section 5 shows95

results by applying the developed approach to the case study. Section 6 discusses the96

proposed approach and Section 7 draws conclusions.97

2. PHM framework for Wave Power Plants98

Figure 1 shows the block diagram of the integrated PHM framework for a generic WPP.99

The framework combines expert knowledge of plant engineers with collected data to detect100

anomalies, diagnose failure causes, and predict the remaining useful life (RUL) of plant101

components Aizpurua & Catterson (2015).102

Figure 1: PHM framework for a generic WPP, highlighting the focus of this work.

Monitored variables of the WPP are firstly processed to discard missing and invalid val-103

ues and filter noisy signals. Then pre-processed datasets are used to extract features that104

represent plant health information in different statistical, temporal and frequency domains.105

After the feature extraction step, the correlation analysis informs about dependencies be-106

tween variables. These dependencies can be post-processed to develop different applications,107

such as the identification of deviations from normal operation conditions through changes108

in dependencies.109

Anomaly detection models focus on the identification of deviations from expected nor-110

mal operation conditions. They can be useful to define alarm systems or trigger further111

predictive analysis activities and react to the observed condition. Diagnostics models focus112

on the identification of the actual health state Vachtsevanos et al. (2006). This classification113

can be based on predefined groups of health states or it can be centred on the estimation114

of the actual health state through e.g. filtering strategies Aizpurua et al. (2020). Prognos-115

tics models focus on the prediction of future degradation trajectories and RUL estimation116

based on likely life-stressors and operational profiles Aizpurua et al. (2019). This research117
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focuses on the development of an adequate anomaly detection approach and development of118

diagnostics and prognostics models within the PHM framework are left for future work (cf.119

Section 7).120

There exist limited monitoring solutions for marine energy applications, such as tidal121

turbine degradation modelling Galloway et al. (2017), or wave energy converter health mon-122

itoring through underwater acoustic emission Walsh et al. (2017). The development of123

monitoring solutions for tidal turbines and wave energy applications based on power curve124

modelling is a challenging approach, because it is necessary to model the sea-state infor-125

mation and evaluate its influence on the generated power Mérigaud & Ringwood (2016).126

Technological solutions for wind energy have been developed for many years now and, ac-127

cordingly, most of the proposed turbine condition monitoring solutions focus on wind tur-128

bines de Novaes Pires Leite et al. (2018). Technological similarities between air-turbines129

implemented in OWC devices and wind turbines suggest that methodologies applied on130

wind turbines may be applicable to air-turbines.131

Wind turbine anomaly detection approaches can be classified into data-driven and model-132

based approaches Hameed et al. (2009); Kusiak et al. (2013). Model-based methods develop133

physics-based operational models and data-driven methods define the expected operation134

through operational data measured via supervisory control and data acquisition (SCADA)135

systems. Anomaly detection models for wind turbines have often been addressed in the136

literature through probabilistic power curve models using statistical learning models, such137

as copulas Gill et al. (2012) and Gaussian processes Pandit & Infield (2018).138

In other engineering contexts, different unsupervised anomaly detection approaches have139

been proposed. Vanem & Brandsæter (2021) evaluate different unsupervised anomaly detec-140

tion methods tested on marine diesel engine data, including Self-Organising Maps (SOM),141

k Nearest-Neighbor (kNN), density-based clustering (DBscan), Gaussian Mixture Models142

(GMM) and one-class Support Vector Machines (SVM). They provide an insightful dis-143

cussion about the hyper-parameter selection, relevance of training data and the effect of144

dimensionality reduction. Coraddu et al. (2019) develop two anomaly detection models145

using kNN and SVM models to monitor hull and propeller performance. These unsuper-146

vised anomaly detection models, evaluate the available dataset to explore anomalies without147

ground truth information. In Vanem & Brandsæter (2021) different models are tested and148

it is possible to validate results by checking the consistency across models. In Coraddu et al.149

(2019) labels are used to evaluate the performance of the anomaly detection models.150

In a similar direction, Baraldi et al. (2015) presented an application of the Auto-Associative151

Kernel Regression (AAKR) approach Hines & Garvey (2006), which focuses on fitting normal152

data to a AAKR model, subsequent signal reconstruction and comparison with monitored153

parameters. The performance of the approach is dependent on the learned signal prop-154

erties and it has been enhanced in Brandsæter et al. (2019) for large datasets including155

memory vectors modelled as clusters. So as to enhance the learning abilities of anomaly156

detection models, autoencoder (AE) architectures were proposed building representations157

of the original signal encoded in deep Artificial Neural Network layers, and then evaluate158

reconstructions of monitored signals with the designed AE model, which can integrate signal159

properties in the different neurons and layers of the AE model Wu et al. (2020). AAKR160
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and AE models, perform adequately in controlled environments and they have shown an161

excellent ability to learn independent signal properties over time. However, they lack of162

contextual information.163

Anomaly detection without contextual information is a challenging task, which can cre-164

ate spurious jumps in the data and penalize the performance of the anomaly detection165

model Vanem & Brandsæter (2021). In this direction, so as to cover the range of operation166

and reduce false positives, ensemble strategies have been proposed by combining multiple167

anomaly detection models, such as the ensemble of hidden Markov models combined through168

kappa measurements to reach diversity and detect multiple anomalies Islam et al. (2018).169

Recently, transfer learning concepts have been also implemented to complement operational170

data with different operation conditions through adversarial deep-learning concepts Michau171

& Fink (2021).172

It can be observed that existing anomaly detection models perform appropriately under173

stable operation conditions, but show a poor performance without contextual information.174

This can be partially handled with an ensemble of anomaly detection models, but it is nec-175

essary to design multiple and diverse models that can capture characteristics of different176

operation conditions. The operation and degradation of WPP is strongly influenced by177

metocean conditions Mérigaud & Ringwood (2016), and in such cases, it is necessary to178

incorporate sea-state information in the modelling process. One possibility to achieve this179

objective is the adoption of conditional anomaly detection (CAD) modelling concepts Song180

et al. (2007), where the main goal is to learn and model the normal operation condition181

of the system as a function of the operation context. Catterson et al. (2010) presented a182

conditional anomaly detection model for transformer monitoring taking into account envi-183

ronmental parameters such as meteorological conditions and applied electrical load, along184

with transformer condition data such as oil temperature and dissolved gasses.185

However, to the best of authors’ knowledge, contextual anomaly detection concepts have186

not been developed for wave power plants and this is the original contribution of this paper.187

The proposed approach makes use of unsupervised machine learning methods so as to model188

air turbine operation states, which are statistically correlated with contextual sea-state189

information to learn likely normal operation states along with associated sea-state conditions.190

The approach is tested and validated with real data collected in the Mutriku WPP, including191

fault events that are used to validate the proposed model.192

3. Air-Turbine Conditional Anomaly Detection Approach193

The main focus of this paper is on the development of a CAD model for air turbines194

operated in WPPs. The implementation of this approach will permit the prompt detection195

of anomalies while avoiding false positives and unplanned maintenance actions.196

The expected operation of an air turbine can be modelled using the characteristic power197

curve, which relates the rotation speed with the produced power. Figure 2 shows the power198

curve of the turbine T10 of the Mutriku WPP using the monitored SCADA data corre-199

sponding to 10/09/2019-10/12/2019. It can be observed that the saturation point is located200

near 3200 rpm with an approximated maximum produced power of 22 kW. Negative power201
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values indicate that the WPP absorbs energy from the grid to prevent the turbine from202

stopping.203

Figure 2: Mutriku WPP power curve.

Deviations from the characteristic power curve may indicate early warnings or abnor-204

mal turbine operation states Gill et al. (2012). However, the operation of air turbines is205

surrounded by different sources of uncertainty, such as stochastic sea-state and atmospheric206

conditions, and accordingly, it is necessary to capture uncertainty modelling criteria along207

with the power curve.208

In the context of anomaly detection models, it is crucial to reduce false positives and209

maximize accuracy. Different operation conditions may result in different performance indi-210

cators, and therefore, it is very important to learn the normal behaviour of the turbine with211

respect to its operation context.212

Accordingly, this paper defines a framework to jointly model expected turbine perfor-213

mance conditions along with the corresponding expected sea-state. Figure 3 shows the214

developed conditional anomaly detection model for the air turbine, where turbine operation215

data is combined with environmental conditions and the operation of the turbine is evaluated216

conditioned to the environmental information.217

The environmental model will be determined through the combination of significant wave218

height Hs and the peak period Tp, which are common statistical parameters to characterize219

a sea-state Ardhuin et al. (2019). Subsequently, probabilistic multivariate models will be220

developed for the turbines to characterize the corresponding probabilistic power curve of221

the turbine. Finally, their probabilistic correlations will be defined so as to estimate the222

probability of a turbine being healthy, given the operational information.223

3.1. Environmental sea-state model224

The environmental model will be defined through the wave energy flux (WEF), which225

models the energetic sea-state, and it is defined as follows:226

WEF = 0.49 H2
s Te, (1)
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Figure 3: CAD framework for air turbines.

where Te is the energetic period defined as follows:227

Te = α Tp (2)

where α = 0.9 is considered as suggested in Tucker & Pitt (2001).228

It is expected that higher energetic sea-states, that are characterized with high WEF229

values, will operate with a different power curve compared with low energetic sea-states.230

Accordingly, the expected operation conditions, including the rotational speed and generated231

power, will be different depending on the sea-state.232

In this paper, different sea-states have been organized into different levels according to233

their energy flux values (see Section 4). The classification criteria is solely based on expert-234

knowledge and the use of data-driven clustering strategies is left for future work.235

3.2. Air Turbine model236

The power curve of the air turbine model will be developed using multivariate probabilis-237

tic distributions through Gaussian Mixture Models (GMM) Song et al. (2007). GMMs can238

model multivariate distributions and they enable capturing uncertainties through mixture239

of Gaussian distributions.240

For each power curve sample, comprised of the pair xi = {ri, ei}, where r denotes the241

rotational speed of the generator (in rpm units), and e denotes the generated energy (in kW242

units), the PDF of the GMM, fGMM(xi), is defined through a set of Gaussian distributions243

k ∈ {1, . . . , K} mixed in different proportions:244

fGMM(xi|Θ) =

K∑

k=1

αkP (xi|θk) (3)
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where {α1,. . .,αK} are the mixing probabilities, each θk is the set of parameters defining the245

k-th component, and Θ is the complete set of parameters needed to specify the mixture,246

Θ ≡ {θ1, . . . , θK , α1, . . . , αK}.247

In the univariate case, the likelihood of new measurements xi given the GMM parameters,248

P (xi|θk), is defined as follows:249

P (xi|θk) =
1

σk(
√
2π)

exp(−1

2

(x− µk)
2

σ2
k

) (4)

where σ2
k is the variance and θk = {µk, σk}.250

Eqs. (3) and (4) define the GMM model for the univariate case. They are extended for251

the multi-dimensional case by defining the likelihood function as follows:252

P (xi|θk) =
1

(2πddet|Σk|)
1

2

exp(−1

2
(xi − µk)

TΣk
−1(xi − µk)) (5)

where d is the dimension of the data, µk is the mean vector, Σk is the covariance matrix,253

and θk = {µk,Σk}.254

Given a set of n data samples, X = {x1 . . . , xn}, the log-likelihood corresponding to a255

k-th component mixture is:256

log(P (X|Θ)) = log

n∏

i=1

P (xi|Θ) =

n∑

i=1

log

K∑

k=1

αkP (xi|θk) (6)

The direct maximization of the log-likelihood function in Eq. (6) is complex and cannot257

be found analytically. Usually the maximum likelihood estimation is obtained using the258

expectation-maximization (EM) algorithm Song et al. (2007), which learns the distribution259

parameters θ from the data, and this is the algorithm implemented in this research for the260

inference of the distribution parameters.261

In general, GMMs represent the probability distributions of the given observations.262

Learned GMM distributions can be used to make statistical inferences about the prop-263

erties of the given observations. In an unsupervised clustering context, GMM modelling264

focuses on grouping data based on a mixture of, possibly multivariate, Gaussian distribu-265

tions. This leads to construct clusters which are ellipsoidal, centred at the mean vector,266

and with varying geometric features such as volume, shape and orientation determined by267

the covariance matrix Σk. It is possible to parametrize the covariance matrix through the268

eigen-decomposition, which leads to the following definition Celeux & Govaert (1995):269

Σk = λkDkAkD
T
k (7)

where λk is a scalar controlling the volume of the ellipsoid, Ak is a diagonal matrix specifying270

the shape of the density contours with det(Ak)=1, and Dk is a diagonal matrix which271

determines the orientation of the corresponding ellipsoid.272

The volume, shape and orientation of the covariances can be constrained to be equal273

or variable across different groups which leads to the definition of different clusters with274
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different characteristics and shapes as defined in Table 1 and implemented in the mclust275

package Scrucca et al. (2016).276

Table 1: Parametrisation of the covariance matrix Σk for multidimensional data Scrucca et al. (2016).

Model Σk Distribution Volume Shape Orientation

EEI λI Spherical Equal Equal -

VII λkI Spherical Variable Equal -

EEI λA Diagonal Equal Equal Coordinate axes

VEI λkA Diagonal Variable Equal Coordinate axes

EVI λAk Diagonal Equal Variable Coordinate axes

VVI λkAk Diagonal Variable Variable Coordinate axes

EEE λDADT Ellipsoidal Equal Equal Equal

EVE λDAkD
T Ellipsoidal Equal Variable Equal

VEE λkDADT Ellipsoidal Variable Equal Equal

VVE λkDAkD
T Ellipsoidal Variable Variable Equal

EEV λDkAD
T

k
Ellipsoidal Equal Equal Variable

VEV λkDkAD
T

k
Ellipsoidal Variable Equal Variable

EVV λDkAkD
T

k
Ellipsoidal Equal Variable Variable

VVV λkDkAkD
T

k
Ellipsoidal Variable Variable Variable

The selection of the optimal model, i.e. number of Gaussian components and the co-277

variance parametrization that minimise error, is selected by maximizing the Bayesian In-278

formation Criterion (BIC). The BIC is a penalized form of log-likelihood. That is, the279

log-likelihood increases with more components and a penalty term is subtracted to compen-280

sate for this event. The BIC is defined as follows:281

BICM,G = 2log(LM,G)−mlog(n) (8)

where log(LM,G) is the maximized log-likelihood for the model M with G components, m is282

the number of estimated parameters in the model, and n is the number of observations in283

the data. The pair {M,G} which maximizes the BICM,G is selected as the optimal model.284

Note that the BIC definition in Eq. (8) may be defined as a minimization problem if the285

negative log-likelihood and positive penalization term is used. The BIC criteria has been used286

because it shows a good compromise between model complexity and accuracy, as compared287

with other information criterion metrics such as Akaike information criteria. Penalized forms288

of BIC, such as the integrated complete likelihood (ICL), which penalizes BIC through an289

entropy term, shows the same performance and model-selection, as also observed in Vanem290

& Brandsæter (2021), and accordingly, the simpler BIC definition has been used. ICL seems291

to be a preferred solution for unsupervised problems with well-separated clusters Scrucca292

et al. (2016).293
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3.3. Correlation Model294

The correlation between the environment model and the turbine model is determined by295

the classification of sea-states into different groups and associating the corresponding power296

curve to each group. Figure 4 shows the conceptual diagram of the conditional anomaly297

detection model, where the Pr(Environment) block shows a random classification of the298

different sea-states.299

Figure 4: CAD for air turbines operated in the WPP.

The environmental model in Figure 4 shows the discretization of the pair 〈Hs, Tp〉 into the300

corresponding WEF sea-state level and characterization of the corresponding power curve.301

The empirical power curve will be conditioned on the sea-state classification criteria,302

Pr(Turbine|WEF), and it will be constructed accordingly. Figure 5 shows this concept by303

defining three states, with predefined WEF values to classify signals into one of these states.304

Figure 5: WEF states and corresponding power curve.

The transition conditions between different sea-states are deterministic boundary WEF305

values. The extension of the framework to include probabilistic transition rates is left for306

future work.307

4. Case Study308

The approach suggested in Section 3 is tested on the Mutriku WPP located in the Gulf309

of Biscay. The WPP is constructed onshore, integrated into a breakwater that protects310
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Mutriku’s fishing harbour, as shown in Figure 6 (a). The WPP is based on the OWC311

principle and consists of 16 independent air chambers with their corresponding air-turbine312

and electric generator, as illustrated in Figure 6 (b). The OWC technology uses wave energy313

to pressurize air in a chamber forcing it through an air turbine. The incoming and outgoing314

movement of the sea water within the chamber creates a bidirectional air flow through the315

turbine. In turn, the turbine is coupled to a power generator which produces energy.316

Due to the bi-directional reciprocating air flows generated in the air chambers of OWC317

devices, self-rectifying turbines are designed specifically for this application. A number of318

self-rectifying turbines have been suggested in the literature Falcao & Gato (2012), being319

the Wells turbine the most popular and the one installed in the Mutriku WPP.320

The 16 air chambers of the Mutriku WPP are equipped with a set of Wells turbines and321

an electric generator of 18.5 kW rated power. However, the maximum allowed power of the322

generator is extended until 22.5 kW in order to maximise the energy harnessing capabilities323

of the WPP. It should be noted that the first and last chambers are disabled and, thus,324

only 14 out of 16 chambers are currently operational, resulting in a total rated power of 260325

kW (instead of the total capacity of 296 kW) Fäy et al. (2020). In addition to the turbine-326

generator set, Figure 6 (b) shows the turbine chamber. Currently, the Biscay Marine Energy327

Platform (BIMEP) is the responsible for the operation and maintenance tasks of the plant.328

(a) Panoramic view. (b) OWC chamber and turbine.

Figure 6: Mutriku WPP.

From the beginning of the operation of the Mutriku WPP, different degradation and329

failure events have been reported for WPP components including air-turbines and electric330

generators Lekube et al. (2018), which required unplanned maintenance actions. The lack of331

experience in similar systems hampered the development of condition monitoring strategies,332

and maintenance actions have been adopted through intuition and expert knowledge.333

Although grid-connected, the main goal of the Mutriku WPP is promoting the devel-334

opment of OWC components, auxiliary systems and control strategies. Therefore, the op-335

erational consequence of unplanned maintenance actions are not as critical as in future336

commercial open ocean WPPs. However, the monitored information of the plant operation337

can be used to develop health monitoring models that integrate statistical learning strategies338

with expert knowledge, and accordingly, assist engineers in the maintenance decision-making339

processes of future WPPs. Since the CAD approach suggested includes monitored data from340

the environment and the WPP, each datasets are described in the following subsections.341
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4.1. Turbine Operational Data342

The WPP operates in different modes, automatically identifying the operation mode for343

each turbine depending of the operation characteristics. In a simplified manner, the WPP344

starts the operation from shutdown with a start-up mode, jumping to power production345

mode once the start-up is completed. Under normal operation, the WPP remains in power346

production mode passing through self-check mode automatically every 24 hours to verify347

the correct operation. If the plant is operating at low power or high pressure levels, the348

WPP enters in low-power inhibit or high-power inhibit modes, respectively, returning back349

to power production mode when the pressure in the chamber increases in the former case350

and decreases in the latter. In the case of a serious fault or any other suspicious event,351

the WPP can be shut down manually so that maintenance operations can be carried out352

safely. The SCADA system implemented in the Mutriku WPP includes a flag that records353

the plant operation mode at each instant.354

The main objective of the developed CAD approach is to identify anomalies that go355

unnoticed for the described high-level semi-automatic operating system. The power pro-356

duction mode is the most relevant operation because it is the energy generation mode, and357

accordingly, the operation data for this mode is isolated from the rest.358

For this operation mode, turbines in the Mutriku WPP are controlled combining maximal359

torque control and flux weakening strategies as shown by Fäy et al. (2020). Maximal torque360

control is applied when the turbine rotates below the nominal rotational speed, while the361

flux-weakening strategy comes into play above the nominal rotational speed. Due to this362

control combination, turbines may operate over its nominal power for a short period of time363

(up to the previously mentioned 22.5 kW maximum allowed limit). Therefore, the behaviour364

of the turbines is also conditioned by the control law applied in the turbo-generator, as shown365

by several studies for different turbines in the context of the Mutriku WPP, e.g. Lekube366

et al. (2016); Fäy et al. (2018); Otaola et al. (2019); Fäy et al. (2020). As a consequence, it367

can be assumed that control will have a significant role on the appearance of anomalies.368

Hence, rotational speed is the variable that affects most in the generated power and, as369

a consequence, both variables are used in the CAD approach presented in this study. In370

addition, these two variables are the ones that show the highest correlation among all the371

monitored mechanical variables. In order to limit the scope of the study the turbine T10 in372

the Mutriku WPP is studied extracting data for the period 10/09/2019-10/12/2019. This373

period of time provided the most consistent set of data for the analysis. Figure 7 (a) shows374

the instantaneous measurements for rotational speed, power, pressure and vibrations from375

top to bottom, while the correlation among the different variables is shown in Figure 7 (b).376

4.2. Environmental Data377

For the context-informed CAD approach, the information about the context is provided378

by the sea-state conditions through the pair 〈Hs,Tp〉. These two statistical parameters can379

be combined for the computation of the WEF [cf. Eq. (1)], which provides the available380

wave power at a certain location per unit of wave-crest length. Although both Tp and Hs381

are vital for an accurate resource characterisation, the context information required by the382
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Figure 7: T10 air turbine monitoring.

CAD approach presented in this study must be synthesised in a single parameter, for which383

the WEF is selected.384

Data on wave climate characteristics at a certain location can be obtained by means of385

two main sources: in-situ buoy measurements, e.g. Ruggiero et al. (2010) and Mérigaud &386

Ringwood (2018), and wave model and re-analysis datasets, e.g. Reguero et al. (2015) and387

Ulazia et al. (2020). In-situ buoy measurements are the most reliable source of data, which388

can provide direct measurements of the free-surface elevation or post-processed statistical389

parameters, such as Tp and Hs. The former requires a prohibitive on-board data storage390

capacity for a relatively small wave-riding buoy and, as a consequence, main oceanographic391

agencies provide mean statistical parameters of measured wave data.392

However, in-situ data is not always available, due to geographical or temporal limitations.393

Wave model and reanalysis data are highly valuable in these cases, providing data that cover394

large geographical areas along various decades. In the present study, wave data from the395

SIMAR model is used. SIMAR is an ensemble of modelling metocean data created upon a396

high-resolution numerical model by the Spanish Oceanographic Agency Puertos del Estado,397

which covers the coast along the Iberian Peninsula between 1958-2020 with a temporal398

resolution of 1 hour. It is important, though, that in order to extract solid conclusions,399

model and reanalysis datasets should be adequately validated.400

For this work, data from the SIMAR model in front of the Mutriku WPP is considered.401

Since no measurement data is available for this precise location, the validation of the SIMAR402

model data is carried out at the closest grid point of the SIMAR model for which in-situ403

data exists. Figure 8 (a) illustrates the geographical location for the Mutriku WPP, the404

Bilbao-Vizcaya (BV) measurement buoy of the Spanish Oceanographic Agency Puertos del405

Estado and the different grid points of the SIMAR model along the coast between the BV406

buoy and Mutriku WPP. The validation is recently carried out in Martinez-perurena et al.407
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(2021) between wave data at gridpoint 1 and in-situ measurements of the BV buoys and this408

validation of the SIMAR model is considered to provide confidence on the model in order409

to use the wave data that is closest to the Mutriku WPP at gridpoint 12 in Figure 8 (a).410

Figure 8 (b) shows the predominant wave direction in front of the Mutriku WPP.411
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Figure 8: Wave resource data from the SIMAR model: (a) model gridpoint location, (b) wave rose.

So as to design a conditional anomaly detection model, the environmental data is cate-412

gorised according to expert knowledge. Accordingly, the continuous WEF (with a temporal413

resolution of 1 hour) is discretised into five main groups. The discretisation criteria is based414

on the mean WEF at the Bay of Biscay, which is reported to be around 20 kW/m in different415

studies in the literature, e.g. Ulazia et al. (2017), resulting in five different categories as416

follows:417

• WEF 1: Very low energetic sea-states: 0-5 kW/m418

• WEF 2: Low energetic sea-states: 5-15 kW/m419

• WEF 3: Medium energetic sea-states: 15-25 kW/m420

• WEF 4: High energetic sea-states: 25-40 kW/m421

• WEF 5: Very high energetic sea-states: 40+ kW/m422

Figure 9 illustrates this discretisation comparing the continuous and discrete WEF signals423

for the period of time studied in this paper. As a consequence, as described in Figure 5, for424

each WEF configuration, the associated performance parameters of the WPP are monitored.425

Note that the mapping between sea-states and WPP health states is influenced by the426

propagation delay of sea-states that is jointly defined by the physical distance between the427

buoy and the WPP, and environmental conditions.428
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Figure 9: Wave energy flux based discretization of sea-states.

The selection of the number of sea-states impacts on the performance of the anomaly429

detection model. This is driven by engineering expert knowledge and leads to perform430

well in the tested scenario. However, changing the number of categories into less states,431

leads to obtaining a model which does not discern between different contextual information432

and causes false negatives. In contrast, increasing the number of states, leads to a very433

contextually-sensitive model, which flags false positive events.434

5. Results435

5.1. Data Pre-processing436

Following the framework shown in Figure 3, the data preprocessing activity is comprised437

of three connected steps. Firstly, invalid data readings with abnormal values are removed so438

as to avoid biases in the data, such as out-of-range values and missing data. Subsequently,439

original 10 Hz sampled signals are downsampled into 5-minute averages, so as to avoid440

false positives with specific wave conditions and ensure the duration of anomalous events441

throughout the 5-minute intervals. Figure 10 shows the downsampled signals for generated442

power and rotational speed.443

Finally, data-binning is implemented so as to ease the probabilistic analysis by converting444

data more suited for Gaussian components. Namely, the data-binning step counts as the445

same value data points differing by low values, and this step smooths the GMM learning446

process through the expectation-maximization algorithm avoiding the algorithm to collapse447

Song et al. (2007).448

5.2. Correlation Analysis449

In order to analyse the correlation between Mutriku WPP variables and sea-state infor-450

mation it is necessary to align both datasets. On the one hand, Mutriku WPP variables are451

collected through a SCADA system with a sampling rate of 10 Hz. On the other hand, the452
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Figure 10: Pre-processed data from 10/09/2019 to 10/12/2019.

SIMAR model at the gridpoint #12 in front of the Mutriku WPP provides wave data with453

a temporal resolution of 1 hour. Figure 11 shows the evolution of the WEF (in blue) and454

the power generation of the Mutriku WPP (in red) for a 1-hour resolution.455
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Figure 11: WEF and generated power.

In order to demonstrate the temporal alignment of wave resource and WPP datasets,456

a cross-correlation analysis is carried out comparing hourly wave data from the SIMAR457

model at the gridpoint #12 and the downsampled WPP variables with the same temporal458

resolution. The downsampling of the SCADA data to obtain hourly data is performed via459

time-integration of the generated energy within one-hour intervals. Figure 12 illustrates the460

cross-correlation analysis between the generated power and WEF, where no delay is shown.461

It should be noted that this delay is consistent across all the evaluated scenarios.462

Finally, the correlation among the different WPP variables is studied in order to better463

understand the operation of the WPP. The Pearson correlation is low for all the variable464

pairs, meaning that the linear relationship between all variable pairs is low. However,465

non-linear relationships between some variable pairs are identified. The most relevant rela-466

tionship is found between rotational speed and generated power. Figure 2 illustrates this467

relationship, where the saturation effect plays a significant role. In addition, negative power468

values appear for low-medium rotational speed ranges, which can be attributed to the control469

algorithm that prevents the turbine from stopping when wave power is low. Accordingly, the470

anomaly detection analysis in this study focuses on rotational speed and generated power471

so as to leverage the information of these variables for condition monitoring.472

17



0

0.2

0.4

0.6

0.8

1

1.2

C
or

re
la

tio
n 

[-
]

MWPP-Pow vs.SIMAR point #12

-40 -20 0 20 40 60 80

Time lag [1h]
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The same correlation analysis is also carried out for the five WEF categories and the473

corresponding rotational speed and generated power, as shown in Figure 13 (a). Despite474

the similarities of the different curves for all the WEF classes, the saturation effect of the475

generated power appears to be more significant as wave power increases.476

5.3. Probabilistic models477

Furthermore, a probabilistic descriptive operation analysis of the air turbines has been478

carried out in order to understand and characterize the expected operation of the air turbines479

as a function of sea-state conditions. Figure 13 (b) shows the different WEF groups and the480

associated distributions of the generated power corresponding to each group. It should be481

noted that the rated power of each generator is of 18.5 kW, but the plant operation allows482

power peaks up to 22.5 kW, which is the maximum allowed power (cf. Section 4.1).483

It can be observed from Figure 13 (b) that:484

• The overall distribution, including all the WEF classes, shows three main peaks located485

at (i) close to 0 kW, (ii) just above 5 kW and (iii) rated power 22.5 kW.486

• The discrete, group-based WEF analysis highlights:487

– The WEF 1 distribution shows an unimodal distribution with the peak very close488

to 0 kW, illustrating a very low power generation.489

– WEF 2 is similar to WEF 1, but shows a wider and more positively-skewed490

distribution, indicating that power generation increases substantially. In addition,491

a tiny peak can be observed at the rated power of the turbine, meaning that the492

saturation effect has a subtle impact.493

– WEF 3 and WEF 4 show a very similar bimodal distribution with a broad peak at494

low power values and a significant narrow peak at the rated power value. Hence,495

the saturation effects is shown to have a relevant impact. The main difference is496

the higher relevance of the peak at the rated power in WEF 4.497
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(a) WEF categories and associated power curves.

(b) WEF categories and associated distributions of WPP performance variables.

Figure 13: Mutriku WPP characterisation for each WEF class.

– Finally, WEF 5 shows a clear trimodal distribution with the three characteristic498

power generation values located at 0 kW, 5 kW and 22.5 kW.499

5.4. Anomaly detection500

In order to design the anomaly detection model of the air turbines, firstly, indepen-501

dent probabilistic operation models are designed fitted to different sea-state groups. The502

probabilistic operation models are based on empiric power curves that capture the depen-503

dency between the generated power and rotational speed. Figure 2 shows the empiric power504

curve of the WPP computed with the monitored dataset without separation into different505

sea-states.506

From the available three months dataset, one month has been used to train the probabilis-507

tic models, and the subsequent two months have been used for testing the trained models.508

For the sake of manageability and in order to reduce false positives, available datasets are509
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downsampled into 5-minutes averaged data. Averaging datasets reduces the otherwise pro-510

hibitive computational burden, smooths the monitored variables and removes instantaneous511

anomalous events. Note that wave data is also upsampled accordingly by means of a linear512

interpolation method.513

Figures 14-18 shows the downsampled empiric power curves for the different WEF groups514

corresponding to the training dataset. Differences between Figure 13 (a) and Figures 14-18515

arise, precisely, due to the downsampling.516

As for the parameter-tuning process of the GMM models, for each power curve in Fig-517

ures 14-18, different GMM models with 14 different covariates (cf. Table 1), and varying518

number of GMM components [cf. Eq. (5)] have been fitted. The parameter tuning of each519

GMM model has been done using the expectation-maximization algorithm (cf. Section 3).520

For the fitted GMM models, their corresponding BIC values are computed so as to select521

the GMM model that maximizes likelihood and minimizes model-complexity [cf. Eq. (8)].522

For each WEF range, the optimal GMM is selected from the tested models, and the selected523

GMM models represent the expected normal operation of the WPP within the given WEF524

region.525
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Figure 14: WEF 1: empiric power curve, BIC curves, optimal GMM (6 components, BIC=-80492.11, EVV).

A particularity of the lowest-energetic sea-state WEF 1 in Figure 14 is that the rotational526

speed never drops below 500 rpm, meaning that the turbine consumes energy from the grid527

in order to prevent the turbine from stopping. Thus, the turbine is effectively running on528

idle, which allows for a more efficient restart.529
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Figure 16: WEF 3: empiric power curve, BIC curves, optimal GMM (5 components, BIC=-42830.23, VVV).
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Figure 17: WEF 4: empiric power curve, BIC curves, optimal GMM (6 components, BIC=-58626.75, VVV).
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Figure 18: WEF 5: empiric power curve, BIC curves, optimal GMM (5 components, BIC=-26331.96, EVV).

It can be observed from the power curves in Figures 14-18 that the generated power and530

rotational speed of the different power curves increase from low-energetic sea-states (cf. WEF531

1, Figure 14), to high-energetic sea-states (cf. WEF 5, Figure 18). Accordingly, probabilistic532

regions have been assigned to each WEF region defined by the fitted GMM, which reflects533

the likely expected operation conditions, given the specific sea-state conditions.534

In parallel, for comparison purposes, the empirical power curve and the GMM have535

been also fitted for the case without division into sea-states. Figure 19 shows the empirical536

distribution, BIC curves and the optimal GMM model.537

From Figure 19, it can be observed that the assigned likelihood values for the value pair538

power and rotational speed, are different from the likelihood values assigned in Figures 14-18539

to the different value pairs of power and rotational speed. As it will be shown, this will have540

a direct impact on the performance of the conditional anomaly detection model when it541
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Figure 19: No-States: empiric power curve, BIC curves, optimal GMM (7 components, BIC=-271283.8,
VEV).

is informed about different sea-states, and when it ignores the information of different sea542

states.543

Subsequently, after learning the GMM models, for testing purposes, depending on the544

observed sea-state condition, the corresponding anomaly detection model is activated to545

detect anomalies. In this way, each independent anomaly detection model focuses on iden-546

tifying deviations from expected operation conditions for the considered WEF group. The547

main implementation steps of the anomaly detection process are defined as follows:548

1. Read pair 〈Hs, Tp〉549

2. Calculate WEF and identify sea-state group550

3. Estimate likelihood of the reading via GMM of the corresponding WEF551

4. Evaluate log-likelihood value and determine anomaly552

Figure 20 shows anomaly detection results for the different energetic sea-states along with553

the model without classification into sea-states. The vertical axis has been transformed into554

log-likelihood scale for anomaly representation purposes Song et al. (2007). The lower the555

log-likelihood, the more likely to be an anomalous event, because it represents an unlikely556

situation. Three different threshold levels have been represented so as to show the effect of557

different boundaries on triggering anomalous events: (a) -12.5, (b) -25 and (c) -50 in the558

log-scale.559

From Figure 20 it can be observed that there is a variation in the sea states across the560

analysed period along with the obtained log-likelihood values. It can be also seen the inferred561

log-likelihood value differences between the classification into different sea-states (WEF 1-5)562

and no-classification of sea-states (no states). This is expected from the fitted GMM models563

for WEF 1-5 (Figures 14-18) and the GMM with no-states (Figure 19).564

As for the different failure threshold levels, for example, for the threshold level (c), the565

no-states configuration identifies three anomalies, while the state-based anomaly detection566

matches only with one of them corresponding to the sea-state WEF 2. The subsequent567

analysis will elaborate further the results shown in Figure 20 focusing on the analysis of the568

events (#1)-(#2) and (#3)-(#4) that correspond, respectively, to the sea states WEF 5 and569

WEF 2.570
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Figure 20: Anomaly detection results.

5.4.1. WEF 2 events571

Figure 21 shows anomaly detection results for sea-state 2 (WEF 2) along with the cor-572

responding log-likelihood.573

Figure 21: Anomaly detection results for WEF 2.

Figure 21 highlights the potential anomalous events with the corresponding log-likelihood.574

The lower the likelihood, the lower the occurrence probability. Focusing on two events with575
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the lowest occurrence likelihood, highlighted with markers in Figure 21, it can be observed576

that one is below the most restrictive threshold (c), i.e. event (#3), and the other is below577

the threshold (b), i.e. event (#4).578

Figure 22 shows the expanded time-series of the generated power and rotational speed,579

corresponding to the anomalous events.580

Figure 22: (a) Event (#3) located at 2019-11-20, 13:30; (b) Event (#4) located at 2019-11-20, 19:40.

From Figure 22(a), it can be observed that the averaged power and rotational speed581

values of the event (#3) are -1.46 kW and 3058.3 rpm, respectively. Comparing these values582

with the learned GMM of the WEF 2 in Figure 15, it can be inferred that the occurrence583

likelihood is zero. It can be also noticed in Figure 22(a) that there are only 16 second584

samples out of the 5-minutes interval, i.e. the rest of samples in this interval are zero. This585

is not flagged as an anomalous plant operation, but an incorrect sensor reading, as confirmed586

by plant operation experts.587

Figure 22(b) shows the corresponding expanded 5-minutes time-series for the event (#4).588

It can be observed that the averaged power and rotational speed values are 9.77 kW and589

3335.09 rpm. Comparing these values with the learned GMM of the WEF 2 in Figure 15,590

it can be inferred that the occurrence likelihood is not as low as in the previous case, but591

corresponds to an unlikely event. This is due to the decrease in produced power (see the592

expected power in Figure 15). This is not a real anomaly and therefore threshold (c) would593

classify it correctly, while threshold (a) and (b) would missclassify it.594

Figure 23 shows the anomaly detection results for the model that does not consider595

separation of sea-states.596

Focusing on the three events below the lowest threshold in Figure 23, it can be observed597

that the lowest likelihood event (#3) matches with the anomaly flagged by the WEF 2598

sea-state GMM model located at 2019-11-20 at 13:30 (cf. Figure 21). As for the event599

(#4), it can be observed that according to the threshold (c) it would classify it correctly600

and thresholds (a) and (b) would misclassify the event.601
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Figure 23: Anomaly detection results without separation into WEF states.

5.4.2. WEF 5 events602

There are two additional events associated with the WEF 5 sea-state around first two603

weeks of November (cf. Figure 25) flagged as anomalies by the model without separation604

into WEF states. Focusing on the event (#1) located at 2019-11-03 at 18:35 Figure 24(a)605

shows the expanded 5-minutes time series for power and rotational speed.606

Figure 24: (a) Event (#1) located at 2019-11-03, 18:35; (b) Event (#2) located at 2019-11-05, 06:50.

The mean values for power and rotational speed in Figure 24(a) are 3.82 kW and 3190.8607

rpm, respectively. Looking at the GMM of the model without states in Figure 19, it can be608

observed that the likelihood of this event is low, and this is why the model without states609

classifies it is as an anomaly. The duration of the event is of 5 seconds out of the 5-minutes610
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interval, which again means that the remainder of readings are zero.611

In contrast, focusing on the model inferred from WEF 5 sea-state (cf. Figure 18) it can612

be seen that there is room for low energy generation. Figure 25 shows individual WEF 5613

anomaly detection results.614

Figure 25: Anomaly detection results for WEF 5.

Therefore, event (#1) is flagged as a false positive event by the model without states,615

and it is classified correctly for the GMM of the WEF 5, except for the threshold (a).616

Focusing on the event (#2) located at 2019-11-05 at 06:50 (cf. Figure 23), Figure 24(b)617

shows the expanded 5-minutes time series for power and rotational speed. The mean values618

for power and rotational speed are 4.11 kW and 3241.37 rpm, respectively. The duration of619

the event is of 1 minute, out of 5 minutes.620

Again, analysing the GMM of the model without states in Figure 19, it can be observed621

that the likelihood of this point is low, and this is why it is regarded as an anomaly by the622

model without states. In contrast, focusing on the model inferred from WEF 5 sea-state623

(Figure 18), it can be seen that there is room for low energy generation assigning a higher624

likelihood compared with the model without states (but still small).625

Therefore, event #2, classified as an anomaly by the model without states, is a false626

positive event and this is captured correctly with the model with states, except for the most627

restrictive threshold (a).628

Table 2 displays the obtained results for the different anomaly detection models including629

models with and without WEF states and the analysed threshold levels. Additionally, it630

also shows the performance statistics of the different anomaly detection models.631

It can be observed that for the threshold (c) the proposed state-based anomaly detection632

model obtains the best performance. For the same threshold, the model without states633

generates false positive events that affect the accuracy of the classifier. For the threshold634
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Table 2: Summary of anomaly detection results and performance statistics.

Events

Threshold

(c) (b) (a)

States No-states States No-states States No-states

Event #1 TN FP TN FP FP FP

Event #2 TN FP TN FP FP FP

Event #3 TP TP TP TP TP TP

Event #4 TN TN FP FP FP FP

Accuracy 100% 50% 75% 25% 25% 25%

TNR 100% 33,3% 66,6% 0% 0% 0%

TPR 100% 100% 100% 100% 100% 100%

FPR 0% 50% 25% 75% 75% 75%
1 Legend: True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN)
2 TPR = TP

TP+FN
; TNR = TN

TN+FP
; FPR = FP

TN+FP
; Accuracy = TP+TN

TP+TN+FP+FN

level (b), the performance of both models decreases and for the most restrictive threshold635

(a) both models generate false positive events due to the adopted threshold level.636

This lead us to draw two main conclusions. The separation of sea-states enables the637

rational discrimination of expected characteristic power curves given the corresponding sea-638

states. In contrast, if the whole dataset is considered without considering sea-states, the639

learned probabilistic distributions are WEF-agnostic and they are prone to misclassifying640

WPP states as erroneous due to the lack of sea-state information.641

6. Discussion642

Although the promising results are shown in this paper, before drawing definitive con-643

clusions further work is necessary, contrasting the methodology for other time-periods and644

turbines. The identification of the most problematic sea-states requires a verified methodol-645

ogy and a significantly larger dataset (a few years of operation) that covers different resource646

conditions and operation modes. In order to transit towards a scenario where this identifi-647

cation will be possible, some future lines for the improvement of the present approach are648

suggested here.649

Threshold definition without expert knowledge is a challenging task. In some cases, a650

physical magnitude can be turned into a threshold value. If that is not the case, it may651

occur that it can be determined by evaluating the probability of occurrence of events. In652

this research, the effect of different thresholds on different anomalies has been analysed653

showing that it plays an important role in decision-making. It is possible to extend this654

work by inferring dynamic thresholds from an statistical analysis, such as Bayesian and655

Neyman-Pearson hypothesis testing. This will be addressed in future research.656

The analysed signals in this work have been post-processed by downsampling them to657

five minutes average signals. That is, the duration of each point event in the case study is658

of five minutes. Therefore, if an anomalous event persists for this period, it is considered a659
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non-intermittent event. This was a trade-off decision between complexity and duration of660

the events. It may have been possible to evaluate the effect of different sampling rates on661

the anomaly detection approach.662

In this research, the identification of sea-states is based on expert knowledge because663

it is hypothesized that it would be beneficial for the classification of sea-states. The limits664

between energetic sea-states are deterministic, and therefore, there is room for converting this665

classification into a data-driven probabilistic approach. Future work will consider the use of666

trivariate statistical models and copula concepts Jiang et al. (2021) to evaluate data-driven667

sea-states modelling concepts and compare with expert-based categorization of sea-states.668

7. Conclusions669

This paper presents a context-informed unsupervised conditional anomaly detection ap-670

proach for air turbines operated in wave power plants (WPP). The approach has been tested671

and evaluated in the Mutriku WPP. The proposed approach has been focused on the use of672

power curves and energetic sea-states formalized through an ensemble of Gaussian Mixture673

models and expert knowledge.674

Results obtained from the application to the Mutriku WPP show the potential of the675

proposed approach to detect air turbine anomalies through explicit consideration of different676

sea-states along with power curves. It has been shown that without consideration of sea-677

state information the anomaly detection model is prone to flag false positive events and the678

integration of sea-state information aids in the discrimination of anomaly events.679

This is part of an ongoing research and authors’ plan to extend the anomaly detection680

approach in different directions including the data-driven inference of anomaly detection681

thresholds and data-driven identification of sea-states.682

Future activities within the prognostics an health management (PHM) framework will683

focus on the development of diagnostics and prognostics approaches for the WPP compo-684

nents.685
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