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8 ABSTRACT9

10

Electrochemical models are an incipient technique for estimation of battery cells internal vari-11

ables, useful for cells design or state of function optimization. One of the non-trivial procedures12

that allow the use of this type of models is the estimation of model parameter values. This paper13

presents a review of the existing computational parameter estimation methods for rocking chair14

batteries electrochemical models, a crucial step for real case implementation. Physics-based15

models can not reach accurate predictions if the parameters are not properly estimated, what16

highlights the necessity of reviewing the validity of these protocols, that are not extensively17

treated within literature. The gathered methods are explained and analyzed taking into account18

the accuracy and extent of the presented results, to give the most objective overview of their19

applicability within real case scenarios. The methods are classified into two different groups:20

single optimization analysis (using only one optimization procedure to estimate parameters) and21

multiple optimization analysis (methods using multiple optimizations). In addition, the need for22

at least some amount of physico-chemical characterization is analyzed as a common procedure23

for all the parameter estimation methods. The accuracy of each method is determined, taking as24

reference the best achievements found in literature. The results show that it is possible to esti-25

mate parameters with a high accuracy using non-invasive parameter estimation methods. Finally26

the potential of mixed (non invasive and physico-chemical based) methodologies is presented.27

These type of estimation procedures can potentially increase the accuracy of the procedures by28

lightening up the optimizations involved in the processes, and increasing the ability to estimate29

values for insensitive parameters. These mixed methods could achieve faster and cheaper esti-30

mation protocols, making them more efficient in general.31

32

1. Introduction33

Generation and transport of energy has become a critical world-level challenge. Different energy-generation meth-34

ods are used to create a so-called “Energy mix”, with oil, natural gas, and biofuels as the central pillars [28]. Further-35

more, energy consumption has passed from the simplicity of illuminating a house to the present complex electric grid.36

Overall energy demand has increased [29] and transport is now playing an important role in this growth as electric37

transportation gains traction around the world. In addition, many grid services [2] related to electricity distribution38

have grown in importance due to the new energy scenario.39

Global reliance on fossil fuels to meet the rising energy demand has taken a heavy toll in the last century. CO240

emissions are primary contributors to the greenhouse effect that is causing climate change. This is a problem of41

massive proportions that can not be ignored any longer. Other emissions such as CFCs (chlorofluorocarbons) have42

caused significant damage to the ozone layer [26]. Human health is also affected by air pollution, and related deaths43

are not isolated events [27].44

The energy scenario described above is no longer sustainable, and attention is turning to renewable-energy sources45

as the most plausible alternative to fossil fuels. These sources do not themselves generate contamination, although their46

CO2 footprint is not completely erased because of the production and maintenance of the associated infrastructure.47

Nevertheless, the intermittent nature of these energy sources (such as wind or solar) presents technical challenges that48

need to be solved. Energy needs to be delivered to different loads whenever consumption is demanded from those49

loads, and the timing of this demand is independent of the timing of energy generation. Energy storage is therefore a50

real and actual need, permitting storage when there is an excess of generation, and delivering energy when it is needed51

by an application.52
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Batteries, and specifically Li-ion batteries, are a promising energy-storage technology for a range of applications.53

Nonetheless, Li-ion batteries are considered to be more dangerous (due to the risk of leakage, fire, or even explosion)54

than the lead-acid batteries used by the industry for years. It is therefore necessary to adopt some safety measures. If55

a solution based on Li-ion batteries is to be adopted, a BMS (battery management system) needs to be considered, to56

ensure that these batteries operate in a safe and efficient manner.57

Some difficulties need to be overcome to achieve better battery-based energy-storage system (ESS). The demand for58

battery systems is increasing due to the penetration of renewable energies and the growth of the electric-transportation59

market. Nevertheless, lithium and transition-metal resources are finite and future alternatives will be key. One further60

drawback is that the purchase price of batteries has been high to date, which causes the payback period of lithium61

battery-based systems to be in the range of years. However, the current trend indicates that the price of Li-ion batteries62

will continue to drop as the market grows, and production comes online to meet demand. An evident sign of this63

fact is the cell-manufacturing Gigafactories 1 and 3 that Tesla Motors is building [78]. Despite this however, the64

return-on-investment period will not be negligible if the Li-ion price does not drop lower than expected.65

When designing a battery installation where performance must be guaranteed over an operational lifetime, the ag-66

ing characteristics of the cells must be taken into account. Working temperature, cycling rates, and depth-of-discharge67

(DOD) range all directly affect the evolution of battery-cell aging. The beginning-of-life capacity of the battery is over-68

sized to ensure end-of-life performance, and this oversizing is usually calculated conservatively because of uncertainty69

about how quickly cells will age. Those thoughts are being revised and it is believed that with the correct management,70

battery under/over utilization can be prevented. By understanding and controlling aging, it should be possible to store71

more energy than presently specified (conservatively) by manufacturers. Furthermore, is believed that the rate of aging72

can be reduced by smart current limiting. It is therefore necessary to develop improved control strategies to properly73

limit the utilization window of batteries.74

Future generation BMSs then, need to move beyond equivalent-circuit models (ECM). Different alternatives can75

be found in the literature, artificial intelligence (AI) based techniques can be used to predict the remaining useful life76

(RUL) of batteries, for example. Nevertheless, physics-based models (PBMs) are one of the most promising techniques77

to compute accurate SOF estimates, based on cells internal variables, that give insight into the internal processes and78

operation window of the cells. This presents an advantage over ECMs, which do not provide information about the79

internal operation of the cell, but rather only predict the voltage and temperature response to an input-current stimulus.80

Furthermore, combinations of these techniques appear to be a possible alternative to achieving amore profitable battery81

operation. PBMs are well known, but still pose some challenges before they can be used in current BMSs. Of particular82

concern is the limiting computational cost of these models. Even if reduced order models (ROMs) have been proven83

to work, it remains to be seen if they are fully functional when running in real BMSs due to the limited memory and84

computation power of these systems. In addition, PBMs have parameter values that must be tailored to match the85

characteristics of particular cells used in a battery design. The process of determining these values is known as the86

"parameter estimation" problem. This is still a crucial issue, that limits the use of PBMs models. This study therefore,87

presents a critical review of the techniques found in the literature to address this problem.88

The present work: (1) presents an overview of the challenge associated with physics-based battery modeling and89

parameter estimation; (2) gathers and classifies the optimization based methods found in literature, taking into account90

the proof of correct determination of parameters; and (3) outlines future trends in the context of the current state of the91

art.92

2. Model characterization and system identification93

Model-based strategies for advanced battery management introduce numerous degrees-of-freedom to the battery94

estimation and control problem and thus open up a wide range of possible performance benefits. Mathematical models95

of cell-level behavior are able to account for underlying dynamic processes and can be used to generate predictions of96

future cell behavior. In particular, physics-based models stem from first-principles equations of electrochemistry and97

can provide valuable insight into the changing internal quantities which govern battery cell performance and long-term98

health and are thus ideal candidates for future BMS designs.99

The selection of a mathematical model and the determination of its descriptors is a non-trivial component of the100

larger field of system identification and must take into account a number of key considerations. Chief among these is101

the application for which the model is to be used. For example, a rough estimate of cell state-of-charge can be obtained102

using a simple single-state integrator, whereas monitoring of cell internal electrode potentials requires an accurate103
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representation of complex electro-chemical dynamics.104

Two broad classes of mathematical models are: i) empirical and ii) physics-based. Empirical models are often105

simplified structures arranged to provide accurate reconstructions of observed input-output behaviors. Physics-based106

models, on the other hand, derive from underlying phenomenological principles and can, in principle, reproduce ex-107

pected behaviors throughout a wide operational environment. The focus of this review paper will be on models of the108

physics-based type.109

As mentioned, the complete process of system identification comprises a number of important tasks These include:110

i) model selection, which establishes the describing parameter set; and ii) parameter estimation, finding the most likely111

parameter values from possibly noisy data. It is important to note here that all quantities associated to model parameters112

are estimates of true values. This also includes physical measurements due to inherent measurement uncertainty.113

Generating the cell parameter estimates for a physics-based model structure generally involves both cell tear-down114

to obtain physical measurements (e.g., electrode dimensions, particle sizes, material composition, etc.) and input-115

output laboratory experiments to find electrochemical parameter values directly linked to dynamic processes. Re-116

garding the first of these, whereas physical teardown is clearly the most reliable method of obtaining highly accurate117

estimates of certain cell characteristics (e.g., electrode dimensions, particle sizes, etc.), the process is complex and118

requires highly specialized equipment. Nonetheless, parameters are able to be measured directly through different119

electrochemical techniques, including galvanostatic or potentiostatic intermittent titration technique, electrochemical120

impedance spectroscopy (EIS), Hg porosimetry and other direct methods [16, 15, 70, 71]. A related challenge stems121

from the combination of experimental errors associated with each parameter value determined from independent mea-122

surements, which tend to cause the overall error of the cell-level model to be large. Taylor et al., however, studied the123

error and uncertainty of electrical tests and managed to reduce it from 4 % to 0.6 [77]. On balance, physico-chemical124

parameter-identification procedures are perhaps best suited for material characterization, battery prototyping, and post-125

mortem analysis, and less so for finding accurate cell models for battery-management-system applications.126

The second approach consists of collecting input-output (i.e., current/voltage) measurements on intact cells – with-127

out performing teardown – and then using computation methods to estimate the parameter values by regressing the data128

to the model equations. This approach requires less infrastructure but possibly significant computation resources [83].129

The experiments required for this task are simpler as only cycling (and similar) data are used. The aim of design of130

experiment (DOE) techniques, crucial for these methodologies, is to obtain the desired information of the study space131

with the least number of experiments. The use of DOE techniques helps researchers to choose the samples from the132

study space, and select representative samples to avoid biased data, which is a matter of much research in the parame-133

ter estimation field. In this review, the most relevant studies applied to battery parameter estimation considering DOE134

are highlighted. The optimal design of experiment is discussed in Sect. 4.4 which is part of the MOA although those135

techniques could also be applied to SOA and experimental studies to reduce the number of experiments and decrease136

the experimental or computational cost.137

The greatest challenge facing these “nondestructive” experimental methods is the inherent identifiability and infor-138

mativity of the underlying parameters. These terms refer broadly to the intrinsic connection between the experimental139

data and the sought-after parameter values. For example, if the model structure has a poorly identified set of parameters140

forming its description, then no estimation method will be able to find a proper set of estimates for those parameters.141

This will be discussed in more detail in Sect. 4.2.142

2.1. Parameter estimation143

Whether using a full-order or reduced-order model to simulate a physical cell, the values of the parameters that144

describe the model must be properly tuned to match those of the actual cell. Every battery-cell is unique, due to145

differing physical dimensions, formulations of the electrodes and the electrolyte, separator properties, and so forth.146

Furthermore, as manufacturing of electrochemical cells is not a simple process, reproducibility is not ideal. Therefore,147

even batteries of identical design and chemistry from the same batch are never truly equal. In a BMS, algorithms that148

rely on model accuracy can use observer methods such as Kalman filters [74, 82] to compensate the small differences149

between individual cells that are supposed to be equal.150

Nevertheless, the need for obtaining at least a nominal set of parameters for every cell model is very important in151

order to achieve accurate predictions. The complete set of parameters that describe a Doyle-Fuller-Newman physics-152

based model is presented in Table 1. Although this set completely describes the physical properties and dynamic153

behavior of the lithium-ion cell, there is no guarantee this set is able to be estimated from input-output experiments.154

Few references are found within the literature dedicated to this specific task, which makes it important to review the155

E. Miguel et al.: Preprint submitted to Elsevier Page 3 of 22



Review of computational parameter estimation methods for electrochemical models

Table 1

List of parameter values required in order to implement the DFN model.
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validity of these methods and the niche for future improvement to them [14, 16, 15, 70, 71, 13, 5].156

2.2. Physico-chemical characterization157

At this point, it is worth highlighting that the most effective methods for parameter estimation considered in this158

article are generally mixed methods. Electrode open-circuit-potential (OCP) curves are obtained by cycling half-cells159

built with samples of the electrodes extracted from the full-cell [16, 70, 6, 31]. Some authors [20] have considered160

methods to obtain OCP curves computationally however, this makes the optimization process even more complex and161

can lead to ambiguous results. In addition, since the cell is disassembled to make the half-cells needed to obtain the162

OCP curves, geometrical parameters of the full-cell can be directly obtained with very little effort and high accuracy.163

Keeping the optimization problem needed to determine the remaining parameter values simple enough to be solved. For164

this reason, the remainder of this article focuses on computational parameter-estimation methods, and considers these165

methods as computational even if they can be considered truly mixed due to the small number of physico-chemical166

tests used. This is, considering that obtaining OCP curves appears to be a necessary and common pre-step before167

stepwise parameter estimation, the remainder of this article then focuses on evaluating the differences in the steps of168

the estimation processes that follow obtaining these curves.169

3. The P2D model170

The importance of an electrochemical PBM within this scope has been explained. There are many different such171

models that predict the internal variables of a battery cell, the most common being the “pseudo-two-dimensional”172

(P2D) or Doyle–Fuller–Newman (DFN) model [12]. This model is based on the porous electrode theory developed by173

Newman and Tiedemann [47], and states the PDAEs (partial differential algebraic equations) and boundary conditions174

required to model a cell. It represents three different domains, the two electrodes and the separator (Figure 1). The175

transport and charge-transfer phenomena are considered to occur in the x axis, while the other two axes are neglected,176

i.e, the properties are considered uniform across the y and z axes. This is an idealized assumption, but simplification is177

necessary at this point for practical battery-control algorithms. The distinction between this representation and previous178

attempts, is that the electrodes are defined as porous composites soaked with electrolyte as shown in Figure 1. This is179

particularly important because since the late 1990’s commercially available cells have been “rocking-chair batteries”180

manufactured with porous electrodes that improve the rate capabilities of the polymer batteries in use previously.181

The DFN P2D model considers all the major electrochemical processes. Electrochemical reaction kinetics can182

be modeled either with linear, “Tafel” or exponential expressions (“Butler-Volmer” equation). The electron transport183
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Negative PositiveSeparator

X=0 X=LpX=Ln X=Ln+Ls

Negative PositiveSeparator

Negative Positive

a)

b)

c)

X=0 X=LpX=Ln X=Ln+Ls

Figure 1: Simpli�cation of the rigorous two-dimensional model (a) to the P2D model (b) and the SP model (c) [66].

in the solid is modeled with “Ohm’s law”, and based on the effective solid conductivities of each electrode, which184

are affected by the porosity of the electrodes. The ion transport in the electrolyte is modeled on porous-electrode185

theory and is affected by the effective electrolyte-phase conductivities. Lithium transport within the solid electrode186

particles is modeled by Fick’s law. The continuum-scale P2D model is derived from a microscale model via volume187

averaging, which somewhat reduces spatial accuracy, but is usually considered “good enough” for battery-management188

applications and greatly simplifies computation. The specific equations of this model are:189

1. Solid-phase charge conservation:
∇ ⋅ (�eff∇�s) = asFj,

where �s(x, t) is the solid-phase potential at some spatial location x in the cell at time t, �eff is the effective190

conductivity of the solid, as is the specific surface area of the solid in the electrode, F is Faraday’s constant, and191

j(x, t) is the flux of lithium leaving the solid and entering the electrolyte. In the negative electrode, 0 ≤ x ≤ Ln,192

in the separator, Ln ≤ x ≤ Ln + Ls, and in the positive electrode Ln + Ls ≤ x ≤ Ln + Ls + Lp.193

2. Solid-phase mass-conservation:
)cs
)t

= 1
r2
)
)r

(

Dsr
2 )cs
)r

)

,

where cs(x, r, t) is the solid-phase concentration of lithium at radial position 0 ≤ r ≤ Rs within an assumed194

spherical particle of electrode material, and Ds is the diffusivity of lithium in the solid.195

3. Electrolyte-phase charge conservation:
∇ ⋅

(

�eff∇�e + �D,eff∇ ln ce
)

+ asFj = 0,
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where �e(x, t) is the electrolyte-phase potential, ce(x, t) is the electrolyte-phase concentration of lithium, �eff isthe effective conductivity of the electrolyte, and
�D,eff = 2RT�eff (t0+ − 1)

(

1 + ) ln f±∕) ln ce
)

∕F

scales �eff to multiply a concentration dependence of �e, t0+ is the transference number of the positive ion in the196

electrolyte with respect to the solvent, and f± is the mean molar activity coefficient.197

4. Electrolyte-phase mass conservation:198

)("ece)
)t

= ∇ ⋅ (De,eff∇ce) + as(1 − t0+)j,

where "e is the porosity of the electrode, and De,eff is the effective diffusivity of the electrolyte. The electrolyte199

concentration in equilibrium is denoted as ce,0.200

5. Butler–Volmer kinetics relationship:

j = j0

{

exp
(

(1 − �)F
RT

�
)

− exp
(

− �F
RT

�
)

}

,

where � = �s − �e − Uocp(cs,e∕cs,max) − FRf j and Uocp is the open-circuit-potential function of the electrode,
which in this case is evaluated at the surface concentration cs,e(x, t) = cs(x,R, t) normalized by the maximum
theoretic concentration of lithium cs,max of the electrode materials. In this relationship, Rf is the resistivity of asurface film on the electrode and

j0 = k0c
1−�
e (cs,max − cs,e)1−�c�s,e

where � is an asymmetric charge-transfer coefficient, and k0 is a kinetic parameter.201

During operation, electrode stoichiometry cs∕cs,max is expected to remain between �0 and �100. Cell electrical current202

density iapp(t)∕A (where A is the current-collector area) drives these equations through a boundary condition on �s.203

Cell voltage is the difference between �s, measured at the positive and negative current collectors.204

Manymodifications have beenmade to the standardDFNmodel over time to describe cell degradationmechanisms.205

For example, one describes the process of lithium plating [3]; others model solid–electrolyte interphase (SEI) layer206

growth [60, 59, 58, 65]; another models manganese dissolution in the positive-electrode [10]; and one includes a207

description of particle fracture [46]. All these degradation models augment the basic DFN framework, hence to predict208

degradation one must first be able to implement the DFN model.209

In addition, many computational simplifications have been made to the standard DFNmodel to increase its suitabil-210

ity for use in BMS. These include “single-particle models” (SPM) (e.g., [25, 48, 24]) and parabolic approximations211

of solid concentrations to reduce the complexity of PDE solutions (e.g., [22, 75]). Other approaches such as Padé212

approximations, residue grouping [73, 18, 61] and using the discrete-time realization algorithm [53, 37] have been213

considered. As all of these simplified models are based on the DFN model, to implement the reduced-order equations214

it is necessary to know all the parameter values of the full DFN-model equations as well.215

4. Computational parameter esimation methods216

Computational parameter-estimation methods estimate battery-cell parameter values based on measured cycling217

data. This data may be measured from simple constant-current discharges or from more specifically designed profiles.218

The general idea is to find the combination of parameter values that best fits the DFN model to the measured data in219

terms of the model’s voltage and/or temperature predictions. Computer-based tools employing a range of optimization220

methods (e.g., linear, nonlinear, or genetic algorithms) are used to solve the problem in different ways (e.g., series or221

parallel computing).222

4.1. Computational methods in use223

Nonlinear-programming methods for optimization seek solutions to a system of equalities and inequalities over a224

set of unknown real variables (constrained or unconstrained). Within this system, an objective function is maximized225

or minimized. In the case of finding parameter values for the nonlinear DFN model, nonlinear solvers must be used226
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Figure 2: Genetic algorithm optimization with parallel computing structure example.

(e.g, [43]). These solvers are often based on calculus approaches such as gradient descent or different approxima-227

tions to Newton’s method. When the problem can be posed in a nonlinear least-squares form, approaches such as the228

Levenberg–Marquardt or Gauss–Newton methods can be employed [67, 7].229

Genetic algorithms define several candidate parameter sets, and depending on the exact method, these sets can be230

randomly or deterministically generated. After performing a simulation with each of the candidate parameter sets, the231

parameters of the simulation achieving the results closest to the experimental dataset are selected, and the remaining232

sets are discarded. The selected parameters are then randomly mutated to form a new population (as they are called233

in this method) of candidate parameter sets. This process is repeated continuously until the difference between exper-234

imental data and simulation data are admissible; the process can be carried out done in series or in parallel (Figure 2)235

[85, 19, 20]. A variation of this method is the MOGA (multi objective genetic algorithms) [87], which can optimize236

more than one objective variable within the same process.237

The root-mean-squared (rms) prediction error is generally considered as a way to evaluate the accuracy of the
results:

rms =

√

√

√

√
1
N

N
∑

n=1
[ysimulation(tn) − yexperimental(tn)]2. (1)

The minimization of Eq. (1) with respect to model parameter values optimizes a relationship between simulated and238

experimental data. In this case ysimulation is the output voltage from the simulation of the model that is being adjusted,239

and yexperimental is the set of voltage data measured when cycling the real cell.240

It must be highlighted however, that the selection of an optimization method is only significant once the optimiza-241

tion problem itself is well stated. This means that the choice of solver is key to improving the accuracy of the results242

and reducing the time taken for optimization. Nonetheless, if the optimization problem itself is not well stated or243

excessively complicated, all solvers will encounter difficulties in finding a solution. The remainder of this article is244

therefore focused on evaluating the parameter-estimation methods independent of the solver used. A solver can be245

chosen and fine-tuned for each case once an optimization problem has been correctly defined, and the specific model246

equations are fixed.247

4.2. Grouping parameters248

Before analyzing the computational parameter-estimation methods, we note that there is a drawback common to249

all. The DFN model is composed of coupled PDAEs, and some of the parameters in these equations are coupled250
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together such that it is mathematically not possible to determine all parameter values correctly and uniquely from input–251

output data. We refer to this fact by stating that not all parameter values are “identifiable” [30, 31, 9]. Many different252

combinations of parameter values can lead to the same model output. Even if an optimized set of parameter values fits253

the experimental input-output data perfectly, the model may not give acceptable results in terms of predictions of cell254

internal variables [21].255

As a simple analogy to this problem, consider the equation y = (A×B)x+C. The parameters of this equation are256

A, B, and C . If we collect a set of input–output data pairs (x, y), we might attempt to find values for the parameters257

to fit the equation to the data. But, the problem is that A and B are not independently identifiable. Only the product258

M = A ×B is identifiable. Many different combinations of A and B arrive at the same product (but perhaps only one259

of these combinations is physically correct). We see this issue in the DFN model, for example, by observing that solid260

conductivity �eff never occurs by itself in the DFN equations. It always occurs as the product �effA∕L. Even though261

all terms in this expression have direct physical meanings and it is possible to estimate each term by a cell-teardown262

technique (and so the DFN model is well-posed, in some sense), it is not mathematically possible to estimate a correct263

value of �eff from input–output data. However, it is mathematically possible to estimate a correct value for the constant264

�totef f = �effA∕L.265

To address this problem, two different solution approaches can be found in the literature. Some authors opt to266

reformulate the models so new lumped parameters are used (similar to the lumping that produced �totef f as above) as will267

be explained more extensively in the following [30, 31, 9]. In the simple example, the ambiguous parts of the model268

are reformulated as y =Mx+C and the data pairs would be used to determineM and C uniquely; no attempt would269

be made to determine A and B.270

The second alternative groups parameters based on the sensitivity of the measured voltage, or voltage and tem-271

perature, to their values. Parameters to which the voltage is very sensitive are called “sensitive” parameters and the272

remaining are called “insensitive” parameters. The authors choose to estimate the sensitive parameters (or group pa-273

rameters creating “sensitive” groups) and either use nominal values for the insensitive parameters or delete portions of274

the model equations in which the insensitive parameters occur (an example is SPM, which often completely discards275

electrolyte dynamics from the cell model since the parameters that describe electrolyte potential and concentration are276

relatively insensitive to the voltage curve).277

There is however a drawback to both of these solutions that remains unsolved. Aging models are often linked to278

PBMs so the most benefit of these models is obtained. These aging models use some parameters included in the PBMs279

which are lumped together or even discarded during the optimization process. This involves some difficulties. If the280

model has been lumped there can be two solutions, the aging model can be reformulated accordingly, or the set of281

lumped parameters can be freed using additional tests (either cycling or physico-chemical). On the other hand, if some282

parameters have been discarded, or even if nominal values are used because voltage is insensitive to the parameters,283

there is a risk that the internal variables are not correctly estimated [21]. This can lead to a poor response of the aging284

model, since internal variables are used to feed aging models. Errors in, or omission of these “insensitive” parameters285

could lead therefore to an important lack of accuracy in an aging model. To the knowledge of the authors, there is no286

published solution to this problem, and it remains a research gap worthy of further investigation.287

4.3. Comparison of computational methods288

All computational parameter-estimationmethods can be classified into two groups based on the definition of the op-289

timization problem: single-optimization analysis (SOA) and multi-optimization analysis (MOA). Single optimization290

methods use data obtained experimentally (charges, discharges, or different types of cycles), and optimize the whole291

set of parameters so that the model output fits the data. Multi-optimization methods also use data sets or differentiated292

sections of them, then, single parameters or groups of parameters are optimized independently to fit experimental data.293

In the following subsections, we identify SOA and MOA approaches from the literature. Since most authors294

present their own unique reformulations of the P2D or SPM models, there is not room in this survey to present each295

reformulation and to explore all the differences between every reformulation. Instead, we wish to compare the ability296

of each method to determine the values required to parameterize the employed models. The interested reader is referred297

to the references presented in the following subsections for more details.298

4.3.1. Single optimization analysis (SOA)299

To implement a single-optimization analysis, a single set of experimental data is normally used (typical profiles300

include constant-current discharges). Either a single discharge, discharges at different rates, or other cycles can be301
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employed. The shared characteristic of these methods is that the load profiles are not specifically designed to isolate302

the effect of individual parameters, or sets of parameters, in the input–output data. All parameter values are jointly303

optimized to fit the experimental data. After the data is collected, each author uses a specific model and/or model-304

reduction in addition to a solving method. Nevertheless, this approach can lead to a loss of accuracy due to a highly305

complex optimization scheme. For this reason it is important to differentiate the accuracy of the obtained results, even306

if the model parameters are lumped.307

Table 2

Summary of the literature references.

Reference Model Parameters Validation data Pro�les

Full Partial Voltage Temp. Param. SOA MOA

[55] P2Dre X X X
[7] P2D/P2Dre X X X

[33, 57, 32, 62] P2D X X X
[54] P2Ds X X X

[67, 68, 79] P2D X X X X
[56] SPMe X X X X
[42] SPM X X X X
[11] SPMve,v,r/P2Dv XLS X X X
[20] P2D X X X
[4] P2D X X X
[80] P2Dve X X X
[39] SS XR X X
[49] P2D XLS X X
[64] P2Dr XR X X X
[72] SPMe XLS X X X
[81] P2D X X X X
[41] SPMe X X X X
[51] P2D XLS X X
[45] SPMre/P2Dv XL X X X
[38] P2Dve,r,re XL X X X X

[31, 30, 9, 8] P2Dre XL X X X X
[83, 85, 86, 84] P2D XLS X X X X

[76] P2D X X X X

s: state space; r: reduced order; re: reformulated; e: extended; v: used for voltage observation ; ve: own version or similar;
L: lumped parameters; LS: parameters lumped using sensitivity analysis; R: ROM parameters.

All authors identified in the literature using SOA chose either the P2D or SPM model (sometimes small variations308

or reformulations are made, Table 2). The choice of model determines the sets of parameters that must be estimated;309

for example, since SPM models predict fewer phenomena occurring inside the cell than P2D models, they require310

fewer parameters. Nevertheless this aspect is not crucial, as all the authors using SOA methods obtain a partial set311

of parameters. It is also worth noting that the coupling of parameters explained in section 4.2 is not fully addressed312

when using partial sets of parameters, but it is still important to evaluate the potential of these parameter-estimation313

techniques.314

State of the art results can be validated using three different approaches based on voltage, temperature, and the315

parameter values themselves. Voltage validation refers to evaluating the voltage response of the cell versus the pa-316

rameterized cell model (this can be done with the same cycles used for the validation, or with others, e.g., UDDS317

cycles). Temperature can also be taken into account, as it has a significant influence on battery behavior. These two318

methods can be implemented with real cycling data or with virtual data obtained from a full-order electrochemical319

model [11]. The last validation strategy directly compares the estimated parameter values to the true parameter val-320

ues. To implement this strategy, the true values must be known, which is not generally the case. However, it is still321

useful to initially determine whether the parameter-estimation methods are able to produce reasonable results. This is322

achieved by generating synthetic simulated cell-test data from a cell model (e.g., simulating the P2D model for some323

input-current profile), then using the simulated cell-test data to determine parameter values, and finally comparing the324
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Table 3

Parameters estimated by authors using SOA. r:Rajabloo et al. [56] estimated parameters,
m:Masoudi et al. [42] estimated parameters, d:Deng et al. [11] estimated parameters.

Negative

electrode

Separator Positive electrode

�n
eff m �p

eff
ans aps
Ln Ls Lp

�n
eff �s

eff �p
eff

Dn
s d/r Dp

s d/r
Rn

s Rp
s

"ne d/r "se m "pe d/r
Dn

e,eff Ds
e,eff Dp

e,eff
kn0 d kp0 d
cns,max d cps,max d

�n �p
Rn

f Rp
f

�n0 r �p0 r
�n100 �p100

A, t0+[m], ) ln f±∕) ln ce, ce,0 [d/m] span all cell regions

estimated parameter values to the true values used in the simulation.325

It is therefore necessary to analyse these validation methods and their viability. Some authors have demonstrated326

that cell voltage is not sensitive to some model parameters [11, 17], which is a key conclusion as it negates the concept327

that voltage validation is sufficient to ensure correct estimation of model parameters. This could be true, because328

parameters are fundamentally not identifiable, as discussed in Sect. 4.2. This problem can be solved by grouping329

parameters together into “lumped parameters”. It might also be correct because parameters are identifiable in principle,330

but the signal-to-noise ratio available in themeasured data is not sufficient to allow accurate parameter estimates. In this331

second case the use of enormous data sets could provide a solution, but the nonlinear optimization methods required332

to find the parameter values are not guaranteed to find the uniquely correct values in that case. Furthermore Zhang et333

al. [83, 85, 86, 84] reported the same conclusion when implementing an MOA method based on different temperature334

and rates constant current cycles (this method is presented in section 4.4). For this reason, the present paper focuses335

on the references that report reliable proof of proper parameter estimation, i.e., based on parameter values (reporting336

the error of the estimated parameters towards compared to virtual data). The work of Rajabloo et al., Masoudi et al.,337

and Deng et al. [56, 42, 11] is therefore studied in this section.338

Rajabloo et al. [56] used a SPM that was improved with a state of charge linear dependency (for which they339

also found parameter values) and solved in COMSOL(R). The selected parameter values were then estimated linking340

COMSOL(R) withMATLAB(R) through the COMSOLLiveLink forMATLAB(R). TheMatlab Optimization toolbox341

ran the optimization routine, and more specifically, a solver dedicated to constrained nonlinear multivariable problems342

based on the Newton’s method.343

Masoudi et al. [42] also used SPM, but employed Maplesim to solve the equations. For parameter estimation, the344

“Homotopy optimization method” was utilized to prevent inaccurate results arising from local minima solutions.345

Deng et al. [11] used their own version of the SPM to generate a reduced order model and estimate parameters. In346

addition P2D and SPM models were used for voltage response observation.347

Nevertheless, the models described above are not so trivial, since all of these authors estimate partial sets of pa-348

rameters, i.e., few parameters values are estimated to validate the estimation method itself (Table 3).349

The results obtained by these authors are presented in Figures 3 and 4. The error of the estimated parameters vary350

widely (between 0% and 42.8%), which can be attributed to the difference in sensitivity between individual parameters.351

Additionally, in the case of Deng et al. [11], even when using different cycles, parametric sensitivity gave rise to352

different results (Figure 4a).353

Reduced order, P2D and SPMmodels were studied using different optimization methods and experimental cycling354

profiles to estimate various sets of parameters. Nevertheless, the parametric errors obtained in these works were not355
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negligible . This could be due to poor parameter identifiability as explained before, which can be addressed in MOA356

methods by lumping parameters. Furthermore dedicated input profiles or specific fitting procedures designed for each357

parameter or parameter group can be an alternative to improve estimation accuracy, as presented in the next section.358

4.4. Multi optimization analysis (MOA)359

In the same vein as single-optimization analysis, the idea behind multi-optimization analysis is to fit model pa-360

rameters using optimization routines and obtain output variables similar to experimental data. However, instead of361

using generic input-current profiles to collect a data set, MOAs make a more advanced attempt to design profiles to362

isolate specific parameters or groups of parameters. This does not change the fundamental identifiability of the model;363

however, careful design of experiments can improve the informativity of the collected data to determining accurate364

estimation of values for certain parameters. Electrochemical impedance spectroscopy (EIS) tests, charge and discharge365

tests conducted at different rates, pulse tests, tests at different temperatures, tests around different cell states of charge,366

sensitivity analysis, or any combination of these can be used [31, 45, 38, 83, 85, 86, 84, 51].367

In all the new identification sequences proposed in the literature, a proper design of experiment (DOE) is conducted.368

Optimal experiment design (OED) has become a topic of much research for parameter identification for batteries with369

different modeling approaches [63, 44, 36, 40, 1, 50], and these studies optimize the experimental profile to maximize370

parameter sensitivity. There are widely known identifiability metrics (Fisher information) in which the shape of battery371

experimental profiles can be optimized to improve the battery identification process in terms of speed and accuracy372

[63]. Some of the examples of the application of OED for identification of battery parameters are presented in the next373

lines: using the full set of model parameters [63, 84], adding thermal parameters into the study [44, 83] and for ageing374

analysis [36, 1]. Rothenberg et al. [63], presented a battery cycling procedure in which the signal to noise ratio and the375

parameter estimation through the 4 hour experiment was improved compared to other works for an equivalent circuit376

model. Mendoza et al. [44] optimized the design of a thermal cycle to estimate the entropy coefficient of a battery cell377

at 20% state of charge in a 24 hour experiment, complementing the work proposed by [63]. Additional studies were378

conducted for ageing analysis with optimal designs [36, 1].379

In the identification of electrochemical model parameters, the electrochemical impedance spectroscopy (EIS) tech-380

nique plays an inportant role, as it can isolate the contributions of certain parameters. Mechanisms occurring inside381

a cell are differently excited using this technique, when the input profile (typically a sinusoidal signal ) is changed in382

frequency (as shown in Figure 5). Consequently the contribution of each mechanisms to the cell terminal voltage is383

different. This isolates the influence of the mechanism, and in turn, the influence of the model equations (intended384

to model mechanisms) [34]. This effect also alters the influence of the equation parameter on the voltage response,385

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
rr

o
r 

(%
)

42.8%20%

Rajabloo et. al.

Figure 3: Parametric errors adapted from [56].
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Figure 5: Cell mechanisms related to their typical time constants, adapted from [35].

allowing the design of more precise parameter identification methods. Some of the following works consider EIS386

in their methodologies, and the interested reader can also find a more detailed discussion about EIS technique in387

[35, 69, 70, 71].388

Moreover, is worth mentioning that the optimal set of experiments given by OED is model dependent. This means389

that while an optimal design is best for parameter estimation of an equivalent circuit model, it may not be the most390

appropriate for electrochemical models.391

Most of the authors in the literature using MOA (shown in Table 2) have used P2D, SPM or similar models. There392

are however, some exceptions which have reduced the models leading to a state-space or equation-based simpler model393

[64, 39]. Nevertheless the validation methods used for these reductions are based on voltage and temperature because394

the set of parameters that is used in those models is related to the specific model, discarding parameters that are not395

used due to the reduction or losing the physical meaning in the case of a state-space model. As a result, validation396

cannot be taken as proof of good parameter estimation, because the parameters can not be compared to those of a397

full-order model. The validity of this type of model should therefore be oriented to online system implementation, and398

can be developed once a reliable set of parameters has been previously obtained.399

At this point it is important to review at the validation results reported by authors using P2D or SPM models as400

in section 4.3.1 for SOA. The rest of the section is then focused on the studies presenting reliable proof of parameter401

estimation (reporting the error of the estimated parameters against virtual data). In Table 4 an overview of the parameter402

groups and experimental profiles or sequences that are proposed in the studied works for parameter estimation are403

presented.404

Zhang et al. [83, 86, 84, 82] reported an estimation methodology for the full set of parameters of a thermal-405

electrochemical P2Dmodel. Themethodology includes three steps, and is introduced in [84]. First of all, themaximum406

voltage sensitivity point for each parameter is searched based on benchmark parameter values (“Best Condition for407

Identification (BCI)”. Then the results are normalized and weighted to be comparable. Finally, the Fuzzy-C-Means408

method for parameter clustering is used. The parameters estimated by this methodology are set out in Table 4, and two409

parameter clusterings were proposed by the authors [84, 83]. [84] In this same study, 28 parameters were examined,410

from which five were considered insensitive to voltage, three could not be clustered as the degree of membership was411
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Table 4

MOA: Parameter groups and experimental sequences.

Ref. Grouped parameters Experimental pro�les
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f , �e,
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di�erent discharge rates (0.2, 0.5, 1, 2, 4) C.
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f , �e

Five di�erent temperatures (-5, 10, 25, 40, 55) ◦C and �ve
di�erent discharge rates (0.2, 0.5, 1, 2, 4) C.

[31] Non-lumped parameters grouped according to the op-
timization groups (*1): (A) Related to OCV testing:
�n0,coin, �

n
100,coin, �

p
0,coin, �

p
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Experimental procedure (i) Half-Cell OCP data (coin cells)
C/30 CC process; (ii) OCV/Rss data (full-cell) C/30 CC
process; (iii) Full-cell frequency data; (iv) Full-cell R0 data
(0.1 s pulses at di�erent Crates). At di�erent tempera-
tures (0, 10, 25, 30, 40) ◦C.

[45] SPM grouped parameters (*2): (A) Related to low-
rate testing: Qn, Qp; (B) Related to pulse testing:
k∗,n0 , k∗,p0 , Rcell; (C) Related to GITT testing: D∗,n

s ,
D∗,p

s

(i) Low rate tests; (ii) Pulse tests; (iii) Galvanostatic In-
termittent Titration Technique (GITT) tests.

[38] Grouped parameters: (A) Related to OCV testing:�n0 ,
�p0 , �

n
100, �

p
100, Q

n, Qp; (B) Related to ohmic resistance
and reaction polarization: Pact; (C) Related to di�u-
sion processes: Pcon, �s

Special operating condition with constant current
charge/discharge of 6 minutes and 15 minute rest.

[51] Grouped parameters: (A) Rn
s , R

p
s ; (B) Dn

s , D
p
s , "ne , �,

De, ) ln f±∕) ln ce; (C) Rn
f , R

p
f , k

n
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p
e , ce,0; (D) k

p
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n,
�p, "se, t

0
+; Fixed parameters: Ln, Ls, Lp, A

738 di�erent pro�les: pulses, sinusoids and driving cycles.

[85] 2 clusters: (A) �p,�n,"se,ce (B) rest of parameters EIS and CC-CV

Rext : extra resistance; Eact: activation energy; �e: electrolyte density; �: thermal conductivity; ℎ: heat transfer coe�cient;
(NC): Not clustered, (IS): insensitive; (*1) For better understanding of the studied works, the original non-lumped param-
eters are presented in the table. However, to apply Jobman's methodology, parameters should be lumped as speci�ed in
(*2) Q = FRsascs,max; k∗0 = (k0c0.5e )∕Rs; D∗

s = Ds∕Rs; Rcell: cell resistance. Pact: coe�cient of anode reaction polarization;
Pcon: proportional coe�cient of liquid-phase di�usion; �s: solid-phase di�usion time constant.

less than 0.6, and the remaining parameters were clustered into four groups. The authors concluded that the remaining412

20 parameters are changeless during cycling or can be obtained directly (geometrical or material characteristics) and413

therefore were not included in the analysis. They grouped the parameters as a function of their sensitivity towards414

constant-current discharges at different temperatures. Among the studied experimental profiles they found that three415

profiles can be used as the “Best practicable Conditions” for parameter estimation: very low temperature/very high rate,416

room temperature/medium rate, and very high temperature/very high rate. To reduce the computation time, parallelized417

genetic estimation was proposed [84, 82]. [83] was based on [84], but several improvements in the methodology and418

the model were included. The thermal-electrochemical model (P2D) was coupled to a thermal impedance model, so419

as to simulate the thermal distribution in the radial direction of the cylindrical battery. A sensitivity analysis was420

performed for both voltage and temperature, and two additional parameters (related to thermal properties) were added421

to the analysis. Zhang et al. [83] grouped 30 parameters into three clusters as specified in Table 4. In this case, the422

degree of membership of non-clustered parameters was less than 0.5. The authors undertook a further step, using423

an MOA to implement a stepwise estimation process based on the results of the sensitivity analysis to decrease the424

computational time and overcome difficulties of low sensitivity parameter estimation. This stepwise experimental425

design consists of three steps, and the starting point values of the parameters was taken from the literature. In the first426

step, highly sensitive parameters are estimated based on the “Best Practicable Condition (BPC)”, which corresponds to427

the condition that makes a cluster of parameters most sensitive (based on BCI results). The second step estimates the428

sensitive parameters in another BPC point, while highly sensitive parameters are taken from step 1, and low sensitivity429
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Figure 6: Comparison of relative errors in parameter estimation from [83] using best practicable conditions (BPCs) which
corresponds to the conditions that make a cluster of parameters most sensitive, dynamic stress test (DST), or constant
current (CC) experimental pro�les. Stepwise (step) or non-stepwise estimation (all) are di�erentiated making reference to
all in one and stepwise optimization procedures for the estimation sequence.

parameters are assigned benchmark values. Finally, in the third step, low sensitivity parameters are estimated. The430

best optimization results were obtained with this method. Except for two parameters with a maximum error of 20.86431

%, the remaining parameter estimation error was 10 % or lower. The authors reported a comparison of the relative432

errors using different experimental profiles (shown in Figure 6). Furthermore, in [86] a multi-objective optimization433

approach based on genetic algorithms was proposed. DST profile at 15 and 30◦C was used for estimation without434

parameter grouping or sequencing.435

Jobman et al. [31, 30] and Chu et al. [9, 8] proposed an estimation process performed in a P2D model that436

was reformulated using lumped parameters. This makes parameter estimation possible and minimizes the number437

of independent parameters to the minimum. The lumped parameters were obtained by incorporating the influence438

of design adjustable parameters (L, A, as, "e, "s, Rs) into the remaining parameters so as to prevent crosslinked439

interactions in the parameter estimation process. The parameters were sequentially estimated using four steps, which440

use only cell voltage and current relationships. The sequenced experimental profiles used in this methodology are441

described in Table 4. The first set of tests collects slow C/30 dis/charge data from the electrodes and full-cell to442

determine open-circuit-potential and open-circuit-voltage relationships. The second set of tests obtains pulse responses443

from the cell at different initial SOC setpoints and pulse magnitudes, exploiting the nonlinearity of the instantaneous444

voltage response predicted by the cell model to determine 15 of the model parameter values. The third set of tests445

captures frequency-response data from the cell around different SOC setpoints, and uses electrochemical impedance446

spectroscopy (EIS) to determine the remaining model parameter values. A final set of tests gathers constant-current447

dis/charge data from the cell at different (slow) rates to exploit the nonlinearity of the steady-state response to refine the448

parameter values (especially those describing the electrolyte dynamics, which are technically identifiable, but which449

in practice quite insensitive). These tests are repeated for several temperatures, and Arrhenius relationships are fit450

to parameter values to create a model that describes the cell across the entire operating range. The reported errors451

for the full parameter set estimation are set out in Figure 7. All of the parameters were kept below 10.1% of error,452

except the ne,0 terms (the lumped initial electrolyte concentration term). The author reported that this error could be453

refined further with a better optimization method. Chu et al. [8] further developed the work proposed by Jobman454

et al. using a reference electrode. In this way, the influence of negative and positive electrodes could be decoupled,455

allowing further isolation of equations (related to cell processes), and achieving a better determination of parameters.456

The results reported by Chu et al. (shown in Figure 8) significantly reduced the maximum errors observed by Jobman457

et al.: the error of parameter ne,0 decreased from 114.7% to 18.6%. In addition, the accuracy obtained for a number of458

other parameters increased considerably.459
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Namor et al. [45] performed a parameter estimation in a single-particle model using non-invasive testing (see Table460

4). The SPM parameters were normalized and grouped reducing, the number of parameters to be estimated from 14461

to 7. Three parameter groups were then defined, and each group was estimated separately based on the experimental462

test set out in Table 4. The maximum error was maintained below 22%, as illustrated in Figure 9.463

Li et al. [38] adopted a simplified model with regrouped and reduced parameters based on SPM and their previous464

work. They grouped the parameters as presented in Table 4,in accordance with their proposed parameter estimation465

process. Three steps are defined in the methodology, in which 9 parameters are estimated with a specific pulsed profile.466

The stepwise procedure consist of estimation of parameters related to the open-circuit potential, ohmic resistance and467

reaction polarization, and diffusion processes. The fitting errors (shown in Figure 10a) remained below 20% for the468

worst case, and most parameter errors were negligible. The reduction of the model makes the optimization problem469

easier, due to the smaller number of parameters and the simpler model itself. However some information is lost, as the470
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Figure 9: Parametric errors adapted from [45].
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Figure 10: Parametric errors adapted from [38] (a) and [51] (b).

SPM is less rigorous than the P2D model.471

Park et al. [51] used a similar methodology to [84, 83] in which the general P2D model was used [12]. First,472

a sensitivity analysis is performed across a variety of profiles including pulses, sinusoids and driving cycles. They473

generated a library gathering different input profiles oriented to maximize the sensitivity of model parameters. Then,474

a normalization is applied, and the linear dependence and sensitivity ranking is calculated. The parameter grouping475

is shown in Table 4. Finally, parameter fitting is obtained via a gradient-based algorithm. Figure 10b shows the error476

percentage using two different cycles (one dedicated and one typical 1C constant current [51]), with similar results.477

This work only reports the validation of estimation for four parameters, in which some errors are non-trivial.478

Talukdar et al. [76] proposed a method based on EIS and cycling data. In this work the authors developed a two479

step procedure, in which a subset of parameters (Table 4) is first identified from EIS data. Then, CC-CV cycling data480

together with a suite of electrochemical models is used to fit the remaining parameters. As the electrochemical suite481

contains EIS and ROMs, a sensitivity analysis is used to fit each model to the most sensitive parameters. It is important482

to note that ROMs are a very useful tool, despite the fact that accuracy can be affected or some information compared483

to the P2D lost (depending on the authors terminology simplified models can also be presented as ROMs, what would484

imply a loss of information) these models are much faster. ROMs can be considered a very useful tool in that they485
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Figure 11: Parametric errors adapted from [76].

are much faster. However they do present drawbacks when compared to P2Ds: accuracy can be affected or some486

information lost. It should be noted however, that some simplified models can also be presented in the literature as487

ROMs, which would imply a loss of information. The speed of ROMs enables more simulated scenarios at the same488

time, or faster optimization procedures, which can subsequently be refined with full order models (FOMs) [23]. Figure489

11 shows the results reported by Talukdar et al., the identified parameters are in line with the reference values overall,490

with a maximum estimation error of 14.06% and a minimum of 0.14%.491

5. Conclusions and avenues for future investigation492

The present paper highlights the potential use of PBMs to control cell degradation in BMSs. To achieve accurate493

predictions however, proper parameter estimation of these models is critical. For this reason a review of current494

approaches to paramater identification is presented.495

Parameter estimation approaches based on computational methods have been classified within two different groups:496

single-optimization analysis andmulti-optimization analysis (SOA andMOA). Studies with reliable proof of parameter497

estimation were analysed for both groups, and significant differences were found depending on the method used. Some498

of the SOAmethods reported good accuracy, but did not fully parameterize a P2Dmodel (only partial sets of parameter499

values were estimated). On the other hand, authors using MOA obtained accurate parameter estimations for both SPM500

and P2D models. These latter either reformulated the models using analytic parameter lumping, or used optimization501

routines to group parameters based on sensitivity tests. The analytic method would appear to deliver more accurate502

results than the sensitivity based method, but is only able to find values for groups of parameters and not for every503

individual parameter.504

If the objective of parameter estimation is to develop a cell model that can predict cell internal states and voltage,505

then there is no need to de-lump parameters that have been identified in a lumped form. Simulations of the lumped506

model will give identical predictions of internal states and voltage to simulations of the de-lumped model. However, if507

there is also a desire to understand cell design characteristics, then an interesting future avenue of investigation would508

be to develop methods to de-group lumped sets of parameters. This might involve introducing physico-chemical tests,509

introducing different sensors (e.g., magnetic in the case of iron-phosphate cells, reference electrodes in a commercial510

cell [52], or stress/strain in a more general setting) to obtain a richer dataset. One further approach could be to design511

more specific identification tests (perhaps based on observed rates of aging) to estimate key parameters that can be used512

to free the full set. Furthermore the definition of mixed methods, comprising physico-chemical tests and model-based513

fitting identification could also prove to be an effective approach. Not only to de-group lumped parameter models but514

to define more efficient methodologies, reducing the time and cost of the identification procedure while increasing the515

accuracy.516

Additionally, there do not appear to be proofs in the literature even that models that perfectly match the input–output517
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dynamics of a lithium-ion cell will actually match the input–state dynamics. That is, models may predict voltage and/or518

temperature well, but we are not aware of literature that guarantees that the parameter estimates are non-ambiguous and519

that the internal electrochemical variables (e.g., lithium concentrations and internal potentials) are correctly estimated.520

Mixed methodologies can be in this context a very useful tool, since not only precise parameters estimation, but also521

accurate state and voltage prediction is considered. These methodologies then, would be more robust to error caused522

by both, parameters and model assumptions. It is important to have assurance that these internal variables are being523

correctly modeled before PBMs can be used with confidence in BMS applications.524

6. List of symbols525

Table 5

Symbols and descriptions.

Symbol Description

Ls, Ln, Lp Length of the separator, negative and positive electrodes
A Total cell area
Rn
s , R

p
s Particle radius negative and positive electrode

�neff , �
p
eff Negative and positive solid phase conductivity

�neff , �
s
eff , �

p
eff Electrolyte conductivity

"ne , "
s
e, "

p
e Separator, negative and positive liquid phase volume fraction

"ns , "
p
s Negative and positive solid phase volume fraction

ans , a
p
s Negative and positive speci�c surface area

Dn
s , D

p
s Li-di�usivity in negative and positive matrix

kn0, k
p
0 Negative and positive reaction rate coe�cient

�n, �p Charge transfer coe�cient
Eact Activation energies
Dn
e,eff , D

s
e,eff , D

p
e,eff Salt di�usivity in the electrolyte

t0+ Transport number
ce,0 Initial electrolyte concentration
cns,max, c

s
s,max, c

p
s,max Initial, max and min solid phase concentrations

Rn
f , R

p
f Film resistance of negative and positive electrode

�n0 , �
n
100 Initial and �nal negative electrode state of lithiation

�p0 , �
p
100 Initial and �nal positive electrode state of lithiation

) ln f±∕) ln ce Electrolyte activity coe�cient ln derivative
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