mn

Mondragon Biblioteka
Unibertsitatea Biblioteca

biblioteka@mondragon.edu

This is an Accepted Manuscript version of the following article, accepted for publication
in:

G. Sagardui, L. Etxeberria, J. A. Agirre, A. Arrieta, C. F. Nicolds and J. M. Martin, "A
Configurable Validation Environment for Refactored Embedded Software: An
Application to the Vertical Transport Domain," 2017 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2017, pp. 16-19.

DOI: https://doi.org/10.1109/ISSREW.2017.9

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other wuses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

A Configurable Validation Environment for
Refactored Embedded Software: an Application to
the Vertical Transport Domain

Goiuria Sagardui, Leire Etxeberria,
Joseba A. Agirre, Aitor Arrieta
Mondragon Unibertsitatea
Mondragon, Spain
Email: {gsagardui, letxberria, jaagirre,
aarrieta} @mondragon.edu

Abstract—As systems evolve, their embedded software needs
constantly to be refactored. Moreover, given the different needs
of different customers, embedded systems require to be customiz-
able. The variability of these systems is large, and requires auto-
mated testing solutions. In this paper we propose a methodology
that automatically generates validation environments for highly
configurable embedded software that is being refactored. The
method has allowed for systematically testing a real-world indus-
trial case study involving the software in charge of controlling
the doors of an elevator. Finally, we extract the lessons learned
from its application.

I. INTRODUCTION

Embedded systems are engineering artifacts involving com-
putations that are subject to physical constraints. The physical
constraints arise through two kinds of interactions of com-
putational processes with the physical world: (i) reaction to a
physical environment, and (ii) execution on a physical platform
[1]. The software of these systems is constantly evolving,
which makes maintaining it a time-consuming, error-prone
and cost-intensive activity [2]. Moreover, embedded systems
are becoming highly configurable, and their software has to
deal with many parameters and configurations. Testing these
systems is becoming a complex endeavor, which requires
automated solutions to efficiently test and validate the different
versions of the software programs.

Embedded systems in the vertical transport domain are
subject to several factors that make the maintenance of the
software specifically challenging. For instance, many legisla-
tion changes are enacted over the years, what requires the
software to be constantly changed. Moreover, in each of
country where an elevator has to be installed, the software in
charge of controlling it must be compliant with the standard
required in that country. In addition, in order to be competitive
in the market, new elevator functionalities are required to be
integrated within the software. Furthermore, given the fast
technological evolution, the software has to be constantly
adapted in order to be deployed in new technological platforms
(e.g., new processors with higher computation capabilities).

Apart from all these factors, the variability of embedded
systems in the vertical transport domain is huge. Notice

Carlos Fernando Nicolas
Ik4-Ikerlan
Mondragon, Spain
Email: cfnicolas @ikerlan.es

Jose Maria Martin
Orona EIC
Hernani, Spain
Email: jmmartinc @orona-group.com

that each elevator installation is different from one another
depending on the number of floors of the building, number
of doors that each elevator has, types of sensors, mechanical
elements, etc. For this reason, the embedded software in
charge of controlling the elevators contains a single embedded
code base which is later configured and parameterized to be
deployed in a specific installation.

In this paper we present an approach for testing refactored
code that is highly configurable. Firstly, Model-Based Testing
(MBT) is employed to automatically generate test cases [3].
In addition, feature models [4] are employed to manage the
variability of the systems and to derive configurations. The test
cases are executed employing simulation-based testing. Specif-
ically, we automatically generate the simulation environment
in MATLAB/Simulink for each of the configurations of the
refactored code that needs to be tested. Moreover, the original
software code is employed and used as a test oracle, which
permits the automatic evaluation of the executed test cases.

The proposed approach was applied in the vertical transport
domain. As a case study, we employed the refactorized code
for the embedded software in charge of controlling the hor-
izontal movements of the elevators (i.e., the elevator doors)
from Orona, the leading elevator company in Spain. The
refactorized code permitted reducing the complexity of the
software, raising the abstraction level to ease the integration
of new functionalities and improving the understandability as
well as the maintainability of the code. The proposed approach
permitted automatically testing the configurable refactored
software code in a systematic manner.

The rest of the paper is structured as follows: Section II
presents some background related to this study. Section III
presents the proposed approach for testing variability-intensive
and refactored embedded software. Section IV outlines the
lessons learned from applying our approach in an industrial
context. Finally, conclusions and future work are outlined in
Section V.

Test Generation
‘0 modelJUnit
?
>

5— |

Test Generation

J
Abstract

S

Test ==l
Engineer EFSM
| model

Test
TestCases Concretization

Manual Environment

TestCases Generation
= Refactored Original
=1\ Software Software
;?i_@ X N = L'fl
N
Executable \ \\ /
TestCases G N\ jl
N\ \:H
N
[Simulation

- .
‘4 pure::variants
ri&

2

Configuration
Derivation

=l s

Feature
model

Variability Modeling

Domain
Expert

i

Environment

= e
=
Configuration

Model

Simulation Environment
for Automated Validation

Fig. 1: General overview of the process for the generation of the simulation environment for the automated validation

II. BACKGROUND

A. Simulation-Based Testing

Embedded systems are usually integrated with hardware
components (such as electrical or mechanical actuators) that
are typically complex or expensive, and the use of a real
prototype is often too costly. For that reason, simulation is
employed for testing embedded software, permitting several
advantages such as (1) execution of larger test cases, (2)
selection of critical scenarios, (3) specification of test oracles
for the automated validation of the system and (4) replication
of safety-critical functions (e.g., free fall of an elevator)
[5][6]. Moreover, simulation-based testing permits testing the
software at different test levels depending on the validation
stage of the product (i.e., Model-, Software-, Processor and
Hardware-in-the-Loop [7]).

B. Product Line Engineering

A product line is a set of related products sharing common-
alities and variabilities, where a family of software products
are reused to satisfy the customer’s needs instead of developing
each product individually [8]. Feature models are a hierarchi-
cal representation of the information of all possible products
of a product line [8]. These models have been cataloged as the
most used variability modeling notation in industry to manage
variability of product lines[9].

A basic feature model is composed of various features and
cross-tree constraints. These features can be cataloged in a
feature model as ‘“Mandatory” (when a feature appears in
all products), “Optional” (when a feature can be optional in
a product), “Alternative” (when only one feature among a
set of child features can be selected) or “Or” (when one or
more features among a set of child features can be selected).
A feature model can also contain cross-tree constraints: the
“Require” constraint (when a feature requires another feature
in the product) and the “Exclude” constraint (when two
features cannot be integrated in the same product).

III. APPROACH

Figure 1 depicts the overview of the different steps for the
automatic generation of the simulation environment for the
automated validation of refactored software. Specifically, it
shows the Software Process Engineering Metamodel (SPEM),
with three different stages. The first stage corresponds to the
generation of test cases by using MBT. The second stage
corresponds to variability modeling. The last stage corresponds
to the automatic generation of the validation environment.

A. Systematic Generation of Test Cases

The systematic generation of test cases was achieved by
employing the widely used MBT technique. MBT employs
explicit behavior models that encode the intended behavior
of a system, which is later used to automatically generate test
cases [3]. Based on our needs, we selected the tool ModelJUnit
[3]. ModelJUnit is an open source MBT tool that allowed us
to use time annotations, transition-based notation as well as
structural coverage metrics for test case generation. Moreover,
it supports on-line as well as off-line test execution. In our case
off-line test execution was required since tests are executed
after generation employing simulation.

Three main steps were employed to generate test cases
for testing the refactored embedded software employing sim-
ulation. The first step consisted of the elaboration of an
Extended Finite State Machine (EFSM) model, that modeled
the behavior of the System Under Test (SUT). The EFSM
considered timing aspects, and thus, some timeouts were
required to be specified in the transitions of the model. The
second step consisted of the generation of the abstract test
cases. To this end, the greedyTester algorithm provided by
the ModelJUnit tool was employed to generate test cases that
maximized the transition coverage. The last step consisted
of the concretization of the abstract test cases in order for
them to be executable into the Simulink models. To concretize
these test cases, we implemented a test concretization program
that obtained the abstract test cases provided by ModelJUnit,
and it transformed them into MATLAB signals which were
then directly executed into Simulink models. In our case, the

greedyTester algorithm was able to generate 47 test cases
taking the transition coverage as a generation criteria.

Apart from the automatically generated test cases, domain
knowledge is also employed to to manually generate realistic
test cases. These test cases serve as complement of the auto-
matically generated test cases and simulate realistic situations
of elevator, which are also important to execute.

B. Variability Management

To manage the high variability of the system, feature models
have been employed. The feature model includes all the
different elements that should be considered when validating
the control system and the rest of the environment (i.e., the
different sensors, horizontal movement elements (i.e., doors),
etc.). The most relevant elements include the following:

« Different types of access operators: the software must be
tested with different types of horizontal movement ele-
ments, where each of them has different access operators.

« Different number of horizontal movement elements: from
one to three horizontal movement elements that can
operate independently or not.

« Different floor configurations: each floor can have differ-
ent horizontal movement element configurations. Based
on the floor the elevator is on, the horizontal movement
elements can require a different behavior.

From the feature model a configuration model that includes

all the features related to the SUT. Figure 2 depicts the part
of the developed feature model for the case study.

A HorizontalMotionControlSystern
[1.3] Element
© Closed Sensor
o Activated
& Type
A
g Articulated
o Manual
g Automatic
& [2..200] Floor
o Activated floor

Fig. 2: Part of the developed feature model for the case study

C. Generation of the Simulation Environment

Since the refactored embedded software as well as its envi-
ronment is highly exposed to variability, a configurable simula-
tion environment was required. The idea behind this simulation
environment was to allow the simulation environment to be
automatically configured in order to test specific configurations
of an installation related to an elevator horizontal movements.

To generate the simulation environment, a simulation en-
vironment generator was developed in MATLAB. This gen-
erator obtained (1) the original software, (2) the refactored
code, (3) a configuration file derived from the feature model
and (4) the executable test cases as inputs. The simulation

environment generator works as follows. First, it parses the
configuration model, which is an *.xml file. With this file,
both, the refactored and the original software are configured.
After the software is configured, the simulation environment
generator creates a new Simulink file and both software codes
are allocated in the form of S-Functions (i.e., executable
code). Additionally, the environment generator allocates the
required physical elements and it configures them based on
the configuration file. At this point all the required electrical
and mechanical elements are configured. As a last step, the ex-
ecutable test cases are obtained, their variability is pruned and
they are allocated and integrated with the rest of the sources
in the Simulink file. Once all these steps are undertaken, the
model is ready to run and execute all the test cases. A sample
model of the generated simulation environment for a two door
configuration is shown in Figure 3.

=
== [
B

— i <=
Sty ==
(5=

P v ey

T T

PErgien

R] ==
Tl =

il

Fig. 3: Sample of the different elements on a generated
simulation environment for a two door configuration

P

sl

D. Automated Evaluation of Test Cases

Since the original software was thoroughly tested and even
deployed in elevators, we assumed that the software was error
free. In our case, we took advantage of the availability of
the original software to automatically evaluate the refactored
software by stimulating the inputs of both systems with the
same test cases and comparing the outputs of both. Hence, both
software units were simulated at the same time using Simulink
and results were compared. When a test case was launched and
the outputs of both systems did not match, domain experts
analyzed the failing test case. Figure 4 shows the position
of the two doors (0 means completely closed and 1 means
completely opened), where the blue line indicates the position
of the door controlled by the original code and the red one
indicates the position of the door controlled by the refactored
code. For the last part of the test case, it can be appreciated
that the positions of the doors controlled by the refactored
software do not match the positions of the doors controlled
by the original software. This might be either because the
refactored software is wrong, or because the new functionality
indicates that the door should be opened in that case.

0 | i i 1

0 10 20 Ell 40 0 B0
Fig. 4: Simulated position of the installation of two doors
under the control of the refactored and the original code

IV. LESSONS LEARNED

In this section we present the lessons learned when testing
the refactored embedded software for the horizontal controller
of an elevator. These lessons can be used as guidelines for
practitioners from different domains but who are addressing
similar problems.

A. Importance of Simulation-Based Testing

The deployment of the software in real systems is extremely
expensive, especially in the vertical transport domain. Sim-
ulation permits several advantages when testing re-factored
embedded code. First, it permits the execution of long test
suites. Second, it allows testing hundreds to thousands of
product configurations (involving different features, different
parameters, etc.). Third, it eases the automated validation
unlike with a real system. Lastly, it is possible to test safety-
critical functionalities by using fault injection and other tech-
niques without risks or damages (either economical or human-
based).

B. Usefulness of the Original Software for the Automated
Validation

Typically, the original (non-refactored) code has been
throughly tested, and in many cases, it has been on production
for a long time, as it was in our case. This means that most
or all the errors have been corrected, and thus, it can be
assumed it behaves correctly. This permits the comparison of
the refactored code with the original code, which allows for
the automated validation. It is possible to compare the outputs
of both systems and inform domain experts if results are not
the same.

C. Importance of Variability Management

The use of a variability management tool, such as
pure::variants or FeatureIDE, from the early refactoring stages
permits several advantages. One such advantage is the system-
atic and automatic generation of the validation environment.
Another important advantage is the systematic derivation of
the different configurations to test. This can be performed by
employing different product generation criteria investigated by
the product line engineering community. Another advantage
we found when managing the variability is the possibility of
incorporating variability in test cases.

D. Effectiveness of ModelJUnit for Test Case Generation

The generation of the test cases was performed by employ-
ing the MBT tool ModelJUnit and later executed in Simulink.
To make the generated test cases executable in Simulink, we
developed a test concretization program. Despite being an
open source tool, the effectiveness of ModelJUnit combined
with the execution of test cases in Simulink was high, permit-
ting the systematic and automated generation of test cases with
high transition coverage. Moreover, the use of MBT by means
of ModelJUnit reduced development time and cost. Apart from
ModelJUnit, automatically generated test cases were combined
with manually generated ones to test realistic scenarios. A
drawback of MBT is that in complex systems (e.g., Cyber-
Physical Systems), it might be difficult to capture complex
continuous dynamics and interactions between the system and
its environment [5].

V. CONCLUSION AND FUTURE WORK

This paper proposes a method for testing refactored em-
bedded software that is subject to variability employing MBT
and simulation-based testing. The approach was employed to
test the refactored embedded software of an industrial case
study involving the doors control of elevators. In the future, we
foresee to integrate more features to the tool, such as automatic
fault injection to test safety-critical functions of the system.

ACKNOWLEDGMENT

This work has been developed by the embedded systems
group of Mondragon Unibertsitatea supported by the Depart-
ment of Education, Universities and Research of the Basque
Government.

REFERENCES

[1] T. A. Henzinger and J. Sifakis, “The Embedded Systems Design Chal-
lenge,” in 14th International Symposium on Formal Methods(FM 2006),
Hamilton, Canada, ser. Lecture Notes in Computer Science, vol. 4085.
Springer, 2006, pp. 1-15.
M. Lindvall, S. Komi-Sirvio, P. Costa, and C. Seaman, “Embedded
software maintenance,” Tech. Rep., 2003.
M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2006.
K. Lee, K. C. Kang, and J. Lee, “Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering,” in 7th International
Conference on Software Reuse: Methods, Techniques, and Tools (ICSR
2002), Austin, TX, USA, ser. Lecture Notes in Computer Science, vol.
2319. Springer, 2002, pp. 62-77.
L. Briand, S. Nejati, M. Sabetzadeh, and D. Bianculli, “Testing the
untestable: Model testing of complex software-intensive systems,” in Pro-
ceedings of the 38th International Conference on Software Engineering
Companion, ser. ICSE "16. New York, NY, USA: ACM, 2016, pp.
789-792.
A. Arrieta, G. Sagardui, L. Etxeberria, and J. Zander, “Automatic gener-
ation of test system instances for configurable cyber-physical systems,”
Software Quality Journal, vol. 25, no. 3, pp. 1041-1083, 2017.
[7] H. Shokry and M. Hinchey, “Model-based verification of embedded
software,” Computer, vol. 42, no. 4, pp. 53 — 59, 2009.
[8] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615 — 636, 2010.
T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and
A. Wasowski, “A survey of variability modeling in industrial practice,” in
Variability Modelling of Software-intensive Systems (VaMoS), 2013, pp.
7:1-7:8.

[2

—

3

—

[4

—_

[5

—_

[6

[}

[9

—

	Portada AAM IEEE.pdf
	A Configurable Validation Environment for.pdf

