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Abstract: The use of Model Driven Development (MDD) is increasing in industry. When a Non Functional 
Requirement (NFR) not considered in the development must be added metamodels, models and also 
transformations are affected. Tasks for defining and maintaining model transformation rules can be complex 
in MDD. Model Transformation By Example (MTBE) approaches have been proposed to ease the 
development of transformation rules. In this paper an approach based on MTBE to derive the adaptation 
operations that must be implemented in a legacy model transformation when a NFR appears is presented. 
The approach derives semi-automatically the model transformations using execution traceability data and 
models differences. An example where access control property is integrated on a MDD system is introduced 
to demonstrate the usefulness of the tool to evolve model transformations. 

1 INTRODUCTION 

Software is increasingly becoming an integral part of 
electronic-end-customer products. When developing 
embedded systems the requirements to fulfill are not 
only defined in terms of the functional aspects of the 
system, but also on different design requirements, 
such as size, power consumption, response time, 
security or reliability, usually called Non-
Functional-Requirements (NFR). NFRs are critical 
in the development of embedded systems. Designing 
an embedded real-time system is a complex process, 
which involves modeling, verification, validation of 
functional and non functional requirements. The 
combination of model driven software development 
(MDD) (Völter et al., 2013) and software 
architecture concepts is considered especially 
advantageous for developing complex systems, such 
as embedded systems (Bunse et al., 2009). 

The Model Driven development (MDD) 
paradigm raises the abstraction level of system 
specifications and increases automation in system 
development. MDD uses models as the primary 
artifact of the software production process, and 
development steps consist of the application of 
transformation steps over these models. On MDD, a 
model transformation is specified through a set of 
transformation rules, usually using transformation 

languages such as ATL (Jouault et al., 2008), QVT 
(OMG, 2011) or EPSILON (Kolovos et al., 2008). 
There are two kinds of model transformations: 
endogenous and exogenous. Endogenous 
transformations are transformations between models 
expressed with the same meta-model. Exogenous 
transformations are transformations between models 
expressed using different meta-models. Tasks for 
defining, specifying and maintaining transformation 
rules are usually complex and critical in MDD. 

Most current MDD approaches focus on system 
functional requirements, and do not integrate NFRs 
into the MDD process. When a NFR not considered 
in the development must be added to the software 
not only the final source code is affected, also the 
metamodels, transformation rules and models must 
be evolved. Effectively integrating NFRs into the 
MDD production process requires several activities: 
(I) metamodels must be extended with the NFR (II) 
transformation rules must be adapted and (III) input 
models must be refined. The aim of our work is to 
ease the adaptation process of the transformation 
rules once metamodels have been extended to 
contemplate the NFR in the design models. In this 
paper, we present an approach and a tool to develop 
and evolve semi-automatically ATL transformation 
rules. To derive the adaptation operations that must 
be implemented in a legacy model transformation 
when a NFR appears is presented is not an easy task. 
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The proposed approach is based on Model 
Transformation By Example (MTBE) (Varró, 2006) 
concept. By-example approaches define transforma-
tions using examples models. Examples are easier to 
write than a transformation rule. In MTBE starting 
from pairs of example input/output models the 
transformation rules are derived. The approach, 
based on MTBE, is focused on generating semi-
automatically transformation rules from pairs of 
example input/output models and transformation 
rules execution traces (see figure 1). The model 
transformation developer applies a demonstration 
based approach to specify the desired transformation 
of non-functional properties and semi-automatically 
the model transformation is adapted. Once the model 
transformation has been adapted to integrate the 
NFR the MDD system can be applied to any 
application design that integrates the NFR 
specification. This paper provides the following 
contributions to the study of non-functional system 
property in the maintenance of model 
transformations: 

• A metamodel for expressing adaptation 
operations for transformation rules 

• An MTBE approach and a tool to evolve ATL 
transformations. The tool is called Transevol. 

• An example of the integration of security 
properties on a MDD system evolution tasks. 
Concretely an exogenous model transformation 
is adapted to integrate the security property. 

 

Figure 1: Approach for automatic model transformation 
analysis to derive adaptation operations. 

In the following sections we detail the solution 
which guides the evolution of model transformations 
to integrate non functional requirements. A case 
study to illustrate the approach is presented in 
section 2. Section 3 describes the developed MTBE 
approach for the model transformation development. 
The fourth resumes the results of applying the 
approach on the selected case study. Then in section 

5 the conclusions and future work are resumed. 
Finally in section 6 a brief description of the related 
work is presented. 

2 THE CASE STUDY 

This section presents the example used to illustrate 
the integration of non functional properties in the 
model transformation of a MDD system using the 
Transevol tool. The selected MDD system 
transforms UML components models into models 
that represent C code of applications. The new non 
functional requirement to integrate in the MDD 
system is a role based access control (RBAC). A 
UML profile is used to specify RBAC properties. 
The protection proxy pattern (Buschmann et al., 
1996) is used to implement the RBAC pattern at the 
code level. The M2M transformation rules must be 
adapted to transform the RBAC design data into 
ANSI-C implementation of the protection proxy 
pattern.  The approach deducts automatically the 
adaptations operation that must be implemented on 
the transformation rules using a pair of example 
input/output models demonstrating the new 
transformation requirement. The case study is 
explained in more detail in next subsections. 

2.1 The Model Driven System 

The MDD system (Agirre et al., 2012) generates 
ANSI-C code from component-based SW 
architectures, designed in UML in two steps.  As in 
Model Driven Architecture (MDA) platform 
independent models (PIM) are transformed into 
platform specific models (PSM), and finally the 
PSM is transformed in code. UML is used as the 
component metamodel for the design. The UML 
designs are transformed to intermediate models 
representing ANSI-C code through a model to model 
(M2M) transformation. SIMPLEC (Agirre et al., 
2010) meta-model is used to represent a subset of 
ANSI-C. The exogenous M2M transformation is 
implemented in ATL. Once the SIMPLEC models 
are obtained, a Model to Text (M2T) transformation 
is applied to SIMPLEC models to generate ANSI-C 
code. XPAND2 based templates are used to generate 
the output source code. Figure 2 resumes the MDD 
code generation system. 

The M2M transformation is composed by 8 ATL 
modules with 40 matched transformation rules, 33 
lazy transformation rules and 44 helper functions. 
The M2T transformation has 31 templates to 
generate the ANSI-C code from SIMPLE-C models. 
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Figure 2: UML to C MDD code generation system. 

2.2 The Example Design Model 

The Example design model is a simple folder 
manager application (see figure 3), composed by 
two components: the folder manager and the client. 
The folder manager offers services to list and 
browse entire folders or directories structure, create 
folders or remove folders. The SimpleC example 
model that represents the ANSI-C code of the 
application is automatically generated applying the 
actual M2M transformation to the design model. The 
ANSI-C code is obtained applying the M2T 
transformation. 

 

Figure 3: Composite structure diagram of the example 
application model. 

2.3 Specifying the New Non Functional 
Requirement 

At one point, it was required to add access control 
capabilities to components interfaces. Originally the 
MDD system did not offer access control 
capabilities neither at the design model not at the 
generated code. To specify the access control 
security properties the methodology presented in 
(Bouaziz et al., 2011) was selected. This 
methodology is based on the use of UML 
component metamodel to capture the domain 
concepts and security patterns to encode solutions to 
security problems. In the case study an UML profile 
associated with RBAC security pattern is used to 
specify the access control requirement. In figure 4 
the UML profile to express RBAC pattern is 
presented. 

 

Figure 4: UML profile for access control (RBAC). 

2.4 Specifying the New Model 
Transformation 

Once the UML extension for access control is 
selected the example design model and the 
automatically generated SimpleC model are 
incremented manually to demonstrate the new model 
transformation. Figure 5 represent the new design 
model for the folder manager application with 
RBAC properties and also the desired SimpleC 
output model with the protection proxy pattern 
implemented in the protected component. The 
general specification of the new transformation 
requirement can be resumed as: 
• For each <<accessControlPort>> in a protected  

component instance, create a module where the 
Protection Proxy pattern  will be implemented  

1. Create  the module where the proxy pattern 
will be implemented  

2. Create actualClientRole field.  

3. Create the setRole method.  

4. Create the wrapper functions that call the 
original interface methods.  

5. Add the reference to the header that defines 
the Role structure.  

6. Add the reference to the header that defines 
the original interface methods. 

• For each <<accessControlConnection>> create  

1. The checkRights method in a module inside 
the protected component instance directory.  

2. The Role structure in a module inside the 
protected component instance  package  

3. Create Roles and Right enumerations 

Once, we have an example, transformation rules 
and their integration in the legacy model 
transformation must be implemented.. This task 
requires a hard and error-prone navigation through 
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the legacy model transformation. To ease this step 
and reduce the transformation rules implementation 
time the Transevol tool deducts automatically the 
new rules implementation and integration in the 
legacy model transformation, in this case the UML 
to SimpleC transformation. 

3 THE TRANSEVOL TOOL 

Transevol tool is used to derive adaptation 
operations that must be implemented in a legacy 
model transformation to fulfill a new transformation 
requirement. Starting from pairs of example 
input/output models the tool induces a number of 
adaptations in the model transformation. The 
transformation rules analysis process consists of the 
following phases (see figure 1): 

1. Adapt manually a previous input model to add the 
new requirement and obtain the differential model 
between the both models (For example, the 
addition of the RBAC stereotypes to UML 
components to express the required access control 
property).  

2. Adapt manually a previous output model to add 
the requirement and obtain the differential model 
between both models (For example, adding 
SimpleC elements that represents the 
implementation of the protection proxy pattern.). 

3. Obtain traceability between the previous design 
model, the generated output model and the 
transformation rules. 

4. Deduct the adaptations to be made in the 
transformation rules to fulfill the new 
transformation requirement using Transevol. 

5. Execute a Higher Order Transformation (HOT) to 
semi-automatically adapt the transformation rules. 

6. Manually finish the transformation rules 
implementation (The helper functions algorithms). 

7. Validate the transformation implementation using 
the manually generated input and output model. 

The transformation rules analysis tool, 
Transevol, relates EMFDiff (Toulmé., 2006) 
differences types of the output models with 
adaptation operations to apply on the model 
transformation. The tool implements an algorithm 
that derive adaptation operations from the difference 
model between a model generated by the M2M 
transformation (GOm, Generated output model) and 
an expected output model (EOm). ). This difference 
model is called Output models differential (∆Om = 
EOm – GOm) and is generated using EMFCompare 
(Brun and Pierantonio , 2008) and conforms to 
EMFDiff metamodel. The EMFDiff metamodel 
types used to analyze the model transformation are: 
addition of an element (ModelElementChangeLeft), 

removal of an element (ModelElementChangeRight), 
change of an element container 
(MoveModelElement), addition of an attribute 
(AttributeChangeLeftTarget), addition of a reference 
(ReferenceChangeLeftTarget), modification of a 
reference ( UpdateReference) and modification of an 
attribute( UpdateAttribute). The EMFDiff 
differences offer basically the data of the new 
element, the deleted or updated element, the element 
affected by the change and the container of the new 
element. 

3.1 Specifying Adaptation Operation 
for the Transformation Rules 

Transevol uses a metamodel called 
MMRuleAdaptation to express the required 
adaptation operations for the transformation rules. 
The transformation rules are subject to the following 
refinement modifications: addRule, splitRule, 
deleteRule, deleteOutputPatternElement, 
deleteBinding, addInputPatternElement 
addOutputPatternElement, addBinding, 
moveOutputPatternElement, moveBinding, 
updateBinding, UpdateFilter and UpdateSource.  

After the analysis, the tool generates a model 
expressing the adaptation operations. Any 
modification operation is defined as an 
AdaptationTarget. Each AdaptationTarget has a set 
of adaptation operations. Each adaptation operation 
requires different information to specify the 
Modification, see table 1. The metamodel uses ATL 
metamodel elements to express the data related with 
each modification operation. Table 1 collects the 
data required to express each adaptation operation. 

3.2 Relationship between EMFDiff 
Differences and Adaptation 
Operations 

The tool relates EMFDiff differences types of the 
output models with adaptation operations. Table 2 
resumes the relation between EMFDiff types and 
adaptation operations. 

3.3 Model Transformation Analysis 

Using only the output models differences the 
adaptations operations cannot be expressed 
correctly, (for example the affected rule in a binding 
could not be obtained). More information is required 
to deduct correctly the adaptation operations. 
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Table 1: MMAdapatationRule metamodel’s adaptation 
operations. 

Adaptation 
operation 

Required Data 

Add Rule newRule: ATL!Rule 
relatedBinding: MMRuleAdaptation!AddBinding 

Add MatchedRule  
(extends addRule ) 

newRule: ATL!Rule 
relatedBinding: MMRuleAdaptation!AddBinding 

Add LazyRule 
(extends addRule ) 

newRule: ATL!Rule 
relatedBinding : MMRuleAdaptation!AddBinding 

Split Rule affectedRule: ATL!Rule 
newRule: MMRuleAdaptation!AddRule 

Add Binding  
(extends 
BindingOperation) 

affectedRule: ATL!Rule 
newBinding : ATL!Binding  

Remove Binding 
(extends 
BindingOperation) 

affectedRule: ATL!Rule 
affectedBinding: ATL!Binding 

Update Binding 
(extends 
BindingOperation) 

affectedRule: ATL!Rule 
affectedBinding: ATL!Binding 
newValue:OCL!OclExpression 

Move Binding 
(extends 
BindingOperation) 

affectedRule: ATL!Rule 
toRule: ATL!Rule 
binding: ATL!Binding 

Add filter to input 
pattern 

newFilter: OCL!OclExpression 
affectedRule: ATL!Rule 

Add input pattern 
element 

affectedRule: ATL!Rule 
newInput:ATL!InputPatternElement 

Add output  
pattern element 

affectedRule: ATL!Rule 
outputPattern: ATL!OutputPatternElement 

Delete out pattern 
element 

affectedRule: ATL!Rule 
outputPattern: ATL!OutputPatternElement 

To derive the modification operations also the 
input models differential (∆Im) must be used. This 
way the input elements can be related with the ouput 
models elements. The input and output metamodels 
class coverage (Fleurey et al., 2009) is required for 
the analysis. The metamodel class coverage 
represents each meta-class is instantiated at least 
once. The tool uses the differential of the input 
metamodel class coverage (∆Imc) due to ∆Im. And 
also uses the output metamodel class coverage 
differential (∆Omc) due to ∆Om. The execution 
traceability data (ETr) is fundamental for the 
automatic deduction of the transformation rules 
modifications. Combining the ∆Om, ∆Im, ETr, 
∆Imc and ∆Omc the tool obtains the modifications 
that must be done to adapt the transformation rules 
for the new transformation requirement. 

To specify a model transformation example 
∆Om, ∆Im, ETr, ∆Imc and ∆Omc models are 
required. Each difference element between the ouput 
models is related with an adaptation operation 
depending on the difference type. The analysis 
algorithm fits correctly to scenarios that have ∆Imc= 
0 or ∆Imc=1 and ∆Omc>0. When ∆Imc is higher 
than one we recommend to divide the examples in a 
set of ∆Imc=1 examples. 

The tool first takes a difference element of the 
∆Om and decides which kind of difference is: 

1. Addition of output model elements 
2. Removal of an output model element

Table 2: Relationship between EMFDiff metamodel types 
and adaptation operations for model transformations. 

EMFDiff 
difference type 

EMFDiff type 
description 

Adaptation 
operations 

ModelElement 
ChangeLeft 

Addition of  an 
element 

Add matched rule and  
add binding  
Add lazy rule and  add 
binding 

ModelElement 
ChangeRight 

Removal of an 
element  

Add filter 
Remove rule 

MoveModelElement Change of 
container 

Split rule and modify 
binding 
Move binding 

ReferenceChange 
LeftTarget 

Addition of a 
reference 

Add binding 

UpdateReference Update of a 
reference value 

Update  binding 
Add input pattern 

AttributeChange 
LeftTarget 

Addition of an 
attribute value 

AddBinding  

UpdateAttribute Modification of 
an attribute value 

Add binding  
Update binding 
Add input pattern 

3. Change of an element container 
4. Addition and modification of attributes  
5. Addition and modification of references 

Once the type of the difference is decided the 
tool must induce the modification that must be 
applied to the model transformation. Depending on 
the scenario of the model transformation the 
adaptation operation for an output EMFDiff 
difference type may be slightly different. To select 
the scenario the tool uses the ∆Om, ∆Im, ∆Imc and 
∆Omc models data. 

3.3.1 One-to-One Mapping Scenario 

The conditions to detect a one-to-one mapping 
scenario are: (I) The number of element addition 
(ModelElementChangeLeft)  in the ∆Im and the 
∆Om must be the same (II) the metamodel class 
coverage increment for the input and output 
metamodel must be 1. This scenario requires a new 
matched rule. The adaptation operation of adding a 
new matched rule is compound by a new rule and a 
binding. The data required to define the new 
matched rule is: 

• Input pattern element: the type of any of the 
added element of the ∆Im model. 

• Output pattern element: the type of one of the 
added element of the ∆Om. 

• Rule name: the concatenation of both types. 

Execution traceability data is used to search the rule 
that created the container element. This information 
is used to establish the binding that relates the new 
target element with its container.  
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Figure 5: The design model with access control specification, the protection proxy pattern and the desired output model 
with the access control. 

3.3.2 One-to-many Mapping Scenario 

This kind of scenario requires the creation of a new 
output pattern element or a new lazy rule. When 
different types of target elements are created, new 
output pattern elements are added to a rule. When 
instance of the same type are created for an input 
element type, lazy rules are required. 

3.3.3 Many-to-many Mapping Scenario 

A many-to-many mapping scenario is defined when 
a set of elements are added and both ∆Imc and 
∆Omc, are higher than one. Two strategies can apply 
to this scenario. The first strategy is to specify the 
transformation example with a set of one-to-many 
mapping examples, where ∆Imc is equal to 1 in each 
step. When ∆Imc is greater than 1 the algorithm 
aligns input elements with output elements using the 
similarity of its properties values. In those cases, 
false positives adaptation operations can be 
deducted. For those cases a warning message is used 
and manual intervention required. 

3.3.4 Removal of an Output Model Element 

Two removal scenarios are detected by the 
algorithm. A matched rule is removed when ∆Omc = 
-1. The other scenario occurs when ∆Omc = 0 and 
some ModelElementChangeRight appears (see table 
3). This scenario requires a filtering operation in the 
input pattern element. In both cases the affected rule 
is founded searching in the execution trace the rule 
that generates the removed elements. 

3.3.5 Change of an Element Container 

Sometimes without any modification in the input 
models (∆Imc = 1 and ∆Im=0) the model 
transformation evolves and requires to change the 
instance of the container of an output elements or 
even the container type. Both scenarios are detected 
by the algorithm. The first scenario involves a split 
rule operation. To split the affected rule a copy of 
the rule is done but filtering is added to the input 
pattern and a binding must be modified. When the 
type of the container changes a binding must be 
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deleted in the rule that created the previous container 
and a binding must be added in the rule that created 
the desired container. To search those affected rules 
the execution trace of the previously executed 
transformation is used. 

3.3.6 Addition and Modification of 
Attributes or References 

The operations related to these scenarios are 
modification of a binding or an addition of a 
binding. In these cases, the execution trace is used to 
search the affected rule. The information of the 
output elements that have the difference 
(Updateattribute, UpdateReference, Reference 
ChangeLeftElement and AttributeChangeLeft 
Element) is used to search the affected rule in the 
traceability data and to define the binding statement. 

Table 3: Removing output elements. 

Previous transformation Expected transformation 

Legend: 
• Arrow: Transformation 
• Geometric shapes (left side of the arrow): Elements of the input 

model 
• Geometric shapes (right side of the arrow): Elements of the 

Output model 

3.4 Metaclass Vs. Instances 

Using the differences models and the traceability 
information the analysis of the transformation can be 
done. The difference model is based on model 
elements and not on metamodel elements, so several 
differences may be referred to the same change to be 
made in the transformation rules. We therefore must 
filter the adaptation operations to obtain the final 
adaptation operation model.  

3.5 Dealing with Metamodel 
Extensions and NFR 

A metamodel defines the languages and processes to 
form a model. On metamodeling when the domain 
language requires the integration of NFR, usually 
metamodel composition techniques are used. 
Metamodel composition techniques help reusing and 
adding metamodel elements in a new metamodel 
definition. The primary design goal of the 
metamodeling composition environment is to leave 

the original metamodels intact, still able to be used 
independently from any composition they may be a 
part of. Metamodel extension is an example of 
metamodel composition technique. When UML is 
used as design metamodel and new concepts are 
required on the modeling, metamodel extension can 
be used. UML profiles as MARTE (OMG, 2009) or 
UMLSec (Jürjens, 2002), extends UML with 
stereotypes that are related to NFR.  On the case 
study, UML is extended with a profile to offer 
access control properties on the design level. 

Transevol tool can detect metamodel extensions 
when UML is used as metamodeling language. 
When a stereotype is applied to an element of the 
example input model and the output model is 
affected, the model transformation adaptation can be 
implemented in several ways.  For example the rule 
that deals with the stereotyped element can be split 
adding a filter to the input pattern element. Using the 
EMFDiff difference data the tool knows which 
element was stereotyped. The filter is implemented 
as a helper function, and uses the stereotype data. 
This way when the input element is stereotyped the 
new transformation rule will be executed and if not 
the original rule will be. The new rule is a copy of 
the original one and also creates the new elements 
required in the output model to fulfill the new 
requirement. Another possibility to adjust the model 
transformation is to add a condition in the binding 
statement of the transformation rule that deals with 
the stereotyped element. Transevol splits a rule 
when a new stereotype appears. Figure 6 resumes 
the split rule solution used to adapt the model 
transformation when a stereotype is detected by the 
tool. The figure shows how the tool adapt the 
transformation rule that creates the ports of the SW 
components when access control (property is 
integrated in the design modeling 

To improve the quality of the split rule a super 
rule is extracted and inheritance is used on the 
original and the new rule, see figure 7. This way the 
common part of the split rule is located only in the 
super rule and it is not duplicated. 

4 APPLYING THE TOOL TO THE 
CASE STUDY 

This section describes how must be applied the 
Transevol tool to evolve a model transformation to 
integrate new non functional properties.. The aim of 
the case study is to add access control to the 
software components ports that requires protection. 
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The addition of the control access must be offered 
on the design level and on the code level, so the 
model transformation must be adapted. To 
demonstrate the transformation a minimal folder 
manager application example is used, see figure 3.  
The transformation is demonstrated in several steps. 
.Each step must be defined with a pair of input/ouput 
model increment. In each step after applying the 
tool, the automatically derived adaptation operations 
must be implemented (automatically using the HOT 
or manually) and the new transformation run trace 
must be obtain to use in next iteration. 

In the first iteration the security profile is added 
to the example input model and the components are 
stereotyped with <<callerComponet>> and 
<<protectedComponent>> stereotypes. The example 
output model doesn’t requires any change, so none 
changes are required on the model transformation. 
To simplify the example from here only the actions 
related to the <<protectedComponent>> are taken 
account. In the second step the connector that 
requires access control is stereotyped with 
<<accessControlConnection>>. In this step the 
desired output model must be specified. The output 
model is modified to offers the function that check 
the rights of the client of a port. A header 
(represented as module in SimpleC) and a file are 
added to the folderManager component directory 
(package). The checkRights method, the role 
structure and the roles/rigths enumerations are 
defined in this module. Figure 6 resumes the 
modified models defined in this step. The changes 
that present the desired output model in this step are 
detected using EMFCompare tool and are six 
ModelElementChangeLeftTarget (element 
aggregation). In the input models differential an 
aggregation of a stereotype is detected. Using the 
input and output differences data the tool detects a 
one-to-many mappings related with a stereotype 
applied to a UML!Connector element.  The tools 
deduct that a split rule is required and that the new 
rule requires more output patterns element, one per 
each new element. To select the rule that must be 
split the algorithm searches in the execution trace of 
the previous iteration which rule created the 
UML!Connector that have been stereotyped. In this 
case the rule called createConnector is the affected 
one. The tool creates an adaptation operation that 
splits the affected rule, adds input pattern filter to 
both rules and finally add several output patterns to 
the new rule. To improve the quality of the 
transformation also a super rule is extracted as 
explained in the previous section. 
The next task is to aggregate the access control to

the ports of a protected component. In this case the 
input model and the output models, both, must be 
modified.  This task is divided in two steps to obtain 
a more precise result, so two examples of 
input/models must be defined. First in the input 
model the ports that require security are stereotyped 
with the <<accessControlPort>> stereotype and in 
the output model the module that implements the 
proxy pattern is created for each port. In this step 
only the header file, the references to the interface 
that must be wrapped and the references to the 
module that implements the checkrights methods are 
added to the code model. With this information the 
tool detects again that a split rule operation is 
required. The new rule is not yet fully implemented; 
the methods that wrap the provided interface and the 
field that represent the role of the port user are left. 
The final pair example of input/output models is 
created only modifying the output models, so ∆Imc 
= 0. In this case the tool detects that several elements 
have been added (the wrapper interface methods, the 
setRole method, the actualClientRole field and the 
file that implements the functions) and new output 
patterns are aggregate to the rule created in the 
previous step. 

The result of applying the tool to the model 
transformation using the folder manager example is 
in figure 7 and the adaptation operations derivate in 
each step are collected in table 4. 

4.1 Validation of the Generated 
Transformation Rules 

Table 4: Adaptation operations derived in each 
demonstration step. 

Step Description Differences Adaptation 
operations 

1 The access control profile is 
applied and the 
<<callerComponent>> and 
<<protectedComponent>> 
are used 

Input model:2 

Output model:0 

None 

2 <<AccessControlConnectio
n>>  is applied to the 
connector in the design 
model and the access 
control module is created in 
the output model 

Input model:1 

Output model:6 

ModelElementCha
ngeLeft 

1 Split rule  

1 Extracted 
super rule 

6 new output 
patterns 

3 <<AccessControlPort>> 
stereotype is applied to a 
port and the proxy module 
is created in the ouput 
SimpleC model. The 
includes that requires the 
proxy module are also 
aggregate. 

Input model:1 

Output model:1 
ModelElementCha
ngeLeft  and 2 
UpdateReferences 

1 Split rule  

1 Extracted 
super rule 

2 new 
bindings 

4 Methods and fields of the 
proxy module are created. 

Input model: 0 
Output model:4 

4 new output 
patterns 
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Figure 6: An example of a split rule adaptation operation. 

 

Figure 7: An example of how a super rule is extracted from a split rule adaptation operation. 

The model transformation modifications were first 
validated applying the transformation to the RBAC 
folder access design. To validate the new 
transformation rules the transformation was applied 
to the folder access example model. The generated 
output model was compared with the expected 
output model defined manually and used in the 
adaptation operations deduction phase. Both output 
models were compared using the EMFCompare tool. 
The output models were identical. After the first 
validation a criteria to create more testing 

input/output pair models was defined. The criteria 
used to specify the test models was to instantiate all 
the RBAC extension meta-classes, combine different 
values for the properties, and combine instances of 
different meta-classes. Fifteen different input models 
with their associated output models were defined. In 
some testing models all the connections between 
components were stereotyped with RBAC 
extensions. In some others a set of connections were 
stereotyped as secure. The number of ports and 
connectors for component depending on the model 
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could be one or two. Finally a model without 
security connections was defined. Each input models 
had different security settings. The largest model 
consisted of 5 components. The validation results 
were satisfactory in all the tests. 

5 CONCLUSIONS AND FUTURE 
WORK 

A MTBE approach and a tool to evolve ATL 
transformation have been presented. A metamodel 
for expressing adaptation operations for 
transformation rules and how the adaptation 
operations for M2M transformations are derived 
have been described. The tool can be used for 
adapting exogenous legacy model transformations to 
new transformation requirements. Even the case 
study is an exogenous model transformation the tool 
can be also used with endogenous transformations. 
The used endogenous transformations were model 
refinements: the flattening of state machines and the 
introduction of the bridge design pattern on UML 
class diagrams. 

It has been demonstrate that the tool can be used 
to integrate NFR on a model transformation. The 
tool has been used successfully to add RBAC 
security mechanism in a legacy model 
transformation. Although initial case study show 
promising results, as all the transformation rules 
have been correctly identified, algorithm should be 
proved in more complex and different examples to 
improve the coverage of the validation.  

In the example case study the NFR affects only 
the communication between SW components. For 
some NFRs the architectures and the 
implementations may be drastically changed. 
Validation with more NFR case studies is required 
like e.g. performance / scalability. In these cases 
bottlenecks have to be removed by e.g. introducing 
new architectural elements and patterns like caches 
and/ or clustering. Actually the approach have been 
only used when the NFR are expressed as UML 
extension and on PIM to PSM model 
transformations. The NFR taken account are here 
applied to express security concepts on the SW 
architecture. It has not been analyzed how can be 
address issues related to secure programming 
standards that affect the code. Those details must be 
treated mainly in model to text transformations. 

Our approach derived correct transformation 
rules. But the code of the helper functions used to 
implement the filtering on the matching rules are 

only defined and called but not implemented. 
Actually the code of the helper functions must be 
completed manually. To apply the tool it is enough 
knowing the changes that are necessary in the M2M 
transformation input and output models. Previous 
knowledge of the model transformation 
implementation is not required, so the time required 
to adapt the M2M transformation is reduced 

In short-tem the tool is going to be used in 
several model transformations to aggregate different 
NFR. The aim is to extend the tool to deal not only 
with NFR expressed as UML profile. 

The definition of a methodology for the correct 
specification of example models is a priority task. 
The example pair models generated manually in this 
work were defined intuitively. A methodology to 
generate automatically the example models is 
required. Actually exists several works on the area 
of model transformation validation were the testing 
and oracle models are generated automatically. 
Defining a correct set of models to be used as input 
of model transformations for testing is a difficult 
problem. In (Guerra et al., 2013) a formal language 
(PAMOMO) for the specification of the 
transformations based on invariants pre and post 
conditions is used to generate the test input model 
and the corresponding test oracle model. In (Sen et 
al., 2009) the meta-model and its constraints are 
used to generate the test input models using the 
metamodel coverage criteria. The generation of 
correct example input/ouput pair models has 
similarities with the automatic generation of testing 
models. Actually we are analyzing how must be 
specified the new transformation requirement to 
generate the example input and ouput models 
correctly. 

6 RELATED WORK 

The presented approach is highly related to MTBE. 
By-example approaches define transformations 
using examples models. Examples are easier to write 
than a transformation rule. In MTBE starting from 
pairs of example input/output models the 
transformation rules are derived. By example 
approaches for model transformation are classified 
in two types (I) demonstration based (II) 
correspondences based. Model transformation by 
demonstration (MTBD) (Sun et al., 2009) specifies 
the desired transformation using modifications 
performed on example models. MTBE based on 
correspondences, uses pairs of input/output models 
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and also a mapping between them to derive the 
transformation rules. 

There are previous MTBE approaches which 
already deal with automatic generation of model 
transformations starting from pairs of example 
models. Most of the approaches are based on formal 
mapping to derive the transformations (Balogh and 
Varró, 2009). (Strommer and Wimmer, 2008) 
approach uses correspondence model between input 
and output model to generate ATL transformation 
rules. Instead offering a mapping model (García-
Magariño et al., 2009) annotates with extra 
information the source metamodel and the target 
metamodel to derive the required ATL 
transformation rules. Our approach also creates ATL 
transformation rules but a mapping between the 
desired input and output model or extra information 
besides the models differentials is not required.  

In (Faunes et al., 2013) a genetic programming 
based approach to derive model transformation rules 
(implemented with JESS) from input/output models 
is presented. This approach doesn’t require fine-
grained transformation traces. This approach is a 
self-tuning transformation so it cannot be used with 
legacy model transformations. TransEvol tool can be 
used with legacy ATL model to model 
transformations. 

MTBD are based on defining the desired 
transformation by editing a source model and 
demonstrating the changes that evolve to a target 
model. Most of the MTBD are used on endogenous 
model transformation (Sun and Gray, 2013) not as 
MTBE, based on correspondences, which can be 
used with exogenous transformations. (Langer et al., 
2010) presents a MTBD approach that can be 
applied to exogenous model transformation. This 
approach uses a state-based comparison to determine 
the executed modification operations after modeling 
the desired transformation. Using an incremental 
approach, in each step using a small transformation 
rule demonstration, internal templates representing 
the transformation rules are created. Because the 
approach uses templates created by transformation 
rules demonstrations it is not easy to apply this 
approach to legacy model transformations.  

Recently a MTBD approach for automating the 
maintenance of non functional system properties 
was presented (Sun et al., 2013). The approach can 
only be applied to endogenous transformation while 
Transevol can be applied to exogenous model 
transformations. 

Metamodel and transformation co-evolution 
solution also exists. In (Iovino et al., 2012) weaving 
between metamodels and transformation rules is 

used to analyze the impact on the transformation 
rules due to input metamodel evolution. These 
works only derives the modification on the 
transformation rules when regular metamodel 
evolution, as attribute modification or metaclass 
rename, occurs. When new elements on the input 
metamodel appear, the approach cannot derive the 
transformation rules. 
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