
Evolving Legacy Model Transformations to Aggregate
Non Functional Requirements of the Domain

Joseba A. Agirre, Goiuria Sagardui and Leire Etxeberria
Department of Computing, Mondragon University, Loramendi, Mondragon, Spain

Keywords: Model Driven Development, Model Transformation, Model Transformation by Example, Model
Transformation by Demonstration, Non Functional Requirements, Design Patterns.

Abstract: The use of Model Driven Development (MDD) is increasing in industry. When a Non Functional
Requirement (NFR) not considered in the development must be added metamodels, models and also
transformations are affected. Tasks for defining and maintaining model transformation rules can be complex
in MDD. Model Transformation By Example (MTBE) approaches have been proposed to ease the
development of transformation rules. In this paper an approach based on MTBE to derive the adaptation
operations that must be implemented in a legacy model transformation when a NFR appears is presented.
The approach derives semi-automatically the model transformations using execution traceability data and
models differences. An example where access control property is integrated on a MDD system is introduced
to demonstrate the usefulness of the tool to evolve model transformations.

1 INTRODUCTION

Software is increasingly becoming an integral part of
electronic-end-customer products. When developing
embedded systems the requirements to fulfill are not
only defined in terms of the functional aspects of the
system, but also on different design requirements,
such as size, power consumption, response time,
security or reliability, usually called Non-
Functional-Requirements (NFR). NFRs are critical
in the development of embedded systems. Designing
an embedded real-time system is a complex process,
which involves modeling, verification, validation of
functional and non functional requirements. The
combination of model driven software development
(MDD) (Völter et al., 2013) and software
architecture concepts is considered especially
advantageous for developing complex systems, such
as embedded systems (Bunse et al., 2009).

The Model Driven development (MDD)
paradigm raises the abstraction level of system
specifications and increases automation in system
development. MDD uses models as the primary
artifact of the software production process, and
development steps consist of the application of
transformation steps over these models. On MDD, a
model transformation is specified through a set of
transformation rules, usually using transformation

languages such as ATL (Jouault et al., 2008), QVT
(OMG, 2011) or EPSILON (Kolovos et al., 2008).
There are two kinds of model transformations:
endogenous and exogenous. Endogenous
transformations are transformations between models
expressed with the same meta-model. Exogenous
transformations are transformations between models
expressed using different meta-models. Tasks for
defining, specifying and maintaining transformation
rules are usually complex and critical in MDD.

Most current MDD approaches focus on system
functional requirements, and do not integrate NFRs
into the MDD process. When a NFR not considered
in the development must be added to the software
not only the final source code is affected, also the
metamodels, transformation rules and models must
be evolved. Effectively integrating NFRs into the
MDD production process requires several activities:
(I) metamodels must be extended with the NFR (II)
transformation rules must be adapted and (III) input
models must be refined. The aim of our work is to
ease the adaptation process of the transformation
rules once metamodels have been extended to
contemplate the NFR in the design models. In this
paper, we present an approach and a tool to develop
and evolve semi-automatically ATL transformation
rules. To derive the adaptation operations that must
be implemented in a legacy model transformation
when a NFR appears is presented is not an easy task.

437A. Agirre J., Sagardui G. and Etxeberria L..
Evolving Legacy Model Transformations to Aggregate Non Functional Requirements of the Domain.
DOI: 10.5220/0005227304370448
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 437-448
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

The proposed approach is based on Model
Transformation By Example (MTBE) (Varró, 2006)
concept. By-example approaches define transforma-
tions using examples models. Examples are easier to
write than a transformation rule. In MTBE starting
from pairs of example input/output models the
transformation rules are derived. The approach,
based on MTBE, is focused on generating semi-
automatically transformation rules from pairs of
example input/output models and transformation
rules execution traces (see figure 1). The model
transformation developer applies a demonstration
based approach to specify the desired transformation
of non-functional properties and semi-automatically
the model transformation is adapted. Once the model
transformation has been adapted to integrate the
NFR the MDD system can be applied to any
application design that integrates the NFR
specification. This paper provides the following
contributions to the study of non-functional system
property in the maintenance of model
transformations:

• A metamodel for expressing adaptation
operations for transformation rules

• An MTBE approach and a tool to evolve ATL
transformations. The tool is called Transevol.

• An example of the integration of security
properties on a MDD system evolution tasks.
Concretely an exogenous model transformation
is adapted to integrate the security property.

Figure 1: Approach for automatic model transformation
analysis to derive adaptation operations.

In the following sections we detail the solution
which guides the evolution of model transformations
to integrate non functional requirements. A case
study to illustrate the approach is presented in
section 2. Section 3 describes the developed MTBE
approach for the model transformation development.
The fourth resumes the results of applying the
approach on the selected case study. Then in section

5 the conclusions and future work are resumed.
Finally in section 6 a brief description of the related
work is presented.

2 THE CASE STUDY

This section presents the example used to illustrate
the integration of non functional properties in the
model transformation of a MDD system using the
Transevol tool. The selected MDD system
transforms UML components models into models
that represent C code of applications. The new non
functional requirement to integrate in the MDD
system is a role based access control (RBAC). A
UML profile is used to specify RBAC properties.
The protection proxy pattern (Buschmann et al.,
1996) is used to implement the RBAC pattern at the
code level. The M2M transformation rules must be
adapted to transform the RBAC design data into
ANSI-C implementation of the protection proxy
pattern. The approach deducts automatically the
adaptations operation that must be implemented on
the transformation rules using a pair of example
input/output models demonstrating the new
transformation requirement. The case study is
explained in more detail in next subsections.

2.1 The Model Driven System

The MDD system (Agirre et al., 2012) generates
ANSI-C code from component-based SW
architectures, designed in UML in two steps. As in
Model Driven Architecture (MDA) platform
independent models (PIM) are transformed into
platform specific models (PSM), and finally the
PSM is transformed in code. UML is used as the
component metamodel for the design. The UML
designs are transformed to intermediate models
representing ANSI-C code through a model to model
(M2M) transformation. SIMPLEC (Agirre et al.,
2010) meta-model is used to represent a subset of
ANSI-C. The exogenous M2M transformation is
implemented in ATL. Once the SIMPLEC models
are obtained, a Model to Text (M2T) transformation
is applied to SIMPLEC models to generate ANSI-C
code. XPAND2 based templates are used to generate
the output source code. Figure 2 resumes the MDD
code generation system.

The M2M transformation is composed by 8 ATL
modules with 40 matched transformation rules, 33
lazy transformation rules and 44 helper functions.
The M2T transformation has 31 templates to
generate the ANSI-C code from SIMPLE-C models.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

438

Figure 2: UML to C MDD code generation system.

2.2 The Example Design Model

The Example design model is a simple folder
manager application (see figure 3), composed by
two components: the folder manager and the client.
The folder manager offers services to list and
browse entire folders or directories structure, create
folders or remove folders. The SimpleC example
model that represents the ANSI-C code of the
application is automatically generated applying the
actual M2M transformation to the design model. The
ANSI-C code is obtained applying the M2T
transformation.

Figure 3: Composite structure diagram of the example
application model.

2.3 Specifying the New Non Functional
Requirement

At one point, it was required to add access control
capabilities to components interfaces. Originally the
MDD system did not offer access control
capabilities neither at the design model not at the
generated code. To specify the access control
security properties the methodology presented in
(Bouaziz et al., 2011) was selected. This
methodology is based on the use of UML
component metamodel to capture the domain
concepts and security patterns to encode solutions to
security problems. In the case study an UML profile
associated with RBAC security pattern is used to
specify the access control requirement. In figure 4
the UML profile to express RBAC pattern is
presented.

Figure 4: UML profile for access control (RBAC).

2.4 Specifying the New Model
Transformation

Once the UML extension for access control is
selected the example design model and the
automatically generated SimpleC model are
incremented manually to demonstrate the new model
transformation. Figure 5 represent the new design
model for the folder manager application with
RBAC properties and also the desired SimpleC
output model with the protection proxy pattern
implemented in the protected component. The
general specification of the new transformation
requirement can be resumed as:
• For each <<accessControlPort>> in a protected

component instance, create a module where the
Protection Proxy pattern will be implemented

1. Create the module where the proxy pattern
will be implemented

2. Create actualClientRole field.

3. Create the setRole method.

4. Create the wrapper functions that call the
original interface methods.

5. Add the reference to the header that defines
the Role structure.

6. Add the reference to the header that defines
the original interface methods.

• For each <<accessControlConnection>> create

1. The checkRights method in a module inside
the protected component instance directory.

2. The Role structure in a module inside the
protected component instance package

3. Create Roles and Right enumerations

Once, we have an example, transformation rules
and their integration in the legacy model
transformation must be implemented.. This task
requires a hard and error-prone navigation through

Evolving�Legacy�Model�Transformations�to�Aggregate�Non�Functional�Requirements�of�the�Domain

439

the legacy model transformation. To ease this step
and reduce the transformation rules implementation
time the Transevol tool deducts automatically the
new rules implementation and integration in the
legacy model transformation, in this case the UML
to SimpleC transformation.

3 THE TRANSEVOL TOOL

Transevol tool is used to derive adaptation
operations that must be implemented in a legacy
model transformation to fulfill a new transformation
requirement. Starting from pairs of example
input/output models the tool induces a number of
adaptations in the model transformation. The
transformation rules analysis process consists of the
following phases (see figure 1):

1. Adapt manually a previous input model to add the
new requirement and obtain the differential model
between the both models (For example, the
addition of the RBAC stereotypes to UML
components to express the required access control
property).

2. Adapt manually a previous output model to add
the requirement and obtain the differential model
between both models (For example, adding
SimpleC elements that represents the
implementation of the protection proxy pattern.).

3. Obtain traceability between the previous design
model, the generated output model and the
transformation rules.

4. Deduct the adaptations to be made in the
transformation rules to fulfill the new
transformation requirement using Transevol.

5. Execute a Higher Order Transformation (HOT) to
semi-automatically adapt the transformation rules.

6. Manually finish the transformation rules
implementation (The helper functions algorithms).

7. Validate the transformation implementation using
the manually generated input and output model.

The transformation rules analysis tool,
Transevol, relates EMFDiff (Toulmé., 2006)
differences types of the output models with
adaptation operations to apply on the model
transformation. The tool implements an algorithm
that derive adaptation operations from the difference
model between a model generated by the M2M
transformation (GOm, Generated output model) and
an expected output model (EOm).). This difference
model is called Output models differential (∆Om =
EOm – GOm) and is generated using EMFCompare
(Brun and Pierantonio , 2008) and conforms to
EMFDiff metamodel. The EMFDiff metamodel
types used to analyze the model transformation are:
addition of an element (ModelElementChangeLeft),

removal of an element (ModelElementChangeRight),
change of an element container
(MoveModelElement), addition of an attribute
(AttributeChangeLeftTarget), addition of a reference
(ReferenceChangeLeftTarget), modification of a
reference (UpdateReference) and modification of an
attribute(UpdateAttribute). The EMFDiff
differences offer basically the data of the new
element, the deleted or updated element, the element
affected by the change and the container of the new
element.

3.1 Specifying Adaptation Operation
for the Transformation Rules

Transevol uses a metamodel called
MMRuleAdaptation to express the required
adaptation operations for the transformation rules.
The transformation rules are subject to the following
refinement modifications: addRule, splitRule,
deleteRule, deleteOutputPatternElement,
deleteBinding, addInputPatternElement
addOutputPatternElement, addBinding,
moveOutputPatternElement, moveBinding,
updateBinding, UpdateFilter and UpdateSource.

After the analysis, the tool generates a model
expressing the adaptation operations. Any
modification operation is defined as an
AdaptationTarget. Each AdaptationTarget has a set
of adaptation operations. Each adaptation operation
requires different information to specify the
Modification, see table 1. The metamodel uses ATL
metamodel elements to express the data related with
each modification operation. Table 1 collects the
data required to express each adaptation operation.

3.2 Relationship between EMFDiff
Differences and Adaptation
Operations

The tool relates EMFDiff differences types of the
output models with adaptation operations. Table 2
resumes the relation between EMFDiff types and
adaptation operations.

3.3 Model Transformation Analysis

Using only the output models differences the
adaptations operations cannot be expressed
correctly, (for example the affected rule in a binding
could not be obtained). More information is required
to deduct correctly the adaptation operations.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

440

Table 1: MMAdapatationRule metamodel’s adaptation
operations.

Adaptation
operation

Required Data

Add Rule newRule: ATL!Rule
relatedBinding: MMRuleAdaptation!AddBinding

Add MatchedRule
(extends addRule)

newRule: ATL!Rule
relatedBinding: MMRuleAdaptation!AddBinding

Add LazyRule
(extends addRule)

newRule: ATL!Rule
relatedBinding : MMRuleAdaptation!AddBinding

Split Rule affectedRule: ATL!Rule
newRule: MMRuleAdaptation!AddRule

Add Binding
(extends
BindingOperation)

affectedRule: ATL!Rule
newBinding : ATL!Binding

Remove Binding
(extends
BindingOperation)

affectedRule: ATL!Rule
affectedBinding: ATL!Binding

Update Binding
(extends
BindingOperation)

affectedRule: ATL!Rule
affectedBinding: ATL!Binding
newValue:OCL!OclExpression

Move Binding
(extends
BindingOperation)

affectedRule: ATL!Rule
toRule: ATL!Rule
binding: ATL!Binding

Add filter to input
pattern

newFilter: OCL!OclExpression
affectedRule: ATL!Rule

Add input pattern
element

affectedRule: ATL!Rule
newInput:ATL!InputPatternElement

Add output
pattern element

affectedRule: ATL!Rule
outputPattern: ATL!OutputPatternElement

Delete out pattern
element

affectedRule: ATL!Rule
outputPattern: ATL!OutputPatternElement

To derive the modification operations also the
input models differential (∆Im) must be used. This
way the input elements can be related with the ouput
models elements. The input and output metamodels
class coverage (Fleurey et al., 2009) is required for
the analysis. The metamodel class coverage
represents each meta-class is instantiated at least
once. The tool uses the differential of the input
metamodel class coverage (∆Imc) due to ∆Im. And
also uses the output metamodel class coverage
differential (∆Omc) due to ∆Om. The execution
traceability data (ETr) is fundamental for the
automatic deduction of the transformation rules
modifications. Combining the ∆Om, ∆Im, ETr,
∆Imc and ∆Omc the tool obtains the modifications
that must be done to adapt the transformation rules
for the new transformation requirement.

To specify a model transformation example
∆Om, ∆Im, ETr, ∆Imc and ∆Omc models are
required. Each difference element between the ouput
models is related with an adaptation operation
depending on the difference type. The analysis
algorithm fits correctly to scenarios that have ∆Imc=
0 or ∆Imc=1 and ∆Omc>0. When ∆Imc is higher
than one we recommend to divide the examples in a
set of ∆Imc=1 examples.

The tool first takes a difference element of the
∆Om and decides which kind of difference is:

1. Addition of output model elements
2. Removal of an output model element

Table 2: Relationship between EMFDiff metamodel types
and adaptation operations for model transformations.

EMFDiff
difference type

EMFDiff type
description

Adaptation
operations

ModelElement
ChangeLeft

Addition of an
element

Add matched rule and
add binding
Add lazy rule and add
binding

ModelElement
ChangeRight

Removal of an
element

Add filter
Remove rule

MoveModelElement Change of
container

Split rule and modify
binding
Move binding

ReferenceChange
LeftTarget

Addition of a
reference

Add binding

UpdateReference Update of a
reference value

Update binding
Add input pattern

AttributeChange
LeftTarget

Addition of an
attribute value

AddBinding

UpdateAttribute Modification of
an attribute value

Add binding
Update binding
Add input pattern

3. Change of an element container
4. Addition and modification of attributes
5. Addition and modification of references

Once the type of the difference is decided the
tool must induce the modification that must be
applied to the model transformation. Depending on
the scenario of the model transformation the
adaptation operation for an output EMFDiff
difference type may be slightly different. To select
the scenario the tool uses the ∆Om, ∆Im, ∆Imc and
∆Omc models data.

3.3.1 One-to-One Mapping Scenario

The conditions to detect a one-to-one mapping
scenario are: (I) The number of element addition
(ModelElementChangeLeft) in the ∆Im and the
∆Om must be the same (II) the metamodel class
coverage increment for the input and output
metamodel must be 1. This scenario requires a new
matched rule. The adaptation operation of adding a
new matched rule is compound by a new rule and a
binding. The data required to define the new
matched rule is:

• Input pattern element: the type of any of the
added element of the ∆Im model.

• Output pattern element: the type of one of the
added element of the ∆Om.

• Rule name: the concatenation of both types.

Execution traceability data is used to search the rule
that created the container element. This information
is used to establish the binding that relates the new
target element with its container.

Evolving�Legacy�Model�Transformations�to�Aggregate�Non�Functional�Requirements�of�the�Domain

441

Figure 5: The design model with access control specification, the protection proxy pattern and the desired output model
with the access control.

3.3.2 One-to-many Mapping Scenario

This kind of scenario requires the creation of a new
output pattern element or a new lazy rule. When
different types of target elements are created, new
output pattern elements are added to a rule. When
instance of the same type are created for an input
element type, lazy rules are required.

3.3.3 Many-to-many Mapping Scenario

A many-to-many mapping scenario is defined when
a set of elements are added and both ∆Imc and
∆Omc, are higher than one. Two strategies can apply
to this scenario. The first strategy is to specify the
transformation example with a set of one-to-many
mapping examples, where ∆Imc is equal to 1 in each
step. When ∆Imc is greater than 1 the algorithm
aligns input elements with output elements using the
similarity of its properties values. In those cases,
false positives adaptation operations can be
deducted. For those cases a warning message is used
and manual intervention required.

3.3.4 Removal of an Output Model Element

Two removal scenarios are detected by the
algorithm. A matched rule is removed when ∆Omc =
-1. The other scenario occurs when ∆Omc = 0 and
some ModelElementChangeRight appears (see table
3). This scenario requires a filtering operation in the
input pattern element. In both cases the affected rule
is founded searching in the execution trace the rule
that generates the removed elements.

3.3.5 Change of an Element Container

Sometimes without any modification in the input
models (∆Imc = 1 and ∆Im=0) the model
transformation evolves and requires to change the
instance of the container of an output elements or
even the container type. Both scenarios are detected
by the algorithm. The first scenario involves a split
rule operation. To split the affected rule a copy of
the rule is done but filtering is added to the input
pattern and a binding must be modified. When the
type of the container changes a binding must be

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

442

deleted in the rule that created the previous container
and a binding must be added in the rule that created
the desired container. To search those affected rules
the execution trace of the previously executed
transformation is used.

3.3.6 Addition and Modification of
Attributes or References

The operations related to these scenarios are
modification of a binding or an addition of a
binding. In these cases, the execution trace is used to
search the affected rule. The information of the
output elements that have the difference
(Updateattribute, UpdateReference, Reference
ChangeLeftElement and AttributeChangeLeft
Element) is used to search the affected rule in the
traceability data and to define the binding statement.

Table 3: Removing output elements.

Previous transformation Expected transformation

Legend:
• Arrow: Transformation
• Geometric shapes (left side of the arrow): Elements of the input

model
• Geometric shapes (right side of the arrow): Elements of the

Output model

3.4 Metaclass Vs. Instances

Using the differences models and the traceability
information the analysis of the transformation can be
done. The difference model is based on model
elements and not on metamodel elements, so several
differences may be referred to the same change to be
made in the transformation rules. We therefore must
filter the adaptation operations to obtain the final
adaptation operation model.

3.5 Dealing with Metamodel
Extensions and NFR

A metamodel defines the languages and processes to
form a model. On metamodeling when the domain
language requires the integration of NFR, usually
metamodel composition techniques are used.
Metamodel composition techniques help reusing and
adding metamodel elements in a new metamodel
definition. The primary design goal of the
metamodeling composition environment is to leave

the original metamodels intact, still able to be used
independently from any composition they may be a
part of. Metamodel extension is an example of
metamodel composition technique. When UML is
used as design metamodel and new concepts are
required on the modeling, metamodel extension can
be used. UML profiles as MARTE (OMG, 2009) or
UMLSec (Jürjens, 2002), extends UML with
stereotypes that are related to NFR. On the case
study, UML is extended with a profile to offer
access control properties on the design level.

Transevol tool can detect metamodel extensions
when UML is used as metamodeling language.
When a stereotype is applied to an element of the
example input model and the output model is
affected, the model transformation adaptation can be
implemented in several ways. For example the rule
that deals with the stereotyped element can be split
adding a filter to the input pattern element. Using the
EMFDiff difference data the tool knows which
element was stereotyped. The filter is implemented
as a helper function, and uses the stereotype data.
This way when the input element is stereotyped the
new transformation rule will be executed and if not
the original rule will be. The new rule is a copy of
the original one and also creates the new elements
required in the output model to fulfill the new
requirement. Another possibility to adjust the model
transformation is to add a condition in the binding
statement of the transformation rule that deals with
the stereotyped element. Transevol splits a rule
when a new stereotype appears. Figure 6 resumes
the split rule solution used to adapt the model
transformation when a stereotype is detected by the
tool. The figure shows how the tool adapt the
transformation rule that creates the ports of the SW
components when access control (property is
integrated in the design modeling

To improve the quality of the split rule a super
rule is extracted and inheritance is used on the
original and the new rule, see figure 7. This way the
common part of the split rule is located only in the
super rule and it is not duplicated.

4 APPLYING THE TOOL TO THE
CASE STUDY

This section describes how must be applied the
Transevol tool to evolve a model transformation to
integrate new non functional properties.. The aim of
the case study is to add access control to the
software components ports that requires protection.

Evolving�Legacy�Model�Transformations�to�Aggregate�Non�Functional�Requirements�of�the�Domain

443

The addition of the control access must be offered
on the design level and on the code level, so the
model transformation must be adapted. To
demonstrate the transformation a minimal folder
manager application example is used, see figure 3.
The transformation is demonstrated in several steps.
.Each step must be defined with a pair of input/ouput
model increment. In each step after applying the
tool, the automatically derived adaptation operations
must be implemented (automatically using the HOT
or manually) and the new transformation run trace
must be obtain to use in next iteration.

In the first iteration the security profile is added
to the example input model and the components are
stereotyped with <<callerComponet>> and
<<protectedComponent>> stereotypes. The example
output model doesn’t requires any change, so none
changes are required on the model transformation.
To simplify the example from here only the actions
related to the <<protectedComponent>> are taken
account. In the second step the connector that
requires access control is stereotyped with
<<accessControlConnection>>. In this step the
desired output model must be specified. The output
model is modified to offers the function that check
the rights of the client of a port. A header
(represented as module in SimpleC) and a file are
added to the folderManager component directory
(package). The checkRights method, the role
structure and the roles/rigths enumerations are
defined in this module. Figure 6 resumes the
modified models defined in this step. The changes
that present the desired output model in this step are
detected using EMFCompare tool and are six
ModelElementChangeLeftTarget (element
aggregation). In the input models differential an
aggregation of a stereotype is detected. Using the
input and output differences data the tool detects a
one-to-many mappings related with a stereotype
applied to a UML!Connector element. The tools
deduct that a split rule is required and that the new
rule requires more output patterns element, one per
each new element. To select the rule that must be
split the algorithm searches in the execution trace of
the previous iteration which rule created the
UML!Connector that have been stereotyped. In this
case the rule called createConnector is the affected
one. The tool creates an adaptation operation that
splits the affected rule, adds input pattern filter to
both rules and finally add several output patterns to
the new rule. To improve the quality of the
transformation also a super rule is extracted as
explained in the previous section.
The next task is to aggregate the access control to

the ports of a protected component. In this case the
input model and the output models, both, must be
modified. This task is divided in two steps to obtain
a more precise result, so two examples of
input/models must be defined. First in the input
model the ports that require security are stereotyped
with the <<accessControlPort>> stereotype and in
the output model the module that implements the
proxy pattern is created for each port. In this step
only the header file, the references to the interface
that must be wrapped and the references to the
module that implements the checkrights methods are
added to the code model. With this information the
tool detects again that a split rule operation is
required. The new rule is not yet fully implemented;
the methods that wrap the provided interface and the
field that represent the role of the port user are left.
The final pair example of input/output models is
created only modifying the output models, so ∆Imc
= 0. In this case the tool detects that several elements
have been added (the wrapper interface methods, the
setRole method, the actualClientRole field and the
file that implements the functions) and new output
patterns are aggregate to the rule created in the
previous step.

The result of applying the tool to the model
transformation using the folder manager example is
in figure 7 and the adaptation operations derivate in
each step are collected in table 4.

4.1 Validation of the Generated
Transformation Rules

Table 4: Adaptation operations derived in each
demonstration step.

Step Description Differences Adaptation
operations

1 The access control profile is
applied and the
<<callerComponent>> and
<<protectedComponent>>
are used

Input model:2

Output model:0

None

2 <<AccessControlConnectio
n>> is applied to the
connector in the design
model and the access
control module is created in
the output model

Input model:1

Output model:6

ModelElementCha
ngeLeft

1 Split rule

1 Extracted
super rule

6 new output
patterns

3 <<AccessControlPort>>
stereotype is applied to a
port and the proxy module
is created in the ouput
SimpleC model. The
includes that requires the
proxy module are also
aggregate.

Input model:1

Output model:1
ModelElementCha
ngeLeft and 2
UpdateReferences

1 Split rule

1 Extracted
super rule

2 new
bindings

4 Methods and fields of the
proxy module are created.

Input model: 0
Output model:4

4 new output
patterns

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

444

Figure 6: An example of a split rule adaptation operation.

Figure 7: An example of how a super rule is extracted from a split rule adaptation operation.

The model transformation modifications were first
validated applying the transformation to the RBAC
folder access design. To validate the new
transformation rules the transformation was applied
to the folder access example model. The generated
output model was compared with the expected
output model defined manually and used in the
adaptation operations deduction phase. Both output
models were compared using the EMFCompare tool.
The output models were identical. After the first
validation a criteria to create more testing

input/output pair models was defined. The criteria
used to specify the test models was to instantiate all
the RBAC extension meta-classes, combine different
values for the properties, and combine instances of
different meta-classes. Fifteen different input models
with their associated output models were defined. In
some testing models all the connections between
components were stereotyped with RBAC
extensions. In some others a set of connections were
stereotyped as secure. The number of ports and
connectors for component depending on the model

Evolving�Legacy�Model�Transformations�to�Aggregate�Non�Functional�Requirements�of�the�Domain

445

could be one or two. Finally a model without
security connections was defined. Each input models
had different security settings. The largest model
consisted of 5 components. The validation results
were satisfactory in all the tests.

5 CONCLUSIONS AND FUTURE
WORK

A MTBE approach and a tool to evolve ATL
transformation have been presented. A metamodel
for expressing adaptation operations for
transformation rules and how the adaptation
operations for M2M transformations are derived
have been described. The tool can be used for
adapting exogenous legacy model transformations to
new transformation requirements. Even the case
study is an exogenous model transformation the tool
can be also used with endogenous transformations.
The used endogenous transformations were model
refinements: the flattening of state machines and the
introduction of the bridge design pattern on UML
class diagrams.

It has been demonstrate that the tool can be used
to integrate NFR on a model transformation. The
tool has been used successfully to add RBAC
security mechanism in a legacy model
transformation. Although initial case study show
promising results, as all the transformation rules
have been correctly identified, algorithm should be
proved in more complex and different examples to
improve the coverage of the validation.

In the example case study the NFR affects only
the communication between SW components. For
some NFRs the architectures and the
implementations may be drastically changed.
Validation with more NFR case studies is required
like e.g. performance / scalability. In these cases
bottlenecks have to be removed by e.g. introducing
new architectural elements and patterns like caches
and/ or clustering. Actually the approach have been
only used when the NFR are expressed as UML
extension and on PIM to PSM model
transformations. The NFR taken account are here
applied to express security concepts on the SW
architecture. It has not been analyzed how can be
address issues related to secure programming
standards that affect the code. Those details must be
treated mainly in model to text transformations.

Our approach derived correct transformation
rules. But the code of the helper functions used to
implement the filtering on the matching rules are

only defined and called but not implemented.
Actually the code of the helper functions must be
completed manually. To apply the tool it is enough
knowing the changes that are necessary in the M2M
transformation input and output models. Previous
knowledge of the model transformation
implementation is not required, so the time required
to adapt the M2M transformation is reduced

In short-tem the tool is going to be used in
several model transformations to aggregate different
NFR. The aim is to extend the tool to deal not only
with NFR expressed as UML profile.

The definition of a methodology for the correct
specification of example models is a priority task.
The example pair models generated manually in this
work were defined intuitively. A methodology to
generate automatically the example models is
required. Actually exists several works on the area
of model transformation validation were the testing
and oracle models are generated automatically.
Defining a correct set of models to be used as input
of model transformations for testing is a difficult
problem. In (Guerra et al., 2013) a formal language
(PAMOMO) for the specification of the
transformations based on invariants pre and post
conditions is used to generate the test input model
and the corresponding test oracle model. In (Sen et
al., 2009) the meta-model and its constraints are
used to generate the test input models using the
metamodel coverage criteria. The generation of
correct example input/ouput pair models has
similarities with the automatic generation of testing
models. Actually we are analyzing how must be
specified the new transformation requirement to
generate the example input and ouput models
correctly.

6 RELATED WORK

The presented approach is highly related to MTBE.
By-example approaches define transformations
using examples models. Examples are easier to write
than a transformation rule. In MTBE starting from
pairs of example input/output models the
transformation rules are derived. By example
approaches for model transformation are classified
in two types (I) demonstration based (II)
correspondences based. Model transformation by
demonstration (MTBD) (Sun et al., 2009) specifies
the desired transformation using modifications
performed on example models. MTBE based on
correspondences, uses pairs of input/output models

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

446

and also a mapping between them to derive the
transformation rules.

There are previous MTBE approaches which
already deal with automatic generation of model
transformations starting from pairs of example
models. Most of the approaches are based on formal
mapping to derive the transformations (Balogh and
Varró, 2009). (Strommer and Wimmer, 2008)
approach uses correspondence model between input
and output model to generate ATL transformation
rules. Instead offering a mapping model (García-
Magariño et al., 2009) annotates with extra
information the source metamodel and the target
metamodel to derive the required ATL
transformation rules. Our approach also creates ATL
transformation rules but a mapping between the
desired input and output model or extra information
besides the models differentials is not required.

In (Faunes et al., 2013) a genetic programming
based approach to derive model transformation rules
(implemented with JESS) from input/output models
is presented. This approach doesn’t require fine-
grained transformation traces. This approach is a
self-tuning transformation so it cannot be used with
legacy model transformations. TransEvol tool can be
used with legacy ATL model to model
transformations.

MTBD are based on defining the desired
transformation by editing a source model and
demonstrating the changes that evolve to a target
model. Most of the MTBD are used on endogenous
model transformation (Sun and Gray, 2013) not as
MTBE, based on correspondences, which can be
used with exogenous transformations. (Langer et al.,
2010) presents a MTBD approach that can be
applied to exogenous model transformation. This
approach uses a state-based comparison to determine
the executed modification operations after modeling
the desired transformation. Using an incremental
approach, in each step using a small transformation
rule demonstration, internal templates representing
the transformation rules are created. Because the
approach uses templates created by transformation
rules demonstrations it is not easy to apply this
approach to legacy model transformations.

Recently a MTBD approach for automating the
maintenance of non functional system properties
was presented (Sun et al., 2013). The approach can
only be applied to endogenous transformation while
Transevol can be applied to exogenous model
transformations.

Metamodel and transformation co-evolution
solution also exists. In (Iovino et al., 2012) weaving
between metamodels and transformation rules is

used to analyze the impact on the transformation
rules due to input metamodel evolution. These
works only derives the modification on the
transformation rules when regular metamodel
evolution, as attribute modification or metaclass
rename, occurs. When new elements on the input
metamodel appear, the approach cannot derive the
transformation rules.

ACKNOWLEDGEMENTS

This work has been developed in the DA2SEC and
UE2014-12 AURE projects context funded by the
Department of Education, Universities and Research
of the Basque Government. The work has been
developed by the embedded system group supported
by the Department of Education, Universities and
Research of the Basque Government.

REFERENCES

Agirre J., Sagardui, G., Etxeberria, L., 2010. Plataforma
DSDM para la Generación de Software Basado en
Componentes en Entornos Empotrados. In Jornadas
de Ingeniería del Software y Bases de Datos, JISBD
(pp. 7- 15).

Agirre, J., Sagardui, G., Etxeberria, L.m, 2012. A flexible
model driven software development process for
component based embedded control systems. III
Jornadas de Computación Empotradas JCE,
SARTECO.

Balogh, Z., Varró, D., 2009. Model transformation by
example using inductive logic programming. Software
and System Modeling, 8(3): 347-364.

Bouaziz, R., Hamid, B., Desnos, N., 2011. Towards a
better integration of patterns in secure component-
based systems design. In Computational Science and
Its Applications-ICCSA 2011 (pp. 607-621). Springer
Berlin Heidelberg.

Brun, C., Pierantonio, A., 2008. Model differences in the
eclipse modeling framework. UPGRADE, The
European Journal for the Informatics Professional,
9(2), 29-34.

Bunse, C., Gross, H. G., Peper, C., 2009. Embedded
System Construction–Evaluation of Model-Driven and
Component-Based Development Approaches. In
Models in Software Engineering (pp. 66-77). Springer
Berlin Heidelberg.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M., Sommerlad, P., Stal, M., 1996. Pattern-
oriented software architecture, volume 1: A system of
patterns. John Wiley & Sons.

Faunes, M., Sahraoui, H., Boukadoum, M., 2013. Genetic-
Programming Approach to Learn Model

Evolving�Legacy�Model�Transformations�to�Aggregate�Non�Functional�Requirements�of�the�Domain

447

Transformation Rules from Examples. In Theory and
Practice of Model Transformations (pp. 17-32).

Fleurey, F., Baudry, B., Muller, P. A., Le Traon, Y., 2009.
Qualifying input test data for model transformations.
Software & Systems Modeling, 8(2), 185-203.

García-Magariño, I., Gómez-Sanz, J. J., Fuentes-
Fernández, R., 2009. Model transformation by
example: an algorithm for generating many-to-many
transformation rules in several model transformation
languages. In Theory and Practice of Model
Transformations (pp. 52-66). Springer Berlin
Heidelberg.

Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel,
A., Retschitzegger, W., Schwinger, W. 2013.
Automated verification of model transformations
based on visual contracts. Automated Software
Engineering, 20(1), 5-46.

Iovino, L., Pierantonio, A., Malavolta, I., 2012. On the
Impact Significance of Metamodel Evolution in MDE.
Journal of Object Technology,11 (3): 3: 1-33.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., 2008.
ATL: A model transformation tool. Science of
computer programming, 72(1), 31-39.

Jürjens, J., 2002. UMLsec: Extending UML for secure
systems development. In ≪ ≫ UML 2002—The
Unified Modeling Language (pp. 412-425). Springer
Berlin Heidelberg.

Kolovos, D. S., Paige, R. F., Polack, F. A., 2008. The
epsilon transformation language. In Theory and
practice of model transformations (pp. 46-60).
Springer Berlin Heidelberg.

Langer, P., Wimmer, M., Kappel, G., 2010. Model-to
model transformations by demonstration. In Theory
and Practice of Model Transformations (pp. 153-167).

Object Management Group (OMG), 2009. Modeling and
Analysis of Real-time and Embedded systems
(MARTE), Version 1.0, http://www.omg.org/spec/
MARTE/1.0/.

Object Management Group (OMG), 2011. Meta Object
Facility (MOF) 2.0 Query/View/Transformation
(QVT) Specification, version 1.1.

Sen, S., Baudry, B., & Mottu, J. M. 2009. Automatic
model generation strategies for model transformation
testing. In Theory and Practice of Model
Transformations (pp. 148-164). Springer Berlin
Heidelberg.

Strommer, M., Wimmer, M., 2008. A framework for
model transformation by-example: Concepts and tool
support. In Objects, Components, Models and Patterns
(pp. 372-391). TOOLS.Springer Berlin Heidelberg.

Sun, Y., Gray, J., 2013. End-User support for debugging
demonstration-based model transformation execution.
In Modelling Foundations and Applications (pp. 86-
100). Springer Berlin Heidelberg.

Sun, Y., Gray, J., Delamare, R., Baudry, B., White, J.,
2013. Automating the maintenance of non-functional
system properties using demonstration-based model
transformation. Journal of Software: Evolution and
Process, 25(12): 1335-1356.

Sun, Y., White, J., Gray, J., 2009. Model transformation
by demonstration. In Model Driven Engineering
Languages and Systems (pp. 712-726). Springer Berlin
Heidelberg.

Toulmé, A., 2006. Presentation of EMF Compare Utility.
Eclipse Modeling Sympossium.

Varró, D., 2006. Model transformation by example. In
Model Driven Engineering Languages and Systems
(pp. 410-424). Springer Berlin Heidelberg.

Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.,
2013. Model-driven software development:
technology, engineering, management. John Wiley &
Sons.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

448

