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Abstract

Piston-driven mechanical chest compression (CC)
devices induce a quasi-periodic artefact in the ECG,
making rhythm diagnosis unreliable. Data from 230
out-of-hospital cardiac arrest (OHCA) patients were
collected in which CCs were delivered using the piston
driven LUCAS-2 device. Underlying rhythms were
annotated by expert reviewers in artefact-free intervals.
Two artefact removal methods (filters) were introduced:
a static solution based on Goertzel’s algorithm, and an
adaptive solution based on a Recursive Least Squares
(RLS) filter. The filtered ECG was diagnosed by a
shock/no-shock decision algorithm used in a commercial
defibrillator and compared with the rhythm annotations.
Filter performance was evaluated in terms of balanced
accuracy (BAC), the mean of sensitivity (shockable) and
specificity (nonshockable). Compared to the unfiltered
signal, the static filter increased BAC by 20 points, and the
RLS filter by 25 points. Adaptive filtering results in 99.0%
sensitivity and 87.3% specificity.

1. Introduction

Early defibrillation and high-quality cardiopulmonary
resuscitation (CPR) are crucial to improve chances of
survival from out of hospital cardiac arrest (OHCA) [1].
Chest compressions (CCs) provided during CPR introduce
artefacts in the ECG, invalidating the diagnosis of any
rhythm analysis algorithm. Currently compressions are
interrupted for the analysis, but these hands-off intervals
compromise circulation and thus reduce the probability
of restoration of spontaneous circulation (ROSC) and
survival [2]. Although solutions to analyse the rhythm

during pauses in CC exist [3, 4], rhythm analysis during
CCs requires a filter to remove CC artefacts. Many such
filters have been proposed to permit a reliable diagnosis
during CCs [5, 6], but no effective solution has been
integrated into current defibrillators yet.

Piston-driven mechanical CC devices are increasingly
used in resuscitation. These devices deliver CCs with
a constant rate and depth ensuring CPR is delivered
according to resuscitation guidelines. Their use is
especially recommended during transportation, invasive
procedures or prolonged CPR. One such device is the
LUCAS 2 (Physio-Control/Jolife AB, Lund, Sweden). The
LUCAS 2 provides chest compressions in a fixed position,
constant depth (40-53 mm depending on chest height),
constant rate (102± 2 min−1, 1.694 Hz), 50% duty-cycle
and full chest recoil after each compression [7]. We should
expect the artefact caused by LUCAS 2 to have a periodical
pattern at the constant frequency of the CCs.

This study evaluates the feasibility of analyzing the
rhythm during mechanical CCs provided by LUCAS
2 on OHCA data. Two artefact removal alternatives
were compared: an adaptive filtering method based
on a Recursive Least Square (RLS) algorithm and
a non-adaptive (static) filtering method which uses
Goertzel’s algorithm to model the artefact.

2. Materials and methods

2.1. Materials

The data used for this study were gathered by the
emergency services of Oslo and Akershus (Norway)
with the LifePak 15 defibrillators (Physio-Control Inc.,
Redmond, WA, USA). The recorded ECG and thoracic
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Figure 1. A 20 s episode of a patient in ventricular fibrillation (VF), before filtering (top) and after filtering (bottom).
The initial 15 s show ECG records during CCs delivered by the LUCAS 2 (quasi-periodic artefact). The last 5 s show the
underlying VF, in an interval without CCs. Filtering (bottom pannel) reveals the underlying rhythm.

impedance (TI) signals were exported to Matlab using
the Codestat (Physio-Control Inc.) research tool, and
resampled to 250 Hz. Details on the dataset are further
described in [7].

The dataset contains 1045 segments of 20 s from 230
patients. The first 15 s included continuous CCs, the last
5 s were free of artefacts and were used by expert reviewers
to assess the underlying rhythm. The dataset contains 201
shockable and 844 nonshockable rhythms (270 asystole,
574 organized) [7].

2.2. Methods

ECG segments were band-pass filtered to a typical
automatic external defibrillator (AED) bandwidth, using
an order 8 Butterworth filter (0.5-40 Hz).

Model of the compression artefact

The CC artefact in the ECG is customarily modelled as
additive noise:

scor(n) = secg(n) + scc(n) (1)

where scor is the ECG corrupted by the CC artefact,
scc, and secg is the ECG which reflects the underlying
heart rhythm. For a piston-driven compression device the
artefact, scc, can be approximated by a (quasi)-periodic
signal in term of N harmonics of the fundamental
frequency, f0 = 1.694 Hz. Assuming a model with N
Fourier coefficients ck = |ck|ejθk , the artefact can be
simply written as:

scc(n) = A(n)

N∑
k=1

|ck| cos(kω0nTs + θk) = (2)

= A(n)

N∑
k=1

ak cos(kω0nTs) + bk sin(kω0nTs) (3)

where Ts is the sampling period, ω0 = 2πf0 and A(n) is
an amplitude envelope to differentiate intervals with (A =
1) and without compressions (A = 0).

The two methods proposed in this paper assume
different natures for the Fourier coefficients. In the static
solution, ck = |ck|ejθk are constant over time. In
the adaptive solution the coefficients are assumed to be
time-varying ck(n) = |ck(n)|ejθk(n), with small changes
every sample. Once scc is estimated, the underlying
rhythm secg is obtained by subtraction using equation (1),
and then fed to a shock/no-shock decision algorithm for
diagnosis.

Static solution

The static solution assumes the N Fourier coefficients
are constant. Since only just a few frequency components
of scor signal are of interest, Goertzel’s algorithm can
be used to estimate those spectral components instead of
analyzing all frequency components of the Discrete-Time
Fourier Transform (DTFT). However, since for an L point
signal the frequency resolution of Goertzel’s algorithm
is ∆f = fs/L, the fundamental frequency of the signal
must be an integer multiple of ∆f . This is not the case
for f0 = 1.694 Hz (LUCAS 2), so, the Generalized
Goertzel algorithm was used. This generalization allows
the calculation of spectral components at any frequency,
by extending the DTFT to any real frequency ω` = 2π`/L.
Then the frequency component is estimated as:

X(ω`) = e−j2π`
L−1∑
n=0

x(n)e−j2π`
n−L
L (4)

to which the custom Goertzel’s algorithm is applied [8]:

s(n) = x(n) + 2 cos
(2π`

N

)
s(n− 1)− s(n− 2) (5)

y(n) =
(
s(n)− e−j 2π`

N s(n− 1)
)
e−j2π` (6)

and y(L − 1) = X(ω`). In our case the signal was
first windowed using a Kaiser window wβ(n), to form
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xw(n) = scor(n) ·wβ(n), so the spectral component was
obtained as:

ck =
2

Wβ(0)
Xw(ω`), ` ∈ R (7)

where Wβ is the Fourier transform of the Kaiser window,
and Xw(ω`) is the Fourier transform of xw(n) as shown in
equation (4) and computed using Goertzel’s algorithm. In
the Kaiser window the form factor β controlls the window
trade-off between side-lobe level and main-lobe width. For
each segment, the ck coefficients were estimated using an
interval of 5 s with uninterrupted CCs.

Adaptive solution

In the adaptive solution the time-varying Fourier
coefficients, ak(n), bk(n), were estimated using an RLS
filter that tracks the spectral components of the artefact [9].

The in-phase, ak(n), and quadrature, bk(n), components
model the artefact as described by equation (8), which is
equation (3) in vector notation:

scc(n) = ΘT
n−1Φn (8)

where,

Θn = [a1(n) b1(n) . . . aN (n) bN (n)]T (9)
Φn = [cos(ω0nTs) sin(ω0nTs) . . .

cos(Nω0nTs) sin(Nω0nTs)]
T (10)

The model of the artefact is updated through the ak(n)
and bk(n) coefficients in each iteration. The filtered secg
and the filter coefficients are computed as follows:

secg(n) = scor(n)− scc(n) (11)
Θn = Θn−1 + FnΦnsecg(n) (12)

Fn =
1

λ

[
Fn−1 −

Fn−1ΦnΦTnFn−1

λ+ ΦTnFn−1Φn

]
(13)

where the forgetting factor λ is usually close to one,
and defines the convergence rate, the tracking power,
misadjustement and stability of the RLS filter.

2.3. Evaluation

The ECG filtered through both methods was diagnosed
by a shock/no-shock decision algorithm, the Matlab
version of the algorithm designed for the Reanibex
R-series defibrillators (Bexen Cardio, Ermua, Spain).
This algorithm diagnoses the ECG in less than 9.6 s
by analyzing 2 or 3 consecutive 3.2 s intervals of
the ECG [10]. The interval from 3.4 s to 13 s of

each segment was diagnosed in order to avoid filtering
transients. The diagnoses were compared with the rhythm
annotations to obtain the proportion of correctly classified
shockable (sensitivity, SE) and nonshockable (specificity,
SP) rhythms.

Filter performance was evaluated in terms of the
balanced accuracy (BAC), BAC = 0.5(SE + SP), within
the following working ranges: 10 < N < 30 and
0 < β < 15 for the static filter, and 10 < N < 30 and
0.965 < λ < 0.999 for the adaptive filter. Finally, within
those ranges a 100 bootstrapped patient-wise 5-fold cross
validation approach was used to obtain an estimate of the
statistical distribution of SE and SP. SE/SP values will be
reported as mean (CI, 95% confidence interval).

3. Results

Figure 2 shows the BAC for the static (left) and
adaptive (right) filters within the working ranges for three
significant values of N . As seen in figure 2, both filters
showed a working range in which the performance was
close to optimal in terms of BAC. In the case of the static
filter, the best results were obtained for 4 < β < 5 and
N > 20. The range for the RLS filter was 0.989 < λ <
0.993 and N > 20. In fact, for smaller values of N (see
figure 2) the BAC in the optimal β and λ ranges is smaller
in both cases.

Table 1 shows the bootstraped SE/SP and BAC after
filtering, compared to the values obtained before filtering.

unfilt Goertzel RLS

SE (%) 50.7 97.0 (95.5–97.5) 99.0 (97.0–99.5)
SP (%) 83.9 80.2 (79.5–81.0) 87.3 (86.5–87.6)
BAC (%) 67.3 88.6 (87.8–89.3) 93.0 (91.9–93.5)

Table 1. Accuracy before and after filtering.

Both filters resulted in an increase of over 30 points
in SE with a slight change in SP. The shock/no-shock
decision after applying the adaptive filter were more
accurate than those obtained after applying the static filter.

4. Discussion

This study introduces two different filtering techniques
to remove CPR artefact from the ECG during mechanical
compressions. Both methods represent the artefact as a
(quasi)-periodic signal with a fundamental frequency equal
to the frequency of the compressions and N harmonics.
Whereas the static method assumes that the artefact is
periodic, the adaptive method considers slow fluctuations
from cycle to cycle.

Mechanically delivered compressions have very stable
frequency, depth and duty cycle. We might assume little
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Figure 2. Performance of the static and the adaptive filtering methods in terms of N and β for the Goertzel filter (panel a),
and in terms of N and λ for the RLS filter (panel b).

change in the artefact from CC cycle to cycle, but the
results of this study show the need of an adaptive solution.
Both methods resulted in a significant increase in BAC
but the RLS filter produced better results than the static
solution (approximately 2 points more in SE and 7 points
more in SP). The adaptive solution was able to track the
small fluctuations of the artefact from cycle to cycle.

In conclusion, the results showed that the adaptive
filtering provided acceptable values for an acccurate
rhythm diagnosis during compressions, particularly for
shockable rhythms (SE>98%). However, further analysis
is recommended to increase the accuracy, mainly, for
nonshockable rhythms. The results reported in this
and in previous studies [7] are still below the 95%
recommended for nonshockable rhythms by the American
Heart Association.
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