mn

Mondragon Biblioteka
Unibertsitatea Biblioteca

biblioteka@mondragon.edu

This is an Accepted Manuscript version of the following article, accepted for publication
in:

J. Galarraga, A. A. Marcos, S. Ali, G. Sagardui and M. Arratibel, "Genetic Algorithm-
based Testing of Industrial Elevators under Passenger Uncertainty," 2021 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW),
2021, pp. 353-358

DOI: https://doi.org/10.1109/ISSREW53611.2021.00101.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other wuses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Genetic Algorithm-based Testing of Industrial
Elevators under Passenger Uncertainty

Joritz Galarraga™®, Aitor Arrieta Marcos', Shaukat Ali*,
Goiuria Sagardui’ and Maite Arratibel *
Simula Research Laboratory*, Mondragon University f, Oronat
* jorgalaro@gmail.com, shaukat@simula.no, T{aarrieta,gsagardui}@mondragon.edu,
imarratibel@orona-group.com

Abstract—Elevators, as other cyber-physical systems, need to
deal with uncertainty during their operation due to several
factors such as passengers and hardware. Such uncertainties
could affect the quality of service promised by elevators and
in the worst case lead to safety hazards. Thus, it is important
that elevators are extensively tested by considering uncertainty
during their development to ensure their safety in operation.
To this end, we present an uncertainty testing methodology
supported with a tool to test industrial dispatching systems at the
Software-in-the-Loop (SiL) test level. In particular, we focus on
uncertainties in passenger data and employ a Genetic Algorithm
(GA) with specifically designed genetic operators to significantly
reduce the quality of service of elevators, thus aiming to find
uncertain situations that are difficult to extract by users. An
initial experiment with an industrial dispatcher revealed that the
GA significantly decreased the quality of service as compared to
not considering uncertainties. The results can be used to further
improve the implementation of dispatching algorithms to handle
various uncertainties.

Index Terms—elevators, genetic algorithms, quality of service,
uncertainty, passenger data, software in the loop simulation.

I. INTRODUCTION

Uncertainty is a major concern in the context of eleva-
tors, which is contributed by several aspects such as due
to passengers behaviors and hardware. The effect of these
uncertainties on elevators can range from simple annoyance
to its passengers to safety hazards that can potentially harm
its passengers. Thus, we need software testing tools to support
testing elevators behaviors under uncertainties.

This paper presents a Genetic Algorithm-based Uncertainty
Testing methodology for Elevators (GAUTE) specifically for
an industrial dispatcher provided by our industrial partner —
Orona— a world-leader company in developing elevators. The
dispatcher is integrated inside a commercial simulation tool
called Elevate that has the capability to simulate the hardware
and the environment of elevators.

In the past, several approaches have proposed testing meth-
ods for systems of elevators [1], [2]. As for testing dispatching
algorithms, Ayerdi et al., proposed an approach based on
metamorphic testing [3] whereas Arrieta et al., used machine-
learning algorithms [4]. Both of these works tackle the test

This work is supported by the Adeptness project, Grant agreement ID:
871319, Horizon 2020.

oracle problem in the same context as our’s, but the uncertainty
at which a system of elevators is exposed to is not considered.

Our tool extends the industrial dispatcher with a Genetic
Algorithm (GA) to support testing by focusing on uncertainties
in passenger data such as how much a passenger weighs
and how long s/he will take to get in or out of an elevator.
The GA is guided through Quality of Service (QoS) metrics
(e.g., waiting times) to decrease the QoS of elevators and
subsequently finding unforeseen situations.

The main contributions of this paper can be summarized as
follows:

« We present GAUTE, a tool-supported methodology based
on a GA to test elevators dispatching algorithms under
uncertainty. We propose a domain-specific problem rep-
resentation for GA and genetic operators (i.e., parents
selection, mutation. and crossover operators) that tackle
the problem.

e We present a detailed architecture of the tool and its
integration with the industrial dispatcher and the Elevate—
SiL software testing tool.

« We provide a preliminary evaluation of the approach with
an industrial dispatching algorithm provided by Orona.

« We provide the lessons learned from applying the tool,
and the next steps towards the transfer of the tool to
practitioners.

The structure of the paper is as follows: Industrial context
is discussed in Section II. The tool supported methodology,
i.e., GAUTE, is presented in Section III, whereas validation
in Section IV. We provide lessons learned in Section V and
related works in Section VI. Conclusions and future works are
presented in Section VII.

II. INDUSTRIAL CONTEXT

Elevators are complex Cyber-Physical Systems (CPSs) that
aim at transporting passengers in a building safely and by
providing the best QoS as possible. To this end, several
computing components interact among them and with the
physical environment of the system. A typical installation of
elevator systems is shown in Figure 1, which consists of a
set of elevators (e.g., three as shown in Figure 1) installed in
a building with a set of floors (e.g., N floors in Figure 1).
On each floor, there is a control panel that passengers use to

B Traffic
Ethe:rnet
Controller i Controller
2 i 3

Controller
1

= = Floor N
Access Control Control S
Control Panel Panel
i i Floor 2
Control Control :
] Panel : Panel i
q[}} 6F 4’5] Floor 1
Control Control
Panel Panel
Elevator 1 Elevator 2 Elevator 3

Fig. 1: Elevator Installation Architecture

call for the elevators. Each elevator has a dedicated controller
responsible for controlling the movements of its elevator. All
the control panels, elevators, and controllers are connected
via Controller Area Network (CAN) bus to Traffic Master.
The traffic master is in charge of controlling the passengers’
flow. The core software component of the traffic master of an
elevator is its dispatching algorithm, coined as “dispatcher”.
This algorithm aims at assigning an elevator to each passenger
call by following certain criteria (e.g., reducing the passenger
average waiting time, reducing energy consumption). The
traffic master is also connected via an Ethernet connection to
a dedicated computer system responsible for access control, if
required, e.g., to control the access to lifts on the first floor.

Orona is one of the largest elevators companies in Europe.
It has a large suite of dispatching algorithms to accommodate
the needs of different kinds of buildings (e.g., the dispatcher
of a system of elevators for a hospital has different needs to
one of a hotel). As any other complex software system, their
dispatching algorithms requires extensive maintenance. This is
to deal with different aspects, such as, hardware obsolescence,
new functionality, legislative changes and bug corrections [5].
Orona has a well established process to test and validate
their dispatching algorithms. We refer the reader to [5], [3]
for a detailed explanation of the dispatching testing process.
This process relies on simulation-based testing at different test
levels. At the Software-in-the-Loop (SiL) test level, Orona
uses Elevate, a domain-specific simulation tool, to test their
dispatchers. A test case in the context of Orona for testing their
dispatching algorithms includes (1) the building configuration
and (2) a passenger file. The former is related to the physical
layer of the system of elevators, and encompasses information
like the number of floors of the building, number of elevators,
dynamic information of the elevators (e.g., maximum speed,
acceleration, jerk), etc. The latter refers to a file with infor-
mation of the passengers arriving at a floor and calling for an
elevator in order to travel to another floor. For each of these
passengers, different information is provided, including their

arrival time, their weights, their up-loading and downloading
time. In this paper, we focus on these passenger attributes
and consequently, we provide their definitions below for an
understanding:

o Arrival time: Time at which a passenger arrives at a floor

and call for an elevator.

o Arrival floor: The floor number at which the passenger

arrives.

o Destination floor: The floor at which the passenger wants

to go.

e Mass: The weight of a passenger in kilograms (Kgs).

o Capacity factor: A percentage value, based on which, a

passenger decides whether to take the arrived elevator.

o Loading Time and Unloading Time: The times a passen-

ger takes to get in or get out of an elevator.

The passenger files are typically full-day traffic profiles,
which are either (1) real traffic data, which needs to be
extracted from the building by installing certain monitors or
(2) theoretical traffic data, which are based on extensive ele-
vator dispatching studies [6]. However, in both cases, certain
assumptions are performed. For instance, the weight of all the
passengers is set to 75 Kgs, which is considered a standard
average weight in Europe for simulation.

Testing focuses on finding faults in addition to issues with
QoS, which are measured with different attributes. In this
paper, we focus on waiting time (WT) associated with each
passenger, i.e., the time the dispatcher took it to serve a
passenger. Its measurement starts when a passenger presses
a button to call an elevator until an elevator arrives on the
floor. For a set of n passengers, the Average Waiting Time
(AWT) is simply the average of their WTs. This metric is
employed because it has been demonstrated that the perception
of whether a system of elevators is working properly or not for
a passenger is related to the time this passenger needs to wait,
rather than other metrics (e.g., time spent by the passenger
traveling inside the elevator) [6].

III. ToOL SUPPORTED METHODOLOGY

This section describes our tool supported methodology.
Section III-A presents the overall architecture, whereas the
methodology is presented in Section III-B.

A. Overall Architecture

GAUTE’s overall architecture is shown in Figure 2. It is
built on top of Elevate!— a commercial simulation software
providing the facilities to test elevator software (e.g., dis-
patcher algorithms) with hardware and environment simulated
as discussed in Section II. Within Elevate, one can implement
and deploy their own dispatcher algorithm, which is responsi-
ble for optimal scheduling of passengers arriving at different
floors. Orona provided the dispatcher implementation in C++
and is deployed as .dll inside Elevate.

We implemented GAUTE to support testing Orona’s dis-
patcher under various uncertainties, in particular related to pas-
sengers. During the simulation, GAUTE introduces passengers

Uhttps://peters-research.com/index.php/elevate/

Configurations Elevate

Outputs

Destination
Floor

Capacity
Factor

Loading
Time

Unloading
Time

Arrival Time lArrivaI Floor\

Mass |

Building & Tl Uncertain Orona \
Elevator . Passenger Traffic Dispatcher ; Simulation Results
Configuration | enetic Dispatcher {
i | Algorithm — i
GA : Gt (C++) ¢ Test Results
Configuration] Waiting Time {
II --------------------------------------
Configuration
\ ,]\ j Visualization
(Python)
IUncertainty Specification | I Passenger File | \L
- Summarized
S Strat
inguts Results

Fig. 2: Tool Supported Methodology

with varying passenger attributes as described in Section II,
i.e., mass, capacity factor, loading time, and unloading time.
This is in contrast to a typical practice, where a fixed value for
each of these attributes is used based on existing standards, and
guides (e.g., [7]). The rationale is that in the real operation, it
is uncertain, e.g., at which time a passenger will arrive and on
which floor, and how much he/she will weigh. GAUTE focuses
on providing a support to study uncertainties in mass, capacity
factor, loading time, and unloading time of each passenger.
The uncertainty specifications of each of these attributes are
provided by a test engineer in the form of realistic ranges.
For example, in Europe, the recommended average mass is
75KGs, thus a test engineer can specify an interval for mass,
e.g., 70KGs to 80KGs.

We implemented a GA inside the dispatcher that controls the
generation of the next np of passengers based on the current
AWT (details in the next section). We chose the GA since
it is one of the most commonly used search algorithms in
the software engineering domain. Nonetheless, other search
algorithms can be employed in the future.

As shown in Figure 2, Elevate together with the dispatcher
including GA tests the dispatcher under uncertain attributes of
passengers. It takes as inputs the following configurations: (1)
a building and elevator configuration (e.g., number of eleva-
tors, their sizes and capacities, number of floors in a build-
ing); (2) configuration of a GA such as population size; (3)
simulation configurations (e.g., time slide between simulation
calculations). Also, it takes input uncertainty specifications,
a passenger file, and QoS strategies (described in the next
section). A simulation is then started, which keeps inserting
the passengers following the passenger file, but varying the
attributes of each passenger as decided by GA based on
current AWT value. Once the simulation is completed, a set
of simulation reports are produced by Elevate, in addition
to a Test Results file, which is produced by GAUTE. This
file contains all the detailed information such as AWT in
each generation, what were the chosen values of attributes
of passengers by GA and so on.

We also implemented a Visualization component in Python
that takes input test results and produces visualization of
results (e.g., graphs) to analyze how the AWT was increased
with GA in each generation.

Fig. 3: Individual Representation

Pair 1 Pair 2 Pair npa/2
‘ P4 ‘ B2 | P3 ‘ Py | F’npa/2-1| F’npa
Fig. 4: Pairs

B. Methodology

We aim to test a dispatcher with uncertain attributes of a
passenger with the ultimate aim of increasing QoS attributes
(e.g., AWT) with a GA, consequently leading to bad QoS. To
this end, we need to encode our problem in the GA.

1) Individual Representation: First, we need to provide
representation of each individual, which in our case is one
passenger. A representation of the individual is shown in
Figure 3 having seven attributes. The first attributes are used
as it is from the original traffic profile for the first generation,
and for the following generations as close as possible to the
original traffic profile to ensure that the traffic remains as
realistic as possible. The rest of the four attributes, i.e., mass
(m), capacity factor (cf), loading time (If), and unloading
time (ut), are generated by a GA according to the uncertainty
specification provided by a test engineer. To be more specific,
for a passenger i, these attributes will be referred as: m;, cf;,
lt;, and wut;. Each individual after simulation will have an
associated waiting time (WT), i.e., the amount of the time
the individual had to wait before being served by an elevator.
The waiting time associated with each individual represents
its fitness, i.e., higher the waiting time and higher fitness. We
consider a higher waiting value to be better since we aim to
test a dispatcher under uncertainties and a higher waiting time
means that the dispatcher’s QoS is not good.

2) Parents Selection, Crossover, and Mutation Operators:
GA is guided by a set of search operators, i.e., parents
selection, crossover operator, and mutation operator. In terms
of parents selection, we employed a simple selection criteria,
where we pick npa/2 number of parents with the highest
WTs, where npa is the population size. The parents are sorted
according to their WTs as shown in Figure 4. Assuming P;
has the highest WT, whereas F,,, has the lowest WT. We
form the pairs (Pair 1, Pair 2, .. Pair npa/2) as shown in the
figure. Then, we select the first (npa/2)/2 pairs of parents,
i.e., Pair 1, Pair 2, .., Pair (npa/2)/2.

On each pair of parents (e.g., Parent 1 and Parent 2 in Figure
5), we apply our crossover operator as shown in Figure 5 to
produce four children (Child 1 to Child 4). To do crossover, we
randomly chose 2 crossover points (e.g., cp; and cp2) shown
in the figure out of three possible crossover points (note that
a crossover point is unique). We then swap the attributes to
the right side of a crossover point to produce two children.
In our example shown in Figure 5, when we have chosen cpq
and cpa, it resulted into four children as shown in the figure.

CP1

* Parent1 Child 1
m, | cfy Ity uty m, [cfy Ity ut,
Child 2
my | cf, Ity ut, m, Gl Ity uty
. Parent2
' Parent 1 Child 3
my G Ity uty my cfy Ity ut,
Child 4
my | cf, Ity ut, my | cfy Ity uty
Parent 2

cp2

Fig. 5: Crossover Operator

Finally, we defined a mutation operator to mutate each
child as follows. For each child, we select 1, 2, 3, or 4 of
the attributes for mutation with a mutation probability mp. If
the attribute is selected for mutation, we mutate its values by
replacing its current value with a random value chosen from
a predefined interval for each of the attribute. For instance, if
my 18 selected, and assuming a predefined range of 70KG to
80KGs, we will pick a random value within this range and
replace it with the current value of m,.

Note that, in addition to the above-presented operators, other
operators can be defined. We will investigate other possible
operators and experiment with them in future works.

3) Fitness Function: Since a GA works by using fitness
as guidance, we employed QoS attributes to guide the GA
towards generating uncertain traffic passengers that lead to
high values of QoS attributes (e.g., high AWTs), i.e., unac-
ceptable quality. An AWT is simply calculated by taking the
average WTs of npa individuals. There are different ways
to acquire AWTs during simulation in each generation of
a GA to guide the creation of next mpa passengers. The
strategy we implemented waits until all the last npa passengers
have finished their trips to acquire exact AWT of the last
np passengers. Due to this reason, the first generation of
passengers (npa) has exactly the same values of arrival times
as the profile, whereas the arrival times of passengers in the
next generations are delayed. As a result, the traffic generated
by GA is a bit different than the original traffic profile. Other
strategies will be investigated in the future.

IV. VALIDATION

We present the results of an initial validation on an industrial
dispatcher provided by Orona. First, we present the experimen-
tal settings for SiLL in Section IV-A, and GA in Section I'V-B.
Second, we present the results in Section IV-C. Third, we
present threats to validity of our experiment in Section IV-D.

A. Settings for Software in the Loop Simulation

We picked one traffic generation pattern provided by Elevate
with the standard settings provided by Elevate. We set the
profile to generate traffic from 8 AM to 10 AM. Orona

provided us with the dispatcher algorithm implemented in C++
that extended with our implementation of the GA as shown
Figure 2. We used a default building configuration provided
in Elevate, i.e., with eight floors. We used two elevators, with
each having a maximum capacity of 1000 KGs and the rest
were the default configurations in Elevate. For simulation, we
also used the default settings except for number of repetitions
for simulations that was set to 1. As a comparison baseline,
we used the same profile but with the fixed values for mass,
capacity factor, loading time, and unloading time, meaning
that it had no uncertainty in these attributes.

B. GA Settings

We set the population size to 20, i.e., 20 passengers. To
perform crossover, we picked two crossover points randomly
out of the three possible crossover points that we have in our
individual representation. For the mutation operator, we used
a mutation probability of 5%, i.e., each of the four parameters
(i.e., mass, capacity factor, loading time, and unloading time)
has 5% chance to be selected for mutation. For each of these
parameters, we chose the following ranges to pick a mutated
value; 1) Mass: 65KGS to 85KS; 2) Capacity factor: 60 to 80;
3) Loading and Unloading times: 1 to 2 seconds.

To enable using the GA to follow the selected traffic profile
from Elevate as closely as possible, we set the arrival time,
arrival floor, and departure floor of each passenger as closely
as possible to the one specified in the profile. The rest of the
four parameters, i.e., mass, capacity factor, loading time, and
unloading time, were controlled by GA to maximize the QoS
attribute, which was AWT in this paper. Given the number of
passengers in the chosen traffic profile, GA was evolved up to
63 generations. To determine whether GA manages to increase
the AWT with uncertainty in parameters, we compared its
AWT per generation with the one for the chosen profile. To
account for randomness, we repeated GA 10 number of times
to ensure that the results are not obtained by chance.

C. Results and Discussion

Figure 6 shows the results of comparing GA with the results
of not using GA, i.e., baseline profile with fixed values of
uncertainty attributes (No GA in the figure). The x-axis shows
the number of generations, whereas the y-axis shows the AWT
in seconds. Note that for No GA, it is one AWT value, whereas
for GA it is an average of 10 AWT values corresponding to
the 10 independent runs.

As we can see from the figure that without GA, i.e.,
without uncertainty, AWT stays relatively low throughout the
simulation. In contrast, with the introduction of uncertainties
with GA, one can see that AWT continues to rise until
the simulation is finished. The results showed that over the
generations, GA managed to increase the AWT as compared
with No GA, suggesting that uncertainties in the passenger
data, i.e., in particular in mass, capacity factor, loading time,
and unloading time, affect the AWT of the dispatcher.

To further assess the statistical significance of the results,
we did a one-sample Wilcoxon test at the significance level of

—e— GA(avg of 10 runs)
No GA

18 + —»

16

-
=
L

AWT (sec)
51
L

10 A

%
Tt Y M

PR

0 10 20 30 40 50 60
of generations

Fig. 6: Results of Studying the Impact of Uncertainties

0.05 to compare the AWT from 10 runs of GA (last generation)
with 1 AWT value of No GA. The test revealed a p-value less
than 0.05 suggesting that GAUTE leads to significantly higher
AWT than the baseline. These results suggest that uncertainties
in the studied uncertainty attributes lead to significantly higher
AWT than without uncertainties.

In general, our results indicate that uncertainty plays a cru-
cial role in affecting the QoS of elevators, and thus, it should
be explicitly studied. GAUTE is such a testing framework that
will allow our industrial partners to experiment with different
types of uncertainties during testing.

D. Threats to Validity

Our current experiments have several threats to validity that
we plan to address in the future. Examples of such threats
include using one dispatcher algorithm, one profile, one set
of configurations (building, simulation, GA), and only one
search algorithm. Thus, to further increase the confidence in
the results, we need experiments with variants of dispatcher
algorithms, different traffic profiles, and configurations. More-
over, we experimented with one set of GA parameters (e.g.,
5% mutation probability), and different settings may lead to
better results. Thus, we aim to perform parameter tuning to
find the best settings in the future work.

Randomness affects the results of search algorithms like
GA; therefore, we repeated it ten times to deal with ran-
domness. However, we need to run simulations an additional
number of times to gain further confidence in the results.
Finally, we performed a relevant statistical test to compare
GA with No GA approach.

V. LESSONS LEARNED
In this section, we present lessons learned and implications
of our results from industrial and research perspectives.
A. Uncertainty as the First Class Entity

Our preliminary experimental results show that uncertainty
in passenger data affects the AWT. Thus, we argue that

uncertainties must be considered explicitly and as first-class
entities during testing of elevators. Doing so will: (1) help
understanding the relationships among various uncertainties
and QoS attributes; (2) identify unforeseen situations such as
too long waiting times; (3) improve dispatcher algorithms to
identify and handle unforeseen situations; (4) building new
self-healing and recovery mechanisms to deal with unforeseen
situations.

B. Utilization of Real Operational Data

As part of our project, we can gain access to operational
data of real installations. Such data can be used instead of the
traffic profile from Elevate to further study uncertainties with
more realistic data. Moreover, we set the ranges of uncertainty
attributes based on the knowledge of domain experts rather
than extracting such information from operational data. This
was required since data about mass, capacity factor, loading,
and unloading times are not collected for each individual
passenger during the real operation.

C. Technology Transfer

The current tool-supported methodology version we report
in this study is a prototypical implementation intended for
research purposes. However, despite its prototypical imple-
mentation, based on our conversations with practitioners, we
believe that the steps towards the transfer of the tool are
straightforward. Specifically, we envision the following steps:
(1) consider feedback taken from industrial practitioners and
polish certain aspects of the tool (e.g., how to automatically
tune GA parameters, how to include data from the real
operation, and how to make analyses more detailed); (2)
perform a more careful and complete empirical evaluation,
by considering more aspects than the ones considered in
this paper (e.g., more buildings, further experimental runs,
statistical tests); (3) train engineers from Orona to use our
tool; (4) establish a tool maintenance plan.

D. Research and Industrial Implications

In terms of industrial implications, GAUTE provides new
insights on testing dispatcher algorithms in the presence of
uncertainties. Thus, our developed tool can be used by Orona
to test their various dispatcher algorithms with different traffic
profiles to improve their quality and further study how well
their dispatchers deal with uncertainties. Such a study can help
Orona to improve their QoS further.

In terms of research, our work is preliminary; thus, it opens
up several new directions for researchers to investigate. First,
one can develop cost-effective genetic operators since our
operators are an initial attempt to demonstrate the working of
the methodology. Second, researchers can also investigate the
development of specialized algorithms for testing dispatchers
under uncertainties. Third, we only experimented with GA,
and other existing algorithms such as multi-objective algo-
rithms (e.g., NSGA-II) and machine learning algorithms (e.g.,
reinforcement learning) could also be tried.

E. Current Limitations

Currently, there are several limitations. First, we only stud-
ied four passenger parameters. However, other parameters
such as arrival time, arrival floor, and destination floor could
introduce uncertainty as well. Second, we only considered
uncertainty in passenger data. However, uncertainty also exists
in other aspects such as hardware, e.g., related to delays in
opening and closing doors and other hardware errors. Third,
the interactions between different uncertainties, i.e., among
passenger data and hardware-related uncertainties, need to be
studied together.

VI. RELATED WORK

With the increase on the autonomy of CPSs, testing them
has become a challenge. Therefore, in the last few years, the
research community has devised novel approaches to testing
CPSs from several perspectives, including test generation
[8], test selection and prioritization [9] and debugging [10].
Unlike these approaches, the method we propose is focused
on modifying a test input in the form of Passenger File with the
goal of finding uncertain situations when testing an industrial
elevator dispatching algorithm.

Techniques for testing systems of elevators and their sub-
systems has also been proposed in the past. Sagardui et
al., proposed an automated technique for testing configurable
embedded software in charge of controlling the opening and
closing of the doors of elevators [2]. Ayerdi et al., focused
on studying whether metamorphic testing was an appropriate
technique to automate the execution of tests of the dispatching
algorithm [3], whereas Arrieta et al. proposed a machine-
learning based approach [4]. In these studies, however, the
uncertainty at which the elevators are exposed to is not
considered, which is the core aspect of our method.

Uncertainty testing in CPSs is essential to ensure that CPSs
handle uncertain situations and do not fail. To this end, several
uncertainty testing techniques have been developed for CPSs
in various domains. For instance, Zhang et. al [11] developed
an uncertainty testing technique called UncerTest that was
applied to test CPSs in the logistics and sports domains.
Another example is work by Shin et al. [12], who developed an
uncertainty testing technique for satellites. Uncertainty testing
is also of interest in self-driving cars [13]. In contrast, our
focus is in the context of industrial elevators with a particular
focus on passenger data in an industrial context. Thus, our
representation of search problem and various operators are new
and specific to the elevators domain.

VII. CONCLUSION AND FUTURE WORK

We presented GAUTE, a tool supported methodology for
uncertainty testing of industrial dispatcher developed by
Orona. In particular, we focused on uncertainties in passenger
data with Software in the Loop (SIL) configuration. We pre-
sented our domain-specific representation of the search prob-
lem followed by the development of new genetic operators.
We also presented the overall architecture of the tool support.
The methodology can be tailored with various GA operators

depending on the requirements. We validated GAUTE with
one traffic profile and a building configuration. Results showed
that the GA could manage to decrease the quality of service
compared to the chosen profile.

Our future work will be along the following lines. First,
we will improve our experiments, e.g., by considering more
dispatchers, profiles, search algorithms, and additional uncer-
tainty parameters. Second, we will validate GAUTE with the
help of practitioners from Orona to assess its applicability, e.g.,
by conducting questionnaires. Third, we would like to assess
the feasibility of using this approach in the Hardware in the
Loop (HiL) setting, which is a common practice in Orona.

REFERENCES

[1] C. F. Nicolas, I. Ayestaran, I. Martinez, and P. Franco, “Model-based
development of an fpga encoder simulator for real-time testing of
elevator controllers,” in 2016 IEEE 19th International Symposium on
Real-Time Distributed Computing (ISORC). 1EEE, 2016, pp. 53-60.

[2] G. Sagardui, L. Etxeberria, J. A. Agirre, A. Arrieta, C. F. Nicolds, and
J. M. Martin, “A configurable validation environment for refactored
embedded software: an application to the vertical transport domain,”
in 2017 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW). 1EEE, 2017, pp. 16-19.

[3] J. Ayerdi, S. Segura, A. Arrieta, G. S. Arratibel, and M. Arratibel, “Qos-
aware metamorphic testing: An elevation case study,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2020, pp. 104-114.

[4] A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui, and
M. Arratibel, “Using machine learning to build test oracles: an industrial
case study on elevators dispatching algorithms,” in 202/ IEEE/ACM
International Conference on Automation of Software Test (AST). 1EEE,
2021, pp. 30-39.

[5] J. Ayerdi, A. Garciandia, A. Arrieta, W. Afzal, E. Enoiu, A. Agirre,
G. Sagardui, M. Arratibel, and O. Sellin, “Towards a taxonomy for
eliciting design-operation continuum requirements of cyber-physical
systems,” in 2020 IEEE 28th International Requirements Engineering
Conference (RE). 1EEE, 2020, pp. 280-290.

[6] G. Barney and L. Al-Sharif, Elevator traffic handbook: theory and
practice. Routledge, 2015.

[7]1 CIBSE, “Transportation systems in buildings,” Cibse Pub. London, 2010.

[8] S. Abbaspour Asadollah, R. Inam, and H. Hansson, “A survey on testing
for cyber physical system,” in Testing Software and Systems, K. El-Fakih,
G. Barlas, and N. Yevtushenko, Eds. =~ Cham: Springer International
Publishing, 2015, pp. 194-207.

[9] U. Markiegi, “Test optimisation for highly-configurable cyber-physical
systems,” in Proceedings of the 21st International Systems and Software
Product Line Conference - Volume B, ser. SPLC "17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 139-144.
[Online]. Available: https://doi.org/10.1145/3109729.3109745

[10] M. Marra, E. G. Boix, S. Costiou, M. Kerboeuf, A. Plantec, G. Polito,
and S. Ducasse, “Debugging cyber-physical systems with pharo:
An experience report,” in Proceedings of the 12th Edition of the
International Workshop on Smalltalk Technologies, ser. IWST ’17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3139903.3139913

[11] M. Zhang, S. Ali, and T. Yue, “Uncertainty-wise test case generation
and minimization for cyber-physical systems,” Journal of Systems
and Software, vol. 153, pp. 1-21, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219300561

[12] S. Y. Shin, K. Chaouch, S. Nejati, M. Sabetzadeh, L. C. Briand,
and F. Zimmer, “Uncertainty-aware specification and analysis for
hardware-in-the-loop testing of cyber-physical systems,” Journal of
Systems and Software, vol. 171, p. 110813, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121220302132

[13] Z. Huang, M. Arief, H. Lam, and D. Zhao, “Evaluation uncertainty in
data-driven self-driving testing,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), 2019, pp. 1902-1907.

https://doi.org/10.1145/3109729.3109745
https://doi.org/10.1145/3139903.3139913
https://www.sciencedirect.com/science/article/pii/S0164121219300561
https://www.sciencedirect.com/science/article/pii/S0164121220302132

