A Methodology for Model-based
Verification of Safety Contracts

Proceedings of the Institution of
Mechanical Engineers, Part O: Journal
of Risk and Reliability

000(00):1-13

©The Author(s) 2010

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI:doi number

http://mms.sagepub.com

Elena Gémez-Martinez’; Ricardo J. Rodriguez’, Clara Benac Earle’, Leire Etxeberria Elorza’

and Miren Illarramendi Rezabal’

§Center for Open Middleware, Universidad Politécnica de Madrid, Spain

tResearch Institute of Applied Sciences in Cybersecurity, University of Leon, Spain

tBabel Group, ETSINF, Universidad Politécnica de Madrid, Spain

*Embedded Systems Research Group, MGEP, Mondragon Unibertsitatea, Arrasate-Mondragon, Spain

Abstract

The verification of safety requirements becomes crucial in
critical systems where human lives depend on their correct
functioning. Formal methods have often been advocated as
necessary to ensure the reliability of software systems, albeit
with a considerable effort. In any case, such an effort is
cost-effective when verifying safety-critical systems. Often,
safety requirements are expressed using safety contracts, in
terms of assumptions and guarantees.

To facilitate the adoption of formal methods in the safety-
critical software industry, we propose a methodology based
on well-known modelling languages such as UML and OCL.
UML is used to model the software system while OCL is
used to express the system safety contracts within UML.
In the proposed methodology a UML model enriched with
OCL constraints is transformed to a Petri net model that
enables to formally verify such safety contracts. The methol-
ogy is evaluated on an industrial case study. The proposed
approach allows to perform an early safety verification,
which increases the confidence of software engineers while

designing the system.

* Corresponding author; e-mail: elena.gomez.martinez@upm.es

Keywords

safety contracts, model-based, verification, Petri nets

1. Introduction

With the growing adoption of software in safety-critical sys-
tems, safety assessment has become a crucial software engi-
neering task as it has been recognised by several initiatives,
for instance, the ARTEMIS JU nSafeCer project [nSafeCer
project, 2015]]. Moreover, software system safety engineer-
ing must be incorporated early in the software design process
and be part of the development and operational lifecycle of
the system.

Contract-based design is a popular approach for the design
of complex compo-nent-based systems where safety prop-
erties are difficult to guarantee [Damm et al., 2011} |Cimatti
and Tonetta, 2012]. A key benefit of using contracts is that
they follow the principle of separation of concerns [Kath
et al) [2009], separating assumptions that the environment
of a component obeys from what a component guarantees

under such an environment.

Journal name 000(00)

The Unified Modelling Language (UML) [OMG, 2011b]
is widely adopted to model the design of a system. By pro-
viding the means to include safety requirements in UML, the
integration of safety activities in the normal software life-
cycle is facilitated. For safety specification, two approaches
have been proposed: (i) to use the Object Constraint Lan-
guage (OCL) [OMG, [2010], which is a well-known lan-
guage among modelisation engineering community, or (ii)
to use specific UML profiles [OMG, 2008]. In previous
work [Rodriguez and Gémez-Martinez,[2014]], we have pro-
posed a technique that combines both approaches. In this
paper, in contrast, we focus on the representation of safety
contracts as OCL constraints.

For the verification of safety contracts, several formal
verification techniques have been proposed, for instance
[Cimatti and Tonettal [2012]], which uses model checking.
Our proposal is to translate UML to Petri Nets and perform
the analysis by computing probabilities using the GreatSPN
tool [Baarir et al.| 2009]. By combining standard engineer-
ing practice, i.e., UML, with formal verification techniques,
i.e. Petri nets, we provide a rigorous safety analysis available
for software engineers.

Our approach has been used to verify a set of safety con-
tracts on an industrial case study where the UML model of
a train doors controller has been analysed. The train doors
controller is the component in charge of opening and clos-
ing train doors. The CAF Power & Automation companyﬂ
develops these train components. Thus, components like the
train doors controller are modelled in UML previous to their
implementation.

Compared to [], in this paper we propose a methodol-
ogy for modelling safety requirements and their verification.
Some of the steps where outlined in [] but here they are more
clearly stated and the ones that were informally described
by means of the case-study, like the transformation of OCL
constrains to Petri nets, are now generalized and formalized.
The case study has also undergone some modifications. In
addition to the contracts formalized in [], a new contract has
also been formalized.

The rest of the paper contains the following sections.
Firstly, Section [2] outlines the basic concepts. Section [3]

presents our methodology for model-based verification of

Lhttp://www.cafpower.com/es/

safety contracts. Then, Section 4] applies our proposal to an
industrial case study. Finally, Section [5]covers related work

and Section [states some conclusions.

2. Previous Concepts

2.1. UML

The Unified Modeling Language (UML) [OMG, 2011b;
International Organization for Standardizationl 2012] is a
semi formal general-purpose visual modelling language
used for specifying software systems. In this paper, some
knowledge of UML is assumed. For more details we refer
to [OMG] 2011b} [International Organization for Standard-
1zation, [2012]].

UML can be tailored for specific purposes by profiling.
Profiling was introduced by UML to indeed add new capa-
bilities to the language. A UML profile is a UML exten-
sion to enrich UML model semantics defined in terms of:
stereotypes (concepts in the target domain), tagged val-
ues (attributes of the stereotypes) and constraints (formu-
lae that apply to stereotypes and UML elements to extend
their semantics). Numerous UML profiles can be found in
the literature targeting different specific domains and non-
functional properties system analysis (e.g., performance,
dependability, security, etc.). For instance, MARTE (Mod-
eling and Analysis of Real-Time and Embedded systems)
profile [OMG, 2011al] provides support for schedulability
and performance analysis in real-time and embedded sys-
tems, while DAM (Dependability Analysis and Modelling)
profile [Bernardi et al.| [2012] supports dependability anal-
ysis and SecAM (Security Analysis and Modelling) pro-
file [Rodriguez et al., 2010] focuses on security aspects. In
this paper, we use the MARTE profile to indicate the duration
of activities in a UML model.

Another extension to enrich UML semantics is the Object
Constraint Language (OCL) [OMG, 2010]. OCL is briefly
introduced in the following section.

2.2. Object Constraint Language
The Object Constraint Language (OCL) [OMG, [2010] is

a formal language used to describe constraints on UML
models. The main purpose of OCL is to provide additional
relevant information to a UML diagram while avoiding

Gomez-Martinez et al.

ambiguities arising from the use of informal specification
languages. Compared to other formal languages OCL is
sufficiently simple as to be usable in an industrial setting.
When an OCL expression is evaluated, it simply returns
a value without further effects in the model. OCL allows to
specify invariants (on classes and types), to describe pre-
and post-conditions (on operations and methods), guards
or either constraints (on operations). Note that although an
OCL expression can be used to specify a state change (e.g.,
by means of a post-condition), the state of the system will
never effectively change because of the evaluation of an OCL
expression (that is, OCL only provides textual description).
Unfortunately, a UML model annotated with OCL and
a profile that provides support for non-functional proper-
ties specification is not a suitable model to quantitatively or
qualitatively evaluate such properties. For this aim, we pro-
pose the use of Generalized Stochastic Petri Nets, which are

introduced in the following section.

2.3. Generalized Stochastic Petri Nets

In this paper, we consider Petri nets [Muratal, [1989] as the
formal modelling language. More precisely, we translate the
annotated UML diagrams into Generalized Stochastic Petri
Nets (GSPNs) [Ajmone Marsan et al., [1995], following the
guidelines proposed in Bernardi and Merseguer| [2007].
GSPNs are a graphical and mathematical modelling tool
for describing concurrent systems. A gentle introduction to
GSPN can be found in|Ajmone Marsan et al.|[1995]]. A GSPN
system is a 8-tuple S = (P, T, 11, 1,0, H, W, M), where:

e P isthe set of places.

e T'is the set of immediate and timed transitions, PN7T =
0.

e II: T — INis the priority function that maps transitions
onto priority levels, by default, timed transitions have
priority equal to zero.

e I,0,H :T — 27 are the input, output, inhibition func-
tions, respectively, that map transitions onto the powerset
of P.

* W :T — Rxq is the weight function that assigns rates
of timed transitions and weights to immediate transitions.

e My : P — INis the initial marking.

The pre- and post-sets of anode v € P U T are respec-
tively defined as *v = {u € PUT|(u,v) € F} and v® =

{ue PUT|(v,u) € F}, where FF C (P xT)U (T x P)
is the set of directed arcs. Graphically, a GSPN is a bipartite
graph of places and transitions joined by arcs; places and
transitions are respectively represented by circles and bars,
arcs are shown by arrows. They describe the flow of the sys-
tem with concurrency and synchronous capabilities. Places
can hold tokens, which represent system resources or sys-
tem workload, while transitions represent system activities.
The firing of transitions represents a change in the system
state. When a transition fires, tokens from input places are
placed in output places. A GSPN distinguishes two kind of
transitions: immediate transitions, which fire at zero time
(i.e. its firing does not consume any time); and timed transi-
tions, which may follow different firing distributions such as
uniform, deterministic or exponential distributions. In this
paper, we consider timed transitions with exponentially dis-
tributed random firings. Immediate transitions, depicted as
thin black bars, can have also associated probabilities to
represent the system routing alternatives. Exponential tran-
sitions, drawn as white boxes, account for the time that takes

an activity to complete.

3. A Methodology for Model-based Safety
Assessment

In this paper, we present a scenario-based methodology to
verify safety requirements at early stages. Thus, it allows to
assess safety as a “by-product” of the software life-cycle.
The proposed methodology is an extension of the perfor-
mance analysis methodology presented in [Gomez-Martinez
et al.| [2014]], which is based on principles and techniques
of Software Performance Engineering (SPE) [[Smithl|1981]].
The aforementioned methodology brings safety analysis in
by means of UML diagrams enriched with OCL constraints.

The proposed methodology comprises three different

phases, as depicted in Figure[T}

Safety-Oriented Design Phase. The software system is
modelled using UML diagrams, mainly UML Com-
posite Diagram (UML-CD), UML Sequence Diagrams
(UML-SD), and UML State Machine Diagrams (UML-
SM). The goal is to capture the structure and dynamics

(i.e., behaviour) of the system.

Safety Specification Phase. Each potential scenario where
safety issues may arise is further specified by means

Journal name 000(00)

Methodology J

Safety-Oriented
Design

UML Diagrams

Safety Requirements

Safety Specification

—

UML Diagrams + OCL Contracts

Safety Analysis

|_| Results |

Fig. 1. Methodology for model-based safety analysis.

| Petri nets

of safety requirements. These requirements are first
expressed as Safety Contracts Fragments, and then
translated into OCL within UML models.

Safety Analysis Phase. Lastly, UML models annotated
with OCL constraints are translated into the so-call
safety model where a safety analysis is carried out.
As safety model, we use the formalism of Generalized

Stochastic Petri nets [Ajmone Marsan et al., [1995]].

In the sequel, we describe in detail these phases. The pro-
posed methodology is evaluated in Section 4] where safety

properties of an industrial case study are verified.

3.1. Safety-Oriented Design Phase

The first step in our methodology is to describe the structure
of critical system and its behaviour. Since reuse of software
components is key in, for instance, aerospace and automo-
tive domains [[Shjivo et al.|2015]], a component-based design
is followed. This component-based design is described using
UML [OMG, 2011b]. For the structural part of the model
we use Composite Structure Diagrams, in particular, the
SysML [OMG]!2012]] extension. The reason is thatin SysML
input and output ports can be defined and they are used in the

safety contract as explained in Sect. [3.2]In addition to Com-
posite Structure Diagrams, Sequence Diagrams and State
Machine Diagrams are used to model the dynamics of the
system or component.

A UML Composite Structure Diagram (UML-CS) is a
type of static structure diagram which represents the inter-
nal structure of a structured classifier or collaboration to
describe a functionality. Thus, a Component Structure Dia-
gram represents runtime instances collaborating over com-
munication links to achieve some common objectives. This
diagram can include, among others, parts, a set of one or
more instances which are owned by a containing classifier
instance, and ports, which defines a property of a classifier
that specifies a distinct interaction point between that clas-
sifier and its environment or between the (behaviour of the)
classifier and its internal parts. Ports may specify inputs,
outputs as well as operating bidirectionally. In contract-
based design each safety critical component of the system
and non-critical components are seen as separated compo-
nents [Sangiovanni-Vincentelli et al.| [2012]] which interact
with their environment. In the proposed methodology, we
use Composite Structure Diagrams to represent components
and subcomponents of a critical system.

In component-based design, the internal states of a com-
ponent are modelled using a UML State Machine Diagram
(UML-SM), which describes its lifetime. A state represents
a time period in the life of an object during which the com-
ponent satisfies some condition, performs some action or
waits for an event.

Potential critical scenarios are modelled using Sequence
Diagrams. A UML Sequence Diagram (UML-SD) is a type
of behavioural UML diagram which shows object interac-
tions. More specifically, the messages exchanged between
the system components arranged in time sequence. It pro-
vides useful constructors such as loops, alternatives or paral-
lel execution. Itis used to model usage scenarios with respect
to a timeline. We augment these diagrams to specify dura-
tion activities by means of MARTE profile [OMG] 2011a].
The stereotype provided by MARTE to this goal is gaStep
(hostDemand tagged value), within the MARTE analy-
sis framework called Generic Quantitative Analysis Model
(GQAM).

Gomez-Martinez et al.

3.2. Safety-Oriented Specification Phase

The second step encompasses the definition of safety
requirements to be verified. In this paper, we assume that
safety requirements are informally captured from natural
language and formally specified as Safety Contract Frag-
ments (SCF) [Soderberg and Johansson, [2013[]. These SCF
are later transformed to OCL and integrated into UML
models to be analysed in the next phase.

A SCF defines a safety contract as a set of assumptions and
a set of guarantees, for a given component and under a given
environment. An assumption is what it is expected to be met
by the environment, while a guarantee specifies how the
component behaves in such an environment. A component

of a component-based system can be formally defined as:

Definition 1. A component C = (Z,0) of a system is
composed of a set I of input ports and a set O of output

ports.

Given Definition (TJ), a SCF S¢ of acomponentC = (Z, O)

can be defined as:

Definition 2. A SFC S¢ = (A, G) of a component C =
(Z,0) is atuple of a superset of disjoint sets A = AT, A* of
OR and AND safety assumptions, respectively, and a super-
set of disjoint sets G = G, G* of OR and AND guaranteesE]
Besides, a safety assumption o € A is a proposition that
relates one or more of the input ports of a component, i.e.,
a: A— I" n > 1 Similarly, a safety guarantee g € G is
a proposition that relates one or more of the output ports of

a component, i.e., g: G — O™ m > 1.

Thus, a SCF S¢ defined over a component C = (Z, O)
relates the input and output ports of the component with the
assumptions (i.e., what it is expected) and guarantees (i.e.,
what it is performed), respectively. Note that for us how the
guarantees are achieved is a black-box operation. Besides,
the guarantees are only assured when the assumptions are
fulfilled. Otherwise, the result of the component is not guar-
anteed and thus, cannot be trusted as a well-performed
operation.

Recall that OCL is a UML extension to express constraints

acting over a context into UML models (see Section [2.2).

2 As in [Rodriguez and Gémez-Martinez} 2014], for the sake of simplicity
we restrict the logic of SCF assumptions and guarantees to AND and OR
logic operators.

Among other constraints, an OCL can define invariants
(inv) as state conditions always fulfilled, or pre/post-
conditions fulfilled before/after an operation is performed.

In this paper, we focus on OCL invariants.

Definition 3. An OCL constraint R = (X,V) is a tuple
conformed by the context X where is defined, and the invari-
ant formula V = (ls,rs), where ls,rs are two logical

propositions joined by a boolean or implies operator.

Following the above definitions, we can straightforwardly

map an SCF into a OCL constraint:

Definition 4. An OCL constraint R = (C, Sc) describes a
context defined by a component C, and an invariant formula
defined by the SCF S¢c = (A, G).

Thus, a SCF defined over a component can be mapped into
a OCL constraint, and integrated within UML models. In the
next phase, these OCL constraints are transformed to Petri

nets to drag the safety requirements into the analysis step.

3.3. Safety-Oriented Analysis Phase

Finally, we translate UML diagrams annotated with MARTE
and OCL profiles into Petri nets, namely generalized
stochastic (GSPN) [Ajmone Marsan et al., [1995]]. This
choice has been driven by two main factors: (i) GSPNs
provide a formal notation which avoids any source of ambi-
guity while representing the stochastic behaviour of sys-
tems; (ii) GSPNs have a clear graphical notation and several
tools have been developed for analysis (for instance, Great-
SPN [Baarir et al., 2009], TimeNET [Zimmermannl [2012],
or PeabraiN [Rodriguez et al.||2012]], among others).

The translation process is carried out in two steps: First,
UML annotated with MARTE profile; and then, OCL con-
straints. To perform the first step, we use ArgoSPE [Gémez-
Martinez and Merseguer, [2006]], a tool that automatically
translates UML diagrams augmented with duration activities
using MARTE profile into GSPNs. This tool implements the
algorithms given in [Lopez-Grao et al.,[2004] and [Bernardi
and Merseguer, [2007]].

OCL constraints are transformed to GSPN as follows.
Recall that each OCL invariant S¢ of a constraint (C, S¢) is a
proposition of a set of assumptions .4 implying (implies

binary operator, —) a set of guarantees. Thus, we firstly

6 Journal name 000(00)
Dey Pe, Pen Digital
e Input
Driver’s 2
button - 10 |—— TCMS
]
tq
MVB BUS
ba Open/ ‘
(@ciAcaA...cN T Speed \L Close ‘L Information
Pcy Deo Pen commands ‘
e Traction Door
. . ; System component Al
R N
Fig. 3. The TCMS System and others components.
ba

b)cr Ve V...en

Fig. 2. From assumption clauses to Petri nets (following guidelines
given in|Liu and Chiou [[1997]).

transform each OCL invariant in its equivalent form, follow-
ing the equivalence rule of the implies binary operator
in classical logic (i.e., p — ¢ is logically equivalent to
—p V q). The proposition in equivalent form is used to build
a representative GSPN model of the OCL constraint.

The transformation is performed following a bottom-up
approach. First, a place ps. representing the fulfillment
of S¢ is added. Then, two places p4,pg, with two out-
put transition p% = {ta},p§ = {tg} are added, and
*ps, = {ta,tg}. Now, assumptions and guarantees are
processed: for each assumption a € A, guarantee g € G,
aplaces p,, py, are created. These places are interconnected
among them and with aforementioned places p 4, pg depend-
ing on the logic operator that join the clauses and following
the guidelines given in [Liu and Chioul [1997]). Figure [2]
depicts an example of transformation to Petri nets of a set of
N assumptions joined with AND and OR logic (the trans-
formation of guarantees is equivalent, but last place is pg
instead of p 4).

However, the translation of OCL constraints is not auto-
matically integrated by ArgoSPE. Thus, some manual tuning
is needed. This manual tuning encompasses to include a
place for each constraint related to an event. Each OCL con-
straint is represented by a place of the GSPN. Nevertheless,
according to the algorithms proposed in [Lépez-Grao et al.}
2004] and [Bernardi and Merseguer,2007], events are trans-
lated into GSPNs by means of transitions. Therefore, we

need to transform each transition into a pair transition-place
in order to compute the probability.

Once obtained the Petri nets representing the system and
its corresponding, both nets are merged using the transitions
that create tokens in places representing the same issue. The
composition is made by algebra tool of GreatSPN [Baarir
et al.,[2009].

Finally, we use the GreatSPN to compute the steady-state
probability of places that represent conditions. A marking
greater than zero (i.e. the place is eventually marked) will
indicate that OCL constraints are fulfilled.

4. Case Study: A Train Doors Controller

In this section, we pursue to perform an early safety
verification in a real industrial case study, following the

methodology proposed in Section 3]

4.1. System Description

As case study, we consider the door control management per-
formed by a Train Control and Monitoring System (TCMS).
The TCMS is a complex distributed system that controls
many subsystems such as the door control, traction system
control, air conditioning control, video surveillance, passen-
ger information system, etc. The TMCS provides informa-
tion to the driver, such as the state of doors, the state of the
traction, or the state of the alarm system, which is gathered
by a set of Input/Output (I0) modules. Figure [3] shows the
communication architecture among TMCS and other train

subsystems.

Gomez-Martinez et al.

Openlng buttons

Obstacle sensor

Fig. 4. The image of the door.

The system level requirements concerning the operation of
opening and closing of doors are satisfied by the following

components:

e The TCMS component decides whether to enable or dis-
able the doors considering the driver’s requests and the
train movement. Thus, doors must be enabled before they
can be opened, and disabled before closing;

* The Door component controls and commands the open-
ing and closing of a door;

* The Traction component controls and commands the
train movement; and

e The MVB (Multifunction Vehicle Bus) component inter-

communicates the components.

Door control systems differ depending on the type of train
where are acting. For instance, a door of a suburban or under-
ground train has a button that enables passengers to open it
upon request, while in the case of long distance and high
speed trains, doors have no buttons since they are opened
just upon driver’s request. In this paper, we consider a door
control system in a suburban train, i.e., a door has open but-
tons inside and outside the train coach. Note that in this case
the driver must first enable doors before they can be opened
upon passenger’s request. Doors also include an obstacle
sensor to prevent a closing operation whether an obstacle is
detected. Figure[]depicts the door considered in this system.

The train subsystems such as the door control system
are safety-critical systems and railway standards must be
applied during their development. The major standards are

European EN5012x family of railway standards:

e ENS50126 [CENELEC, [1999]: Railway specifications
— The specification and demonstration of Reliability,
Availability, Maintainability and Safety (RAMS);

» ENS50128 [[CENELEC, [2001]: Railway applications —
Communication, signaling and processing systems —
Software for railway control and protection systems, it
is known as the Railway Software Standard and is a
specialization of IEC 61508 for railway;

e EN50129 [CENELEC, 2003bf|: Railway applications —
Communication, signaling and processing systems —
Safety related electronic systems for signaling. EN 50129
gives precise guidance how to build a safety case and
particularly what has to be included in the various parts
of it;

* EN 50159-x [[CENELEC, 2010]:Safety related commu-
nication. EN 50159-1 is dedicated to closed transmis-
sion systems and EN 50159-2 is dedicated to open
transmission systems;

* EN50121-x [CENELEC, |2006] is relevant for EMC;

¢ EN 50125-x [[CENELEC, |2003a] for environmental

conditions of railway equipment;

The Safety Integrity Level (SIL) of a door control system
is SIL 2. A SIL specifies a target level of risk reduction and
is typically defined in components that operate in a safety-
critical system [International Electrotechnical Comission)
2010] [CENELEC, 2001]].

The case study presented here concerns a real system
where some simplifications have been made. Namely, the
interaction with other components of the TCMS and the
dependencies with other subcomponents and their commu-
nication has been omitted.

4.2. On Safety-Oriented Design Phase

According to the methodology proposed in Section [3} the
first step is to design the critical system. In the following,
we describe each safety-critical component in detail.
Figure [5] shows the UML-CS of the Train System. The
system is composed by a TCMS component, a Door com-
ponent, a Traction component and a MVB component.
The Train System has two external input ports, connected to
the input ports of TCMS component (namely, open_door and
close_door), which receive the driver requests for enabling
or disabling the doors. Output ports of the system report
about the status of the overall system: A doorStatus enumer-
ated value to indicate whether the doors are being opened,

closed, or already open or closed; a door_enabled boolean

Journal name 000(00)

Train System

door_status: Door_Status

traction_op: Boolean

door_enabled: Boolean

tcms: TCMS out_doorStatus:
Door_Status
I:]_[E?/Z:(door: out_traction_on:
driver_requests_door | opening: Boolean I:
Event
close_door:
Event out_door_enabled:
Boolean
driver_requests_doof_closing: I:
Event
enable_door: in_doorStatus: . enableTraction: in_traction_on:
Boolean Door_Status Boolean Boolean Boolean
1 1 1 1
L L L L L

out_doorStatus:
Door_Status

in_enable_door:
Boolean

out_door_enabled:
Boolean

out_enable_door: in_doorStatus: in_door_enabled:

bus: MVB

in_enabled_traction:
Boolean

out_enabled_traction:

out_traction_on:
Boolean

in_traction_on:

obstacle: Boolean

controller: Controller
doorStatus: Door_Status door_enabled:
Boolean

enable_opening:
Boolean

openLimitReached: intButtonOpening:
Boolean
Event

1 1 1

extButtonOpening: Event

obstacle: Boolean

L

closedLimitReached:
Boolean

1

extButtonOpening:

openLimitRpached:
Event

intB{tonOpening:

closedLimitReached:
Boolean

Boolean Event
openSensor: i tOpeninal xtO loseS
OpenLimitSwitchSensor Button Button ClosedLimitSwitchSensor

Boolean Door_Status Boolean Boolean Boolean
V_F v
doorstht door1: Door door_enabled:
enalfle_door: oorstptus: : Boolean . L
— Door_$tatus obstacleSensor: traction: Traction
ObstacleSensor .

enableTraction: switched_on:
Boolean Boolean

Fig. 5. UML Composite Structure Diagram of the Train System.

Gomez-Martinez et al.

value to indicate whether the doors are enabled or disabled;
and a traction_on boolean value to express whether the
traction system is on or off.

As input, the Door component receives the command to
enable or disable the door (enable_doorboolean value) from
TCMS component. As output, the Door component reports
about the status of the door (doorStatus enumerated value),
and whether the door is enabled (door_enabled boolean
value). Note that these outputs are in fact inputs port for
TCMS component.

Traction component receives as input an enable/dis-
able traction command (enableTraction boolean value) from
TCMS component; and provides as output a boolean flag to
indicate the traction status.

Finally, the MVB component represents the communication
among the components of the Train System.

Figure[dalso shows the subcomponents of the Door com-
ponent, i.e., the controller (in the following we name it as
DoorController), the limit sensors, the obstacle sensor,
and the interior/exterior opening buttons.

Figure [6] shows the UML-SM of DoorController.
It has four states: opening, is_open, closing or is_closed
(initial state). The interior/exterior opening buttons trigger
when pushed the intButtonOpening and extButtonOpening
events, which lead the DoorController state to open-
ing state, if enable_door is true. Once the door is totally
open, openSensor triggers an openLimitReached event
that causes the DoorComponent to change to is_open
state. It remains in this state until the door is disabled and
no obstacle is detected, moving to closing state. In this state,
two exits are possible: When an obstacle is detected, or the
interior/exterior opening buttons are pushed and the door
is enabled, the DoocControler state moves to opening
state again; When the closeSensor component triggers
a closedLimitReached event, since the door has been totally
closed, the DoorController is lead to is_closed state.

As critical operations, we focus on the control of doors.
In the following, we present the UML Sequence Diagrams
(UML-SD) for the opening and closing of doors.

Figure [7]depicts the UML-SD for door opening scenario.
When a train driver requests the opening of doors, the TCMS
first checks whether the train status is suitable for opening the

doors without risk, i.e., the train is really stopped. Whether

tm StateMachine /

[not door_snabled and cbstacle] {not doos_enabled

[not door_enabled
and not obstacle]

[door_enabled|

openLimitResched clesedLimitReached

[door_enabled]

[door_snabled

Initial

[door_enabled] [nct door_enabled] [door_enabled]

Fig. 6. UML State Machine Diagram of the DoorController.

this safety constraint is fulfilled, the “enable door” com-
mand is sent to the DoorController component. Then,
the DoorController component opens the door when
enabled and upon passenger’s request, which is sent when a
passenger press the interior/exterior opening door button.
Similarly, the door closing scenario is shown in Fig-
ure [§] When the driver commands doors closing, the
TCMS system sends the “not enable door” command to the
DoorController component. The DoorController
component disables the door and closes it when the opera-
tion can be safely completed, i.e., there is no any obstacle
detected. Otherwise, the door is opened, and closing oper-
ation is again carried out. Recall that this closing/opening

loop occurs until the door can be safely closed.

4.3. On Safety-Oriented Specification Phase

A safety engineer defines the following safety requirements

(SR) in the context of this case study:

SR1. A door can be opened when enabled and traction is off.

SR2. A door cannot be closed whether an obstacle is
detected.

SR3. A door is closed when the door opening is enabled and

the close event is received.

In this phase, these requirements are expressed in terms of

SCFs considering the component-based system depicted in
Figure 5}

e SRy = (door_enabled A
—traction_on, doorStatus = OPENING), defined
on the TCMS component.

10 Journal name 000(00)

sd OpeningDoors J
db : DriverButton t: TCMS tr : Traction dc : Door de.button : dc.qunSensor :
DoorButton LimitSensor
Driver PasTgrgcr press : : : 0 : :
Bl 2n PP I : I I I
switchLED(ON) | <<gaStep>> | | |
<<gaStep>> dr—T------ 4- {hostDemand=(l,unit=ms, | | |
{hostDemand=(64,unit=ms, | statQ=mean,source=est)} | | |
statQ=mean, source=est)} : | : <<gaStep>> :
| | | {hostDemand=(192,unit=ms, |
enableDoors() | | | statQ=mean,source=est)} |
] 1L enableTraction(FALSE) 4 - |
<<gaStep>>
{hostDemand=(1,unit=ms,
: __________ statQ=mean,source=est)}
<<gaCommStep>> : : |
{hostDemand=(64,unit=ms, | | <<gaStep>> .
statQ=mean, source=est)} F=~~_ I | | {hostDemand=(1,unit=ms,
s~ .lo_oP/ [for all Door] | | | statQ=mean,source=est)}
“tie enableDoor(TRUE) [T
t -1 |
| - | |
(hyhyiguhii St iyt g changeStatus(ENABLED
< doorStatus(CI:IOSED ENABLED) h S A :
_ | | |
P | | | |
<<gaStep>> enabledDoors() | | | |
{rep=$nDoor} K—————— <<gaStep>> : :
SWilChLEﬁ(OFF) {hostDemand=(1,unit=ms, | |
______ R statQ=mean,source=est)} | H
| T T | <<gaStep>>
| | | | {hostDemand=(1,unit=ms,
< ______ T T T T T ! : : : : statQ=mean,source=est)}
| | press() | | I
			’L '
			!
			SWilChLED(dN)
			:\
: ! ! ' open() :			
<<gaStep>> 1			
{hostDemand=(1,unit=ms,			
statQ=mean,source=est)} o			
i & =			
. : changeSjtatus(OPENING)			
' ' doorStatus(DPENING '			
	oorStatus()		
!			
<=			
gaStep>> N\ - —			
: {hostDemand=(16,unit=rms, : Toop)	[intil dc.Status = QPENING] :		
statQ=mean,source=est)}	isLinjitReached()		
T B F---FF=-------- EEEEE T			
4'—[K T			
<<gaStep>> il RN m <			
	{hostDemand=(5,unit=ms, I 7~ A	MimitReached]	
statQ=mean, source=calc)}	I~		
: : o 0 :			
		H >	
[F1--F . >n			
<<gaStep>>	z us(OPEN) 1		
{hostDemand=(1,unit=ms,	(N Y . sy I		
: statQ=mean,source=est)} : I'_ :			
T			
		T	
	doorStatus(OPEN)		
lj‘			
<—————- Fo——————- ———————= fFo—————= === I			
			T
L L | | | | | |

Fig. 7. UML Sequence Diagram representing the door opening operation.

Gomez-Martinez et al.

11

sd ClosingDoors J

{hostDemand=(1,unit=ms,
statQ=mean,source=est)}

{hostDemand=(1,unit=ms,

db : DriverButton t: TCMS d : Door d.closeSensor : d.obsSensor :
LimitSensor ObstacleSensor
i T T T
Driver press | | |
switchLED() : :
- ; | |
<<gaStep>> B closeDoors() : <<gaStep>> B

<<gaStep>>
{hostDemand=(64,unit=ms
statQ=mean,source=est)}

AN

3

<< gaStep>>
{hostDemand=(64,unit=ms.
statQ=mean,source=est)}

AN

3

L — A [for all Doors]

| enpfleDoor(FALSE)

“floorStatus(CLOSING)

statQ=mean,source=est)}

| ————fF——————

N

changeStatps(CLOSING)

K7

Eﬂ_p [until d.status =

<<gaStep>> I:
{hostDemand=(16,unit=ms,
statQ=mean,source=est)}

LOSING]

|
|
I
|
|
|
|
|
I
|
isLimitReached()|

| | _______ [T
B | i i i - } }
<<gaStep>> B ilt/ llimitReached andl!obstacleDetected] |
{hostDemand=(16,unit=ms, | |
statQ=mean, source=est)}] | |
. closeDoor{) :
| AT . z | |
I I S S
<<gaStep>> B [immfitReached and obstacleDetected] |r
{hostDemand=(64,unit=ms, | |
statQ=mean, source=est)} | |
N N A] L
| | [lim}tReached] | |
—<gaSteps N -1t r changeStati.ls(CLOSED) :
{hostDemand=(1,unit=ms, | |
statQ=mean,source=est)} | |
doorStatus(CLGSED) ' '

———

Fig. 8. UML Sequence Diagram representing the door closing operation.

12 Journal name 000(00)
« SRy = (obstacle,doorStatus = OPENING). In up after closing the door and it brakes when the traction
this case, defined on the DoorController compo- receives a traction stop signal.
nent. OCL constraints described in the previous section are now
* SR3 = (door_enabled A close_door,doorStatus = transformed into Petri nets, following the guidelines given in

IS_CLOSED). This SCF is defined also on the TCMS

component.

Note that SR1,SR3, requirements are defined on the
TCMS component, while the context of SRy is the
DoorController component since the input and output
ports that relate the SR belong to DoorController. As
we have previously defined in Section[3.2] assumptions and
guarantees of an SCF relate input and output ports of the
components where they are defined.

Following Definition (??), these SCF are transformed to
OCL, embedded within the UML-CD of the system. Namely,
the constraints expressed as OCL language are shown at
Listing [T}

The context of OCL is directly taken from were SCF are
defined. Finally, these OCL rules are transformed to Petri
nets and integrated within the GSPN of the case study, as we

explain in the next section.

4.4. On Safety-Oriented Analysis Phase

Following the methodology proposed in Section [3] this
phase encompasses the transformation of the safety sce-
narios described by UML-SDs, enriched with MARTE and
OCL constraints, into GSPNs.

To this end, we use the ArgoSPE tool [Gomez-Martinez
and Merseguer, [2000]]. Figure [9]depicts the GSPN obtained
after transformation of UML-SD shown in Figures[7]and [§]
The left-hand side of the figure represents the door open-
ing scenario, while the right-hand side represents the door
closingRJ: Elena, modifica/pon una linea o algo en la figura
para marcar donde estd/empieza una cosa y acaba la otra.
The transformation process is partially done in an automatic
way by ArgoSPE, since OCL constraints transformation is
unsupported by the current release of ArgoSPE and thus
some manual tuning is needed.

Elena, mete aqui todo lo demds que haya tenido que hac-
erse de forma no automadtica, pero no relacionado con las
OCLs. Te recupero el texto de la Traction. In particular, we
have also modelled the Traction operation without consider-

ing human interaction, thus, our system automatically speeds

Section [3.3] The Petri nets generated from SR, SR, and
SR are depicted in Figure[I0] Let us briefly exemplify how
a PN representing an OCL constraint is built. Consider OCL
constraint TC'MS_SR1. Applying logic equivalence for-
mulae, such an invariant is equivalent to (—~door_enabled V
traction_on) V doorStatus = OPENING. A place is
generated to represent each of the clauses, and extra places/-
transitions are added to join them into a place that repre-
sents the own OCL constraint (place SR 1, in this case, see
Section [3.3).

Our aim during analysis is to check whether the places
SR1,S8R4, and SR 3 are marked with (at least) two tokens,
thus indicating that both conditions are fulfilled. Recall that
the probability of (eventually) reaching a condition is rep-
resented as a place being (eventually) marked. Note that a
place eventually marked does not necessary mean a place
eventually always marked.

These nets can finally be merged with the PN of the safety
scenarios depicted in Figure 0] Both nets are merged using
the transitions that create tokens in places representing the
same issue, i.e., places X X X and X X X in Figure[10|rep-
resent the same state than p_traction_on_FALSFE and
p_traction_STOP, respectively, in Figure E} The con-
nection to places representing safety contracts have been
highlighted (grey colour) in Figure[9}

The merged PN is finally used with the GreatSPN
tool [Baarir et al.|[2009] to compute the steady-state proba-
bility of places SR, SR>, SR3 having a marking greater
than zero (i.e., the place is eventually marked). When
this situation occurs, it indicates that the OCL constraints
TCMS_SR1, DoorController_SR2 and TCMS_SR3
are fulfilled. A simulation of the net returns positive val-
ues for these probabilities, thus safety contracts are fulfilled
in the system model. Let us finally remark that final effort
must be focused on assuring that the system implementation
matches the UML models. Otherwise, although a safety ver-
ification of models have been proved, the system may reach
unsafe states.

Although the UML models that we described here are
enriched with MARTE profile annotations, these enriched

Gomez-Martinez et al.

13

Code 1. OCL constraints obtained from SCF transformation.
context TCMS_SRI1

inv: door_enabled and not traction_on
implies doorStatus = OPENING
context DoorController_SR2
inv: obstacle
implies doorStatus = OPENING
context TCMS_SR3
inv: door_enabled and close_door
implies doorStatus = IS_CLOSED

data are not used for the safety analysis. However, these data
can be necessary for verifying some safety properties where
timing become relevant [Bate et al.|, [2003]]. To this aim, we
may use OCL/RT [Cengarle and Knapp, 2002}, an extension
of native OCL to specify time issues, in conjunction with the
MARTE profile, and translate such an information into the
GSPN models. We consider this an interesting issue which

deserves further study.

5. Related Work

Several methodologies have been proposed for the verifica-
tion of safety properties on critical systems, see [Pérez, 2014}
Knorreck et al., [2011]]. Both [Pérez, [2014} Knorreck et al.,
201 1] propose similar methodologies to the one we propose
although both of them also include a code generation step.
Our methodology extends the performance analysis
methodology presented in [Gémez-Martinez et al., [2014],
which is based on principles and techniques of Software
Performance Engineering (SPE) [Smith, [1981]]. Concern-
ing methodologies based on SPE principles, to the best of
our knowledge, there are very few initiatives and all of
them are focussed on performance analysis. For instance,
the PASA (Performance Assessment of Software Architec-
tures) method, proposed by [Williams and Smith|[2002] is a
performance scenario-based software architecture analysis
method that provides a framework for the whole assess-
ment process. Nevertheless, some steps of PASA entrust
in the software engineer expertise to be applied and to
identify alternatives for improvements. [Pooley and Abdul-
latif][2010] defined Continuous Performance Assessment of
Software Architecture (CPASA). This method adapts PASA

to the agile development process. Unlike our proposal, these
methodologies only analyse performance issues.

Regarding contracts, many formalisms have been pro-
posed to express contracts, such as the Requirements Spec-
ification Language (RSL) [Damm et al.| 2011]], the Othello
language [[Cimatti and Tonetta,[2012]], which is based on Lin-
ear Temporal Logic, or Modal Transmission Systems [Bauer
et al.,[2012]]. Unlike OCL, these languages are more expres-
sive but OCL is a well-known language among modelisa-
tion engineering community. However, a major drawback
of these formalisms is that the requirement engineers need
to learn a new formalism each time they need to write con-
tracts in a specific domain. In contrast, OCL is a well-known
language in industry. Besides, to the best of our knowledge
some of the proposed formalisms lack the means to verify
that a component model fulfils their contracts [Damm et al.}
2011; Bauer et al.l 2012], or only focus on verification of
functional properties [Cimatti and Tonettal [2012]. In this
work, we have shown that OCL contracts can be used to
perform safety assessment by translating the UML models
to Petri nets. Although currently we also focus on functional
properties, the use of UML profiles enables to analyse other
non-functional properties that can affect to safety, such as
performance, dependability or security.

Representing safety contracts using OCL has been pre-
viously proposed in [Bate et al.|, [2003]]. The novelty of our
work is that we propose a translation from safety contracts in
the form of assumptions and guarantees to OCL. Our work
complements the work of OTHELLO language [Cimatti
and Tonetta, 2012]] and OCRA [Cimatti et al.l 2013]. In
particular, the analysis of non-functional properties can
complement the work on verifying functional properties in
OCRA [Cimatti et al., [2013]]. Other work similar to ours

14 Journal name 000(00)

p_door_OPE|

_door_t A»_g;'

oor_ !
Cl

<=—
CLOSING
-—
oorClosing
p_door_OPENING

de

p_d

Li?eoen»oeleo

EI%O%D»Q%Q P%o%l#o»poeueoelioelw

=)

Led!

hO
hOffL

OO OO

T
e

Fig. 9. Petri net corresponding to the opening and closing of a door.

Gomez-Martinez et al.

15

NOTobstacle doorClosing

NOTdoor Enabled doorStatusOPENING

tractionOn

OO0
OO

(a) OCL constraint TCMS_SR1

(b) OCL constraint DoorController_SR2

NOTdoorEnabled doorStatusCLOSED

NOTcloseDo

OO
OO

(c) OCL constraint TCMS__ SR3

Fig. 10. Petri net representation of OCL constraints of the case study.

is[Bouabana-Tebibel and Belmesk![2008]], where UML/OCL
is used to express system invariants, transformed to Place/-
Transition nets (without time) and to LTL logic for the
verification. In contrast to their work, we formalise the safety
contracts, and, moreover, our Petri net models capture the
timing information.

Some works refine safety contract assumptions in strong
and weak assumptions [Damm et al. 2011} [Sljivo et al.]
2013]]. Strong assumptions specify what always is fulfilled
by the environment, context-independently, while weak
assumptions provide additional information about the con-
text where a component could operate (e.g., the expected
timing between input signals). In this paper, we consider
the definition of safety contract as given in [Soderberg and
Johansson| [2013]], having only strong assumptions. In our
case, the weak assumptions can be implicitly described by
UML annotations. As future work, we aim at extending
our safety contract specification to explicitly express timing

issues.

6. Conclusions and Future Work

First version, needs revision

In this paper we have presented a methodology for safety
analysis of critical systems. The methodology consists on
three phases: the safety-oriented design, the safety specifi-
cation, and the safety analysis. In the safety-oriented design
phase, a component-based UML model is obtained using
Composite Structure Diagrams and Sequence Diagrams.
These diagrams capture the structure and behaviour of the
software to be analysed. In the safety specification phase, the
safety requirements are expressed first as Safety Contracts

Fragments which are then translated into OCL. Finally, in the

safety analysis phase, the UML models annotated with OCL
constraints obtained from the previous phase are translated
into the safety model. The safety analysis is then performed
by computing probabilities over the safety model. The pro-
posed methodology has been evaluated with an industrial
case study from the railway domain.

Our methodology is an extension of the methodology for
performance analysis presented in (Gémez-Martinez et al.
[2014]. The advantage of extending an existing methodology
is clear, both performance and safety can be assessed using
a similar approach.

The specification of safety contracts in terms of OCL
within UML models allows to recap safety requirements
and system description in a single picture. Besides, the adop-
tion of formal models, obtained after the transformation of
UML/OCL models to Petri nets, are facilitated as UML/OCL
are languages familiar to the industry engineers. The result
is that we have sacrificed expression power to keep safety
contracts expressed with OCL easier to understand than con-
tracts written in more expressive languages like, for instance,
Linear Temporal Logic (LTL). This issue can be overcome
in the future by extending the native OCL with more opera-
tors. However, it is nos clear that is the best strategy since, as
mentioned earlier, it would make the specification language
more complex and, thus, less usable.

As for further work,...

16

Journal name 000(00)

Acknowledgements

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment n° 295373 (project nSafeCer) from National fund-
ing, and from the Spanish National Institute of Cyberse-
curity (INCIBE) accordingly to the rule 19 of the Digital
Confidence Plan (Digital Agency of Spain) and from the

University of Ledn under the contract X43.

References

Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., and
Franceschinis, G. (1995). Modelling with Generalized Stochas-
tic Petri Nets. Wiley Series in Parallel Computing. John Wiley
and Sons.

Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli,
S., and Franceschinis, G. (2009). The GreatSPN tool: recent
enhancements. SIGMETRICS Perform. Eval. Rev., 36(4):4-9.

Bate, 1., Hawkins, R., and McDermid, J. (2003). A Contract-based
Approach to Designing Safe Systems. In Proceedings of the 8th
Australian Workshop on Safety Critical Systems and Software -
Volume 33, SCS ’03, pages 25-36. Australian Computer Society,
Inc.

Bauer, S. S., David, A., Hennicker, R., Guldstrand Larsen, K.,
Legay, A., Nyman, U., and Wasowski, A. (2012). Moving from
Specifications to Contracts in Component-Based Design. In
Lara, J. and Zisman, A., editors, Proceedings of the 15th Inter-
national Conference on Fundamental Approaches to Software
Engineering (FASE), volume 7212 of Lecture Notes in Computer
Science, pages 43-58. Springer Berlin Heidelberg.

Bernardi, S. and Merseguer, J. (2007). Performance evaluation
of UML design with Stochastic Well-formed Nets. Journal of
Systems and Software, 80(11):1843—-1865.

Bernardi, S., Merseguer, J., and Petriu, D. C. (2012). Dependability
modeling and analysis of software systems specified with UML.
ACM Comput. Surv., 45(1):2.

Bouabana-Tebibel, T. and Belmesk, M. (2008). Integration of the
Association Ends within UML State Diagrams. Int. Arab J. Inf.
Technol., 5(1):7-15.

CENELEC (1999). EN50126 Railway applications - The specifica-
tion and demonstration of Reliability Availability Maintainabil-
ity and Safety (RAMS).

CENELEC (2001). EN50128 Railway applications - Communica-

tions signalling and processing systems - Software for railway

control and protection systems.

CENELEC (2003a). EN 50125 Railway applications - Environ-
mental conditions for equipment.

CENELEC (2003b). EN50129 Railway applications - Communica-
tion signaling and processing systems - Safety related electronic
systems for signaling.

CENELEC (2006). EN 50121 Railway applications - Electromag-
netic compatibility.

CENELEC (2010). EN 50159 Railway applications - Commu-
nication, signalling and processing systems - Safety-related
communication in transmission systems.

Cengarle, M. V. and Knapp, A. (2002). Towards OCL/RT. In FME
2002: Formal Methods — Getting IT Right, volume 2391 of Lec-
ture Notes in Computer Science, pages 390—409. Springer Berlin
Heidelberg.

Cimatti, A., Dorigatti, M., and Tonetta, S. (2013). OCRA: A
tool for checking the refinement of temporal contracts. In 28th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 702-705. IEEE.

Cimatti, A. and Tonetta, S. (2012). A Property-Based Proof
System for Contract-Based Design.
38th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), pages 21-28.

Damm, W., Hungar, H., Josko, B., Peikenkamp, T., and Stierand, I.

In Proceedings of the

(2011). Using Contract-based Component Specifications for Vir-
tual Integration Testing and Architecture Design. In Proceedings
of the Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1-6.

Goémez-Martinez, E., Gonzédlez-Cabero, R., and Merseguer, J.
(2014). Performance assessment of an architecture with adapta-
tive interfaces for people with special needs. Empirical Software
Engineering, 19(6):1967-2018.

Goémez-Martinez, E. and Merseguer, J. (2006). ArgoSPE: Model-
based Software Performance Engineering. In Proc. 27th Int.
Conf. on Applications and Theory of Petri Nets and Other Models
of Concurrency (ICATPN’06), volume 4024 of Lecture Notes in
Computer Science, pages 401-410. Springer. Tool available at:
http://argospe.tigris.org.

International Electrotechnical Comission (2010). IEC 61508: Func-
tional safety of electrical/electronic/programmable electronic
safety-related systems.

International Organization for Standardization (2012). ISO/IEC

19505-1: Information technology — Object Management Group

http://argospe.tigris.org

Gomez-Martinez et al.

17

Unified Modeling Language (OMG UML) — Part 1: Infrastruc-
ture.

Kath, O., Schreiner, R., and Favaro, J. (2009). Safety, Security, and
Software Reuse: A Model-Based Approach. In Proceedings of
the Fourth International Workshop in Software Reuse and Safety.

Knorreck, D., Apvrille, L., and de Saqui-Sannes, P. (2011). Tepe:
A sysml language for time-constrained property modeling and
formal verification. SIGSOFT Softw. Eng. Notes, 36(1):1-8.

Liu, T. and Chiou, S. (1997). The application of Petri nets to failure
analysis. Reliab. Eng. Syst. Safe., 57(2):129-142.

Lépez-Grao, J. P., Merseguer, J., and Campos, J. (2004). From
UML Activity Diagrams to Stochastic Petri Nets: Application to
Software Performance Engineering. In Proc. 4th Int. Workshop
on Software and Performance (WOSP’04), pages 25-36. ACM.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applica-
tions. Proceedings of the IEEE, 77(4):541-580.

nSafeCer project (2015). Safety Certification of Software-Intensive
Systems with Reusable Components. Project Grant Agreement
n° 295373. Website at: http://safecer.eu/l

OMG (2008). UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms (QoS & FT).
Specification available at: http://www.omg.org/spec/
QFTP/. Version 1.1.

OMG (2010).
Management Group. v2.2, formal/2010-02-01.

OMG (2011a). A UML profile for Modeling and Analysis of Real
Time Embedded Systems (MARTE). Specification available at:

Object Constraint Language (OCL). Object

http://www.omgmarte.orqg/, Version 1.1.

OMG (2011b). Unified Modeling Language (UML). Specifica-
tion available at: http://www.omg.orqg/spec/UML/2.
4.1/. Version 2.4.1.

OMG (2012). Systems Modeling Language (SysML). Specification
available at: http://www.omgsysml.org/. Version 1.3.

Pérez, Z. A. D. (2014). Model-driven development methodology
for hybrid embedded systems based on UML with emphasis on
safety-related requirements. PhD thesis, Faculty of Electrical
Engineering and Computer Science, University of Kassel.

Pooley, R. J. and Abdullatif, A. A. L. (2010). CPASA: Continuous
Performance Assessment of Software Architecture. In Proc. 17th
IEEE Int. Conf. and Workshops on the Eng of Computer-Based
Systems (ECBS’10), pages 79-87. IEEE Computer Society.

Rodriguez, R. J. and Gémez-Martinez, E. (2014). Model-based
Safety Assessment using OCL and Petri Nets. In Proceedings

of the 40th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pages 56 — 59.

Rodriguez, R. J., Jilvez, J., and Merseguer, J. (2012). PeabraiN: A
PIPE Extension for Performance Estimation and Resource Opti-
misation. In Proceedings of the 12th International Conference
on Application of Concurrency to System Designs (ACSD), pages
142-147. IEEE.

Rodriguez, R. J., Merseguer, J., and Bernardi, S. (2010). Modelling
and Analysing Resilience As a Security Issue Within UML.
In Proceedings of the 2nd International Workshop on Software
Engineering for Resilient Systems, SERENE 10, pages 42-51,
New York, NY, USA. ACM.

Sangiovanni-Vincentelli, A., Damm, W., and Passerone, R. (2012).
Taming Dr. Frankenstein: Contract-based design for cyber-
physical systems. European Journal of Control, 18(3):217-238.

Sljivo, I., Gallina, B., Carlson, J., and Hansson, H. (2013). Strong
and Weak Contract Formalism for Third-Party Component
Reuse. In I[EEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 359-364.

Sljivo, L., Gallina, B., Carlson, J., Hansson, H., and Puri, S. (2015).
A Method to Generate Reusable Safety Case Fragments from
Compositional Safety Analysis. In Schaefer, I. and Stamelos, 1.,
editors, Software Reuse for Dynamic Systems in the Cloud and
Beyond - 14th International Conference on Software Reuse, ICSR
2015, Miami, FL, USA, January 4-6, 2015. Proceedings, volume
8919 of Lecture Notes in Computer Science, pages 253-268.
Springer.

Smith, C. U. (1981). Increasing Information Systems Productivity
by Software Performance Engineering. In Proc. 7th Int. Conf.
Computer Measurement Group (CMG’81), pages 5-14.

Soderberg, A. and Johansson, R. (2013). Safety Contract Based
Design of Software Components. In /IEEE International Sympo-
sium on Software Reliability Engineering Workshops (ISSREW),
pages 365-370.

Williams, L. G. and Smith, C. U. (2002). PASA®": A Method for
the Performance Assessment of Software Architectures. In Proc.
3rd Int. Workshop on Software and Performance (WOSP’02),
pages 179-188. ACM.

Zimmermann, A. (2012). Modeling and evaluation of stochastic
Petri nets with TimeNET 4.1. In Proceedings of the 6th Inter-
national Conference on Performance Evaluation Methodologies

and Tools (VALUETOOLS), pages 54-63.

http://safecer.eu/
http://www.omg.org/spec/QFTP/
http://www.omg.org/spec/QFTP/
http://www.omgmarte.org/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omgsysml.org/

	Introduction
	Previous Concepts
	UML
	Object Constraint Language
	Generalized Stochastic Petri Nets

	A Methodology for Model-based Safety Assessment
	Safety-Oriented Design Phase
	Safety-Oriented Specification Phase
	Safety-Oriented Analysis Phase

	Case Study: A Train Doors Controller
	System Description
	On Safety-Oriented Design Phase
	On Safety-Oriented Specification Phase
	On Safety-Oriented Analysis Phase

	Related Work
	Conclusions and Future Work

