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When inventory management, distribution and routing decisions are made jointly implementing a vendor-managed
inventory strategy, a difficult combinatorial optimization problem must be solved to determine how much to replenish,
which customers to visit, and how to route the vehicles around them. We analyze a distribution system with one
warehouse, one vehicle and many customers under the most commonly used inventory policy, namely the (s,S), for
different values of s, and three different customer selection methods: big orders first, lowest storage capacity first, and
rest equal quantity. When customer demands are revealed gradually, ideal solutions are considered for benchmarking,
using one step ahead advanced information. The system was analyzed using instances of different sizes regarding the
number of vendors involved. The resulting vehicle route represents a solution for a traveling salesman problem. We
compare the solutions of our genetic algorithms against those of Concorde and Lin-Kernigan methods to test the the
robustness of the replenishment policies and client selection methods.

Keywords: Inventory-Routing Problem; Inventory Policies; Genetic algorithmim; Stochastic and Dynamic IRP;
Demand management.

1. Introduction

Supply chain performance, coordination and integration are some key success factors in obtaining com-
petitive advantages Moin and Salhi (2007). Inventory and distribution management are two main activities
towards that integration, and are said to account for more than 60% of the total logistics costs Guasch
(2008). The integration of inventory and distribution decisions gives rise to the inventory-routing problem
(IRP), which has been studied for the past few decades and has received much attention lately Coelho,
Cordeau, and Laporte (2014). However, most of these studies focus on optimizing a problem for which all
information is known a priori, which is often not the case in practice.

The demand information in an IRP can be static when customers demand are known before the planning,
or in a dynamic context in which it is gradually revealed over time (Psaraftis 1995; Coelho, Cordeau, and
Laporte 2014). The dynamic and stochastic IRP (DSIRP) aims not at providing a static output, but rather
a solution strategy that uses the revealed information, specifying which actions must be taken as time goes
by (Berbeglia, Cordeau, and Laporte 2010; Bertazzi et al. 2013). Recently, Bertazzi et al. (2013); Solyali,
Cordeau, and Laporte (2012) and Coelho, Cordeau, and Laporte (2012a) have solved DSIRPs with the
goal of minimizing the total inventory, distribution and shortage cost. They considered at least one of the
classical inventory policies, i.e., maximum level or order-up-to. They tested their algorithms on instances
containing several customers and periods.
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An overview of state of the art of IRPs is provided in Roldán, Basagoiti, and Onieva (2014) where
some key elements were identified that should be taken into account to propose alternative solutions to
DSIRPs. The information management between different stakeholders in the supply chain is one of them,
since this determines the evolution and quality of shared information. It is necessary to establish inventory
management policies, which requires the information sharing between stakeholders. Inventory policies and
their relation to the information on the demand is another one, in order to properly manage inventory levels.
Finally, one must decide which optimization technique to use in order to make the best use of the available
data.

The choice of which inventory policy to apply will largely influence the cost of the optimization process.
Typically, it uses three parameters that can be related to the key questions to answer in inventory control:
when replenish, how much to replenish, and how often the inventory level is reviewed. For periodic re-
viewed inventory, Wensing (2011) highlights three policies. One is the order-up-to (OU) which refers to
a (t,S) system. Here, in each period t, the quantity delivered is that to fill its inventory capacity. Other
policies are the (t,s,S) and the (t,s,q). In the former, the customer is served if the inventory level is less
than s. In the latter, the replenishment level q is flexible but bounded by the storage capacity available at
each customer. The policies should be articulated with strategies for clients selection, because sometimes
it is not possible to serve all clients, and in such cases, it is necessary to prioritize some of them.

Several exact, heuristic and metaheuristic methods have been used to find feasible solutions for such a
problem and its variants, such as the vehicle routing, where branch-and-cut and evolutionary algorithms
are widely used. Simic and Simic (2013) argued that for complex optimization problems suc as the IRP,
hybrid methods with techniques such as artificial neural networks, genetic algorithms, tabu search, simu-
lated annealing and evoluationary algorithm can be successfully applied. Some techniques to solve IRPs
are summarized in Table 1.

Following these ideas, in this paper we study a DSIRP in which decisions must be made without exact
information about demand, which is gradually revealed over time. We propose a new three step solution
algorithm, which is flexible enough to consider several inventory replenishment policies. We are then able
to evaluate and compare the performance of the policies on demand satisfaction, average inventory kept
at the customers’ site, and total cost. Moreover, we show the effect of integrating tactical and operational
decisions into the same solution algorithm. A sub-product of this research is the development of fast and
efficient genetic algorithm to solve the traveling salesman problem appearing as subproblems from our
solution methodology. This algorithm is compared directly against Concorde and the Lin-Kernigan heuristic
in terms of solution quality.

The remainder of this paper is organized as follows. In Section 2 we formally describe the problem,
and model it mathematically in Section 3. In Section 4 we present our solution procedure which includes
customer selection, quantities determination, and vehicle routing. In Section 5, we present the results of
extensive computational experiments and we analyze the trade-off between inventory and transportation
costs. We describe how we can identify dominated solutions under a multi-objective optimization approach.
In Section 6 we present our conclusions and findings.

2. Problem description

The IRP under study consists of one supplier and several vendors as depicted in Figure 1. We assume that
the supplier has enough inventory to satisfy the demand of its customers. Customers demand are gradually
revealed over time, thus it is said to be dynamic and unknown to the decision maker at the time all the
decisions are made. The problem is defined over several periods, typically days, and without loss of gener-
ality we assume the demand becomes known at the end of the period. This demand can encompass a set of
products organized in, e.g., a pallet, and we will then treat a single commodity as it is done in other IRPs.
The supplier has a single capacitated vehicle to distribute the products and to satisfy the final demand of
the customers.

PLEASE EDIT TO FIGURE TO: Supplier, Retailers, Final customers, Information flow, Product flow
A solution to this problem should determine the periods in which each customer must be visited, how
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Table 1.: Metaheuristics used for IRP

Technical Use Who Description

Artificial
Neural
Networks

Demand forecasting Price
Forecasting To classify
units of inventory

Jaipuria and Mahapatra
(2014), Partovi and Anan-
darajan (2001)

Learning technique to
predict the behavior of a
variable interest

Genetic
Algo-
rithms

To search for good pa-
rameters for a function or
heuristic. Clustering re-
tails to replenish by each
of the vehicles available.
To search optimal routes
for replenishment retails.

Christiansen et al. (2011),
Cheng and Wang (2009),
Liu and Lee (2011)

To find good solutions in
large search spaces

Local
Search

Replenishment policy for
inserts and removal new
replenishment point into
a retailer’s schedule. Ad-
just the quantity to deliv-
ery to retailer’s. Exclusive
operators for solve special
cases.

Qin et al. (2014), Javid
and Azad (2010)

Neighborhood search
strategies is applied to
improve the initial so-
lution. To avoid search
cycling by systematically
preventing moves that
generate the solutions
previously visited in the
solution space.

Simulated
Annealing

To improve an initial
solution obtained from
other heuristics and
metaheuristics

Li et al. (2013), Liu and
Lin (2005), Sajjadi and
Cheraghi (2011)

To avoid premature solu-
tions which are not good
enough

Rollout
Algo-
rithms

To determine a shipping
strategy that minimizes
the expected total cost

Bertazzi et al. (2013) These algorithms start
with a heuristic policy
and try to improve on
that policy using on-line
learning and simulation

Branch
and Cut

To solution multiple prod-
ucts and multiple vehicles
in IRP instances. To de-
termine for each discrete
time instant the quantity
to ship to each retailer and
the vehicle route.

Coelho and Laporte
(2013), Archetti et al.
(2007)

These methods work by
solving a sequence of lin-
ear programming relax-
ations of the integer pro-
gramming problem.

Large
Neigh-
borhood
Search

To find good or near-
optimal solutions by re-
peatedly trying to im-
prove the current solution
by looking for a better
solution which is in the
neighbourhood of the cur-
rent solution

Coelho, Cordeau, and La-
porte (2012b)

They present a formu-
lation that allows trans-
shipments, either from the
supplier to customers or
between customers.
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Figure 1.: A simplified IRP with one supplier, n retailers, and a set of final customers representing the demand of the
retailers

much to deliver to each of them, and how to create vehicle routes that start at the supplier visit all customers
selected to receive a delivery in the period, and return to the supplier location. All capacities must be
respected, and stockouts are penalized in order to be avoided.

3. Mathematic formulation

In this section we present a mixed-integer linear programming formulation for the problem at hand. The
costs incurred are the total of inventory and transportation costs. Inventory costs include the inventory
holding and shortage penalties. A transportation cost is paid for each arc traversed by the vehicle. The
transportation cost is based on a symmetric cost matrix. Let n represent the number of retailers, each with
an initial inventory I0

i , and with Hix50 representing the historical demand of the previous 50 time periods.
The actual demand of customer i in period t is represented by Dt

i . Each customer has a maximum inventory
capacity Ci, and a unit holding cost hi is due. Shortages are penalized with z per unit. The planning horizon is
P periods long. A single vehicle with capacity Q is available at the depot. The depot has an initial inventory
I0
0 , and units in inventory incur a unit holding cost h0. A symmetric transportation cost ci j is known.

The variables used in our model are the following. Let It
0 represent the inventory level at the depot in

period t and It
i be the inventory level at retailer i at the end of period t. Let Qt

i be the quantity of product
delivered in period t to retailer i, Lt

i be the number of units of product demanded by retailer i but not
delivered at the end of period t, and Xi j be a binary variable indicating whether the arc going from node i
to node j is used by the vehicle.

The irp! (irp!) is defined with a graph G = (N,A), where N = {0, ..,n} is the node set and A = {(i, j) :
i, j ∈ N, i 6= j} is the arc set. Node 0 is the distributor and the remainder ones represent vendors and are
denoted by V = {1, ..,n}. The problem is defined over a finite time horizon H where each element is denoted
as t ∈ P = {1, ..., p}, and corresponds to one day.

At the end of each period t, the inventory level Ii for each vendor i is actualized. It is calculated based
on: a) the demand of the vendor Vi (dt

i ) in period t, b) The lost demand Lt
i in period t, c) the inventory level

at previous period It−1
i and d) the quantity of inventory qt

i that arrives in period t. Equation 1 explain how
these values are used to recalculate the inventory levels.

For replenishment decisions, at the beginning of the each period t, the decision maker knows the inventory
level Ii for each vendor Vi of the previous period t− 1. This variable is used to determine the quantity of
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inventory qt
i that will be shipped to each vendor Vi in the period t according with the policy of inventory

that is used.
A unit inventory holding cost h1 and hi is considered by the distributor and by vendor Vi, respectively, at

each time period t. If the demand of vendor Vi is higher than his inventory level, Ii, a certain demand for
the product is unfulfilled, Li, and a shortage penalty zi, proportional to the number of unsold product units
is considered. As a consequence, the inventory costs are recalculated for each time period according to this
rule.

It
i = It−1

i +qt
i−dt

i +Lt
i ∀i = 1, ...,n (1)

where hiIt
i represents inventory holding cost at each vendor and distributor by time period and ziLt

i repre-
sents the cost of penalty by stock-outs by time period.

The problem has two constraints that are the inventory holding capacity of each vendor Vi denoted as Ci
and the capacity of one only vehicle Q available for shipments. It is further assumed that the distributor has
enough inventory to meet all the demand during the planning horizon H.

The distribution process is based on a version of the vrp! (vrp!), the Capacitated VRP cvrp! (cvrp!). In
the cvrp!, the vehicle has a predefined capacity and it is related to a single central distributor. The vehicle is
able to perform one route per period, from the distributor to a subset of the vendors. One transportation cost
ci j and one binary variable is associated by each arc (i, j) ∈ A where each arc vendor is assigned a binary
x variable representing whether the arc has been chosen or not for replenishing, according to an inventory
policy. The objective is to minimize the total cost (i.e., a weighted function of the number of routes and
their length) to serve all the vendors. To calculate the transportation cost, it is assumed that the distance
between every two nodes is symmetric, that is, the distance from i to j is the same as j to i.

The integer programming formulation for the problem is as follows:

Objective Function:
min

Costt =
p

∑
t=1

n+1

∑
i=1

hiIt
i +

p

∑
t=1

n+1

∑
i=2

ziLt
i +

p

∑
t=1

n+1

∑
i=1

n+1

∑
j=1

ci jXi j ∀i < j (2)

Subject to:

n

∑
i=1

qt
i ≤ Q i ∈V (3)

It
i ≤Ct

i i ∈ N (4)

n+1

∑
i=1

n+1

∑
k=1

xik +
n+1

∑
j=1

n+1

∑
k=1

xk j = 2 k ∈ N∧ i < k∧ j > k (5)

∑
i, j∈S

xi j ≤ S−1 (S⊂V,3≤ S≤ n−3) (6)

Xi j ∈ {0,1} (7)

The objective function in equation 2 is to minimize the sum of the inventory and transportation costs.
Equation 3 and 4 are inventory constraints, where 3 is the vehicle capacity constraint and 4 is the maximum
allowable inventory level constraint. Equation 5 to Equation 7 are transportation constraints, where 5 is
a degree constraint, 6 is a subtour elimination constraints and 7 is a binary variable. This formulation
associates a binary variable xi j with each edge (i, j), equal to 1 if and only if the edge appears along the
tour.
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4. Solution Procedure

To obtain the solution to the problem and in order to reduce the complexity, it is possible to decompose the
irp! in different sub-problems. First is to select the best route to go from the distributor to a set of vendors.
This problem is known as the tsp! (tsp!), a classical combinatorial optimization problem. tsp! details may
be consulted in Rajesh Matai and Mittal (2010), For this work, we used 3 different variations of a genethic
algorithm ga!. Also the best solutions found so far by means of using the heuristic Lin-Kernighan and the
exact solution provided by Concorde were computed Applegate et al. (2003) and Applegate et al. (2006).
Concorde is the cutting-plane-based exact TSP solver (using the QSopt LP solver) and Lin-Kernighan is
an implementation of the Chained-Lin-Kernighan heuristic for the TSP. To transport the products, some
restrictions were added to the routes to be fulfilled by the vehicles, here is when this problem becomes
a vrp!. The vrp!, variants and features can be consulted in Toth and Vigo (2001). Additionally, when the
levels of consumption of clients and suppliers in order to maintain a continuous replacement are considered,
an irp! is generated. Using different inventory policies to replenish the vendors it is possible for the irp!
fulfill the three aims: i) establish the optimal inventory levels, ii) plan the volume and number of shipments
and iii) ensure that deliveries suit the requirements of each product.

According with this, our process to obtain a solution for any irp! instance has four steps in this approach.
In Figure 2, a simplified scheme of this process is shown.

Figure 2.: Solution procedure

In the first phase, the vendors who are going to be replenished are selected using an inventory policy. In
a second step the vehicle is loaded with the qi units of product to be shipped to the vendors. The vendors to
be attended are prioritized in case that the total load to be transported exceeds the capacity of the vehicle
(Q). This vendor selection process is performed for every time period t in the horizon time P. In a third
phase, the route to be used to visit vendors is calculated. Finally, in the fourth phase, the total costs involved
in the operation are calculated.

4.1 Selecting vendors to replenish

The inventory policy guides the optimization process. In order to show the impact of each policy in the cost
reduction of the system, different strategies are considered related to the cost of doing nothing, (not to re-
plenish the vendors despite of demand). Comparing the results of each strategy to the cost of doing nothing
give us the opportunity to obtain the level of reduction on the inventory costs because the transportation
costs will be null.

7 different inventory policies were tested and details are shown in the Table 2, These inventory policies
can be grouped together in five main different subgroups with 9, 1, 1, 7 and 1 policies respectively. All these
policies are implemented only with slight modifications that arise in case the vehicle capacity is exceeded
for the last vendor to be attended. An additional formulations of the problem have been solved in which
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one day advanced demand information have been used to set the value of qi in fixed quantity policy and the
value of s in the (s,S) policy. These two solutions were used for benchmarking. For these two options, the
values will be denoted in the same way as it was denoted the demand for a given period: dt

i , the difference
is that the value is known at the beginning of the day instead to be known at the end. In Table 2 all these
policies are summarized.

Table 2.: Policies used to serve the vendors

Group Variable Policy Decision

1 qit = θS ml! (ml!) and ou! (ou!) ML, if It
i +qi <Ct

i
ou!, otherwise

2 qit =Ct
i − It

i ou! ou!, if Ct
i − Ii > 0

0, otherwise

3 qit = Dt
i ml! and ou! ML, if It

i +Qi <Ct
i

ou!, otherwise

4 s = αS where α = 0.25,0.50,0.75 (s,S)
qit = S− It

i , if It
i < s

0, otherwise
s = µ{Hi} (s,S)
s = µ{Hi}+σ{Hi}∗ zβ where β = 0.05,0.02,0.01 (s,S)

5 s = Dt
i (s,S) qit = S− It

i , if It
i < s

0, otherwise

A deeper explanation of the policies at each group can be found next:

(1) The decision maker chooses that the distributor ships always a fq! (fq!). This policy is called ml!,
and the distributor allows to freely choose the quantity to deliver to the vendors, limited only by the
inventory capacity of them. All vendors are replenished with a fq! by each period of time t. The fq!
are defined for testing as fractions of maximum allowable inventory level for vendor as θS where
θ = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. It is important to note that in case of θ = 0, nothing
is shipped and in case of θ = 1 this policy becomes in the following policy ou!.

(2) The decision maker chooses that the distributor ships a quantity q for each vendor depending on the
difference between the maximum allowable and the current inventory level. This policy ensures that
whenever a vendor is visited, the quantity delivered is that to fill its inventory capacity. In connection
with the above policy, in case that the Ii inventory level plus qi quantity fixed is greater than Ci, an
ou! for each vendor is applied.

(3) The decision maker knows one day advanced demand information, in this hypothetical case the q
values is equal to Dt

i .
(4) The decision maker chooses to implement an (s,S) inventory policy, which involves the parameters

s and S. The value of S is assumed to be a fixed value that corresponds to the maximum allowable
inventory level for each vendor, the parameter s is used to determine when to replenish. This (s,S)
policy consists in ordering a variable quantity equal to the difference between a value S and the
current inventory position Ii as soon as the inventory level is less than a value s. In order to test this
policy, several values for s are considered and described below:

(a) The value of the parameter s is calculated for each vendor as one fraction of the maximum
inventory capacity as s = αS where α = 0.25,0.50,0.75.

(b) The value of the parameter s is calculated for each vendor using the mean over its 50 historical
data, so si = µ{H}i

(c) The value of the parameter s is calculated for each vendor using the mean plus standard devia-
tion of 50 historical data, so si = µ{H}i + zβ ∗σ{H}i where β is the probability of a stock-out
and zβ is the order quantile of the demand distribution. 1−β is usually referred to as the service
level. Three different service levels of 95%, 98% and 99% were tested.

(5) The value of the parameter s is equal to the one step ahead demand for the vendor Dt
i .
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4.2 Loading the vehicle

For loading the vehicle, a version of the vrp! is used, the cvrp!. One vehicle is used with limited capacity
and based on a single central distributor with multiple geographical dispersed vendors. The objective is to
minimize the total transportation cost in each period t of the time horizon P to serve all the vendors.

Once the vendors have been chosen by means of the inventory policy, the vehicle is loaded to its max-
imum capacity Q. According to Toth and Vigo (2001), sometimes it is not possible to fully satisfy the
demand of each customer. For these causes, a subset of the customers can be left unserved or the quantities
to be shipped reduced . To deal with these situations, different priorities, or penalties associated with partial
or total lack of service, can be assigned to the customers. In this work, three strategies were analyzed:a)
prioritize vendors requiring more products bof! (bof!), b)Prioritize vendors with less storage capacity and
three lsf! (lsf!) c) subtract the same amount to all orders until all vendors can be served req! (req!). For
the first and second strategies, it is important to notice that the last vendor selected will only be replenished
with the remaining capacity of the vehicle.

4.3 Calculating the near-optimal routes

In this subsection we explain the procedure for design the three ga!, whose variations will be in the selection
process and details of Lin-Kernighan and Corcorde implementation.

A ga! (ga!) is used to calculate a near-optimal route visiting all the selected vendors to ship. The results
are contrasted with the results obtained using the Concorde algorithm Applegate et al. (2006), Applegate
et al. (2003) and Coelho, Cordeau, and Laporte (2012a). A cost for the routes is used as a fitness measure.
The transportation costs have been determined by the euclidean distance between the nodes considered
along the route.

For ga!, each gene of the chromosome is a number which identifies the distributor or the vendor. A gene
with the number 1 identifies the distributor, others gene values identify the vendors and the order of the
genes is the order in which the vendors will be served. The population, at the beginning, will be random.

The GA uses four biological operators: elite, selection, crossover and mutation. Using the operator of
elite, the 20% percent of the individuals of the population with the best fitness pass directly into to new
population. The remaining 80% pass through crossover and mutation operations.

Once some of the individuals were selected for crossover, with a probability of 50% percent, they will
be using three different selection methods (rw! (rw!), bt! (bt!) and bd! (bd!)) to pick up the parents to be
used for crossover.

A uniform crossover is used in order to generate two off-springs, each offspring has the 50% percent of
characteristics of the father and the other 50% percent of the mother.

Finally, a mutation operator with probability of 50% is applied to the initial population were four different
types of mutation were used: flip, insert, swap and scramble.

The final population will be formed by the following combination of operators: 20% by elite opera-
tor, 20% by selection operator, 20% by selection and mutation operators, 20% by selection and crossover
operators and 20% by selection, crossover and mutation operations.

A simple stopping criterion is implemented: the algorithm stops if the best fitness for each generation
remains constant a given number of generations. The number of generations are chosen to follow an expo-
nential function on the number of vendors to attend. The output value is denoted by ncp and if the stopping
criteria is not fullfilled , the evolution process continues. Table 3 shows constant numbers determining the
stopping criteria in relation with the complexity of the problem.

Table 3.: Simple stopping criterion

Instance ncp

< 5 1
< 10 20
< 50 70

< 100 200
Otherwise 550
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4.4 Inventory Replenishment and Total Costs Calculation

The total costs are calculated at the end of every period and the results of the variable of interest are
obtained.

5. Outcomes

The instances used to test the system are denoted as follows: a name irp that mean ”Inventory Routing
Problem”, n number of vendors , p number of periods and 1 the file number that specifies the specific
instance used for this trials. For example, irp−5−20−1, is a instance with 5 vendors and 20 periods and
the specific file used for this trials is the one denoted by the number 1. The testing data, as previously stated,
were the instances proposed by Coelho, Cordeau, and Laporte (2012a), in the specific case of standard
instances.

Each method was tested for given solution to 10 different instances. Each instance was tested with 7
inventory policies and for each one of 3 strategies for select the clients. As a result of the process, 57
possible solutions were generated for each instance in order to compare the reductions in the cost in the
sc! (sc!). These are the details about the resources used in this work. All computations were performed on
a personal computer with Intel Core i3-2370M running Matlab R2009b on Windows 8.1 operating system.
The processor running at 2,40GHz and with up to 8GB of RAM memory.

5.1 The objective of reducing the total cost is analyzed

In order to minimize the total cost of the process of inventory and distribution, the two situations described
below were analyzed. The first one used the groups 1, 2 and 3 of the inventory policies and the second one
the remaining ones.

5.1.1 The distributor sends a q quantity

In the hypothetical case that the decision maker chooses that the distributor does not replenish any vendors
and ”wait and see what happens”, the total cost is the sum of inventory holding cost plus the cost by
stockouts. The total cost for the system was summarized in Table 4. In this table, each instance for testing
was classified in small, medium and large according to the number of vendors to attend. The total cost of the
system were separated in inventory costs and transportation costs. Finally, in the last column, the stockouts
costs were displayed.

Table 4.: Inventory and transportation cost in the case: ”the distributor does not replenish any vendors”

Type Instance Instance Cost Inv Cost Trans Lost Ven

Small IRP-5-20-1 45886,37 0,00 45588,00
Small IRP-10-20-1 91507,07 0,00 91020,00
Small IRP-15-20-1 154650,72 0,00 153808,00
Small IRP-25-20-1 276301,55 0,00 275068,00
Medium IRP-50-10-1 509891,8 0,00 506978
Medium IRP-75-10-1 826527,12 0,00 822502
Medium IRP-100-20-1 1174447,09 0,00 1169380
Large IRP-125-20-1 1356658,42 0,00 1349788
Large IRP-150-20-1 1616019,46 0,00 1608706
Large IRP-200-20-1 2161450,02 0,00 2151808

The reduction of total costs begins when the decision maker chooses that the distributor replenishing the
vendors by means of fq! by period, then, several θ values in policie fq!, were tested to analyze the cost
reduction. For every vendor, there is a point in the cost curve over time in which to send higher quantities
than a certain value has no any effect. That is due that each vendor has limited inventory capacity, so the
condition is to replenish qi = θS if It

i +θS <Ci or otherwise, qi =C− It
i .

In case that decision maker chooses that the distributor replenishes the vendors by means of variable
quantities qi. As each t period the inventory is reviewed, at vendor Vi is sending a qi quantity equal to
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Figure 3.: Total cost saving respect to q = 0 and participation of the lost demand respect to total cost for inventory
policies in the groups 1, 2 and 3 for small, medium and large instances

difference between the maximum inventory allowed and its current inventory level. This policy is ou! and
in this case is related with the maximum inventory level allowed.

In the hypothetical case that decision maker knows one day ad! (ad!) information, he decides replenish
each vendor Vi with the real value of the demand qt

i = Dt
i per period t.

The advantage ot testing several options is that a curve of cost can be drawn and a tendency could be
observed in the results. Thus, the costs were reduced until certain value of qi was reached and next, the
costs began to stabilize. The policies were compared and the trend of each method in reducing the costs
displayed. Two graphics were obtained. Figure, 3 shows the total cost saving respect to q = 0 on the left
part, where from q = 0.5S to send higher quantities has no effect. In the same sense, the right part of the
figure, shows the participation of the lost demand respect to the total cost, where from q = 0.6 no losses are
generated.

5.1.2 The distributor sends products according to the (s,S) policy

With the assumption that the parameter S, the size of the maximum inventory level per vendor Vi is known
and fixed to a predefined value, the parameter s was used for optimization and three different policies used
to configure this parameter. The first option defines the value s as quarter, half and three quarter parts of
the value of S, reducing this way the probably of stock-out to have safety stock. As second option, and
using historical data, the value s is defined by means of the mean of 50 historical demand data. Finally,
the parameter s was configured according to a service level. Thus, the standard deviation is added to the
mean according to the desired service level. In this chapter, three service levels were proposed and these
are: 95%, 98% and 99%. These service levels are compared with the previous policies.

In the hypothetical case that decision maker knows one day advanced demand information, he decides
replenish each vendor Vi configuring the s parameter with real value of the demand s = Dt

i per period t, so
guarantee at least the demand by period in attend by units storage in inventory.

As before, two graphics were obtained. The Figure4 shows, on the left part, the percentages of saving cost
for above of the 75% with respect to q = 0. Medium and large instances reported greater savings respect
to small instances. The right part of the Figure 4 shows the participation of the lost demand respect to total
cost where from the policy s = Dt

i very low or no losses are generated.

5.2 An approach to the moo! analysis

A multi-objective optimization aims at finding Pareto-optimal set or Pareto front consisting of several solu-
tions balancing conflicting objectives. Thus, a multi-objective optimization problem deals with simultane-
ous optimization of two or more objectives which are conflicting. They are conflicting because improvement
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Figure 4.: Total cost saving respect to q = 0 for different policies and participation of the lost demand respect to total
cost for inventory policies in groups 4 and 5 for the small, medium and large instances

in any objective is not possible without degradation in other objectives.

Figure 5.: Pareto frontier points for small instances with annotations for the total costs, tsp! heuristic method, inventory
strategy and inventory policy in groups 1, 2 and 3

This is a case of the objective of the minimization of transportation cost and minimization of the inven-
tory cost, hence there cannot be a single optimum solution which simultaneously optimizes all objectives.
The resulting outcome of a moo! (moo!) is a set of optimal solutions with a varying degree of objective
values. This set of solutions is called the non-dominated set or Pareto optimal set. Because minimization of
transportation cost and minimization of the inventory cost cannot be achieved at the same time, there exists
a trade-off between them. This type of system clearly represents a multi-objective optimization situation
which is a procedure looking for a compromise policy, based on a number of options. Hence the Pareto set
solutions and their corresponding decision variables should be provided, from which the decision-maker
can select a solution to satisfy the industrial needs Shankar et al. (2013).

According with this, solutions found by the procedure were drawn as points in a plane, the Y axis rep-
resenting the transportation cost and the X axis representing the inventory cost and the dominant solutions
were searched. As before, the two situations described below were analyzed. The first one used the groups
1, 2 and 3 of the inventory policies and the second one the remaining. Each situation is analyzed for every
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Figure 6.: Pareto frontier points for medium and large instances respectively with annotations for the total costs, tsp!
heuristic method, inventory strategy and inventory policy in groups 1, 2 and 3

type of instances, thus 6 graphics are obtained.
Each figure represents the Pareto frontiers points with annotations for the total cost, TSP heuristic, inven-

tory strategy and inventory policy. In these instances, medium and large, the results were compared with
Linkern and Concord solution for the tsp!. Different types of dominant solutions are differentiated by color.
The black color correspond with the solutions proposed in this paper.

In Figure 5, three types of dominant solutions fq!, ou! and ad! are found in the Pareto frontier. Although
ad! solution is good in minimizing inventory costs, has a high cost in transportation. In contrast, fq! and
ou! have a low cost in transportation but higher cost in inventory. It is important to note that these policies
do not generate costs on lost demand.

In Figure 6, six types of dominant solutions are presented. The solutions obtained by tsp! can be improved
in order to reduce the difference with the hypothetical case of ad!. Using Concorde and Linkern the solution
are improved and show the same behavior. The results are influenced by the method of solutions. For
transportation costs, the method of solution of the tsp! is what makes the difference.

Figure 7.: Pareto frontier points for small instances with annotations for the total costs, tsp! heuristic method used,
inventory strategy and inventory policy used for groups 4 and 5

In Figure 7, two types of dominant solutions (s,S) policies and ad! for small instances are presented.
Although the ad! solutions dominant some of the solutions; those located in the top of the figure, the
solutions both rw! and bt! client selecting of the (s,S) policy where s=mean and the (s,S) policy where s=
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0.25S are dominant solutions. However these solutions generate higher lost demand cost than the policies
(s,S) policy where s = 0.50S or policy (s,S) where s = µ{Hi}+σ{Hi}∗ z0.05.

Figure 8.: Pareto frontier points for medium and large instances with annotations for the total costs, tsp! heuristic
method, inventory strategy and inventory policy in groups 4 and 5

In Figure, 8 four types of dominant solutions (s,S) policies and ad! for medium and large instances are
presented. As the previous figure, although the ad! solutions dominant some of the solutions, those located
in the top part of the figure, the solutions both rw! and bt! of the (s,S) policy where s = mean and the (s,S)
policy where s = 0.25S. However these solutions generate higher lost demand cost than the obtained with
the policies (s,S) policy where s = 0.50S or policy (s,S) where s = µ{Hi}+σ{Hi}∗ z0.05. It is important
to note that solution obtained by tsp! are near to the solutions obtained with Concorde and Linkern.

6. Conclusions

The dsirp! (dsirp!) brings the opportunity to use historical demand data forecasting to obtain better solu-
tions, substantially improving the perform of the sc!, as the results obtained for the ideal situation simulated
for the (s,S) strategy show. Forecasting procedures and probabilistic models could be used to predict and
model the demand and improve the performance of the system, bringing it closer, to the best solution. This
work was focused on testing this type of systems under uncertainty and compare genetic algorithm oper-
ators and strategies of clients selection methods. These test were extended to the Concorde and Linkern
software, and also to solutions using advanced information,namely, ideal solutions. The results of the tests
showed that there is room for improvement for using forecasting methods along all the instance types,
regardless the complexity(small, medium or large instances, up to 200 vendors). Regarding the vendor se-
lection methods explored, the first important point is that the strategy bof! is better than the others two
strategies for the all instances in the policies fq!, ou! and ad!. In the other policies not only the bof!, but
also lsf! is a good option. However, It is important to not that the strategy req! dominated in some solutions.
In relation to the other strategy analyzed, related to the selection method for the genetic algorithm solving
TSP, the binary tournament was most of the times the winner.

The model provided in this work analyzes sc! efficiency in terms of inventory and transportation costs
according to certain inventory management strategies but is not a true bi-objective system. To get that, it
will be necessary to implement a solution in which the representation for the heuristic method considers
not only transportation but also inventory management options, considering higher levels of integration for
inventory management and transportation. Furthermore, to increase flexibility in decision making, inventory
costs and transportation costs criteria have to be analyzed simultaneously in an moo! approach.
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