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Abstract skrl is an open-source modular library for

reinforcement learning written in Python and designed

with a focus on readability, simplicity, and transparency

of algorithm implementations. Apart from supporting

environments that use the traditional OpenAI Gym in-

terface, it allows loading, configuring, and operating

NVIDIA Isaac Gym environments, enabling the parallel

training of several agents with adjustable scopes, which

may or may not share resources, in the same execution.

The library’s documentation can be found at https://

skrl.readthedocs.io and its source code is available

on GitHub at https://github.com/Toni-SM/skrl.

Keywords reinforcement learning · library · open

source software

1 Introduction

As a Machine Learning subfield, Reinforcement Learn-

ing (RL) is a paradigm to learn, improve and generalize

the decision-making capabilities of autonomous agents.

RL allows agents to learn through interaction with their

environments and, ideally, generalize the learned behav-

ior to new, unseen scenarios.

As shown in Figure 1, there has been an increase in

the development of RL libraries for research and appli-

cations in recent years. This explains well the increase

in popularity in the research community from break-

throughs in RL around 2014-2015, but also the boost

in successful real-world applications and access to effi-

cient simulation tools and deep learning frameworks.
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Mondragon Unibertsitatea. Loramendi 4., Arrasate, Spain
E-mail: aserrano@mondragon.edu

Nestor Arana-Arexolaleiba
Mondragon Unibertsitatea & Aalborg University, Denmark

Dimitrios Chrysostomou
Aalborg University, Denmark

Simon Bøgh
Aalborg University, Denmark

Fig. 1 RL libraries’ lifecycle. The lifecycle is computed using
the repository’s creation date and the last commit message
retrieved from GitHub.

Three fundamental milestones mark the rise of RL

in our times. 1) The development of new learning al-

gorithms, especially those that use artificial neural net-

works as approximation functions (Deep RL). 2) The

development of Gym by OpenAI (2016) exposes a com-

mon interface for designing and standardizing environ-

ments [1]. 3) The development of benchmarking sce-

narios in areas such as video games and gaming, au-

tonomous navigation, and robotics. Those benchmarks

have been widely accepted by the scientific community

allowing to compare results between different imple-

mentations.

Particularly in robotics and autonomous systems,

physics-based simulators play an essential role. Simula-
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tion enables better time management, cost reduction,

and safety in safety-critical and/or complex settings,

especially during exploration [2].

MuJoCo [3] and PyBullet [4] are physics engines

that facilitate research and development in e.g. robotics.

They provide fast and accurate simulation for rigid multi-

body dynamics and control. Such simulation tools make

it possible to scale up training for advanced contact-rich

environments. OpenAI Gym [1] is an open source inter-

face to RL tasks. The gym library provides a suite of

tasks for getting started with RL. Besides, it defines

a standard interface between the agent and the envi-

ronment. It is composed of actions (to be sent to the

environment), and observation, reward, and whether an

episode is done (received from the environment). This

interface definition has become standard in RL research

and development.

With the release of Isaac Gym, a GPU-based physics

simulation platform from NVIDIA, a new generation of

robotic simulation with tens of thousands of simultane-

ous environments on a single GPU has emerged [5]. This

allows researchers to easily run massive experiments us-

ing an OpenAI Gym-like API by offloading both physics

simulation and neural network training onto the GPU.

While Isaac Gym provides some examples for model-

ing the environment, a streamlined interface towards

implementing RL algorithms in a flexible and modular

way is needed.

In this work, we present skrl, an RL library de-

signed with the following principles in mind: 1) mod-

ularity, leaving room for each component to be inter-

changeable and making it possible to create more com-

plex systems. 2) readability, simplicity, and transparency

of the algorithm implementations, which reduces the

learning curve with an educational approach. 3) sup-

port for different interfaces and 4) parallel learning on

Isaac Gym.

The rest of this document is organized as follows.

Related works are analyzed in section 2. The descrip-

tion of the implementation and features are presented

in section 3. An evaluation and comparison of experi-

ments as a performance measure are discussed in sec-

tion 4 while we conclude the paper in section 5.

2 Related work

Although there are significant differences among all the

RL libraries shown in Figure 1, some of them share

common features with the proposed library.

Modularity is a desirable feature for the scalabil-

ity and flexibility of a system and the reusability of

its constituent components. ChainerRL [6], a library

built on top of Chainer, and PyTorchRL [7] are de-

veloped around the idea of agent composability. They

provide a set of building blocks for the development of

new agents. rlpyt [8], Tonic [9], and MushroomRL [10]

also offer building blocks as configurable modules, but

their designs are based on a hierarchy of inheritances

involving many files and lack consistent naming in var-

ious implementations.

The code’s readability, simplicity and transparency

are indispensable for understanding implementations

and using existing code or APIs to develop new RL

methods; even more when small implementation details

can significantly affect the performance of the algo-

rithms [11]. Many libraries encapsulate great features

deep in their coding, leading to difficulties in repro-

ducibility such as RLlib [12] or RLzoo [13]. Neverthe-

less, there are efforts in favor of readability, simplicity

and transparency.

Spinning Up [14], from OpenAI, was implemented

with an educational approach and detailed documenta-

tion. Stable Baselines3 [15] offers readability and sim-

plicity over modularity, focusing on model-free, single-

agent algorithms. CleanRL [16] includes all the details

of the algorithm and environment in a single file, ar-

guing that it helps researchers understand the imple-

mentation and prototype new features. Although such

compact implementation facilitates the setup of simple

applications, library maintenance and addition of new

features remain challenging.

Almost all RL libraries support the OpenAI Gym

interface for learning environments. However, the same

cannot be said for the Isaac Gym environments. As

mentioned in the introduction, these are relatively re-

cent and have a slightly different interface than the for-

mer.

In Isaac Gym’s latest release (preview 3), RL Games

[17] is presented as the default library to run the ex-

ample environments. ElegantRl [18] offers support for

Isaac Gym environments. However, it only allows work-

ing with the previous release (preview 2), since it ex-

plicitly includes, within its source code, the original files

of that preview.

Parallel learning attempts to increase the variety of

data collection and/or the stability of the learning pro-

cess. RLlib makes copies of the environments to scale

experience collection for one worker or many workers on

a single process or multiple processes on top of Ray. Al-

though, its implementation, designed to provide a high-

level API, makes it difficult to understand the code

and perform custom experimentation. ElegantRl ex-

ploits the parallelism of RL algorithms at multiple lev-

els. However, as mentioned above, it only supports the

Isaac Gym 2 preview, and its parallelism at the worker



skrl: Modular and Flexible Library for Reinforcement Learning 3

and learner level (generating batches of actions and re-

turning a transition batch) for vectorized environments

only supports one agent.

3 Implementation and features

skrl is an open-source modular library for RL writ-

ten in Python (using PyTorch [19]) and designed with

a focus on readability, simplicity, and transparency of

algorithm implementation. In addition to supporting

the Gym interface, it allows loading and configuring

NVIDIA Isaac Gym environments, enabling agents’ si-

multaneous training by scopes (subsets of environments

among all available environments), which may or may

not share resources, in the same run. The following sub-

sections describe its implementation and its main fea-

tures.

3.1 Structure and design concepts

The file system structure that conforms the library is

designed to group the components, according to their

functionality, without mixing them. This design, fo-

cused on modularity, allows a quick understanding and

use of the components by the researchers.

As shown in Figure 2, the library is organized into

six components and a utility folder. The current imple-

mentation of the components is done using PyTorch [19].

However, the design of the file system allows for fu-

ture implementations using other deep learning libraries

such as TensorFlow [20] or Chainer [21].

Fig. 2 Library file system structure.

Except for the environments (envs), all other com-

ponents inherit properties and methods from one (and

only one) base class implemented in the base.py files,

respectively. Apart from providing a uniform interface,

the base classes implement common functionalities (which

are not tied to the implementation details of the algo-

rithms), such as logging to TensorBoard [20] or saving

and loading files to and from persistent storage. Focused

on readability, simplicity, and transparency, each im-

plementation within the same component is done stan-

dalone, even when two or more implementations may

contain code in common.

The components that are part of skrl are as follows:

agents: Definition of the RL methods that compute

an optimal policy. The learning and optimization

algorithm is implemented within a function under

the same name ( update) in all cases. The following

state-of-the-art methods are currently included as

of this writing: DQN [22], DDQN [23], DDPG [24],

PPO [25], TD3 [26] and SAC [27].

envs: Definition of the Isaac Gym environment loaders

(preview 2 and preview 3) and the OpenAI Gym and

Isaac Gym environment wrappers.

memories: Definition of generic memory. The memo-

ries are not bound to any agent (agents must cre-

ate the internal tensors according to their specifi-

cations) and the implementations can be used as

rollout buffer or experience replay memory, for ex-

ample.

trainers: Definition of the classes responsible for man-

aging the agent’s training and interaction with the

environment. These definitions also allow the execu-

tion of parallel synchronous learning in Isaac Gym.

models: Definition of helpers for building function ap-

proximators using artificial neural networks. In con-

trast to other libraries, and to put the RL system’s

control in the researchers’ hands, skrl does not pro-

vide policy definitions (this practice typically hides

and reduces the system’s flexibility, forcing devel-

opers to deeply inspect the code to make changes).

Helper classes are provided to create discrete and

continuous (stochastic or deterministic) policies within

this component. In this case, the researcher is only

concerned with the definition of artificial neural net-

works.

noises: Definition of noises used by deterministic agents

for exploration.

utils: Definition of utilities such as the visualization of

the configuration of Isaac Gym environments, assets

and actors, for example.

3.2 Support for different environment interfaces

In order to work with a common interface and logic

and support interoperability between implementations,

the trainers operate on wrapped environments. These

wrappers allow experiments to be conducted in OpenAI

Gym-like environments and Isaac Sim environments. In
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addition, this library enables the loading and configu-

ration of Isaac Gym environments by calling a single

function. This function can handle the settings from

command line arguments or from its parameters, as a

python dictionary.

3.3 Parallel learning by scopes in Isaac Gym

Isaac Gym simulates thousands of environments simul-

taneously by offering an API based on the vectorization

of observations and actions. This library takes advan-

tage of such parallelization by enabling the training of

multiple agents (of the same or different classes) which

may or may not share resources.

Each agent can define a working scope: a set of sub-

environments among all available environments. Then,

at each time step, the trainer collects the actions of each

agent in their respective scopes and builds a single vec-

tor of actions that is passed to the physical simulation

pipeline. After simulating the physics, the current state

of observations, rewards and completed episodes are

partitioned and passed to each agent, according to its

scope, to execute the learning and optimization stage.

This setup makes it possible to compare, in a sin-

gle run, the performance of several agents, hyperpa-

rameters or other components. Nevertheless, given this

library’s modular and flexible design, it also enables

sharing resources between the different agents (such as

the memory, for example) that can help improve the

learning process.

3.4 Documentation

The documentation is written using reStructuredText

and hosted online by Read the Docs under the url https:

//skrl.readthedocs.io. Apart from the library in-

stallation steps and API details (classes, functions, pa-

rameters and return values, etc.), snippets are also in-

cluded to guide the development of new components

or algorithms. In addition, a detailed mathematical de-

scription of the implementation of the RL agents is pro-

vided. Examples of use cases are included with their re-

spective scripts and description of functionalities such

as tracking and visualizing metrics.

4 Evaluation

A set of experiments1 have been performed in order to

evaluate and compare the implementations of the al-

1 Details and codes for the experiments described in this
section, or other experiments, can be found on the documen-
tation web page.

gorithms with other RL libraries, and to exemplify the

capability of working with OpenAI Gym based envi-

ronments and Isaac Gym environments (in its last two

versions) as shown in the Figure 3. For all case families,

the same hyperparameter sets were used as far as the

implementations of the involved RL libraries allowed.

Fig. 3 Evaluation environments. a) Inverted pendulum
(Pendulum-v0): OpenAI Gym classic control environment. b)
Cartpole and c) Ant, Isaac Gym environments.

The evaluations of the OpenAI Gym scenarios were

performed in a docker container on a computer with a

2.20GHz Intel Xeon Silver 4114 CPU, 126GB of RAM

and a NVIDIA RTX 2080Ti GPU. The Isaac Gym sce-

nario evaluations (preview 2 and 3) were performed on

a workstation with a 3.00GHz Intel Xeon W-2295 CPU,

126GB of RAM and a NVIDIA RTX 6000 GPU.

4.1 Learning in an environment with the OpenAI

Gym interface

Figure 4 shows the mean total reward and its standard

deviation for the DDPG, TD3 and SAC agents of the

skrl (ours), stable-baselines3 and RLlib libraries for the

inverted pendulum environment.

Although the different agents of the involved libraries

have similar behavior in all cases, there are differences

in training times. The execution of the task yielded

comparable mean times (timesteps per second) for stable-

baselines3 (DDPG: 140, TD3: 145, SAC: 77) and our

library (DDPG: 135, TD3: 145, SAC: 70). The train-

ing times for RLlib, configured with a single worker,

were three times slower than the results for the other

libraries (DDPG: 44, TD3: 39, SAC: 22).

https://skrl.readthedocs.io
https://skrl.readthedocs.io
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Fig. 4 Comparison of the total reward (mean and standard
deviation) during training for the inverted pendulum (Ope-
nAI Gym).

4.2 Learning in Isaac Gym environments

Figure 5 shows the mean total reward and its standard

deviation for the PPO agents of the skrl (ours) and

rl pytorch (a small library included with the distribu-

tion of Isaac Gym preview 2) libraries for Cartpole and

Ant environments. In this case, our library was evalu-

ated in both versions, the previews 2 and 3.

The libraries achieved comparative performance based

on total reward and training time in all cases. The Cart-

pole averaged 260 timesteps per second for 500 environ-

ments, while the Ant averaged 45 timesteps per second

for 1024 environments.

4.3 Parallel learning by scopes in Isaac Gym

Figure 6 illustrates an RL configuration in which three

agents are trained in parallel by scopes. Each agent

only interacts with a specific number of environments

(DDPG is controlling 170 environments, TD3 is control-

ling 170 environments, SAC is controlling 172 environ-

ments) out of the entire set of available environments

(512 environments). For this configuration, Figure 7

shows the mean total reward and its standard devia-

tion for two scenarios: parallel training without mem-

ory sharing and parallel training with memory sharing

between the three agents.

Fig. 5 Comparison of the total reward (mean and standard
deviation) during training for the Cartpole and Ant environ-
ments (Isaac Gym preview 2 and 3).

Fig. 6 Example of a parallel learning configuration in an
Isaac Sim environment. The number of environments is di-
vided according to the the agents’ scope.

Even though the experiment was performed with a

default and unoptimized hyperparameter set2, there is a

performance difference between using memory sharing

and not. In the latter, a better and balanced perfor-

mance is achieved.

5 Conclusion

skrl is a library for reinforcement learning that allows

researchers to compose their experiments using a mod-

2 Details and codes for both scenarios can be found on the
documentation web page, in the section Examples: https:

//skrl.readthedocs.io/en/latest/intro/examples.html

https://skrl.readthedocs.io/en/latest/intro/examples.html
https://skrl.readthedocs.io/en/latest/intro/examples.html
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Fig. 7 Comparison of the total reward (mean and stan-
dard deviation) during training for the Cartpole environment
(Isaac Gym preview 3). Top chart: standalone agents. Bottom
chart: agents training in parallel sharing memory.

ular API. Its development has focused on readability,

simplicity, and transparency of algorithm implementa-

tions, making it possible to reduce the learning curve’s

complexity and adaptations to the code. In addition, it

supports training in environments with OpenAI Gym

and Isaac Gym interfaces.

Future work will include the implementation of other

algorithms and components.
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