

biblioteka@mondragon.edu

This is an Accepted Manuscript version of the following article, accepted for
publication in:

A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui and M. Arratibel, "Using
Machine Learning to Build Test Oracles: an Industrial Case Study on Elevators
Dispatching Algorithms," 2021 IEEE/ACM International Conference on Automation of
Software Test (AST), 2021, pp. 30-39, doi: 10.1109/AST52587.2021.00012.

DOI: https://doi.org/10.1109/AST52587.2021.00012

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Using Machine Learning to Build Test Oracles: an
Industrial Case Study on Elevators Dispatching

Algorithms
Aitor Arrieta∗, Jon Ayerdi∗, Miren Illarramendi∗, Aitor Agirre†, Goiuria Sagardui∗ and Maite Arratibel ‡

Mondragon Unibertsitatea∗, Ikerlan †, Orona ‡
∗{aarrieta, jayerdi, millarramendi,gsagardui}@mondragon.edu, †aagirre@ikerlan.es, ‡marratibel@orona-group.com

Abstract—The software of elevators requires maintenance over
several years to deal with new functionality, correction of bugs or
legislation changes. To automatically validate this software, test
oracles are necessary. A typical approach in industry is to use
regression oracles. These oracles have to execute the test input
both, in the software version under test and in a previous software
version. This practice has several issues when using simulation to
test elevators dispatching algorithms at system level. These issues
include a long test execution time and the impossibility of re-using
test oracles both at different test levels and in operation. To deal
with these issues, we propose DARIO, a test oracle that relies on
regression learning algorithms to predict the Qualify of Service
of the system. The regression learning algorithms of this oracle
are trained by using data from previously tested versions. An
empirical evaluation with an industrial case study demonstrates
the feasibility of using our approach in practice. A total of five
regression learning algorithms were validated, showing that the
regression tree algorithm performed best. For the regression tree
algorithm, the accuracy when predicting verdicts by DARIO
ranged between 79 to 87%.

Index Terms—Test Oracle, Regression Testing, Machine-
Learning

I. INTRODUCTION

Elevators are complex Cyber-Physical Systems (CPSs) that
must be validated at different test levels. Their software has a
long life-cycle, requiring maintenance over several years. This
software maintenance deals with (1) new functional and non-
functional requirements, (2) correction of bugs, (3) legislative
changes and (4) hardware obsolescence and system degrada-
tion [1]. In a system of elevators, one critical subsystem is its
traffic master, which is in charge of managing the passengers’
flow in a building. It is composed of several software modules,
such as the dispatching algorithm, which is the component in
charge of deciding which elevator must attend each passenger
by considering several aspects (e.g., estimation of the waiting
time of each passenger or estimated time required to arrive
to destination). New generations of these algorithms are also
starting to consider additional aspects, such as energy con-
sumption. The algorithms also include certain functionalities
based on the building, such as controlling access to disable
specific floors to unauthorized passengers or special calls for
handicapped persons (e.g., by assigning additional space in the
elevator or assigning them the closest elevator). Orona, one of
the leading elevator companies in Europe, has a large suite of

dispatching algorithms that are in constant maintenance and
evolution to solve different customers’ demands.

When changes are performed in these algorithms, Orona
has a well established systematic verification and validation
process at different test levels (Software-in-the-Loop (SiL),
Hardware-in-the-Loop (HiL) and Operation). At SiL and HiL,
besides unit tests, full-day passenger tests are carried out,
which have as objective to verify the Quality of Service
(QoS) of the dispatching algorithms (e.g., Average Waiting
Time). To determine whether the quality of an algorithm is
satisfactory or not, a regression test oracle is used. Specifically,
the same traffic profile (i.e., test input) is executed in a previous
version of the dispatching algorithm, and compared with the
dispatching algorithm version under test. If the QoS is better
or similar, the test is catalogued as PASS. Conversely, if the
QoS is not good enough, the test is catalogued as FAIL.

This regression test oracle has two main problems. Firstly,
the test needs to be executed both in the algorithm under
test as well as in a previous version of the algorithm. This
can be time-consuming as the execution is performed using
simulation-based testing at system level and the test inputs
usually simulate full-day passenger traffic profiles. This prob-
lem is exacerbated at the HiL test level, where the simulation
is performed in real-time, and thus, in order to simulate a full-
day traffic profile, two full-days are required (i.e., one full-day
for the new software version under test and another one for the
previous software version). The second problem involves that
the test oracle cannot be re-used for testing the new version
“on-the-fly” in operation. This is a problem because the faults
not detected in the validation phases can manifest in the real
installation.

To solve these issues, in this paper we propose DARIO
(Dispatching AlgoRIthm Oracle), a test oracle that relies
on regression learning algorithms to automatically validate
elevators dispatching algorithms. Instead of using regression
oracles, DARIO trains a regression learning algorithm by using
data from a previously tested dispatching algorithm version.
Our approach provides several advantages. Firstly, the training
process of the employed regression learning algorithms is
much faster than employing a regression test oracle. While
the regression learning algorithms used in DARIO take a few
seconds to train, the regression test oracles used in practice
may take from minutes to hours at the SiL test level and

days at the HiL test level. Secondly, DARIO can be used as
streamlined oracle at SiL, HiL and in operation, permitting the
detection of potential inconsistencies within the real system.
Thirdly, DARIO returns a quantitative verdict value over the
simulation time, which provides information of how close the
system was from failing at each simulation step or how severe
a fault was. This opens the possibility to include new verifica-
tion and validation paradigms in the context of dispatching
algorithms, including falsification-based test generation [2],
[3]. It can also be used for on-line testing, which could save a
significant amount of testing time by stopping the simulation
if a severe fault is detected, as proposed by Menghi et al. in
a recent study [4]. We can summarize our contributions as
follows:
• We propose DARIO, a novel approach for building test

oracles for system-level simulation-based testing of dis-
patching algorithm. DARIO works on top of regression
machine-learning algorithms. These algorithms aim at
predicting the reference QoS values of a system of
elevators based on the passenger traffic data.

• We perform an empirical evaluation by using an indus-
trial case study provided by Orona, one of the leading
elevator companies in Europe. In this evaluation, we used
mutation testing to determine how accurate DARIO was
when compared to traditionally employed regression test
oracles. We compared five regression learning algorithms,
among which Regression Tree algorithms performed best.

• We provide a set of lessons learned from applying
DARIO in practice.

The rest of the paper is structured as follows: Section II
provides relevant background of the case study and the current
software testing process at Orona. Section III presents our ap-
proach to automatically test elevators dispatching algorithms.
Section IV evaluates our approach by means of an empirical
evaluation with an industrial case study. Section V discusses
lessons learned extracted from the evaluation. We position our
work with the current state of the art in Section VI. Lastly,
Section VII concludes our paper.

II. CASE STUDY AND SOFTWARE TESTING PROCESS AT
ORONA

Figure 1 shows an overview of the software development
process that Orona carries out for dispatching algorithms. The
entire development process consists of a total of ten steps
divided into three phases: SiL, HiL and Operation. To keep
the paper at a reasonable size, this section focuses solely on
the testing process. For further details of the entire software
development process, refer to [1].

When a new algorithm is developed or modifications are
performed into an existing algorithm, the first tests are per-
formed in Step 3 at the SiL test level. In this case, two
kinds of tests are performed: (1) short scenario tests and (2)
full-day tests. In the short scenario tests, specific functional
properties are tested in the most isolated way possible; the
expected outcome of a test in this case is obtained by either
implementing simple assertions or manually. In the full-day

tests, scenarios that mimic a normal full-day (or sub-scenarios
of it) in the life-cycle of the system of elevators are executed.
The expected outcome of these tests is related to certain QoS
values over time obtained by re-executing the test in another
algorithm or in an older version of it. At this level, all the
hardware is simulated by employing a domain-specific tool
named Elevate.

At the HiL test level, these test processes are repeated, but
involving real hardware (e.g., real target processors, commu-
nication systems, real-time operating systems, human-machine
interfaces). At this test level, the same types of test cases are
executed, with the difference being that the execution is in real-
time, and therefore, much more expensive. After this phase, the
software is deployed in operation and some manual validations
are performed by the software maintainers, which does not
permit the execution of as many tests as in the previous SiL
and HiL phases.

A test case in the context of Orona for testing a dispatching
algorithm version refers to the following fields:

• Building installation: It is the context configuration at
which the SUT is being executed. It has different fields,
such as the number of floors the building has, the number
of elevators, which floor is served by each elevator, etc.
For each elevator, there are also different fields, such
as the maximum load, the energy it consumes, dynamic
information (e.g., speed, acceleration and jerk), etc.

• Test input (call list profile): a test input in this context
refers to a *.txt file that includes a list of passengers.
For each passenger, this file includes (1) the arrival time
(i.e., when the passenger requests an elevator), (2) arrival
floor, (3) destination floor, (4) weight of the passenger,
(5) capacity factor by mass, (6) the loading time, (7) the
unloading time and (8) information related to the behavior
of the passenger when not all elevators serve all floors.

• Expected output: based on the input, what should the
behaviour of the system be. This differs depending on
the type of testing done. At unitary functional level tests,
the expected output is typically related to a functional
behaviour of the elevator (e.g., elevator number 1 attends
calls from passengers 1 and 2, elevator number 2 attends
a call from passenger 3). For long full-day tests, this is
related to certain QoS metrics, which is addressed in this
paper.

This paper focuses on the oracles applied for, what is known
in Orona internally as “long full-day tests”. In these kinds of
tests, the test inputs encompass long full-day passenger data
that simulate the passenger flow in an installation. During the
execution of these tests, the expected output refers to a time
series of QoS values over the time. Typical QoS measures
include the Average Waiting Time (AWT), Average Time to
Destination (ATTD) or the consumed energy. Traditionally, the
most used QoS measure in Orona has been the AWT, because,
according to certain studies, it is the most sensitive measure
for a passenger to determine whether a system of elevators
performs well or not [5]. These test cases can be differentiated

Fig. 1: Software development process of Orona’s dispatching algorithms [1]

into two groups: theoretical and real.
On the one hand, theoretical passenger data based test cases

provide test inputs based on theoretical studies of passenger
flows in buildings. For instance, Figure 2 depicts a graph
showing the number of up calls, down calls and inter-floor
calls in a time window of five minutes for a simulation of 13
hours based on the Siikonen theory for a building of offices.
As can be seen, in the first couple of hours, the number of up
calls increases as passengers are arriving at the office. After 5
hours, a pattern is seen with an increase in the number of down
calls followed by an increase in the number of up-calls, which
represents the lunch time break. At the end of the day, there is
another down peak, representing the end of the working day.

On the other hand, Orona uses data obtained from real
installations. This helps with the validation of dispatching
algorithms from several perspectives, such as the identification
of certain traffic patterns not considered in theoretical traffic
profiles or a higher customized validation. For instance, this
could happen in a building where the canteen is on the top
floor. Then, the traffic profile would significantly change as
there would be a second peak in the number of up-calls
followed then by an increase in the number of down-calls. An
algorithm could also perform better than another depending
on the traffic profile, and subsequently, the use of test inputs
obtained from the field is a powerful method to validate these
algorithms.

III. REGRESSION LEARNING-BASED TEST ORACLE FOR
ELEVATORS DISPATCHING ALGORITHMS

Figure 3 shows the overall architecture of the proposed
approach. The proposed solution is divided into two main
phases: (1) the training phase and (2) the testing phase. During
the training phase, a regression learning algorithm is trained
by using data from previous software versions. This data is
the one catalogued by Orona as reference to validate other
versions of the software. Subsequently, it is considered that
the data used for training is from an error free version of a
dispatching algorithm.

Fig. 2: A graph showing the number of up calls (blue), down
calls (red) and inter-floor calls (yellow) in a theoretical traffic
profile

The regression learning algorithm yields a model, which is
used by DARIO in the testing phase. During this phase, Ele-
vate executes a test case by using test input data, information
of the building installation (i.e., different information such as,
speed of elevators, structure of the building, etc.) and the SUT
itself. When the test has finished, Elevate returns a set of files,
which are treated by DARIO to extract (1) the passenger traffic
profile and (2) the AWT over the simulation time. The former
is used by the model predictor to predict the AWT over the
simulation time. The latter is used by the arbiter of DARIO
to yield the overall verdict and a quantitative verdict over the
time.

A. Training phase

The first phase in our approach aims at feeding a machine-
learning algorithm with labelled data to correctly train it.
During the training phase, a machine-learning algorithm adapts
some internal parameters based on training data so that it
performs well on future unseen input data [6]. In Orona,
the Verification and Validation activities are well documented,
which gives availability of data from previously tested versions
of the dispatching algorithms.

DARIO

Test input

Installation

SUT

Predictor

Arbiter

Overall verdict

Quantitative
verdict over

time

AWT over time
prediction

Passenger
traffic data

AWT over
time data

Training phase

Testing phase
Te

st
 d

at
a

fr
o

m
p

re
vi

o
u

s
ve

rs
io

n
s

AWT over
time

Passenger
traffic data

Test data
extraction

SiL test
bench

(ELEVATE)

HiL test
bench

Regression Learning
Algorithm

Test execution

Regression
Model

Fig. 3: Overview of the approach at the SiL test level

When testing dispatching algorithms at system level, the
main QoS metric considered to label a test as PASS or FAIL
by test engineers is the Average Waiting Time (AWT). This
metric measures the average time each passenger needs to wait
until their elevator arrives. The AWT can be a global value that
measures the overall AWT for all passengers in the test input
or a signal over the simulation time, indicating the AWT of the
passengers in the test input for a specific time period. Elevate,
one of the principal simulation tools for testing dispatching
algorithms, provides information on both. DARIO uses the
AWT for a specific time period to determine a verdict.

For training a machine-learning algorithm, the data is
categorized into different domain-specific features related to
passengers traffic data. As for the output feature, the AWT QoS
metric is considered, as it is the measure that the dispatching
algorithm under test used in this paper targets. All of them, for
a time window of five minutes. A five minute time window
was chosen based on the information provided by Elevate.
We developed a script that is able to automatically extract
this data from a database where Orona saves all the test
history. When the data was extracted, the script launched
the training phase by using the MATLAB machine-learning
toolbox. The regression learning algorithm yields a trained
regression model, which can later be used in the testing phase
to predict the AWT.

It is noteworthy that typically the passenger traffic data in
the historical test database is not the same as the test input
in the testing phase because when changes are made in the
dispatching algorithm, these changes typically include new
functionalities or bug corrections. Subsequently, in the test
inputs used during the testing phase the scenario testing the
new functionality or a scenario that aims to trigger the fault is

usually implemented. In addition, at the HiL test level, tests
also might include scenarios where the test engineer tests the
Human Machine Interface (HMI) of the system. In those cases,
as the testing is manual, where by the system interacts with
the tester, having the exact same test case is impossible.

B. Testing phase

When the regression learning algorithm is trained, it yields
a trained regression model, which is used in the testing phase.
For the current implementation, this phase has four steps:
(1) test execution, where the dispatching algorithm is tested
by using simulation-based testing, (2) test data extraction,
where the test results and other necessary data is extracted,
(3) prediction based on the regression model, which yields the
expected AWT result, and (4), the arbitration process, which
compares the AWT obtained by the regression algorithm with
the AWT estimated by the regression model. We now explain
all these steps in further detail.

1) Test execution: To execute a test, simulation-based test-
ing is used. As previously mentioned, the test can be executed
at two distinct levels: (1) at the Software-in-the-Loop test level
and (2) at the Hardware-in-the-Loop test level.

The former refers to executing the test by using a tool named
Elevate. This is a commercial tool used for testing dispatching
algorithms in simulation. An executable file of the dispatching
algorithm is generated, which is considered the System Under
Test (SUT). The SUT is called by Elevate at each iteration,
which simulates the rest of the parts of the elevators (i.e.,
speed, accelerations, opening and closing of the doors, etc.).
The tool also gets as input data from the installation (e.g.,
building type, number of elevators, characteristics of each
elevator), and the test input, which involves the passenger data.

Fig. 4: The three reasons why a test can be catalogued as FAIL (blue signal refers to the reference AWT and orange signal
refers to the AWT obtained by the software version under test)

The latter refers to executing the tests by using the real
hardware and other real-time infrastructure. At this test level,
the dispatching algorithm is integrated with other real-time
infrastructure, such as the Linux real-time operating system,
communication buses, drivers, etc. The real hardware that will
later be used in the real elevator is used, including human-
machine interface, target processors and CPUs, communica-
tion infrastructure, etc. The mechanical and electrical part of
the elevators, though, are simulated within a real-time test
bench. It is important to note that the execution of tests in
this case is real-time. This test level also requires substantial
manual effort for setting up the test bench, with activities
including the deployment of the dispatching algorithm in the
target, setting up hardware infrastructure, etc. Both test levels
yield several files that include results from the simulation.
These files include both, overall QoS measures (e.g., the
overall AWT of the simulation, total energy consumed), as
well as the QoS over the time. This information is provided
to DARIO to carry out the validation process and provide the
verdicts.

2) Test data extraction: After the test has been executed,
DARIO extracts the necessary data from the testing files
yielded by the test execution tools. At both test levels, i.e.,
SiL and HiL, both files are the same, which allows better re-
usability of the implemented test data extraction functionality.
In the current version, DARIO needs to extract (1) the pas-
senger traffic data over the time and (2) the AWT data over
the time for the tested SUT version. The former involves input
passengers’ features data for each five minute time steps. This
data is sent to the predictor, which provides an estimation of
the AWT over the time required for each time step based on
the trained regression model. The latter refers to the AWT data
over the time obtained by the SUT for each of the five minute
time steps.

3) AWT Prediction: The test data extraction provides the
passenger traffic data profile over the time to the trained
regression model. This model, estimates the AWT over the
time based on the training produced during the training phase.
This mimics the execution of the test case in the regression
oracle. The AWT signal with a time step of 5 minutes is
provided to the arbiter, which is the last component in charge
of providing a test verdict.

4) Arbiter: For developing the test arbiter we discussed the
reasons why a test can be catalogued as “FAIL” with test en-

gineers that had the domain knowledge on testing dispatching
algorithms. To this end, three reasons were identified, which
are illustrated in Figure 4.

The first reason might be that at certain point, the software
version under test shows a high peak on the AWT measure.
This is because at a certain point, probably due to a bug,
at least one passenger was unattended for a long period of
time. The second reason is because the AWT measure for
the software version under test exhibits a value higher than
the specified threshold for a long period of time. The last
scenario is related to a constant degradation of the AWT value
throughout all the steps of the execution.

The developed arbitration algorithm aims at detecting these
three scenarios. To this end, in a first step, the algorithm
obtains the quantitative verdict for each simulation time step
(in our case 5 minutes). We obtained this value by computing
Equation 1.

A negative value means that the SUT version is performing
worse than expected, whereas a positive value means that it
is showing a better performance. It should be noted that if
the referenceSignal were 0, the verdict would be either NaN
or infinite (depending on the SUTSignal reference). To avoid
this, the minimum referenceSignal value was established to 1
second.

verdict(t) =
referenceSignal(t)− SUTSignal(t)

referenceSignal(t)
(1)

To detect failures of the first scenario, a threshold is spec-
ified and the arbiter checks whether the verdict exceeds this
threshold in any step of the execution, which is the invariant
expressed in Equation 2. We refer to this as the single-step
arbiter.

∀ t ∈ [t0, tf] : verdict(t) ≥ thresholdsingle step (2)

where t0 and tf are the first and last steps of the execution,
and thresholdsingle step is the failure threshold for the verdict
value defined for the single-step arbiter.

To detect failures of the second scenario, a different thresh-
old is specified. When this threshold is exceeded, the arbiter
checks the following steps in order to determine the duration
of the anomaly. If this duration is longer than a specified
maximum duration, the test is classified as FAIL. Equation

3 defines this invariant, which we refer to as the multiple-step
arbiter.

∀ tstart ∈ [t0, tf−D] : ∃ t ∈ [tstart, tstart+D] :

verdict(t) ≥ thresholdmultiple step (3)

where D+1 is the maximum number of steps for multiple-step
failures, and thresholdmultiple step is the failure threshold for
the verdict value defined for the multiple-step arbiter.

For the last scenario, the average value of the verdict
over time signal is obtained and compared against another
threshold. Equation 4 defines this invariant, which we refer to
as the average arbiter.∑t∈[t0,tf] verdict(t)

T
≥ thresholdaverage (4)

where T is the number of steps in the execution.
Generally, the failure threshold for the arbiters is more tol-

erant for anomalies of shorter duration, since shorter duration
samples may be less representative of the system. Therefore,
the following will usually hold (note that threshold values are
negative, and smaller values imply more tolerance):

thresholdsingle step < thresholdmultiple step < thresholdaverage

(5)

C. Implementation

The tool was implemented in MATLAB. There are a few
reasons behind this decision. The main reasons are that it
provides support for a wide variety of algorithms. Furthermore,
for all these algorithms, it provides a powerful C/C++ test
generator, which would allow us to generate the code to
execute DARIO within the real target processor in operation.
The last major reason was that Elevate was integrated with
BCVTB for co-simulation of the dispatching algorithm with
other components of the system (e.g., the control of the
elevators doors), for a higher fidelity level testing purposes [7].
BCVTB allows for the execution of MATLAB code, which
permits us the execution of DARIO in this test bench with
the goal of performing higher fidelity level simulation-based
testing.

Additionally, although the approach is generalisable to any
regression machine-learning algorithm, DARIO was imple-
mented on top of the following ones: (1) Support Vector
Machines (SVM), (2) Regression Decision Trees, (3) Ensem-
ble, (4) Regression Gaussian Process (RGP) and (5) Stepwise
Regression. The reason why these algorithms were chosen
was (1) availability within the MATLAB framework and (2)
appropriateness for our context in terms of prediction speed,
training speed, memory usage and required tuning.

The selected algorithms have a fast prediction and training
speed (unlike other algorithms such as neural networks); this
is important in this case in order to speed up the verification
and validation activities. In addition, these algorithms have a
small memory usage, something important when deploying
the oracles in operation, where embedded processors with

limited resources are used. Lastly, the selected algorithms
require minimal tuning, something that is paramount to ease
the transfer of the approach to practitioners.

IV. EMPIRICAL EVALUATION

In this section we empirically evaluate our approach. Our
evaluation aims to answer the following Research Questions
(RQs):
• RQ1 – Training with theoretical data: Which regres-

sion learning algorithm yields the most accurate test
verdicts when trained with theoretical passenger test data?

• RQ2 – Training with real passenger data: Which
regression learning algorithm yields the most accurate test
verdicts when trained with real passenger test data?

A. Experimental setup

1) Case study: We used the Orona’s Conventional Group
Control (CGC) algorithm. This algorithm was selected as a
case study because it is the most widely used algorithm. Fur-
thermore, there are several versions of this algorithm available
in Orona, which allowed us to have access to several sets
of relevant test data for performing the experiments. Lastly,
its complexity is high as it is continuously evolving. It is
important to note that the algorithm is deterministic, and thus,
it does not involve random variations, unlike other dispatching
algorithms (e.g., genetic algorithms).

In the evaluation, we used a complex building installation
that Orona typically uses to validate dispatching algorithms,
which is related to a real installation named the communication
city, in Madrid. The building has a total of 10 floors and six
elevators, each having a capacity of 1250 Kg weight and 16
passengers. Another reason for choosing this building is that
Orona has relevant data obtained from the real installation
while in operation, which allowed us to answer RQ2. To
train the machine learning algorithms of our oracles, we used
available test data for testing a previous version of the CGC
algorithm within the specific building. This data included ten
theoretical passenger list test inputs and four real passenger
list test input data.

2) Evaluation metrics: Mutation testing was used to seed
faults through the dispatching algorithm under test. This tech-
nique has been found to be a good substitute of real faults [8].
The dispatching algorithms are programmed in C. Therefore,
traditional mutation operators for the C programming language
were used, such as relational operator changes, arithmetic
operator changes, etc. These faults were introduced in a
uniform manner throughout the sections of the source code
that are relevant in the simulation environment.

We generated a total of 99 mutants. Although this is not a
large number, it is important to note that as simulation-based
testing was used, executing each mutant took a long time. This
number is similar or larger to other studies where simulation-
based testing was used to evaluate testing approaches [9],
[10], [11]. From these 99 mutants, 18 were removed from
the evaluation. The reason was that the inclusion of these
mutants led the system to crashing or the simulation not lasting

because passengers were not attended. In practice, both types
of failures are easily detected by test engineers in Orona, test
oracles not being necessary. These 18 invalid mutants were
removed from the initial set, using a total of 81 mutants in
our evaluation. The 81 mutants were reviewed by a domain
expert to check that they were not semantically equivalent to
the original program.

When tests were executed, we obtained the AWT over the
time by using Elevate, the simulation tool used by Orona to
validate elevators dispatching algorithms. Based on a similar
work [12], we selected four measures to evaluate the quality of
the test oracles: precision (Equation 6), recall (Equation 7), f1
(Equation 8) and accuracy (Equation 9). Accuracy is especially
important in our study as it is the only measure that considers
True Negatives. In our context, classifying faults well is as
important as classifying correct behaviour as correct.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2× (precision× recall)

precision+ recall
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

For each mutant and each passenger list, we considered
the overall verdict returned by DARIO, catalogued either as
“PASS” or “FAIL”. Additionally, we used the same passenger
list with a regression test oracle (i.e., an original previous
version under test), which is the current practice to determine
if a test passes or fails by Orona.

Similar to other works tackling the test oracle problem [12],
[13], the verdict provided by DARIO was considered a true
negative (TN), a true positive (TP), a false negative (FN) or a
false positive (FP) as defined below:
• TN: Both the test oracle (i.e., DARIO) and the regression

test oracle returned a “PASS” verdict.
• TP: Both the test oracle (i.e., DARIO) and the regression

test oracle returned a “FAIL” verdict.
• FN: The test oracle (i.e., DARIO) returned a “PASS” and

the regression test oracle returned a “FAIL”.
• FP: The test oracle (i.e., DARIO) returned a “FAIL” and

the regression test oracle returned a “PASS”.
The tests were executed in Elevate instead of in the HiL

due to practicality (i.e., if the tests were executed using the
HiL test bench, the experiments would take around 2 years).

3) Experimental Scenarios: A total of four experimental
scenarios were designed for answering the two RQs:

Scenario 1: To answer the first RQ, we first used test
cases that involve theoretical test inputs. These test inputs
were automatically generated by Elevate, and are based on
a study performed by Siikonen [14]. In total, 10 of these test
cases were used. We employed the 10-fold cross validation to

validate DARIO along with all the selected machine-learning
algorithms.

Scenario 2: We used an additional scenario to answer the
first RQ. The same type of test cases were used for training,
but for testing, test cases obtained from the real installation
were used. This scenario would emulate (1) how the theoretical
passenger data performed in order to train the algorithms
during validation when using data extracted from operation
and (2) how the theoretical passenger data perform for training
the algorithms when the oracle is used in the real installation.

Scenario 3: To answer the second RQ, we used test cases
obtained with data extracted from the real installation in
operation. In total, four of these test cases were used. We
thus employed the 4-fold cross validation to validate DARIO
along with all the selected machine-learning algorithms.

Scenario 4: Similar to Scenario 2, we used an additional
scenario to answer the second RQ. In this case, we used the
same test cases as in Scenario 3 to train the algorithms, but for
testing we used the ten theoretical passenger-based test cases.

Table I summarizes the main characteristics of the test cases
used in these four scenarios, including, the number of up calls,
down calls, number of detected mutants by the test case, and
the test case duration.

TABLE I: Main characteristics of the used test cases during
the experimental scenarios

Test case # of Up
Calls

of Down
Calls

of Detected
Mutants

Simulation
time (h:min)

real1 2756 1711 18 8:30
real2 3086 2366 18 9:10
real3 3438 3117 18 11:45
real4 3508 3050 21 13:35
theoretical1 3994 3377 20 12:55
theoretical2 3950 3379 18 12:55
theoretical3 3983 3379 26 12:55
theoretical4 3989 3402 18 12:55
theoretical5 3989 3387 18 12:55
theoretical6 3964 3384 19 12:55
theoretical7 3977 3386 21 12:55
theoretical8 3919 3433 21 12:55
theoretical9 3976 3354 18 12:55
theoretical10 3945 3407 20 12:55

B. Analysis of the results and discussion

Table II summarizes the obtained results for the four
scenarios designed to answer the RQs. The first RQ aimed
at answering how the selected machine learning algorithms
performed when trained with theoretical passenger data based
test cases. Scenario 1 aimed at answering this RQ, where
a 10-fold cross validation was performed. When using the
default parameters, in terms of precision, SVM was the
technique showing best results followed by regression tree and
stepwiselm. When considering the recall measure, regression
tree and ensemble performed best, followed by SVM. In terms
of accuracy and F-measure, SVM performed best, although the
results by regression tree were close in both cases, unlike the
remaining three machine learning algorithms, which dropped
below 0.8 in terms of both accuracy and F-measure.

As for the second scenario, where the ten theoretical passen-
ger data based test cases were used for training the machine

TABLE II: Summary of results for the four experimental
scenarios within our industrial case study

Scenario Metrics SVM Regression
Tree Ensemble RGP STEPWISELM

Scenario 1

Precision 0.89 0.83 0.68 0.76 0.82
Recall 0.88 0.89 0.89 0.78 0.78
Accuracy 0.89 0.87 0.69 0.71 0.79
F-1 0.86 0.83 0.70 0.68 0.74

Scenario 2

Precision 0.74 0.80 0.41 0.61 0.41
Recall 0.80 0.75 0.86 0.86 0.85
Accuracy 0.74 0.75 0.39 0.58 0.38
F-1 0.70 0.69 0.45 0.59 0.44

Scenario 3

Precision 0.60 0.76 0.29 0.59 0.70
Recall 0.94 0.98 1.00 0.88 0.83
Accuracy 0.59 0.79 0.37 0.58 0.74
F-1 0.64 0.80 0.44 0.62 0.70

Scenario 4

Precision 0.25 0.25 0.25 0.30 0.25
Recall 1.00 1.00 1.00 0.99 1.00
Accuracy 0.25 0.25 0.25 0.37 0.28
F-1 0.39 0.39 0.39 0.45 0.40

learning algorithms but real-world data for testing, in terms of
the average precision, in this case regression tree performed
best, followed by SVM. Results for the ensemble, RGP and
stepwiselm algorithms in terms of precision were overall quite
low. These three algorithms, however, slightly outperformed
SVM and regression tree for the recall measure. Nevertheless,
in terms of accuracy and F-measure, both SVM and Regression
Tree stood out over the remaining three algorithms with
significant difference.

Overall, the results for all the four measures in Scenario 2
were lower than those shown in Scenario 1. Our hypothesis
behind this is related to the difference between the types
of passenger traffic flow in the test cases that are based on
theoretical traffic profiles and the ones obtained from the real
installation. It might be possible that the theoretical passenger
profiles do not explore areas which the real passenger profiles
actually do. This could be the case, for instance, when the
canteen or the bar is on a specific floor. The theoretical
traffic profiles also make assumptions that might not hold
for all offices building. For instance, the theoretical traffic
profiles assume that there are lunch peaks from 12:00 to
15:00, where workers from an office building go to have lunch.
Nevertheless, there might be companies and buildings where
most of the workers have a continuous work day from 7:00 to
15:00. Thus, we could answer the first RQ as follows:

SVM and regression tree algorithms were the algo-
rithms performing best when trained with theoretical
passenger profiles based test inputs. Nevertheless, their
performance decreased when trained with these pro-
files but later tests being executed with real test inputs.

The second RQ aims to analyze the performance of the
different machine-learning algorithms when trained with real
passenger data based test cases. Scenario 3 in Table II shows
the results for the 4-fold cross validation when using the real
passenger data based test cases both, for training and for
testing. As can be seen, in this case, regression tree performed
best in terms of precision, accuracy and F-measure. Further-
more, with a recall of 0.98, the regression tree algorithm was
the second best, after ensemble. Nevertheless, the precision,
accuracy and F-measure values for ensemble were all below

0.5, meaning that this algorithm had a high number of false
positives.

Scenario 4 also used real passenger data based test cases to
train the machine learning algorithms. Although all algorithms
performed well in terms of recall, meaning that they produced
none or a low number of false negatives, their results in terms
of precision, recall and accuracy were below 0.3. This means
that a high number of false positives were produced when
following this strategy for training the algorithms but testing
the dispatching algorithms with theoretical data.

The hypothesis in this case is similar to the one for RQ1.
The traffic profiles obtained from the real building installation
might not exercise areas or produce situations that are consid-
ered in the theoretical traffic profiles. This makes it difficult for
the regression algorithms to accurately predict the reference
AWT value.

The regression tree algorithm was the algorithm that
stood out over the rest in Scenario 3. Nevertheless,
its performance, as well as the rest of the algorithms,
was quite low when training the algorithm with real
passenger profile based test data and testing it with
theoretical passenger profile based data.

C. Threats to Validity

Internal validity: A potential internal validity threat in our
study might be related to the thresholds of the arbiter we
designed, which are configurable. To reduce this threat, we
discussed the parameters with domain experts to see which
thesholds could be appropriate to consider a test as pass or
fail. The selected machine-learning algorithms do also have
some parameters. To reduce this threat we used the default
parameters from the MATLAB framework for training the
algorithms.

External validity: An external validity threat in our eval-
uation is related to using a single benchmark dataset based
on test cases for testing dispatching algorithms. To reduce
this threat, the dataset was obtained from actual test cases
in Orona for testing dispatching algorithms. Furthermore, to
avoid bias in the results, we did not use the same dataset for
training an algorithm and for testing it, using the appropriate
k-fold cross validation techniques in those scenarios where
this was necessary (i.e., Exp. 1 and Exp. 3). Another external
validity threat relates to the used case study. Although only
a single case study was used, it is important to note that
it is a real industrial case study, which provides a high
degree of complexity to our evaluation. Furthermore, the used
dispatching algorithm is the one which is most used in Orona’s
elevators.

V. LESSONS LEARNED

By using this industrial case study and the experiment
provided in Section 4, we derived the following lessons
learned.

Lesson 1 – Training data: In order for the oracle to be
accurate enough, the training data should be of the same type
as used when testing the system. This means that when Orona
uses theoretical data for testing their algorithms, they should
also use theoretical test data for training DARIO. Conversely,
if real data is used for testing their algorithms, they should
use real passenger data for training DARIO.

Lesson 2 – Importance of real passenger data: In the
study, we showed that the oracles performed best when using
real data obtained from the real installation (even if they
were trained only with three real passenger profiles). In other
contexts, such as web-engineering, technologies like DevOps
permit using data from operation at design-time to enhance
software engineering processes (e.g., testing). The good per-
formance of the proposed approach with field test data shows
the importance of researching on adapting design-operation
continuum techniques (e.g., DevOps) in the context of CPSs
and in domains like elevation.

Lesson 3 – Uncertainty of the verdicts provided by DARIO:
While the accuracy of DARIO with certain algorithms is
relatively good, using these oracles in Orona increases the
uncertainty in relation to the correctness of the verdicts.
This might require at certain points re-executing tests in the
regression test oracle to confirm verdicts. However, although
this might increase the test cost, the test results can also
be used to retrain the algorithms. This challenge is further
exacerbated at operational level. A future direction could be
to assess different metrics to measure the uncertainty and
trustworthiness around the inferred oracles.

VI. RELATED WORK

Despite having received significantly less attention than
other software testing activities (e.g., test generation), the use
of machine-learning algorithms to alleviate the test oracle
problem is not new. A recent systematic survey performed by
Durelly et al. identified a total of 10 studies where machine
learning algorithms were used to construct oracles [15]. Simi-
lar to our approach, machine-learning algorithms were used to
predict the expected outputs of the SUT in two short-papers
[16], [17]. Specifically, Jin et al. [16] used artificial neural
networks, whereas Singhal et al. used both regression trees and
neural networks [17]. There are a few differences, however,
between their approach and ours. Firstly, in their case, the
approach is designed for unit testing, while our approach
focuses on system-level testing. Secondly, their approach is
based on classification, while our machine-learning algorithms
are focused on regression to predict QoS reference values.
Lastly, their evaluation is performed by using a toy example
involving the triangle type problem (i.e., given the three sides
of of a triangle, the oracle predicts which type of triangle it is),
while ours has been performed by using a real-world industrial
case study.

Our approach relies on simulation-based testing for veri-
fying elevators dispatching algorithms at system level. In the
context of simulation-based testing, there are recent studies
that tackle the test oracle problem [4], [18]. For instance,

Menghi et al. proposed a test oracle generation tool for
Simulink models [4]. Their approach consists in a Domain
Specific Language (DSL) with sufficient expressiveness to
specify signal properties-based requirements. Later, a model-
to-model transformation is performed in order to generate
Simulink subsystems. Similar to our work, their oracles also
provide a quantitative measure for the satisfaction degree of
a requirement. However, our study is focused on generating
a reference signal by a machine-learning algorithm trained
with data from previously tested software versions, and later
applying and arbitration mechanism. Although we could use
their tool to generate oracles by specifying some requirements,
this would be infeasible for the context of QoS measures, as
inferring the relation between passenger traffic data and QoS
measures (e.g., AWT) is nontrivial. Furthermore, this relation
is highly dependent on the building installation characteristics,
and would therefore require a manual change every time
the dispatching algorithm is tested in a different context;
In contrast, training DARIO with already available data is
straightforward and fast.

Stocco et al. proposed a technique for testing self-driving
cars which use deep neural networks to determine the driving
parameters for the actuators of the vehicle [18]. Similar to
our approach, their oracle employs simulation-based testing
and determines a confidence value for the system at each step
of the execution. However, the oracle they propose uses an
unsupervised learning technique based on the camera images
(i.e., the input) of the self-driving car, whereas DARIO uses
supervised regression learning based on the QoS measures of
a system of elevators (i.e., the test output in our context).

There are some studies that focus on testing software from
elevators systems. Nicolas et al., proposed an encoder based on
FPGAs for simulation-based testing of elevator controllers in
real-time [19]; their goal was to test the position and speed of
elevators. Sagardui et al., relied on model-based testing and
feature models for testing configurable software systems in
charge of controlling the doors of elevators [20]; in this paper
the goal was to test refactored embedded code, and the non-
refactored software acted as a golden oracle. In these cases the
system was not the dispatching algorithm, but other software
components of the elevators. In our previous paper, we used
the technique Metamorphic Testing to test the dispatching
algorithm of Orona [21], showing promising results. However,
in this prior paper, the technique is mainly designed for short-
scenario tests, whereas the technique shown in this paper
is designed for long-scenario tests. While there are many
studies in the field of elevators dispatching algorithms, where
artificial intelligence algorithms adapted to this context are
investigated (e.g., ant-colony optimization and neural networks
[22], genetic algorithms [23]), to the best of our knowledge,
this is the first study that proposes a method for testing them.

VII. CONCLUSION AND FUTURE WORK

In this paper we have proposed DARIO, a test oracle
that relies on machine-learning to automatically test elevators
dispatching algorithms. Compared with the traditionally used

regression oracles, which have several disadvantages, DARIO
trains machine-learning algorithms with previous test data.
This training takes only a few seconds (always less than 3
seconds), whereas executing the regression test oracle takes
minutes or hours at SiL (depending on the length of the
test case), and hours or days at HiL (not being possible to
correctly perform some tests, such as those involving HMI).
In our evaluation, where an industrial dispatching algorithm
from Orona was used, the accuracy of the proposed test oracle
when labeling tests as PASS or FAIL ranged between 0.79 and
0.87, which is competent to transfer the tool to practitioners,
although further investigations are required to enhance these
results.

As future research lines, we would like to explore handling
the uncertainty in oracles from different perspectives. Firstly,
as explained in the lessons-learned section, using DARIO
increases the uncertainty related to the correctness of the
verdicts. In deep learning algorithms, Kim et al., used the
surprise adequacy [24]. Similar metrics adapted to the used
algorithms by DARIO could be employed to measure such
uncertainty. Other related uncertainties could be those where
the CPS is exposed to, especially in operation. For instance, a
sensor might have noise and its data could not be fully reliable.
In the future, we foresee to tackle these problems.

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation program un-
der Grant Agreement no. 871319. A. Arrieta, J. Ayerdi, M.
Illarramendi and G. Sagardui are part of the Systems and
Software Engineering research group of Mondragon Unibertsi-
tatea (IT1326-19), supported by the Department of Education,
Universities and Research of the Basque Government.

REFERENCES

[1] J. Ayerdi, A. Garciandia, A. Arrieta, W. Afzal, E. P. Enoiu, A. Agirre,
G. Sagardui, M. Arratibel, and O. Sellin, “Towards a taxonomy for
eliciting design-operation continuum requirements of cyber-physical
systems,” in 28th IEEE International Conference on Requirements
Engineering, RE 2020, Zurich, Switzerland, 2020, 2020.

[2] C. Menghi, S. Nejati, L. C. Briand, and Y. I. Parache, “Approximation-
refinement testing of compute-intensive cyber-physical models: An
approach based on system identification,” in International Conference
on Software Engineering (ICSE), 2020.

[3] S. Nejati, K. Gaaloul, C. Menghi, L. C. Briand, S. Foster, and D. Wolfe,
“Evaluating model testing and model checking for finding requirements
violations in simulink models,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019, 2019, pp. 1015–1025.
[Online]. Available: https://doi.org/10.1145/3338906.3340444

[4] C. Menghi, S. Nejati, K. Gaaloul, and L. C. Briand, “Generating
automated and online test oracles for simulink models with continuous
and uncertain behaviors,” in Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, 2019, pp. 27–38. [Online].
Available: https://doi.org/10.1145/3338906.3338920

[5] G. Barney and L. Al-Sharif, Elevator traffic handbook: theory and
practice. Routledge, 2015.

[6] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for machine
learning. Cambridge University Press, 2020.

[7] G. Sagardui, J. Agirre, U. Markiegi, A. Arrieta, C. F. Nicolás, and
J. M. Martı́n, “Multiplex: A co-simulation architecture for elevators
validation,” in Electronics, Control, Measurement, Signals and their Ap-
plication to Mechatronics (ECMSM), 2017 IEEE International Workshop
of. IEEE, 2017, pp. 1–6.

[8] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 654–665.

[9] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Test
generation and test prioritization for simulink models with dynamic
behavior,” IEEE Trans. Software Eng., vol. 45, no. 9, pp. 919–944,
2019. [Online]. Available: https://doi.org/10.1109/TSE.2018.2811489

[10] A. Arrieta, S. Wang, U. Markiegi, A. Arruabarrena, L. Etxeberria,
and G. Sagardui, “Pareto efficient multi-objective black-box test
case selection for simulation-based testing,” Information & Software
Technology, vol. 114, pp. 137–154, 2019. [Online]. Available:
https://doi.org/10.1016/j.infsof.2019.06.009

[11] A. Arrieta, S. Wang, A. Arruabarrena, U. Markiegi, G. Sagardui,
and L. Etxeberria, “Multi-objective black-box test case selection for
cost-effectively testing simulation models,” in Proceedings of the
Genetic and Evolutionary Computation Conference, ser. GECCO ’18.
New York, NY, USA: ACM, 2018, pp. 1411–1418. [Online]. Available:
http://doi.acm.org/10.1145/3205455.3205490

[12] A. E. Genç, H. Sözer, M. F. Kıraç, and B. Aktemur, “Advisor: An ad-
justable framework for test oracle automation of visual output systems,”
IEEE Transactions on Reliability, 2019.

[13] W. K. Chan, J. C. Ho, and T. Tse, “Finding failures from passed
test cases: Improving the pattern classification approach to the testing
of mesh simplification programs,” Software Testing, Verification and
Reliability, vol. 20, no. 2, pp. 89–120, 2010.

[14] M.-L. Siikonen, “On traffic planning methodology,” Elevator technology,
vol. 10, pp. 267–274, 2000.

[15] V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler,
D. R. Dias, and M. P. Guimaraes, “Machine learning applied to software
testing: A systematic mapping study,” IEEE Transactions on Reliability,
vol. 68, no. 3, pp. 1189–1212, 2019.

[16] H. Jin, Y. Wang, N.-W. Chen, Z.-J. Gou, and S. Wang, “Artificial neural
network for automatic test oracles generation,” in 2008 International
Conference on Computer Science and Software Engineering, vol. 2.
IEEE, 2008, pp. 727–730.

[17] A. Singhal and A. Bansal, “Generation of test oracles using neural
network and decision tree model,” in 2014 5th International Conference-
Confluence The Next Generation Information Technology Summit (Con-
fluence). IEEE, 2014, pp. 313–318.

[18] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour
prediction for autonomous driving systems,” in Proceedings of 42nd In-
ternational Conference on Software Engineering, ser. ICSE ’20. ACM,
2020, p. 12 pages.

[19] C. F. Nicolas, I. Ayestaran, I. Martinez, and P. Franco, “Model-based
development of an fpga encoder simulator for real-time testing of
elevator controllers,” in 2016 IEEE 19th International Symposium on
Real-Time Distributed Computing (ISORC). IEEE, 2016, pp. 53–60.

[20] G. Sagardui, L. Etxeberria, J. A. Agirre, A. Arrieta, C. F. Nicolas, and
J. M. Martin, “A configurable validation environment for refactored
embedded software: An application to the vertical transport domain,”
in 2017 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW). IEEE, 2017, pp. 16–19.

[21] J. Ayerdi, S. Segura, A. Arrieta, G. S. Arratibel, and M. Arratibel, “Qos-
aware metamorphic testing: An elevation case study,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2020, pp. 104–114.

[22] J. Liu and Y. Liu, “Ant colony algorithm and fuzzy neural network-based
intelligent dispatching algorithm of an elevator group control system,”
in 2007 IEEE International Conference on Control and Automation.
IEEE, 2007, pp. 2306–2310.

[23] B. Bolat, P. Cortés, E. Yalçin, and M. Alişverişçi, “Optimal car dispatch-
ing for elevator groups using genetic algorithms,” Intelligent Automation
& Soft Computing, vol. 16, no. 1, pp. 89–99, 2010.

[24] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). IEEE, 2019, pp. 1039–1049.

	Portada AAM IEEE.pdf
	UsingMachineLearningToBuildTestOraclesAnIndustrialCaseStudyOnElevatorsDispatchingAlgorithms.pdf

