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Abstract. A novel damage localization method is proposed, which is based on a substructuring
approach and makes use of Vector Auto-Regressive with eXogenous input (VARX) models.
The substructuring approach aims to divide the monitored structure into several multi-DOF
1solated substructures. Later, each individual substructure is modelled as a VARX model, and
the health of each substructure is determined analyzing the variation of the VARX model. The
method allows to detect whether the isolated substructure is damaged, and besides allows to
locate and quantify the damage within the substructure. It is not necessary to have a theoretical
model of the structure and only the measured displacement data is required to estimate the
isolated substructure’s VARX model. The proposed method is validated by simulations of a
two-dimensional lattice structure.

1. Introduction

Structural Health Monitoring (SHM) is the process of implementing a damage detection and
characterization strategy for engineering structures [1]. SHM is regarded as a very important
engineering field in order to secure structural and operational safety; issuing early warnings on
damage or deterioration, avoiding costly repairs or even catastrophic collapses [2].

Most of the existing vibration based SHM methods could be classified into two different approaches:
global approaches and local approaches [3]. In the global approaches, the goal is to monitor the health
of the entire structure. These global methods have been tested and implemented in different types of
structures during the last 30 years [4]. However, for many large systems, global monitoring is not
practical due to the lack of sensitivity of global features regarding local damages, inaccuracies of
developed models or the high cost of sensing, cabling and computational operations [5]. On the other
hand, local SHM methods are focused on evaluating the state of reduced parts within the entire
structures, based on substructuring methods. This approach aims to overcome global method’s
problems, dividing the whole structure into substructures and analyzing each one individually.

Several research works have proposed substructuring methods for large-scale structures. Koh [6]
presented a “divide and conquer” strategy to monitor large structures based on the division of the
whole structure into isolated substructures. For each substructure, structural parameters are identified
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using the Extended Kalman filter (EKF). However, the EKF usually require knowledge of the system
and its dynamics [7]. Yun and Lee [8] detected damage in structures combining a substructuring
method and experimental modelling [9]. Most recently, Xing [10] presented another damage detection
method based on a substructuring method and Auto-Regressive Moving Average with eXogenous
input (ARMAX) models. Damage indicators were obtained for each estimated substructural model
calculating the difference between the squared natural frequencies in the healthy state and the squared
natural frequencies during the structure lifetime. All the natural frequencies were computed from their
respective estimated ARMAX models. This damage detection method was validated through
simulations and experimental test. The method proposed by Xing [10] doesn’t require any theoretical
model of the structure [9]. Nevertheless, as only one internal DOF is measured in each substructure, is
not possible to give information about the damage location within the substructures.

In this paper, a damage localization method based on the combination of a substructuring method and
experimental modelling is proposed. The substructuring method is used to isolate a multi-DOF
substructure from the rest of the structure, and each isolated substructure is modelled as a Vector
Auto-Regressive with eXogenous input (VARX) model. VARX models incorporate data measured in
different internal DOFs and their coefficient matrices describe the relationship between the measured
internal DOFs through some structural characteristics (mass, stiffness, damping...). Therefore, the
proposed method could potentially locate the damage within the substructure by analyzing variations
on the VARX model over the time. Furthermore, the proposed method doesn’t require any theoretical
model of the structure.

The rest of the paper is organized as follows. First, the proposed method is presented in section 2.
Secondly, the proposed method is evaluated by series of simulations. In section 3, simulation results
are discussed and finally the concluding remarks are presented in section 4.

2. The proposed method

The behavior of the structure is described by a lumped parameter model, where we assume that all
objects are rigid bodies and all interactions between the rigid bodies take place via springs and
dampers. We assume the structure consists of bars that are connected together by rigid joints. The
point in which two or more bars are joined is called node and the number of structural nodes will
depend on the topology of the structure. The forces could only be transmitted along the axial direction
of the bars and the load could only be applied at the two ends of each bar. We assume that the mass of
each bar is distributed equally between its two nodes, a half in the first one and the other half in the
second one. On the other hand, the structure could be subjected to arbitrary external loading that is
assumed to be known and could act on any node.

The structure is divided into different substructures and these substructures are isolated from the
remaining structure. The substructures could contain several internal (i) and interface (j) nodes. The
interface nodes are located in the border between the selected substructure and the remaining structure.
On the other hand, internal nodes are located within the substructure and they are not connected to the
nodes of the remaining structure.
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The dynamic equations for an internal node i are formulated as follows:

N

mZz, = Z(ka(zi’zi’zk’zk))+ Fa
pa=} (1

N
mz, = Z(fyk (2i,2;,2,,2})) + Fi
k1

N
mZ, = Z(fzk (2i,2;,2,,2,)) +F,
k=1

Z.; and Z,are the absolute accelerations

where m; is the lumped mass of the internal node i and Z,;, Z,,

of the internal node 7 in x, y and z axes respectively. f, firand f; are linear or non-linear functions
used to calculate the total internal force applied in the node i by the N nodes connected to him. These
functions depend on the value of z;,Z,,Z, andZ, , where Z, and Z, represent the absolute displacement

and the velocity of the node i andz, and Z, are the absolute displacements and velocities of the N

nodes that are connected to the node i, all of them in X, y and z axes. Furthermore, Fy;, Fy; and F are
the external forces that are acting in the internal node i.

Expanding f,fxand f; functions as Taylor series [11] and selecting only the first term, the dynamic
equations for an internal node i are stated as:

2)

N
mizxi = z (kxxki (in —Zy ) + kxyki (Zyi - Zyk ) + kxzki (Zzi - sz) * Coi (in - Zxk) + nyki (Zyi - Zyk) * Coi (zzi - sz )) + in
k=1

N

mizyi = Z (kyxki (in - Zxk) + kyyki (Zyi - Zyk) + kyzki (Zzi - sz) +Cyui (zxi - zxk) +Chi (2yi - Zyk) *Cyui (Zzi — 1, )+ Fyi
k=1
N

mz, = Z (kzxki (in - zxk) + kzyki (Zyi - Zyk) + kzzki (zzi - sz) * C i (in - zxk) + Czyki (Zyi - Zyk) *Coui (zzi - sz )) + in
k=1

where Zyir Zyis 2y and2,,2;,2,are the absolute displacements and velocities of the node i and

Zy,andZ,,2

yi?

Z,,2 Z, are the absolute displacements and velocities of the N nodes that are

xk? “yk? yk
connected to the node i, all of them in X, y and z axes. On the other hand, £ and ¢ are coefficients

related to the stiffness and damping values of the N bars that are in contact with node i.

The finite central difference method [10] is used to obtain the approximation of the displacement’s
first and second derivatives. Repeating the explained process (equation 2) for the other internal nodes
and representing the expressions in matrix form, the substructural dynamic equation is stated as:



11th International Conference on Damage Assessment of Structures (DAMAS 2015) IOP Publishing

Journal of Physics: Conference Series 628 (2015) 012013 doi:10.1088/1742-6596/628/1/012013
z,,(n) z,, (n=1) z,, (n-2) 3)
Zy, (n) Zyy (n-1) Zy, (n-2)

z,, (n) z,, (n-1) z,, (n-2)
=-A -A
Z,x (N 2., (n=1) 2., (n-2)
Ziy (n) Zipy (n-1) Zipy (n-2)
| Z;,, (M) |z, (N=1) | | 2, (N—2) |
[ 2, ()] [z, (n=1) ] [z, (1=2) ] [F, (n=1)]
Zijzy (N) Zjyy (N-1) Z, (N=2) Fy, (1-1)
Zjy, (M) z;,, (n-1) Zjy, (N—=2) F, (n-1)
+ B, + B, +B, +B,,
Ziine (M) Zine (N 1) Zine (N=2) F (N=1)
Ziiny (n) Zijny (n-1) Ziiny (n-2) Ry (n-1)
| Zijn, ()| | Zi, (N=1) | | Zjn (N=2) | | F, (n-1) |

where z;y, ... Ziy; and z;x, .. Zj. are the absolute displacements of all internal and interface nodes in
X, y and z axes.

Equation (3) could be regarded as a VARX model [12], where z;,, .. , Z;. corresponds to the
endogenous variables and z;x, .. Z;j,: and F;; . F;,. correspond to the exogenous variables. 4y is a
n x n endogenous coefficient matrix, where 7 denotes the number of internal DOFs of the substructure.
The elements of A4, matrix are related to the physical properties of the bars that connect the internal
nodes between them. On the other hand, B, is a n x m exogenous coefficient matrix, where m denotes
the number of interface DOFs of the substructure. The elements of B are related to the physical
properties of the bars that connect one internal node to another interface node.

In the proposed method, the substructures are modelled as a VARX models. The state of each
substructure is evaluated analyzing deviations in its estimated coefficient matrices (4, and By) respect
to its estimated coefficient matrices (4, and By) in the healthy condition. Firstly substructural damages
are detected and secondly the damages are located within the substructure.

3. Numerical results

A linear and time invariant two-dimensional lattice structure is studied in this section. The structure
consists of stainless steel bars that are connected together by rigid joints and we assume that the forces
could only be transmitted along the axial direction of the bars and the load could only be applied at the
two ends of each bar. The structural behaviour is described by a lumped parameter model, where we
assume that all object are rigid bodies and all interactions between the rigid bodies take place via
springs.

In the studied case, the structure is modelled as a sixteen DOF mass-spring model (see figure 1).
Furthermore, a ten DOF substructure is isolated from the general structure, where absolute
displacement zg, Zgy, Z7x, Z7y, Zgx and zg, correspond to internal DOFs and absolute displacement z,,
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Z4y, Zsx and zs, correspond to interface DOFs. As shown in figure 1, none external force is applied
within the substructure.

Figure 1. Isolated substructure in the structural model

Below, the dynamic equations for the internal node i are formulated:

N
m in = Z(kk,i C052 ek,i (in - Zxk) + kk,i Cos Hk,i sin ek,i (Zyi - Zyk )) 4)
k=1
N
mizyi = Z(kk,i Cos ‘gk,i sin Hk,i (in - Zxk) + kk,i Sinz Hk,i (Zyi - Zyk))
k=1

where m; represent the lumped mass of the internal node i and Z,; and Z,; are the absolute

accelerations of the internal node 7 in x and y axes. The internal node 7 is supporting N internal forces,
one force for each node connected to him. These forces depend on the stiffness and the angle respect
to the x axis of the springs located between the internal node i and the N nodes that are connected to
him, as well as the displacements of these nodes in x and y axes (z, Zyi, Zxk, Zyk)-

Following the procedure described in section 2, we get the VARX model. Equation (5) could be
regarded as a four exogenous and six endogenous variables VARX model [12]. The exogenous
variables are the measured absolute displacements in zs, z4y, Zsx and zs, and the endogenous variables
are the measured absolute displacement in zgy, Zgy, Z7x, Z7y, Zsx and zg,.

z,, (n) z,, (n-1) z, (n-2) 6))
z,. (n) z, (n-1) z, (n-2) z,, (n-1)
z,, (n) z,, (n-1) z, (n-2) z,, (n-1)
z,, (n) A z,, (n-1) A 2, (0-2) | %2, (n-1)
z,, () z,, (-1 z,, (n-2) z,, (n-1)
| Z,, (n)_ | Z, (n=-1) | Z,, (n—2)_
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A; and A4, are 6 x 6 endogenous coefficient matrices and B; is a 6 x 4 exogenous coefficient matrix.
These matrices are related to the physical properties of the substructural bars (mass, stiffness and
angle) and also depend on the used sampling period. In addition to this, equation 6 shows the
dependence between each matrix element and the substructural stiffness values.

(6)

f(Ky g1 Ks g1 K7 Keg) f, (Ks;) fia(Kgg) [ P S S fis (K ;) fis (Ke.s)
£, (ks ;) £ (K, K7 Ky g) fi(k,q) £, (Kg ;) frs (K ;1K1 Ky g) fe(K; )
Ai _ fi (ke g) (K, 4) fi(Kggr K gi Ky g) fl (Kgg) fis (kv,s) fis (Kg g1 Ke g1 Ky g)
f(Ky o Koo Kg7iKeg) £ (K ;) fr3(Ksg) fra (K giKs g K Kgg) fis (kg ;) fre(Keg)
fo (Kg.) T (K, 50 Kg 11K g) fos (K, g) fo (kg ;) fos(Ky 7Kg 10K g) foe (K, )
i for (Ko g) foo (K; ) foa(Kg g1 Kegr Ky g) foa (Kg g) fos (K g) foo (K g Kg g km)_

A=l

Fau(kg) 0,0k a,(Ke) 0, (k) |
0.k, 0 gk, 0
0 g,k 0 gu(k,)
0a(ky)  9u(ky)  Ou(Ke) 0,0k )
0.(k,,) 0 guk,) 0O
0 gy, 0 gk,

In this work, the structure is excited in the third mass (outside the substructure) by a Gaussian white
noise and the displacements are recorded for each substructural DOF using a data sampling frequency
of 1000 Hz. Later, the substructural VARX model is estimated by the Multivariable Least-Square
estimator (MLS) method [12] for a healthy state and for the damaged scenarios. All considered
damages are stiffness losses of a specific spring within the structure. Three different damage severities
(5%, 10% and 20%) and six different damage locations are evaluated. In some of them, the damaged
springs are within the substructure (k,4, k47, k57, kss) and in the others, they correspond to external
spring (k; 3, k2,5).

As we could see in equation (6), the elements of matrices 4; and B; are function, among other things,
of the stiffness of the substructural springs. Matrix 4; depends on the state of the springs that are
located between the internal nodes (ks 7, kss, k75) and matrix B; depends on those springs located
between the internal and interface nodes (ky 4, k47, k5.6, ks.5).

In this work we evaluate the state of the whole substructure. For this purpose, firstly the substructural
VARX model of the healthy state is estimated. Later, the substructural VARX model is reestimated in
each new scenario and the state of the substructure is evaluated in these new scenarios comparing
these updated 4; and B; matrices and the healthy ones. In the case of substructural damages, the
damages will be firstly detected and later located in one of the substructural spring depending on the
varied elements within 4; and B; matrices. On the other hand, if external springs are damaged, the
elements of matrices 4; and B; will not change, so these external damages will not be detected and
located within the substructure.
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Table 1 shows which elements of 4; and B; matrices depend exclusively on the properties of the
substructural springs. In this work, only the variations of these elements (see table 1) are analyzed and
the state of each substructural spring is evaluated depending on this analysis. For example, the
stiffness of the spring that joins nodes 5 and 6 (ks4) affects exclusively in four elements within the
matrix B; (B2, Big9, Biuz and By y). For this reason, the variations of these four elements are
analyzed to determine if the spring ks s is damaged or not. In the present study, the damage severity for
each spring is given by the mean variation of the elements that should be analyzed (see table 1).

Table 1. Analyzed elements within 4; and B; matrices

Internal spring A; elements B, elements
k4,6 - (171)9(1’3)(431)’(453)
k4,7 - (231)7(293)9(591)5(533)
k5,6 - (132)7( 1 ’4)9(492)5(494)
k5,8 - (3?2)3(334)’(6’2)3(6?4)
K (1,2),(1,5),(2,1),(2,4)

67 (4,2),(4,5),(5,1),(5.,4) )
Ke s (1,3),(1,6),(3,1),(3,4) )

(4.3),(4,6),(6,1),(6,4)
(2,3),(2,6),(3,2),(3.5)
(5.,3),(5,6),(6,2),(6.5)

Regarding to the results, for external damages (reducing k;; and k&, 5 values), the estimated stiffness
modification for all substructural springs are almost zero, so the method determines that the
substructure is healthy. For internal damages (reducing ky4, k47, ks, and ks values), the estimated
stiffness modifications are shown in figure 2. In these four scenarios, the substructural damages are
firstly detected and later located in the proper spring. Furthermore, the results show that the method
estimates the severity of the damage.

Modification of k, ; Modification of k, ¢

30 30
Modification

Modification

Estimated stiffness modification (%)
Estimated stiffness modification (%)

Modification of K » Modification of k; o

30 30
= Modification = Modification
2% . 0% 2% . 0%
3 C—10% ; C10%
Bl el o s || S, B3
15 15
k- =
10 10
B B  mrmmrmemmem e B B e ——
“ ol wmia — © 0 . - —_
ka7 kss  kas  kse k7 Kes K78 ka7 kss  kis  kse k7  kes K78

Figure 2. Estimated stiffness modification for each substructural spring (internal damages)
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4. Conclusions

This paper proposes a novel SHM method to locate damages in multidimensional structures. A
substructure of interest is isolated by a substructuring method and a VARX model of the isolated
substructure is obtained. The analysis of the estimated VARX model is carried out in order to evaluate
the health of the isolated substructure. It is not necessary to have any theoretical model and only the
measured displacement data is required to estimate the isolated substructure’s VARX model.

A linear and time invariant model of a two-dimensional lattice structure is simulated to evaluate the
proposed method. The results show that the method not only allows detecting damages within the
substructure, because it also allows estimating their location and their severity.

The proposed method is also suited for three dimensional lattice structures, where the number of
element’s connections increases. Our research group is already applying this method in a laboratory
lattice structure and the results will be published soon.
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