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Abstract. A novel damage localization method is proposed, which is based on a substructuring 

approach and makes use of Vector Auto-Regressive with eXogenous input (VARX) models. 

The substructuring approach aims to divide the monitored structure into several multi-DOF 

isolated substructures. Later, each individual substructure is modelled as a VARX model, and 

the health of each substructure is determined analyzing the variation of the VARX model. The 

method allows to detect whether the isolated substructure is damaged, and besides allows to 

locate and quantify the damage within the substructure. It is not necessary to have a theoretical 

model of the structure and only the measured displacement data is required to estimate the 

isolated substructure’s VARX model. The proposed method is validated by simulations of a 

two-dimensional lattice structure. 

1. Introduction

Structural Health Monitoring (SHM) is the process of implementing a damage detection and 

characterization strategy for engineering structures [1]. SHM is regarded as a very important 

engineering field in order to secure structural and operational safety; issuing early warnings on 

damage or deterioration, avoiding costly repairs or even catastrophic collapses [2].  

Most of the existing vibration based SHM methods could be classified into two different approaches: 

global approaches and local approaches [3]. In the global approaches, the goal is to monitor the health 

of the entire structure. These global methods have been tested and implemented in different types of 

structures during the last 30 years [4]. However, for many large systems, global monitoring is not 

practical due to the lack of sensitivity of global features regarding local damages, inaccuracies of 

developed models or the high cost of sensing, cabling and computational operations [5]. On the other 

hand, local SHM methods are focused on evaluating the state of reduced parts within the entire 

structures, based on substructuring methods. This approach aims to overcome global method’s 

problems, dividing the whole structure into substructures and analyzing each one individually.  

Several research works have proposed substructuring methods for large-scale structures. Koh [6] 

presented a “divide and conquer” strategy to monitor large structures based on the division of the 

whole structure into isolated substructures. For each substructure, structural parameters are identified 
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using the Extended Kalman filter (EKF). However, the EKF usually require knowledge of the system 

and its dynamics [7]. Yun and Lee [8] detected damage in structures combining a substructuring 

method and experimental modelling [9]. Most recently, Xing [10] presented another damage detection 

method based on a substructuring method and Auto-Regressive Moving Average with eXogenous 

input (ARMAX) models. Damage indicators were obtained for each estimated substructural model 

calculating the difference between the squared natural frequencies in the healthy state and the squared 

natural frequencies during the structure lifetime. All the natural frequencies were computed from their 

respective estimated ARMAX models. This damage detection method was validated through 

simulations and experimental test. The method proposed by Xing [10] doesn’t require any theoretical 

model of the structure [9]. Nevertheless, as only one internal DOF is measured in each substructure, is 

not possible to give information about the damage location within the substructures.  

In this paper, a damage localization method based on the combination of a substructuring method and 

experimental modelling is proposed. The substructuring method is used to isolate a multi-DOF 

substructure from the rest of the structure, and each isolated substructure is modelled as a Vector 

Auto-Regressive with eXogenous input (VARX) model. VARX models incorporate data measured in 

different internal DOFs and their coefficient matrices describe the relationship between the measured 

internal DOFs through some structural characteristics (mass, stiffness, damping…). Therefore, the 

proposed method could potentially locate the damage within the substructure by analyzing variations 

on the VARX model over the time. Furthermore, the proposed method doesn’t require any theoretical 

model of the structure.  

The rest of the paper is organized as follows. First, the proposed method is presented in section 2. 

Secondly, the proposed method is evaluated by series of simulations. In section 3, simulation results 

are discussed and finally the concluding remarks are presented in section 4.  

2. The proposed method

The behavior of the structure is described by a lumped parameter model, where we assume that all 

objects are rigid bodies and all interactions between the rigid bodies take place via springs and 

dampers. We assume the structure consists of bars that are connected together by rigid joints. The 

point in which two or more bars are joined is called node and the number of structural nodes will 

depend on the topology of the structure. The forces could only be transmitted along the axial direction 

of the bars and the load could only be applied at the two ends of each bar. We assume that the mass of 

each bar is distributed equally between its two nodes, a half in the first one and the other half in the 

second one. On the other hand, the structure could be subjected to arbitrary external loading that is 

assumed to be known and could act on any node.  

The structure is divided into different substructures and these substructures are isolated from the 

remaining structure. The substructures could contain several internal (i) and interface (j) nodes. The 

interface nodes are located in the border between the selected substructure and the remaining structure. 

On the other hand, internal nodes are located within the substructure and they are not connected to the 

nodes of the remaining structure.  
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The dynamic equations for an internal node i are formulated as follows:  
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where mi is the lumped mass of the
 
internal node i and 

xiz , 
yiz  and 

ziz are the absolute accelerations 

of  the internal node i in x, y and z axes respectively. fxk ,  fyk and fzk are linear or non-linear functions 

used to calculate the total internal force applied in the node i by the N nodes connected to him. These 

functions depend on the value of i i kz z, , z and kz , where iz and iz represent the absolute displacement 

and the velocity of the node i and kz and kz are the absolute displacements and velocities of the N 

nodes that are connected to the node i, all of them in x, y and z axes. Furthermore, Fxi, Fyi and Fzi are 

the external forces that are acting in the internal node i.  

 

Expanding  fxk , fyk and fzk functions as Taylor series [11] and selecting only the first term, the dynamic 

equations for an internal node i are stated as: 
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where , ,xi yi ziz z z and , ,xi yi ziz z z are the absolute displacements and velocities of the node i and 

, ,xk yk zkz z z and , ,xk yk zkz z z are the absolute displacements and velocities of the N nodes that are 

connected to the node i, all of them in x, y and z axes. On the other hand, k and c are coefficients 

related to the stiffness and damping values of the N bars that are in contact with node i. 

 

The finite central difference method [10] is used to obtain the approximation of the displacement’s 

first and second derivatives. Repeating the explained process (equation 2) for the other internal nodes 

and representing the expressions in matrix form, the substructural dynamic equation is stated as: 
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(3) 

where zi1x, ... , zinz and zij1x, ... , zijnz are the absolute displacements of all internal and interface nodes in 

x, y and z axes. 

Equation (3) could be regarded as a VARX model [12], where zi1x, ... , zinz corresponds to the 

endogenous variables and zij1x, ... , zijnz  and  Fi1x, ... , Finz  correspond to the exogenous variables. Ak is a 

n x n endogenous coefficient matrix, where n denotes the number of internal DOFs of the substructure. 

The elements of Ak matrix are related to the physical properties of the bars that connect the internal 

nodes between them. On the other hand, Bk is a n x m exogenous coefficient matrix, where m denotes 

the number of interface DOFs of the substructure. The elements of Bk are related to the physical 

properties of the bars that connect one internal node to another interface node. 

In the proposed method, the substructures are modelled as a VARX models. The state of each 

substructure is evaluated analyzing deviations in its estimated coefficient matrices (Ak and Bk) respect 

to its estimated coefficient matrices (Ak and Bk) in the healthy condition. Firstly substructural damages 

are detected and secondly the damages are located within the substructure. 

3. Numerical results

A linear and time invariant two-dimensional lattice structure is studied in this section. The structure 

consists of stainless steel bars that are connected together by rigid joints and we assume that the forces 

could only be transmitted along the axial direction of the bars and the load could only be applied at the 

two ends of each bar. The structural behaviour is described by a lumped parameter model, where we 

assume that all object are rigid bodies and all interactions between the rigid bodies take place via 

springs.  

In the studied case, the structure is modelled as a sixteen DOF mass-spring model (see figure 1). 

Furthermore, a ten DOF substructure is isolated from the general structure, where absolute 

displacement z6x, z6y, z7x, z7y, z8x and z8y correspond to internal DOFs and absolute displacement z4x, 
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z4y, z5x and z5y correspond to interface DOFs. As shown in figure 1, none external force is applied 

within the substructure. 

Figure 1. Isolated substructure in the structural model 

Below, the dynamic equations for the internal node i are formulated: 
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where mi represent the lumped mass of the internal node i and xiz  and yiz  are the absolute 

accelerations of the internal node i in x and y axes. The internal node i is supporting N internal forces, 

one force for each node connected to him. These forces depend on the stiffness and the angle respect 

to the x axis of the springs located between the internal node i and the N nodes that are connected to 

him, as well as the displacements of these nodes in x and y axes (zxi, zyi, zxk, zyk).  

Following the procedure described in section 2, we get the VARX model. Equation (5) could be 

regarded as a four exogenous and six endogenous variables VARX model [12]. The exogenous 

variables are the measured absolute displacements in z4x, z4y, z5x and z5y and the endogenous variables 

are the measured absolute displacement in z6x, z6y, z7x, z7y, z8x and z8y.  
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A1 and A2 are 6 x 6 endogenous coefficient matrices and B1 is a 6 x 4 exogenous coefficient matrix. 

These matrices are related to the physical properties of the substructural bars (mass, stiffness and 

angle) and also depend on the used sampling period. In addition to this, equation 6 shows the 

dependence between each matrix element and the substructural stiffness values.  
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In this work, the structure is excited in the third mass (outside the substructure) by a Gaussian white 

noise and the displacements are recorded for each substructural DOF using a data sampling frequency 

of 1000 Hz. Later, the substructural VARX model is estimated by the Multivariable Least-Square 

estimator (MLS) method [12] for a healthy state and for the damaged scenarios. All considered 

damages are stiffness losses of a specific spring within the structure. Three different damage severities 

(5%, 10% and 20%) and six different damage locations are evaluated. In some of them, the damaged 

springs are within the substructure (k4,6, k4,7, k6,7, k6,8) and in the others, they correspond to external 

spring (k1,3, k2,5).  

As we could see in equation (6), the elements of matrices A1 and B1 are function, among other things, 

of the stiffness of the substructural springs. Matrix A1 depends on the state of the springs that are 

located between the internal nodes (k6,7, k6,8, k7,8) and matrix B1 depends on those springs located 

between the internal and interface nodes (k4,6, k4,7, k5,6, k5,8).  

In this work we evaluate the state of the whole substructure. For this purpose, firstly the substructural 

VARX model of the healthy state is estimated. Later, the substructural VARX model is reestimated in 

each new scenario and the state of the substructure is evaluated in these new scenarios comparing 

these updated A1 and B1 matrices and the healthy ones. In the case of substructural damages, the 

damages will be firstly detected and later located in one of the substructural spring depending on the 

varied elements within A1 and B1 matrices. On the other hand, if external springs are damaged, the 

elements of matrices A1 and B1 will not change, so these external damages will not be detected and 

located within the substructure. 
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Table 1 shows which elements of A1 and B1 matrices depend exclusively on the properties of the 

substructural springs. In this work, only the variations of these elements (see table 1) are analyzed and 

the state of each substructural spring is evaluated depending on this analysis. For example, the 

stiffness of the spring that joins nodes 5 and 6 (k5,6) affects exclusively in four elements within the 

matrix B1 (B1(1,2), B1(1,4), B1(4,2) and B1(4,4)). For this reason, the variations of these four elements are 

analyzed to determine if the spring k5,6 is damaged or not. In the present study, the damage severity for 

each spring is given by the mean variation of the elements that should be analyzed (see table 1). 
       

Table 1. Analyzed elements within A1 and B1 matrices   

Internal spring A1 elements B1 elements  

k4,6 - (1,1),(1,3).(4,1),(4,3) 
 

 

k4,7 - (2,1),(2,3),(5,1),(5,3) 
 

 

k5,6 - (1,2),(1,4),(4,2),(4,4) 
 

 

k5,8 - (3,2),(3,4),(6,2),(6,4) 
 

 

k6,7 
(1,2),(1,5),(2,1),(2,4) 

(4,2),(4,5),(5,1),(5,4) 
- 

 

k6,8 
(1,3),(1,6),(3,1),(3,4) 

(4,3),(4,6),(6,1),(6,4) 
- 

 

k7,8 
(2,3),(2,6),(3,2),(3,5) 

(5,3),(5,6),(6,2),(6,5) 
- 

 

 

Regarding to the results, for external damages (reducing k1,3 and k2,5 values), the estimated stiffness 

modification for all substructural springs are almost zero, so the method determines that the 

substructure is healthy. For internal damages (reducing k4,6, k4,7, k6,7 and k6,8 values), the estimated 

stiffness modifications are shown in figure 2. In these four scenarios, the substructural damages are 

firstly detected and later located in the proper spring. Furthermore, the results show that the method 

estimates the severity of the damage.  

 

 
Figure 2. Estimated stiffness modification for each substructural spring (internal damages) 
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4. Conclusions

This paper proposes a novel SHM method to locate damages in multidimensional structures. A 

substructure of interest is isolated by a substructuring method and a VARX model of the isolated 

substructure is obtained. The analysis of the estimated VARX model is carried out in order to evaluate 

the health of the isolated substructure. It is not necessary to have any theoretical model and only the 

measured displacement data is required to estimate the isolated substructure’s VARX model. 

A linear and time invariant model of a two-dimensional lattice structure is simulated to evaluate the 

proposed method. The results show that the method not only allows detecting damages within the 

substructure, because it also allows estimating their location and their severity. 

The proposed method is also suited for three dimensional lattice structures, where the number of 

element’s connections increases. Our research group is already applying this method in a laboratory 

lattice structure and the results will be published soon. 
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