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Abstract: To date, the use of synthetic data generation techniques in the health and wellbeing do-
main has been mainly limited to research activities. Although several open source and commercial
packages have been released, they have been oriented to generating synthetic data as a standalone
data preparation process and not integrated into a broader analysis or experiment testing workflow.
In this context, the VITALISE project is working to harmonize Living Lab research and data capture
protocols and to provide controlled processing access to captured data to industrial and scientific
communities. In this paper, we present the initial design and implementation of our synthetic data
generation approach in the context of VITALISE Living Lab controlled data processing workflow,
together with identified challenges and future developments. By uploading data captured from
Living Labs, generating synthetic data from them, developing analysis locally with synthetic data,
and then executing them remotely with real data, the utility of the proposed workflow has been
validated. Results have shown that the presented workflow helps accelerate research on artificial
intelligence, ensuring compliance with data protection laws. The presented approach has demon-
strated how the adoption of state-of-the-art synthetic data generation techniques can be applied for
real-world applications.

Keywords: synthetic data generation; Living Lab; controlled data processing; machine learning

1. Introduction

Synthetic data (SD) is data generated artificially by a mathematical model to replicate
distributions and structures of some real data (RD) [1]. Research on health and wellbeing-
related SD has gained importance in recent years due to the lack of sufficient RD (both in
terms of access and availability) for artificial intelligence (AI) and machine learning (ML)
model development. In this context, synthetic data generation (SDG) has been widely
researched within health and wellbeing domains for different data types, including biomed-
ical signals [2–4], medical images [5–8], time-series smart-home activity data [9–12], and
EHR tabular data [13–21]. Some of these studies used SDG to preserve privacy, ensuring
a secure data exchange [3,4,10,12–19,21], while others used it to augment RD for training
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different ML models, either seeking to balance classes or to achieve more data to improve
ML model training [2,5–9,11,20]. Many of the studies related to SDG in this domain have
been focused on building new SDG approaches and evaluating or comparing them with
other techniques from the literature [14,21]. Other related studies have proposed different
sets of metrics for SD evaluation, using them to evaluate and compare the SD generated
with different approaches [22,23]. So far, the use of SDG technologies in health and well-
being has been mainly limited to research activities. Although different open source and
commercial packages have been released for facilitating SDG [24–28], they have dealt with
SDG as a standalone data preparation process and are not integrated into a broader analysis
or experiment testing workflow.

Rankin et al. [13] proposed a pipeline that integrates SDG to enable a secure data
exchange between healthcare departments and external researchers (ER). With this pipeline,
SDG models can be integrated into healthcare departments to generate private SD that can
be shared with ER. Then, ER can develop AI algorithms or ML models with the obtained
SD and share them with healthcare departments. Inside healthcare departments, the
shared models can be rebuilt and tested with RD without compromising the privacy of
the data. This way, RD never leaves the secure environment, and research on AI and ML
can be accelerated, promoting the use of SD. However, this pipeline was not implemented,
and it was presented to show the potential of SDG technologies. The core objective of
this study is to demonstrate how SD can be used instead of RD for ML model training.
Additionally, the proposed pipeline is a conceptual proposal and does not imply the
inclusion and automation of SDG technologies within an overall technological workflow
(i.e., this conceptual proposal can still be implemented with the standalone execution of
SDG tools). Thus, there is a lack of development of a complete pipeline or workflow that
integrates and automates SDG logic to enable researchers to make their own analyses with
SD and execute them remotely in a controlled environment with RD. Throughout this paper,
a controlled environment is defined as a setting where health and wellbeing personal data
can only be accessed under restricted permissions and privacy-preserving approaches.

In recent years, Living Labs (LLs) have become resilient research and innovation
ecosystems proving access to infrastructures. By involving the quadruple helix (public,
private, academia, and society), with a special focus on people and their participation in
research procedures, they have been demonstrated to be key for the integration of research
and innovation processes in real-life environments. In this sense, the VITALISE project aims
to open LLs Infrastructures to facilitate and promote research activities in the field of health
and wellbeing in Europe and beyond [29]. This project is working to harmonize health and
wellbeing LLs research procedures and services, including data capture protocols. One of
the project’s objectives is to provide controlled access to analytics computation using LLs
computational infrastructure on collected data for industrial and scientific communities
and for the development of innovative data-driven digital health products and services [30].
This paper is related to one of the most important outcomes of the VITALISE project, which
is the Information and Communication Technologies (ICT) tools for providing effective and
convenient virtual access to researchers. Inside this outcome, the VITALISE LLs controlled
data processing workflow is being developed, which can be used as the intermediary
between LLs and ER. The workflow will enable (1) the storage and unification of the data
generated from LLs under a defined data model, (2) the request of SDG for a specific query
that can be made on the stored data, and (3) the remote execution of experiments with RD
after having developed them locally with SD. This workflow will accelerate research on AI
and ML model development, ensuring compliance with data protection laws. Moreover,
providing controlled processing access to data captured in LLs to industrial and scientific
communities, the development of innovative data-driven digital health products and
services is streamlined.

The proposed workflow shares the basis of RD never leaving local institutions for AI
and ML model development with Federated Learning (FL). Using FL techniques RD is
stored locally in individual institutions (peer-to-peer FL), which can include a common
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server (aggregation server) [31]. With this approach, institutions can only access their
own private data [32], and ER cannot access RD at all. ML models and AI algorithms are
developed mostly based on a data model specification and with limited (or no) access
to RD. Algorithmic models are trained and refined as part of an iterative process of the
federated running of algorithms in different data nodes and progressive incorporation of
results to the models. Complementary to this approach, the VITALISE LLs controlled data
processing workflow offers ERs SD so that they can develop and train ML models while
using their own computers. When they finish their analysis, they will be able to send the
final and verified source code to the LLs infrastructure where the model can be trained
with RD, solving the data privacy and siloing inconveniences.

In this paper, we present the initial design and implementation of our SDG incorpora-
tion approach into the VITALISE LLs controlled data processing workflow. Even though
the workflow has been designed and implemented for a health and wellbeing application,
it can be applied to other domains, such as education, industrial processes, weather and
climate, or business. Additionally, we give a real-world usage example to demonstrate how
it can help to accelerate research on AI and ML model development, ensuring compliance
with data protection laws. The presented approach helps accelerate research in this field
and the adoption of state-of-the-art SDG approaches for real-world applications. The
workflow can be used to obtain a synthetic, thus anonymized, version of a real dataset,
enabling ER to make their own analysis with SD locally and then execute the same analysis
with RD remotely. Our contributions can be summarised as follows:

1. We present a controlled data processing workflow for a secure data exchange and
analysis without compromising data privacy. The workflow involves the generation
of SD based on previously uploaded RD and the remote execution of experiments
with RD on LLs premises.

2. To the best of our knowledge, this work is the first attempt to propose the incorpora-
tion and automation of SDG models within a controlled data processing workflow
whose objective is to ensure compliance with personal data protection laws.

3. We have conducted a real-world usage example to demonstrate the usefulness and
efficiency of the proposed workflow. To conduct the experiments, we have used heart
rate data measured from Fitbit smart wristbands.

4. Additionally, we have performed an experiment with the SD obtained from the heart
rate values to analyze the performance on the resemblance and utility dimensions.
For this analysis, we have used some metrics to evaluate the resemblance of SD to RD,
and we have performed some forecasting analyses locally with different SD assets
and executed them remotely with RD.

The remainder of this article is organized as follows. In the next section, the VITALISE
LLs controlled data processing workflow and the SDG module integration are explained
together with the methods used for their development. Next, the implementation of the
proposed workflow is evaluated with real-life sample data, the obtained SD is compared
with RD, and forecasting analyses are developed locally with SD and executed remotely
with RD. Finally, the obtained results are discussed, and the main findings, limitations, and
future work of the proposed workflow are analyzed.

2. Materials and Methods

In this section, the VITALISE LLs controlled data processing workflow is described
together with the definition of the modules involved in it. Then, the integration of SDG in
the workflow is more extensively described.

2.1. VITALISE LL Controlled Data Processing Workflow

To guide the reader in the workflow description, a simplified diagram of the VITALISE
LLs controlled data processing workflow is depicted in Figure 1. The workflow diagram is
comprised of three main blocks: (1) LLs, in which a high amount of health and wellbeing
data is generated from different data collection devices, (2) the VITALISE Node Logic
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(VNL), which is a microservice architecture responsible for the execution of the workflow
in a controlled environment, and (3) ER, who can explore the available data to request SD
and execute experiments with it. Interactions with VNL are represented in Figure 1, and
available datasets exploration are made through a web portal, which has been omitted
from the diagram to provide a better understanding of how actual SDG approaches can be
incorporated as a controlled data processing workflow enabler for a real-world application.

Figure 1. VITALISE LL controlled data processing workflow diagram.

When the data manager of an LLs uploads the collected data into the VNL, this module
transforms the received data into a defined data format and stores it in the database system.
At any time, ER can explore and query metadata information of the available data to then
make an SD request for the query results, which is managed by the VNL. With the requested
SD, ER can develop AI algorithms or ML models locally, and then, through a request to
the VNL, the developed experiment is run in a controlled environment using RD. Once
the experiment is completed, ER can check the results to review and evaluate whether
they are satisfactory. This way, ER can work on the experiments without having access to
RD. Finally, if results are not deemed satisfactory, ER can further improve the developed
algorithm with SD and obtained results, or alternatively request the generation of new SD
for another data query that meets better-targeted experiment goals. Once ER are happy
with the obtained results on RD, they can disseminate and exploit them, together with
the developed experiment code. In this sense, the experiment, and the results of applying
it to RD, can be publicly shared without showing any detail of RD and violating data
protection and regulation laws. After this step and having satisfied ER with the obtained
results from the local experiments and/or the remote experiments, the workflow execution
is completed.

Previous works have shown that the best ML model trained with SD does not always
match the best ML model trained with RD [23]. Thus, using the proposed approach, ER
would not obtain the same results when modeling the algorithm locally with SD and when
training and evaluating it remotely with RD, but SD can be useful to help ER to advance in
algorithm development. It must also be considered that the final ML model will be built
and evaluated on RD; the models built on SD are used to see the feasibility of different ML
model approaches and help in the design and implementation of these models.
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VITALISE Node Logic

The VNL has been developed following a microservice architecture design, composed
of six services that communicate with each other in the way depicted in Figure 2. These
different services are bundled through containerization technologies and managed through
docker-compose container orchestration technology to facilitate the deployment and update
of Node Logic in different LLs.

Figure 2. Components of the VITALISE Node Logic.

• MongoDB is a distributed NoSQL database system [33] to store real data from LLs
and generated SD in the defined Vitalise Data Format.

• RabbitMQ is an open-source message broker [34] used to communicate the modules
of the environment and queue tasks.

• MinIO server is an object storage server [35] that stores trained SDG models, generated
SD in CSV format, the necessary files for the remote execution of experiments with
RD, and the results produced as part of remote execution of experiments with RD.

• The Node Hub is a Communication Application Programming Interface (API) devel-
oped in Python using the FastAPI framework [36] that handles the requests coming
from ER through the web portal and works as an intermediary between the other
two modules (SD Generator and Remote Execution Engine). Thereby, it has access
to RabbitMQ (to queue tasks for the other modules), MongoDB (to store and query
available RD and SD), and MinIO server (to write input files for the remote execution
of experiments with RD).

• The SD Generator is an MQTT client subscribed to the SD topic of RabbitMQ and
developed in Python. This module is responsible for training SDG models and gener-
ating SD. Thus, it has access to RabbitMQ (to subscribe to the SD topic), MongoDB
(to query available RD and store the generated SD), and MinIO server (to store the
trained SDG models and the generated SD in CSV format).

• The Remote Execution Engine is a distributed system, which is developed using
Celery [37] and Python, to process and queue the tasks regarding the remote execution
of analysis with RD that are sent through RabbitMQ by the Node Hub. It has access
to RabbitMQ (to see the queued tasks regarding the remote execution), MongoDB (to
query available RD and SD), and MinIO server (to access the necessary files for the
remote execution of each experiment and to store the results of them).
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As the main aim of this paper is to present the initial design and implementation
result of our SDG incorporation approach into the VITALISE LLs controlled data process-
ing workflow, in the next section, the integration of the SD Generator and the services
communicated with it are more extensively described.

2.2. Synthetic Data Generation Module Integration
2.2.1. Synthetic Data Generation Approaches

For the generation of SD, many approaches can be found in the literature. Some of
them employ statistical models to learn the multivariate distributions of RD [13,14,16,21,38],
while others use generative models, especially different architectures of generative adver-
sarial networks (GANs), to generate SD [14,17–20,39]. This kind of approach consists of two
neural networks (a generator and a discriminator) that learn to generate high-quality SD
through an adversarial training process [40]. Furthermore, there are open-source and com-
mercial packages that are more accessible for researchers. Examples of them are Syntho [24],
MedkitLearn [25], Ydata [27], and the Synthetic Data Vault (SDV) project [28,41].

The SDG techniques incorporated in the workflow are the ones provided by the previ-
ously mentioned SDV project. These approaches combine several probabilistic graphical
modeling and Deep Learning (DL) based techniques [41]. They have been widely used
in the literature and are taken as a baseline for comparison for different data types and
scenarios [42–45]. For the future, it is intended to use different SDG models and allow for
parameterization, and create a logic to select the most suitable model considering the input
data type (time-series, tabular, etc.).

2.2.2. Synthetic Data Generation Model Training

Every time an LLs manager uses the Node Hub of the VNL to insert new data, the
workflow described in Figure 3 is executed. In this process, the services of the VNL involved
are the Node Hub and the SD Generator. When the LLs manager makes a request to the
VNL to insert LLs data, the Node Hub transforms the data into the VITALISE data format
and stores it in MongoDB. Then, a message is published to the SD topic of RabbitMQ to
request training for an SDG model. As the SD Generator is subscribed to the SD topic
of RabbitMQ, when it receives this message, the module creates a new SDG model and
trains it with all available RD in MongoDB of the collection to which the LLs manager has
inserted data. Once the model is trained, it is saved in the MinIO server.

Figure 3. SDG model training workflow.

2.2.3. Synthetic Data Generation with Trained Models

At any time, ER can make a request to generate SD for a specific data collection or
query. Figure 4 describes the workflow of this request, being the Node Hub and the SD
Generator the modules responsible for this action. When an SDG request comes from
ER to the Node Hub, an SD request ID (a unique identifier of the generated SD asset) is
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generated, and a message is published to the SD topic of RabbitMQ to indicate the need to
generate SD. When the SD generator receives this message, the module accesses the MinIO
server to load the previously trained model. Then, the model is used to generate SD, and
the generated SD is saved in the storage systems; MongoDB in JSON format and MinIO
server in CSV format. Finally, the SD Generator returns a request ID that corresponds to
the generated SD.

Figure 4. SDG workflow.

2.2.4. Generated Synthetic Data Retrieval

With the SD request ID, as shown in Figure 5, ER can download the requested SD in
the desired format, JSON or CSV, through a request to the VNL. If the ER asks for data in
JSON format, the Node Hub finds the SD asset in MongoDB. On the contrary, if the ER asks
for data in CSV format, the Node Hub finds the SD asset in the MinIO server. In both cases,
two files are returned to ER in a compressed folder: one file with the information of the SD
asset (sd_request_id, timestamp, description, etc.) and the other file with the SD itself in
the requested format.

Figure 5. SD downloading workflow.
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3. Results

In this section, the results obtained when applying the VITALISE LL controlled data
processing workflow to a real-world usage example are presented to evaluate the incor-
poration of SDG techniques in the presented workflow. This evaluation is based on the
demonstration of the usefulness and the good performance of the proposed workflow. First,
the data used for evaluation is described. Then, the workflow execution to upload data
and make SD requests to the VNL is detailed. Next, the quality of the generated SD is
analyzed in terms of resemblance with RD. Finally, forecasting analyses are implemented
and evaluated with the requested SD assets, to then request the remote execution of the
same analyses scripts with RD and compare both results.

3.1. Used Data

The data used to evaluate the proposed workflow is an anonymized dataset of heart
rate measurements from Fitbit smart wristbands for a full day for one person. In total,
there were 11,724 data points measured approximately every 5 s. The example data file is
attached as a Supplementary Material (Data S1 Original Fitbit heart rate measurements)
in both JSON and CSV formats. This example data is the only data type compatible with
the actual implementation of the workflow. Since the heart rate measurements show the
evolution of a variable, heart rate in this case, through time, it could be treated as time-series
data. Through the rest of the paper, this data will be referenced as heart rate measurements.

3.2. Workflow Execution

To demonstrate the usefulness of the proposed workflow, a real-life example has
been executed with the previously described data. The next steps have been involved in
this execution.

1. By simulating the role of an LLs manager, the VNL has been used to upload the heart
rate measurements to the VNL. At this moment, the SDG approach has been trained
with the uploaded data.

2. By simulating the role of ER, a petition has been made to the VNL to request SD of
the first five hours of the previously uploaded heart rate data.

3. Taking advantage of the obtained SD request ID, the ER has been able to obtain SD in
the desired format, either JSON or CSV. In both cases, a zip file has been downloaded
with two files, one with the information of SD (fields shown in Table 1) and the other
with the SD itself.

4. Using the downloaded SD in CSV format, a brief evaluation of the SD resemblance has
been done using some metrics proposed by Hernandez et al. [22] and Dankar et al. [23].
Since ER cannot access RD, this analysis is not performed for RD.

5. Using the obtained SD in CSV format, a forecasting model has been trained with
measurements from four hours and tested, making predictions for the next hour.

6. The remote execution of the locally developed algorithm has been requested by the
VNL to obtain the evaluation results of applying the same forecasting model to RD.

Table 1. Information fields of the downloaded SD.

Field Description

sd_request_id Unique identifier of the SDG request.
hash_query_real
description
timestamp

Hash to identify query of real data results.
Description of the query used for SDG.
Date of when the SD has been generated.

This process has been iteratively executed, requesting SD for four more hours until
we obtained a complete SD asset with the measurements of a complete day, six iterations
in total. The VNL architecture has been deployed with docker technology and tested in
a virtual machine configured with an 8-cores CPU running at 2.30 GHz, 32 GB of SSD
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storage, and 128 GB RAM memory. The SDG approach used has been the Probabilistic
AutoRegressive (PAR) model from the SDV library [28]. Training this model with the
complete asset of heart rate measurements and 5000 epochs has taken 46 h (33 s per epoch).
The generation of SD took around 2 h for each SD asset. Additionally, we tried to use the
tabular data model from the same package. Even though the training and generation time
is significantly lower (less than 5 min), the generated data was less representative and did
not resemble the time nature of RD.

The downloaded SD files can be accessed as Supplementary Materials: Data S2 SD
Information files, Data S3 SD in JSON format, and Data S4 SD in CSV format. For the
resemblance evaluation of SD and the forecasting analysis explained in the next sections,
data downloaded in CSV format has been used. In the next subsections, the results of the
resemblance evaluation and the forecasting local and remote analyses are presented.

3.2.1. Resemblance Evaluation of Generated SD

The quality of the generated SD has been analyzed using some resemblance evaluation
metrics and methods inspired by Hernandez et al. [22] and Dankar et al. [23]. As the
generated SD corresponds to heart rate measurements in periods of time for a whole
day (24 h), the used metrics and methods attempt to evaluate if the temporal nature
and characteristics of RD measurements are fulfilled in SD measurements. The results of
applying these resemblance evaluation metrics and methods are explained in this section,
and the Jupyter Notebook used for it can be found as a Supplementary Material (Results S1
Resemblance evaluation).

First, a basic statistical analysis of the time series has been made, computing the mean
and standard deviation (std) of heart rate values. Table 2 shows the mean and std values of
the heart rate measurements for both RD and SD. The mean values from all the iterations
indicate that despite being higher for SD on the initial iterations (with fewer hours of data
volume requested), it was higher for RD on the last iterations (with more data volume
being evaluated). Regarding the std, the values for RD are higher for all iterations. Iteration
number 4 is considered to have the most similar statistics.

Table 2. Mean and Standard Deviation Values of Heart Rate Measurements for RD and SD.

It. Data Size Mean std

1
RD

2440
74.37 ±11.76

SD 79.64 ±8.8

2
RD

4392
71.07 ±11.64

SD 76.11 ±8.86

3
RD

6344
74.33 ±12.37

SD 74.91 ±9.9

4
RD

8296
75.66 ±11.71

SD 75.91 ±10.02

5
RD

10,248
77.54 ±12.04

SD 76.71 ±9.54

6
RD

11,724
77.36 ±11.66

SD 75.16 ±9.09

As shown in Table 2, the mean and std values are different between RD and SD
on each iteration. To discover the significance of those differences, hypothetical testing
techniques have been applied. The difference in means of each iteration has been evaluated
with a Student’s t-test considering a significant difference between them as the alternative
hypothesis. A Kolmogorov–Smirnov test has also been used to analyze whether the
distributions of RD and SD are equal, considering a significant difference between them
as the alternative hypothesis. Nearly all the p-values of both tests are close to 0, meaning
that most of the null hypotheses are rejected. It must be mentioned that only the null
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hypothesis stating that means of RD and SD are equal has been accepted for Iteration 4.
From these results, it can be confirmed that in most of the iterations, neither the mean nor
the distribution of RD and SD are equal.

To understand better the values of heart rate, two plots have been analyzed for each
SD request, a distribution plot, shown on the left of each iteration in Figure 6, and a boxplot,
shown on the right of each iteration. The distribution plot shows that, effectively, the
distributions of SD and RD are not equal, but their shape is quite similar, which indicates
that SD represents quite well RD measurements. The boxplots also suggest that although
SD measurements are not identical to RD measurements, most of the measurements of both
RD and SD lay in approximately the same value range.

Figure 6. Visual Comparison of heart rate measurements distribution for RD and SD. Each pair of
plots corresponds to one iteration. On the left of each iteration, the distribution plot of both RD and
SD heart rate measurements is shown. In the right of each iteration, the boxplots of both RD and SD
heart rate measurements can be seen.

After analyzing the resemblance of the SD measurements, the resemblance of the
temporal nature has been analyzed for each requested SD. For that, the autocorrelation of
RD and SD has been measured, as each data point is highly correlated with the previous
ones. As shown in Figure 7, the autocorrelation of SD does not exactly fit the autocor-
relation of RD on each iteration. However, the autocorrelation plots of all the iterations
imply a temporal nature of data, meaning that SD has been able to maintain the temporal
nature of RD.

To analyze the resemblance of RD and SD in terms of time trends, a time plot has been
analyzed for both RD and SD for each requested SD. As can be observed in Figure 8, the
generated SD implies similar temporal nature that looks like a realistic time series, even if
the SD values do not reach the highest values of RD.
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Figure 7. Autocorrelation plots of heart rate measurements for each iteration. In the right of each
iteration, the autocorrelation plot of the RD data can be seen and on the left, the autocorrelation
plot of SD.

Figure 8. Time plot for visual comparison of RD and SD heart rate measurement values. Each plot
corresponds to one iteration of the executed workflow.

3.2.2. Data Forecasting Analyses

After evaluating the resemblance of the characteristics and nature of SD and RD, a
forecasting analysis has been developed for each requested SD locally. Forecasting is the
process of predicting the next data points of a time series based on previous data points [46].



Electronics 2022, 11, 812 12 of 17

This type of analysis could be one of the experiments that ER would develop locally with
SD and then schedule to run remotely with RD.

Considering that ER only has access to SD, the forecasting analysis has been locally
developed with SD, tailoring all the forecasting parameters to it, and then the remote
execution of it with RD has been requested to the VNL. This way, the Remote Execution
Engine has been able to execute the forecasting analysis remotely with RD and to return the
obtained results to ER. This process has been iteratively executed for the six SD requests,
each one with more data points than the previous one.

In the aforementioned experiment, the Seasonal AutoRegressive Integrated Moving
Average with eXogenous regressors (SARIMAX) model [47] has been trained and evaluated
in all analyses. The forecasting model has been trained with all data points except for the
data points corresponding to the last hour for each SD asset. The last hour of each asset has
been used to evaluate the forecasting model. Analyses scripts have been developed in a
Jupyter Lab environment. Local execution was run in the previously introduced virtual
machine used for the workflow execution (8-cores 2.30 GHz, 32 GB SSD disk storage, and
128 GB RAM memory). The execution time was approximately 2 h for each locally executed
(LE) and remotely executed (RE) analysis. The code of each forecasting analysis is attached
as Supplementary Material (Results S2 Forecasting Analyses).

To evaluate the model performance and compare the real values with the predicted
values, the Mean Forecasting Error (MFE), Mean Absolute Error (MAE), Mean Squared
Error (MSE), and the Root Mean Squared Error (RMSE) have been used. Table 3 shows the
results of this forecasting analysis for each iteration and both cases: the LE analysis with
SD and the RE analysis with RD (results file attached as Supplementary Material with the
title of Results S3 Remote Execution). The lower these metrics are, the better the ML model
is. In the Table, the metric values of the winning forecasting model for both RD and SD are
typed in bold and marked with *.

Table 3. Results of the forecasting analysis performed with heart rate data measurements for both
RD and SD.

It. Train Size Test Size MFE MAE MSE RMSE

1
RD (RE) *

1952 488
3.7848 * 4.6536 * 38.4651 * 6.2020 *

SD (LE) 13.3709 13.3873 233.1556 15.2691

2
RD (RE)

3904 488
5.1335 6.9897 72.8914 8.5376

SD (LE) 4.8278 8.0245 112.4181 10.6027

3
RD (RE)

5856 488
8.4036 10.2930 191.5266 13.8393

SD (LE) 1.4877 8.4385 100.6106 10.0304

4
RD (RE)

7808 488
9.8114 10.6352 189.7254 13.7740

SD (LE)* 2.1701 * 6.6331 * 62.1659 * 7.8845 *

5
RD (RE)

9760 488
6.2950 9.2991 149.4631 12.225

SD (LE) 2.7377 7.3770 76.2827 8.7341

6
RD (RE)

11,224 500
8.2860 8.6740 105.9700 10.2941

SD (LE) 5.3780 7.3140 89.0420 9.4362

The forecasting analyses developed locally with SD gave satisfactory results, obtaining
MFE values below 15. Even though the results from the forecasting executed remotely with
RD are different from the ones obtained for SD, the MFE values are lower and remain in
a similar range. Apart from that, the results show that using more data samples will not
always mean that the prediction would be better. However, ER can decide using their own
strategy which ML model to disseminate and exploit.

The obtained results have shown that the winning forecasting model is not matched
for RD and SD. For the LE models with SD, the best forecasting model has been obtained
in the fourth iteration (trained with 7808 samples), whereas for the RE models with RD,
the best one has been obtained in the first iteration (trained with 1952 samples). Thus,
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from the developed analyses, the model to be disseminated and exploited would be the
model trained on the first iteration using 1952 since it is the one with the best results for the
RE analyses.

4. Discussion

In this section, the results obtained from the workflow execution are discussed, and
the main findings, limitations, and future work of the developed research are presented.

4.1. SDG Integrated Workflow Execution Results

The real-world usage example of the workflow execution with heart rate measure-
ments has been performed successfully. First, heart rate measurements data from an LLs
has been correctly stored and transformed to the VITALISE data format in the VNL. Then,
the SD version of the heart rate measurements has been requested and obtained for different
data sizes in two data formats (JSON and CSV). Finally, local analysis has been performed
with each obtained SD asset, and the remote execution of the same analyses with RD have
been requested.

The downloaded SD in CSV format for each requested SD has been evaluated in terms
of resemblance with RD. In this analysis, it has been proven that although measurements
from SD are not equal to measurements from RD in all cases, basic characteristics and trends
from RD are preserved in SD. Since the aim of this paper is to present the SDG-enabled
VITALISE LLs controlled data processing workflow and verify its usefulness, an accurate
resemblance of SD to RD is not critical. However, solid results have been obtained; SD has
resembled most of the heart rate measurements of RD, preserving the distributions and
temporal nature of RD measurements while keeping the privacy of RD.

The developed forecasting analyses have shown that when performing an analysis
locally with SD and when doing it remotely with RD, similar prediction errors are obtained.
An extensive parameter tunning was not performed since the objective of this analysis is
to show the differences between the results of performing an analysis locally (with SD)
and remotely (with RD), instead of obtaining the best forecasting model for heart rate
measurement predictions. Although prediction errors are different for both analyses in
all the iterations, lower prediction errors have been obtained with the analyses executed
remotely with RD in most cases. However, the winning forecasting model is not the
same as the models trained on SD and RD. This illustrates how the SD generated by the
iterative execution of the workflow can be used to check the feasibility of ML models being
generated, helping in the design and implementation of the best final ML model which can
be built and evaluated with RD. In conclusion, with the presented results, it can be assured
that the proposed workflow can be used for AI and ML model development without having
access to RD, thus, ensuring compliance with personal data protection laws.

With these results, it has been demonstrated the efficiency of the presented work-
flow and how it can be used for a secure data exchange with real-world example usage.
Furthermore, the obtained results are good enough to ensure that the workflow can be
applied to other types of data and analyses in the future, not limited to the health and
wellbeing domain, but also applying it to other domains where privacy concerns can arise,
such as education, industrial processes, business, etc. Implementation of this workflow for
privacy-preserving data processing can also be motivated by intellectual property rights
protection and the uninterrupted operation of basic necessities services in the current cyber
security threats context.

4.2. Main Findings

This paper has demonstrated that SDG techniques can be successfully integrated
and automated within a controlled data processing workflow in the health and wellbeing
domain. More specifically, through a real-world usage example, it has been shown that the
VITALISE LLs controlled data processing workflow helps accelerate research on AI and
ML model development, ensuring compliance with data protection laws.
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Furthermore, the proposed approach overcomes the lack of a complete pipeline or
workflow that integrates and automates SDG logic to enable researchers to develop their
own analysis scripts with SD locally and execute them remotely in a controlled environment
with RD.

Through the upload of heart rate measurements, SDG of those values, local forecasting
analyses with SD, and remote forecasting analysis with RD, the efficiency and utility of the
complete workflow have been demonstrated and validated.

The developed work is the first attempt to incorporate SDG techniques into a com-
plete controlled data processing workflow (i.e., VITALISE LLs controlled data processing
workflow) which ensures compliance with personal data protection laws.

4.3. Limitations and Future Work

The initial implementation of the presented workflow has allowed us to validate
the approach, identify limitations, and spot future research areas to overcome identified
limitations and extend current capabilities.

The complete execution of the workflow relies on ER satisfaction with the obtained
results from the local experiments (executed with requested SD assets) and/or the remote
experiments (executed with RD). If ER is constantly making SD requests or remote execution
requests to the VNL, the workflow could suffer from computational resources overload. To
overcome this issue, the definition and implementation of a strategy to limit the number
of requests that ER can make to the VNL is planned. This limitation can be applied
for monthly, weekly, or daily use, depending on the needs of ER and computational
resources’ availability.

Currently, the presented workflow has been implemented for heart rate measurements
from Fitbit devices captured from LLs. As the VITALISE data model definition advances
according to LLs managers’ requests for types of data to be supported, the logic is being
extended to support more data (types and source devices) generated from LLs, in addition
to the already implemented heart rate measurements.

Regarding the first step of the workflow, every time new data is uploaded, an SDG
approach is trained using all available data. This step could not be very efficient as the
execution time might be slowed down. Thus, for a future version of the workflow, it is
intended to decouple both operations and make the option to train an SDG to LLs when
they desire instead of training it each time new data is available. This improvement will
speed up the execution time of the first step of the workflow and give the opportunity
to train a new SDG approach when LLs managers find it necessary with the desired
data. Additionally, research is ongoing to enable automatic SDG model training (either
suggesting LLs manager or directly starting model update) based on periodic evaluation of
dataset statistics.

Another limitation of this work is that only one SDG technique has been incorporated
in the workflow, and with this technique, the training of the approach and the generation
of SD takes a long time. Nevertheless, the execution time would depend on the available
hardware and the implemented SDG technique. Other SDG approaches need less time for
training and generation, but they are not suitable for time-series data. The incorporation
of only one SDG technique could also be a problem when more diverse data types are
supported by the VITALISE platform due to the incompatibility between the implemented
technique and the nature of the data. To solve this problem, it is intended to incorporate
different SDG techniques for different data types (tabular, time-series, signals, etc.), together
with the implementation of a logic for deciding which SDG technique will generate better
SD considering the available data. Furthermore, the long training and SD generation time
of the used SDG technique indicates that we should streamline the process of SDG. For this,
a strategy that can queue the tasks of SDG in a way in which different SDG approaches
are trained at the same time should be used, as well as research alternative approaches to
current FIFO queues to guarantee fairer scheduling.
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The effect on privacy of iterative complementary SD requests to the proposed frame-
work has not been analyzed since the objective of the study is to demonstrate the integration
of SDG approaches in our controlled data processing workflow. However, the analysis
of these issues, such as subjects re-identification or privacy breaches, will be further ana-
lyzed, together with the proposed framework’s extension with countermeasures to avoid
disclosure of sensitive information as a result of these types of privacy attacks.

Furthermore, an automatic and optimized parameter tuning for the implemented SDG
approaches will be developed. This way, the best parameters of each SDG technique and
RD combination can be found and applied with the objective to generate SD of better quality.
Together with this improvement, when ER requests SD, metrics will also be provided to
indicate the quality of SD compared to RD. This will give ER a better understanding of how
RD might be without seeing it and help them perform better AI and ML model development.
Besides, the provision of these metrics can help ER in the decision of requesting SD for a
new query or developing another algorithm with the same SD.

Additionally, to give a higher utility to the workflow and enable ER to conduct more
complete and specific analysis, the functionality to request SD for specific queries (that meet
a series of conditions) is planned. This way, ER will be able to retrieve SD and develop and
run algorithms for more specific experimental datasets created from more complex queries
that could involve different data types. For example, ER will be able to request an SD
version of heart rate, steps, and oxygen saturation of people above 40 years old. With this
option, the complete workflow will be used in more varied types of analysis, improving its
utility. This improvement will also affect the logic for SDG approaches training, enabling
offering ERs two alternatives; (i) faster responding and probably less quality pre-trained
generic SDG models and (ii) query-based on-situ SDG model training, which will have an
extended SD generation time requirement, but presumably better-quality SD (i.e., increased
resemblance and utility).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics11050812/s1, Data S1 Original Fitbit heart rate mea-
surements; Data S2 SD Information; Data S3 SD in JSON format; Data S4 SD in CSV format; Results
S1 Resemblance evaluation; Results S2 Forecasting Analyses; Results S3 Remote Execution.
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