
Doctoral Thesis

Test optimization for
Highly-Configurable Cyber-Physical Systems

Author:
Urtzi Markiegi Gonzalez

Supervisors:
Dr. Leire Etxeberria Elorza

Dr. Goiuria Sagardui Mendieta

PhD Program in Applied Engineering
Computer and Electronics Departament

Faculty of Engineering
Mondragon Unibertsitatea

Arrasate-Mondragon
May 2021

This work is licensed under a Creative Com-
mons “Attribution-NonCommercial-NoDerivs 3.0
Unported” license.

https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en

Gizonen lana jakintza dugu; ezagutuz aldatzea,
naturarekin bat izan eta harremanetan sartzea.
Eta indarrak ongi errotuz gure sustraiak lurrari lotuz,
bertatikan irautea: ezaren gudaz baietza sortuz,
ukazioa legetzat hartuz beti aurrera joatea.

El trabajo humano es conocimiento: conocer y transformar,
Hermanarse con la naturaleza y llegar a desvelarla
Crear de la negación lo positivo,
Y tomando la contradicción por ley continuar avanzando.

Human work is knowledge: knowing and transforming,
To become twinned with nature and to unveil it.
To create from negation the positive,
And taking contradiction as law, to continue advancing.

(Xabier Lete)

Nekane, Irati eta Nagore.
Aita, Ama, Anaiz eta Amona.

Nigan sinistu eta beti bezala
zuen babesa eman didazutelako.

Urtzi

Acknowledgments

Partially putting aside teaching and (what I thought was) research to focus
on this thesis has been a challenge I had been waiting for for years. They
have been five long years, with good moments but also some more difficult
ones. But if one thing is clear to me, it is that if I have reached the end, it has
been thanks to the hard work and to the unconditional support of the great
team-family.

First of all I would like to thank Leire and Goiuria for their constant
support, patience and thoroughness during all this journey, otherwise this
thesis would not have happened. No, I did not know how to do research. So,
thank you for teaching me to question everything and to improve the technique
for experimentation. Thank you for setting milestones and giving me room to
adapt and also for the rigorous feedback. Thank you for trusting me.

Aitor, this thesis continues the research work you started. I am very
privileged to have your support in my research, both technically and in writing
papers. I have learned a lot. You are teaching me day after day. Thanks for
your patience, generosity and the time you have dedicated to me. But thanks
also for the good times and encouragement you have given me.

But this work would not have been possible without the collaboration of
the rest of my colleagues, who have made an effort to cover for me when I
was not there: Osane (in 5 years with SMC and much more), Arkauz and
Cuenca (with the Mercedes project), Joseba (in the Master), Alain (in multiple
opportunity projects), Iñigo and Xabi V. (in our European adventures) and
Gorka (replacing me in databases). In addition, there are not few who have
kept the flame of illusion and motivation with their advice and encouragement
or simply listening to me: Osane, Felix, Miren, Garitano, Aitzol thanks for
your support. I would also like to thank Roberto, Sagarna and Nekane for
your close and unconditional support and backup.

3

The initial stage of the thesis made me go back to my student days and
make new friends. Thank you Fernando, David, Unai, Dani for the shared good
times. Also, many thanks to the lecturers at that stage (Artetxe, Dani, Paula,
etc.). Your training has been fundamental for this work. Thanks Susanne,
for helping me in this learning process also with language issues and for your
support.

And a new adventure arrived, in due time, but before I had finished the
thesis. With the coordination of the Computer Science degree, I want to thank
Txema for his patience and generosity and Patxi, Jone and Miren for their
help all this time. And I do not forget my colleagues of the title team (Enaitz,
Mikel, Jon, etc.), you have suffered my absence and my enthusiasm. I do not
know which is worse, but we will have time to improve it.

Soon others will finish: Dani, Velez, come on, there’s nothing left! Miriam,
Jon, I am sure you will do a brilliant job!

Mondragon Goi Eskola Politeknikoa, Eskola, is my second home. And I
want to thank all the colleagues of Eskola for giving me the opportunity to
contribute with this thesis.

Finally my family. Nekane, Irati, Nagore, Aita, Ama, Anaiz and Amona. I
love you. I owe you many good moments, and sorry for having paid you back
with bad ones. You are always there, helping, listening and putting up with
me. As amona Maritxu says, you are “My refuge”.

Thank you all, it’s awesome to feel the support of such a big family.

Eskerrik asko!

4

Declaration

Hereby I declare that this document is my original authorial work, which
I have worked out on my own. All sources, references, and literature used
or excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

Urtzi Markiegi Gonzalez
Arrasate-Mondragon, December 2021

5

This page intentionally left blank.

Abstract

Over the past decade, Cyber-Physical Systems (CPSs) have gained prominence
as core-enabling technologies in the development of multiple domains, thanks to
its ability to integrate digital capabilities with physical processes. Furthermore,
the demand for configurability of CPSs has been increasing rapidly to respond
to changing business requirements.

When engineers approach the development of Highly-Configurable Cyber-
Physical Systems (HCCPSs), product line engineering techniques are often
adopted, taking advantage of variability management strategies that allow
handling a large number of configurations. In addition, to address intrinsic
challenges of testing CPSs, engineers are relying on simulation-based techniques,
thus avoiding the need for building real prototypes and enabling testing at early
stages. However, HCCPS testing is still a time-consuming challenge primarily
due to the intensive resource consumption when simulating physical processes.
Consequently, optimization of testing HCCPSs is paramount.

Several approaches have tackled the test optimization challenge, most of
them focused on reducing the number of products to be tested, by selecting a
representative subset. Other approaches have proposed optimization in terms
of test case selection and prioritization. However, little attention has been paid
to optimization of both, products and test cases, in a combined manner. This
thesis aims at advancing the current practice of optimizing HCCPS testing by
proposing a method to increase the fault detection rate in time-constrained
scenarios. To this end, we propose a dynamic test prioritization approach
combining both, products and test cases. The approach sets a test plan that
executes small groups of test cases with products in iterative executions. After
every iteration, the test plan is dynamically re-ordered, leveraging information
of test cases being executed in specific products. The approach has been
evaluated and validated for the specific context of HCCPSs, however, it might
eventually pave the way for its use in other type of product lines.

7

Laburpena

Azken hamarkadan zehar sistema ziber-fisikoek (ingelesezko sigletako CPS)
protagonismoa irabazi dute domeinu anitzen garapenean, gaitasun digitalak
sistemen prozesu fisikoekin integratzeko duten trebetasunari esker. Gainera,
CPSen konfiguragarritasun-eskaria azkar handitu da, enpresa-eskakizun al-
dakorrei erantzuteko.

Ingeniariek oso konfiguragarriak diren sistema ziber-fisikoen garapena
lantzen dutenean (ingelesezko sigletako HCCPS), ohikoa da produktu-lerroetan
oinarritutako ingeniaritza-teknikak hartzea, konfigurazio ugari erabiltzea ahal-
bidetzen duten aldakortasuna kudeatzeko estrategiak baliatuz. Gainera, CPSen
proben berezko erronkei aurre egiteko, ingeniariek simulazioan oinarritutako
tekniketara jotzen dute, prototipo errealak eraikitzeko beharra saihestuz eta
etapa goiztiarretan probak egitea ahalbidetuz. Hala ere, HCCPSak probatzea
denbora asko eskatzen duen erronka izaten jarraitzen du, batez ere prozesu
fisikoak simulatzeko behar diren baliabideen kontsumo handia dela eta. Ondo-
rioz, HCCPSen probak optimizatzea funtsezkoa da.

Hainbat ikuspegik heldu diote probak optimizatzeko erronkari; horietako
gehienak probatu beharreko produktuen kopurua murriztean jarri dute arreta,
azpimultzo adierazgarri bat hautatuz. Beste ikuspegi batzuek proba-kasuak
hautatzeko eta lehenesteko optimizazioa proposatu dute. Hala ere, arreta
gutxi jarri da biak, produktuak eta proba-kasuak, modu konbinatuan op-
timizatzeko. Tesi honen helburua HCCPSen probak optimizatzeko egungo
praktika aurreratzea da, denbora mugatua duten egoeratan akatsen detekzio-
tasa handitzeko metodo bat proposatuz. Horretarako, probak lehenesteko
ikuspuntu dinamiko bat proposatzen dugu, produktuak eta proba-kasuak kon-
binatzen dituena. Lehenik froga-plan bat ezartzen da, eta froga-kasuen multzo
txikiak exekutatzen dira produktuekin batera iterazio ezberdinetan. Iterazio
bakoitzaren ostean, proba-plana dinamikoki berrantolatzen da, produktu es-

8

pezifikoetan exekutatzen diren proba-kasuen informazioaz baliatuz. Ikuspegia
HCCPSen testuinguru espezifikorako ebaluatu eta balioztatu da, baina beste
produktu-lerro batzuetan erabiltzeko bidea erraztu dezake.

9

Resumen

A lo largo de la última década, los sistemas ciber-físicos (CPS de sus siglas en
inglés) han ganado protagonismo como tecnologías esenciales en el desarrollo
de múltiples dominios, gracias a su habilidad para integrar las capacidades
digitales con los procesos físicos de los sistemas. Además, la demanda de
configurabilidad de los CPS ha aumentado rápidamente para responder a los
cambiantes requisitos empresariales.

Cuando los ingenieros abordan el desarrollo de sistemas ciber-físicos alta-
mente configurables (HCCPS de sus siglas en inglés), es habitual que adopten
técnicas de ingeniería basadas en líneas de productos, aprovechando las es-
trategias de gestión de la variabilidad que permiten manejar un gran número
de configuraciones. Además, para hacer frente a los retos intrínsecos de las
pruebas de los CPS, los ingenieros recurren a técnicas basadas en la simulación,
evitando así la necesidad de construir prototipos reales y permitiendo la real-
ización de pruebas en etapas tempranas. Sin embargo, probar los HCCPS sigue
siendo un reto que requiere mucho tiempo, principalmente debido al intenso
consumo de recursos necesario para la simulación de los procesos físicos. En
consecuencia, la optimización de las pruebas de los HCCPS es primordial.

Varios enfoques han abordado el reto de la optimización de las pruebas, la
mayoría de ellos centrados en la reducción del número de productos a probar,
mediante la selección de un subconjunto representativo. Otros enfoques han
propuesto la optimización en términos de selección y priorización de casos
de prueba. Sin embargo, se ha prestado poca atención a la optimización de
ambos, productos y casos de prueba, de forma combinada. Esta tesis tiene
como objetivo avanzar la práctica actual de optimización de las pruebas de
los HCCPS proponiendo un método para aumentar la tasa de detección de
fallos en escenarios con de tiempo limitado. Para ello, proponemos un enfoque
dinámico de priorización de pruebas que combina tanto productos como casos
de prueba. El enfoque establece un plan de pruebas que ejecuta pequeños

10

grupos de casos de prueba con productos en ejecuciones iterativas. Después de
cada iteración, el plan de pruebas se reordena dinámicamente, aprovechando la
información de los casos de prueba que se ejecutan en productos específicos. El
enfoque ha sido evaluado y validado para el contexto específico de los HCCPS,
pero podría permitir allanar el camino para su uso en otro tipo de líneas de
productos.

11

Contents

PART I FOUNDATION AND CONTEXT 1
1 Introduction . 2

1.1 Motivation and Scope of the Research 3
1.2 Research Methodology . 6
1.3 Technical Contributions . 8
1.4 Publications . 10
1.5 Related Activities . 13
1.6 Document structure . 14

2 Technical Background . 16
2.1 Cyber-Physical Systems (CPS) 17
2.2 Highly-Configurable Systems (HCS) 25
2.3 Highly-Configurable Cyber-Physical System (HCCPS) 36
2.4 Complementary notions . 39

3 State of the Art . 50
3.1 Testing Strategies . 51
3.2 Product Selection . 58
3.3 Product Prioritization . 59
3.4 Test Case Selection . 60
3.5 Test Case Prioritization . 62
3.6 Critical analysis of the state of the art 63

4 Theoretical framework . 65
4.1 Research objectives . 66
4.2 Research Hypotheses . 67
4.3 Theoretical Framework Overview 68
4.4 Case Studies . 73

12

PART II HCCPS TEST OPTIMIZATION 95
5 Search-Based Test Allocation for Iterative testing of HCCPS 96

5.1 Contribution overview . 97
5.2 Introduction . 98
5.3 Search-based Test Allocation 100
5.4 Evaluation . 107
5.5 Related Work . 117
5.6 Conclusions . 118

6 Test Case Selection of HCCPS using Structural Coverage . 120
6.1 Contribution overview . 121
6.2 Introduction . 122
6.3 Test Case Selection compared methods 124
6.4 Evaluation . 132
6.5 Related Work . 141
6.6 Conclusions . 142

7 Dynamic prioritization of Products and Test Cases for testing
HCCPS . 143
7.1 Contribution overview . 144
7.2 Introduction . 146
7.3 Dynamic test prioritization of product lines 147
7.4 Application of the Approach on Configurable Simulation Models 157
7.5 Evaluation . 163
7.6 Related Work . 181
7.7 Conclusions . 183

PART III FINAL REMARKS 185
8 Conclusion . 186

8.1 Conclusions . 187
8.2 Perspectives and Future Work 197

Appendices . 202
Appendix A Structural Coverage Introduction 203
Appendix B Dynamic Prioritization Approach - Statistical

Analysis supplementary tables 206
Bibliography . 211

13

List of Figures

1.1 Design Science Research Process Model 6

2.1 CPS schematic . 18
2.2 CPS example . 20
2.3 X-in-the-loop testing phases . 22
2.4 Simulation model example . 23
2.5 SPLE framework . 29
2.6 FM example . 31
2.7 Extended V-model for SPL testing 34
2.8 Sample genetic algorithm operations 40
2.9 Model mutation example . 42
2.10 Anti-patterns for simulation models 47

3.1 SPLE test optimization reference process 57

4.1 Product optimization . 68
4.2 Test cases optimization . 69
4.3 Product and test cases execution 69
4.4 Joint product and test cases optimization 70
4.5 Theoretical framework overview . 72
4.6 Case studies building automation steps 74
4.7 Simulation model input and output signals abstract example . . . 75
4.8 Negative variability example on simulation models 76
4.9 Signal-based test case abstract example 77
4.10 Simulation model testing abstract example 78
4.11 Abstract mutant template example 79
4.12 Mutants 150% model abstract example 80
4.13 Product and mutants derivation abstract example 81
4.14 System architecture of the UAV case study 84

14

4.15 Feature Model of the UAV case study 86
4.16 System architecture of the CW case study 88
4.17 Feature Model of the CW case study 90
4.18 System architecture of the IT case study 91
4.19 Feature Model of the IT case study 92

5.1 First exploratory contribution in the theoretical framework context 97
5.2 approach . 100
5.3 solution representation . 101
5.4 crossover example . 106
5.5 mutation operators examples . 107
5.6 AFDT comparison . 114

6.1 Second exploratory contribution in the theoretical framework context121
6.2 Mobile Phone . 124
6.3 MS obtained per method . 137
6.4 MS obtained per coverage . 139

7.1 Main contribution in the theoretical framework context 145
7.2 Dynamic Approach Overview . 149
7.3 Dynamic Approach Example . 156
7.4 Abstract example of signal groups considered for Signal-based Simi-

larity measure. 159
7.5 Distribution of test scenarios for IT case study 172
7.6 Distribution of test scenarios for CW case study 174

15

List of Tables

2.1 Testing differences between HCCPSs and SPLs 37
2.2 Example of test cases, test objectives and feature relations 44

3.1 SPL testing strategies comparison 56

4.1 Product characteristics of the selected case studies 93
4.2 Test case and mutants characteristics of the selected case studies . 94

5.1 Measure weights for fitness function configuration 111
5.2 Summary of the Vargha and Delaney Â12 statistics and Man-

Whitney U test for RQ1 . 113
5.3 Summary of the Vargha and Delaney Â12 statistics and Man-

Whitney U test for RQ2 . 113
5.4 Summary of Spearman’s rank correlation test for Mutation Score

(MS) and AFDT metric results in RQ3 114

6.1 Test Requirement (TR) coverage and Test Execution Times (TET)
per test case. 126

6.2 Test case selection example for Application level method for a given
time budget of 20 seconds. 128

6.3 Test case selection example for Domain level method for a given
time budget of 20 seconds. 129

6.4 Test case selection example for combined method for a given time
budget of 20 seconds. 131

6.5 Summary of test case selection methods compared with the baseline
(BL) for each coverage criterion. 136

6.6 Summary of coverage criteria comparison for each test case selection
method. 136

16

6.7 Summary of test case selection method comparison for each coverage
criterion. 138

7.1 Key characteristics of the selected case studies. 165
7.2 Derived products, generated test cases and mutants of selected case

studies. 166
7.3 RQ1: APFD percentage comparison between the proposed test

prioritization algorithms (i.e., SGS, SAS, DGS and DAS) with
respect to the baseline technique. 170

7.4 RQ2: APFD percentage comparison between the static prioritiza-
tion algorithm variants (i.e., SGS and SAS) with respect to the
dynamic ones (i.e., DGS and DAS). 174

7.5 RQ3: APFD percentage comparison between algorithm variants
based on different test prioritization criteria. 175

7.6 RQ5: Average percentage of improvement of the optimal test prior-
itization with respect to the proposed test prioritization algorithms
in terms of APFD . 177

7.7 RQ5: Average percentage of improvement of the proposed test
prioritization algorithms with respect to the worst test prioritization
in terms of APFD. 177

A1 Test cases employed to obtain coverage criteria of the Listing A.1
example. 204

A1 Spearman’s rank of start-up in IT 207
A2 Spearman’s rank of start-up in CW 208
A3 Spearman’s rank of reallocation in IT 209
A4 Spearman’s rank of reallocation in CW 210

17

Acronyms

AE Applictaion Engieering

API Application Program Interface

AS All-Signals Similarity of pairs

AT Application Testing

AVM Alternating Variable Method

BFS Brute Force Strategy

CC Condition Coverage

CIT Combinatorial Interaction Testing

CPS Cyber-Physical System

CRS Commonality and Reuse Strategy

CW Car Windows

DC Decision Coverage

DE Domain Engieering

DT Domain Testing

DTO Delete Transition Operator

FDC Fault Detection Capability

FM Feature Model

FODA Feature-Oriented Domain Analysis

GA Genetic Algorithm

GS Grouped-Signals Similarity of pairs

HCCPS Highly-Configurable Cyber-Physical System

HCS Highly-Configurable System

18

HIL Hardware-in-the-loop

IT Industrial Tanks

LOR Logical Operator Replacement

MC/DC Modified Condition/Decision Coverage

MIL Model-in-the-loop

PAS Pure Application Strategy

PIL Processor-in-the-loop

PLE Product Line Engineering

PLSC Product-Line Structural Coverage

PSC Product Structural Coverage

RS Random Search

RWGA Random-Weighted Genetic Algorithm

SAS Sample Application Strategy

SBO Search-Based Optimization

SBSE Search-Based Software Engineering

SC Structural Coverage

SDLC Software Development Life-Cycle

SIL Software-in-the-loop

SLDV Simulink Design Verifier

SPL Software Product Line

SPLE Software Product Line Engineering

SUT System Under Test

TCAF Test Case Appearence Frequency

TET Test Execution Time

UAV Unmanned Aerial Vehicle

VCO Variable Change Operator

WBGA Weight-Based Genetic Algorithm

(1+1)EA (1 + 1) Evolutionary Algorithm

19

Part I

Foundation and Context

Chapter 1

Introduction

Contents
1.1 Motivation and Scope of the Research 3

1.2 Research Methodology . 6

1.3 Technical Contributions . 8

1.4 Publications . 10

1.4.1 Journal Articles . 10
1.4.2 International Conferences 11
1.4.3 Workshops, Symposiums and National Conferences 12

1.5 Related Activities . 13

1.6 Document structure . 14

2

1.1. Motivation and Scope of the Research

This chapter introduces the motivation and scope of the research work
in this thesis. The research methodology is described. The main technical
contributions are presented and finally, publications and related activities are
summarized.

1.1 Motivation and Scope of the Research

Over the past decade, Cyber-Physical Systems (CPSs) have gained promi-
nence as core-enabling technologies in the development of multiple domains.
This is exemplified in manufacturing, where CPSs are considered to be one of
the foundations of the so-called Industry 4.0, the latest industrial revolution
[HWJ13, LBK15, Jaz14, Kim17, XXL18]. Likewise, CPSs expansion is also
becoming a key technology in multiple domains such as healthcare, energy, in-
frastructures, military or transportation [SL12, Che17a, AMAAA17, SRJ+17].
Moreover, academic studies [PII+19, GBT21, YSN+20, NMP20] point to more
complex and demanding systems in terms of intelligence, adaptability, reliability
and security as the near future for CPSs.

According to the definition provided by Lee and Seshia, “a CPS is an
integration of computation with physical processes whose behavior is defined
by both cyber and physical parts of the system” [LS17]. For the develop-
ment of CPSs, multiple approaches have been defined, adapted and applied
[DLV12, Che17b, DH18], due to its complex and multidisciplinary nature. How-
ever, Krüger et al. highlighted that existing CPS development approaches share
a common challenge: variability [KNK+17]. In addition, unlike traditional
systems where variability is defined on hardware and software levels, variability
definition on CPSs must consider component, context, hierarchy, quality and
time aspects [KNK+17]. For example, these aspects describe reusable variable
hardware (i.e., variability in components), the interrelationships and depen-
dencies between components (i.e., hierarchy of variability), variants that must
adapt their functionality to the context (i.e., variability in context), or quality
criteria that must be adapted according to the scenario (i.e., variability in
quality). We refer to Highly-Configurable Cyber-Physical Systems (HC-
CPSs) when the configurable CPS system must satisfy challenges raised by
the domain in multiple of the described variable aspects. Thus, HCCPSs allow
the generation of thousands or even millions of different variants from one
single highly configurable system. Therefore, managing all these aspects of
variability makes HCCPS development and validation challenging.

3

1. Introduction

Often, variability management of highly-configurable systems is handled by
adopting techniques from Product Line Engineering (PLE) [CDS07, San16,
SKT+16]. PLE fundamentals allow the development of both the common and
the variable parts of all products of a family at the Domain level. On the
other hand, the development of each particular product is carried out at the
Application level, specifying the use of variable parts [PBL05].

As we have moved into the 21st century, ensuring the right level of quality
of systems is essential for the progress of our civilization [AO16]. A growing
number of activities of our modern society depend on the proper functioning of
systems. In other cases, specific levels of quality in terms of safety and security
are a prerequisite for the operation of systems. Among the different verification
and validation techniques that can be used to ensure these levels of quality,
testing is considered to be one of the most prevalent techniques. However,
the complex and uncertain nature of cyber-physical systems makes traditional
validation methods expensive, time consuming or infeasible [BNSB16]. Testing
CPSs must take into account the physical processes and their interaction with
the software and the environment, which makes the testing activity more
demanding. Simulation models provide an effective way to design and test
CPSs by modeling the hardware and software processes that define the behavior
of the system and context. These simulation models allow the execution of test
suites, the selection of most suitable cost-effective test cases and the automated
evaluation of test executions [BNSB16].

In the particular field of testing, PLE also differentiates the activities at
the two levels. At Domain level the Domain Testing activity is held where
defects in domain artifacts are uncovered and where reusable test artifacts for
application testing are created. On the other hand, at Application level the
Application Testing activity is conducted to detect defects by reusing domain
artifacts. Within the various challenges posed by product line testing activities
[ER11], the need for reduction of the large number of products that potentially
need to be tested has been one of the most explored fields [dCMMCDA14,
LHFRE15]. Since testing all possible combinations is unfeasible, most of the
research works have focused on selecting [OMR10, POS+12] and prioritizing
[SSRC14a, AHTL+16] a representative subset of products (at Domain level)
to be tested.

4

1.1. Motivation and Scope of the Research

Facing the challenge of testing HCCPSs, the aforementioned challenges
of both testing CPSs and testing of PLE emerge. Although simulation-based
testing provides a practicable framework for validation [ASEZ16, BNSB16] and
PLE provides the work processes for proper variability management during
testing of HCCPSs [CDS07, San16, SKT+16], testing HCCPSs is still time-
consuming and optimization methods are paramount. The research work
presented in this thesis faces the challenge of cost-effectively testing HCCPSs,
by a feedback-driven, dynamic and iterative test prioritization.

5

1. Introduction

1.2 Research Methodology

In this thesis we have inspired in the methodology proposed by Vaishnavi
[VK04] in order to design and conduct the research activities. The methodol-
ogy defines an iterative process that consists of five steps. Each process step
starts with an input, generates an output product and activates a next step. A
general outlook of the research process is summarized in Figure 1.1.

Figure 1.1: The Design Science Research Process Model five steps (Aware-
ness of Problem, Suggestion, Development, Evaluation and Conclusion) and
generated outputs summarized in a picture [VK04].

Process steps description:

1. Awareness of Problem: The first step aims to identify interesting research
problems for current sector specific situations. To achieve this objective,
new industry developments or related discipline readings are undertaken.
Consequently, a proposal for new research work is formulated as the output.

2. Suggestion: The second step is a creative step where new functionality is
conceived based on a novel configuration of pre-existing or a combination
of pre-existing and new elements. A Tentative Design is obtained as the
output.

6

1.2. Research Methodology

3. Development: This step further develops and implements the Tentative
Design producing an artifact as the output. The novelty is found in the
design, not in the construction of the artifact. Subsequently, the techniques
for implementation vary depending on the artifact to be created.

4. Evaluation: In the fourth step, according to the criteria defined in the Pro-
posal, the artifact is evaluated. Consequently, deviations from expectations
are identified and could be tentatively explained. At this point, hypotheses
are also made about the behavior of the artifact. The evaluation phase
results and information from preliminary step might be brought back to the
Suggestion step to create another iteration. The output for this step is a
set of performance measures.

5. Conclusion: The fifth and final step is the end of the research cycle or of
a specific research effort. Results of the work are described, categorized and
conclusions obtained as the output. This results are reported as Knowledge
Contribution.

The methodology can be applied in a iterative way. As is described
by authors, "Development, Evaluation, and further Suggestion are frequently
iteratively performed in the course of the research effort". In this thesis, the
methodology has allowed us to approach the research work in an exploratory
and iterative manner.

The thesis presented in this dissertation is proposed as a continuation of
Aitor Arrieta’s thesis [Arr17]. Therefore, the knowledge contributed by his
thesis has been an input for the awareness of the problem (the first step of the
methodology) for this thesis. In the first step, the aforementioned knowledge
was taken into account and additional literature references were analyzed in
order to identify the state of the art and delimit the problem. In the second
step, a central idea was established as the basis for the proposals, based
on the opportunity identified in the literature to solve the given problem.1

Two iterations of development-evaluation-conclusion steps were conducted
during a exploratory stage, to validate intermediate proposals. On the basis of
the obtained results from the exploratory stage, finally, a new development-
evaluation-conclusion iteration was conducted.

1Central Idea: This document is later referred to this ideas as core concept, details can
be found in Section 4.3.1

7

1. Introduction

1.3 Technical Contributions

This section summarizes the main contributions of the thesis. First, we present
the major contribution and secondly a set of two contributions obtained from
the exploratory stage are presented.

Most research works address the challenge of optimizing HCCPS testing by
focusing improvement on product optimization or test case optimization. At
the Domain level, most relevant works propose improvements in the product
selection and prioritization steps in order to have a representative subset of
products to be tested. At Application level, few notable works have generally
been proposed for test case selection and prioritization steps.

Essentially, all contributions of this thesis are aligned with one underlying
main idea. Instead of focusing the study on optimizing only one of the previously
mentioned steps, the novelty of this thesis consists of performing joint product
and test case selection and prioritization, using information from both
the Domain and Application levels. In addition, each of the contributions
brings specific novelties in the employed methods or metrics.

First, the major contribution is presented as follows (further details provided
in chapter 7):

■ A novel dynamic test prioritization approach of both product and
test cases. The approach establishes a test plan that executes small groups
of test cases with products in iterative executions. After every iteration the
approach re-orders dynamically the test plan based on previous executions.
The main novelties in this approach consists of (1) the “dynamic fashion”
of the re-ordering and (2) the fact of performing the re-ordering of both
products and test cases at the same time. The approach is general to any
kind of product lines and it has been adapted for testing simulation-based
HCCPSs where it has shown to be effective. This contribution has been sent
to the Software Quality Journal (SQJO).

8

1.3. Technical Contributions

A secondary set of contributions obtained during the exploratory stage
are presented as follows (further details are provided in chapters 5 and 6
respectively):

■ Search-based fault detection allocating small groups of test cases
to products iteratively. The approach performs product selection and
prioritization in a traditional way, to latter apply a novel search-based
algorithm that selects a small number of test cases for each of the selected
and prioritized products in an iterative manner. The novelty of this approach
consists in testing multiple products with a small number of test cases, rather
than the traditional exhaustive product testing that performs the testing
of each product until all related test cases are employed. This contribution
has resulted in the publication of a paper in the International Systems and
Software Product Line Conference (SPLC) [MASE17].

■ The comparison of three test case selection methods, based on
structural coverage of both the products and the product-line.
The studied test case selection methods consider the employed metrics
information of both the Domain and Application levels of the HCCPS. The
fact of employing information of both levels is considered the main novelty
in this contribution and has resulted in the publication of a paper in the
Symposium on Applied Computing (SAC) [MAES19a].

9

1. Introduction

1.4 Publications

This section provides a collection of the works published during this thesis.
The publications are scored with the corresponding rankings.

1.4.1 Journal Articles

A journal article was submitted at the Software Quality Journal. By the time
this dissertation was submitted this journal paper was in the second round of
review.

■ U. Markiegi, A. Arrieta, L. Etxeberria and G. Sagardui. “Dynamic test
prioritization of product lines: An application on configurable simulation
models” in Software Quality Journal JCR: 1.460. Q3. Second round of
review.

In addition, during this thesis contribution to other journals papers has
been carried out.

■ A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, L. Etxeberria. “Employing
Multi-Objective Search to Enhance Reactive Test Case Generation and Priori-
tization for Testing Industrial Cyber-Physical Systems” in IEEE Transactions
on Industrial Informatics JCR: 6.764. Q1. DOI:10.1109/TII.2017.2788019

■ A. Arrieta, S. Wang, U. Markiegi, A. Arruabarrena, L. Etxeberria, G.
Sagardui. “Pareto efficient multi-objective black-box test case selection
for simulation-based testing” in Information and Software Technology JCR:
2.694. Q1. DOI:10.1016/j.infsof.2019.06.009

10

https://doi.org/10.1109/TII.2017.2788019
https://doi.org/10.1016/j.infsof.2019.06.009

1.4. Publications

1.4.2 International Conferences

Research work achievements have been published in international conferences.
The classification defined by the Spanish Scientific Society of Computer Science
has been adopted to determine the ranking of each conference publication.

■ U. Markiegi, A. Arrieta, G. Sagardui and L. Etxeberria. “Search-based
product line fault detection allocating test cases iteratively”. In Proceedings
of the 21st International Systems and Software Product Line Conference-
Volume A (pp. 123-132). Ranking_SCIE: A-. DOI:10.1145/3106195.3106210

■ U. Markiegi, A. Arrieta, L. Etxeberria and G. Sagardui. “Test case selec-
tion using structural coverage in software product lines for time-budget
constrained scenarios”. In Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing (pp. 2362-2371). Ranking_SCIE: A-.
DOI:10.1145/3297280.3297512

Additionally, works indirectly related to the thesis have been published in
international conferences and symposiums.

■ A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, and L. Etxeberria. “Search-
Based Test Case Generation for Cyber-Physical Systems” in CEC2017: IEEE
Congress on Evolutionary Computation, 2017, pp. 688-697; Ranking_SCIE:
A-. DOI:10.1109/CEC.2017.7969377

■ O. Berreteaga, G. Sagardui, L. Etxeberria, U. Markiegi and X. Perez. “Delta
Rhapsody” In 26th International Council on Systems Engineering (IN-
COSE’2016). DOI:10.1002/j.2334-5837.2016.00143.x

■ L. Etxeberria, F. Larrinaga, U. Markiegi, A. Arrieta and G. Sagardui. "En-
abling Co-Simulation of Smart Energy Control Systems for Buildings and
Districts" in ETFA2017: IEEE 22nd Conference on Emerging Technologies
and Factory Automation, 2017, Ranking_SCIE: B.
DOI:/10.1109/ETFA.2017.8247746

11

https://doi.org/10.1145/3106195.3106210
https://doi.org/10.1145/3297280.3297512
https://doi.org/10.1109/CEC.2017.7969377
https://doi.org/10.1002/j.2334-5837.2016.00143.x
https://doi.org/10.1109/ETFA.2017.8247746

1. Introduction

1.4.3 Workshops, Symposiums and National Conferences

In addition to international conferences, two national conference papers were
published. Furthermore, two workshop papers were published at ECMSM’17
and SPLC’19. Finally, a Doctoral Symposium paper was published at SPLC’17.

■ U. Markiegi “Test optimisation for highly-configurable cyber-physical sys-
tems”. Doctoral Symposium In Proceedings of the 21st International Systems
and Software Product Line Conference-Volume B. 2017.
DOI:10.1145/3109729.3109745

■ A. Arrieta, U. Markiegi, and L. Etxeberria. “Towards Mutation Testing of
Configurable Simulink Models: a Product Line Engineering Perspective” in
JISBD2017: XXII Jornadas de Ingeniería del Software y Bases de Datos,
2017. Handle:11705/JISBD/2017/008

■ X. Perez, O. Berreteaga, L. Etxeberria, A. Arrieta, and U. Markiegi. “Model-
ing Systems Variability with Delta Rhapsody” in JISBD2017: XXII Jornadas
de Ingeniería del Software y Bases de Datos, 2017.
Handle:11705/JISBD/2017/006

■ G. Sagardui, J. Agirre, U. Markiegi, A. Arrieta, C.F. Nicolás, and J.M.
Martín. “Multiplex: A Co-Simulation Architecture for Elevators Validation”
in ECMSM 2017: IEEE International Workshop of Electronics, Control,
Measurement, Signals and their application to Mechatronics, 2017, 1-6.
DOI:10.1109/ECMSM.2017.7945883

■ U. Markiegi, A. Arrieta, L. Etxeberria and G. Sagardui. “White-Box and
Black-Box Test Quality Metrics for Configurable Simulation Models”. REVE
2019: Seventh International Workshop on Reverse Variability Engineering
In Proceedings of the 23rd International Systems and Software Product Line
Conference-Volume B (pp. 211-214). DOI:10.1145/3307630.3342396

12

https://doi.org/10.1145/3109729.3109745
http://hdl.handle.net/11705/JISBD/2017/008
http://hdl.handle.net/11705/JISBD/2017/006
https://doi.org/10.1109/ECMSM.2017.7945883
https://doi.org/10.1145/3307630.3342396

1.5. Related Activities

1.5 Related Activities

In addition to attending conferences in the publications of the aforementioned
conferences, the PhD student has carried out other activities that have helped
him in his training as a researcher. Particularly remarkable among the activities
is the participation in European projects.

■ “TESTOMAT: The next level of test automation” is a project of the 3rd call
ITEA 3 that has been developed between 2017 and 2020. The PhD student
has contributed in three technical work packages (WP3, WP4 and WP5)
in order to improve test effectiveness through traceability and log models,
simulation-based test case prioritization and test automation. Furthermore,
the PhD student has carried out the Country Coordinator role at the Spanish
consortium, actively participating at General Assemblies and yearly Reviews
of the project.

■ “SCRATCh: SeCuRe and Agile Connected Things” is a project of the 4rd call
ITEA 3 that is been developed since 2018. The PhD student is collaborating
with ULMA Embedded Solutions in this project in order to support the
automation of secure deployment of highly distributed IoT systems on a
continuous basis.

■ “VINDICATOR: Accelerating Automated Cloud–Based Testing through
Simulation, Modeling and Virtualization” is a project of the ECSEL-2020-
2-RIA call. The Ph.D. student has been involved in the proposal writing.
Although the commission did not approve funding for the project, the
consortium of which we are an active part, it is working on the basis of the
feedback provided by ECSEL, to resubmit it in future calls for proposals.

13

1. Introduction

1.6 Document structure

The document is structured into three parts. The first part presents the
foundation and context of the thesis with Chapters 1, 2, 3 and 4. The second
part describes the work and results obtained from main contribution, which
is described in Chapter 7, as well as the work and results obtained from the
exploratory research with Chapters 5 and 6. And finally, the third part details
conclusions and final remarks in Chapter 8.

1. Chapter 1 Introduction describes the motivation for the thesis, applied
research methodology and obtained main contributions and publications.

2. Chapter 2 Technical Background introduces general technical concepts
related to the thesis, such as, CPS, Highly-Configurable System (HCS),
SPL, HCCPS and their testing. Additionally complementary notions of
Search-Based Software Engineering (SBSE), Mutation Testing and Quality
Metrics for testing HCCPSs are introduced.

3. Chapter 3 State of the Art presents the state of the art divided into six
main sections: (1) SPL testing strategies (2) product selection, (3) product
prioritization, (4) test case selection, (5) test case prioritization and (6)
critical analysis.

4. Chapter 4 Theoretical framework contains the definition of the re-
search objectives and hypothesis as well as the overview of the theoretical
framework of this thesis. Finally, employed case studies are introduced and
the conducted case study building semi-automation procedure detailed.

5. Chapter 5 Search-Based Test Allocation for Iterative testing of
HCCPS presents the approach and results of the method developed for
allocating small number of test cases in each product for iteratively testing
the product line.

6. Chapter 6 Test Case Selection of HCCPS using Structural Cover-
age presents the approach and results of the method developed for selecting
test cases based on structural coverage of both Domain and Application
levels of the product line.

14

1.6. Document structure

7. Chapter 7 Dynamic prioritization of Products and Test Cases
for testing HCCPS presents the approach and results of the method
developed for dynamically prioritizing test leveraging information of tests
being executed in specific products.

8. Chapter 8 Conclusion summarizes contributions, concludes about pro-
posed hypothesis and presents final remarks about work limitations and
future works.

15

Chapter 2

Technical Background

Contents
2.1 Cyber-Physical Systems (CPS) 17

2.1.1 Basic CPS concepts 17
2.1.2 Testing CPSs . 20

2.2 Highly-Configurable Systems (HCS) 25

2.2.1 Basic HCS concepts 25
2.2.2 Basic SPL concepts 27
2.2.3 Testing SPLs . 32

2.3 Highly-Configurable Cyber-Physical System (HCCPS) . . . 36

2.3.1 Basic HCCPS concepts 36
2.3.2 Testing HCCPS . 36
2.3.3 Optimization of HCCPS testing 38

2.4 Complementary notions . 39

2.4.1 Search-Based Software Engineering (SBSE) 39
2.4.2 Mutation Testing 40
2.4.3 Quality metrics for testing HCCPSs 43

16

2.1. Cyber-Physical Systems (CPS)

This chapter presents the basic concepts for this thesis in four sections:
(1) Cyber-Physical Systems and its testing, (2) Highly-Configurable Systems,
Software Product Lines and its testing, (3) Highly-Configurable Cyber-Physical
Systems, its testing and (4) a set of complementary concepts to be taken into
account to better grasp the thesis.

2.1 Cyber-Physical Systems (CPS)

This section presents the basic CPS definition, characteristics and application
domains. In addition, the section introduces to testing CPS fundamentals.

2.1.1 Basic CPS concepts

The term CPS was coined by Helen Gill at National Science Foundation (2006)
to refer to the integration of computation with physical processes. According
to the description provided by Lee and Seshia [LS17], in CPSs, embedded
computers and networks monitor and control the physical processes, usually
with feedback loops where physical processes affect computations and vice
versa.

Definition 1: Cyber-Physical Systems (CPS)

A Cyber-Physical System (CPS) is an integration of computation with
physical processes whose behavior is defined by both computational and
physical parts of the system.

(Lee and Seshia [LS17])

Following Lee and Seshia’s definition CPSs are composed of three main
parts as it is showed in Figure 2.1. The physical part (denoted as physical plant
in Figure 2.1) is the system to be controlled and monitored, for instance, an
aircraft, an energy grid, a wheel of a car, etc. The physical part usually includes
mechanical parts, biological or chemical processes, or human operators. In the
physical part, simultaneous physical processes occur in continuous time accord-
ing to laws of physics [LBB15]. The computational platform consists of sensors,
actuators, one or more computers and embedded software. Computational
platform controls the physical plant (through actuators in Figure 2.1) and also
performs the measuring of the plant (through data provided from sensors in
Figure 2.1). Therefore, the behavior of the physical plant is conditioned by the

17

2. Technical Background

decisions obtained from the computational platform. And the behavior of the
physical plant determines the decisions that the computational plant(s) must
make. The network fabric provides the mechanisms for the computational
platforms to communicate. Lee and Seshia [LS17] describe CPSs not only as
a mere union of the two layers but also as an intersection of both since both
layers mutually determine each other’s behavior.

Figure 2.1: Schematic of a simple CPS proposed by Lee and Seshia [LS17]

CPS characteristics

[SWYS11] describe the following characteristics for CPSs:

■ Closely integrated: CPSs are the integration of computation and physical
processes.

■ Cyber capability in every physical component and resource-constrained: Soft-
ware is embedded in every cyber or physical component. Resources such as
computing, network, bandwidth, etc. are limited.

■ Networked at multiple and extreme scales: CPS include multiple network
technologies and are distributed, using a wide variety of device categories
and system scales.

■ Complex at multiple temporal and spatial scales: CPSs are constrained by
spatiality and real time.

■ Dynamically reorganizing/reconfiguring: CPSs have adaptive capabilities.
■ High degrees of automation, control loops must close: CPSs enhance man-

machine interaction providing advance feedback control technologies.
■ Operation must be dependable, certified in some cases: Reliability and

security are often mandatory characteristics for CPSs.

18

2.1. Cyber-Physical Systems (CPS)

CPS application domains

Lee and Seshia [LS17] enumerate multiples domains where CPSs are widely used,
such as, medical devices, military systems, aeronautics, automotive, railway,
manufacturing, traffic control systems, power generation and distribution
systems, water management systems, robotics and quite a lot of others. All
these domains share a technological scenario where physical world is deeply
connected to the information world. In this scenario, the CPS term is closely
related to other popular terms such as, Internet of Things (IoT), Industrial
Internet, Machine-to-Machine (M2M), Cloud Computing and the fog.

According to Rajkumar [RLSS10, RDNK16] the adoption of CPSs systems
is being fostered by the convergence of vendors’ needs with technological
evolution. On the one hand, CPSs vendors have identified a technological gap
to build safety critical CPSs correctly, affordably, flexibly and on schedule. On
the other hand, the technological evolution is enabling a new generation of
smaller and efficient sensors, reduced computing devices, ubiquitous wireless
communications and wider internet bandwidth, alternative energy sources and
energy harvesting. The convergence of the gap with evolving technologies will
enable a change in how people interact with the physical world (through CPSs),
just as the internet changed how people interact with one another.

CPS example

The following academic example provides a simplified demonstration of a CPS.
The example, titled Smart Manufacturing Robotics Cyber Physical System was
completely implemented with MATLAB/Simulink© by Mosterman and Zander
[MZ16b] following model-based design techniques and is accessible at the File
Exchange platform of Mathworks 1.

The example provides a solution for the distributed Towers of Hanoi problem.
Specifically, the objective is to move a stack of three colored blocks from one
location to the other such that the final stack is ordered according to color and
size. A representation of the CPS model is depicted in Figure 2.2.

The physical part includes the pick and place machine to provide services
of moving blocks through a pneumatic airflow. The computational platform
is composed of sensors, actuators, processors and embedded software. A set
of camera sensors provide the stereoscopic vision to distinguish colors and
to detect position of blocks. The slider and nozzle motor actuators enable

1https://es.mathworks.com/matlabcentral/fileexchange/
38515-smart-manufacturing-robotics-cyber-physical-system

19

https://es.mathworks.com/matlabcentral/fileexchange/38515-smart-manufacturing-robotics-cyber-physical-system
https://es.mathworks.com/matlabcentral/fileexchange/38515-smart-manufacturing-robotics-cyber-physical-system

2. Technical Background

Figure 2.2: Smart Manufacturing Robotics Cyber Physical System, a CPS
example proposed by Mosterman and Zander [MZ16b])

horizontal and vertical motion respectively. A set of micro processors is
provided with the corresponding embedded software to compute color detection
and determine required motion. The network fabric is composed of a wireless
network for communications. Feedback control loop with a time period of 5
ms was established. Refer to original publication for further details [MZ16b].

2.1.2 Testing CPSs

This sub-section introduces the fundamental concepts of CPS testing. It
includes (i) relevant methods for testing CPSs, (ii) the different levels of CPS
testing depending on the execution platforms and (iii) an introduction to
simulation-based testing.

Methods for testing CPSs

The heterogeneous and complex nature of CPSs makes testing such systems
a challenging and resource-consuming activity. To address this challenge,
paradigms and methodologies from multiple disciplines are employed, as re-
ported in different studies [ZGHY18, AIH15, KDJ+16, ZN08]. For instance,

20

2.1. Cyber-Physical Systems (CPS)

Zhou et al. [ZGHY18] reported a classification of CPS testing methods includ-
ing model-based testing, search-based testing or fault injection-based testing
among others. Asadollah et al. [AIH15] classified CPSs testing methods
according to the V-model levels for validation and verification (i.e., hardware-
software-network testing at unit level, integration testing, system testing, etc.).
A multi dimensional classification was proposed by Zander [ZN08], where test-
ing activities were sorted according to defined five dimensions: test goal, test
scope, test reactiveness, test abstraction and test execution platform.

Test Execution Platforms for CPS testing

Test Execution platforms are the systems in charge of managing the execution
of tests. For this purpose, testing platforms have a number of inputs and
outputs for the System Under Test (SUT) (i.e., system to be tested). By
stimulating the inputs, the behavior of the SUT is analyzed observing the
outputs.

Model-based verification and validation of Embedded Systems rely on Test
Execution Platforms to enable a multi-stage testing of complex systems [SH09].
To this end, different scenarios are implemented to gradually integrate the
physical aspects of the system.

Shokry and Hinchey [SH09] defined four testing levels, supported by specific
Test Execution Platforms. The four testing levels, depicted in Figure 2.3, are
denoted as: Model-in-the-loop (MIL),Software-in-the-loop (SIL),Processor-in-
the-loop (PIL)and Hardware-in-the-loop (HIL). MIL is performed to analyze
the controller model along with the simulated model and to generate the
reference test results values for subsequent tests. In SIL, the model is replaced
with the executable object code of the generated software. Following this,
in PIL the generated software is cross-compiled and executed in the target
processor for detecting errors, such as, code generation bugs or compiler related
bugs. And finally in HIL, the generated software is deployed in the real-time
infrastructure to validate performance requirements and time constraints. For
further details of the X-in-the-loop testing levels refer to the original publication
[SH09].

Model-based and test execution platforms have shown to be effective to
reduce the effort of different verification and validation stages [ZN08]. However,
these embedded system testing proposals must be adapted to the CPSs context
[MZ16a] where intrinsic parallel task are executed (e.g., concurrent computing
tasks and physical processes). The parallel task execution, requires from the

21

2. Technical Background

Figure 2.3: X-in-the-loop testing phases, where test reference results are
generated in the MIL test and then compared with the corresponding output
from all subsequent tests [SH09].

computational platforms a simultaneous manage [LS17], and similarly, testing
CPSs must monitor all parallel tasks. Additionally, testing must manage
the reconfigurable capabilities of the CPS which handles the unpredictable
physics behavior [SWYS11]. In this context, the research and industry com-
munities have proposed model-based methodologies for the particular field of
CPSs [JCL11, NAY17] which are mainly relying on simulation-based for the
verification and validation stages.

Simulation-based CPS testing

Simulation models provide a virtual representation of a real-world system to
experiment with the product at early stages [MNBB16]. Engineers addressing
the development of new complex systems, such as CPSs, typically combine

22

2.1. Cyber-Physical Systems (CPS)

simulation tools with model-based design methodologies [PMB+12, CMM+18].
Resulting configurable simulation models consist of blocks, structured in nested
subsystems. Each of the blocks acts according to the inputs to perform the
operations for which it is designed and generates the corresponding outputs.
For instance, the model depicted in Figure 2.4 represents a cruise controller of
a car, composed of six input ports (enable, brake, set, speed, inc and dec) and
two output ports (throt and target) structured in two hierarchical levels.

Figure 2.4: Example of a simulation model of a Cruise Controller of a car.
The simulation model is composed of six input ports and two output ports and
is structured in two hierarchical levels.

Testing CPSs with simulation models has been successfully adopted by
both industry and academia, particularly for identifying faults at early stages
[MNBB19]. Several tools are available for simulation [UL10], for instance
MATLAB/Simulink [Mat21] provides an interesting tool set for CPSs engineers
as enables capturing dynamic behavioral models (Refer to Section 4.4.1 for
further details of MATLAB/Simulink).

Simulation-based testing typically follows multiple stages at different X-
in-the-loop testing levels [SH09]. According to field engineers’ experience
[AWSE19], different tests are conducted at each level. Moreover, tests are
executed multiple times at each level incrementally, starting with low fidelity
models to conclude with the most precise ones.

23

2. Technical Background

Simulation-based testing of CPS has become decisive in domains where
software and physical processes interact [MNBB16]. Two main benefits are
obtained from simulation-based testing: firstly, it significantly reduces the cost
of creating real prototypes. And secondly, simulation-based testing speeds
up early validation tasks. Briand et al. [BNSB16] concluded that simulation
models which represent aspects such as system behavior, environment, struc-
tures and properties of CPSs are capable of raising the level of abstraction at
which testing is performed. Employing simulation models permits software
engineers to (i) execute more test cases, (ii) develop test methods to select
scenarios that should also be executed on the deployed system based on the risk
level and (iii) specify test oracles for the automatic fault detection. Moreover,
simulation permits testing scenarios that could be dangerous, expensive or
even impossible to reproduce employing a real prototype. The aforementioned
benefits of using simulation models has fostered its adoption in multiple do-
mains (e.g.,Automotive [MNBB16, ANBS18, AWSE19], Transport [SEA+17],
Aerospace [MNBP20], Healthcare [SF12]).

Since testing CPSs with physical prototypes and obtaining an adequate
product quality may be unfeasible, a simulation-based testing scenario
has been employed in this thesis, allowing different testing configurations
within the MIL test level execution platform, as previous studies have
reported to be effective [ZN08].

24

2.2. Highly-Configurable Systems (HCS)

2.2 Highly-Configurable Systems (HCS)

This sections describes HCS concepts, relevant HCS applications and HCS
development strategies. Additionally, this section presents the basic Software
Product Line (SPL) concepts and definitions and introduces to testing SPL
fundamentals.

2.2.1 Basic HCS concepts

History of physical goods production has changed considerably over time,
as described by Apel et al. [ABKS16]: from handcrafted production in the
pre-industrial era, through the mass production of the industrial era to the
(current) era of mass customization. This evolution, that has occurred in about
a century and a half, has also been reproduced in the software and systems
industry, but only in six decades. Early software products (in the 60s and 70s)
were handcrafted for specific hardware and sold in small quantities. Later (in
the 80s and 90s) the software industry agreed on the development of standard
platforms, which allowed the commercialization at scale of software packages
that guaranteed common functionalities and quality levels to all customers.
However, software standardization was not able to met the particular needs
of some specific market niches (e.g., small customers or resource-constrained
environments -such as embedded systems-). In response to the unmet needs and
the increased demand for customization (aligned with the mass customization
of goods production), since 90s proposals to develop reusable systems that
could be customized gained importance.

Definition 2: Highly-Configurable System (HCS)

HCS are those systems that allow functional and non-functional prop-
erties to be tailored to the requirements of each customer by means of
configuration options.

HCSs are composed of common characteristics (i.e., characteristics shared
by all systems) and a set of optional characteristics (e.g., alternative hardware
components, software functionalities, etc.). Thus, configurable systems offer
the possibility for different types of users (e.g., developers, operators or end
users) to select optional characteristics when configuring systems to meet their
needs.

25

2. Technical Background

HCS applications

HCSs are present in many software applications, such as database management
systems [BBG+88, RALS09], operating systems[BSL+10, SLB+11], web and
content management servers [SSPRC15, SGAK15] and many other system tools
and utilities [KSK+19, CGHX19, SGS+15, HZS+16, FMR+20]. HCSs are also
present in applications related to embedded systems [SKN+11], mobile phones
[OMR10, ZSM17], cyber-physical systems [KNK+17, LYA20, RZ21], robotics
[GSB+19] or cloud computing [KKW+18, AKM20]. Relevant experiences of
HCSs can likewise be found in the industry [SKN+11, HZS+16, SKT+16,
BSZ+20] applied to a wide range of domains (e.g., automotive, aerospace,
industrial automation, energy, transportation, etc.).

HCS example

A well-known example of large and complex highly-configurable software is
the kernel of Linux operating system family. It provides more than 14,000
build-time configuration options to support multiple functionalities. It can
be configured to perform a large set of tasks on different devices (as it is
supported in 26 different hardware architectures), ranging from embedded
systems, through desktop to servers and clusters in huge data centers. Further
details of the Linux kernel can be found in existing large literature [BSL+10,
PQM+18, ESYES19, MWVK20].

HCS development strategies

Undertake design, development and operation of HCSs to support multiple
variants has been addressed by researchers and practitioners adopting different
strategies [BSZ+20]. The Clown & Own strategy consists of copying an exist-
ing system and adapting it to new requirements [DRB+13]. Formally, it does
not perform any kind of systematic variability management. Although it is
very widespread due to its rapid initial implementation, it presents scalability
and maintenance problems. In the parameter-based configuration, system is
configured by selecting values for each of the required parameters. For in-
stance, a configuration can be obtained by conditional #ifdef directives in
source code, which are solved by pre-processor during build process. This
approach is common in the industry in general and in embedded systems field
in particular [SKN+11, RALS09]. Some fields have developed their own con-
figuration languages, such as the Kconfig or Component Definition Language

26

2.2. Highly-Configurable Systems (HCS)

for the Linux kernel [BSL+13]. Nevertheless, Product Line Engineering (PLE)
deserves to be highlighted as the strategy that allows to effectively design,
develop and operate HCSs. This strategy takes advantage of the reusability
achieved when implementing a set of systems as one integrated HCS [CDS08].
It has been widely studied by both the academic community and practitioners
[RSB+18, CLGGB20]. Next Section 2.2.2 introduces basic SPL concepts).

2.2.2 Basic SPL concepts

Over the last few decades, the evolution of technology and the growing needs
of the market to cope with mass customization have driven new opportuni-
ties for software development. According to Pohl et al. [PBL05] the main
challenges for these opportunities are the reduction of development costs, the
enhancement of quality and the reduction of time to market. To deal with the
aforementioned challenges, engineers developed the SPL paradigm. SPL is one
of the most relevant paradigms of software reusability, providing engineers with
the possibility to rapidly configure customized products instead of repeatedly
developing new products from scratch.

SPL Definition

Essentially, a SPL is a family of related software systems that shares a common
set of features, such as the abstract representation of reusable software incre-
ments [BSR03]. SPL conceptually combines off-the-shelf software and custom
software. SPL software is designed for a domain (i.e., similar to off-the-shelf
software), and to address the needs of various specific market problems (i.e.,
similar to custom software) by using variability concepts to generate particular
software products.

At the beginning of the century, definitions of SPL were provided:

Definition 3: Software Product Line

A SPL consists of a product line architecture, a set of reusable components
and a set of products derived from the shared assets.

(Bosch [Bos01])

27

2. Technical Background

Definition 4: Software Product Line

A SPL is a set of software-intensive systems sharing a common, managed
set of features which satisfy the specific needs of a particular market
segment or mission and which are developed from a common set of core
assets in a prescribed way.

(Clements and Northrop [CN01])

SPL Engineering

SPL implies a new engineering approach called Software Product Line Engineer-
ing (SPLE). Unlike the traditional approach of building products one by one,
in SPLE products are assembled by selecting existing assets from the SPL. In
recent decades, the field of SPLs has been intensively studied [HPMFA+16] and
the SPLE approach has been adopted in multiple professional domains such as
automotive, aeronautics or telecommunications to increase quality and reduce
development costs and time to market [LSR07, ABKS16, BSL+13, ALHR17].

Pohl et al. [PBL05] proposed the SPLE framework that divides the SPL
development into two processes; (i) the Domain Engieering (DE) process and
(ii) the Applictaion Engieering (AE) process. The framework (depicted in
Figure 2.5) has been widely adopted by the research and industry communities.

Definition 5: Software Product Line Engineering

Software product line engineering is a paradigm to develop software appli-
cations (software-intensive systems and software products) using platforms
and mass customization.

(Pohl et al. [PBL05])

The DE process allows the development of both the common and the
variable parts of all products. It is divided into five sub-processes: (i) defi-
nition of the product line scope, (ii) eliciting and documentation of common
and variable requirements, (iii) design reference architecture, (iv) implement
reusable software components and finally, (v) test reusable software compo-
nents. During the executions of the DE sub-process six main artifacts are
generated: (i) the product roadmap artifact that describes the major features of
all applications, (ii) the variability model artifact that describes the variability
of the product line, (iii) the domain requirements artifact which defines the

28

2.2. Highly-Configurable Systems (HCS)

Figure 2.5: SPLE framework proposed by Pohl et al. [PBL05])

reusable requirements, (iv) the domain architecture artifact that defines the
reference architecture of core and complementary structure, (v) the domain
realization artifact which details the design and implementation, and finally,
(vi) the domain test artifact, where reusable tests are designed and planned.

The AE process allows the development of each particular product spec-
ifying the use of variable parts. It is divided into four sub-processes: (i)
specification of particular product requirements identifying differences from
the domain requirements, (ii) definition of how the product will be specialized
from the reference architecture, (iii) realization of component configuration and
development, and finally, (iv) product validation and verification against its
specification. The executions of the AE process generates five main artifacts:
(i) the application variability model artifact provides variability binding for
applications, (ii) application requirements artifact details the complete spec-
ification, (iii) application architecture artifact that specifies the instance of
reference architecture, (iv) application realization artifact details the configura-
tion parameters for application-specific realization, and finally, (v) application
test artifact which provides the complete test documentation.

29

2. Technical Background

Variability

In the context of SPLE, variability is defined by Pohl et al. [PBL05] as
the possibility to determine particular artifacts of DE that not necessarily
are part of each product at AE. For that purpose, variation points are
established specifying the type and location of the variability. Moreover,
possible assignments for each variation point are described, at least one per
variation point. Each assignment is named variant and can contain within
nested variation points.

Definition 6: Variability

The possibility to determine particular artifacts of Domain Engineering
that not necessarily are part of each product at application engineering.

(Pohl et al. [PBL05])

Variability management is a key activity related to all SPLE framework sub-
processes. Thus, variability representation gains importance when engineers
must handle variability. Numerous approaches have been proposed to represent
variability, including the Orthogonal Variability Model proposed by Pohl et al.
[PBL05] and several approaches based on decision model, such as, Synthesis,
KobrA, Dopler or VManage reviewed at [SRG11]. Nevertheless, Feature Models
are recognized in literature as predominant variability representation for SPL.

Feature Model (FM)

Feature Models (FMs) are employed to represent all possible products of a SPL
based on features and relationships among them [BSC10]. FMs are visually
represented with FM diagrams as a hierarchical structure set of features
and constraints. Features represent an increment in product functionality
[Bat05] and constraints define restrictions to the usage of features. When
designing FMs, the features are arranged in a tree-like hierarchy representing
the parent-child relationships between features. In addition, FM constraints
provide compositional rules that cross-tree checks mutual dependencies and
exclusions between features [KCH+90]. There are two types of constraints.
The Requires constraint means that when a feature is selected within a product,
it is mandatory to select the required related feature. The Excludes constraint
means that when a feature is selected, the excluded related feature cannot be
selected. Constraints can be represented by dashed lines that identify features

30

2.2. Highly-Configurable Systems (HCS)

involved in the rule. When a product is configured, a set of features are
selected satisfying FM constraints. A simplified FM example of mobile phones
is depicted in Figure 2.6.

Figure 2.6: Simplified mobile phone FM sample [BSC10]

Consider the example of Figure 2.6 where a simplified feature model from
the mobile phone industry is depicted [BSC10]. The features are used to
specify different possibilities to configure mobile phones (products). According
to the model, all products must include call support (i.e., Calls feature),
as well as any of the screen options provided (i.e., Basic, Colour or High

resolution screen type). Optionally, the product may include support for
GPS and multimedia devices (i.e., Camera, MP3 player or both of them). When
the Basic screen feature is selected, the GPS feature is excluded due to the
constraint among both features. However, if the Camera feature is desired, it
is required to include a display with the High resolution feature to satisfy
the existing constraint.

Definition 7: Feature Model

Feature Model represents the information of all possible products of a
Software Product Line based on features and relationships among them.

([BSC10])

The Feature Model term was first introduced by Kang [KCH+90] as part
of the Feature-Oriented Domain Analysis (FODA) report in 1990. Since
then, many different FM representation approaches and extensions have been
proposed, being the most relevant: the basic feature models, cardinality based
feature models and extended feature models. Further detailed readings are
referred to [BSC10, San16].

31

2. Technical Background

Definition 8: Configuration

A configuration is a selection of features for product instantiation. Thus,
a configuration only allows feature combinations that could lead to a
product and do no infringe relations and constraints between features.

On the basis of a given FM, the defined feature selection to instantiate a
product is named configuration. The configuration is feasible only if feature
relations and constraints are not infringed. When a defined configuration is
implemented the ready-to-use particular product is generated.

Definition 9: Product

A product is a selection of features including their implementation resulting
in a product ready to be used.

2.2.3 Testing SPLs

Testing single systems is not a trivial activity. Although the objective is simple,
to detect as many so-called bugs as possible, it is not usually feasible to test
the whole system due to limited resources. The challenge becomes therefore
to effectively identify and execute the tests that will allow us to detect as
many bugs as possible [AO16, FR19]. Testing SPLs is even more challenging
due to the variability [TTK04]. Benefits gained from the potential provided
by variability during SPL development become into difficulties and risks of
the same magnitude to be managed when facing testing. For instance, an
undetected error in a component that is widely reused will be propagated to all
products in which it is employed. Main challenges identified when testing SPLs
are (i) the large number of tests, (ii) balance between test effort for reusable
components and concrete products, and (iii) handling variability in testing
[ER11].

Different initiatives have contributed from (single system) software engi-
neering to transfer knowledge and experience to the product-line community so
as to establish a solid basis for testing SPLs [McG01]. Moreover, new initiatives
focused on the product-line community’s particular needs have been introduced
[PBL05]. The SPL testing research and practitioners community is very active,
what is reflected in the vast number of publications and the regular literature
revision. As a result the state of the art and practice in terms of test levels,

32

2.2. Highly-Configurable Systems (HCS)

test approaches and test strategies are frequently reviewed. Refer to Chapter 3
for further details with regard to SPL testing strategies.

SPLE related testing activities

Considering the framework for SPLE proposed by Pohl et al. [PBL05] (refer
to Figure 2.5 for further details), two testing related activities are identified:
Domain Testing (DT) and Application Testing (AT). The former is the sub-
process of DE where evidence of defects in domain artifacts are uncovered and
where reusable test artifacts for application testing are created. The latter
is the sub-process of AE where domain test artifacts are reused to uncover
evidence of defects in a specific application.

Due to these two testing activities, product line testing also includes an
additional challenge: the dimension of what should be tested in DE and what
should be tested in separate products at AE [ER11].

SPL testing levels

There are several Software Development Life-Cycles (SDLCs) models to address
verification and validation activities. A widespread model (among embedded
systems and also in CPSs) is the V-Model (originally named V-chart [Boe79]).
The V-Model proposes the creation of test artifacts at different levels (i.e.,
unit test, integration test, system test and acceptance test) associated to the
requirements, design and corresponding code [Boe79]. The V-Model proposal
for single system requires additional activities in the SPL context, since testing
is divided into two sub-processes: Domain Testing (DT) and Application
Testing (AT). To this end, the extended V-Model was defined [JHQJ08].
The extended V-Model, depicted in Figure 2.7, overlaps two V-models to
accommodate both Domain and Application testing activities.

It should be noted, as Pohl et al. [PBL05] points out, that in DE it is
not possible to perform testing of all artifact due to the variability it is not
feasible generating or adapting artifacts to the particularities of the products.
Moreover, although testing in AE is similar to the V-Model of single system, it
should be noted that testing artifacts may already be pre-generated (for the
common part) and tested, whereas artifacts for the variable part may already
be generated but will still require adaptations before they can be used. The
detailed SPL testing life-cycle activity is established when defining the SPL
testing strategy.

33

2. Technical Background

Figure 2.7: SPL testing life-cycle extended V-Model [JHQJ08])

SPL testing strategies

There are multiple factors that may condition the selection of the SPL testing
strategy (e.g., number of products to be derived, required learning effort for
test engineers, required time to create test artifacts, etc.). Pohl et al. [PBL05]
classifies SPL testing strategies into four fundamental types:

■ Brute Force Strategy (BFS): All activity is performed exclusively in DE. To
this end, the strategy performs all test activities at all test levels and for all
possible applications during Domain Testing.

■ Pure Application Strategy (PAS): Testing is performed exclusively in AE.
Test artifacts are created specifically for particular applications (i.e., it does
not generate reusable test artifacts).

■ Sample Application Strategy (SAS): One or a few sample products are
created to early test DE artifacts. Since not all possible applications are
tested in DE, application testing must be also performed in AE, where some
DE test artifacts may be reused.

■ Commonality and Reuse Strategy (CRS): In DE common parts are tested
and reusable test artifacts are prepared for variable parts. In AE common
parts are tested with domain artifacts (to ensure correctness in the particular
application) and variable parts are tested adapting reusable test artifacts.

Other classifications exist that categorize strategies in slightly different
ways, with nuances that have been pointed out by the community. For further
details refer to Section 3.1 where state-of-the-art of SPL testing strategies is
provided.

34

2.2. Highly-Configurable Systems (HCS)

This thesis addresses the test optimization of configurable CPS systems,
assuming that Configurable CPSs are HCSs. When managing the
variability of configurable CPSs, we adopt the practices of the product-
line engineering community.

35

2. Technical Background

2.3 Highly-Configurable Cyber-Physical
System (HCCPS)

This section presents the definition of HCCPS. In addition, variability manage-
ment and specific particularities when testing HCCPSs are highlighted. Finally,
the optimization of HCCPS testing is introduced.

2.3.1 Basic HCCPS concepts

The complexity of CPSs is increasing to meet the technological challenges that
need to be addressed (e.g., autonomous vehicles are in the spotlight as a relevant
research topic [SER21]). Furthermore, there is an growing need to incorporate
variability to the system in order to meet the demand for customization
of different market segments. Therefore, we call Highly-Configurable Cyber-
Physical System to those CPS systems that integrate multiple technologies
(e.g., mechanical, electrical, software, etc.) and are developed as variant-rich
HCS which can be configured in many different ways.

Definition 10: Highly-Configurable Cyber-Physical System
(HCCPS)

A Highly-Configurable Cyber-Physical System (HCCPS) is CPS that
integrates multiple technologies and can be tailored to the requirements
of each customer by means of configuration options.

2.3.2 Testing HCCPS

Testing HCCPSs address the challenges of testing both CPS and HCS worlds.
It therefore requires solving both variability management as well as the partic-
ularities derived from the multidisciplinary nature of CPSs.

Variability management in HCCPSs

Owing to the complexity introduced by the variability management, Arrieta
et al. [AWSE16b] stated that development and validation of these HCCPSs
can be similar to the processes defined for the development and validation in
PLE. Thus, at DE process, the development of common and variable parts of
the CPS products is undertaken. These product parts are later reused at the
AE process, where the variability is resolved and specific CPS products are
generated.

36

2.3. Highly-Configurable Cyber-Physical System (HCCPS)

Differences between testing HCCPSs and SPLs

PLE are very often oriented to software. However, the intrinsic differences
between HCCPSs and SPLs must be taken into account when testing. Table
2.1 summarizes main differences between HCCPSs and software product line
testing.

Table 2.1: Testing differences between HCCPSs and SPLs.

Highly-Configurable CPS Software Product Lines (SPL)
Cost of the prototype No prototype required

High test execution time
(Sw. and Physical layers simulated) Lower test execution time

Many domains
(often co-simulation required) Mainly software domain

Faults at software, interaction, sensors,
actuators, communication systems, etc.

Faults at software,
interaction faults, etc.

MIL, SIL, PIL, HIL MIL, SIL

As in SPLs, the elevated number of system variants that can be configured in
HCCPSs (i.e. thousands or even millions of system variants), makes unfeasible
to test all of them. Moreover, an unclear notion of test coverage is obtained.
Thus, testing HCCPSs requires optimizing the invested testing time while
guaranteeing a high overall test quality. Although both HCCPSs and SPLs
systems require high amount of testing time, HCCPSs requires extra time to
execute the software and physical layers simulation. Furthermore, in HCCPSs
additional time must be considered due to the co-simulation processes time
consumption. Another remarkable difference is related to the prototype, while
HCCPSs requires prototype which increments the cost of its building, SPLs
does not require it. According to covered fault types, SPLs looks for software
and interaction faults, whereas HCCPSs must also take into account faults
coming from physical layer elements (i.e., sensors, actuators, communication
elements, etc.). Finally, while SPLs only requires testing at MIL and SIL levels,
HCCPSs must add the PIL and HIL levels.

37

2. Technical Background

2.3.3 Optimization of HCCPS testing

The optimization of HCCPS testing requires to address challenges of both CPS
and HCS. In the particular case of CPS, in this thesis, we limit CPS testing
to the MIL level with implementations built on simulation-based testing (this
aspect has been detailed in Section 2.1). In the HCS working plane, we rely
on the most common practices when optimizing SPL testing.

Existing works may be grouped into four major categories when addressing
SPL test optimization. Firstly, most of the works focus on product selection, so
that a representative subset of products from the product line can be obtained or
sampled. Improvement in this aspect has a significant impact on optimization
by substantially reducing the number of products to be tested (i.e., from
thousands to tens). Secondly, with product prioritization, the optimal ordering
of products aligned with testing objectives is established (e.g., to detect faults
as early as possible). Thirdly, the optimization of test case selection has been
studied to increase the efficiency of testing. Lastly, in a fourth group are works
that study optimization based on test case prioritization. Thus, optimization
of SPL testing can involve optimization in each of the four categories: product
selection and prioritization and test case selection and prioritization. Refer to
Section 3 for further details.

This thesis focuses on CPS testing at the MIL level using simulation
models. In the HCS area, the thesis addresses SPL testing optimization
categories, by adopting the Sample Application Strategy.

38

2.4. Complementary notions

2.4 Complementary notions

When designing and developing the experimentation of the contributions,
different techniques and metrics (not described in this chapter so far) have
been used. This section presents basic concepts to better understand the work
undertaken. Specifically, the concepts of (i) Search-Based Software Engineering,
(ii) Mutation Testing and (iii) Quality Metrics for testing are introduced. First,
Search-Based Software Engineering is an optimization technique employed in
the first exploratory work. Secondly, Mutation Testing consists of a testing
technique based on artificial faults that we employed in our case to measure
the effectiveness of the approaches proposed in all the works. Finally, different
Quality Metrics for testing are introduced, based on both white-box and
black-box, some of which have been employed in this thesis.

2.4.1 Search-Based Software Engineering (SBSE)

Test optimization problems requires the management of large complex problem
spaces with multiple competing and conflicting objectives. To handle such
challenges, Search-Based Optimization (SBO) has demonstrate to be an effec-
tive collection of techniques from the metaheuristic search, operations research
and evolutionary computation paradigms in multiple areas [HMZ12]. SBSE is
the discipline that focuses on the application of SBO techniques to software
engineering problems [HMZ12].

Some of the most popular techniques that can be applied in SBSE are: Hill
Climbing, Simulated Annealing, Greedy or Genetic Algorithm (GA). Among
them, GA is the one of the most famous Evolutionary Algorithm technique
[LHLE15]. To implement these techniques specific algorithms are provided.
For example, the following three algorithms are different implementations of
the GA technique: (i) Weigh-Based Genetic Algorithm (WBGA), (ii) Random-
Weighted Genetic Algorithm (RWGA) and (iii) Non-dominated Sorting Genetic
Algorithm II (NSGA-II).

In the specific case of GA, algorithms mimic natural selection process to
search optimal solutions for diverse optimization problems [WAG15, WAY+16].
To guide the search, a mathematical objective function is defined named Fitness
Function. To implement Genetic Algorithms, an initial population is randomly
generated. The algorithm then applies three operators: (i) a selection operator
which evaluates each individual to identify the best ones, (ii) a crossover
operator, which represents mating between parent individuals to generate new

39

2. Technical Background

(a) Crossover operation example where
parent individuals generate children in-
dividuals by exchanging remaining ele-
ments after the crossover point.

(b) Mutation operation example where
a parent individual is undergone a mut-
ing change of one element generating a
new individual.

Figure 2.8: Sample crossover and mutation genetic algorithm operations.

child individuals and (iii) a mutation operator, which introduces modifications
to parent individuals, generating new child individuals. Examples of crossover
and mutation operators are provided in Figure 2.8. The crossover operation
example swaps elements of two parents members starting at the crossover point
to generate the children in Figure 2.8a. The mutation operation is exemplified
in Figure 2.8b by modifying an element of the parent to create the mutated
child. In the resulting population after the three operators execution, only
individuals that fit the best to the problem are kept. This way a population
generation cycle is completed. These cycles are repeated until the predefined
number of generations is reached.

Four variants of GA techniques are applied in the exploratory contri-
bution described in Chapter 5 to propose algorithms that optimize test
case allocation to products.

2.4.2 Mutation Testing

We distinguish two parts when describing Mutation Testing. First, we introduce
the basic concepts of Mutation Testing for general software systems. Secondly,
we describe how Mutation Testing is approached in systems that are based on
simulation-models.

Mutation Testing basic concepts

According to the definition provided by Jia and Harman [JH10] “Mutation
Testing is a fault-based testing technique”. The underlying principle of mutation

40

2.4. Complementary notions

testing is to emulate the mistakes that programmers usually make to measure
the effectiveness of our tests to reveal those artificial faults. To this end, faults
(a.k.a. mutation) are deliberately seeded into a copy of the original software
by making slight syntactic changes. The faulty copy of the software is called
mutant. When we stimulate both the original and the mutant copies of the
software with the inputs of a test case, if test results are different it is considered
that the fault has been detected (a.k.a. ’killed’).

In the same way that exists different types of faults, different types of
mutation operators have also been defined. For instance, let us consider the
following statement if (x>0 || y>0) result = true;. The logical replace-
ment operator injects a mutant when we replace the || (OR) logical operator
with the && (AND) logical operator, obtaining a faulty copy with the following
statement if (x>0 && y>0) result = true;. However, the challenge is not
using abundant mutation operators, but their efficient selection, known as
mutant reduction. A comprehensive classification of both mutation operators
and mutant reduction strategies is provided by Papadakis [PKZ+19].

The mutation testing technique provides a testing criterion named Mutation
Score, that measures the ratio between the number of detected faults over the
total number of the seeded faults. The more of detected faults, the greater the
mutation score is.

Mutation testing can be used to test software at any level (i.e., unit, inte-
gration, system, etc.) and has been adapted to a large number of technologies
and programming languages [JH10]. Both academia and industry have largely
researched the technique during last decades [JH10, PKZ+19] and is considered
a mature technique as it is increasingly adopted in multiple domains [PKZ+19].

Mutation Testing in simulation models

Basic concepts described for software systems are transferable to the working
environment of simulation models. Therefore, seeding artificial faults to assess
the quality of test suite is also valid in this field. Mutation operators employed
for software systems can also be used in the software layer of the CPS modeled
through a simulation model. Let us review the example in Figure 2.9. On the
one hand, the model on the left (Figure 2.9a) shows the control subsystem
(cyber part of the CPS) of the Industrial Tanks case study (for more details
refer to Section 4.4). Note that the block labeled LogicalOperator (magnified
in the red circle) is set to the OR value. On the other hand, the model on the
right (Figure 2.9b) is a copy of the original system, where a Logical Operator

41

2. Technical Background

(a) Original model (b) Mutated model

Figure 2.9: A mutation operation example on model.

Replacement (LOR) fault has been seeded. In this case, the LogicalOperator

block is set to AND value. Apart from software mutation operators, new types
of mutation operators emerge to test also the hardware layer or specific aspects
of the simulation model. For instance, a mutant on hardware can be seeded
replacing the Variable Change Operator (VCO) of a Gain type of block, or a
Delete Transition Operator (DTO) can be seeded in a state machine. Hanh
eta al. proposed a set of mutation operators for simulation models build with
MATLAB/Simulink tool [HBT16].

To evaluate the mutation score of the seeded fault, the original model and
the mutated model (i.e., mutant) are connected to the test harness containing
the test cases. In the field of simulation-model based testing, a test case consists
of a number of signals that stimulates the SUT (i.e., both the non-mutated
and the mutated models). Thus, same test inputs (i.e., the same signal test
data values) are placed at the input ports of both models. The out ports of
each model, provide the resulting signals of the execution of the test after
the established simulation time is elapsed. A special block can be modeled
as oracle to gather resulting out port groups of signals from both models to
compare them and provide a verdict. When certain mutant out port value
differs from equivalent non-mutated out port value, the mutant has been killed,
detecting the fault.

The mutation testing technique has been applied in both the exploratory
contributions described in Chapters 5 and 6 as well as in the main
contribution presented in Chapter 7. The technique has been employed
to assess the approaches proposed in the contributions.

42

2.4. Complementary notions

2.4.3 Quality metrics for testing HCCPSs

Cost-effective techniques are required for testing configurable simulation mod-
els, as testing all possible combinations is unfeasible [AWA+18, MNBB19].
This section defines both black-box and white-box test quality metrics for con-
figurable simulation models relying on 150% variability modeling approaches.2

The defined test quality metrics can assess the effectiveness of a test case or a
set of test cases when testing configurable simulation models. The section is
divided into white-box and black-box test quality metrics and equations are
adapted to the context of configurable simulation models.

White-box metrics

White-box testing focuses on techniques that rely on SUT internals (e.g., inter-
nal structure of the system or dependency of the data on the execution paths)
[AO16]. The number of test objectives in a system can depend on the type
of coverage it is aimed at to be employed (e.g., data-flow or control-flow) as
well as the metrics (e.g., Condition Coverage or Decision Coverage). Consider
Table 2.2 as an example, which presents the relation among 4 features (i.e.,
f1, f2, f3, f4) along with eight different test objectives (to) with nine different
test cases (i.e., TC1 to TC9). Let us suppose that product Pk is obtained after
deriving the product line configured with two features Pk = {f1, f2}. There-
fore, product Pk contains five test objectives TOPk

= {to1, to2, to3, to4, to5}
associated to product assets. Let us suppose also a test suite composed of the
test cases TC1 and TC2 that exercise the Pk product TSPk

= {TC1, TC2}.

■ Structural coverage
Structural coverage is a measure widely used as a quality metric [YH12],
moreover, in recent decades, this measure has also been adopted by model-
based engineering [UPL12]. The purpose of the structural coverage is to
determine the amount of code (or model) that has been exercised during
a testing activity. There are multiple control-flow criteria for structural
coverage [AO08]. Three of the most common criteria are: Decision Coverage
(DC), Condition Coverage (CC) and Modified Condition/Decision Coverage
(MC/DC) [UL10]. The DC criterion checks the outcome of a decision. To
this end, a minimum of two test cases are generated: one for a true outcome
of the decision and another one for a false one. The CC criterion focuses on

2Refer to Section 4.4.1 for detailed explanation of 150% Models in the context of config-
urable simulation models.

43

2. Technical Background

Table 2.2: Test objectives, features and test cases exposed.

f1 f2 f3 f4
to1 to2 to3 to4 to5 to6 to7 to8

TC1 X X X X
TC2 X X X X
TC3 X X X X
TC4 X X X X X
TC5 X X X
TC6 X X X
TC8 X X
TC9 X X X X

all possible values that every condition of the decision can take, irrespectively
of the decision outcome. The MC/DC criterion examines that (i) every
possible outcome for each decision is checked, (ii) every possible outcome
for each condition is checked and (iii) each condition in a decision is shown
to independently affect the outcome of the decision [HVCR01]. Refer to
Appendix A where we have introduced structural coverage principals for
further details.
In our context, the coverage is measured in terms of covered test objec-
tives that are associated with product line assets. When specific product
configurations are derived from the product line, a particular number of
test objectives are implicitly derived. The number of test objectives in the
specific product is equal to or less than the number of test objectives of
the entire product line. The structural coverage can be measured in each
configuration at the application engineering level as well as at the Domain
Engineering level. Refer to Chapter 6 to have a detailed description of how to
measure the structural coverage at the application and domain engineering
level. Considering the example of Table 2.2 the structural coverage obtained
by the product at the application engineering level (i.e., at the product
level) will consist of the number of test objectives covered in relation to the
number of test objectives in the product. In this case, the five test objectives
of the product will be covered (i.e., 100% structural coverage of the product
will be achieved). However, the structural coverage obtained by the product
with the same test suite at the domain engineering level will consist of the
number of test objectives covered relative to the total number of objectives
of the entire product line. In this case, the number of covered test objectives

44

2.4. Complementary notions

is the same (i.e., 5 test objectives) but there are 8 test objectives in the
entire product line, so the achieved structural coverage at the application
engineering level would be 5/8 = 62%.

■ Feature coverage
This metric is inspired in the Feature Coverage presented by Wang et al.
[WAGL16a], however it is instrumented through test objectives and adapted
to configurable simulation models context. Test objectives are associated
to product line assets, and these assets are associated to features. Bearing
this in mind, it is possible to obtain the extent to which a feature has been
tested in a simulation model. Let us suppose that TOfi

= {to1, to2, ..., toNfi
}

are the test objectives covering feature i, and these test objectives are part
of the entire product line, and thus can appear in any configuration (i.e.,
toa ∈ TO150%). Intuitively, the coverage for a given feature is the percentage
of its test objectives that have been covered (i.e., ∑N

i=0 toi/Nfi
). Considering

again the example in Table 2.2, the first test case (i.e., TC1) would obtain a
test coverage for the first feature of 50%, as it only covers to1, 66.66% for the
second feature as it covers two test objectives out of three, 50% for the third
feature and 0% of feature coverage for the fourth feature. If we complement
the first test case with the second, we have a 100% of feature coverage for
f1, f2 and f3, since TC2 covers those test objectives not covered by TC1
for these first three features. However, the feature coverage for f4 remains
at 0%. To obtain a full feature coverage, we need to complement these two
test cases with one of the test cases covering to8, which is the test objective
related to f4; thus, either TC3, TC4, TC5 or TC9 can be selected. The
feature coverage of the entire product line will be the sum representation
of the feature coverage obtained by each feature (i.e., ∑N

i=0 cov(fi)/Nf ,
being cov(fi) the coverage obtained for feature i and Nf the total number
of features in the product line).

■ Feature pairwise coverage
It is well known that many faults in product line engineering appear due
to the interaction of pairs of features [CDS08]. Similarly to the feature
coverage metric, this one is also inspired in the one proposed by Wang et al.
[WAGL16a] with equal adaptations. In a simulation model, this could be
measured by considering the interaction of test objectives when these are
associated to different features. When considering Table 2.2, 6 feature pair
interactions exist (i.e., f1-f2, f1-f3, f1-f4, f2-f3, f2-f4, f3-f4). If we consider the
coverage for the first interaction (i.e., interaction of f1-f2), the interaction

45

2. Technical Background

between the test objectives of these features would need to be considered
(i.e., to1-to3, to1-to4, to1-to5, to2-to3, to2-to4 and to2-to5). Note that in
this case, selecting TC1, two of the objective interactions have been covered,
and thus, a 33.33% of feature pairwise coverage is scored for the interaction
of f1 and f2. Similar to the feature coverage, the feature pairwise coverage of
the entire product line is calculated as the sum representation of the coverage
obtained by each feature pair (i.e., ∑N

i=0(∑N
j=i+1 fpcov(fi, fj))/Nfpair,

being fpcov(fi, fj) the feature pair coverage for features i and j and Nfpair

the total number of feature pairs in the product line).

Black-box metrics

Black-box testing focuses on techniques that rely on external information of the
SUT (e.g., specifications, requirements, design, etc.) [AO16]. For the particular
field of testing simulation models with black-box techniques, Matinnejad et
al. [MNB17, MNBB19] proposed different black-box metrics based on two
factors: (i) on the one hand the anti-patterns of simulations models, and (ii) on
the other hand a similarity metric based on the euclidean distances of inputs
and outputs. Arrieta et al. [AWA+18] adapted these metrics for the test case
selection context in the field of simulation models. We later proposed these
metrics for the context of configurable simulation models.

■ Anti-patterns
Three different anti-patterns were presented by Matinnejad et al. in [MNB17],
which can be seen in Figure 2.10. Instability aims at measuring quick and
frequent oscillations of a signal [MNB17]. Discontinuity is an anti-pattern
in which an output signal shows a short duration pulse [MNB17]. Lastly,
growth to infinity is an anti-pattern where an output signal shows how a
signal grows to an infinite value [MNB17]. Arrieta et al. [AWA+18], adapted
those anti-patterns proposed in [MNB17, MNBB19] to be normalized inde-
pendently of the number of outputs a model had and the data-type and
maximum/minimum values of their outputs. Refer to [AWA+18] for further
detail of how each anti-pattern is measured for each signal. For configurable
simulation models, the anti-pattern degree for each of the test cases given
a test suite (i.e., TS) is measured by observing each output of the simula-
tion model. However, since each output in O150 can represent a particular
variable in different units (e.g., one output can represent vehicle speed in
km/h while another output can represent the acceleration in m/s2), it is

46

2.4. Complementary notions

a) Instability c) Growth to infinityb) Discontinuity

Figure 2.10: Anti-patterns for simulation models proposed by Matinnejad et
al. [MNB17]

mandatory to normalize the anti-pattern degree of each test case. Given
a 150% simulation model with Nout outputs (i.e., O = {o1, o2, ..., oNout}),
the anti-pattern degree of a test case j in TS is obtained with Equation
2.1, where ap(Osigji) is the anti-pattern degree of the i-th signal for tcj and
max(ap(Osigi)) is the maximum anti-pattern degree obtained in the i-th
signal when considering all test cases in TS. Note that ap can be either
instability, discontinuity or growth to infinity.

TCap(tcj) = 1
max(ap(Osigi))) ·M

×
M∑

i=1
(ap(Osigji) (2.1)

■ Similarity
It is well known that a set of different test cases is more likely to detect faults
[FPCY16, HAB13]. By following this principle we have defined two similarity
measures for configurable systems. Firstly, we have defined the similarity
between test cases adapting the Euclidean distance measure proposed for
simulation models [MNB17, MNBB19, AWA+18]. To measure the similarity
of test cases we employed the Euclidean distance, which is the similarity
measure proposed for simulation models in previous studies [MNBB15,
MNBB19]. Nevertheless, unlike these previous studies, in the context of
this study, the Test Execution Time (TET) of test cases might differ, which
means that the input and output signals of two test cases can have different
numbers of simulation steps. Subsequently, we have adapted the Euclidean
distance between test cases to deal with this problem. Given two signals
related to a specific input or output (i.e., sig and sig′) in two different test
cases, the Euclidean distance is measured following Equation 2.2. Given two
different signals, min(ksig, ksig′) is the number of steps of the signal whose
test case has a lower TET, maxRsig is the maximum value that the signal in

47

2. Technical Background

the simulation can obtain, minRsig is the minimum value that the signal in
the simulation can obtain and K is the number of steps that the test case
with the highest TET in the test suite has. We consider K as the number
of steps for the longest test case for two main reasons. First, to ensure that
the distances between test cases are normalized. Secondly, because a longer
test case might have a higher chance to detect faults, and thus, we penalize
the distance of those very short test cases. We remark that in our study
the simulation step (∆t) is the same for all test cases. When considering
Equation 2.2, a higher distance means that two signals are more dissimilar.

Dist(sig, sig′) =

√∑min(ksig ,ksig′)
i=0 (sig(i ·∆t)− sig′(i ·∆t))2
√

K + 1× (maxRsig −minRsig)
(2.2)

Equation 2.3 defines the input signal-based distance between two different
test cases (TCa and TCb) for a simulation model with N inputs (in the
150% simulation model). When comparing two test cases executed in
two product configurations, three group of signals must be considered in
simulation models: (i) the signals that both configurations share, (ii) the
signals that are present only in one configuration (but not in the other) and
(iii) the signals that both configurations do not have. Equation 2.3 details
how to measure the distance between two test cases (i.e., TCa and TCb).
D(sigai , sigbi

) is referred to the Euclidean distance between the signal i of
test case a and test case b, where S is the number of signals that both
configuration models share (i.e., the first group). We consider that a distance
between two signals is the maximum when a configuration has one specific
signal and the other one does not have it. The maximum distance (maxD)
will be 1, and d will be the number of signals that a specific configuration
has but the other configuration doesn’t. Lastly, if both configurations do
not have a specific signal, we consider that from the point of view of the test
case similarity, both are the same, and we consider the minimum distance
(which is 0 and thus, not considered in the equation).

TCD(TCa, TCb) =
∑s

i=1 Dist(sigai , sigbi
) + ∑d

i=1 maxD

N
(2.3)

The previous equation can also be complemented with the similarity that
two independent configurations have in terms of features (e.g., by considering
the similarity measure proposed by Al-Hajjaji et al. [AHTL+16]).

Sim(Pu, TCa, Pv, TCb) = PD(Pu, Pv) ·Wp + TCD(TCa, TCb) ·Wtc (2.4)

48

2.4. Complementary notions

For instance, given a configuration u (Cu) and a configuration v (Cv), and
two test cases (e.g., TCa and TCb), where TCa is tested on Cu and TCb on
Cv, the distance between both test cases and configurations can be measured
as a weighted sum of both. Where the distance between both test cases (i.e.,
TCD(TCa, TCb)) is calculated following for instance Equation 2.3 and the
distance between both products (i.e., PD(Pu, Pv) as given in Equation 2.4.
Note that Wp is the weight given to the distance between both products
whereas Wtc is the weight given to the distance between test cases.

This collection of metrics and adaptation to the context of configurable
simulation models was published in the REVE 2019: Seventh Interna-
tional Workshop on Reverse Variability Engineering In Proceedings of
the 23rd International Systems and Software Product Line Conference
[MAES19b]. White-box structural-coverage based metrics were previ-
ously published by the author in [MAES19a], while white-box feature
related metrics presented in this section are authored by [WAGL16a].
Although the metrics were already intended for SPLs, we adapted the
metrics to measure test objectives in the context of the configurable
simulation models. Black-box anti-pattern and similarity metrics pre-
sented in this section are authored by Matinnejad et al. [MNBB19].
These metrics were adapted by Arrieta et al. [AWA+18] for the test
case selection context for single simulation models. We adapted these
black-box metrics to the configurable simulation models field. We have
considered this work as a minor contribution and have therefore included
the metrics as basic concepts in this background section.
White-box structural coverage metrics are employed to improve test case
selection in the exploratory contribution described in Chapters 6 and
black-box similarity metrics are employed for test case prioritization in
the main contribution presented in Chapter 7.

49

Chapter 3

State of the Art

Contents
3.1 Testing Strategies . 51

3.1.1 SPL test optimization reference process 57
3.2 Product Selection . 58

3.3 Product Prioritization . 59

3.4 Test Case Selection . 60

3.5 Test Case Prioritization . 62

3.6 Critical analysis of the state of the art 63

3.6.1 Product selection and prioritization 63
3.6.2 Test case selection, minimization and prioritization 63

50

3.1. Testing Strategies

This chapter presents the state of the art of HCCPS test optimization. As
described in Section 2.3.3 the optimization of HCCPSs rely on testing strategies
of the SPL field. Thus, we first present a review of SPL testing strategies and
set the contextual framework in which the thesis operates introducing the SPL
test optimization reference process. The chapter is subsequently structured by
reviewing the steps of the introduced reference process. Finally, the critical
analysis of the state of the art is presented.

3.1 Testing Strategies

In this thesis we have revised the literature regarding SPL testing strategies.
We have mainly relied on systematic literature reviews, systematic literature
mappings and surveys. Selected 21 works are presented grouped chronologically
in five stages.

A first group of works from beginning of the 2000s analyzed the techniques
and activities to address testing in SPLs [McG01, KM03]. McGregor [McG01]
described the test-related techniques and activities to be used to form the
test process for a product line. Kolb and Muthing [KM03] discussed in their
publication the challenges of testing SPL as opposed to testing individual
products.

A second group of early works provided three general SPL testing strategy
classifications [TTK04, PBL05, RRKP06]. Tevanlinna et al. [TTK04] carried
out a survey on SPL testing. They categorized approaches into four different
strategies for SPL testing: (i) the Product by product strategy, that relies to
the application engineer who tests each product individually without reusing
the test assets. (ii) In the Incremental testing strategy first product is tested
individually while the following products are partially tested using regression
testing. (iii) In the Reusable asset instantiation strategy abstract and specific
test assets are created in DE. Later in AE test assets are instantiated, where
specific test assets are use as is and abstract test assets are extended to the
product-specific requirements. (iv) The Division of responsibilities strategy
divides the testing activity of the V-model levels between the different engi-
neering units. Reuys et al. published a book chapter where their proposal
of ScenTED Method was described [RRKP06]. They identified three SPL
testing strategies: (i) the Separate test case development strategy, develops
independent test cases for each derived application (i.e., no reuse is performed).
(ii) The Opportunistic reuse of existing test cases strategy, develops test cases

51

3. State of the Art

for first derived application and reuse them as soon as new applications are de-
rived from product line. (iii) The Design test cases for reuse strategy proposes
to create reusable test artifacts in DT. Later in AT, test cases for specific
application are derived from the reusable test artifacts.

In the context of the published book describing the SPLE framework
[PBL05], Pohl laid the groundwork for what would become the foundations of
the product-line community’s activity in the years to come, including four SPLs
testing strategies. (i) The Brute Force Strategy (BFS) performs all test activities
at all test levels and for all possible applications during DT. (ii) The Pure
Application Strategy (PAS) perform tests only in AE, for which only application-
specific tests are created (i.e., no reusable artifacts are employed). (iii) The
Sample Application Strategy (SAS) uses one or several sample applications,
which are tested at DE. Later when specific products are derived in AE,
specific testing is also required for products. (iv) The Commonality and Reuse
Strategy (CRS) tests common parts in DT and prepares reusable test artifacts
for variable parts. Later in the AT the predefined and variable DT artifacts
are employed and adapted to test specific applications.

In a third stage of publications, different systematic mappings, reviews
and surveys were conducted but no new general testing strategies were defined
[LUV09, ER11, JHF11b, NdCMM+11]. Lamancha et al. [LUV09] conducted
a systematic literature review, where they analyzed 37 papers. The contribu-
tions and approaches were classified according to 7 categories: unit testing,
integration testing, functional testing, SPL architecture testing, embedded
systems testing, testing process, testing effort in SPL y test product generation.
Engström et al. [ER11] conducted a systematic mapping study reviewing 64
papers to analyze approaches, publication fora and remaining challenges. They
highlighted main challenges in SPL testing as: (i) the large number of tests, (ii)
balance between test effort for reusable components and concrete products, and
(iii) handling variability in testing. Furthermore, they concluded the need for
more empirical studies. Johansen et al. [JHF11b] conducted a survey of three
empirical case studies. They concluded that the reported improvements corre-
sponded to the reusable component testing strategy. They also identified as a
future improvement the need to study interaction failures between components.
Neto et al. [NdCMM+11] conducted a systematic mapping study in which nine
key (at the time) research questions were comprehensively analyzed. From the
study we highlight the review of testing strategies for SPL, which compiled
the proposals of Tevanlinna[TTK04] and Reuys[RRKP06] into a unified list

52

3.1. Testing Strategies

of 5 strategies: Testing product by product, Incremental testing of product
lines, Opportunistic reuse of test assets, Design test assets for reuse, Division
of responsibilities. We do not reproduce what each of the strategies consists of
as these have already been described by the primary authors.

In a fourth stage of publications, testing strategies defined by Pohl [PBL05],
Tevanlinna [TTK04] and Reuys [RRKP06] were employed when perform-
ing surveys or published book chapters[OWES11, RE12, LKL12, TAK+14,
dCMMCDA14]. Oster et al. published a book chapter [OWES11] with a
survey of model-based SPL testing, where six approaches including their
methodology based on MBT paradigm were studied and compared through
a common running example. In the introduction of the survey the four SPL
testing strategies defined by Tevanlinna [TTK04] are described as they are
well suited to Model-Based testing methodologies. Refer to the primary paper
for details of the strategies. Runeson and Engström published a book chapter
[RE12] where they analyzed the state of the art of regression testing for SPLs
with the aim of translating the benefits of regression testing to the context
of SPLs. The paper identifies approaches based on formal modeling of vari-
ants and versions for SPLs as well as a visualization-based approach. When
classifying the approaches regarding SPL testing strategies, they rely on the
classifications made by Pohl [PBL05] and Tevanlinna [TTK04]. Refer to the
primary paper for details of the strategies. Lee et al. [LKL12] conducted a
(non-systematic) survey that analyzed 15 selected papers. For the study they
relied on the W-shaped SPL testing reference process (described by [JHQJ08])).
They posed 8 research questions that were used to analyze the selected papers.
The survey does not perform an analysis of possible testing strategies, focusing
all the study on the W-shaped reference process. Thum et al. [TAK+14]
carried out a survey of 123 works, to classify existing static analysis (not
testing) approaches. They classified existing works into three main analysis
strategies (product-based, featured-based and family-based) and four extra
strategies resulting from combinations of previous ones. The classification was
performed according to how the analysis was handling the variability in each
strategy. They compared this static analysis strategies with the ones proposed
by Pohl [PBL05]. In [dCMMCDA14] doCarmoMachado et al. conducted a
systematic literature review of 49 works covering the period from 1998 to
2013. Two interests were reported to be taken into account when approaching
SPLs testing strategies: (i) The need to handle the selection of products to
test to reduce the set of possibilities to a reasonable and representative set of

53

3. State of the Art

products configurations. (ii) The necessity to handle the test of end-product
functionalities, i.e., how to handle testing of selected products with regard to
variability definition, assets reuse, test automation and binding to Domain or
Application level.

A fifth stage of publications, as the community developed the field with new
proposals and approaches, new studies and surveys were conducted to analyze
the status of applying Combinatorial Interaction Testing (CIT)1 or Evolutionary
Computation techniques in SPL testing as well as to review the notion of SPL
test coverage criteria [LHFRE15, LHFC+16, FLHE18, VAHT+18, LKJ20].
Lopez-Herrejon et al. [LHFRE15] conducted a systematic mapping study where
47 works proposing approaches that employed CIT for testing SPL purposes
were comprehensively studied. They analyzed four aspects: CIT techniques,
CIT phases, case studies and publication fora. From the work they concluded
that among the 13 techniques employed in CIT, Greedy algorithm-based
techniques along with SBSE-based techniques were the most numerous. They
also concluded that CIT is mainly applied to obtain a representative subset of
products from the product line. They also highlighted the need for a community
wide benchmark. Varshosaz et al. conducted a meticulous classification of
product sampling for SPLs [VAHT+18]. 48 works were surveyed (without
systematic process) and criteria for classification defined. They concluded that
the majority of techniques only used feature models as inputs but other input
types were understudied. Regarding techniques, greedy and meta-heuristic
were the most common ones while coverage and diversity based techniques were
identified as opportunities. Lopez-Herrejon et al. published a book chapter
[LHFC+16] compiling the overview and challenges of Evolutionary Computation
in the context of SPL testing. The work documents the uses of SBSE in SPL
testing and also points out several challenges for the community to solve.
Among them, we highlight the potential benefit of employing multi-objective
optimization, the untapped potential of exploiting the DE level knowledge of
SPLs or further test suite prioritization opportunities. Fischer et al. [FLHE18]
created a benchmark for evaluating the fault detection capabilities of SPL
testing approaches. To this end, they engineered a process to automatically
generate tests and failures. They integrated and adapted tools from third
parties into their process (i.e., EvoSuite for test case generation and µJava
for seeding mutants). Result and limitations were presented along with future
lines of work. Lee et al. [LKJ20] conducted a systematic literature review

1Refer to Section 3.2 for detailed explanation of the CIT concept.

54

3.1. Testing Strategies

thoroughly analyzing 78 works. Selected works were classified according to
dimensions: (i) employed test strategy for which Polh’s classification was
employed [PBL05] and (ii) specific test coverage criteria to each SPL testing
method. With the exception of test coverage criteria of product selection,
existing SPL test coverage mainly correspond to test coverage criteria for single
products. Consequently, they emphasized the importance of clarifying and
defining the notion of SPL test coverage criteria in future works.

To conclude the analysis of the selected works, we have identified three
primary classifications of SPL testing strategies. These primary works are
Tevanlinna [TTK04], Pohl [PBL05] and Reuys [RRKP06] as classifications
proposed by them have been repeatedly referenced in the other analyzed works.
Table 3.1 compares the three classifications with each other in order to clarify
the terminology used by the different works. As a result, up to 7 different
strategies are proposed when classifications are unified.

According to the authors of the classifications studied, some strategies are
unfeasible (i.e., Brute Force Strategy), while other strategies are not recom-
mended for product lines that can generate a large number of products (i.e.,
Pure Application Strategy). Both Incremental testing of product lines and
Opportunistic reuse of existing test cases strategies are based on testing an
initial product (in AE) to reuse generated test artifacts when testing subse-
quent products (applying regression testing techniques in the particular case of
Incremental testing of product lines). The option that enables early validation
is the Sample Application Strategy. In the classification, Commonality and
Reuse Strategy best addresses the design for reuse principle. The proposal to
balance both early validation and reuse is to develop variable artifacts (as in
CRS) but creating meaningful product parts in DE that can enhance early
validation (similar to SAS). Finaly, the Division of responsibilities structures
testing according to V-Model levels divided in different engineering units.

In this thesis we have addressed the problem of test optimization in
the context of the SAS strategy. Considering the work of CarmoMachado
[dCMMCDA14] where it was highlighted that there are two (independent but
complementary) interests that an SPL testing strategy must address: (i) prod-
uct selection and (ii) management of final product testing. According to these
two interests, we have organized the review of the state of the art based on
optimization at the product level and optimization at the test case level.

55

3. State of the Art

Table 3.1: Comparison of SPL testing strategies classifications. First column
corresponds to classification provided by Tevanlinna et al. [TTK04], second
column corresponds to Paul et al. [PBL05] and third column corresponds to
Reuys et al. [RRKP06]. Strategies from different classifications presented in
the same line are considered nearly equivalent.

Tevanlinna et al. [TTK04] Pohl et al. [PBL05] Reuys et al. [RRKP06]

Brute Force Strategy
All test activities are performed
at all test levels and for all pos-
sible applications during Domain
Testing.

Product by Product Pure Application Strategy Separate test cases develop-
ment

Delivered products are fully
tested one by one in Application
Engineering.

Tests are performed only in Appli-
cation Engineering. Only applica-
tion specific tests are created and
performed. No reusable Domain
test artifacts are created during
Domain Testing.

Test cases for each derived ap-
plication are developed indepen-
dently (without reuse).

Incremental testing of prod-
uct families

Opportunistic reuse of exist-
ing test cases

First derived product is tested in-
dividually and following products
are tested using regression testing
techniques. It is performed at Ap-
plication Engineering but taking
advantage of commonalities.

Test cases are developed for first
application derived from product
line. Next derived applications
reuse (if possible) previously gen-
erated test cases.

Sample Application Strategy
One or a few sample applications
are used to test the Domain arti-
facts. Application Testing is still
required for each application.

Reusable asset instantiation Commonality and Reuse
Strategy

Design test cases for reuse

Test assets are created in Do-
main Engineering (as extensively
as possible), including variable as-
sets (abstract test cases). In Ap-
plication Engineering a full test-
ing process is instantiated (con-
crete test cases are reused and
abstract test cases extended to
product-specifities).

Domain Testing aims at testing
common parts and preparing test
artifacts for variable parts. Appli-
cation testing aims at reusing the
test artifacts for common parts
and reusing the predefined, vari-
able Domain test artifacts to test
specific applications.

In Domain Testing reusable test
artifacts are created, whereas in
Application Testing test cases for
a specific Application are derived.

Combined SAS/CRS
Reusable test artifacts are created
in Domain Testing and the reuse
of these artifacts are ensured in
Application Testing. In addition,
an early validation is performed
with fragments of a sample appli-
cation. No complete application
is built, but only parts that are
large enough to perform the tests.

Division of responsibilities
Testing is structured in the levels
of the V-Model divided in differ-
ent engineering units.

56

3.1. Testing Strategies

3.1.1 SPL test optimization reference process

Taking as input the testing optimization approaches both at product level
and test case level, we have modeled the SPL testing in a reference process
composed of five-step. A SPEM-based diagram depicts in Figure 3.1 the
reference process where the steps have been divided according to the two
interests described in [dCMMCDA14] (i.e., optimization performed at the
product level and optimization at the test case level).2

Figure 3.1: SPL test optimization reference process.

The first step (1), titled Product Selection in the diagram, takes the vari-
ability model (e.g., usually a Feature Model) as input. Then, it derives the
product set to be tested, titled Product Suite, this is usually done by applying
combinatorial testing algorithms which satisfy the selection criteria. Secondly
(2), at the Product Prioritization step, products of the product suite are sorted,
scheduling at the beginning those ones which fit better the defined objective
(i.e., better fault detection rate). As a result, the Prioritized Product Suite is
obtained. At the third step (3), titled Test case Selection, relevant test cases
that must be executed in each of the products are selected and minimized
To this end, the Test Suite is taken as input and the test cases are selected
according to the features of each product to be tested (e.g., only test cases that
can be applied to the product are selected). In addition, minimization criteria
can be applied to the selected test cases (e.g. discard low fault detection rate

2The Software & Systems Process Engineering Metamodel Specification (SPEM) Version
2.0 was employed to create the figure. http://www.omg.org/spec/SPEM/2.0/

57

http://www.omg.org/spec/SPEM/2.0/

3. State of the Art

test cases or duplicated test cases) in order to optimize the number of test
cases to be applied to each product. As output, the Selected test cases are
obtained. The fourth step (4) consist of prioritizing the test cases, for which
the selected (and minimized) test cases are taken and sorted according to a
criterion. As a result the Prioritized Test Suite is obtained. Finally, at the
fifth step (5), following the defined product order in the Prioritized Product
Suite, each of the products is thoroughly tested by the test cases, applying the
order defined at the Prioritized Test Suite.

The remaining part of the chapter reviews the state of the art of the first
four steps described in the SPL test optimization process and related critical
analysis.

3.2 Product Selection

The high number of feature combinations in a SPL produces a explosion of pos-
sible products to be tested. To overcome this problem, product selection aims
to reduce the number of products to be tested. In relevant systematic studies
[LHFRE15, dCMMCDA14, dMSNdCMM+11, ER11, LUV09, TAK+14] CIT
is identified as the leading selection approach for testing in SPL. The CIT
approach is based on the observation that most of the defects are expected to
be caused by an interaction of few features [KAuR+09]. Thus, CIT selects a
reduced number of products where interaction errors are more likely to occur
[CDS08]. The selection is achieved choosing the products of the SPL to cover
all interactions between t features, known as t-wise. For example, in 2-wise
(A.K.A. pairwise) all possible interactions between feature pairs are chosen to
be tested. Leading works indicate [dCMMCDA14, LHFRE15] that for selecting
a subset of representative products from the product line, CIT is de facto
the standard technique employed by the community. Moreover, for solving
problems of high complexity (where we can locate the product selection step),
the heuristic reduction provided by pairwise can provide a practical mechanism
for representative (product line) sampling. This approach has been widely
adopted by the research and industry community [TAK+14, dCMMCDA14]
and several algorithms have been proposed to perform the t-wise interactions
(e.g., ICPL, AETG, CASA, Chvatal, etc.).

SPL variability generates strong constraints between features, making t-
wise testing more difficult in large SPLs. Several works have been published
in order to solve this problem. Cohen et al. [CDS07] analyzed the interaction

58

3.3. Product Prioritization

testing taking into account constraints and proposes techniques to handle
them and integrate with CIT tools. Perrouin et al. [PSK+10] proposed an
approach for scalable tool set using Alloy to automatically generate test cases
satisfying t-wise. Oster et al. [OMR10] proposed an approach and a Framework
named MoSoPoLiTe where pairwise combinatorial is performed, with graph
transformation and forward checking. Johansen et al. [JHF11a] proposed the
SPLCAT approach, where covering arrays [CDS07] are generated. Nevertheless,
the approach is limited to 3-wise testing.

While CIT focuses on reducing the products to be tested, the approach
proposed by Henard et al. [HPP+13a] focuses on selecting products to optimize
fault detection. Thus, Henard et al. [HPP+13a] proposed an approach with
two mutation operators to assess the ability of test suites to detect errors when
deriving products from feature models. Results demonstrate that dissimilar
product suites have higher mutant detection ability, validating the similarity-
driven product line testing. Additionally, Henard et al. [HPP+13b] also
proposed the use of constraint solving technique to prune invalid products
from the search space and a genetic algorithm approach to generate products
handling multiple objectives. Furthermore, Henard et al. [HPLT14] introduced
a search-based approach to generate sets of products focusing on possible faulty
implementation of the FM that should be tested.

In [GCD11] Garvin et al. search-based heuristics were employed improving
an extension to the AETG algorithm [CDFP97] using simulated annealing.
Ensan et al. [EBG12] proposed evolutionary testing approach GA, searching
in the configuration space of a software product line feature model in order to
automatically generate product suites.

3.3 Product Prioritization

While most of the approaches focus on reducing the number of products to be
generated and tested, several authors have worked on prioritizing generated
products as was reported in surveys and mapping studies [NL11, LHFC+16].

Initial product prioritization propositions [BC07, YHTS09, BSL+10, UKB10]
opened the way to the latest research works [SSRC14a, AHTM+14]. In [BC07]
Bryce et al. proposed search-based techniques to prioritize products in terms of
t-wise coverage. In [YHTS09] Yoo and Harman proposed a cluster-based prior-
itization to reduce the number of pairwise interactions. [BSL+10] incorporated
the test-cost metric to the CIT coverage metric.

59

3. State of the Art

Al-Hajjaji et al. [AHTM+14] proposed a similarity-based approach to
prioritize the products to be generated (before generating products). The
similarity of products was calculated based on Hamming distance [Ham50].
The algorithm was implemented and integrated into the FeatureIDE tool
[TKB+14], in order to automatize the prioritized product suite generation.
Results showed that similarity-based product prioritization is more effective
than default product ordering provided by the product selection.

Similarly, Sanchez et al. [SSRC14a] explored the product prioritization
techniques in SPL testing for already derived product suites.3 Five different
prioritization criteria based on common metrics of FM were proposed, com-
paring their fault detection effectiveness. Three of these criteria were related
to complexity, another criterion was related to reusability and last criterion
was related to the dissimilarity of products. Results showed that product
prioritization accelerates fault detection of product suites generated both with
CIT techniques or randomly. Moreover, Sanchez et al. [SSRC14b, SSPRC15]
performed a thorough work with the Drupal framework, where a real HCS
was analyzed. Obtained results, highlighted that the size of the feature, the
cyclomatic complexity, number of changes and fault history are correlated with
the number of bugs. Additionally, it was demonstrated that working with
non-functional attributes, such as number of reported installations, number
of developers or number of changes among others, accelerates fault detection,
outperforming the results obtained with similarity-based product prioritization.

Finally, an extended work was published by Parejo et al. [PSS+16] fo-
cusing on a multi-objective approach of the product prioritization. To this
end the NSGA-II evolutionary algorithm was adapted and the Drupal case
study serve as test bench. Results revealed that prioritization driven by non-
functional objectives accelerate the detection of bugs more effectively than using
prioritization driven by functional objectives. Additionally, results showed
that prioritization objective based on pairwise coverage combined with other
objectives is effective detecting bugs quickly.

3.4 Test Case Selection

Lopez-Herrejon et al. [LHLE15] indicated that SPL testing is the most prevalent
application of SBSE. However, most of the work was focused on DE testing

3DISAMBIGUATION: Note that some authors in the literature (such as [SSRC14a, BC07])
refer to the product selection problem as test case selection.

60

3.4. Test Case Selection

activities, with a minimal impact in AE testing activities. The reasoning
performed by Lopez-Herrejon et al. [LHLE15] concluded two observations: (i)
The large number of individuals required by SBSE techniques is naturally more
profitable at the DE level. (ii) The second observation brought a conclusion
obtained by Metzger et al. [MP14] who pointed that AE testing research
activities have focused mostly on deriving test from reusable artifacts or
minimizing the retesting of parts already tested.

A challenging work line was opened by Wang et al. [WAG15] with the
proposed research work to select and minimize test cases. For test case selection,
an initial methodology was proposed [WGAL13] for automated selection of test
cases for a new product using FM, Component Family Model (CFM) 4 and a
test case repository. Traceability links were established between CFM and the
test case repository, and also between FM and CFM. To test new products,
the engineer selects features from the FM and corresponding test cases can be
automatically obtained from the test case repository. The approach has been
successfully corroborated with industrial studies [WAGL15, WAGL16b].

Arrieta et al. [AWSE16a] proposed a search-based test case selection
approach adapted to the “X-in-the-loop” test levels of CPS product lines
context. The approach proposes a process of four steps: (i) in the first
step the variability modeling is designed using FM to manage variability and
requirements. (ii) In the second step configuration selection is performed. First
and second steps are conducted with the FeatureIDE tool [TKB+14]. (iii) In
the third step test cases are selected employing search-based algorithms. FM
and configuration selection information is used to identify selected requirements.
Subsequently, search algorithms are employed to select test cases at MIL, SIL
and HIL levels. (iv) Finally, in the fourth step, test cases are executed using
Simulink tool. Results showed that among the three search algorithms employed
in the empirical evaluation (i.e., GA, Greedy, Alternating Variable Method),
GA results the most appropriate algorithm for solving test case selection.

However, even after test case selection is performed the number of test
cases to execute results may be unfeasible. To overcome this problem Wang
et al. [WAG15] proposed an test suite minimization approach to identify and
eliminate redundant test cases. Moreover, to avoid loosing effectiveness of
various optimization objectives (i.e., test coverage, fault detection capability or
time budget) when minimizing, the approach was outlined as a search problem.

4A Component Family Model describes the internal structure of the individual components
of a product line and their dependencies on the features [ps06].

61

3. State of the Art

To deeply research best fitness function for this end, Wang et al. [WAG15]
conducted the empirical evaluation of an industrial case study with three
weight-based GAs and seven multi-objective search algorithms. Results showed
that Random-Weight Genetic Algorithm outperforms the other algorithms.
Finally, a TEMSA named tool was implemented in order to support test
minimization in the context of SPL.

3.5 Test Case Prioritization

HCSs present a double challenge when addressing testing. The first challenge
is the aforementioned elevated number of test cases to be executed and the
second challenge is related to the limited testing budget available. Thus, often
it is not possible executing all test cases despite the test case selection and
minimization effort. Consequently, best test cases must be prioritized in order
to guarantee that test cases that fit best to testing objectives and budget are
executed first.

Wang et al. [WBA+14] proposed a search-based technique for cost-effective
test cases prioritization for a given limited budget addressing to multiple
cost and effectiveness objectives. To this end three search algorithms (i.e.,
Alternating Variable Method (AVM), GA, (1 + 1) Evolutionary Algorithm
((1+1)EA)) were empirically evaluated within an industrial case study with
500 designed artificial problems. Results showed that (1+1)EA achieved the
significant best performance among the selected search algorithms when finding
an optimal solution for the test prioritization problem. The evaluation also
showed that algorithms are not influenced by the increasing complexity of
problems, ensuring the scalability of search algorithms.

Arrieta et al. [AWSE16b] proposed an approach based on weight-based
search algorithms for prioritizing the test cases for configurable CPSs. The ap-
proach employs Fault Detection Capability (FDC) obtained from historical data
as an effectiveness measure and test execution time as cost measure. Two case
studies were used to evaluate the performance of the studied algorithms (i.e.,
weight-based genetic algorithm, random weighted genetic algorithm, Greedy
and AVM). The assessment of the effectiveness of the proposed approach was
performed with mutation testing. Results reflect that local search algorithms
(i.e.,Greedy and AVM) showed best performance solving the search problem.

62

3.6. Critical analysis of the state of the art

3.6 Critical analysis of the state of the art

SPLs have been intensively researched [HPMFA+16, LHLE15, MP14, TAK+14,
BSC10] and applied [Wei08, BBSR16] in several disciplines such as embedded
systems for automotive, avionics or medical devices [LSR07]. However, SPL
testing must still face several challenges as it has been pointed in different
reviews [MP14, LHFC+16]. The following sections analyses the progress of the
reviewed field in the state of the art.

3.6.1 Product selection and prioritization

Section 3.2 presents a summary of product selection. As Lopez-Herrejon
et al. [LHFC+16] identified, it is a productive research field, where main
contributions have been focused on CIT approaches. When these approaches are
used with large-scale real scenarios, scaling limitations have risen. Subsequently,
approaches to solve these problems have been proposed [OMR10, JHF12], as
well as alternative proposals [HPP+13b, HPP+13a] with other criteria to select
products. However, as relevant works highlight [LHFRE15, dCMMCDA14],
for the resolution of the product selection problem, CIT can be considered de
facto as the standard technique.

Over the last years, research on product prioritization has been intensi-
fied, as it was described in Section 3.3. Two main approaches help performing
the product suite sorting. Al-Hajjaji et al. [AHTL+16] proposed an approach
to select and sort products based on the similarity criterion and before the
products are generated. Sanchez et al. [SSRC14a] proposed five criteria to
perform the sorting of already generated product suites. We can conclude in
both approaches that product prioritization accelerates fault detection. The
analyzed approaches that speed up fault detection are fundamental for the
proposed approach of this research project.

Even after product selection and prioritization is performed the number
of products to thoroughly test can result unfeasible for given time-budgets.
Consequently, a need to propose new approaches and strategies to optimize
the testing of products is emphasized.

3.6.2 Test case selection, minimization and prioritization

In contrast to the DE field, at the AE the research effort has not been so pro-
ductive [LHFC+16]. Nevertheless inspiring improvements have been published
in recent years.

63

3. State of the Art

In Sections 3.4 and 3.5 a summary of test case selection, minimization
and prioritization is presented. Wang et al. [WAG15] provided a complete
methodological and technical solution for selecting, minimizing and prioritizing
test cases, as well as for developing and integrating the required tool chain to
automatize the steps. Moreover, the approach was successfully evaluated with
industrial studies [WAGL15, WAGL16b]. Arrieta et al. [AWSE16a] proposed
test case selection and prioritization focusing in the CPS product lines for
simulation-based validation contexts. The solutions results were also complete
and have been validated with several case studies.

Nevertheless, when the HCCPS is large and testing time budget limited
these approaches can result insufficient to ensure the required quality.
Consequently, a need to propose new approaches and strategies to
optimize the testing is highlighted.
Along with the identified need to improve the optimization of HCCPS
testing we have also identified that the field corresponding to studying
the optimization of the selection and prioritization of both test cases
and products (together) has received little attention.

64

Chapter 4

Theoretical framework

Contents
4.1 Research objectives . 66

4.2 Research Hypotheses . 67

4.3 Theoretical Framework Overview 68

4.3.1 Core Concept . 68
4.3.2 Theoretical Framework 71

4.4 Case Studies . 73

4.4.1 Case study automation 73
4.4.2 Description of case studies 83

65

4. Theoretical framework

This chapter gives a theoretical overview of the dissertation. To this end
we define four research objectives (Section 4.1) together with the hypotheses
(Section 4.2). Furthermore, we provide an overall explanation of the theoretical
framework proposed for test optimization of highly-configurable cyber-physical
systems (section 4.3). Finally, we describe the case studies employed to validate
the effectiveness of the proposed solutions and the process conducted to design
and build the cases studies (Section 4.4).

4.1 Research objectives

The main objective of this thesis is stated as follows:

To provide a set of methods to maximize fault detection when testing
highly-configurable cyber-physical systems in time-constrained scenarios.

This main objective is divided into the following operational objectives:

■ Objective 1: Develop and evaluate test case selection algorithms for HCCPS.

■ Objective 2: Develop and evaluate test case prioritization algorithms for
HCCPS.

■ Objective 3: Design and evaluate iterative approaches for efficient testing of
HCCPS. Hence, design and evaluate strategies that enable efficient testing
of HCCPS by chaining multiple testing iterations in which a small number
of test cases are used each time.

■ Objective 4: Design and evaluate dynamic approaches for efficient testing
of HCCPS. Specifically, to design and evaluate efficient testing strategies
that allow testing plans to be modified as they are being executed.

66

4.2. Research Hypotheses

4.2 Research Hypotheses

Based on the objectives described in the previous section, the following hy-
potheses have been defined:

■ Hypothesis 1: Combining domain-level information with application-level
information using search-based techniques provides an iterative selection
of test cases of a HCCPS that improves fault detection over traditional
techniques. This hypothesis is related to research objectives 1 and 3.

■ Hypothesis 2: Considering the structural coverage information of a HCCPS
at Domain level helps optimizing fault detection results for time-budget
constrained scenarios. This hypothesis is related to research objective 1.

■ Hypothesis 3: Considering the results of tests executed on products, allows
a dynamic prioritization of tests of a SPL that improves the capability to
detect faults. This hypothesis is related to research objectives 2 and 4.

67

4. Theoretical framework

4.3 Theoretical Framework Overview

The optimization of HCCPSs testing presented in this work is based on devel-
oping methods to improve the SPL test optimization reference process adapted
to the specific field of configurable CPS. As the proposed methods rely on a
core concept that has inspired the research work presented in this thesis, this
section is organized in such a way that we first introduce the core concept to
later detail the theoretical framework.

4.3.1 Core Concept

In essence, the research work of this thesis has been developed on the basis of
one core concept: product and test cases combined test optimization. This core
concept is motivated by the difficulty to test HCCPSs exhaustively with the
reference testing process (described in Section 3.1.1) and the need to provide
alternative cost-effective testing methods.

Most of the SPL community’s effort to optimize testing has focused on
deriving a representative set of products of the product line which can be
tested affordably [LHFC+16, dCMMCDA14]. Once this set of products has
been obtained, the thorough testing of each individual product is typically
performed. For instance, let us introduce the following abstract example.

Figure 4.1: Product optimization steps.

Let FM be the Feature Model with which we represent all the products
of a given product-line. And let PS = {P1, P2, ..., Pnp} be the Product Suite
to be tested obtained from deriving the FM (step 1 in Figure 4.1), being
np the total number of products. And let PPS = {P7, P2, P4, ..., Pnp} be the
Prioritized Product Suite, obtained from reordering the PS (step 2 in Figure
4.1), containing the same np number of products. Note that the sub-index of
products in PPS have been reordered.

Let TS = {TC1, TC2, · · · , TCnt} be a test suite with nt number of test
cases generated to test products of the product line. Note that TS could be

68

4.3. Theoretical Framework Overview

Figure 4.2: Test cases optimization steps.

generated to test any product of the whole PS or also could be generated to test
a specific product of the PS). In addition, let TS′ = {TC1, TC2, · · · , TCnt′}
be a subset of test cases selected to test the PS (step 3 in Figure 4.2),
being nt′ the number of test cases selected 0 ≤ nt′ ≤ nt. Finally, let
PTS′ = {TC3, TC9, TC1, · · · , TCnt′} be the new ordering of TS′ test cases
after applying the test case prioritization (step 4 in Figure 4.2).

Figure 4.3: Product and test cases execution.

When executing products and related test cases (step 5 in Figure 4.3),
the traditional testing approach selects products based on their prioritization
(i.e., select products according to the order established in the PPS). For
each product, the set of test cases to be applied is selected and prioritized (in
Figure 4.3 PTS′ is selected for product P7), and all test cases are exhaustively
executed. Once the first product is completed, the next prioritized product
(P2 in the example of Figure 4.3) is taken. This process will continue until all
products are completely tested or available testing time-budget expires.

69

4. Theoretical framework

Figure 4.4: Joint product and test cases optimization.

The fundamental idea behind the thesis is to perform the selection and
prioritization of products and test cases together. The approach proposed in
this thesis selects and prioritizes products and test cases in a combined way,
looking to optimize the ability to reveal faults in a given time. Following the
example of this section, it is possible to select and prioritize a sequence of
products and associated test cases (P7 − TC3, P2 − TC9, P7 − TC3, P4 − TC1,
etc.) that as a whole are able to detect more faults for the given time than
the traditional testing approach. The general idea, depicted in Figure 4.4, has
been named core concept and is defined as follows:

The core concept proposes the possibility of combining products and
test cases when selecting and prioritizing in a dynamic and iterative way.
This selection and prioritization of test cases and products considers
product line information at both domain and Application levels
to enable the allocation of small groups of test cases and products in a
cost-effective way.

70

4.3. Theoretical Framework Overview

4.3.2 Theoretical Framework

The methods proposed in this thesis develop the core concept and have been
structured based on the SPL test optimization reference process. Figure 4.5
presents these steps of the product line testing in a synthetic way in order to
focus the work proposed in this thesis. Detailed explanation of the selected
steps for the HCCPSs testing is provided in Section 3.1.1.

The proposed methods are grouped into two stages. In a first exploratory
stage (blue colored in Figure 4.5), two methods were developed with the
objective of exploring how to select products and test cases in a combined
manner and how to combine information from the Domain level and the
Application level to optimize the selection. The first exploratory contribution
was addressed with black-box testing metrics, while the second, employed white-
box testing metrics. After corroborating the first and second hypotheses during
the experimentation of the exploratory stage, we designed and conducted the
second stage, where the method for dynamically prioritizing tests was carried
out as the main contribution of this thesis (green colored in Figure 4.5). The
main contribution was employed to confirm the third hypothesis.

■ The method entitled Search-Based Test Allocation for Iterative testing of
HCCPS is part of the undertaken exploratory research (blue colored in figure
4.5). This method first performs product selection and prioritization by using
well-proven techniques in the literature of product lines [JHF12, SSRC14a].
Then, we propose a novel approach to allocate small number of test cases in
each product for iteratively testing the product line, thus replacing traditional
steps for test case selection, prioritization and execution (i.e., steps number
3, 4 and 5 in figure 4.5). Further details of the method and obtained results
are provided in chapter 5.

■ The method named Test Case Selection of HCCPS using Structural Coverage
is also part of the undertaken exploratory research (blue colored in figure
4.5). The method was developed to evaluate different test case selection
methods based on structural coverage of both Domain and Application levels
of the product line. The research performed in this method replaces the
traditional test case selection step (i.e., step number 3 in figure 4.5) and
modifies the traditional product prioritization result (i.e., step number 2 in
figure 4.5). It is further detailed in chapter 6.

71

4. Theoretical framework

Figure 4.5: Traditional product line test optimization steps and the three
methods researched. Traditional product line test optimization is represented
in 5 steps (grey colored) that are further described in Section 3.1.1. The
first exploratory method “Search-Based Test Allocation for Iterative testing
of HCCPS” (blue colored) involves steps number 3, 4 and 5 and is further
described in chapter 5. The second exploratory method “Test Case Selection of
HCCPS using Structural Coverage” (blue colored) involves steps number 2 and
3 and is further described in chapter 6. Finally, the “Dynamic prioritization of
Products and Test Cases for testing HCCPS” (green colored) method involves
steps number 2, 3, 4 and 5 and is further described in chapter 6.

■ The Dynamic prioritization of Products and Test Cases for testing HCCPS
method is presented as main contribution of this thesis (green colored in figure
4.5). The method proposes a dynamic test prioritization (of both products
and test cases) that leverages information of test cases being executed in
specific products. The research performed in this method replaces traditional
steps for test case selection, prioritization and execution (i.e., steps number
3, 4 and 5 in figure 4.5) and modifies the traditional product prioritization
result (i.e., step number 2 in figure 4.5). Further details of the approach and
results are provided in chapter 7.

72

4.4. Case Studies

4.4 Case Studies

This section presents the description of the case studies employed to validate
the effectiveness of the proposed approaches, identifying which of the case
studies was used with each of the contributions. Moreover, the semi-automated
process conducted to elaborate the case studies is outlined.

4.4.1 Case study automation

Three case studies have been used in this thesis for evaluation purposes. Each
case study consists of a HCCPS implemented with a configurable simulation
model. Since the original case studies were lacking variability (i.e., they were
not product-lines), it has been necessary to incorporate variability into the
original case studies.

Based on the designed FM, the 150% Model of the product line has been
developed.1 From the 150% model, both the 150% model of the harness (i.e.,
test suite) and the 150% model of the mutants have been generated. The
models of the specific products, the mutants that apply to them and the specific
test cases for each products have been derived using the information of the
product configurations. Figure 4.6 depicts the case study building steps. The
remainder of the sub section details each step along associated implementation
concepts.

■ Variability modeling
Feature Models are widely employed in the literature for variability represen-
tation (Refer to Section 2.2.2 for further details). FeatureIDE [TKB+14] is
a remarkable tool integrated into Eclipse “ecosystem” that provides (among
others functionalities) a powerful framework for modeling the FM and gen-
erating variants. Since the original models on which the case studies have
been based were single (product) models, it has been necessary to capture
their variability. To this end a FM diagram developed with FeatureIDE has
been employed (Represented in step 1 of Figure 4.6).

Let PLcps be a product line of CPSs where each configuration is a specific
CPS product. Let FM = {f1, f2, · · · , fnf} be a feature model, with a
set of features (F) and constraints, that represents the variabilities and
commonalities of the PLcps product line in a compact form, where nf is the
number of features.

1The 150% model concept is described later in this sub section.

73

4. Theoretical framework

Figure 4.6: Case studies building automation steps.

■ Product configuration
The generation of product configurations, depicted in step 2 of Figure 4.6,
has been performed in an automated way using the FeatureIDE Variant
Configuration Generator wizard. This wizard is a flexible tool where the
strategy to generate variants and the algorithm to apply for generation can
be customized. The strategy can be set among others, to create all valid
configurations, or cover feature interactions with a degree of T-wise (i.e.,
T=2 is set up to obtain pairwise feature interaction coverage). The tool
also provides multiple research algorithms if T-wise strategy is selected (e.g.,
ICPL, Chavatal, CASA, IncLing). Refer to [MTS+17] for further details of
the tool. When generating product configurations, pairwise coverage has
been selected as it guarantees an appropriate level of feature interaction

74

4.4. Case Studies

coverage and generates a feasible number of product configurations for the
development of the research. In addition, to satisfy pairwise coverage the
ICPL2 algorithm has been employed, which has proven to provide good
results [JHF12]. As a result of the generation a np number of product
configurations were created per case study.

Since the tool used to design and run the simulation models has been Simulink
and the tool used for the automation of the different artifacts created for the
product line has been MATLAB, the information of features and product
configurations was externalized from FeatureIDE for its treatment in the
MATLAB/Simulink environment. Data extraction is identified as step
number 3 in Figure 4.6.

■ Simulation modeling
Let SMcps be an abstract simulation model designed to address the behavior
of an specific CPS, where ISig = {Isig1, Isig2, · · · , Isigk} is the set of input
signals and OSig = {Osig1, Osig2, · · · , Osigj} the set of output signals.
Input and output signals are vectors of time-indexed values. The number of
vector values depends on the number of samples (i.e., time steps) observed
during the simulation [MNBB16]. For a given fixed simulation time, the
higher the number of observed sample values, the higher the precision of the
simulation. For example an abstract simulation model is depicted in Figure
4.7 with a set of three input signals and a set of two output signals.

Figure 4.7: Simulation model of an abstract CPS example containing a
set of three input signals and a set of two ouput signals.
Simulink is a tool set integrated into MATLAB tool set that provides model-
based design tools for early testing [Mat21]. The tool graphically assists
modeling of the system under test and the physical plant. It provides solvers
for modeling and simulating dynamic systems. Code generation from models
is supported for embedded processors. A complete set of packages with
multiple purposes blocks and connectors are provided with customization

2ICPL is a recursive acronym that stands for ”ICPL Covering array generation algorithm
for Product Lines”

75

4. Theoretical framework

options. An Application Program Interface (API) is also provided to program
and automate functionality.

MATLAB/Simulink has been employed for the experimentation carried out
in this thesis, not only because of the facilities provided by its complete
tool set but also because it is a tool that can be used both in the academic
world for research and in the industry for manufacturing purposes. The
explanations in this section will focus on the MATLAB/Simulink tool to
support the description of the experimentation carried out in Chapters 5, 6
and 7. However, other alternatives could be used.

■ 150% Model
150% models are artifacts that represent all the variability of the product
line in a single domain model [LS14, AWSE16a]. When working with 150%
models, features are related to specific blocks of the 150% model. Thus,
to derive a particular product, negative variability can be applied [VG07].
Based on the product configuration, blocks of the 150% model are selectively
eliminated and configured until the specific product (i.e., so called 100%
model) is obtained. Figure 4.8 provides an example of the Industrial Tank
case study. Left, the 150% Model (Figure 4.8a) is presented, while on
the right a particular product model (Figure 4.8b) obtained from applying
negative variability is shown.

(a) 150% Model (b) Specific product (100%) model

Figure 4.8: Example of simulation model product obtained from applying
negative variability to the 150% model. Note that specific product model
(Figure fig:negativevarapplied) contains less blocks and signals.

76

4.4. Case Studies

In this thesis we have employed a 150% model to represent all the variability
of each HCCPS. Based on the FM, a 150% model has been manually
produced for each case study and features related to specific blocks. The
elaboration of the 150% model is depicted as step 4 in Figure 4.6.

Let SM150% be the 150% simulation model that implements all possible
configurations of the PLcps product line into a unique model. Let ISig150% =
{Isig1, Isig2, · · · , IsigNIsig} be the set of input signals of the SM150% model
where NIsig is the number of input signals.

■ Testing simulation models
Let T be the simulation time of SMcps model. Let ∆t be the fixed time
step (i.e., fixed observed sample time length) where T = ∑k

1 ∆t and k is
the number of samples observed during the simulation. A specific input
signal Isig1 of SMcps model is composed of k + 1 vector values Isig1 =
{V0, V1, V2, · · · , Vk}. Following the abstract example of Figure 4.7, a test
harness containing one test case designed for the SMcps sample model
composed of three signals (input vectors) is presented in Figure 4.9, with a
fixed time step of 1ms.

Figure 4.9: A harness block containing a test case. The test case is
composed of three signals (input vectors). The fixed time step is set to
0.01sec, thus, each input vector provides 8 values during simulation.

When testing a simulation model, the test harness containing test cases is
linked to the simulation model, usually through a block to ensure data type
casting and deterministic data transfer (dark grayed in Figure 4.10). When
the system is simulated, designed test cases (signal inputs) stimulate the
model and results are measured through the output signals of the model.

77

4. Theoretical framework

Figure 4.10: Simulation model CPS testing abstract example. A harness
block containing one test case, linked to the data transfer subsystem, is also
linked to SMcps model input ports. To execute the test case, the simulation
is run and the test case stimulates the model. Results are measured through
output signals of the model.

■ Test case generation
The 150% model has been taken as the basis for test case generation. Taking
into account the design of the 150% model, three different strategies have
been used for the generation of the test cases. Firstly, the domain knowledge
has been employed to generate test cases. Secondly, using the Simulink
Design Verifier (SLDV) tool (i.e., a tool integrated in the MATLAB/Simulink
tool set), the automatic generation of the test cases has been performed
to satisfy the MC/DC type structural coverage (Refer to Appendix A for
further details of the MC/DC structural coverage criterion). Finally, the
MATLAB/Simulink tool proposed by Matinnejad et al. [MNBB19] has been
adapted for test generation in order to randomly generate valid test cases
for the 150% model. The test case generation is depicted as step 5 in
Figure 4.6. Note that the SLDV and Domain Knowledge have been used for
the test case generation during the exploratory contributions (described in
chapters 5 and 6), whereas the tool developed for the generation of valid
random test cases for 150% models has been used for the main contribution
(described in 7). As a result, one 150% model of the harness was obtained
per case study.

Let TS150% = {TC1, TC2, · · · , TCnt} be the (harness) test suite containing
a nt number of test cases generated for testing the SM150% of the product
line.

78

4.4. Case Studies

■ Mutant design
Since no real faults were available for the case studies, mutation testing was
applied, which has proven to be a good substitute [JJI+14]. As described
in Section 2.4.2, this technique generates a copy (mutant) of the system in
which a fault (mutation) is injected. If, when running a test case, a certain
output value of the copy differs from the original system, the mutant is
considered to have been killed, hence the fault detected. As case studies of
this thesis are based on HCCPSs implemented as configurable simulation
models, when designing mutant injection three criteria were defined: (i)
distribute faults on the 150% model, (ii) inject faults in different types of
blocks and (iii) employ suitable mutation operators for simulation models.
Specifically, we employed mutation operators proposed by Hanh et al. for
Simulink models [HBT16]. Taking into account these criteria, a nm number
of mutants was designed for each case study. Additionally, each fault was
related to a specific feature associated to the 150% model. The design of
mutants to be injected is shown in step 6 of Figure 4.6.

■ Mutant template generation
In order to automate the generation of (i) the mutant systems (i.e., the
copies of the original systems) and (ii) the oracles (i.e., the copies of the
mechanism for checking the outputs of the systems and determining the
verdict), a mutation template was developed manually for each case study.

Figure 4.11: Abstract mutant template example containing 5 key elements:
(i) an original simulation model SMCP S , (ii) a mutant Copy SMCP S simu-
lation model, (iii) a set of input signals IsigSMCP S

shared by both original
and mutant models, (iv) an Oracle for the evaluation, and (v) a verdic

block to store oracle result.
Note in the abstracted example of Figure 4.11 that both the original model
(SMCP S) and the mutant (Copy SMCP S) share the same input signals (i.e.,

79

4. Theoretical framework

IsigSMCP S
= {Isig1, Isig2, Isig3}). When a test case is executed, the results

of the original model and the mutant are processed by the Oracle block
and the verdict is stored. It is important to note that this mutant template
does not contain faults. This template is an artifact to (later) dynamically
generate the models that will contain the faults and the corresponding oracles.
The injection of the faults is described in later steps. The development of
the template is shown in step 7 of Figure 4.6.

■ Mutant 150% model generation and fault injection
A tool was developed to generate the 150% mutant model. As input to the
tool, the mutant template and the desired number of mutants are provided.
The tool generates a 150% mutant model, which contains the original system,
as well as a number of copies of the mutated system with their corresponding
oracles. The abstracted example of Figure 4.12 shows the original system
SMCP S and a nm number of copies of the system with their respective
oracles (i.e., 12 copies of the mutant and oracle are presented in the figure).
Required shared input signal connection to all mutants representation is
avoided in the figure for the sake of clarity. However, a representation similar
to the one made in the mutant template can be intuitively guessed. The
generation of the 150% mutants model is indicated as step 8 of Figure 4.6.

Figure 4.12: Abstract representation of the Mutants 150% model. The
example provides the original simulation model SMCP S and a nm number
of mutants (i.e., copies of the system) with their respective oracles. Shared
input signal connections are not represented for the sake of clarity.

Unlike purely software-based environments, we lack tools for automatic
mutant injection in CPSs based on simulation models, thus making mutant
injection costly. Therefore, manual injection turned out to be more feasible
than developing a tool to automate it. On the basis of the designed mutants,
a nm number of mutants were injected into each mutant 150% model. The
mutant injection is depicted as step 9 of Figure 4.6.

80

4.4. Case Studies

■ Product and Mutants derivation
To derive the specific np products to be generated in the product line, a tool
was developed. The tool takes as input the Mutants 150% model and the
product configurations information from step 3. The Mutants 150% model
includes the Model 150% of the product line and a nm number of mutants
(as described in step 9). The tool applies negative variability to the Mutants
150% model and, taking into account features of the product to be derived,
keeps those blocks that are related to the selected feature, whereas the blocks
related to non-selected features are removed. With regard to the mutants,
only those mutants related to features included in the product configuration
are maintained. Moreover, in the same way the negative variability was
applied to the product, each mutant model is also adapted, by removing
unnecessary blocks. As a result, np number of models are created. Each
of the created models contains a specific product model and a number of
mutants. Step 10 of Figure 4.6 depicts product derivation.

Let SMPS = {P1, P2, ..., Pnp} be the product suite of simulation models
to be tested, derived from the SM150% product line (i.e., Model 150%)
following any state-of-the-art product derivation approach [CDS08, POS+12,
HPP+14], where np is the total number of resulting products. Let ISigPi =
{Isig1, Isig2, · · · , IsigNIsigPi

} be the set of input signals of Pi product,
where 0 < NIsigPi ⩽ NIsig. Let SMMSPi = {M1, M2,. . . , Pnm′} be
the mutants suite of simulation models derived along with the product Pi,
where nm′ is the number of mutants obtained for the specific product being
0 ≤ nm′ ≤ nm .

(a) Model 150% with all mutants. (b) Pi product with related mutants

Figure 4.13: Example of applying negative variability to the Mutants 150%
model. Right figure shows derived product Pi and related mutants.

81

4. Theoretical framework

For example, Figure 4.13 presents an abstract derivation exercise. The figure
on the left (Figure 4.13a) shows the Mutants 150% model containing the
product line and all possible mutants, whereas the figure on the right (Figure
4.13b) the model obtained from deriving product Pi is presented. Note that
in the figure on the right, certain input signals and mutants are missing, a
consequence of applying negative variability.

■ Test suite derivation
We developed a tool to derive the specific test suites for the generated
products. Said tool takes as input the Harness 150% model and the product
configurations information from step 3. Taking into account the features
of each product configuration, the tool generates a specific harness with
nt number of test cases adapted to the signals of the product model. Step
11 of Figure 4.6 depicts test suite derivation. Note that for the main

contribution, all test cases designed in the Harness 150% were valid for all
products. However, it is common that not all test cases in the test suite are
valid for all products. For example, in the exploratory-stage contributions,
each product had a number of test cases (nt′) less than or equal to the
number of test cases of the Harness 150%.

Let TSPi = {TC ′
1, TC ′

2, · · · , TC ′
nt} be the particular test suite composed

of nt test cases adapted from TS150% to test the Pi product. Note that
a test case generated for the SM150% model (e.g., TC1) consists of NIsig

input signals and is instantiated to a new test case (e.g., TC ′
1) with NIsigPi

number of input signals of the particular product Pi.

■ Model integration and test execution
A tool was developed to integrate the product, related mutants and the
harness into one model per configuration. Thus, harness signals (adapted to
each product) got connected simultaneously to the product and to each of
the mutants. Integration is depicted in Step 12 of Figure 4.6.

Integrated models were next executed, i.e., the test cases contained in
harness were executed with respective product models and mutant models
and results were analyzed to gather mutant detection capability of each test
case. Execution is depicted as Step 13 of Figure 4.6.

82

4.4. Case Studies

■ Mutant selection
To obtain the final set of mutants for the evaluation, three mutant selection
criteria were applied: firstly, undetectable mutants were removed (i.e.,
mutants that were not detected by any test case), in order to avoid the
inclusion of equivalent mutants. Secondly, duplicated mutants were removed
(i.e., mutants equivalent to one another but not to the original model), as
recommended by Papadakis et al [PKZ+19]. Lastly, we removed mutants
that were easily detected by test cases. On average, remaining mutants
accounted for 15% of the total initially designed mutants. Mutant selection
is shown as Step 14 of Figure 4.6.

4.4.2 Description of case studies

Three case studies were employed for the experimental validation of the pro-
posed contributions. Each case study is related to a different problem in the
aerospace, automotive and industrial domain respectively. The complexity
of the selected case studies is representatively significant for the chosen do-
mains. All case studies are based on models published by the community, and
adaptations were then implemented mainly to incorporate variability.

Unmanned Aerial Vehicle (UAV)

The UAV case study consists of a product family for a configurable quad-copter
CPS. The original design was developed by Mosterman et al., who modeled
a commercial UAV (i.e., the AR.Drone 2.0 from Parrot) with Simulink and
integrated it into their fleet of autonomous vehicles for humanitarian emergency
responses [MSB+14]. Mosterman et al. modeled the structure of the vehicle
and the dynamics, in addition they empirically validated the mathematical
equations for motion. Arrieta et al. [ASEZ16] extended the original model
with variability points in both software and hardware to transform the single
UAV model into a product line and employed it in several evaluations [ASEZ16,
AWM+17b, AWSE16a]. The extended version modeled by Arrieta et al. was
employed in this thesis.

■ System architecture The case study is a configurable CPS composed
by the physical layer and three platforms at the cyber layer. The overall
architecture of the system is shown in Figure 4.14. Platform 1 performs the
high level control of the system in order to make decisions about vehicle
trajectory and communicating with the ground station. It is equipped with

83

4. Theoretical framework

an embedded computer for control purposes, three sensors to support the
trajectory definition (obstacle sensor, battery sensor and GPS sensor), the
communications module (to send information to the ground station) and a
flight indicator LED. Platform 2 performs low-level control to ensure flight
stability. From the system dynamics obtained with the gyroscope sensor
data, it regulates the speed of each rotor to keep the UAV stable. The speed
control of the rotors is performed on platform 3. It consists of the embedded
computer and the rotors. Based on the instructions provided by the low level
control, Platform 3 provides the speed commands to the rotors to maintain
the flight of the UAV. The physical layer of the UAV consists of different
physical processes, i.e., the dynamics, the global position and the battery
level.

Figure 4.14: System architecture of the UAV case study. The architecture
is organized in the physical and cyber layers. The cyber layer is composed of
three platforms and the network fabric.

■ Variability The variability of the case study is described in the feature
model of Figure 4.15. The key variability aspects of the UAV configurable
CPS are described as follows.

▶ Variability in Track System: Three are up to three different track
systems for trajectory planning that can be selected individually or in
combination: (i) point-to-point, (ii) concrete coordinates and (iii) person
following.

84

4.4. Case Studies

▶ Variability in control strategy: Two alternative options are provided
to control position, height, speed and angles: (i) the proportional option
and (ii) the proportional-integral option.

▶ Variability in Safety functions: There are up to four options to
increase the safety functions of the CPS: (i) collision avoidance equipment,
(ii) wind avoidance algorithm, (iii) an emergency system and (iv) back to
home mode.

▶ Variability in Battery Management: Two alternative battery man-
agement modes are provided: (i) the auto-battery charge mode to find
the closest battery station to recharge battery and (ii) battery landing
program to ensure a sufficient time window to land the drone.

▶ Variability in Operating System: Two alternative options are pro-
vided in order to choose the operating system: (i) the manufacturer
provided default embedded Linux and (ii) the FreeRTOS alternative.3

▶ Variability in Battery Models: Two alternative options are provided
for batteries: (i) a short duration battery (approximately 12 minutes)
and (ii) the long duration battery (approximately 25 minutes).

▶ Variability in Sensors: Up to four types of sensors can be configured
in the UAV. Gyroscope and GPS are mandatory sensors, however bat-
tery and obstacle sensors are optional. For each sensor category three
alternative models are provided.

▶ Variability in Rotors: Two different types of rotors can be selected:
(i) the high speed rotors and (ii) the low speed rotors.

▶ Variability in Signaling: The LED light that indicates that the quad-
copter is flying can be optionally selected.

3FreeRTOS is a cross-platform real-time operating system kernel for micro controllers.
https://www.freertos.org/

85

https://www.freertos.org/

4. Theoretical framework

F
ig

ur
e

4.
15

:
Fe

at
ur

e
M

od
el

of
th

e
U

AV
ca

se
st

ud
y

de
ve

lo
pe

d
by

A
rr

ie
ta

et
al

.
[A

SE
Z1

6]
.

86

4.4. Case Studies

Car Windows (CW)

The CW case study consists of a configurable CPS product line for the control
of car windows. This case study belongs to the automotive domain, where
companies usually work with model-based cases. The original design was
employed by Arrieta et al. [AWA+18] for single product evaluation purposes.
We extended that one for this case study by including additional variability
and transforming the system into a product line.

■ System architecture The case study is a configurable CPS composed of the
physical layer and two platforms at the cyber layer connected through CAN
communications. The overall architecture of the system is shown in Figure
4.16. The physical layer involves the electrical and mechanical models of the
four windows. On the cyber layer, Platform 1 performs the control of the
system in order to decide whether to open or to close windows. It is equipped
with an embedded computer for control purposes, two types of sensors and
the interfaces with passengers. The embedded computer makes decisions
regarding each window and hosts the prioritization algorithm. Obstacle
sensors are provided for each window to detect the presence of obstacles that
require interrupting the sliding of the window. Position sensors guide the
opening and closing operations of the windows. The driver and passengers
have different interfaces for specifying instructions (i.e., local window control,
control of other passengers’ windows or centralized controls). Decisions from
Platform 1 are sent to Platform 2, which controls the operation of each
window engine.

■ Variability The variability of the case study is described in the feature model
of Figure 4.17. Additionally, constraints to ensure the correct construction
and functionality of the system are included. For instance, when child window
type is selected, the control of the related window is mandatorily included
in driver’s control. The key variability aspects of the CW configurable CPS
are described as follows.

▶ Variability in number of windows: There are up to four windows
and it is mandatory to include at least the two front seat windows (i.e.,
rear seat windows are optional).

▶ Variability in window controls: There is a control system installed
with each front-seat window to control the local window. Optionally, from
one to all other windows can also be controlled, depending on the seat

87

4. Theoretical framework

Figure 4.16: System architecture of the CW case study. The architecture is
organized in the physical and cyber layers. The cyber layer is composed of two
platforms and the network fabric.

type. For driver control, all other windows can be optionally selected to
be controlled. For the co-driver control (identified as passenger 1), the
rear seat windows can be optionally controlled.

▶ Variability in rear-seat types: There are up to three alternative
options for rear seat windows: (i) the standard windows for passengers, (ii)
the adapted safe window for children passengers and (iii) the commercial
adaptation of the window for sliding doors. Specifically, while window3
can opt to any of the three alternative options, window4 can opt between
the standard and children alternatives.

▶ Variability in centralized control types: There are two alternatives
for centralized control of windows: (i) the option that integrates the
centralized control of windows into the CentralBoard panel of the car and
(ii) the remote centralized control of the windows’ options. Additionally,
each of the four windows to be controlled in a centralized manner can be
optionally selected.

▶ Variability in Lock: There are three options that can alternatively
selected for locking the windows: (i) Rear, to lock only rear windows, (ii)
Child, to lock child type windows and (iii) Complete, to lock all available
windows.

88

4.4. Case Studies

Industrial Tanks (IT)

The case study of Industrial Tanks was initially developed by Arrieta et al. in
[ASE15] in the context of testing CPSs. It imitates the typical characteristics
of an industrial tank CPS. This case study was adapted in order to experiment
with the main contribution of this thesis. Thus, the variability of the system
was increased, adapting the case study of a single product system to a product
line. Specifically, it now deals with a three-tank product family instead of
the original single-tank system. Additionally, control modes and prioritization
capabilities were incorporated.

■ System architecture The original case study was conceived as a CPS to
meet industrial control requirements for individual fluid tanks. The cyber
layer of the original model was composed of two independent platforms
connected through EhterCAT communications. The first platform was
dedicated to the processing of signals from the system’s sensors. The data
processed by this platform were then transmitted to the second platform,
controlling the actuators to fill or drain gates. The original case study was
extended to meet new requirements (mainly related to priority management
subsystem). The resulting system architecture is depicted in Figure 4.18.

■ Variability The feature model shown in Figure 4.19 describes the variability
of the multi-tank configurable CPS and associated constraints. In addition
to the construction restrictions of the feature model, functional restrictions
are included, e.g. if the selected liquid is chemical, the temperature sensor
must be included. The key variability aspects of the multi-tank configurable
CPS are described below:

▶ Variability in number of tanks: There are up to three tanks and it is
mandatory to include at least one tank.

▶ Variability in control modes: Each tank can have up to three control
modes of which at least one must be selected. The operation control
modes are: (i) Manual mode to start or stop filling or emptying the tank,
(ii) Reference mode to establish a manual reference level of the tank to
be filled and (iii) Maintenance mode, which runs a maintenance cycle
empty-fill-empty.

▶ Variability in tank priorities: There is an optional feature to prioritize
a certain tank, i.e., the prioritized tank will always be the fullest one.

89

4. Theoretical framework

F
ig

ur
e

4.
17

:
Fe

at
ur

e
M

od
el

of
th

e
C

W
ca

se
st

ud
y.

90

4.4. Case Studies

Figure 4.18: System architecture of the IT case study developed. The
architecture is organized in the physical and cyber layers. The cyber layer is
composed of two platforms and the network fabric.

▶ Variability in sensors: Each tank can have up to two sensors. The first
sensor is mandatory and measures the liquid level of the tank. The second
sensor is optional and can be employed to measure the temperature of
the liquid.

▶ Variability in liquid content types: There are two liquid content
types: water or chemical.

▶ Variability in liquid flow speeds: There are 3 liquid speeds, i.e., low,
medium and high speed, when filling or emptying the tanks.

91

4. Theoretical framework

F
ig

ur
e

4.
19

:
Fe

at
ur

e
M

od
el

of
th

e
IT

ca
se

st
ud

y.

92

4.4. Case Studies

Key characteristics of case studies

The selected case studies belong to various domains and have different char-
acteristics in order to validate the approaches in diverse contexts. Tables
4.1 and 4.2 summarize the main characteristics of each case study. In Table
4.1 key characteristics of the simulation model, feature model and derived
products are presented. Column Blocks indicates the number of blocks of
each Simulink model, specifically the number of blocks of the 150% simulation
model. Columns Features and Constraints refer to the number of features
and constraints for each case study. With regard to the Derived column, it
indicates the number of product configurations obtained from the FM applying
pairwise technique, whereas the All-Valid column refers to the number of
valid configurations that might be obtained from the product line.

Table 4.1: Key characteristics of the selected case studies with regard to the
simulation model, feature model and derived products. The Blocks column
provides the number of Simulink blocks for each of the case studies. The
Features and Constraints columns specify the number of features and con-
straints for the corresponding feature model for each case study. Derived
indicates the number of obtained products when deriving the product line,
whereas All-valid refers to the number of valid configurations that might be
obtained from the product line.

Case Study Model150% Feature Model Products
Blocks Features Constraints Derived All-valid

Unmaned Aerial Vehicle (UAV) 843 46 5 22 800.000+
Industrial Tanks (IT) 306 36 7 17 11.824
Car Windows (CW) 227 30 13 28 39.582

Table 4.2 shows three columns corresponding to the generation of Test

Cases. The Gen.Criterion column describes whether test cases were generated
based on domain knowledge, based on the MC/DC structural coverage criterion
or based on the tool developed to generate random test cases. The 150% column
indicates the number of test cases generated for the 150% model. If N/A is
indicated, it means that the test cases were not generated for the 150% model
(but directly for the derived products). The Total column indicates the total
number of test cases generated after adapting 150% test cases to each derived
product. The last two columns present data related to the Number of Mutants.
The Initial column indicates the number of mutants initially designed and
seeded for each case study and the Final column indicates the number of
mutants remaining after the mutant selection process has been performed.

93

4. Theoretical framework

Table 4.2: Key characteristics of the selected case studies with regard to
the generated test cases and mutants. Three columns describe the Criterion
employed to generate test cases, the number of test cases generated for the
150% model and the Total number of test cases after adapting 150% test cases
to each derived product. The last two columns show the number of mutants per
case study; the first column shows the number of Initial mutants generated,
while the second column refers to the Final number of mutants employed in
the evaluation after applying mutant selection.

Case Study Test Cases Number of Mutants
Gen.Criterion 150% Total Initial Final

Unmaned Aerial Vehicle Domain knowledge N/A 120 N/A 20
Industrial Tanks Random 150 2550 246 30
Car Windows MC/DC N/A 1184 200 129
Car Windows Random 150 4200 209 36

Case studies employed in each contribution

To asses each contribution, an empirical evaluation assessment was conducted
respectively.

In the first exploratory contribution Search-based fault detection allocating
small groups of test cases to products iteratively (described in chapter 5), the
UAV case study was employed. In the second exploratory contribution Test
case selection methods based on structural coverage of both the products and the
product-line (described in chapter 6), the CW case study was employed. In the
UAV case study the Domain knowledge was employed for test case generation,
while for the CW case study (employed in second exploratory contribution),
the test cases were generated using the SLDV tool.

For the main contribution Dynamic test prioritization approach of both
products and test cases (described in chapter 7), the CW and IT case studies
were employed. With respect to test cases generation, the adapted tool for
random valid test cases was employed.

94

Part II

HCCPS Test Optimization

Chapter 5

Search-Based Test Allocation for
Iterative testing of HCCPS

Contents
5.1 Contribution overview . 97

5.2 Introduction . 98

5.3 Search-based Test Allocation 100

5.3.1 Search algorithms measures 102
5.3.2 Fitness Function 103
5.3.3 Crossover operator 105
5.3.4 Mutation operator 105

5.4 Evaluation . 107

5.4.1 Research Questions 107
5.4.2 Experiment design and setup 108
5.4.3 Results . 111
5.4.4 Discussion . 115
5.4.5 Threats to validity 116

5.5 Related Work . 117

5.6 Conclusions . 118

96

5.1. Contribution overview

This chapter provides details of the first exploratory research work. Section
5.1 contextualizes the presented contribution in the theoretical framework.
Section 5.2 provides the technical motivation for this contribution. Section
5.3 presents our approach to optimize fault detection by allocating test cases
for products iteratively. Section 5.4 exposes the experiment design, obtained
results and overall discussion. Related work is reported in Section 5.5. Finally,
conclusions are summarized in Section 5.6.

5.1 Contribution overview

The research work presented in this chapter details the first exploratory work
of the thesis. Figure 5.1 highlights this work (in blue) in the context of the
entire theoretical framework (further details of the theoretical framework are
provided in Section 4.3).

This exploratory work was set in order to validate the first hypothesis of
the thesis, which aims at improving the test case selection and prioritization of
HCCPSs through an iterative approach employing search-based techniques.

Figure 5.1: First exploratory method proposed in the context of the theoretical
framework. The first exploratory method “Search-Based Test Allocation for
Iterative testing of HCCPS” (blue colored), which involves steps number 3, 4
and 5.

The approach proposed in this exploration work is designed to develop the
core concept (defined at the theoretical framework in Section 4.3) by combining
the steps of selection and prioritization of test cases in an iterative way. Initially,
the traditional techniques for the product selection and prioritization steps are

97

5. Search-Based Test Allocation for Iterative testing of
HCCPS

employed (i.e., well-known state-of-the art techniques are employed for steps
1 and 2 of Figure 5.1). Next, the proposed approach employs a novel search-
based technique to optimize the allocation of small groups of test cases into
pre-selected and pre-prioritized products (i.e., the search exercise merges steps
3 and 4 of Figure 5.1). The search and test (execution) process is iteratively
repeated until the time budget is consumed.

We performed an evaluation with the UAV case study which is further
detailed in Section 4.4. Results suggest that our approach can reduce the
fault detection time on average by 55%; and by 76% when compared with the
traditional test process and the Random Search algorithm respectively.

This research work allowed us to empirically validate the exploratory line
of work proposed to optimize the testing of HCCPSs by allocating a small
number of test cases for each product in an iterative manner.

5.2 Introduction

Testing product lines is a challenging process due to the high number of
potential products that the system can be set to. As a result, recent research
activities have focused on selecting relevant products to be tested from the
product line, ensuring a certain degree of test coverage [PSK+10, LHLE15,
AHTL+16]. Typically these approaches take a feature model as an input and,
by applying Combinatorial Interaction Testing (CIT) algorithms, a set of related
products satisfying all the constraints are obtained [PSK+10, CDS08, LHLE15].
The pairwise product generation criterion is usually employed since its use
ensures that the interaction of two features will be covered at least once.
This increases the chances of finding faults without the need for testing a
large amount of products due to the interaction of two features. However,
despite using this product derivation criterion, testing all these products is
still challenging and thus, other techniques such as the test case selection
[AWSE16a], minimization [WAG13, WAG15] and prioritization [WBA+14,
AWSE16b] have been proposed.

Testing product lines typically follows a four-step process. First, when
considering a variability model (e.g., a feature model), relevant products to
test are derived based on some criteria (e.g., the smallest amount of products
while ensuring pairwise coverage) [PSK+10, CDS08, HLL+16]. Secondly, these
products are prioritized with the aim of increasing the fault detection rate
[SSRC14a, SSPRC15, PSS+16, AHTL+16]. After prioritizing these products,

98

5.2. Introduction

relevant test cases that must be executed in each of the products are selected
at the application engineering level [SMP10, WAGL16b, WAGL15, AWSE16a].
Once these test cases are selected, the last step consists of their prioritization,
where the order in which the tests must be executed to test the product is
determined [WBA+14, AWSE16b].

Current product line engineering testing approaches focus on selecting
relevant products to test and, following this, testing each of the products
thoroughly. However, testing each of the individual products is not always
trivial, since the test cases are not always fast to execute. In systems such as
CPSs, where the testing is performed at system level, the test execution time
for each test case can last thousands of seconds. Thus, even if test selection
methods have been proposed to optimize the test execution time of individual
products while ensuring high test quality [AWSE16a], this may not be enough
for the product line engineering context. Specifically, even if some products
could be thoroughly tested (probably the products that had a higher priority
assigned), there might be some products (those scheduled to be tested last)
that cannot be tested as the time budget may have expired by the time of
testing them.

To solve this problem we propose a novel test methodology to iteratively
test product lines. Specifically, we propose a search-based testing method
that, given a product suite as an input, iteratively allocates a small number
of test cases to each of them. Once the selected products are tested with
the allocated test cases, the developed search algorithm is re-run to allocate
other test cases in the same products. This way, instead of thoroughly testing
each of the selected products individually, the test is performed in an iterative
manner. This allows for the execution of at least some test cases in each of the
selected products, reducing the risk of not testing some of the products due to
constraints related to the test execution budget. We evaluated different types
and configurations of Genetic Algorithms (GA) in an empirical evaluation with
a CPS product line as a case study. The results suggest that our approach
can help to improve the fault detection rate as compared with the traditional
testing method as well as with Random Search (RS).

99

5. Search-Based Test Allocation for Iterative testing of
HCCPS

5.3 Search-based Test Allocation

The essential idea of the approach is to perform the testing of product lines by
allocating a small number of test cases in each of the products. This approach
increases the probability of detecting faults faster. The proposed approach
follows five steps and an overview is depicted in Figure 5.2.

Figure 5.2: The proposed approach follows 5 steps: (1) Product selection
[PSK+10, OZML11, MGSH13, TAK+14], (2) Product prioritization[LHFC+14,
SSRC14a, AHTM+14, PSS+16, AHTL+16], (3) search algorithm execution and
solution generation, (4) solution testing and (5) solution and test results saving.
Steps 3-4-5 are repeated iteratively. Approach scope is limited by the frame.

The first step is the product selection which takes the Feature Model (FM)
as an input, and generates the Product Suite (PS). FM represents all SPL
product configurations. In this step the SPL product set is minimized to obtain
the PS, based on any state-of-the-art approach [PSK+10, OZML11, MGSH13,
TAK+14].

The second step involves the product prioritization, where all products
of the PS are sorted according to any usual product prioritization technique
[LHFC+14, SSRC14a, AHTM+14, PSS+16, AHTL+16]. As a consequence,
those products with the best ability to reveal faults are tested first. The
sorted Prioritized Product Suite (PPS) and the PS have an identical number
of products np.

Before describing the third step, Test Suite (TS) and Test History should
be explained. The TS accommodates a collection of test cases for testing
PS, where each test case tests a specific part of a product at the application
engineering level. Test History is a data storing mechanism that gathers test
execution results for each test case and product combination, recording the Test

100

5.3. Search-based Test Allocation

Execution Time (TET) and updating the Fault Detection Capability (FDC) of
each test case. When there is no available real FDC data, the fault revealing
capability of each test case can be estimated using mutation testing. Otherwise,
preparatory iterations will be needed until required data is gathered.

In the third step, the proposed search algorithm is executed. This search
algorithm takes PPS, TS and Test History as inputs, and once the algorithm
is executed, it returns a solution. The generated solution consists of a set of
allocated test cases for each of the prioritized products under test. Notice that
each of the np number of products includes their own test suite TSnp based
on the search. Each test suite has a maximum number of test cases (maxTC),
which is predefined by the test engineer. When the algorithm performs the
allocation, it is possible not to fill the test suite completely in order to provide
the optimal solution. A sample solution is depicted in Figure 5.3, where empty
slots of the test suite are represented with null test cases.

Figure 5.3: A solution generated for np products with maxTC test cases
allocated per test suite.

The fourth step consists of executing test cases of the solution. Finally,
in the fifth step, generated solutions and results of test cases execution are
saved into the Test History. This data is employed with two objectives. Firstly,
it is used to update information related to the fault revealing capabilities of
the executed test cases, so that the algorithms can guide the search more
accurately in future runs. The second reason is to avoid allocating previously
tested product and test case combinations during the following iterations. The
last three steps (search algorithm execution, test execution and historical data
saving) are iteratively repeated, until the test time budget is consumed. To
implement the described steps of the approach an algorithm has been designed
shown in Algorithm 1.

101

5. Search-Based Test Allocation for Iterative testing of
HCCPS

Algorithm 1: Iterative test allocation approach
1 system initialization;
2 PS = GenerateProducts(FM, GenerationCriterion);
3 PPS = PrioritizeProducts(PS,FM, PrioritizationCriterion);
4 while !Test Time Budget Consumed do
5 S = AllocateTestCases(TestHistory, MaxTC);
6 foreach Product under test do
7 TestResults = ExecuteTest(S);
8 UpdateTestHistory(TestResults);

5.3.1 Search algorithms measures

To allocate test cases cost-effectively in each of the products under test, three
measures have been specified when defining the fitness function. It is important
to highlight that these measures act at the test suite level and thus, the fitness
function is calculated for each of the products under test in PPS.

Fault Detection Capability (FDC)

The first defined measure has been the Fault Detection Capability (FDC).
This measure allocates effective test cases in terms of the ability to detect
faults. It has typically been selected in product line engineering for other
optimization tasks, such as test selection [AWSE16a], test suite minimization
[WAG13, WAG15] and test prioritization [WBA+14, AWSE16b]. We calculate
the FDC following Equation 5.1, where maxTC is the number of test cases of
TSppi and SRtci is the success rate.

FDCT Sppi
=

∑maxT C
i=1 SRtci

maxTC
(5.1)

The success rate is updated every time a test case is run. A test case is
considered successful if at least one fault is detected. Otherwise, the test case
is considered to have failed. The success rate is computed this way because
it is difficult in many contexts to differentiate between faults, as explained in
[AWSE16b]. Thus, the success rate SR of a given test case tci is expressed in
Equation 5.2 and calculated by the division of successful executions NumSuctci

with the total number of executions (NumSuctci + NumFailtci).

SRtci = NumSuctci

NumSuctci + NumFailtci

(5.2)

102

5.3. Search-based Test Allocation

Test Execution Time (TET)

It is the cost measure that quantifies the effort of executing the test cases.
We show the TET calculation in Equation 5.3, where norm(ETtci) is the
normalized time required to execute tci test case. Weight-based algorithms
require objective values to range between 0 and 1 [WAG13]. Thus, to avoid
objective values out of this range the normalized time is used. The norm(ETtci)
is calculated dividing the execution time of each test case (i.e.,ETtci) with the
execution time of the longest test case in the test suite, coined as maxTE.

TETT Sppi
=

∑maxT C
i=1 norm(ETtci)

maxTC
;

norm(ETtci) = ETtci

maxTE
;

(5.3)

Test Case Appearance Frequency (TCAF)

Selecting different test cases improves the detection of different faults. In our
context, we select those test cases that have appeared less frequently. Thus,
we measure the test case appearance frequency at test suite level TCAFT Si ,
trying to select test cases not previously used in the solution. To this end, as
it is shown in Equation 5.4, we consider the times each test case of the current
test suite has been previously used (repTC) and divide this by the maximum
test suite size (maxTC).

TCAFT Si = repTC

maxTC
(5.4)

5.3.2 Fitness Function

Weight-Based Search Algorithms (WBSAs) convert a multi-objective problem
into a single-objective one by assigning a specific weight to each of the search
objectives [WAG15, AWSE16b]. Given that a search problem has N numbers
of objective functions, each objective (Obj) is assigned a specific weight (w).
Notice that the fitness function must range between the values 0 and 1. Con-
sequently, each of the objectives should range between 0 and 1, and the sum
of all the weights that are assigned to each objective must result in 1 (i.e.,∑N

i=1 wi = 1). The generic fitness function for WBSAs is expressed in Equation
5.5.

FitnessFunction =
N∑

i=1
wi ·Obji (5.5)

103

5. Search-Based Test Allocation for Iterative testing of
HCCPS

WBSAs include several advantages. One such advantages is that they sup-
port user-preference, which is highly valued in testing to give higher importance
to some measures (e.g., fault revealing capability can be more valuable than
coverage when testing a specific system). Another advantage of WBSAs is
that they can be easily integrated in any search algorithm, either a local (e.g.,
Greedy or the Alternating Variable Method) or a global search algorithm (e.g.,
Genetic Algorithms).

We took advantage of WBSAs theory to define our fitness function at two
levels to guide search: (1) the application engineering fitness function and (2)
the domain engineering fitness function. The former is related with the test
suite assigned to each of the products under test, and thus, it is calculated
individually for each of the products. The latter is related with all the products,
which takes into account individually each of the application engineering level
fitness functions and assigns weights to each of them based on the priorities of
their products (i.e., position of the products in PPS).

Application engineering fitness function

The application engineering fitness function measures how good the allocated
test cases in a specific product are in order to test this product cost-effectively.
As a result, the three measures defined in Section 5.3.1 were employed. Follow-
ing the WBSA theory, we assigned to each of the measures a specific weight.
The higher this weight, the higher the relevance of the measure. This allows
the test engineer to select the test preference by giving more or less relevance
to each of the weights.

The particular fitness function fi of a given product pi is calculated following
Equation 5.6. FDCpi , TETpi and TCAFpi are specific normalized measure
values of the pi product and wfdc, wtet and wtcaf are the weight values set up
for this particular product, with the sum of weights to equal 1.

fpi = wfdcpi
· (1− FDCpi) + wtetpi

· TETpi + wtcafpi
· TCAFpi

wfdcpi
+ wtetpi

+ wtcafpi
= 1;

(5.6)

Domain engineering fitness function

Once application engineering fitness functions are calculated, the domain
engineering fitness function takes advantage of WBSAs to obtain a global
fitness function. In this case, a specific weight is assigned to each of the

104

5.3. Search-based Test Allocation

application engineering fitness functions. The domain engineering fitness
function F is expressed in Equation 5.7.

F =
np∑
i=1

Wi · fpi (5.7)

In addition, each weight is different for each of the application engineering
fitness functions in order to give more importance to those which contain
a product with a higher priority according to PPS. This way, the domain
engineering fitness function is more sensitive to those application engineering
fitness functions where their product has more probability of containing a fault.
This is performed as proposed in Equation 5.8, where, Wpi is the specific weight
to be calculated for a particular pi product, pipos is the position of the product
in the sorted PPS list and Z is a constant value, common for all products, and
calculated summing the unitary fractions of the position of all PPS products.

Wpi = 1
pipos · Z

; −→ Z =
np∑
i=1

1
i

(5.8)

5.3.3 Crossover operator

The crossover operator we have implemented exchanges product test suites
between two different solutions (parents) to create new solutions (children).
This exchange is performed at the test suite level. Specifically, we implemented
a single point crossover operator that randomly selects the crossover point
value within the range [1, np− 1], np being the total number of products in PS.
Subsequently, both solutions are combined taking into account the crossover
point in order to create two children solutions. Figure 5.4 depicts an example
of the implemented crossover operator for a solution with 3 products and a
maximum 5 test cases when the crossover point is 2.

5.3.4 Mutation operator

We have implemented three different constrained sub-mutation operators as a
mutation operator:

Addition sub-mutation operator

This sub-mutation operator is only available when the variable that must be
mutated does not contain any test case (i.e., it is null). When this happens, a
randomly chosen test case is added to the test suite.

105

5. Search-Based Test Allocation for Iterative testing of
HCCPS

Figure 5.4: Crossover operator applied to simplified two parent solutions at
crossover point = 2, generating 2 children solutions with test suites exchanged.

Removal sub-mutation operator

This operator is available when the variable to be mutated contains a test case
(i.e., it is not null). Thus, the test case can be removed from the test suite.
This sub-mutation operator has been defined for those cases where there are
many test cases with a low probability of finding faults, or where there are
very long test cases.

Replace sub-mutation operator

As in the previous sub-mutation operator, this operator is available when the
variable to be mutated contains a test case. Thus, the variable can be randomly
replaced by another test case. This sub-mutation operator has the objective of
adding cost-effective test cases in the test suite.

Constraints handling

In addition, it is important to highlight that the first and third sub-mutation
operators are constrained. The first constraint is that the sub-mutation op-
erators cannot add test cases that have already been assigned in the current
test suite. The second constraint is that they cannot add test cases that have
already been allocated to the same products in previous iterations. To this end,
all the previously obtained solutions are pre-processed by the algorithm and

106

5.4. Evaluation

the developed mutation operator takes them into account. Moreover, there
are test cases that are not compatible with specific products. Thus, a third
constraint is defined so that these test cases are not selected with incompatible
products. Mutation operator samples are shown in Figure 5.5, where a parent
solution is mutated by addition, removal and replace sub-operators.

Figure 5.5: Mutation operators applied to simplified parent solution, gener-
ating 3 children solutions: (i) t77 added at null element position in S5, (ii) t6
removed leaving null in S5, (iii) t4 replaced with t33 in S7.

5.4 Evaluation

5.4.1 Research Questions

The experiment’s objective consists of evaluating the performance of the pro-
posed algorithms when detecting faults. The first Research Question (RQ1)
examines the proposed algorithms are effective compared with both Random
Search (RS) and Traditional Testing Approach (TRA). The comparison between
proposed algorithms and the RS, which is considered as baseline algorithm,
is performed in order to assess that the problem to be solved is not trivial.
The comparison with TRA aims to analyze the performance of the proposed
algorithms within the traditional approach. The second Research Question
(RQ2) measures the performance of the proposed algorithms. Finally, the third
Research Question (RQ3) examines the scalability of the proposed algorithms
by increasing the test suite size.

107

5. Search-Based Test Allocation for Iterative testing of
HCCPS

■ RQ1. Sanity Check: Are the proposed search algorithms effective when
compared with existing reference algorithms? We divide RQ1 into the
following sub-Research Questions:

▶ RQ1.1 RS baseline: Are the selected search algorithms effective when
compared with RS?

▶ RQ1.2 TRA reference: Are the selected search algorithms effective
when compared with TRA?

■ RQ2. Performance: Which of the selected algorithm configuration fares
best among those selected?

■ RQ3. Scalability: How does the test suite size affect the performance of
the selected search algorithms?

5.4.2 Experiment design and setup

Case study

We selected the Unmanned Aerial Vehicle (UAV) case study for the experi-
mentation. This case study is further detailed in Section 4.4.2 and was based
on a quad-copter Highly-Configurable Cyber-Physical System (HCCPS) em-
ployed in other evaluations by Arrieta et al. [AWSE16a, ASEZ16, AWM+17b].
Arrieta et al. extended another previous work published by Mosterman et
al. [MSB+14] by adding variability to transform the system into a product
line. Specifically, this product line was composed by 46 different features in
order to describe the variability of both software and hardware characteristics
and functionalities.1 The UAV was modeled in MATLAB/Simulink containing
843 simulink blocks distributed in 4 depth levels. Additionally, a Test Suite
of 120 test cases was developed based on domain knowledge [AWSE16a]. In
our context, a test case consists of a set of signals that stimulates the sys-
tem’s inputs. Besides, any test case can be applied to any product. However,
any state-of-the-art technique can be employed when generating test cases
[AWM+17b].

1A detailed overview of the system can be found online in the following web page:
https://sites.google.com/a/mondragon.edu/asterysco/case-study

108

5.4. Evaluation

The product line could generate more than 800,000 products. When
applying pair-wise based selection 22 products were generated and, when
applying 3-wise selection 85 products were generated. Thoroughly testing
products generated by pair-wise will last an estimated 848 hours, while testing
products generated by 3-wise will last an estimated 4,046 hours.

The PS was derived with the ICPL algorithm following the pair-wise product
selection criterion [JHF12]. The PS was prioritized taking into account the
variability coverage and cyclomatic complexity (VC&CC) criterion [SSRC14a]
as it gave the best results for detecting faults in SPL test case prioritization.
Although our approach provides an iterative technique to allocate test cases,
we performed the experiment with one iteration to measure how good the
approach was at detecting faults in the first round.

Artificial problems

Six different TS sizes (70, 80, 90, 100, 110, 120) were employed to evaluate the
approach under different scenarios and to assess the scalability of the approach.
In addition, four maxTC values (1, 2, 5 and 10) were employed after launching
preliminary experiments and analyzing how different maxTC values performed.
The combination of the six TS sizes and the four maxTC values, generated
24 artificial problems. Each artificial problem was combined with each of the
selected algorithms. Each algorithm was run 100 times to account for random
variations, as recommended by Arcuri and Briand [AB11].

Algorithms

We evaluated two algorithms each with two different fitness functions. One of
the selected algorithms was the Weight-Based Genetic Algorithm (WBGA),
which uses fixed weights in the weighted fitness function. The second algorithm
was the Random-Weighted Genetic Algorithm (RWGA), which, unlike WBGA,
assigns the weights to the objectives randomly in each iteration. We selected
these algorithms based on their previous good performance in similar problems
[WAG15, WAG13]. In addition, we created two variants of the fitness function
described in the approach. The first fitness function (f1) considered TET and
FDC, while the second one considered TET, FDC and TCAF. The combi-
nation of two search algorithms (WBGA, RWGA) and two fitness functions
(f1,f2) produced the four proposed algorithms analyzed in this experiment:
WBGA_f1, WBGA_f2, RWGA_f1 and RWGA_f2.

109

5. Search-Based Test Allocation for Iterative testing of
HCCPS

Before evaluating the results of the proposed algorithms, we selected Ran-
dom Search (RS) algorithm and traditional approach based algorithms (TRA)
as references for comparison. RS is commonly used [WAG15, PSS+16] as a
comparison baseline in order to assess that the problem to be solved is not
trivial. TRA was based on our previous work [AWSE16a], where WBGAs are
employed to select every test case for each individual product under test. Both
RS and TRA algorithms used the defined fitness functions (f1, f2), producing
four reference algorithms: RS_f1, RS_f2, TRA_f1, TRA_f2.

Specific weights for each measure were assigned to configure the fitness
functions of each algorithm according to figures shown in Table 5.1. For fixed
weighted algorithms, the weight assigned provided identical importance to each
measure. For random weighted algorithms, weights were randomly assigned
ensuring the sum of weights was equal to 1.

Comparisons

To address RQ1.1 we compared the performance of the proposed algorithms
with RS baseline algorithms for the defined artificial problems. Similarly, to
address RQ1.2 we compared the proposed algorithms with TRA algorithms. To
address RQ2 we compared all possible combinations of the proposed algorithms
among themselves with the defined artificial problems. To address RQ3 we
evaluated the algorithms with different test suite sizes (from 70 to 120 with an
increment of 10 test cases).

Algorithms parameters configuration

For the parameters of the GAs, (both from our approach and the ones related
to TRA), we set the crossover probability to the 0.8 value. The mutation
probability was set to 1/N, with N being the number of variables in a solution
(in our case the number of products np multiplied by the maxTC parameter).
The population size was set to 100 and the number of generations to 1000.
Thus we considered a total amount of 100,000 fitness evaluations.

Evaluation metrics

We employed mutation testing to evaluate our approach since it has been
demonstrated that it is a good substitute for real faults [JJI+14]. We automat-
ically generated 20 mutants based on the tool used in previous works [AME17].
These mutants consist of variants of the UAV solution with faults injected

110

5.4. Evaluation

Table 5.1: Measure weights for fitness function configuration

Algorithm Measures
TET FDC TCAF

RS_f1 0.5 0.5 0
RS_f2 1/3 1/3 1/3

TRA_f1 0.5 0.5 0
TRA_f2 1/3 1/3 1/3

WBGA_f1 0.5 0.5 0
RWGA_f1 random random 0
WBGA_f2 1/3 1/3 1/3
RWGA_f2 random random random

into MATLAB/Simulink blocks. Due to the complex mathematical models of
the physical processes, mutation testing with MATLAB/Simulink becomes a
costly computational activity when running simulation. In other similar works
a likely number of mutants were employed (e.g., 13,17,21,44) [MNBB16], These
injected faults were related to individual features of the FM and thus, the
mutant is removed in case the product does not include the feature associated
to the mutant. The distribution of faults was 50% in the physical layer and
50% in the cyber layer (i.e., software of the system).

Two metrics were defined to evaluate the generated solutions. The first
metric used is named Mutation Score and measures the number of detected
mutants in the first iteration. The second metric used is named Average
Fault Detection Time (AFDT) and measures the required mean time to
detect each mutant in the first iteration.

5.4.3 Results

To statistically evaluate both RQ1 and RQ2, we divided the results into 24
data sets corresponding to the defined artificial problems. With each data set,
we first refused the null hypothesis for the normality distribution of data by
the Sapiro-Wilk test [WAGL15]. We then applied the Vargha and Delaney Â12

and Mann-Whitney U tests following the guidelines proposed by Arcuri et al.
[AB11]. In addition, we set the statistical significance to 95 % (i.e., there is
a statistical significance if p− value < 0.05). The results presented in Tables
5.2 and 5.3 show the number of artificial problems that each algorithm had
significantly better than the other for each algorithm pair. They also show
the number of artificial problems where there was no statistical significance

111

5. Search-Based Test Allocation for Iterative testing of
HCCPS

between the performance of each algorithms. To evaluate RQ3, we measured
the correlation between the performance of the algorithms with respect to the
number of test cases using the Spearman’s rank correlation test.

Table 5.2 illustrates results for RQ1 while RQ2 is presented in Table 5.3.
RQ3 results are shown in Table 5.4. Both Tables 5.2 and 5.3 are presented
with similar structures due to both comparing the performance of algorithms
taken in pairs, after applying the Vargha and Delaney Â12 statistics and Man-
Whitney U test. For each of the evaluation metrics, 3 columns are reported.
The column A > B presents the number of artificial problems for which the
algorithm in column A showed statistically significantly better performance
than the algorithm B (i.e., p− value < 0.05 and Â12 in favor of the algorithm
A). B > A represents the opposite. The column A = B reports the number
of artificial problems for which there was no statistically significant difference
between the algorithms A and B (i.e., p− value > 0.05).

Table 5.2 compares proposed algorithms WBGA_f1 , WBGA_f2 , RWGA-
_f1 and RWGA_f2 with defined reference algorithms RS_f1, RS_f2,
TRA_f1 and TRA_f2 for both Mutation Score and AFDT metrics. As
for RQ1.1 results reflect that proposed algorithms outperformed RS algorithms
in 3 out of 4 comparisons for the Mutation Score metric as it is shown in Table
5.2. As for the AFDT metric, the selected algorithms outperformed RS from
20 to 22 artificial problems out of 24. Consequently, we can conclude that the
proposed algorithms outperformed RS baseline and thus, the problem to solve
is non-trivial.

Similarly, regarding RQ1.2 results reflect that proposed algorithms outper-
formed the traditional testing in 3 out of 4 comparisons for the Mutation Score
metric, as it is shown in Table 5.2. As for the AFDT metric, the selected algo-
rithms outperformed the traditional testing in all four comparison. Therefore,
we can conclude that the proposed algorithms significantly outperformed the
traditional testing approach (based on GA-based TC minimization).

Table 5.3 compares the performance of the proposed algorithms. Results for
the Mutation Score metric show that the RWGA algorithms performed better
than WBGA, no matter which fitness function was employed. As shown in the
last two rows, we can conclude that the algorithms using the TCAF measure
(implemented in those algorithms ended with the “_f2” suffix) improved
performance results for this metric, with WBGA_f2 and RWGA_f2 results
better than WBGA_f1 and RWGA_f1 respectively.

As for the AFDT, it can be observed in Table 5.3 that WBGA algorithms

112

5.4. Evaluation

Table 5.2: Summary of the Vargha and Delaney Â12 statistics and Man-
Whitney U test for RQ1

RQ Algorithm Mutation Score AFDT
A B A >B A=B B >A A >B A=B B >A

1.1 WBGA_f1 RS_f1 14 1 9 21 2 1
1.1 RWGA_f1 RS_f1 11 3 10 21 2 1
1.1 WBGA_f2 RS_f2 12 3 9 22 2 0
1.1 RWGA_f2 RS_f2 10 3 11 20 3 1
1.2 WBGA_f1 TRA_f1 3 12 9 21 0 3
1.2 RWGA_f1 TRA_f1 9 13 2 19 2 3
1.2 WBGA_f2 TRA_f2 11 11 2 17 1 6
1.2 RWGA_f2 TRA_f2 12 9 3 14 1 9

performed in general better than RWGA algorithms, as the number of artificial
problems with better performance was significantly higher. From the last two
rows, we can conclude that the algorithms not considering the TCAF measure
(implemented in those algorithms ended with the “_f1” suffix) improved AFDT
performance results.

Table 5.3: Summary of the Vargha and Delaney Â12 statistics and Man-
Whitney U test for RQ2

Algorithm Mutation Score AFDT
A B A >B A=B B >A A >B A=B B >A

WBGA_f1 RWGA_f1 2 13 9 16 5 3
WBGA_f1 RWGA_f2 6 9 9 21 3 0
WBGA_f2 RWGA_f1 3 15 6 6 3 15
WBGA_f2 RWGA_f2 3 14 7 16 7 1
WBGA_f1 WBGA_f2 5 10 9 19 2 3
RWGA_f1 RWGA_f2 2 13 9 21 3 0

Table 5.4 presents the results of the Mutation Score and AFDT metrics for
RQ3. The first two columns identify the metric and the algorithm analyzed.
The following two columns report (1) the Spearman’s rank correlation (ρ),
followed by (2) the statistical significance Prob > |ρ|. These two columns are
repeated for each of the 4 maxTC values analyzed.

As shown in Table 5.4, the correlation for the Mutation Score is positive,
meaning that as the number of test cases increases, the number of detected
faults increased. In Table 5.4, the correlation is negative for most of the cases

113

5. Search-Based Test Allocation for Iterative testing of
HCCPS

(13 out of 16), meaning that as the number of test cases increased, the AFDT
decreased. Thus, we can conclude that our approach scales up to a more
complex problem in terms of number of test cases.

Table 5.4: Summary of Spearman’s rank correlation test for Mutation Score
(MS) and AFDT metric results in RQ3

Metric Algorithm maxTC = 1 maxTC = 2 maxTC = 5 maxTC = 10
ρ Prob > |ρ| ρ Prob > |ρ| ρ Prob > |ρ| ρ Prob > |ρ|

MS WBGA_f1 - - 0.878 <0.0001 0.855 <0.0001 0.839 <0.0001
WBGA_f2 0.124 0.002 0.622 <0.0001 0.754 <0.0001 0.845 <0.0001
RWGA_f1 0.104 0.011 0.577 <0.0001 0.673 <0.0001 0.625 <0.0001
RWGA_f2 0.115 0.005 0.419 <0.0001 0.570 <0.0001 0.574 <0.0001

AFDT WBGA_f1 -0.885 <0.0001 -0.630 <0.0001 0.209 <0.0001 0.262 <0.0001
WBGA_f2 -0.868 <0.0001 -0.823 <0.0001 -0.655 <0.0001 0.485 <0.0001
RWGA_f1 -0.869 <0.0001 -0.735 <0.0001 -0.452 <0.0001 -0.432 <0.0001
RWGA_f2 -0.855 <0.0001 -0.755 <0.0001 -0.552 <0.0001 -0.433 <0.0001

Figure 5.6: AFDT metric charts comparing mean values of each artificial
problem per maxTC.

114

5.4. Evaluation

5.4.4 Discussion

The general objective of RQ1 was to evaluate if the proposed algorithms
improved the selected reference algorithms. This was carried out by two sub-
research questions. RQ1.1 aimed at assessing whether the proposed problem
was non-trivial to solve by comparing the proposed algorithms with RS.

For most of the evaluation metrics the proposed algorithms were signifi-
cantly better than RS.

The performance obtained for the AFDT metric by the proposed algorithms
was notable. The graph shown in Figure 5.6 presents the AFDT metric charts
comparing mean values of each artificial problem per maxTC. Here it can be
outlined that for the AFDT metric, the proposed algorithms outperformed
the RS algorithms on average in 39%, 74%, 73% and 75% for each of the
defined maxTC (1,2,5,10) respectively. However, in some cases RS showed
better performance at finding mutants. This might be due to the fact that with
short test cases, our algorithms gave more importance to the test execution
time rather than to the FDC. However, this problem could be solved in
the future by assigning higher weights to the FDC measure for those cases
where the test suite has fewer test cases. RQ1.2 aimed at comparing the
proposed approach with the current practice of testing each product one by
one with a test suite minimization algorithm based on GA, as proposed in
[WAG15, WAG13, AWSE16a].

Results reflected that for the AFDT metric, the proposed algorithms
outperformed the TRA algorithms on average in 23%, 79%, 75% and
64% for each of the defined maxTC respectively.

RQ2 was established to compare the performance of the selected algo-
rithms among them and based on the obtained results two conclusions can be
highlighted:

On the one hand, results for the Mutation Score metric reflected that
RWGAs showed better performance than WBGAs. On the other hand,
results for the AFDT metric showed that WBGAs presented significantly
better performance than RWGAs, particularly those algorithms which
did not consider the test case appearance frequency measure (TCAF).

115

5. Search-Based Test Allocation for Iterative testing of
HCCPS

RQ3 aimed at evaluating whether the test suite size affects the performance
of the proposed algorithms.

It can be outlined that as the test suite size increases, the performance
of the algorithms is better.

The reason for this might be that making the test suite larger, the diversity
of test cases is increased, incrementing the chances to build a better test suite
for each of the product and improving the possibility to detect faults.

Concluding Remark

The experiment has employed only one case study, for that reason results
should not be generalized. However, results obtained in this specific experiment
conclude that the selected algorithms are better than RS, and thus, the
problem to solve is non-trivial. In addition, our approach of iteratively testing
the selected case study (which is a CPS product line) has outperformed the
traditional approach of thoroughly testing each of the products one by one, in
terms of faults detection time.

Based on the performed experiments, we propose to use the RWGA with
the second fitness function (i.e., the one that uses the FDC, TET and TCAF)
if the number of test cases in the test suite is small. This way, the probability
of finding faults is higher, despite the fact that the average time to detect
them can be larger than the rest. With large test cases, we recommend using
WBGA_f1, since with large test cases the number of detected faults increases,
and this algorithm is the fastest one to detect them. In addition, based on the
results from Figure 5.6, we recommend to set the maxTC size to 2 or 5 if the
number of test cases in the test suite is less than 100. For TS sizes of 100 or
more test cases , we recommend to set the maxTC size to 1.

5.4.5 Threats to validity

This section identifies threats that could invalidate the performed empirical
evaluation. An internal validity threat could arise due to the algorithms
parameter configurations remaining constant during the entire experiment.
Different algorithm configurations might lead to different results [AF11]. How-
ever, the assigned settings are in accordance with the guidelines from the
literature related to search-based software engineering [AB11]. The experiment
employs 20 mutants and, considering that systems might have more faults,

116

5.5. Related Work

a second internal validity threat has been identified. In addition, another
threat of mutation testing involves subsumed mutants [PHH+16]. To minimize
the impact of these threats, different types of faults were introduced across
the system. A conclusion validity threat could possibly arise due to the
random variations of search algorithms. To mitigate this threat each algorithm
is repeated 100 times and results are statistically tested following the guidelines
proposed in the literature [AB11]. The construct validity threat relates to
the comparison measures of all algorithms. To reduce this threat, we used the
same stopping criterion for all the algorithms (i.e., 100,000 fitness evaluations).
The external validity threat refers to the number of case studies used. At
this point, the experiment has employed only one case study and results should
not be generalized. However to minimize this threat the selected case study
size is noteworthy with 843 Simulink blocks distributed over 4 depth levels.
Moreover, we divided the evaluation in 24 artificial problems.

5.5 Related Work

SPL testing challenges have been extensively discussed [ER11, NdCMM+11,
dCMMCDA14], however recent surveys and mapping studies reveal a renewed
interest [HJK+14, LHFC+16]. According to the software engineering framework
defined by Pohl et al. [PBL05], SPL testing sub-processes are presented at
Domain Engineering and Application Engineering levels. Focusing on Domain
Testing, relevant systematic studies [LHFRE15, TAK+14] have identified that
Combinatorial Interaction Testing (CIT) is the leading selection approach for
testing in SPLs. Furthermore, according to Thüm et al. [TAK+14] most of the
research and industry communities have adopted the use of pairwise testing
[POS+12] to select products from variability models from different techniques
for CIT. In addition to the product selection problem, the product prioritization
problem has been addressed by multiple authors. Search-based algorithms have
been proposed by some authors [HPP+14, PSS+16]. There are other works
that have proposed the use of heuristics [SSRC14a, SSPRC15] to prioritize
products once they have been generated, while other authors prioritize products
before generating them based on dissimilarity metrics [AHTM+14, AHTL+16].
An additional systematic mapping study conducted by Lopez-Herrejon et al.
on Search-Based Software Engineering (SBSE) for SPLs [LHLE15] is also
remarkable. They conclude that the most common SBSE application is for
testing at the Domain Engineering level, (i.e., computing test suites in CIT)

117

5. Search-Based Test Allocation for Iterative testing of
HCCPS

and the most common techniques use genetic algorithms and multi-objective
evolutionary algorithms [POS+12]. Recent works have been published in order
to research at the Application Engineering level. Wang et al. applied a
weighted genetic algorithm to minimize SPL test suites, while retaining fault
detecting ability [WAG13, WAG15]. They proposed an additional systematic
and automated methodology to manage test case selection based on feature
models [WAGL15].

Incremental approaches have recently proposed to cope with different
SPLs challenges. A risk-based testing approach for SPL integration testing
has recently been proposed [LBL+17] to incrementally test SPLs. Failure
probabilities and impacts are automatically computed for each of the selected
variants, prioritizing important changes. Subsequently, a product ordering
optimization incremental approach has recently been proposed [LAHTS17]
based on graph-algorithms and existing heuristics.

To the best of our knowledge, most papers focus on generating relevant
products for testing SPLs by processing a variability model. In addition, those
works that focus on product prioritization [AHTM+14, AHTL+16, SSRC14a,
SSPRC15], do not usually consider the time required by each of the products
to be tested (i.e., they do not take application engineering level test cases).
Our approach, proposes a search-based algorithm to perform the testing of
product lines by allocating a small number of test cases to each of the products.
This approach is performed iteratively, focusing on fault detection time mini-
mization and combining well known Domain Testing techniques with proposed
Application Testing search-algorithms.

5.6 Conclusions

This paper first proposes an approach that performs both the product selection
and prioritization following well known techniques. Then we propose a novel
approach to allocate a small number of test cases to each product in order
to iteratively test the product line. To this end two fitness function levels
have been implemented to guide the search. We empirically evaluated four
proposed search algorithms with the goal of identifying the best algorithm
for optimizing fault detection time. Results showed that RWGAs combined
with appearance frequency objectives presented the best performance to detect
faults (Mutation Score), while WBGAs provided the best results in terms of
the required time to detect faults (AFDT). Furthermore, the average time to

118

5.6. Conclusions

detect faults of the proposed algorithms have outperformed RS algorithms in
on average 65%. Similarly, the results of our algorithms have outperformed
traditional test approach algorithms in on average 61%. We can conclude that
our approach has significantly improved the performance of both metrics when
compared with RS and traditional testing approach.

The results obtained by the proposed approach allowed us to empirically
validate the effectiveness of using a small number of test cases in a iterative
manner when testing HCCPSs. With this validation the first line of the
exploratory work was concluded.

119

Chapter 6

Test Case Selection of HCCPS using
Structural Coverage

Contents
6.1 Contribution overview . 121

6.2 Introduction . 122

6.3 Test Case Selection compared methods 124

6.3.1 Basic Concepts . 124
6.3.2 Motivating Example 124
6.3.3 Structural Coverage Levels 126
6.3.4 Test Case Selection Methods 127

6.4 Evaluation . 132

6.4.1 Experiment design 133
6.4.2 Results . 135
6.4.3 Discussion . 139
6.4.4 Threats to validity 141

6.5 Related Work . 141

6.6 Conclusions . 142

120

6.1. Contribution overview

This chapter provides details of the second exploratory research work. Sec-
tion 6.1 contextualizes the presented contribution in the theoretical framework.
Section 6.2 provides the technical motivation for this contribution. Section
6.3 presents our analysis proposal for test case selection. The approach is
evaluated in Section 6.4. Section 6.5 positions our approach with the current
literature. Finally, conclusions are summarized in Section 6.6.

6.1 Contribution overview

The research work presented in this chapter details the second exploratory
work of the thesis. Figure 6.1 highlights this work (in blue) in the context of
the entire theoretical framework (further details of the theoretical framework
are provided in Section 4.3).

This exploratory work was set in order to validate the second hypothesis of
the thesis, which aims at optimizing HCCPS testing by considering domain-level
structural coverage information.

Figure 6.1: Second exploratory method proposed in the context of the
theoretical framework. The second exploratory method “Test Case Selection
of HCCPS using Structural Coverage” (blue colored), which involves steps
number 2 and 3.

The approach proposed in this second exploratory work is designed to
develop the core concept (defined at the theoretical framework in Section
4.3) by exploring how to consider product line information at both domain
and Application levels. Specifically, it is focused on step number 3 of Figure
5.1, where a study is carried out on analyzing how to use structural coverage

121

6. Test Case Selection of HCCPS using Structural Coverage

when selecting test cases. To this end, we propose three different test case
selection methods that consider a given time budget to test product lines in an
efficient manner by means of structural coverage information. We analyze the
three methods with three white-box coverage criteria (i.e., Decision Coverage,
Condition Coverage and Modified Condition/Decision Coverage).

When analyzing the three test case selection methods, where Domain
level information is considered, there is a modification of the pre-established
ordering of the prioritized products. Specifically, when considering the product
line coverage level information, one of the methods modifies the order of the
prioritized products to optimize the testing. Therefore, in this contribution we
also consider that step number 2 of Figure 5.1 is modified. Additionally, by
merging these steps (i.e. 2 and 3) we set the basis for a later definition of pair
concept (in the main contribution described in Chapter 7).

We evaluated the different test case selection methods with the CW case
study which is further detailed in Section 4.4. The evaluation was carried out
applying mutation testing technique. The results suggested that considering
coverage information at the domain engineering level helps on detecting more
faults, particularly when time budgets are low.

This second work allowed us to empirically validate the exploratory line
of work proposed to optimize the testing of HCCPSs by considering the
information at the Domain level and stating the basis for the future pair
conception.

6.2 Introduction

Testing Software Product Lines (SPLs) is a tedious and time consuming activity.
This is mainly caused by the large number of products that a SPL can be set
to. This makes it impossible to test all valid product configurations. As a
result, many approaches focus on deriving a subset of relevant products that
are representative for testing the entire SPL [LHFRE15, dCMMCDA14, ER11].
This is typically done by following a combinatorial approach, in which the
interaction of features is ensured.

Most SPL testing studies focus on the domain engineering level. Specifically,
a large number of studies have focused on deriving a representative subset
of products from a feature model [KBK11, POS+12, HPP+13b, LHFRE15],
whereas others focus on prioritizing the yielded products [SSRC14a, PSS+16,
AHTL+16, DPC+15, AHLL+17]. Nevertheless, there are some studies that

122

6.2. Introduction

have focused on the application engineering level by selecting or minimizing a
subset of test cases1 for testing a specific product [SMP10, WAG13, WAG15,
AWSE16a] or by prioritizing them [WBA+14, AWSE16b, LLL+15]. Most
of these Application level testing approaches focus on regression testing by
considering historical data of test cases (e.g., considering the number of faults
revealed by each test case). Although these test case selection methods are
effective, a drawback is that each of the test cases need to be executed several
times to obtain valuable historical data. Therefore, historical data related
to faults is not always available. This chapter focuses on test case selection
criteria based on white-box coverage metrics for time constrained scenarios.

Many studies in software engineering have proposed the use of structural
coverage to select or prioritize test cases [MB03, YH12, YH07]. However,
the use of structural coverage2 in the context of SPLs has centered little
attention. In this work we propose different methods for test case selection
based on structural coverage information. Specifically, we employ two metrics
for structural coverage, proposing three different test case selection methods
based on these metrics. Furthermore, we perform the analysis employing three
different coverage criteria, i.e., Decision Coverage (DC), Condition Coverage
(CC) and Modified Condition/Decision Coverage (MC/DC). We empirically
evaluated these methods within a case study from the automotive domain with
different time budgets. Results suggest that one of the methods, which focuses
on selecting test cases considering the overall coverage of the SPL, performs
better than the remaining methods at detecting faults when low time budget
exist. As for the analyzed coverage criteria, results suggest that the three of
them (i.e., DC, CC and MC/DC) obtain similar performance for the evaluated
case study.

1In the context of SPLs, the term test case is employed both to refer a product configura-
tion or a test exercising a product configuration. This work employs the latter one.

2In the context of SPL engineering, typically t-wise coverage is considered to derive
products from a feature model following combinatorial interaction testing approaches [CDS08,
POS+12]. However, this kind of coverage should not be confused with the concept of structural
coverage.

123

6. Test Case Selection of HCCPS using Structural Coverage

6.3 Test Case Selection compared methods

We propose three test case selection methods considering structural coverage
criteria for a time-constrained scenario.

6.3.1 Basic Concepts

Let PS = {P1, P2, ..., Pnp} be the Product Suite to be tested, np being the total
number of products. This product suite can be derived by following any state-
of-the-art product derivation approach (e.g., a combinatorial product derivation
approach [OMR10, POS+12]). TSPi = {TC1Pi , TC2Pi , ..., TCntcPi} is the test
suite with ntcPi number of test cases employed to test product Pi. This test
suite is assigned to the specific product Pi and the test cases can be derived
following any established approach (e.g., Adaptive Random Testing [CKMT10],
or model-based testing [WL13]). Last, we consider the Product Line Test Suite,
the union of all test suites (i.e., PLTS = {TSP1 , TSP2 , ..., TSPnp}).

6.3.2 Motivating Example

As an example to illustrate concepts of this section, we selected the feature
model of a SPL for mobile phones presented by Benavides et al. [BSC10].
Figure 6.2 depicts a simplified feature model from the mobile phone industry.
The features are used to specify different mobile phone software configurations
in products. Thus, all products must include call support, as well as any
of the screen alternatives (i.e., basic, colour or high resolution screen type).
Optionally GPS and multimedia devices (i.e., Camera, MP3 or both) might be
included (further details provided in Section 2.2.2).

Figure 6.2: Feature model of the Mobile Phone example [BSC10].

The Mobile Phone feature model can provide fourteen valid product con-
figurations. Let us consider three representative product configurations in

124

6.3. Test Case Selection compared methods

order to simplify the example. Therefore, the product suite is composed of the
selected three products PS = {P1, P2, P3}. The configured features for P1 are
Mobile Phone, Calls, Screen and Colour. Features for P2 are Mobile Phone,
Calls, Screen, High resolution, Media and Camera. Finally, features for P3 are
Mobile Phone, Calls, GPS, Screen, Basic, Media, MP3.

In Section 6.3.4, the description of the proposed test case selection methods
is presented. Two of the three test case selection methods employ a product
prioritization criteria, as different studies have shown that establishing a
specific order of the products derived from the product line improves fault
detection effectiveness [SSRC14a, AHTL+16]. Thus, products from the product
suite of this example are also prioritized using any state of the art criterion
[AHTL+16, SSRC14a]. Resulting prioritized product suite is PSprioritized =
{P3, P2, P1}. Note that the order of the products has been modified compared
to PS.

In addition, test cases are generated for each product, obtaining specific
test suites per product. Thus, the test suite assigned to product P1 is TSP1 =
{TC1P1 , TC2P1 , TC3P1}. The test suite assigned to product P2 is TSP2 =
{TC1P2 , TC2P2 , TC3P2}, while the test suite assigned to product P3 is TSP3 =
{TC1P3 , TC2P3 , TC3P3}.

To complete this example, the association between test cases and features
is established. To this end, it should be clarified beforehand that typically
each feature in a product line is related to a set of assets that implement the
feature’s functionality (e.g., code, test cases, documentation, etc.). Particularly
in this example, each feature is related to a piece of code. The coverage of
each piece of code is obtained by satisfying a number of test requirements. For
instance, let us assume that the code block associated with the feature Media in
Table 6.1 contains a decision (e.g., if(z>8) condition). The test requirement
TR13 defines a test target to obtain the true outcome in the decision, while
the test requirement TR14 is defined to obtain the outcome false. The detailed
association between test cases and covered test requirements is shown in Table
6.1. Thus, when a test case satisfies a test requirement, a • is placed at the
intersection. For example, test case TC3P1 covers test requirements TR1, TR8
and TR9. Finally, note also that column TET provides required Test Execution
Time (TET) of each test case in seconds.

125

6. Test Case Selection of HCCPS using Structural Coverage

Table 6.1: Test Requirement (TR) coverage and Test Execution Times (TET)
per test case.

Products Test Cases
Mobile Phone Calls GPS Screen Basic Colour High resolution Media Camera MP3

TETTR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR11 TR12 TR13 TR14 TR15 TR16

P1

TC1P1 • • • • • 2
TC2P1 • • • • 5
TC3P1 • • • 3

P2

TC1P2 • • • • • 3
TC2P2 • • • • • • • 8
TC3P2 • • • • • • • • 1

P3

TC1P3 • • • • • • 4
TC2P3 • • • • • • • • • • 6
TC3P3 • • • • • • 2

6.3.3 Structural Coverage Levels

We employ the structural coverage metric at two different levels: on the one
hand, the traditional use of structural coverage for individual products, named
Product Structural Coverage (PSC). On the other hand, the structural coverage
that considers the entire product line, named Product-Line Structural Coverage
(PLSC).

Product Structural Coverage (PSC)

Given a product Pi, and a set of test cases testing this product, the structural
coverage at the product level (PSC) for product Pi is the percentage of test
requirements covered by the set of test cases. Referring to the example in Table
6.1, let us consider the following test suite of P1: TS′

P1
= {TC1P1 , TC3P1}. Test

case TC1P1 covers 5 test requirements (i.e., TR1, TR2, TR3, TR7 and TR11).
Test case TC3P1 provides 3 test requirements (i.e., TR1, TR8 and TR9) but
only 2 new ones with respect to TC1P1 (i.e., TR8 and TR9). The total number
of test requirements covered by TC1P1 and TC3P1 is 7. P1 has in total 9 test
requirements associated to the features it has. Thus, the PSC of the test suite
TS′

P1
is 7/9, meaning that more than 77% of the test requirements have been

covered for P1 when selecting the test cases TC1P1 and TC3P1 .

Product-Line Structural Coverage (PLSC)

The structural coverage at the product line level (PLSC) quantifies the number
of covered test requirements with respect to the total number of different test
requirements of the entire product line. Continuing with the example of this
section, let us consider the next test suite PLTS′ = {TC1P1 , TC2P2 , TC3P3}.
The first test case (i.e., TC1P1) covers 5 test requirements (i.e., TR1, TR2, TR3,
TR7 and TR11), the second test case (i.e., TC2P2) covers 7 test requirements

126

6.3. Test Case Selection compared methods

(i.e., TR2, TR5, TR9, TR12, TR13, TR14 and TR15), and the third test case
(i.e., TC3P3) covers 6 test requirements (i.e., TR1, TR3, TR4, TR5, TR9 and
TR10). Note however, that some of the test requirements are covered more
than once by different test cases within different products (e.g., TR1 and TR3
are covered by TC1P1 and TC3P3 , while TR2 is covered by TC1P1 and TC2P2).
Thus, in total, at the product line level, 13 test requirements are covered. Since
the entire product line consists of 16 test requirements, the coverage at the
product line level when selecting these test cases will be 13/16, meaning that
more than 81% of the product line test coverage has been covered.

6.3.4 Test Case Selection Methods

We propose three different methods for test case selection: The Application
level Method (AM), the Domain level Method (DM), and Combined Method
(CM).

Application level Method (AM)

The Application level test case selection method, consists of selecting test
cases in order to thoroughly test products one after another. In this chapter,
this method is applied to maximize the structural coverage of each
individual product (i.e., to maximize the PSC measure described in Section
6.3.3). To this end, we first prioritize products of the product suite as it
has been shown that in time-budget constrained scenarios it improves fault
detection results [PSS+16]. Next, products are sequentially tested, selecting
test cases according to their structural coverage until 100% of the PSC is
obtained. This process is continued until the last product of the product suite
is tested, or the Time Budget (TB) is consumed. The overall process for this
method is described in Algorithm 2.

Note that the pseudo-function get_UnusedTC_BestPSC provides each
test case with the highest product structural coverage increment (i.e., highest
PSC coverage increment) among all unused test cases of the selected product
(curProduct), in the same way as the additional greedy algorithm [YH07]. If
two test cases with equal execution time provide identical coverage increment,
the pseudo-function selects the first one.

Table 6.2 presents the application of this method considering the example
in Table 6.1, for a given time budget of 20 seconds. The algorithm selects test
cases from the firstly prioritized product P3 according to their test requirements
coverage. Thus, the first test case to be selected is TC2P3 as it covers 10 test

127

6. Test Case Selection of HCCPS using Structural Coverage

Algorithm 2: Application level method
1 prioritize products;
2 curProduct = select highest priority product;
3 while (curProduct <= lastProduct) & (consumedTB < TB) do
4 while (PSCoverage < 100%) & (consumedTB < TB) do
5 nextTC = get_UnusedTC_BestPSC(curProduct, PSCoverage

);
6 solution = solution ∪ nextTC ;
7 PSCoverage = updatePSCoverage(solution);
8 consumedTB = updateTimeBudget(solution);
9 curProduct = select next highest priority product;

Table 6.2: Test case selection example for Application level method for a
given time budget of 20 seconds.

Application level Method
Product nextTC PSCoverage consumedTB

P3 TC2P3 77% 6
P3 TC1P3 100% 10
P2 TC3P2 67% 11
P2 TC2P2 100% 19

requirements. The next test case in product P3 with the highest increase of
test requirement is TC1P3 , incrementing the covered test requirements by 3.
Since the remaining test case does not increase the structural coverage of P3

and the remaining time budget is not consumed (i.e., there are 10 seconds left),
the next prioritized product is selected (i.e., P2). Similarly to the previous
product, two test cases are selected; firstly TC3P2 which increments the test
requirements coverage by 8 and secondly, TC2P2 which increments by 4. The
consumed time budget (i.e., consumedTB) for executing these four test cases
is 19 seconds. Since the structural product coverage of the first two prioritized
products is fully achieved (i.e., PSC of P3 and P2 is 100%), the next prioritized
product is selected (i.e., P1). However, as test cases in P1 have a higher TET
than 1 second, it is not possible to select further test cases because the time
budget would be exceeded. Thus, the AM test case selection method would
return test cases TC2P3 , TC3P3 , TC2P2 and TC2P2 .

128

6.3. Test Case Selection compared methods

Domain level Method (DM)

The Domain level test selection method consists of selecting test cases consider-
ing the structural coverage of the entire product line (i.e., maximizing
the PLSC measure described in Section 6.3.3). To this end, as any test case
from the derived products of the product line can be selected without prod-
uct prioritization restriction, the test case that increments the most PLSC is
selected each time. Algorithm 3 synthesizes the DM test selection method.

Algorithm 3: Domain level method
1 while (nextTC <= lastTC) & (consumedTB < TB) do
2 nextTC = get_UnusedTC_BestPLSC(PLTS, PLSCoverage);
3 solution = solution ∪ nextTC ;
4 consumedTB = updateTimeBudget(solution);
5 PLSCoverage = updatePLSCoverage(solution);
6 if (PLSCoverage = 100%) & (consumedTB < TB) then
7 PLSCoverage = 0;

Note that PLTS stands for the Product-Line Test Suite, which comprises
all test cases created for the product line. It is also worth mentioning that
the pseudo-function get_UnusedTC_BestPLSC provides the test case each
time with the highest test requirements coverage increment for PLTS among
all unused test cases. Once full PLSC is obtained, if the time budget has not
been consumed, the PLSC measure is reset to 0, and the process is re-started
by selecting test cases that have not been previously selected.

Table 6.3: Test case selection example for Domain level method for a given
time budget of 20 seconds.

Domain level Method
Product nextTC PLSCoverage consumedTB

P3 TC2P3 63% 6
P2 TC2P2 94% 14
P1 TC1P1 100% 16
P2 TC3P2 50% 17
P3 TC3P3 56% 19

Table 6.3 presents how the Domain level method is applied considering the
example in Table 6.1, for a given time budget of 20 seconds. The algorithm
can select from any of the 9 test cases that compose the PLTS to maximize

129

6. Test Case Selection of HCCPS using Structural Coverage

the structural coverage of the entire product-line (i.e., PLSC). The first test
case to be selected is TC2P3 , as it is the test case that provides the highest test
requirements coverage increment (i.e., 10 new test requirements are covered).
The next selected test cases are TC2P2 and TC1P1 as they provide the highest
test requirements increment in terms of the PLSC (i.e., TC2P2 increments the
test requirements coverage by 5 and TC1P1 by 1). After selecting these three
test cases, 100% of the PLSC is achieved (i.e., the 16 test requirements are
covered) while the time budged is not consumed (i.e., 16 seconds are employed).
Since there is time left (i.e., 4 seconds left), the remaining TB is used to
complete it with other TCs that could potentially detect new faults. Therefore,
PLSC coverage is set to 0 and the next test case is selected among those test
cases that have not been selected before and provide the highest PLSC coverage.
The next selected test case is TC3P2 as it provides the highest increment of
test requirements (i.e., 8 test requirements are covered) among unused test
cases, and consumes 1 extra second time budget. Finally, although TC1P3

increments more test requirements, as there is not enough time budget left to
accommodate it, the TC3P3 test case is selected, which increments the covered
test requirements by 1 and consumes 2 seconds. For the provided example,
DM test case selection method would return test cases TC2P3 , TC2P2 , TC1P1 ,
TC3P2 and TC3P3 .

Combined Method (CM)

In this test selection method, we combine both of the previous test selection
methods. As in the Application level method, first, the products are prioritized.
However, instead of selecting test cases considering the product coverage,
the product line coverage is considered (i.e., the PLSC coverage). The main
difference is that the test cases are selected taking into account the
prioritization of the products but considering the coverage of the
entire product line. Algorithm 4 synthesizes the CM.

It is worth mentioning that in this method, while there are test cases
that provide PLSC increment, the selected current product (curProduct) is
maintained. However, when none of the remaining test cases corresponding
to the current product increments the PLSC, the next prioritized product
is chosen. Similarly to the domain level method, when 100% of coverage is
reached and the time budget has not been consumed, the PLSC measure is
reset (i.e., PLSC = 0) and the test case selection is continued.

130

6.3. Test Case Selection compared methods

Algorithm 4: Combined method
1 prioritize products;
2 curProduct = select highest priority product;
3 while (curProduct <= lastProduct) & (consumedTB < TB) do
4 while (∆TRnextT C > 0) do
5 nextTC = get_UnusedTC_BestPLSC(curProduct,

PLSCoverage);
6 solution = solution ∪ nextTC ;
7 consumedTB = updateTimeBudget(solution);
8 PLSCoverage = updatePLSCoverage(solution);
9 if (PLSCoverage = 100%) & (consumedTB < TB) then

10 PLSCoverage = 0;

11 curProduct = select next highest priority product;

Table 6.4: Test case selection example for combined method for a given time
budget of 20 seconds.

Combined Method
Product nextTC PLSCoverage consumedTB

P3 TC2P3 63% 6
P3 TC1P3 81% 10
P2 TC2P2 94% 18
P1 TC1P1 100% 20

Table 6.4 presents how the combined method is applied considering the
example in Table 6.1, for a given time budget of 20 seconds. Similarly to
the Application level method, this algorithm selects test cases from the firstly
prioritized product P3. However, instead of measuring the capability of the
test case to increase the coverage of the product (i.e., PSC), the product-
line structural coverage (i.e., PLSC) is measured to select test cases. Thus,
the first test case to be selected is TC2P3 , as it provides the highest test
requirement coverage increment to the product line (i.e., an increment of 10
test requirements) among all those test cases available for product P3. The
next test case TC1P3 provides a 3 test requirement increment to the product
line. Since there are no available test cases capable of incrementing the PLSC,
the next product is selected (i.e., P2). Among P2 product test cases, only
TC2P2 provides an increment of test requirements (i.e., 2 test requirements are
covered), which is included in the test case selection, and the next product is

131

6. Test Case Selection of HCCPS using Structural Coverage

selected. Between the P1 product test cases, to complete the PLSC and respect
the time budget, test case TC1P1 is selected. This test selection method would
return test cases TC2P3 , TC1P3 , TC2P2 and TC1P1 .

6.4 Evaluation

The general purpose of this experiment was the comparison between three test
case selection methods when using different structural coverage criteria in a
time-constrained scenario. To this end, the following three Research Questions
(RQs) were defined:

■ RQ1 - Sanity Check: Are the proposed test case selection methods effective
when compared to the baseline? The first RQ examines whether the proposed
test case selection methods, described in Section 6.3.4, are effective when
compared with the baseline. The defined baseline consists of applying all
existing test cases from the test suite for each prioritized product while there
is time budget. This research question was defined as a sanity check to verify
that the test case selection problem was non-trivial to solve. To tackle this
research question, the fault detection effectiveness of the proposed three test
case selection methods were compared with the baseline.

■ RQ2 - Methods Evaluation: Which of the proposed test case selection
methods fares best in terms of fault detection capability? The second RQ
was defined to identify which test case selection method performs best when
detecting faults in a time-constrained scenario. To address this RQ the fault
detection effectiveness of the three proposed test case selection methods was
compared.

■ RQ3 - Coverage criteria Evaluation: Which of the selected coverage
criterion fares best in terms of fault detection capability? The third RQ is
defined to identify which coverage criterion performs best when detecting
faults in a time-constrained scenario. To address this RQ the fault detection
effectiveness of the analyzed coverage criteria were compared.

132

6.4. Evaluation

6.4.1 Experiment design

The following sub-sections describe how the experiment was designed to evaluate
the defined RQs.

Case study

We selected the CarWindow (CW) case study (further detailed in Section 4.4.2
for the experiment. To describe the variability of this cyber-physical system
product line, it was employed a feature model composed of 30 different features.
Therefore, more than 11.000 products could be configured with this product
line. In order to reduce the number of product configurations to be tested,
we derived the product suite using the pairwise coverage criterion and the
ICPL algorithm [JHF12], obtaining a total of 28 product configurations. The
simplest product configuration was composed of 4 features, whereas the most
complex product configurations were composed of 19 features. On average,
product configurations were composed of 12 features.

Based on the feature model of the case study, a 150% model was designed
using MATLAB/Simulink, containing 227 Simulink blocks structured on 4
depth levels. A 150% model contains the union of all blocks required to model
any variant of the SPL. In a negative variability approach, blocks related to
deselected features are removed from the 150% model to derive particular
product configurations, also known as 100% models. For each derived product
configuration, a specific MATLAB/Simulink 100% product model was obtained
(hereinafter referred to as product). The resulting product suite, composed
of the 28 products, was prioritized according to the Variability Coverage
and Cyclomatic Complexity (VC&CC) prioritization criterion, based on the
good performance this product prioritization criterion had shown in the past
[SSRC14a].

Test suite generation

In addition, for each of the derived products, the test cases were automatically
generated employing a white-box approach. In our context, a test case consists
of a set of signals that stimulate the system’s input. Simulink Design Verifier
(SLDV) was employed to generate test cases following the MC/DC criterion.3

3When MATLAB/Simulink is configured to generate test cases with the MC/DC crite-
rion, an aggregated test suite to satisfy the following three coverage criteria is generated:
Condition Coverage, Decision Coverage, and Modified Condition/Decision Coverage crite-
ria. For further details visit the following link https://es.mathworks.com/help/sldv/ug/
model-coverage-objectives-for-test-generation.html.

133

https://es.mathworks.com/help/sldv/ug/model-coverage-objectives-for-test-generation.html
https://es.mathworks.com/help/sldv/ug/model-coverage-objectives-for-test-generation.html

6. Test Case Selection of HCCPS using Structural Coverage

On average 42 test cases were generated per product. Thus, in total, 1,184 test
cases were generated for the 28 products.

Evaluation metric

We employed mutation testing to evaluate the effectiveness of the experiment,
as it has been found to be a good substitute of real faults [JJI+14]. Concretely,
we employed the Mutation Score (MS) metric to assess the fault detection
capability of the proposed methods. MS measures the percentage of mutants
detected by a specific test suite.

In mutation testing, a copy of the original system (named mutant) is
created, where a fault (also known as mutation) is injected. When both the
original system and the mutant are executed, if obtained results are different,
it is considered that the mutant has been “killed”, therefore a fault is detected.
Since our case study was modeled in MATLAB/Simulink, mutants were created
employing the mutation operators proposed by Hanh et al. [HBT16]. Each
generated mutant consisted of a copy of the original system, where the injected
fault was related to a specific feature associated to the 150% model. This
mutant was later selected when a specific product included the faulty feature
into the configuration. We generated a total of 200 mutants for the 150% model.
Although it is not a large number of mutants compared to other approaches, it
is noteworthy that MATLAB/Simulink models are heavy to execute. Note how-
ever, that our approach employs similar or more mutants to other approaches
employing MATLAB/Simulink [AWSE16b, AWA+18, MASE17, MNBB16].

In our case study, each specific product (i.e., the 100% product model) was
generated including one copy of the non-mutated system and a specific number
of mutants. The final number of mutants per product was determined by the
corresponding feature selection, where unrelated mutants were removed (i.e.,
mutants related to features not included in the product were removed). When
test cases were executed in each product configuration model, all copies of the
system (i.e., non-mutated and mutated copies) were simulated with the same
inputs (i.e., previously generated test cases), and their outputs were compared.
When certain mutant output differed from non-mutated output, the mutant
was killed, detecting a fault.

The results obtained from simulating the selected product models (which
included mutants) with generated test cases were post-processed to get the
mutants detection data for each specific test case. According to the gathered
mutants detection results, to obtain the final set of mutants we first removed

134

6.4. Evaluation

undetectable mutants (i.e., those mutants that were not detected by any of the
test cases) with the aim of removing equivalent mutants. Secondly, we removed
duplicated mutants (i.e., mutants equivalent to one another but not to the
original program), as Papadakis et al. recommended in [PJHLT15]. Lastly, we
removed those mutants that were killable by all test cases. Subsequently, the
remaining number of mutants for the experiment was reduced from 200 to 129.

The test cases generated with MATLAB/Simulink were designed to satisfy
a set of test requirements4. After simulating products with test cases, the
coverage data was gathered. On average 99% coverage rate was obtained,
which means that 99% of the defined test requirements were satisfied in terms
of coverage during simulation. However, MATLAB/Simulink was not capable
to satisfy the remaining test requirements with generated test cases. When
100% of coverage is reported in the following sections, it must be taken into
account that full coverage of the reachable coverage rate (i.e., 99%) was
obtained. Moreover, for each of the generated test cases, a specific number
of test requirements were related, according to the coverage data generated
during simulation.

Artificial problems

We selected 25 different time budget samples as artificial problems for the
experiment. The first 10 time budget samples were defined from 25 seconds
to 250 seconds with increments of 25 seconds between each artificial problem.
The remaining 15 time budget samples were defined from 250 seconds to
4,000 seconds, with increments of 250 seconds. The time budget samples were
selected based on preliminary experiments.

6.4.2 Results

RQ1 Results

To answer RQ1, the mutation score of the three proposed test case selection
methods were compared with the baseline. Figures 6.3a, 6.3b and 6.3c depict
5 this comparison for the specific DC, CC and MC/DC structural coverage

4In the particular case of MATLAB/Simulink, the term Test Objective is the equivalent
designation employed for the test requirements described in this work (refer to section 3.3 for
further details).

5Results after 1000 seconds time budget present a convergence of the compared series
that tend to the 100% mutation score (both of the test selection methods as well as of the
coverage criteria). In order to improve the visualization of the most relevant information
obtained, the graphs have been limited to time budgets between 25 and 1000 seconds.

135

6. Test Case Selection of HCCPS using Structural Coverage

criteria respectively. Furthermore, we report the number of artificial problems
for which the proposed methods performed better than the baseline in Table
6.5. For each of the coverage criteria (i.e., DC, CC and MC/DC) 3 columns
are reported. The column A > B presents the number of artificial problems for
which the method in column A showed better MS performance than the method
B. B > A represents the opposite. The column A = B reports the number of
artificial problems for which there was no difference between methods. As it
can be seen in the aforementioned figures, Domain level methods outperformed
the baseline in all cases. The Application level and combined level methods,
overall, outperformed also the baseline. However, in a reduced number of cases
the baseline was better than application or combined level methods due to the
product prioritization constraint. Specifically, when Table 6.5 is observed for
the DC criterion, the Application level method obtained higher MS than the
baseline in 17 out of 25 artificial problems. The combined method performed
better in 18 of the 25 artificial problems. Lastly, the Domain level method
performed better than the baseline in 21 of the 25 artificial problems. Similar
results for remaining coverage criteria were obtained.

Table 6.5: Summary of test case selection methods compared with the baseline
(BL) for each coverage criterion.

Methods DC CC MC/DC
A B A >B A = B B >A A >B A = B B >A A >B A = B B >A

AM BL 17 4 4 12 10 3 13 7 5
DM BL 21 4 0 21 0 4 21 4 0
CM BL 18 4 3 16 6 3 18 6 4

Table 6.6: Summary of coverage criteria comparison for each test case selection
method.

Criteria AM DM CM
A B A >B A = B B >A A >B A = B B >A A >B A = B B >A

CC DC 8 8 9 5 0 20 6 9 10
DC MC/DC 7 14 4 9 11 5 6 15 4
CC MC/DC 6 11 8 4 0 21 5 10 10

136

6.4. Evaluation

(a) Mutation Score of compared test
case selection methods

for CD coverage criterion

(b) Mutation Score of compared test
case selection methods

for CC coverage criterion

(c) Mutation Score of compared test
case selection methods

for MC/CD coverage criterion

Figure 6.3: Mutation score obtained by the Application level, Domain level
and combined methods, compared with the baseline, across time budgets from
25 to 1000 seconds, corresponding to the specific DC (6.3a), CC (6.3b) and
MC/DC (6.3c) coverage criteria.

RQ2 Results

Figures 6.3a, 6.3b and 6.3c depict the results for the different test case selection
methods proposed in Section 6.3.4. In addition, we report the number of
artificial problems for which a method was better than the other in Table 6.7.
The structure of Table 6.7 is identical to the structure of Table 6.5. Specifically,
Table 6.7 compares the Application level, Domain level and combined test case
selection methods among them.

When considering the figures, figure 6.3a shows the results of the three
methods proposed in Section 6.3.4 for the DC criterion, figure 6.3b for the
CC criterion and figure 6.3c for the MC/DC criterion. Overall for the lower
time budgets, the Domain level method outperformed the remaining proposed
methods as shown in the three figures. In fact, as Table 6.7 shows, when the
DC coverage criterion was used, the Domain level method obtained higher MS
than the Application level method in 17 out of 25 artificial problems, and in
16 out of 25 artificial problems for the combined method. In the case of CC

137

6. Test Case Selection of HCCPS using Structural Coverage

Table 6.7: Summary of test case selection method comparison for each
coverage criterion.

Methods DC CC MC/DC
A B A >B A = B B >A A >B A = B B >A A >B A = B B >A

AM DM 0 8 17 6 0 19 0 8 17
AM CM 0 18 7 0 16 9 0 17 8
DM CM 16 9 0 14 3 8 13 12 0

coverage criterion, the Domain level method outperformed the Application
level one in 19 out of 25 artificial problems and the combined method in 14 out
of 25 artificial problems. Lastly, for the MC/DC criterion, the Domain level
method outperformed the Application level method in 17 out of 25 artificial
problems and the combined method in 13 out of 25 cases. The Domain level
method performed better than the remaining ones when the time budgets were
low as it can be seen in Figures 6.3a, 6.3b and 6.3c. When these time budgets
were increased, the differences in MS between both, the application as well as
the combined methods with respect to the Domain level method decreased.

RQ3 Results

Figures 6.4a, 6.4b and 6.4c depict the results for the compared different coverage
criteria. In addition, we report the number of artificial problems for which a
coverage criterion was better than the other in Table 6.6. Specifically, Table
6.6 compares DC, CC and MC/DC coverage criteria among them.

As far as the figures are concerned, figure 6.4a shows the results of the three
coverage criteria for the Application level test case selection method, figure
6.4b for the combined method and figure 6.4c for the Domain level method.
Results of the three graphs show that the three coverage criteria get a very
similar mutation score throughout the artificial problems of the experiment for
most of the cases. More concretely, as it is presented in Table 6.6, when the
Application level method was applied, comparing the DC criterion with the
MC/DC criterion, column A=B reported the highest value of the comparison
(i.e., in 14 out of the 25 artificial problems DC and MC/DC obtained the same
MS value). When the Domain level method was applied, both the DC and
MC/DC criteria performed better than the CC criterion, i.e., in 20 out of 25
artificial problems the DC criterion obtained better MS; while the MC/DC
criterion obtained better MS in 21 out of 25. This is also shown in Figure 6.4c,

138

6.4. Evaluation

(a) Mutation Score of compared
coverage criteria

for Application level method

(b) Mutation Score of compared
coverage criteria

for combined method

(c) Mutation Score of compared
coverage criteria

for Domain level method

Figure 6.4: Mutation score obtained by DC, CC and MD/DC criteria across
time budgets from 25 to 1000 seconds, corresponding to the specific Applica-
tion level (6.4a), combined (6.4b) and Domain level (6.4c) test case selection
methods.

where the CC criterion in most cases scores lower than the DC and MC/DC
criteria. However, the difference between the criteria is not substantial. When
the combined method was applied, similarly to the application level method,
comparing the DC criterion with the MC/DC criterion, column A=B reported
the highest value of the comparison (i.e., in 15 out of the 25 artificial problems
DC and MC/DC obtained the same MS value).

6.4.3 Discussion

In this section, we present the analysis and discussion of the results obtained
for each of the RQs.

RQ1 - Sanity Check:

The first RQ aimed at examining whether the proposed three test case selection
methods were effective when compared with the baseline. The results of the

139

6. Test Case Selection of HCCPS using Structural Coverage

experiment showed that the mutation score obtained by the proposed test case
selection methods outperformed the baseline in most of the cases.

The problem to be solved is not trivial and that the proposed methods
for the test case selection provide an improvement in fault detection
capability.

RQ2 - Methods Evaluation:

RQ2 aimed at identifying which of the proposed test case selection methods
fared best when detecting faults in a time-constrained scenario.

The obtained results suggest that at lower time budgets, the Domain level
method performed better than the remaining two methods.

A possible reason for this could be that the Domain level method can select
all the 1184 test cases and increase the product line coverage, whereas the
other two methods are restricted by the product prioritization and can select
only test cases of a specific product at a time. This permits the Domain level
method to select better test cases at any time. When the time budgets were
higher, the mutation score of the three test case selection methods reached the
highest score. The reason for this could be that a higher time budget allows
for selecting more test cases, and thus, the chance for detecting all the mutants
increases.

RQ3 - Coverage criteria Evaluation:

RQ3 was defined to assess the effectiveness of the analyzed coverage criteria.

The results suggested that overall, all the coverage criteria performed
similarly considering the mutation score.

It is well known that the MC/DC coverage is a stronger criteria and thus
should find more faults than the remaining ones. A possible reason for the
MC/DC having similar results as the CC and DC could be that, for getting
higher MC/DC coverage, longer test cases in terms of TET are required. As
our methods limit the selection of test cases depending on their time budget,
this fact could have reduced the possibility of having higher mutation scores
when employing the MC/DC coverage criterion.

140

6.5. Related Work

6.4.4 Threats to validity

This section identifies the threats that could invalidate the performed empirical
evaluation. An internal validity threat that we identified is related to the
number of employed mutants; we first used 200 mutants and when removing the
duplicated, equivalent and trivial mutants, only 129 mutants were employed,
which might not be a high number. However, we mentioned the high cost
that executing mutants within MATLAB/Simulink models involves. Note
that in other experiments where MATLAB/Simulink models are used, a lower
number of mutants is employed (e.g., 13 to 44 mutants [MNBB16], or 9 to
96 [AWA+18]). Furthermore, we reduced this threat by removing trivial,
equivalent and duplicated mutants and by introducing different mutation
operators across different parts of the system. An external validity threat
refers to the number of case studies used. As the experiment has employed
only one case study, results should not be generalized. However, we reduced
this threat by employing a real-world application case study of medium size.
In addition, we divided the evaluation into 25 different artificial problems.

6.5 Related Work

Testing SPLs has garnered attention in the last few years. According to
literature reviews and surveys [ER11, LHFRE15], most testing SPLs works
focus on deriving a set of relevant products from a variability model [EBG12,
POS+12, CDS08, HPHT15], typically a feature model, and following a set of
different approaches, such as combinatorial (e.g., pairwise) [LHFRE15]. Other
approaches focus on prioritizing these derived products with different objec-
tives, typically increasing the fault detection rate (e.g., [SSRC14a, AHTM+14,
AHTL+16, DPC+15, PSS+16]), but also others, such as reducing the switching
costs [WNK14]. Both approaches, sampling and prioritizing products focus on
the domain engineering level. Conversely, the Domain level method that we
propose considers both test levels (i.e., it selects products and test cases with
the aim of maximizing the structural coverage as much as possible, as detailed
in Section 6.3.4).

The approach proposed by Devroey et al. [DPC+14] use behavioral models
when testing product lines, such as the featured transition systems. In this
work the behavioral coverage driven testing is stated and coverage criteria are
redefined at the domain engineering level.

Other approaches focus on the application engineering level by selecting a

141

6. Test Case Selection of HCCPS using Structural Coverage

relevant subset of test cases to test a specific product (e.g., [WAGL16a, WAG15,
AWSE16a, LFN+17]) or, once these tests have been selected, prioritizing them
[WBA+14, AWSE16b, LLL+15]. Most of these application engineering level
approaches consider the historical data of test cases (e.g., the fault detection
capability of test cases) to guide the test case selection. Taking historical data
related to failure into account is interesting and makes the test selection or
prioritization effective, as demonstrated in several studies [YH07, AWSE16b,
AWSE16a]. However, to obtain historical data, it is necessary to execute the
test cases several times, something that is not always feasible. Our work differs
from these approaches because the methods we propose consider structural
coverage information to guide the selection of test cases instead of employing
historical data of test cases. Other application engineering level approaches such
as Stricker et al. [SMP10] conduct the test case selection for SPLs employing
structural coverage information as we do. However, this approach relies on
data-flow dependencies to select test cases whereas our work is centered on
control-flow coverage criteria. Another difference is that our work evaluates
results using the mutation testing technique.

6.6 Conclusions

In this chapter we propose different test case selection methods based on
structural coverage. To this end, we employ two metrics for structural coverage
and propose three different test case selection methods based on these metrics.
In addition, we conducted this study for three different coverage criteria, i.e.,
DC, CC, MC/DC. An empirical evaluation was carried out with a case study
from the automotive sector applying the mutation testing technique. Results
suggest that the Domain level method, which focuses on selecting test cases
considering the overall coverage of the SPL, obtains better results than the
other methods for the most reduced time budgets.

On the basis of the results obtained, it has been possible to validate the
optimization goal of HCCPSs testing by considering the structural coverage
information. With this validation the second line of the exploratory work was
concluded.

142

Chapter 7

Dynamic prioritization of Products
and Test Cases for testing HCCPS

Contents
7.1 Contribution overview . 144

7.2 Introduction . 146

7.3 Dynamic test prioritization of product lines 147

7.3.1 Test Prioritization Criterion 151
7.3.2 Similarity-based Prioritization algorithms 152

7.4 Application of the Approach on Configurable Simulation
Models . 157

7.4.1 Test Prioritization Criteria for Configurable Simu-
lation Models . 157

7.4.2 Similarity-based prioritization algorithms for Con-
figurable Simulation Models 162

7.5 Evaluation . 163

7.5.1 Research Questions 163
7.5.2 Experimental Setup 164
7.5.3 Results and Analysis 169
7.5.4 Discussion . 177
7.5.5 Threats to Validity 180

7.6 Related Work . 181

7.7 Conclusions . 183

143

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

In this chapter we provide the details of the main contribution. Section 7.1
contextualizes the presented contribution in the theoretical framework. Section
7.2 provides technical motivation for this contribution. Section 7.3 presents our
approach for dynamic test prioritization of product lines. The adaption of our
approach to the specific context of configurable simulation models is presented
in Section 7.4. The empirical evaluation of our approach is described in Section
7.5, including the experimental setup, results, analysis and discussion. Section
7.6 describes related work relevant to test prioritization. Finally, Section 7.7
summarizes the work and presents conclusions and future work.

7.1 Contribution overview

The research work presented in this chapter details the main contribution of
the thesis. Figure 7.1 highlights this work (in green) in the context of the
entire theoretical framework (further details of the theoretical framework are
provided in Section 4.3).

In the exploratory stage, two works and one additional input were produced.
On the one hand, the first exploratory work analyzed the proposal for the
selection and prioritization of small groups of test cases in an iterative way
(further described in Chapter 5). On the other hand, the second exploratory
work analyzed the possibility of using information from both domain and
Application levels of the product line (further described in Chapter 6).

Additionally, as a final input to the exploratory stage, a study was carried
out to determine quality metrics for testing configurable simulation models.
In this work we describe 5 groups of metrics categorized into white-box and
black-box testing techniques. The study collects existing metrics (some of them
proposed by third-party authors and others proposed within the framework of
this thesis) and adapts them to the context of configurable simulation models.
Among the studied metrics we highlight two, due to their relation to this main
contribution: (1) the metric for measuring similarity between test cases and
(2) the metric for measuring similarity between configurations (products) and
the test cases. Refer to Section 2.4.3 for further details.

From Chapter 5 we conclude that an (i) iterative approach in combination
with a strategy to select incrementally a small number of test cases each time is
effective; and (ii) similarity metrics assist in fault detection. From Chapter 6 we
conclude that (i) metrics combining both product-level and product-line-level
information are effective; and (ii) combining the selection of products and test

144

7.1. Contribution overview

cases improves effectiveness when detecting faults (despite modifying the order
established in the product prioritization.) In addition to the input related to
quality metrics, we highlight similarity-based metrics that provide an effective
tool in the context of HCCPS.

As a result of analyzing the conclusions obtained from the exploratory
stage, the basis for the next work were established: (1) it is necessary to extend
the research on the selection and prioritization of both products and test cases
jointly. (2) It is necessary to extend the research on testing small test sets in
an iterative way. (3) It is necessary to extend the investigation of the use of
information from both domain and Application levels when optimizing HCCPS
testing. (4) There is a need to extend research into the use of similarity-based
quality metrics for testing configurable simulation models.

Based on the results and the subsequent conclusions drawn from the
exploratory stage, the hypothesis for the main contribution was formulated,
which consists of using the results of the previously executed test cases to
perform a dynamic prioritization of the test cases and products to improve
fault detection capability of HCCPSs.

Figure 7.1: Method proposed as main contribution in the context of the
theoretical framework. The method “Dynamic prioritization of Products and
Test Cases for testing HCCPSs” (green colored), which involves steps number
2, 3, 4 and 5.

The proposed approach develops the core concept by combining 4 out of
the 5 steps of the traditional HCCPS testing process (i.e., steps 2 to 5 of
Figure 7.1). Furthermore, the approach proposes a technique to select and
prioritize test cases and products simultaneously. More specifically, we propose

145

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

a dynamic test prioritization approach in order to optimize the testing process
of SPLs by increasing the fault detection rate. In contrast to traditional static
test prioritization, our dynamic test prioritization leverages information of test
cases being executed in specific products. Processing this information, the
initially prioritized tests are rearranged in order to find non-discovered faults.
The proposed approach is valid for any kind of SPL, but we have adapted it to
the context of HCCPS simulation-models, an area where testing is especially
time-consuming and optimization methods are paramount.

The approach was empirically evaluated by employing the CW and IT
case studies (further detailed in Section 4.4). The results of this evaluation
reveal that the proposed test prioritization approach improves both the static
prioritization algorithm and the selected baseline technique (Refer to Section
7.3.2 for further details of the static prioritization algorithm).

Consequently, this research work allowed us to empirically validate the
main contribution of dynamic prioritization of products and test cases for
testing HCCPSs.

7.2 Introduction

Product line systems testing is a time-consuming activity [LHFRE15, PSK+10].
This is usually because the number of potential product configurations to be
tested can be huge. Several approaches have been proposed to make SPL
system testing feasible, some focusing on reducing and prioritizing the number
of configurations to test, others on selecting and prioritizing tests to apply.

Test prioritization aims at increasing the fault detection rate by ranking test
cases according to their likelihood of finding faults. This practice has shown to
optimize the testing process of several industrial systems from different domains
[BX16, DNABL13, ERL11, EYHB15, MGS13, SNS+18, SGMM17, THHB14].

Since this activity was successful, the product line engineering community
adapted test prioritization to the context of configurable systems. Most of test
prioritization approaches in product line engineering focused on the domain
engineering level, aiming at prioritizing the order at which products were
tested [AHTL+16, BLLS14, DPC+15, HPP+14, JHF12, SSRC14a]. Other
approaches focused on the application engineering level, aiming at prioritizing
the order of test cases based on several criteria (e.g., fault detection capability,
test execution time, etc.) [AWSE16a, AWSE19, EBA+11, LLL+15, WBA+14].

A drawback of the former was that once the products were prioritized, the

146

7.3. Dynamic test prioritization of product lines

time it took to execute tests in each system variant was not considered. It
was assumed that if a system variant contained one or more errors, these were
detected. However, testing each variant is a non-trivial process (test cases
must achieve certain degree of test coverage, different functional parts have to
be tested, etc.). Even if this was considered, in practice, it could happen that
the available time budget for testing all the selected configurations may be
consumed before task completion. For the latter, only single system variants
were considered. However, once the tests were ranked, its execution was fixed,
without possibility to change of system variants at certain point. Furthermore,
for some cases [HPH12, KAF12, KIJT18, KP02, LCTK13, MGS13, NWF+15,
SCC16], a historical database was required to rank test cases based on some
adequacy criteria. While this has shown to be effective, this database is not
always available, or else it requires a long start-up phase to be effective.

In this approach we prioritize test cases and products at the same time
(i.e., we give the chance of executing a test case in a specific product first, and
later executing another test case in another product, to later come back to the
first product). As an input to our approach, we consider a set of prioritized
products and test cases. Later, dynamically, we re-organize the order at
which these are tested, by considering the verdicts of tests. This dynamic
test prioritization approach is general to any kind of product line engineering
testing method, but it requires adaption depending on the domain. In this
chapter we present how we have adapted it for testing configurable simulation
models, which are typically used to test Cyber-Physical System (CPS) product
lines [AWM+19, AWSE19, AIH15]; this choice was taken because testing these
systems in practice is extremely time-consuming and effective test optimization
techniques are required [BNSB16, LNLB19, MNBB19].

7.3 Dynamic test prioritization of product lines

This section presents an approach for the dynamic test prioritization of product
lines. The approach focuses on the dynamic selection of the next best pair
(composed of a test case and a product) to be tested. For this purpose, a three
phase process is conducted: in the first phase, all valid pairs of products and
test cases are build. The second phase statically prioritizes valid pairs based
on test similarity metrics (refer to Section 7.3.1 for further details). Finally,
during the third phase, statically prioritized pairs are dynamically reallocated
and executed, considering that pairs containing products with higher Fault

147

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

Detection Capability (FDC) are more likely to reveal other faults. At the end
of the process, dynamically prioritized pairs are obtained. An overview of
the approach is presented in Figure 7.2 and further details of each phase are
provided in the rest of the section.

Let PS = {P1, P2, · · · , Pnp} be a product suite with np number of products
derived from the PL product line. And let TS = {TC1, TC2, · · · , TCnt} be a
test suite with nt number of test cases generated to test products of the PL

product line.1

Definition 11: Valid Pair

A valid pair PRi consists of a couple formed by a specific product Pj , such
that Pj ∈ PS, and a test case TCk, where TCk ∈ TS, if it is guaranteed
that the test case TCk can be executed on the product Pj .

Suppose for example that TC1 (being TC1 ∈ TS) can be executed with
product P2 (being P2 ∈ PS), hence they form the valid pair PR1 = (TC1, P2).

In software product lines not all test cases can usually be executed with all
products, so the final number of test cases available to build pairs is reduced
to nt′, where nt′ ≤ nt. In addition, not all products necessarily have test cases
to run them, therefore the final number of products available to build pairs is
reduced to np′, where np′ ≤ np.2

The first phase of the approach consists of one step (i.e., Step 1: Build
Valid Pairs in Figure 7.2) where all valid pairs are built. To this end, a set of
products (Product Suite in Figure 7.2) derived from the product line and a set
of test cases (Test Suite in Figure 7.2) to test the product line are provided as
inputs. During this phase, only valid pairs are conformed and saved into the
Set of valid Pairs data structure.

The second phase of the process addresses the static prioritization of pairs
in one step (i.e., Step 2: Prioritize Statically in Figure 7.2). In this step,
the Set of valid Pairs data structure is received as input and the Static Pair
Prioritization algorithm is applied based on a similarity criterion. Note that
any state-of-the-art prioritization criterion [DPC+15, EBA+11, WBA+14] can

1Note that PS and TS consist of a generalization of the definitions proposed in Section
4.4.1 of SMP S and T S150% respectively, which are redefined in the generic product line
engineering context of the approach described in this section.

2In our study, all generated test cases can be executed with all derived products. Refer
to Section 7.5.2 for details of the product and test case generation.

148

7.3. Dynamic test prioritization of product lines

F
ig

ur
e

7.
2:

D
yn

am
ic

Te
st

Pr
io

rit
iz

at
io

n
A

pp
ro

ac
h

O
ve

rv
ie

w

149

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

be employed to statically prioritize valid pairs.3 As a result of the second
phase, the set of Statically Prioritized Pairs is obtained.

During the third phase, which is composed of steps 3, 4 and 5, the dynamic
pair prioritization is carried out. In the third step (i.e., Step 3: Select next Pair
(Dynamically Prioritized) in Figure 7.2), the next best pair to be executed is
selected based on the existing test history. To this end, the pair that contains
the product with highest fault detection capability is selected. In the fourth step
(i.e., Step 4: Execute next Pair in Figure 7.2), the selected pair is executed, so
that in the fifth step (i.e., Step 5: Update Test History in Figure 7.2), the Test
History is updated. The third, fourth and fifth steps are repeated iteratively
until all statically prioritized pairs are reordered in the resulting Dynamically
Prioritized Pairs output.

Note that every time a pair is executed (Step 4), the verdict is saved into the
Test History. To this end, we have implemented a prototype of the approach in
MATLAB.4 In the prototype, we perform the maintenance of the Test History
in table format indicating for each of the executed pairs (i.e., product column,
test-case column) whether its execution has been successful or not (i.e., pass,
fail, etc.) together with the pertinent metadata. This information is used to
calculate the fault detection capability of the product dividing the number of
faults found in the product by the number of executions. We recall that in this
sense, we make no difference between faults (i.e., if a fault is exhibited with
more than one test case, the product is considered to have failed in all cases).
This is because we assume that detecting one fault does not necessarily lead to
its localization, which is beyond the scope of this paper.

The reason why we re-prioritize at the product level is because we hypoth-
esize that a product where we have detected a fault has a higher probability of
having more faults than a product where we did not find faults. This could
be due to different reasons. For instance, one such reason is that the product
where we have found a fault has more complex features. In addition, it has
been found in the past that a feature, or the interaction between more than
one feature might have more than one fault [SSPRC15]. Another reason is
that focusing on buggy areas has been found to be effective to uncover severe
bugs in complex systems like the Google code-base [WAC12].

3For this study, we have employed a similarity based criterion to prioritize pairs statically,
based on weighted measures that combines both product similarity and test cases similarity
of valid pairs. Detailed explanation it is provided in Section 7.3.2

4We have implemented the prototype in MATLAB due to its coupling with Simulink,
which was the modeling tool used for the simulation of the employed models.

150

7.3. Dynamic test prioritization of product lines

7.3.1 Test Prioritization Criterion

In the second step of the approach (i.e., Step 2: Prioritize Statically) we
rely on similarity-based criterion to statically prioritize pairs, as it has been
found to be effective in previous studies [AHTM+14, FPCY16]. However, any
state-of-the-art prioritization criterion [DPC+15, EBA+11, WBA+14] can be
employed.

We propose a weight-based criterion to determine the importance of product
and test cases similarity when prioritizing pairs. At the Domain level, we
prioritize products based on a similarity criterion that adapts the Hamming
distance to the context of product line [AHTL+16]. At the Application level,
we employ a criterion based on the Euclidean distance.

Similarity at the Domain level

Different works have been published to measure product configurations similar-
ity effectively at the Domain level [AHTM+14, SSRC14a]. We have employed
the similarity between product configurations proposed by Al-Hajjaji et al. as
it has proven to be effective in previous studies [AHTL+16]. This similarity
metric is based on the measurement of selected and deselected features shown
in Equation 7.1.

PSim(Pu, Pv, F) = 1− | Pu ∩ Pv | + | (F/Pu) + (F/Pv) |
| nf |

(7.1)

The complete product line set of features is represented with F . When
comparing the similarity of two product configurations Pu and Pv, the number
of selected | Pu ∩ Pv | and deselected features | (F/Pu) + (F/Pv) | are taken
into account. PSim ranges from 0 to 1, where the lower the PSim value, the
higher the similarity of products.

Similarity at the Application level

Previous studies have shown [FPCY16, HAB13, LPBM12] that diverse test
cases are more likely to detect faults. We have defined the similarity between
test cases with Equation 7.2. The equation relies on the Euclidean distance,
one of the most common similarity measure available in the literature. However,
any other distance measure such as Hamming, Jaccard, Dice, etc. could have
been used [SJH17].

TCSim(TCa, TCb) =
∑n

j=1 D(TCaj − TCbj
)

n
(7.2)

151

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

Consider two test cases TCa and TCb of the TS test suite. Let us assume
that we can abstract a test case as an n-dimensional array. Thus, each
test case will consist of an array of n values (e.g., TCa = {a1, a2, . . . , an}
and TCb = {b1, b2, . . . , bn}). The similarity between the given test cases
TCSim(TCa, TCb) is measured in Equation 7.2 as the normalized addition of
the distances between the array values of each test case. Where D(TCaj−TCbj

)
is the Euclidean distance between the j-th value of each test case. Resulting
TCSim ranges from 0 to 1, being the lower TCSim values the higher similarity
of test cases.

Similarity-based prioritization criterion for pairs

The similarity-based prioritization criterion measures the similarity of the pairs
taking into account both the similarity of the products and the similarity of
the test cases for the involved pairs. Given two pairs of products and test cases,
PR1(TCa, Pu) and PR2(TCb, Pv), where Pu product is tested with test case
TCa and Pv with TCb, the Similarity-based Prioritization Criterion (SbPC)
between the given pairs is measured following Equation 7.3.

SbPC(PR1, PR2) = PSim(Pu, Pv) ·Wp + TCSim(TCa, TCb) ·Wtc (7.3)

The product similarity PSim for the given product configurations is mea-
sured following Equation 7.1, while similarity between the given test cases
is calculated by employing Equation 7.2. Note that Wp is the weight given
to the product similarity whereas Wtc is the weight given to the similarity
between test cases (refer to Section 7.5.2 for details of the values assigned to
the weights within the evaluation). Wp and Wtc should have values between
0 and 1, moreover, the sum of them should be 1 (i.e., Wp + Wtc =1). The
resulting measure is the weighted sum of both similarities and ranges between
0 and 1; the lower the weighted similarity, the higher the similarity between
pairs.

7.3.2 Similarity-based Prioritization algorithms

The presented approach is supported by two prioritization algorithms. Firstly,
the static pair prioritization algorithm, which is employed in the second step
of the approach (i.e., Step 2: Prioritize Statically in Figure 7.2). Secondly,
the dynamic pair prioritization algorithm, which is employed in the third step

152

7.3. Dynamic test prioritization of product lines

multiple times (i.e., Step 3: Select next Pair (Dynamically Prioritized) in
Figure 7.2).

Static Pair Prioritization algorithm

The Static Pair Prioritization algorithm proposes a prioritization of pairs based
on similarity. To this end, the algorithm takes all possible combinations of
pairs and defines a fixed ordering of pairs according to the test prioritization
criterion.

The algorithm employs a pre-processed similarity data set, obtained em-
ploying the SbPC test prioritization criterion, that we refer to as Similarity
Matrix (SimMat). Let PS = {P1, P2, · · · , Pnp} be a product suite with np

number of products and TS = {TC1, TC2, · · · , TCnt} be a test suite with
nt number of test cases. Let us consider that all possible pairs (denoted as
AllPairs) between products and test cases are valid pairs. The number of pairs
contained in AllPairs is nPR, where nPR = np × nt. Thus, the similarity
matrix SimMat is conformed by calculating the similarity between the nPR

pairs of AllPairs, producing a nPR× nPR dimensions matrix.

The algorithm designed for the calculation of static prioritization of pairs is
described in Algorithm 5. The Main function of the algorithm gets as inputs:
(i) the set of valid pairs (AllPairs), and (ii) the similarity matrix (SimMat).
At the beginning, the algorithm selects the first provided pair as prioritized.
Next, it iterates with the rest of the pairs to be prioritized, selecting in each
case the most dissimilar pair employing the takeFarthest function.

The takeFarthest function receives three input parameters: (i) the current
statically prioritized pairs (StaticPairs), (ii) the remaining pairs to be priori-
tized (AllPairs) and (iii) the similarity matrix (SimMat). The takeFarthest

function calculates the similarity between each pair waiting for prioritization
and each already prioritized pair. Among all the possible combinations, the
pair which is most different from all the statically prioritized pairs is returned.
To this end, for each pair to be prioritized, the distance to all previously
prioritized pairs is calculated (distances(k)). The pair that as a whole is the
most different from all the previous ones is reserved (dist(j)). Among all
reserved pairs, the most different one is selected (nextStaticPair). As a result,
the algorithm provides the statically prioritized set of pairs (StaticPairs).

153

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

Algorithm 5: Static Pair Prioritization
input : – AllPairs, Set of all valid pairs

– SimMat, similarity matrix
output : – StaticPairs, Set of all pairs statically prioritized

1 Function Main
2 StaticPairs(1) ← AllPairs(1) ; // place 1st pair

3 for i=2 to nPR do
4 nextStaticPair ← takeFarthest(StaticPairs,AllPairs,SimMat);
5 StaticPairs(i) ← nextStaticPair;
6 AllPairs(i) ← null ; // Remove nextStaticPair from AllPairs

7 end
8 End Function
9 Function takeFarthest (StaticPairs,AllPairs,SimMat)

10 nAllPairs ← size(AllPairs) ; // # remaining Pairs

11 nStaticPairs ← size(StaticPairs) ; // # prioritzed Pairs

12 for j=1 to nAllPairs do
13 for k=1 to nStaticPairs do

// get distances between AllPairs and StaticPairs items

14 distances(k)=SimMat(AllPairs(j),StaticPairs(k));
15 end
16 dist(j) ← min(distances);
17 end
18 nextStaticPair ← max(dist);
19 return nextStaticPair

Dynamic Pair Prioritization algorithm

To efficiently conduct steps of the third phase, the Dynamic Pair Prioritization
algorithm was designed. The underlying idea of the algorithm consists of the
reallocation of pairs according to the product fault detection capability. We
focus on product fault detection capability because we hypothesize that a
product where faults are being detected is more likely to have other faults.
The algorithm is configured with two parameters nStartUp and nRealloc: the
nStartUp parameter is used to configure the number of pairs that will initially
be executed to feed the Test History. The nRealloc parameter is used to
configure the number of pairs that will be taken to be dynamically reordered.
Hereafter an example is employed to describe the detailed functioning of the
algorithm. Additionally, Algorithm 6 provides the pseudo-code of the Dynamic
Pair Prioritization algorithm.

154

7.3. Dynamic test prioritization of product lines

Algorithm 6: Dynamic Pair Prioritization
input : – nStartUp, number of pairs initially executed to feed Test

History
– nRealloc, number of pairs to be reallocated in each iteration
– StaticPairs, set of all pairs statically prioritized

output : – DynamicPairs, set of all pairs dynamically prioritized
// Stage 1 - Execute and allocate initial nStartUp number of pairs

1 for i=1 to nStartUp do
2 verdict = executePairs(StaticPairs(i));
3 updateTestHistory(verdict);
4 DynamicPairs(i) ← StaticPairs(i);
5 end

// Stage 2 - Reallocate remaining pairs dynamically

6 for i=nStartUp+1 to length(StaticPairs) do
7 RemainingPairs(i) = StaticPairs(i);
8 end
9 for i=1 to length(RemainingPairs) do

// select next nRealloc number of pairs

10 for j=i to i+nRealloc-1 do
11 pairs2Realloc(j) ← RemainingPairs(j);
12 end
13 if product of pairs2Realloc(1) never executed then
14 verdict = executePair(pairs2Realloc(1));
15 updateTestHistory(verdict);
16 DynamicPairs(i) ← pairs2Realloc(1);
17 else
18 highestFDCIndex ← getHighestFDCIndex(pairs2Realloc);

// Place highest productsFDC pair in first position

19 pairs2ReallocSorted(1) ← pairs2Realloc(highestFDCIndex);
20 pairs2Realloc(highestFDCIndex) ← null ; // remove

// Place remaining pairs2Realloc pairs

21 for j=2 to nRealloc do
22 pairs2ReallocSorted(j) ← pairs2Realloc(j-1) ;
23 end
24 verdict = executePair(pairs2ReallocSorted(1));
25 updateTestHistory(verdict);
26 DynamicPairs(i) ← pairs2ReallocSorted(1);

// Update RemainingPairs with reallocated pairs

27 for j=i to i+nPairs2Realloc-1 do
28 RemainingPairs(j) ← pairs2ReallocSorted(j);
29 end
30 end
31 end

155

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

PR4 PR5 PR6 PR7 PR8 PR9 PR10 PR11 PR12

PR6

PR4 PR5 PR6 PR7 PR8

PR6 PR4 PR5 PR7 PR8

nStartUp = 3

nRealloc = 5

StaticPairs

DynamicPairs

pairs2Realloc

pairs2ReallocSorted

PR4 PR5 PR6 PR7 PR8 PR9 PR10 PR11 PR12
RemainingPairs

Stage 1

Stage 2
Iteration 1

PR1 PR2 PR3

PR1 PR2 PR3

Figure 7.3: Graphical representation of the Dynamic Pairs Prioritization
Approach example, where the nStartUp pairs (PR1, PR2 and PR3 shadowed
with diagonal lines) are placed into the DynamicPairs output during the first
stage. The first iteration of the second stage is also represented, where the pair
with highest priority (PR6 emphasized with dark gray shadow) is selected to
be placed into the DynamicPairs output.

Let us consider the motivating example of Figure 7.3 where a set of twelve
statically prioritized pairs is provided StaticPairs = {PR1, PR2, · · · , PR12}.
In the first stage of the dynamic pair prioritization algorithm (detailed be-
tween lines 1 to 5 of Algorithm 6) the first nStartUp number of pairs of
the StaticPairs are selected (i.e., pairs PR1, PR2 and PR3 shadowed with
diagonal lines in Figure 7.3). The selected pairs are placed at the very first
positions of the dynamically prioritized pairs algorithm output DynamicPairs

= {PR1, PR2, PR3}. The selected pairs are next executed and Test History
is accordingly updated. Considering that the dynamic pair prioritization al-
gorithm is based on historical information (i.e., test executions verdicts are
considered to calculate the fault detection capability of products), this first
stage consists of the selection and execution of a number of pairs, guaranteeing
a minimum of data in the Test History. This is because it has been found
in previous studies, that history-based techniques require a start-up phase in
order to be effective [KIJT18].

In the second stage, the remaining pairs are iteratively processed and
dynamically reallocated. To this end, at the beginning of the first iteration,
remaining pairs are taken, i.e., pairs not selected in the first stage are taken
and placed into RemainigPairs (detailed between lines 6 to 8 of Algorithm

156

7.4. Application of the Approach on Configurable Simulation Models

6). Next, the first nRealloc number of pairs are taken from RemainingPairs

to be reallocated and placed into pairs2Realloc (lines 10 to 12). Following
the example, next five pairs are taken (i.e., pairs2Realloc = {PR4, PR5, PR6,

PR7, PR8}). Fault detection capability of products related to pairs2Realloc

pairs are taken into account to reallocate pairs (line 18 details how the index
of pair with highest FDC is obtained, i.e., highestFDCIndex). As a result,
the pair with the highest capability to detect faults is placed at first position
of pairs2ReallocSorted.

Remaining pairs are placed at the pairs2ReallocSorted following the pairs2-
Realloc ordering (lines 21 to 23). To continue with the example, let us
suppose that PR6, emphasized with dark gray shadow, obtains highest prod-
uct fault detection capability (i.e., productFDC) among pairs contained in
pairs2Realloc, therefore it is placed in the first position of pairs2Realloc-
Sorted. Next, PR4, PR5, PR7 and PR8 are placed just after PR6, result-
ing pairs2ReallocSorted = {PR6, PR4, PR5, PR7, PR8}. The first pair of
pairs2ReallocSorted (i.e., PR6) is placed at DynamicPairs, it is executed
and Test History is updated (lines 24 to 26). At the end of the first itera-
tion, DynamicPairs is composed of four pairs, DynamicPairs = {PR1, PR2,

PR3, PR6}. After each iteration RemainingPairs is updated removing the
last prioritized pair (lines 27 to 29). In our example PR6 is removed from
RemainingPairs. In subsequent iterations, nRealloc number of pairs are
taken and sorted, to select the pair with the highest fault detection capabil-
ity. Once all iterations are completed, DynamicPairs is provided with all
prioritized pairs as algorithm output.

7.4 Application of the Approach on Configurable
Simulation Models

This section describes how the Dynamic Prioritization approach proposed in
Section 7.3 is adapted to the domain of configurable simulation models.

7.4.1 Test Prioritization Criteria for Configurable Simulation
Models

Several metrics exist to measure the quality of test cases in the context of
simulation models, which can be used to prioritize tests. These metrics can be
classified either as black-box (i.e., those focusing on the inputs and outputs of
the simulation models) or white-box (i.e., those measuring internal white-box

157

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

coverage). In our previous work [AWA+18, AWM+19] we proposed a set of
black-box metrics and demonstrated that their performance was better than
traditionally employed white-box metrics. In a later study, we adapted both
black-box and white-box metrics to measure the quality of tests in the context
of configurable simulation models [MAES19b]. For this study, among the
metrics proposed in [MAES19b], we opted to use input-based test similarity.

We opted to use this as adequacy criterion for prioritizing tests in the
context of configurable simulation models due to two main reasons. Firstly,
is that previous studies have shown that diverse test cases are more likely
to detect faults [FPCY16, HAB13], and these have been successfully used
as criteria to prioritize test cases both in general purpose software systems
[FCWZ14, MCVB18, NH15, THHB14], as well as in the context of product
line engineering at the Domain engineering level [AHTM+14]. The second
reason is that, unlike output-based test similarity, or other quality metrics
proposed in [AWA+18, AWM+19, MAES19a], input-based test similarity does
not require tests to be executed beforehand. Subsequently, our approach can
be used at early validation stages right after the tests have been generated.

Similarity at the Domain level for Configurable Simulation Models

Similarity at Domain level does not require specific adaptation for configurable
simulation models context. Therefore, the proposal made in Section 7.3.1 to
measure similarity between products can be directly employed.

Similarity at the Application level for Configurable Simulation Models

In order to adapt the similarity at Application level to configurable simulations
models we relied on the normalized Euclidean distance of signals which has
already been used in previous works within the model-based testing context
[MNBB15, MNBB16]. Specifically, We employed the normalized Euclidean
distance proposed in [AWA+18] to tackle the diversity of simulation-time
lengths between test cases.

D(siga, sigb) =

√∑min(ksiga ,ksigb
)

i=0 (siga(i ·∆t)− sigb(i ·∆t))2
√

K + 1 · (maxIsiga −minIsiga)
(7.4)

Given two signals siga and sigb related to inputs from two different TCa

and TCb test cases, Equation 7.4 shows how the test-length adapted Euclidean
distance between aforementioned signals D(siga, sigb) is calculated. Resulting

158

7.4. Application of the Approach on Configurable Simulation Models

distance values range between 0 and 1, where the higher the distance value is,
the more dissimilar the two signals are.

Being ksiga and ksigb
the number of observed simulation steps of the signals

siga and sigb respectively, the expression min(ksiga , ksigb
) is the number of

steps of the signal whose test case has a lower Test Execution Time (TET).
Among all vector values that the input signal Isiga can acquire during the
simulation, maxIsiga and minIsiga are the maximum and minimum values
respectively. K is the number of observed simulation steps that the test case
with the highest TET in the whole test suite has. Note that the distance
between the two signals will be the same regardless of the order in which it is
calculated (i.e., D(siga, sigb) = D(sigb, siga)).

Three groups of signals must be considered to compare two test cases
executed in two product configurations: (i) the signals that both configurations
share, (ii) the signals that are present only in one configuration but not in the
other and (iii) the signals that both configurations do not have.

P1

i1

i2

P2

i2

i3

P150%

i1

i2

i3

i4

TCa = {sigi1, sigi2} TCb = {sigi2, sigi3}

Sigshared (PR1, PR2) = {sigi2}

Sigdifferent (PR1, PR2) = {sigi1,sigi3}

Sigmissing (PR1, PR2) = {sigi4}

PR1 = (TCa , P1)

PR2 = (TCb , P2)

Figure 7.4: Illustrative example of the three groups of signals on which
the Signal-based Similarity measure is founded. Test cases TCa and TCb are
executed respectively with products P1 and P2. When both executions of pairs
are compared, sigi2 is the only shared signal (Sigshared), while sigi1 and sigi3
are both present in only one of the executions but not in the other (Sigdifferent).
Finally, sigi4 is missing from both executions (Sigmissing).

Let us consider the example depicted in Figure 7.4 to describe the three
different groups of signals. Suppose two product configurations P1 and P2 of
the product suite SMPS. Product P1 contains inputs i1 and i2, while product

159

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

P2 contains inputs i2 and i3. In addition, neither of the two products contains
the i4 input available in other SMPS products. We also have two test cases
TCa and TCb executed respectively in P1 and P2 (i.e., pairs PR1 = (TCa, P1)
and PR2 = (TCb, P2)). The TCa will be adapted to product P1 to contain
two signals for inputs i1 and i2, TCa = {sigi1, sigi2}. TCb will be adapted to
P2, TCb = {sigi2, sigi3}.

In this example, sigi2 is the only shared signal between TCa and TCb test
cases, while sigi1 and sigi3 are signals that are present in only one of the
products (different). Finally, sigi4 is the signal missing in both products.

Taking into account the different sets of signals that test cases may have,
when adapting the application similarity measure to the context of configurable
simulation models, we propose two measures to compute the similarity between
test cases.

Grouped-Signals based Test Case Similarity measure (GSbSim) This
proposed measure denoted as GSbSim provides similarity between test cases
taking into account the three different groups of signals described in Section
7.4.1. Note that the test cases employed in this measure are already adapted
to specific products. Equation 7.5 measures the GSbSim similarity.

GSbSim(TCa, TCb) =
∑s

j=1 D(sigaj , sigbj) + ∑d
j=1 maxD

nt
(7.5)

The number of shared signals is represented by s, while D(sigaj , sigbj)
refers to the test-length adapted Euclidean distance between the j signals of
test cases a and b. The number of different signals is represented by d. These
different signals are present only in one of the configurations but not in the
other and therefore, we apply the maximum distance value maxD = 1. For
missing signals, the minimum distance is applied minD = 0, which makes
incorporating it into the equation unnecessary. The similarity between two
test cases can obtain values between 0 and 1, so that GSbSim(TCa, TCb) = 0
means that the test cases are identical, and completely different if the obtained
value is 1.

All-Signals based Test Case Similarity measure (ASbSim) This mea-
sure, unlike the previous one, does not adapt test case input signals to product
inputs. Let TS150 be the suite containing NIsig number of input signals.
To obtain the similarity between two test cases TCa and TCb of TS150 test
suite without taking into account product-specific input signal adaptations,

160

7.4. Application of the Approach on Configurable Simulation Models

the NIsig signal distances are averaged as indicated in Equation 7.6 (i.e., all
signal distances are employed to calculate the similarity between test cases,
regardless of the number of signals of the product in which they are executed).

ASbSim(TCa, TCb) =
∑NIsig

j=1 D(sigaj , sigbj)
NIsig

(7.6)

The similarity is obtained taking into account all signals (i.e., NIsig number
of signals) and distances are measured according to the test-length adapted
Euclidean distance equation. The similarity between two test cases can obtain
values between 0 and 1, meaning ASbSim(TCa, TCb) = 0 that the test cases
are identical, and completely different if the obtained value is 1.

Similarity-based prioritization criteria for Configurable Simulation Models

The similarity-based prioritization criterion described in Section 7.3.1 is split
into two criteria when adapting it to the context of configurable simulation
models. Thus, for each test case similarity measure (i.e., GSbSim and ASbSim)
the criterion is adapted.

Grouped-Signals Similarity of pairs (GS) The Grouped-Signals Similar-
ity of pairs criterion measures the similarity of pairs of products and test cases
taking into account the Grouped-Signals based Similarity measure (GSbSim).
Given two pairs of products and test cases, PR1(TCa, Pu) and PR2(TCb, Pv),
where Pu product is tested with test case TCa and Pv with TCb, the Grouped-
Signals Similarity (GS) between given pairs is measured following Equation
7.7.

GS(PR1, PR2) = PSim(Pu, Pv) ·Wp + GSbSim(TCa, TCb) ·Wtc (7.7)

Resulting measure is the weighted sum of both product (PSim) and test
cases (ASbSim) similarities and ranges between 0 and 1; the lower the weighted
similarity, the more identical the pairs.

All-Signals Similarity of pairs (AS) The All-Signals Similarity of pairs
criterion measures the similarity of pairs of products and test cases taking
into account the All-Signals based Similarity measure (ASbSim). As in the
case of GS, the All-Signals Similarity (AS) is measured following Equation 7.8,
however, ASbSim measure is employed .

161

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

AS(PR1, PR2) = PSim(Pu, Pv) ·Wp + ASbSim(TCa, TCb) ·Wtc (7.8)

Resulting measure is the weighted sum of both product (PSim) and test
cases (ASbSim) similarities and ranges between 0 and 1; the lower the weighted
similarity, the more identical the pairs.

7.4.2 Similarity-based prioritization algorithms for Configurable
Simulation Models

This section presents how the two algorithms (i.e., static and dynamic) for
test prioritization of pairs are adapted to the configurable simulation models
context. Considering that the two test prioritization criteria defined in Section
7.4.1 can be applied to both algorithms, by the end of this section a total of
four variants of the algorithms are presented (i.e., two variants per algorithm
depending on the employed test prioritization criterion).

Static Pair Prioritization algorithm for Configurable Simulation Models

When adapting the static pair prioritization algorithm, it must again be
taken into account that in the context of configurable simulation models, two
prioritization criteria are available to calculate the weighted similarity of pairs
(i.e., GS and AS). Thus, two variants of the similarity matrix (SimMat) are
calculated: the SimMatGS similarity matrix calculated employing the GS

criterion for the SGS algorithm variant; the SimMatAS similarity matrix that
uses the AS criterion for the SAS algorithm variant.5 Note that only one
of the two different similarity matrices is provided as input to the algorithm,
depending on the intended algorithm variant (i.e., SimMatGS or SimMatAS).

Dynamic Pair Prioritization algorithm for Configurable Simulation Models

The Dynamic Pair Prioritization algorithm described in Section 7.3 can be
applied to any product line regardless of how it is implemented (software-
based, model-based, etc.). Therefore, when it is applied to the configurable
simulation models, it only requires considering the measure that has been
employed to statically prioritize the pairs. That is, the Dynamic Prioritization

5DISAMBIGUATION: We would like to differentiate the SAS SPL testing strategy
described in Section 3.1 from the variant of the static prioritization algorithm using the AS
metric presented in this chapter, which also has the SAS acronym.

162

7.5. Evaluation

Algorithm receives as input the set of statically prioritized pairs (i.e., step 2 of
the approach described in Figure 7.2), which can be calculated using any of the
GA or AS test prioritization criteria. Therefore, the variant of the algorithm
Dynamic Grouped-Signals Similarity (DGS) is defined, if the GS criterion is
used to obtain the statically prioritized input pairs. On the other hand, if
AS has been used to statically prioritize the input pairs, the variant of the
algorithm Dynamic All-Signals Similarity (DAS) is defined.

7.5 Evaluation

7.5.1 Research Questions

We defined the following experiment to assess the behavior of the proposed
test prioritization algorithms. With the first Research Question (RQ1) we
intended to perform a sanity-check to assess whether the proposed algorithms
performed better than the baseline technique. A test prioritization technique
that minimizes input signals diversity was employed as a baseline, as it was
proposed in [HPH+16]. The second research question (RQ2) aimed at com-
paring the dynamic test prioritization algorithms with respect to the static
ones. Thirdly, we wanted to assess which of the proposed test prioritization
criteria for prioritizing test cases in the context of configurable systems per-
formed better (RQ3). The dynamic test prioritization algorithm has a set of
user-predefined configuration options. Our objective for RQ4 was to study how
these parameters (i.e., the size of the test cases executed for the start-up and
the size of number of test cases to be reallocated) affected the performance of
the algorithm. Lastly, by using information of the mutants and their relation of
detection by each test case, we were able to obtain the optimal and worst-case
test prioritization cases. RQ5 aimed at comparing an upper and lower bound
comparison with respect to our algorithms. We raise, thus, the following five
RQs:

163

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

■ RQ 1 – Sanity check: Is the performance of the proposed algorithms
better than that of the baseline technique?

■ RQ 2 – Dynamic vs. static test prioritization: Which of the proposed
algorithms best addresses the test prioritization problem?

■ RQ 3 – Test prioritization criteria: Which of the proposed measures
best contributes to test case prioritization in the context of configurable
simulation models?

■ RQ 4 – Algorithms configurations: How does the configuration of the
dynamic algorithm affect the performance of the proposed algorithms?

■ RQ 5 – Upper and Lower bound comparison: How do the best test
prioritization algorithms compare with the optimal and worst-case test
prioritizations?

7.5.2 Experimental Setup

This section explains how we designed the experiments to answer the five RQs.

Case Studies

The proposed test prioritization approach was evaluated using two case studies:
(1) the Industrial Tanks (IT) case study and (2) the Car Windows (CW) case
study, further detailed in Sections 4.4.2 and 4.4.2 respectively. Each consists
of a Highly-Configurable Cyber-Physical System (HCCPS) from two different
domains (i.e., industry automation domain and automotive domain). The
Industrial Tanks case study provides a control system for a tank product family,
where it aims at controlling the liquid level of each tank according to certain
constraints. As for the Car Windows case study, the system controls different
windows of a car. Not having any information about real faults, mutation
testing was employed, which has been found to be a good substitute of real faults
[JJI+14] (Refer to Section 7.5.2 for more information). The characteristics
of the case studies are shown in Table 7.1, while the characteristics of the
generated products, test suite and mutants for the evaluation are presented in
Table 7.2.

Table 7.1 summarizes the key characteristics of each case study used in
our experiment. A feature model was designed to describe the variability
of each product family. In the Industrial Tanks case the feature model was
composed of 36 features and 7 constraints, while 30 features and 13 constraints

164

7.5. Evaluation

Table 7.1: Key characteristics of the selected case studies. The Blocks column
provides the number of Simulink blocks for each of the case studies, while
Inputs and Outputs columns provide the number of input and output ports per
case study. The Features and Constraints columns specify for each case study
the number of features and constraints for the corresponding feature model.

Case Study Blocks Inputs Outputs Features Constraints
Industrial Tanks (IT) 306 18 3 36 7
Car Windows (CW) 227 18 4 30 13

were employed for the Car Windows case. Taking into account these feature
models, thousands of products could be configured, specifically, 39,582 and
11,824 product configurations for IT and CW cases respectively. For the
experiment, we derived a total of 17 (IT) and 28 (CW) products by using the
ICPL algorithm [JHF12] and the pairwise criterion. Furthermore, according
to Kuhn et al., empirical investigations have concluded that from 50 to 97% of
software faults could be identified by pairwise combinatorial testing [KKLH09].
In addition, employing a higher-strength t-wise approach (e.g., 3-wise) would
considerably increase the test execution time, and the pay-offs are not that
high. The ICPL algorithm was employed because it is an algorithm that is
integrated in the FeatureIDE tool and is fast enough to use it in practice.
However, any product sampling strategy can be used.

MATLAB/Simulink was used to implement the 150% model in order
to represent the variability of each product line, as it is the de facto tool
for modeling and simulating complex dynamic models (e.g., CPSs) [BNSB16].
Refer to Section 4.4.1 for further details related to 150% simulation models.
The number of blocks for each of the models was of 306 and 227. Both models
were designed with 18 input ports for system stimulation. In addition, the
Industrial tanks case generated 3 output port signals while the Car Windows
case generated 4 output port signals to report system status.

In our context, a test case consists of a number of signals that stimulates
the System Under Test (SUT). This type of test cases have been previously used
in similar works [AWA+18, MNBB16, MNBB19]. We adapted a Simulink-based
tool for test generation [MNBB19] in order to randomly generate test cases for
the 150% Simulink models. These test cases later needed to be instantiated
for each of the derived products (i.e., for each product, we needed to remove
some of the signals from the original 150% test cases). Note that in our case
studies, each generated test case was valid for all derived configurations. In

165

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

Table 7.2: Derived products, generated test cases and mutants of selected
case studies. The Derived Products column provides the number of product
generated with pair-wise technique per case study. The following three columns
describe the criterion employed to generate test cases, the number of test cases
generated for the 150% model and the total number of test cases after adapting
150% test cases to each derived product. The last two columns show the
number of mutants per case study; the first column shows the total number of
initially generated mutants, while the second column refers to the final number
of mutants employed in the evaluation after applying mutant selection.

Case Study Derived Test Cases Number of Mutants
Products Gen.Criterion 150% Total Initial Final

Industrial Tanks 17 Random 150 2550 246 30
Car Windows 28 Random 150 4200 209 36

total we generated 150 test cases per case study, and by combining them with
each of the derived products, we had in total 2,500 and 4,200 test cases for
each of the case studies (i.e., 150 test cases × 17 product = 2,550 test cases
for the Industrial Tanks case study and 150 test cases × 28 products = 4,200
test cases for the Car Windows case study). The selected number of test cases
are in-line with other approaches, which target industrial case studies. Within
an industrial case study, Wang et al. used 138 to 239 test cases [WAG15]. In
another industrial setting, Hajri et al., had test suites of 83 to 113 test cases
[HGPB20]. In our previous study we used up to 120 test cases, also including
an industrial case study [AWSE19].

Evaluation metric

The Average Percentage of Faults Detected (APFD) was employed to measure
the fault detection rate of the selected test prioritization approach, as it is the
most widely used evaluation metric in the context of test case prioritization
[CM13]. This metric measures the weighted average of the percentage of faults
detected over the life of a test suite [CM13]. Let T be a test suite containing
n test cases, and F be a set of m faults revealed by T . Let T ′ be a specific
ordering of test cases from T , where TFi takes the first position revealing i

fault. Equation 7.9 provides the APFD metric for the T ′ test suite, where
APFD values ranges from 0 to 1. The closer the APFD value of a test suite is
to 1, the faster it will detect faults.

APFD(T ′) = 1−
∑m

i=1 TFi

n ·m
+ 1

2n
(7.9)

166

7.5. Evaluation

Not having any information about real faults, mutation testing was em-
ployed, which has been found to be a good substitute of real faults [JJI+14].
Within this technique, a version of the original system (mutant) is created and
a fault (mutation) injected. A mutant is considered killed by a test case if
its outputs differ with respect to the original model. To design mutants, we
employed mutation operators proposed by Hanh et al. for MATLAB/Simulink
models [HBT16]. Therefore, a certain number of mutants were initially gen-
erated per case study, as reported in table 7.2. In addition, each fault was
related to a specific feature associated to the 150% model. We injected 246 and
209 mutants into the 150% model of the Industrial Tanks and Car Windows
cases respectively.

When a specific product was derived, a 100% product model was created
including one copy of the original system and a number of mutants. The number
of mutants included in a specific product was defined by the selected product
configuration, where those mutants related to features (or feature interactions)
not included in the product configuration were removed. Generated test cases
(i.e., 2,550 and 4,200 test cases of IT and CW case studies) were next executed
with respective product models (which include mutants) and results analyzed
to gather mutant detection capability of each test case.

To obtain the final set of mutants for the evaluation, three mutant selection
criteria were applied: firstly, undetectable mutants were removed (i.e., mutants
that were not detected by any test case), in order to avoid the inclusion of
equivalent mutants. Secondly, duplicated mutants were removed (i.e., mutants
equivalent to one another but not to the original model), as recommended
by Papadakis et al [PJHLT15]. Lastly, we removed mutants that were easily
detected by test cases. Subsequently, the remaining number of mutants for the
evaluations was reduced from 246 to 30 for the Industrial Tanks case study and
from 209 to 36 for Car Windows. Although the number of mutants employed in
the evaluation is not large compared to other approaches, it should be noted that
MATLAB/Simulink models are expensive to run. In this context, the number
of mutants proposed in this approach is similar to or higher than other studies
with MATLAB/Simulink [AWSE16a, NOM06, MNBB15, MNBB19, MASE17].

Experiment Runs

To evaluate the proposed approach, we generated different experimental sce-
narios. To this end, for each case study we first defined different test suite
sizes. Specifically, we created 10 test suite sizes from 50 to 140 test cases,

167

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

adding 10 test cases at a time (i.e., test suite sizes of 50, 60, 70,...,140 test
cases). Subsequently, we chose 50 different test suites (i.e., a collection of test
cases) per test suite size by randomly selecting test cases from the initially
generated 150 test cases. Different number of test cases were selected because
each test case is different, and therefore, we wanted to evaluate our approach
under different conditions (e.g., test cases that are good at detecting faults,
test cases that are not that good, etc.). By combining the 10 test suite sizes
generated with the 50 test case selections for each test suite size, we obtained
a total of 500 experimental scenarios for each case study.

For each experimental scenario, the selected algorithms were executed and
the APFD obtained. The static prioritization algorithm variants as well as the
baseline technique were executed once per scenario. Nevertheless, to find the
answer to RQ4, we ran one execution per algorithm parameters configurations
for dynamic prioritization algorithm variants. As described in Section 7.3, the
dynamic prioritization algorithm consists of two configuration parameters. The
nStartUp parameter determines the number of pairs (of products and test
cases) that are executed to start-up, while the nRealloc parameter defines the
number of pairs the algorithm takes to reallocate.

We set up five values for nStartUp parameter and six values for nRealloc

parameter, after a number of preliminary runs. Specifically, nStartUp =
{1, 5, 10, 20, 50} and nRealloc = {5, 10, 20, 50, 100, 200} were selected. Thus,
the dynamic algorithm was executed 30 times per experimental scenario,
which yielded a total number of 15,000 executions per case study. As for the
configurations of the test prioritization criteria, note that we did not vary
the weights provided to the similarity of the products (i.e., Wp = 0.5) nor
the similarity of the test cases (i.e., Wtc = 0.5). Thus, when calculating the
test prioritization criteria, the weight values were the same, giving the same
importance to both test prioritization criteria (applied in both static and
dynamic prioritization algorithms).

We developed a script to execute the experiment as it is shown in the
following pseudo code 7.

Additionally to the loops delimiting the experimental scenarios, and comple-
mentary runs for the dynamic algorithm, the algorithm script also calculated
the data sets that the algorithms employed in their calculations. Specifically
three types of data sets were calculated: (i) the data set of similarity between
products per case study, (ii) the data set of similarity between test cases and
(iii) the similarity matrices per experimental scenario.

168

7.5. Evaluation

Algorithm 7: Experiment execution pseudo-code
1 for each case study do
2 Calculate Product Similarity Dataset;
3 for TestSuiteSize=50 to 140 do
4 for TCSelection=1 to 50 do
5 Calculate Test Case Similarity Dataset;
6 Calculate Similarity Matrix;
7 for each algorithm do
8 if algorithm is Dynamic then
9 for each Dynamic Parameters Configuration do

10 Execute and get metrics;
11 end
12 else
13 Execute and get metrics;
14 end
15 end
16 end
17 end
18 end

7.5.3 Results and Analysis

We now analyze the results obtained for the experiment.

RQ1 – Sanity Check

RQ1 aimed at comparing the proposed test prioritization algorithms with
respect to the baseline technique. Similar to Henard et al., [HPH+16], the
baseline test prioritization technique prioritized test cases statically by aiming at
minimizing the similarity distance among test cases. For the static approaches
as well as for the 500 test scenarios, we compared how many of the selected test
prioritization algorithms were performing better than the baseline technique,
and measured them in percentages. In the case of the dynamic test prioritization
approaches, we had 30 different configurations, and thus, in total 15,000
potential comparisons. For these 15,000 comparisons, we also measured the
percentage of times a technique performed better than another one.

Table 7.3 summarizes these results; the columns A and B show the selected
test prioritization techniques. Later, there are three sub-columns for each of
the case studies (i.e., IT and CW). Column A > B shows that the percentage
of times the algorithm in column A performed better than the algorithm
in column B in terms of APFD. Column A < B on the other hand, shows

169

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

the contrary. Column A = B shows the number of times both algorithms
showed the same APFD. Clearly, the selected test prioritization algorithms
outperformed the baseline technique for all selected scenarios. These results
can also be corroborated by means of descriptive statistics shown in Figures
7.5 and 7.6, where the distribution of the 500 test scenarios for each technique
is depicted.6 This means that the selected algorithms as well as the test
prioritization criteria are performing correctly, and that the test prioritization
problem is not trivial to solve in this context.

When considering the average APFD values, for the IT case study, the
SGS technique outperformed the baseline by 28%, the SAS technique by 30%,
the DGS by 28% and the DAS by 31%. As for the CW case study, all of them
outperformed the baseline algorithm by 11% when considering the average
APFD values.

Table 7.3: RQ1: APFD percentage comparison between the proposed test
prioritization algorithms (i.e., SGS, SAS, DGS and DAS) with respect to the
baseline technique.

A B IT CW
A >B A = B A <B A >B A = B A <B

SGS Baseline 100% 0% 0% 100% 0% 0%
SAS Baseline 100% 0% 0% 100% 0% 0%
DGS Baseline 100% 0% 0% 100% 0% 0%
DAS Baseline 100% 0% 0% 100% 0% 0%

RQ2 – Dynamic vs Static Test Prioritization

The second research question aimed at comparing the dynamic test prioriti-
zation approaches with respect to traditional static prioritization approaches.
Results are summarized in Table 7.4. Similar to RQ1, we compare for the
500 test scenarios and 30 configurations of the dynamic test prioritization
algorithm, how many times the static algorithm outperformed the dynamic
one (column A > B); how many times both performed equally (column A=B);
and how many times the dynamic algorithm performed better than the static
one (column A<B), all of them in terms of APFD. Note that in this case we
are comparing how the approaches work algorithmically, and thus, to make the

6To make the box plots of a reasonable size, the results for the dynamic test prioritization
algorithms are shown as minimum (i.e., worst configuration), average, and maximum (i.e.,
best configuration) values for each test scenario

170

7.5. Evaluation

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 50

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 60
SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 70

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 80

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 90

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 100

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 110

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 120

171

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 130

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

IT case study APFD for TS size 140

Figure 7.5: Distribution of test scenarios per technique and test suite for
IT case study. Note that for the dynamic techniques results are shown as
minimum, average and maximum to make the charts of a reasonable size.

comparison fair, we make the comparison between the algorithms maintaining
the same test prioritization criterion.

In both case studies, the dynamic test prioritization algorithm outperformed
the static one. In the IT case study, the dynamic test prioritization algorithms
outperformed the static algorithms for 78.9% and 80.7% of test scenarios. In
the case of the CW case study, this percentage dropped a bit, to 53.3% and
59.3% of test scenarios. On the contrary, the static prioritization outperformed
the dynamic test prioritization approaches for 19.2% and 20.8% of test scenarios
and 46.3% and 40.4% of test scenarios for the CW case study. Even though in
the CW case study the number of test scenarios where the static approaches
outperformed the dynamic ones in terms of APFD is quite high, the dynamic
approaches still showed better performance.

Interestingly, even the dynamic approaches outperformed the static ones in
numbers, the improvement over the static one when taking into account the
average values of the APFDs were not high. For the IT case study, the DGS
outperformed the SGS by 0.37% and the DAS the SAS by 0.21%. A potential
reason for this could be that with large test suites the APFD measurement
might not be very meaningful [WSKR06]. Conversely, for the CW case study,
the average APFD values for the static techniques were slightly higher than
the dynamic ones, although the differences were negligible.

RQ3 – Test Prioritization Criteria

In Sections 7.4.1 and 7.4.1 we proposed two different test similarity measures
(i.e., GSbSim and GSbSim) that have been used as test prioritization criteria

172

7.5. Evaluation

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 50

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 60
SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 70

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 80

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 90

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 100

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 110

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 120

173

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 130

SAS

SGS
DASm

in
DASav

g
DASm

ax
DGSm

in
DGSav

g
DGSm

ax
Bas

eli
ne

Bes
t

W
os

rt

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

CW case study APFD for TS size 140

Figure 7.6: Distribution of test scenarios per technique and test suite for
CW case study. Note that for the dynamic techniques results are shown as
minimum, average and maximum to make the charts of a reasonable size.

Table 7.4: RQ2: APFD percentage comparison between the static prioritiza-
tion algorithm variants (i.e., SGS and SAS) with respect to the dynamic ones
(i.e., DGS and DAS).

A B IT CW
A >B A = B A <B A >B A = B A <B

SGS DGS 19.2% 0.1% 80.7% 46.3% 0.4% 53.3%
SAS DAS 20.8% 0.3% 78.9% 40.4% 0.3% 59.3%

both for the dynamic and the static test prioritization approaches. This was
proposed for the context of configurable simulation models, and rely on the
euclidean distance to measure the similarity of test cases. The third RQ
aimed at evaluating which of the test prioritization criteria performed best for
prioritizing test cases in the context of configurable simulation models. To make
a fair comparison, we compared SGS and SAS (i.e., both static prioritization
algorithms) with DGS and DAS (i.e., both dynamic prioritization algorithms).
The reason is that they both have the same prioritization algorithm but different
test prioritization criteria for evaluation.

Table 7.5 summarizes the obtained the results for RQ3, in a similar way
as previous RQs. SAS and DAS outperformed SGS and DGS in both case
studies, meaning that the distance measure ASbSim proposed in Section 7.4.1
performed better than GSbSim proposed in Section 7.4.1 in the context of
configurable simulation models. For the IT case study, SAS outperformed SGS
in 76.6% of test scenarios, whereas SGS outperformed SAS in 23.4%. When
considering the dynamic test prioritization algorithms, DAS outperformed DGS

174

7.5. Evaluation

in 76.2% of test scenarios, whereas DGS outperformed DAS in 23.8%. In the
CW case study, the results are tighter, SAS outperforming SGS in 57% of test
scenarios and DAS outperforming DGS in 61.9% of test scenarios. Conversely,
SGS outperformed SAS in 43% of test scenarios and DGS outperformed DAS
in 38.1% of test scenarios.

When considering the APFD values, as what happened in RQ2, the average
improvements were not high. SAS outperformed the SGS technique by 1.89
and 0.21% in the IT and CW respectively. As for the dynamic techniques,
DAS outperformed the DGS by 1.72 and 0.36% in the IT and CW case studies
respectively.

Table 7.5: RQ3: APFD percentage comparison between algorithm variants
based on different test prioritization criteria.

A B IT CW
A >B A = B A <B A >B A = B A <B

SGS SAS 23.4% 0% 76.6% 43.0% 0% 57.0%
DGS DAS 23.8% 0% 76.2% 38.1% 0% 61.9%

RQ4 – Algorithms Configurations

The fourth RQ aimed at analyzing the effects different configuration settings
of the dynamic test prioritization algorithm variants. To this end, we selected
different configurations (as explained in Section 7.5.2). We evaluate how
start− upsize and reallocationsize affected the performance of the dynamic
algorithm for prioritizing test cases. Furthermore, we applied Spearman’s
rank correlation statistical tests to assess the correlation between APFD and
mentioned selected configurations. On one hand, Tables A1 and A2, that can
be found at the appendix, report the results of Spearman’s rank correlation
for both case studies when the start-up size varies. In this case, if ρ value
is positive, it indicates that the performance of the approach increased with
the number of test cases to obtain the start-up data, whereas a negative
value indicates the opposite. The p − value indicates that the performance
increase/decrease has statistical significance if its value is lower than 0.05. On
the other hand, Tables A3 and A4, that can be found at the appendix, report
the results of Spearman’s rank correlation for both case studies as long as the
reallocation size of test cases varies. In the case of ρ value being positive, it
indicates that the performance of the approach increased when the number of

175

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

test cases in the reallocation was higher, whereas a negative value indicates
the opposite. Similarly to the previous tables, the p− value determines the
statistical significance (i.e., there is statistical significance if p− value < 0.05).

When varying the number of test cases to obtain the start-up data, it can
be seen that the performance did not vary significantly for the DAS technique
in any of the case studies for any case. Conversely, for the DGS technique, the
number of test cases to obtain the initial start-up data did have a statistically
significant impact on performance when considering the APFD in some cases.
Regarding the IT case study, the performance showed a positive correlation
with statistical significance when the start-up size increased and the reallocation
size was 200. For the CW case study, the performance correlated positively
when the reallocation size was 100 and 200, for all the cases, but also for some
cases when the reallocation size was 50.

As for the number of test cases to be reallocated, this parameter did not
have any relevant impact on any of the cases for the DAS technique in the
IT case study, although it had some impact in a few cases for the CW case
study. For instance, the reallocation size had a negative impact at the time of
increasing the number of test cases to be reallocated when the test suite size
had 100 or 110 test cases.

For the DGS technique, however, the results differed in both case studies.
For the IT case study, the higher the number of tests to be reallocated, the better
the performance, particularly when the start-up size was larger. Conversely,
for the CW case study, the higher the number of test cases to be reallocated,
the worse the performance of the algorithm, especially when the start-up size
was below 10 test cases.

RQ5 – Upper and Lower Bound Comparison

RQ5 evaluated how the selected techniques performed when compared with
the optimal and worst-case test prioritization for each scenario. The reason to
compare results with respect to both best and worst case test prioritization
scenarios is two-fold. On one side, we analyze how far from the optimal test
prioritization the selected techniques performed in terms of fault detection. On
the other side, the worst-case scenario ensures that obtained results are not
biased. To this end, we compared the average values of the 500 scenarios for
each of the test prioritization approaches as well as the optimal test scenarios.
Figures 7.5 and 7.6 clearly indicate that our approaches are closer to the
optimal test prioritization than to the worst-case one. Table 7.6 reports the

176

7.5. Evaluation

percentage of improvement of the optimal test prioritization with respect
to the proposed approaches in terms of APFD. In the IT case study, the
optimal test prioritization improved the static test prioritization approaches
by 7.42% and 9.14%, and dynamic test prioritization was improved by 7.23%
and 8.80%. The CW case study proved more promising for our techniques,
as the prioritization improvement dropped to 1.97% and 2.18% for the static
test prioritization approaches and to 2.07% and 2.42% for the dynamic test
prioritization approaches.

Table 7.6: RQ5: Average percentage of improvement of the optimal test
prioritization with respect to the proposed test prioritization algorithms in
terms of APFD

Case Study SAS SGS DAS DGS Baseline
Industrial tanks 7.42% 9.14% 7.23% 8.80% 29.01%
Car Windows 1.97% 2.18% 2.07% 2.42% 36.09%

When comparing results with the Lower Bound, Table 7.7 shows the average
improvement extent of our algorithms with respect to the worst possible test
prioritization in terms of average APFD values for all scenarios. On one hand,
results for the static test prioritization approaches were 63.93% and 63.25%
above worst case for the IT case study and 50.13% and 50.02% for the CW
case study. On the other hand, results for the dynamic test prioritization
algorithms showed that they improved the worst case test prioritization by
64.01% and 63.39% for the IT case study and by 50.07% and 49.80% for the
CW case study.

Table 7.7: RQ5: Average percentage of improvement of the proposed test
prioritization algorithms with respect to the worst test prioritization in terms
of APFD.

Case Study SAS SGS DAS DGS Baseline
Industrial tanks 63.93% 63.25% 64.01% 63.39% 52.96%
Car Windows 50.13% 50.02% 50.07% 49.80% 23.50%

7.5.4 Discussion

The first RQ compared the proposed approach with a baseline technique. Our
approach significantly outperformed the baseline technique for all created test

177

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

scenarios in both case studies. Two main conclusions are obtained from these
results: firstly, the proposed problem (i.e., test prioritization in the context
of product lines) is a non-trivial task. This has also been found in other
test prioritization studies on product line engineering [AWSE19, WBA+14],
although in this context, the problem is different. The second conclusion is
that the proposed approach as well as the test prioritization criteria for the
context of configurable simulation models are performing well. Thus, we can
answer the first RQ as follows:

The proposed test prioritization algorithms perform better than the se-
lected baseline test prioritization technique, meaning that they work
properly in this context and are recommended for use by practitioners.

The second RQ compared the static test prioritization algorithms with the
dynamic ones, which is one of the major contributions of this chapter. For
both case studies, generally, the dynamic test prioritization, which prioritizes
test cases dynamically by considering their test results, performed better than
more traditionally employed static test prioritization techniques. Note that the
dynamic test prioritization approach is general for any product line, although
we adapted it to the context of configurable simulation models. A conclusion
obtained from this RQ is that, at least for the context of configurable simulation
models, the dynamic test prioritization algorithms perform correctly, meaning
that using the test verdicts obtained during the execution of the test cases for
re-updating the test orders can indeed help improving the fault detection rate.
We can thus answer the second RQ as follows:

Overall, the dynamic test prioritization algorithms performed better than
the static test prioritization algorithms.

The third RQ compared the two test prioritization criteria proposed for
the context of test prioritization of configurable simulation models. In this
case, the test prioritization criterion that considers all signals together (i.e.,
the test prioritization criterion based on All-Signals Similarity, denoted as AS)
for measuring the distance among test cases performed better than the test
prioritization criterion which groups the signals according to the three different
groups of signals described in Section 7.4.1 (i.e., the test prioritization criterion
based on Grouped-Signals Similarity, denoted as GS). An explanation for this
might be the way the similarity is measured. In the case of the ASbSim

178

7.5. Evaluation

similarity measure, the distance between all signals is considered between
two products, no matter whether these products have these inputs or not.
Conversely, in the case of the GSbSim similarity measure, when a product has
a signal and the other one doesn’t, the maximum distance is applied (i.e., 1).
On prioritizing test cases, thus, when a product with many signals is selected,
the following product will be a product with few signals. Usually, products
with few signals are simple products, which subsequently have low probability
of containing faults. Consequently, when considering this similarity measure
for the test prioritization criterion to prioritize tests, ranking is given to small
products with low probability of containing faults. We can thus answer the
third RQ as follows:

Overall, prioritizing test cases by considering the ASbSim similarity mea-
sure for the test prioritization criterion performs better than employing
the GSbSim similarity measure.

The fourth RQ measured how the configuration parameters for the dynamic
test prioritization algorithm affected its performance. Especially for the DGS
technique, when varying the start-up size, we noticed that the higher the
number of tests to initialize the start-up value, the better the performance
of the algorithm in terms of fault detection rate. A potential reason for this
might be the conclusion obtained by [KIJT18] et al., where it is suggested that
history-based test prioritization approaches require a long start-up process.
With regards to the reallocation size, we noticed that its variation affected
the performance of the DGS technique. Nevertheless, unlike with the start-up
size parameter, results differed from one case study to another. For the IT
case study, the higher the reallocation size, the better the performance of the
technique in terms of APFD. There was specifically strong correlation when
the start-up size was large. Conversely, for the CW case study, the higher
the reallocation size, the lower the performance of the technique in terms
of APFD. There was specifically a negative correlation in those cases where
the start-up size was low. These results, again, lead us to conclude that the
longer the start-up process for updating the historical database, the better the
performance of test prioritization techniques. Additionally, the difference of
results when varying the reallocation size could be driven by the nature of the
tests which were generated for the case studies, rather than the techniques
themselves. Bearing this in mind, we summarize the answer to the fourth RQ

179

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

as follows:

The configuration of the number of tests to reallocate and the start-up
size has little effect on the DAS technique, but it does have effects on the
DGS technique. The start-up size has a positive impact, especially when
the number of tests to be reallocated is high (i.e., 100 or 200 test cases).
The reallocation size can have a positive impact when the start-up size is
large (i.e., 20 or 50), but it can indeed have a negative impact when said
size is small (i.e., 1 to 10). Subsequently, the largest number of tests to
initialize the historical database is recommended.

The last RQ compared our algorithms with respect to the optimal and
worst test prioritization cases for each of the test scenarios. As explained in the
results section, our approaches were much closer to the optimal prioritization
than to the worst. However, and especially for the first case study, the average
improvement of the optimal test ordering with respect to our algorithms was
between 7.42% and 9.14%, meaning that there is still room for improvement.
This could be a potential avenue for future research. Subsequently, we can
answer the last RQ as follows:

The selected techniques are quite close to the optimal test ordering,
although there is still room for improvement, suggesting that further
research might prove valuable. On the other hand, the proposed techniques
improve the worst case test prioritization scenario by between around
50% and 64% - these values can be considered quite high - and thus, our
techniques can start being used by practitioners.

7.5.5 Threats to Validity

We now summarize the threats that our empirical evaluation is exposed to and
how we tried mitigating those threats.

Internal validity

One internal validity threat that our evaluation is exposed to is the generated
mutants. We generated 246 and 209 mutants for IT and CW case studies
respectively, and we later applied a filter following different criteria. Although
the initially generated number of mutants was not large, note that in the
context of Simulink the models include a physical layer that is composed of

180

7.6. Related Work

complex mathematical blocks. This makes the execution of test cases very
time-consuming and thus, it is not feasible to use a large set of mutants. Note,
however, that the amount of mutants is similar or larger than those used in other
studies involving Simulink models [MNBB16, ASEZ16, AWSE19, MNBB19,
MNBB15, HBT16, AWSE16a, LLNB17, LNLB19, LLN+16, LTMHT14]. Be-
sides, we tried mitigating this threat by removing unnecessary mutants, such
as duplicated mutants, as recommended in previous studies [PJHLT15].

External validity

In all empirical studies, an external validity threat is the number of case studies
used to evaluate the results. In our case, we used two case studies. Note,
however, that the employed case studies are from two different domains and
have different characteristics. Furthermore, note that the size of our case
studies is large (300 and 227 blocks); according to a previous study, more than
half of the public models have less than 100 blocks and around 75% of the
models had less than 300 blocks [CMM+18]. Thus, we can consider that the
selected case studies are large when compared to most of the public models.

Conclusion validity

A conclusion validity threat in our evaluation refers to how good the tests might
be at detecting faults and not. To reduce this threat we divided the evaluation
in 10 different experimental scenarios of different test suite sizes (from 50 to
140). For each of these experimental scenarios, we randomly generated 50
different test suites by selected test cases from a pool of 150 test cases. This
permitted us to have different test prioritizations with a wide and diverse range
of test cases, reducing the conclusion validity threats.

7.6 Related Work

Test case prioritization has been widely investigated in the past, where several
approaches have been proposed and empirically evaluated [RUCH99, RUCH01,
ERP14, EMR02, EYHB15, HFM15, JC15, JH03, KTH05, KKT08, RBT13,
ZHZ+13, HZZ+16, LMP16]. When focusing more on static and dynamic
test prioritization approaches, Luo et al. [LMP16, LMZP19] compared the
performance of test case prioritization methods from a static and a dynamic
perspective for Java programs. Nevertheless, it is remarkable that the concept
of static and dynamic test prioritization is different. In our context, the

181

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

term dynamic test prioritization refers to the methods that re-prioritize an
initially prioritized test suite by making use of the test results, whereas [LMP16,
LMZP19] refer to dynamic test prioritization to the regression techniques which
employ the code coverage information of previous software version executions
to re-prioritize test cases. Another remarkable aspect is that the Luo et
al. proposal focuses on the study of individual software programs, while the
approach we propose focuses on product lines. More similar to this study’s
approach is the one proposed by Pradhan et al. [PWA+18, PWA+19]. In
their approach, they aim at re-prioritizing test cases based on rules inferred
from historical data in context of continuous integration, showing improvement
over traditional static test prioritization approaches. There are several key
differences between their approach and ours. The first is that they require
historical data to mine rules between test cases and failures, whereas our
approach does not consider an initial historical database. The second key
difference is that their approach is not intended for product line engineering,
whereas our test prioritization algorithm is designed for configurable systems.

In the context of SPLs and configurable systems, testing has gained
important attention over the last few years [LUV09, ER11, NdCMM+11,
JHF11b, LKL12, dCMMCDA14, LHLE15, LKJ20]. Most of the studies fo-
cus on proposing novel approaches for generating relevant products that
will ensure finding as many faults as possible due to interaction of features
[HPP+14, HPHT15, PSK+10, POS+12, CDS08]. In the context of our study,
these techniques are used to generate the initial products, but we do not pro-
pose new approaches for sampling new products. Thus, we focus on optimizing
the testing process by considering already generated test cases and products.

Other approaches include test optimization techniques for the context of
product line engineering, including test suite minimization [WAG13, WAG15],
test case selection [WGAL13, WAGL16a, AWSE16a] and test prioritization
[AHTM+14, SSRC14a, PSS+16, DPC+15, WBA+14]. As for test prioritization
approaches, two main dimensions can be differentiated: (1) test prioritization
at the Domain level and (2) test prioritization at the Application level. The
former dimension refers to prioritizing the order at which the products will
be tested, but do not consider which order the test cases will follow at each
product. Among these approaches, the community has considered product
prioritization based on statistical techniques [DPC+14, DPC+15], based on
similarity of products [AHTM+14, AHTL+16], search techniques [PSS+16] and
based on other criteria such as product complexity or number of changes in the

182

7.7. Conclusions

assets of specific features [SSRC14a, SSPRC15]. The latter dimension refers to
prioritizing test cases for optimally testing a specific product once its order has
been defined. To this end, several approaches have been proposed, including
search techniques along with specific objective functions [WBA+14, AWSE16b,
AWSE19] or delta-oriented approaches for integration testing [LLL+15].

Our approach is different from all these techniques in several aspects.
Firstly, our approach considers both levels, the domain engineering level
(i.e., we prioritize products of configurable systems) as well as the application
engineering level (i.e., we consider the tests that will be applied to test a specific
product) by giving the option of prioritizing a product with an associated
test case and later executing the test of another product. Additionally, to the
best of our knowledge, there are no approaches in the context of product line
engineering that consider the test execution result to re-prioritize the order in
which tests are executed, something that we propose as one major contribution
of this chapter.

The approach for dynamic test prioritization for configurable systems has
been adapted to the context of configurable simulation models. In this context,
there have been several approaches that have aimed at proposing scalable
solutions for the area of testing. Matinnejad et al. proposed a test generation
approach for Simulink models [MNBB16]. In their extended version, they also
proposed a test prioritization technique for the context of simulation models
[MNBB19]. Our previous work focused on black-box techniques for regression
test selection of simulation models [AWA+18, AWM+19], where we adapted
the Euclidean distance for measuring the similarity among test cases, which is
used in the approach presented in this work. Notice, however, that all these
approaches focus on simulation models that are not configurable, whereas in
this research work we propose an approach for configurable simulation models.

7.7 Conclusions

In this chapter we propose a dynamic test prioritization approach for software
product lines, which, for a given statically prioritized test set, dynamically
updates the test case order, leveraging results information of test being executed.
To this end, two algorithms (i.e., static and dynamic) have been proposed and
different configurations of the proposed dynamic algorithm parameters have
been analyzed. Additionally, the approach has been adapted to the context of
configurable simulation models, for which two test prioritization criteria have
been proposed to measure test similarity. In total, by combining the static

183

7. Dynamic prioritization of Products and Test Cases for
testing HCCPS

and dynamic test prioritization algorithms with test prioritization criteria, four
algorithm variants are derived and analyzed. An empirical evaluation with two
case studies showed that the proposed approach performed better than the
selected baseline technique in all cases. Furthermore, between 53.3% and 80.7%
of the times the dynamic algorithm performed better than the static algorithm.
When analyzing the performance of the proposed test prioritization criteria, the
one that employed the information from all the signals together in the model
obtained better performance (i.e., AS performed better by between 57.0% and
76.2% of the times). The analysis of the nStartUp configuration parameter of
the dynamic algorithm reflected that the higher the number of tests executed
to feed the test history, the better the performance of the dynamic algorithm.
On the contrary, the analysis of the configuration parameter nRealloc seemed
to be dependent on each case study. Finally, the results obtained by the
proposed algorithm variants were close to the optimal ordering of the tests and
outperformed the worst case test prioritization scenario by 50% up to 64%.
Overall, the proposed dynamic prioritization approach performed better than
static prioritization in the assessed context, and it is therefore recommended
to be used by practitioners.

184

Part III

Final Remarks

Chapter 8

Conclusion

Contents
8.1 Conclusions . 187

8.1.1 Summary of the Contributions 187
8.1.2 Hypothesis validation 188
8.1.3 Limitations . 192
8.1.4 Lessons Learned and Conclusions 194

8.2 Perspectives and Future Work 197

8.2.1 Industry Transfer 197
8.2.2 Further Research 198

186

8.1. Conclusions

This is the final chapter of the thesis and it is structured into two main
sections. Section 8.1 presents the conclusions of the dissertation. For this
purpose, the contributions are summarized, the validation of the hypotheses is
analyzed and the main limitations are discussed to conclude with the lessons
learned. Section 8.2 describes the short and mid-term future work to continue
the research of this dissertation and its transfer to industry.

8.1 Conclusions

8.1.1 Summary of the Contributions

CPSs are one of the core-enabling technologies of the industry of the future,
which requires high flexibility to be competitive. By providing high config-
urability, we address flexibility while adding more complexity to demanding
systems. Optimization of HCCPS testing is a paramount concern due to the
demanding changes in the market and the need for rapid response. In this
thesis we propose methods that address this issue in a cost-effective manner.

The first and main contribution of this thesis consists of a dynamic testing
prioritization approach. The proposed method establishes a (static) test plan
that executes pairs (of product and test cases) in an iterative manner, reordering
dynamically the test plan after every iteration based on previous executions.
The contribution is generally intended for use in any kind of product lines.
Given that HCCPS testing is more time-consuming and costly, the potential
benefit is even greater. The empirical evaluation conducted with two case
studies suggested that the proposed dynamic approach performed better than
the selected baseline technique.

A secondary set of contributions is also presented, which has contributed
during the exploratory stage to the definition of the main contribution.

The second contribution (first contribution during the exploratory stage)
proposed a method to explore the selection and prioritization of a small group
of test cases for previously prioritized products in an iterative manner. To
this end, four variants of weight-based genetic algorithms were employed. The
approach was empirically evaluated with the UAV case study and the results
showed that the proposed algorithms improved the baseline. In addition, the
results allowed concluding that the black-box test case appearance frequency
metric, which enhances dissimilarity of test cases, improves the fault detection.

187

8. Conclusion

The third contribution (second contribution during the exploratory stage)
proposed the comparison of test case selection methods based on structural
coverage. Specifically two metrics for measuring the structural coverage at
single product or product-line level were employed in combination with three
coverage criteria (i.e. DC, CC and MC/DC). The method was empirically
evaluated with the CW case study and results suggested that the Domain level
method that considers the overall coverage of the product line obtains better
results. Additionally, the pair concept of selecting a test case with a product
was envisioned, establishing another basis for the main contribution.

8.1.2 Hypothesis validation

In this thesis, three hypotheses have been raised in Section 4.2. This section
analyzes each of the contributions and argues whether the stated hypotheses
have been validated.

First hypothesis

The first hypothesis is stated as follows:

Combining Domain-level information with Application-level information
using search-based techniques provides an iterative selection of test cases
of a HCCPS that improves fault detection over traditional techniques.

To evaluate this hypothesis we proposed an approach that allocates small
groups of test cases to previously selected and prioritized products. In a
first stage we rely on well-established techniques for product selection and
prioritization (i.e., we select a representative set of products for a pairwise
coverage with the ICPL algorithm [JHF12] and prioritize the products using
the VC&CC criterion [SSRC14a]).

At a second stage, our approach proposes a novel algorithm that allocates
small groups of test cases to the pre-selected and pre-prioritized products using
search-based techniques. To this end, a fitness function was defined at two levels
(i.e., at the Application and at the Domain level) to guide the search taking
advantage of weight-based search algorithms. At the Application level we
employed Fault Detection Capability (FDC), Test Execution Time (TET) and
Test Case Appearence Frequency (TCAF) measures to assess the effectiveness
of small groups of test cases allocated to specific products. At the Domain level
we aggregate Application-level fitness function measurement of each product,

188

8.1. Conclusions

weighted with the priority of each product according to the pre-calculated
product prioritization.

Two different weight-based search algorithms were employed (i.e., Weight-
Based Genetic Algorithm (WBGA) and Random-Weighted Genetic Algo-
rithm (RWGA)). Furthermore, two different alternatives of fitness functions
were designed (i.e., one considering FDC and TET measures, and the second
one considering the two mentioned above, and TCAF). In total, combining
algorithms and fitness alternatives, four search algorithm variants were defined.
In addition, the selected UAV case study was evaluated with 24 artificial
problems whereas Random Search (RS) and Traditional test approach were
taken as baselines.

The main drawback of this approach is that it requires an initial FDC
history in order to run the algorithm. In our case we solved this matter carrying
out a series of previous training runs. However, it must be taken into account
that these training runs place an added workload on engineers (i.e., in the case
where no FDC history is available it would be necessary to build a training set
of test cases and mutants to feed required data).

Results from the empirical evaluation showed that the proposed search
algorithms outperformed both baselines. Moreover, the RWGA algorithms in
combination with appearance frequency objectives obtained the best perfor-
mance when detecting faults. Regarding the size of the test suite, we found
that the bigger the test suite the better the performance.

Considering the obtained results, we concluded that the proposed approach
that combines Domain level information with Application level information out-
performed the traditional techniques, in the evaluated case study. Consequently,
it can be assumed that the stated first hypothesis has been validated.

Second hypothesis

The second hypothesis is stated as follows:

Considering the structural coverage information of a HCCPS at Domain
level helps optimizing fault detection results for time-budget constrained
scenarios.

To evaluate this hypothesis we proposed three different test case selection
methods based on structural coverage information considering a given time
budget. The proposed test case selection methods employ the structural

189

8. Conclusion

coverage metric at two different levels: (i) the traditional use of structural
coverage for individual products, named Product Structural Coverage (PSC),
and the structural coverage that considers the entire product line, named
Product-Line Structural Coverage (PLSC). Moreover, the three test case
selection methods were analyzed with three white-box coverage criteria (i.e.,
DC, CC and MC/DC). Two out of the three selection methods require an initial
step of product selection and prioritization, for which well-known techniques
were employed. Specifically, product selection was performed for pairwise
coverage with the ICPL algorithm and product prioritization was performed
using the VC&CC criterion.

The Application level Method (AM) seeks to maximize the PSC metric. To
this end, the developed algorithm selects test cases in order to thoroughly test
prioritized products one after another until the time-budget is consumed. The
Domain level Method (DM) aims at maximizing the PLSC metric. For this
purpose, the developed algorithm selects each time such test case that most
increases the coverage of the entire product-line (i.e., the PLSC metric, without
product prioritization restriction). In the Combined Method (CM), the two
previous methods were combined. Products are prioritized, but the metric
employed to select the test cases is PLSC. Thus, the developed algorithms
seek to maximize the coverage of the entire product-line by respecting the
pre-established prioritization product order.

We evaluated the three selection methods with the CW case study. In
addition, 25 artificial problems were selected. The traditional testing approach
was employed as baseline.

The empirical evaluation conducted with the CW case study provided
results to state that overall, the proposed methods outperformed the baseline.
In addition, results suggested that considering coverage information at the
domain engineering level helps detecting more faults, particularly when time
budgets are low. Regarding the three coverage criteria (i.e., DC, CC, MC/DC),
it can be concluded that all three perform very similarly in the case study.
Considering the empirical evaluation, we conclude that the stated second
hypothesis has been validated.

190

8.1. Conclusions

Third hypothesis

The third hypothesis is stated as follows:

Considering the results of tests executed on products allows a dynamic
prioritization of tests of a SPL that improves the capability to detect
faults.

To evaluate this hypothesis, we proposed a dynamic test prioritization
approach and empirically evaluated this with two case studies (i.e. CW and
IT case studies).

The approach consists of three stages: firstly, valid pairs of products and
test cases are formed. To this end, we formalized the valid pairs concept.
Secondly, the given pairs are statically prioritized. The prioritization employs
well-known product and test case similarity-based metrics. However, with
the static prioritization algorithm we introduced a weight-based criterion
that combines similarity metrics of both Domain and Application levels to
prioritize pairs. In the third stage, our novel algorithm performs the dynamic
prioritization of pairs. For this purpose, product fault-detection-capability
information obtained from pairs being executed is leveraged to re-organize
pairs.

The approach was adapted to the context of configurable simulation models.
When adapting the approach to measure test case similarity, after studying the
different type of groups of signals, two test prioritization criteria were proposed
(i.e., named All-Signals Similarity of pairs (AS) and Grouped-Signals Similarity
of pairs (GS)). By the combination of the two algorithms (i.e., the static and
dynamic pair prioritization) and the two proposed prioritization criteria, in
total, four algorithm variants were derived.

Two case studies (i.e., CW and IT) were selected in order to empirically
evaluate the approach. In addition, different experimental scenarios were
generated by combining 10 test suite sizes with 50 different test case selections.
In total, 500 experimental scenarios were generated per case study. In relation
to the 2 configuration parameters of the proposed dynamic algorithm, we
defined: (i) 5 different sizes of test suites for the warm-up phase, and (ii) 6
different sizes to be taken into account when selecting a subset of test cases
to be dynamically reorganized. Thus the dynamic algorithm was run with 30
different configurations for each experimental scenario. A test prioritization
technique that minimizes input signals diversity was employed as baseline.

191

8. Conclusion

Before proceeding with the results, it is important to note that the evalua-
tion was carried out exclusively for the adaptation made to the configurable
simulation models.

Results from the empirical evaluation showed that the proposed approach
performed better than the selected baseline technique in all cases. In addition,
the dynamic algorithm performed better compared to the static algorithm in
general. The results of comparing prioritization criteria based on groups of
signals indicate that the use of All-Signals performs best. The analysis of the
warming-up configuration parameter (i.e., nStartUp) of the dynamic algorithm
reflected that the higher the number of tests executed to feed the test history,
the better the performance of the dynamic algorithm. Considering the results
of the empirical evaluation, we conclude that the third hypothesis has been
validated.

8.1.3 Limitations

This section discusses the main limitations of the proposed methods. These
limitations are directly related to the number of case studies and the selected
tools.

During the experimentation stage, the approaches have been evaluated
with a single case study, while the evaluation of the main contribution has
been carried out with two case studies. We consider that in order to generalize
the results it is convenient to complete the evaluation with other case studies.
Nevertheless, we have selected and improved the case studies to ensure that
they are of adequate complexity and size and that they are representative of
the problem. Given the difficulty of incorporating new case studies, we have
additionally used the artificial problem technique, which allowed us to analyze
different characterizations of each case study multiple times with the same
case.

As described in Section 4.4.1, the experimentation of this thesis has been
carried out based on three tools: (i) FeatureIDE has been employed to model
the variability of HCCPSs and to generate the product configurations. (ii)
Simulink has been used for the modeling and simulation of the HCCPSs and
(iii) MATLAB has been used to implement the algorithms of the proposed
methods and to automate the creation, execution and evaluation of the case
studies.

192

8.1. Conclusions

FeatureIDE has been selected since it is an open source tool that provides
all the functionalities required for this research (i.e., variability modeling and
valid product configuration generation). However, if necessary, this tool can be
replaced with another which provides the required functionalities [AOCN20,
HPF19].

For the evaluation of the approach we have employed simulation models of
HCCPS systems based on dynamic behavior, i.e., systems with time-varying be-
havior. We have selected Simulink for the modeling and simulation of HCCPSs
as it is a tool with proven credibility in both academia and industry [MNBB19].
A certain type of blocks (e.g., Constant, Gain, Logic, MultiplePortSwitch,
RelationalOperator, Saturate, Sum, Switch, StateMachineCharts, etc.) have
been used during the design of the models in Simulink. Taking into account the
wide catalog of blocks that the tool offers, it might be convenient to perform
additional tests with other blocks in order to extend the scope of the proposal.

MATLAB provides excellent integration with Simulink, and this is the main
reason why we have employed it for the development of the algorithms and the
automation of the creation, execution and evaluation of the case studies.

Although we consider this type of system to be representative, in order to
validate the proposal with other types of designs and blocks it is necessary to
carry out new evaluations and adapt the developments. The modeling of new
simulation models may be expensive, however, adapting the developments for
the automation of the generation of products, test cases and mutants, is not.

To extend the generalization, it is be convenient to validate the proposal
with other simulation tools outside the MATLAB/Simulink boundaries, with
solutions such as Dymola, BCVTB, Gazebo, ISAAC-Nvidia, etc. Nevertheless,
this would mean rebuilding both the HCCPSs models and the developments
for handling them, thus requiring considerable effort. We understand that the
rebuilding of the developments would make sense if the proposal was applied
to a specific context of a company that already has tools for simulation and is
considering applying the approach.

In addition, opening up to new tools [ZSV18] would make it possible
to extend the proposal to other concepts that allow its validation in more
complex scenarios. For instance, some of these tools (e.g., Dymola, BCVTB)
also allow advancing to Co-Simulation scenarios, allowing the integration of
different simulation tools [SAM+17, ELM+17]. Other tools (e.g., GAZEBO)
enable development in open source contexts [PUS17] or provide capabilities for
learning reinforcement and photo-realistic simulations (e.g., ISAAC-Nvidia).

193

8. Conclusion

8.1.4 Lessons Learned and Conclusions

This section presents the most remarkable lessons learned from the research
work conducted in this thesis.

■ We have learned the value of evaluating different metrics to select
those that provide the best performance for the approach. When
considering optimization approaches, metrics are fundamental to obtain
the best performance for the approach to be proposed. For instance, in
[HPH+16], relevant test prioritization approaches were exhaustively evalu-
ated for (software-based) regression testing. In this thesis, we have analyzed
some of the metrics available in the field and we have also had to adapt and
propose new ones.1 Fundamentally, we have analyzed both white-box and
black-box metrics but also metrics oriented towards measuring at the specific
product level (i.e., at the Application level) as well as at the product-line
level (i.e., at the Domain level). Experimenting with different metrics has
allowed us to select the most appropriate ones for the proposed approach.
Therefore, we recommend the community to evaluate metrics in future
research.

■ The test optimization of products and test cases in a combined
way (i.e., pairs) is a promising field. In this thesis we have introduced
the concept of “valid pair” and proposed a dynamic prioritization approach
to optimize fault detection based on the aforementioned pairs. We believe
that based on this concept and in combination with cost-effective metrics,
it can be useful for solving other complex test optimization problems (e.g.,
test case generation or selection, etc.).

■ Simulation-based testing of HCCPS is effective at early stages.
There are multiple benefits of using simulation models for HCCPS testing
(i.e., they allow the automation of both testing and evaluation, they enable
the possibility of testing scenarios that may be dangerous, costly or even
impossible to reproduce using a real prototype, etc.) [BNSB16, AWSE19].
However, we consider that simulation models provide a major advantage:
the possibility to perform an early testing of the HCCPS. This technique
enables the validation (up to a certain level) of the HCCPS cost-effectively, if
we compare it with the required time and cost when using real prototyping.
Furthermore, when this technique is applied to early HCCPS testing in the

1In [MAES19b] we published the set of metrics analyzed.

194

8.1. Conclusions

context of SAS testing strategy, as proposed in this thesis, is convenient
for testing sampled products at Domain which further increases the benefit.
Therefore, in HCCPS contexts, we recommend the use of simulation models
for early-testing purposes.

■ Mutation testing is effective in the absence of real faults: Conducting
research experiments requires the availability of case studies to test the
validity of the proposed approaches. In our case, since we did not have real
faults to perform the evaluation, we relied on the Mutation-Testing technique
as it has proven to be an effective substitute [PKZ+19, JH10]. The mutation
testing technique has been adopted and adapted to the characteristics of
the simulation model-based CPS testing domain [HBT16], as well as to
the product-line domain [LS14, KMTG18]. In our context for HCCPS
it is essential to design the mutant injection, ensuring mutant diversity
(i.e., mutant operators of different types). In addition, a comprehensive
distribution of mutants throughout the model must be ensured to have a
proper coverage of features and feature interactions. Finally, these design
guidelines must be complemented with a mutant selection process that
ensures a clean-up of those mutants that are undetectable, duplicated or
always detectable. These guidelines applied in the thesis have allowed us
to evaluate the proposed methods. Hence, we recommend researchers and
practitioners in the industry to employ the technique.

■ Automated tools for test case generation at early stages are effec-
tive: Test case generation is properly a research area where a large body
of research has been conducted [ABC+13, ABHPW10, PSK+10, EBG12,
AWM+17b]. However, in this thesis, we have proposed an approach closer to
the way industrial companies design and simulate CPSs. Specifically, we have
relied on three test case generation techniques: (i) Domain knowledge from
engineers, (ii) Tool-assisted test case generation for the MC/DC coverage
criterion, and (iii) Tool-assisted random generation of valid test cases. Test
cases generated by domain experts on the basis of domain knowledge are
traditionally costly to develop, but effective. However, taking into account
that the focus of the thesis lies on optimizing early-stage HCCPS testing, we
have also relied on tool-based techniques. From this experience we conclude
that the tools are perfectly valid for the given context. However, these
approaches could be enhanced by applying techniques (e.g., search-based
techniques) described in the literature [AWM+17a], which on the other hand

195

8. Conclusion

might not be easily accessible for many industrial companies.

■ The research methodology employed has resulted effective, but
other variants should be studied for future research. We have been in-
spired by the Design Science Research (DSR) methodology variant proposed
by Vaishnavi [VK04], which has proved to be successful for the iterative and
exploratory approach that has been proposed. However, considering that
DSR has evolved and that there are more complete proposals, we believe
that for future work it would be desirable to analyze other methodology
variants that can provide additional benefits (e.g., that may allow us to
further explore both the problematic and the generalization).

196

8.2. Perspectives and Future Work

8.2 Perspectives and Future Work

In this section we present the next steps of the thesis. Firstly, the transfer
of the contributions to the industry are discussed. Secondly, the identified
research lines to extend the contribution are presented.

8.2.1 Industry Transfer

This thesis has been developed in the Software and System Engineering research
group belonging to the engineering faculty of Mondragon Unibertsitea. The
faculty has a long tradition of collaboration with the industry through research
and transfer projects. We have identified three companies that might be
interested in our proposed methods.

■ Alerion Technologies is a leading company that develops solutions for
the autonomous flight of UAVs for infrastructure inspection. The quality
assurance process they perform requires four testing phases (unit testing, in-
tegration testing, simulation-based system testing and field tests). Although
they do not work with product lines, their CPS systems work with numerous
parameters that must be taken into account when testing. In the context
of the TESTOMAT project we have collaborated to instrumentalize the
simulation-based testing phase for its automation, based on Docker contain-
ers and GAZEBO simulation technology.2 In addition we have developed a
tool for the selection and prioritization of test cases based on the engineers’
domain knowledge. We believe that the methods proposed in this thesis,
adapted to their parameterized systems environment, could improve the
early validation of Alerion’s product.

■ CAF Power & Automation is a railway company that provides design,
development and maintenance services for electric traction systems, energy
storage systems, and control and communication systems of rail vehicles.
The company already manages the variability of multiple CPSs of a large
product portfolio (different models of trains, trams, etc.). We consider that
the adaptation of the methods proposed in this thesis could contribute to
achieve the next level of efficiency in the quality assurance process of its
portfolio.

2GAZEBO is an open-source robot simulation framework, supported by the Open Source
Robotic Foundation. http://gazebosim.org/

197

http://gazebosim.org/

8. Conclusion

■ ALDAKIN is an engineering company specialized in automation solutions
for productive processes, including human-robot collaboration contexts.
We are currently collaborating with ALDAKIN in the VALU3S research
project.3 In this project, our faculty is working on a use-case with ALDAKIN:
"Human-Robot Collaboration in a disassembly process with workers with
disabilities". The university is working on “Simulation-based testing for
human-robot collaboration” and “Test optimization for simulation-based
testing of automated systems" topics in the project. For the test optimization
part, the methods developed in this thesis could be adapted. However, as
ALDAKIN does not work with product lines, it would be necessary to
adapt the approach to a parameter-based system. In addition, the company
employs other simulation tools (i.e., GAZEBO and ISAAC-Nvidia) that
would also require development.

8.2.2 Further Research

Further research as well as new developments can be performed to complement
this work. We propose lines of work aimed at reinforcing the validation of
the results through new case studies and the validation of the approach for
software-only systems.

■ Reinforce validation: We have employed three case studies of significant
size and complexity that we believe are representative for the problem. We
have had to limit the number of case studies, as they are very expensive to
develop and adapt, as well as to run the experiments. However, we believe
that reinforcing the evaluation with new case studies would strengthen the
validation. Specifically, we would like to incorporate a real case study, since
in a real case, we could have not only access to the system itself, but also to
the information from real data (test cases, failures, etc.).

■ Validate on software: The evaluation of the proposed approach has been
performed for HCCPS, since the need for optimization is particularly high
due to the time-consuming testing processes. However, the approach is
defined generically for product lines. Therefore, in order to extend the
conclusions to other types of product lines (e.g., software-only-based SPLs),
it would be necessary to adapt the approach and perform the corresponding
empirical evaluation.

3VALU3S: Verification and Validation of Automated Systems’ Safety and Security" is a
project funded by ECSEL Joint Undertaking (JU) under grant agreement No 876852.

198

8.2. Perspectives and Future Work

In order to implement the industrial transfer, we have identified several
lines of work:

■ Tool Support: The preparation and adaptation of the case studies for
the thesis required the development of tools that allowed the creation and
execution of the different artifacts in a semi-automatic way. We would like to
complete the work further on different lines: (i) unifying the created different
tools and (ii) automating and facilitating the deployment of the unified tool.
In the first case, separate tools have been generated for creating and deriving
the model-based products, test suites and mutants; as well as for managing
the simulation executions and gathering results. Integration of those tools
will allow a more efficient and simplified handling for industry adoption. In
the second case, thanks to the advances that the MATLAB/Simulink toolset
provides with container support, we plan to publish a container that allows
to deploy the above-mentioned integrated system within a few minutes. We
are confident that these two steps would provide agility in future experiments
and facilitate its adoption by interested practitioners of the community.

■ Extend to parameter-based systems: The industrial companies we
collaborate with rarely develop product lines. However, we have identified
that it is most common for them to provide configurability to their systems
based on parameters. The above-mentioned companies (Section 8.2.1) may
serve as examples. In order to transfer our approach to those companies,
we consider it essential to analyze the necessary modifications to be made
to our approach (e.g., solving how product similarity will be measured not
having FMs.) in order to meet the requirements of configurable systems by
parameterization.

■ Adapt to other simulation platforms: The approach proposed in this
thesis has been developed with the MATLAB/Simulink tool set. However,
as we have indicated in the limitations section, other tools (e.g., GAZEBO,
Dymola, etc.) are also used in the industrial field. Therefore, another line
of development of the thesis consists of adapting the proposed approach
to other simulation platforms. In this sense, we identify different avenues
of development, which can be complementary among them: (i) The in-
tegration of the proposed algorithms with required third party tools, (ii)
the re-implementation of the tools to manage the product-line artifacts
(i.e., products, test cases, mutants) that in our case are model-based and
simulation-tool dependent, (iii) the re-implementation of the tools to manage

199

8. Conclusion

the simulation execution and evaluation, (iv) the separation into different
services (e.g., algorithms, artifacts and simulation control and evaluation)
that allow us to integrate them into co-simulation contexts. These lines of
work involve significant effort and resources, which we believe is feasible in
a context of collaboration for industrial transfer.

We are aware that there are still aspects of variability to be investigated
and we believe that extending the catalog of quality metrics and broadening
the testing strategy will help us to establish the next steps.

■ Extend to new metrics: Test quality metrics are essential to support
verification and validation activities, yet this is even more necessary in
the context of configurable simulation models since testing those models is
expensive. We have collected, adapted and proposed a series of metrics in a
previous work [MAES19b]. However, further research is needed in this field
to respond to new needs as new aspects of variability specific to HCCPS
[KNK+17] are incorporated into the research. A paper has recently been
published [SLY+21] that defines a conceptual framework for the automatic
configuration of CPSs. The paper defines a detailed classification of variation
point types, which can be considered as an input to define new quality metrics
related to variability aspects. We believe that the intrinsic characteristics of
the HCCPS pointed out in these new aspects of variability will provide key
information to measure the quality of the systems in a complementary way.

■ Extend to new strategies: This thesis focuses on the Sample Application
Strategy (SAS) for testing product-lines described by Pohl et al. [PBL05].
We specifically focus on the testing of the sampled products at the Domain
level, but we don’t propose an approach for the individual product testing at
the Application level. We accommodated the SAS strategy in the context of
HCCPS, specifically for testing configurable simulation models. We consider
this scenario is valuable for early validation. However, the life cycle of
HCCPSs encompasses other stages that are beyond the scope of this thesis.
In this sense, Pohl et al. point to combined scenarios where both the benefits
of early validation (SAS) and the benefits of maximum reusability raised
in the Commonality and Reuse Strategy (CRS) strategy can be obtained.
In addition, by opening the study to new strategies, we also consider it
important to incorporate capabilities for incremental testing using regression
scenarios (i.e., test one product, and apply regression techniques to test

200

8.2. Perspectives and Future Work

following ones). We propose to examine the new context that the above-
mentioned strategies imply in relation to the methods proposed. Possible
future lines of research to be conducted in relation to the extension of the
testing strategies: (i) complement the method with a test selection and
prioritization approach for testing specific products at Application level
(with information of what has been tested at Domain engineering using
sampling), (ii) adapt the method for testing core features in the context of
the combined CRS/SAS strategy and (iii) propose a method for incremental
testing.

201

Appendices

Appendix A

Structural Coverage Introduction

Several approaches have been employed in the literature to measure the qual-
ity of a test suite (e.g., mutation testing [HPP+13a], structural coverage
[SMP10], requirements coverage [RWSH08]). Among different types of cover-
age, Structural Coverage (SC) is a quality measure that has been in use since
the first software testing techniques were referenced [MM63] in the 1960s. In
the last decades, this measure has also been adopted by model-based engineer-
ing [UPL12]. The objective of the structural coverage measure is to determine
the amount of code (or model) that has been exercised during a testing activity.
Recent studies confirm the importance and topicality of the subject in the field
[LKJ20].

There are multiple control-flow criteria for structural coverage [AO08].
Three of the most common criteria are: DC, CC and MC/DC [UL10]. The
DC criterion checks the outcome of a decision. To this end, a minimum of two
test cases are generated: one for a true outcome of the decision and another
one for a false one. The CC criterion focuses on all possible values that every
condition of the decision can take, irrespectively of the decision outcome. The
MC/DC criterion examines that (i) every possible outcome for each decision
is checked, (ii) every possible outcome for each condition is checked and (iii)
each condition in a decision is shown to independently affect the outcome of
the decision [HVCR01].

Consider as an example the code snippet in Listing A.1. The aforementioned
coverage measures are obtained in the example with the test cases described
in Table A1.

203

Listing A.1: Basic code example.
1 bool myFun (i n t x , i n t y)
2 {
3 bool r e s u l t = f a l s e ;
4 i f (x>0 | | y>0)
5 r e s u l t = true ;
6 re turn r e s u l t ;
7 }

Table A1: Test cases employed to obtain coverage criteria of the Listing A.1
example.

Coverage Test input1 input2 condition1 condition2 decision1
criterion Case x y x>0 y>0 (x>0 || y>0)

DC TC1 1 0 True False True
TC2 0 0 False False False

CC TC3 2 0 True False True
TC4 0 3 False True True

MC/DC
TC5 4 0 True False True
TC6 0 5 False True True
TC7 0 0 False False False

The function myFun contains a decision (i.e., (x>0 || y>0) in column
decision1 in Table A1), which is composed of two conditions (i.e., x>0 in
condition1 column and y>0 in condition2 column). A test case in this context
is the input values x and y of the function, which allows for its execution. DC
can be obtained for the example of Listing A.1 with two test cases: the first
test case TC1 has as inputs x=1 and y=0 and generates a True and False
outcome to condition1 and condition2 respectively, whereas decision1 obtains
True value as outcome. The second test case has as inputs x=0 and y=0 and
generates False outcome in both conditions and a False value in decision1. As
both possible outcomes for decision1 are obtained (i.e., True and False values
in decision1 column), DC is fully achieved. CC can be obtained with test
cases TC3 and TC4, that provide all possible values (i.e., True and False) at
every condition. MC/DC can be obtained with TC5, TC6 and TC7 test cases.
Every possible outcome for decision1 is checked (i.e., TC6 and TC7 provide
both True and False outcome in column decision1). Every possible outcome
for condition1 and condition2 is checked (i.e., TC5 and TC6 provide both True
and False outcome to the conditions). And finally, each condition of decision1
independently affects the outcome of decision1. For example, modifying input1
of TC7 from 0 to 6 value shows how condition1 affects to decision1 outcome.

204

The coverage criteria can be measured in terms of test requirements. Accord-
ing to the definition provided by Ammann et al. [AO08] a “Test Requirement
(TR) is a specific element of a software artifact that a test case must satisfy or
cover”. For instance, if the goal is to obtain the DC of the example in Table
A1, each test case attempts to satisfy a test requirement (i.e., TC1 the True
outcome of decision1, and TC2 the False outcome).

205

Appendix B

Dynamic Prioritization Approach -
Statistical Analysis supplementary

tables

206

IT Case Study

Alg TS Size Stat Reallocation Size

5 10 20 50 100 200

DAS

50 ρ -0.0023 -0.0007 -0.0066 0.0208 0.0517 0.0966
Pval 0.9717 0.9911 0.9170 0.7440 0.4159 0.1276

60 ρ -0.0083 -0.0092 -0.0113 -0.0058 0.0114 0.0545
Pval 0.8965 0.8848 0.8583 0.9273 0.8576 0.3912

70 ρ -0.0054 -0.0066 -0.0078 0.0136 0.0366 0.0569
Pval 0.9327 0.9170 0.9019 0.8311 0.5641 0.3702

80 ρ -0.0063 -0.0060 -0.0068 -0.0034 0.0222 0.0698
Pval 0.9212 0.9246 0.9143 0.9572 0.7264 0.2715

90 ρ -0.0019 -0.0037 -0.0039 0.0048 0.0193 0.0511
Pval 0.9766 0.9540 0.9511 0.9400 0.7618 0.4209

100 ρ -0.0084 -0.0068 -0.0040 -0.0009 0.0152 0.0473
Pval 0.8948 0.9150 0.9501 0.9889 0.8111 0.4563

110 ρ -0.0039 -0.0097 -0.0052 -0.0062 -0.0033 0.0201
Pval 0.9513 0.8785 0.9346 0.9224 0.9592 0.7513

120 ρ 0.0001 -0.0027 -0.0025 0.0023 0.0138 0.0431
Pval 0.9983 0.9666 0.9680 0.9715 0.8279 0.4976

130 ρ -0.0049 -0.0033 -0.0037 -0.0081 0.0046 0.0239
Pval 0.9386 0.9584 0.9538 0.8989 0.9418 0.7066

140 ρ -0.0075 -0.0087 -0.0129 -0.0111 -0.0029 0.0170
Pval 0.9062 0.8911 0.8392 0.8620 0.9634 0.7885

DGS

50 ρ 0.0102 0.0077 -0.0045 0.0001 0.1318 0.1900
Pval 0.8724 0.9036 0.9430 0.9990 0.0373 0.0026

60 ρ 0.0102 0.0131 0.0093 -0.0120 0.0863 0.2120
Pval 0.8729 0.8361 0.8836 0.8501 0.1739 0.0007

70 ρ 0.0190 0.0161 0.0094 -0.0044 0.0849 0.2488
Pval 0.7654 0.8002 0.8821 0.9454 0.1809 0.0001

80 ρ 0.0103 0.0130 0.0089 0.0023 0.0561 0.2557
Pval 0.8717 0.8380 0.8892 0.9710 0.3774 0.0000

90 ρ 0.0273 0.0362 0.0343 0.0323 0.0628 0.3089
Pval 0.6671 0.5694 0.5894 0.6117 0.3228 0.0000

100 ρ 0.0220 0.0222 0.0184 0.0160 0.0246 0.2990
Pval 0.7292 0.7271 0.7724 0.8016 0.6988 0.0000

110 ρ 0.0296 0.0375 0.0327 0.0303 0.0295 0.2778
Pval 0.6417 0.5552 0.6063 0.6331 0.6430 0.0000

120 ρ 0.0280 0.0334 0.0317 0.0167 0.0009 0.2381
Pval 0.6595 0.5988 0.6176 0.7930 0.9887 0.0001

130 ρ 0.0163 0.0252 0.0236 0.0148 0.0087 0.2201
Pval 0.7973 0.6922 0.7100 0.8162 0.8909 0.0005

140 ρ 0.0267 0.0343 0.0330 0.0299 0.0048 0.1909
Pval 0.6750 0.5894 0.6033 0.6375 0.9395 0.0024

Table A1: Correlation between start-up size and APFD based on Spearman’s
rank for IT case study.

207

CW Case Study

Alg TS Size Stat Reallocation Size

5 10 20 50 100 200

DAS

50 ρ -0.0041 -0.0041 0.0035 0.0198 0.0270 0.0392
Pval 0.9484 0.9484 0.9557 0.7555 0.6704 0.5373

60 ρ 0.0020 0.0027 0.0220 0.0551 0.0858 0.1066
Pval 0.9754 0.9656 0.7298 0.3859 0.1761 0.0926

70 ρ -0.0041 -0.0006 0.0110 0.0341 0.0633 0.0707
Pval 0.9484 0.9926 0.8629 0.5915 0.3188 0.2651

80 ρ -0.0049 -0.0045 0.0024 0.0151 0.0286 0.0435
Pval 0.9386 0.9435 0.9705 0.8123 0.6525 0.4935

90 ρ -0.0022 -0.0020 0.0010 0.0169 0.0270 0.0439
Pval 0.9729 0.9754 0.9877 0.7909 0.6704 0.4896

100 ρ -0.0063 -0.0053 -0.0018 0.0024 0.0241 0.0568
Pval 0.9214 0.9337 0.9779 0.9705 0.7045 0.3709

110 ρ -0.0035 -0.0082 -0.0043 0.0133 0.0404 0.0598
Pval 0.9557 0.8970 0.9459 0.8339 0.5252 0.3466

120 ρ -0.0016 -0.0014 0.0010 0.0100 0.0278 0.0478
Pval 0.9803 0.9828 0.9877 0.8751 0.6615 0.4516

130 ρ -0.0065 -0.0063 -0.0100 -0.0102 0.0092 0.0267
Pval 0.9190 0.9214 0.8750 0.8726 0.8848 0.6749

140 ρ -0.0073 -0.0063 -0.0043 -0.0012 0.0235 0.0353
Pval 0.9092 0.9214 0.9459 0.9852 0.7114 0.5788

DGS

50 ρ -0.0049 0.0167 0.0427 0.1682 0.3042 0.4631
Pval 0.9386 0.7933 0.5013 0.0077 0.0000 0.0000

60 ρ -0.0014 0.0179 0.0480 0.1771 0.4376 0.5867
Pval 0.9828 0.7779 0.4498 0.0050 0.0000 0.0000

70 ρ -0.0069 0.0096 0.0374 0.1105 0.3708 0.5471
Pval 0.9133 0.8797 0.5556 0.0811 0.0000 0.0000

80 ρ -0.0219 -0.0097 0.0143 0.1206 0.3565 0.5134
Pval 0.7298 0.8785 0.8224 0.0570 0.0000 0.0000

90 ρ -0.0110 0.0035 0.0310 0.1036 0.3644 0.5214
Pval 0.8622 0.9562 0.6259 0.1021 0.0000 0.0000

100 ρ -0.0082 -0.0004 0.0276 0.0896 0.2884 0.4841
Pval 0.8967 0.9951 0.6644 0.1579 0.0000 0.0000

110 ρ -0.0132 -0.0029 0.0223 0.0948 0.2721 0.5075
Pval 0.8354 0.9639 0.7261 0.1349 0.0000 0.0000

120 ρ -0.0222 -0.0098 0.0176 0.0914 0.2465 0.5282
Pval 0.7268 0.8777 0.7821 0.1497 0.0001 0.0000

130 ρ -0.0203 -0.0052 0.0223 0.1011 0.2557 0.5076
Pval 0.7496 0.9349 0.7252 0.1110 0.0000 0.0000

140 ρ -0.0121 0.0035 0.0333 0.1143 0.2646 0.5792
Pval 0.8491 0.9560 0.5999 0.0712 0.0000 0.0000

Table A2: Correlation between start-up size and APFD based on Spearman’s
rank for CW case study.

208

IT Case Study

Alg TS Size Stat Start-up Size

1 5 10 20 50

DAS

50 ρ 0.0046 0.0046 0.0046 0.0252 0.0939
Pval 0.9366 0.9366 0.9366 0.6634 0.1044

60 ρ 0.0244 0.0244 0.0244 0.0346 0.0776
Pval 0.6734 0.6734 0.6734 0.5508 0.1802

70 ρ -0.0151 -0.0151 -0.0151 -0.0020 0.0570
Pval 0.7941 0.7941 0.7941 0.9721 0.3248

80 ρ 0.0283 0.0283 0.0283 0.0362 0.1093
Pval 0.6252 0.6252 0.6252 0.5319 0.0587

90 ρ 0.0147 0.0147 0.0147 0.0255 0.0697
Pval 0.7996 0.7996 0.7996 0.6606 0.2290

100 ρ 0.0617 0.0617 0.0617 0.0686 0.1101
Pval 0.2867 0.2867 0.2867 0.2359 0.0567

110 ρ 0.0675 0.0675 0.0675 0.0698 0.0965
Pval 0.2437 0.2437 0.2437 0.2278 0.0951

120 ρ 0.0454 0.0454 0.0454 0.0441 0.0953
Pval 0.4330 0.4330 0.4330 0.4465 0.0995

130 ρ 0.0625 0.0625 0.0625 0.0675 0.0900
Pval 0.2809 0.2809 0.2809 0.2437 0.1199

140 ρ 0.0408 0.0408 0.0408 0.0414 0.0586
Pval 0.4811 0.4811 0.4811 0.4750 0.3117

DGS

50 ρ 0.2454 0.2808 0.2984 0.3266 0.3605
Pval 0.0000 0.0000 0.0000 0.0000 0.0000

60 ρ 0.1330 0.1710 0.1996 0.2163 0.2490
Pval 0.0212 0.0030 0.0005 0.0002 0.0000

70 ρ 0.0944 0.1436 0.1673 0.2121 0.2279
Pval 0.1027 0.0128 0.0037 0.0002 0.0001

80 ρ 0.0610 0.1066 0.1364 0.1696 0.2115
Pval 0.2921 0.0653 0.0181 0.0032 0.0002

90 ρ 0.0864 0.1471 0.1729 0.2144 0.2214
Pval 0.1356 0.0107 0.0027 0.0002 0.0001

100 ρ 0.0414 0.0894 0.1320 0.1667 0.2005
Pval 0.4750 0.1222 0.0222 0.0038 0.0005

110 ρ 0.0108 0.0608 0.0995 0.1255 0.1455
Pval 0.8520 0.2939 0.0854 0.0298 0.0117

120 ρ 0.0717 0.1141 0.1456 0.1659 0.1905
Pval 0.2158 0.0483 0.0116 0.0040 0.0009

130 ρ 0.0335 0.0811 0.1008 0.1377 0.1605
Pval 0.5638 0.1613 0.0813 0.0170 0.0053

140 ρ 0.1106 0.1614 0.1786 0.1914 0.1939
Pval 0.0556 0.0051 0.0019 0.0009 0.0007

Table A3: Correlation between reallocation size and APFD based on Spear-
man’s rank for IT case study.

209

CW Case Study

Alg TS Size Stat Start-up Size

1 5 10 20 50

DAS

50 ρ -0.0819 -0.0819 -0.0819 -0.0819 -0.0255
Pval 0.1572 0.1572 0.1572 0.1572 0.6604

60 ρ -0.1093 -0.1093 -0.1093 -0.1093 0.0379
Pval 0.0587 0.0587 0.0587 0.0587 0.5132

70 ρ -0.1640 -0.1640 -0.1640 -0.1640 -0.0589
Pval 0.0044 0.0044 0.0044 0.0044 0.3096

80 ρ -0.0954 -0.0954 -0.0954 -0.0954 -0.0291
Pval 0.0992 0.0992 0.0992 0.0992 0.6162

90 ρ -0.0825 -0.0825 -0.0825 -0.0825 -0.0249
Pval 0.1538 0.1538 0.1538 0.1538 0.6679

100 ρ -0.1168 -0.1168 -0.1168 -0.1168 -0.0384
Pval 0.0433 0.0433 0.0433 0.0433 0.5077

110 ρ -0.1156 -0.1156 -0.1156 -0.1156 -0.0303
Pval 0.0454 0.0454 0.0454 0.0454 0.6010

120 ρ -0.0875 -0.0875 -0.0875 -0.0875 -0.0213
Pval 0.1305 0.1305 0.1305 0.1305 0.7129

130 ρ 0.0102 0.0102 0.0102 0.0102 0.0382
Pval 0.8604 0.8604 0.8604 0.8604 0.5094

140 ρ -0.0646 -0.0646 -0.0646 -0.0646 -0.0050
Pval 0.2648 0.2648 0.2648 0.2648 0.9308

DGS

50 ρ -0.4247 -0.3228 -0.2043 -0.0076 0.0037
Pval 0.0000 0.0000 0.0004 0.8964 0.9489

60 ρ -0.5118 -0.4042 -0.2588 -0.0163 0.0364
Pval 0.0000 0.0000 0.0000 0.7785 0.5299

70 ρ -0.4917 -0.4116 -0.2726 -0.0572 -0.0187
Pval 0.0000 0.0000 0.0000 0.3231 0.7468

80 ρ -0.4813 -0.3634 -0.2894 -0.0566 -0.0111
Pval 0.0000 0.0000 0.0000 0.3288 0.8483

90 ρ -0.5052 -0.3762 -0.2737 -0.0431 -0.0073
Pval 0.0000 0.0000 0.0000 0.4565 0.9001

100 ρ -0.4304 -0.3257 -0.2158 -0.0311 0.0022
Pval 0.0000 0.0000 0.0002 0.5917 0.9704

110 ρ -0.4314 -0.3111 -0.2059 -0.0288 0.0208
Pval 0.0000 0.0000 0.0003 0.6187 0.7193

120 ρ -0.4349 -0.3279 -0.2279 -0.0375 0.0082
Pval 0.0000 0.0000 0.0001 0.5180 0.8872

130 ρ -0.4121 -0.3220 -0.2269 -0.0419 0.0086
Pval 0.0000 0.0000 0.0001 0.4701 0.8821

140 ρ -0.4408 -0.3807 -0.2705 -0.0649 -0.0114
Pval 0.0000 0.0000 0.0000 0.2627 0.8434

Table A4: Correlation between reallocation size and APFD based on Spear-
man’s rank for CW case study.

210

Bibliography

[AB11] Andrea Arcuri and Lionel Briand. A practical guide for
using statistical tests to assess randomized algorithms in
software engineering. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE ’11, pages
1–10, New York, NY, USA, 2011. ACM.

[ABC+13] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John
Clark, Myra B Cohen, Wolfgang Grieskamp, Mark Harman,
Mary Jean Harrold, Phil McMinn, Antonia Bertolino, et al.
An orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and
Software, 86(8):1978–2001, 2013.

[ABHPW10] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Ra-
jwinder Kaur Panesar-Walawege. A systematic review of
the application and empirical investigation of search-based
test case generation. IEEE Trans. Softw. Eng., 36(6):742–
762, November 2010.

[ABKS16] Sven Apel, Don Batory, Christian Kstner, and Gunter
Saake. Feature-Oriented Software Product Lines: Con-
cepts and Implementation. Springer Publishing Company,
Incorporated, 1st edition, 2016.

[AF11] Andrea Arcuri and Gordon Fraser. On Parameter Tuning in
Search Based Software Engineering, pages 33–47. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[AHLL+17] M. Al-Hajjaji, S. Lity, R. Lachmann, T. Thüm, I. Schaefer,
and G. Saake. Delta-oriented product prioritization for

211

similarity-based product-line testing. In VACE ’17, pages
34–40, 2017.

[AHTL+16] Mustafa Al-Hajjaji, Thomas Thüm, Malte Lochau, Jens
Meinicke, and Gunter Saake. Effective product-line testing
using similarity-based product prioritization. Software &
Systems Modeling, pages 1–23, 2016.

[AHTM+14] Mustafa Al-Hajjaji, Thomas Thüm, Jens Meinicke, Malte
Lochau, and Gunter Saake. Similarity-based prioritization
in software product-line testing. In Proceedings of the 18th
International Software Product Line Conference - Volume
1, SPLC ’14, pages 197–206, New York, NY, USA, 2014.
ACM.

[AIH15] Sara Abbaspour Asadollah, Rafia Inam, and Hans Hansson.
A survey on testing for cyber physical system. In IFIP
International Conference on Testing Software and Systems,
pages 194–207. Springer, 2015.

[AKM20] Wesley KG Assunção, Jacob Krüger, and Willian DF Men-
donça. Variability management meets microservices: six
challenges of re-engineering microservice-based webshops.
In Proceedings of the 24th ACM Conference on Systems
and Software Product Line: Volume A-Volume A, pages
1–6, 2020.

[ALHR17] Mathieu Acher, Roberto E. Lopez-Herrejon, and Rick Ra-
biser. Teaching software product lines: A snapshot of
current practices and challenges. ACM Trans. Comput.
Educ., 18(1):2:1–2:31, October 2017.

[AMAAA17] Mohammed Nasser Al-Mhiqani, Rabiah Ahmad, Kar-
rar Hameed Abdulkareem, and Nabeel Salih Ali. Inves-
tigation study of cyber-physical systems: Characteristics,
application domains, and security challenges. ARPN Jour-
nal of Engineering and Applied Sciences, 12(22):6557–6567,
2017.

[AME17] Aitor Arrieta, Urtzi Markiegi, and Leire Etxeberria. To-
wards mutation testing of configurable simulink models:

212

a product line engineering perspective. Technical report,
Mondragon Unibertsitatea, 2017.

[ANBS18] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and
Thomas Stifter. Testing vision-based control systems using
learnable evolutionary algorithms. In 2018 IEEE/ACM
40th International Conference on Software Engineering
(ICSE), pages 1016–1026. IEEE, 2018.

[AO08] P. Ammann and J. Offutt. Introduction to Software Testing.
First edition edition, 2008.

[AO16] P. Ammann and J. Offutt. Introduction to Software Test-
ing. Cambridge University Press, second edition edition,
December 2016.

[AOCN20] Ana Paula Allian, Edson OliveiraJr, Rafael Capilla, and
Elisa Yumi Nakagawa. Have variability tools fulfilled the
needs of the software industry? Journal of Universal
Computer Science, 26(10):1282–1311, 2020.

[Arr17] Aitor Arrieta. Simulation-based testing of highly config-
urable cyber-physical systems: automation, optimization
and debugging. phdthesis, Mondragon Unibertsitatea, De-
cember 2017.

[ASE15] Aitor Arrieta, Goiuria Sagardui, and Leire Etxeberria. Test
control algorithms for the validation of cyber-physical sys-
tems product lines. In Proceedings of the 19th International
Conference on Software Product Line, SPLC ’15, pages 273–
282, New York, NY, USA, 2015. ACM.

[ASEZ16] Aitor Arrieta, Goiuria Sagardui, Leire Etxeberria, and
Justyna Zander. Automatic generation of test system in-
stances for configurable cyber-physical systems. Software
Quality Journal, pages 1–43, 2016.

[AWA+18] Aitor Arrieta, Shuai Wang, Ainhoa Arruabarrena, Urtzi
Markiegi, Goiuria Sagardui, and Leire Etxeberria. Multi-
objective black-box test case selection for cost-effectively
testing simulation models. In Proceedings of the Genetic

213

and Evolutionary Computation Conference, GECCO ’18,
pages 1411–1418, New York, NY, USA, 2018. ACM.

[AWM+17a] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagar-
dui, and Leire Etxeberria. Employing multi-objective
search to enhance reactive test case generation and prioriti-
zation for testing industrial cyber-physical systems. IEEE
Transactions on Industrial Informatics, 14(3):1055–1066,
2017.

[AWM+17b] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagar-
dui, and Leire Etxeberria. Search-based test case genera-
tion for cyber-physical systems. In 2017 IEEE Congress
on Evolutionary Computation (CEC), 2017.

[AWM+19] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Ainhoa Arru-
abarrena, Leire Etxeberria, and Goiuria Sagardui. Pareto
efficient multi-objective black-box test case selection for
simulation-based testing. Information & Software Technol-
ogy, 114:137–154, 2019.

[AWSE16a] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire
Etxeberria. Search-based test case selection of cyber-
physical system product lines for simulation-based vali-
dation. In Proceedings of the 20th International Systems
and Software Product Line Conference, SPLC ’16, pages
297–306, New York, NY, USA, 2016. ACM.

[AWSE16b] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire
Etxeberria. Test case prioritization of configurable cyber-
physical systems with weight-based search algorithms. In
Proceedings of the Genetic and Evolutionary Computation
Conference 2016, GECCO ’16, pages 1053–1060, New York,
NY, USA, 2016. ACM.

[AWSE19] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire
Etxeberria. Search-based test case prioritization for
simulation-based testing of cyber-physical system prod-
uct lines. Journal of Systems and Software, 149:1 – 34,
2019.

214

[Bat05] Don Batory. Feature models, grammars, and propositional
formulas. In Henk Obbink and Klaus Pohl, editors, Software
Product Lines: 9th International Conference, SPLC 2005,
Rennes, France, September 26-29, 2005. Proceedings, pages
7–20, Berlin, Heidelberg, 2005. Springer, Springer Berlin
Heidelberg.

[BBG+88] DS Batory, JR Barnett, Jorge F Garza, Kenneth Paul
Smith, K Tsukuda, Brian C Twichell, and TE Wise. Gen-
esis: An extensible database management system. IEEE
Transactions on Software Engineering, 14(11):1711–1730,
1988.

[BBSR16] Ebrahim Bagheri, David Benavides, Klaus Schmid, and
Per Runeson. Foreword to the special issue on empirical
evidence on software product line engineering. Empirical
Software Engineering, 21(4):1579–1585, 2016.

[BC07] Renée C. Bryce and Charles J. Colbourn. One-test-at-a-
time heuristic search for interaction test suites. In Pro-
ceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’07, pages 1082–1089,
New York, NY, USA, 2007. ACM.

[BLLS14] H. Baller, S. Lity, M. Lochau, and I. Schaefer. Multi-
objective test suite optimization for incremental product
family testing. In 2014 IEEE Seventh International Con-
ference on Software Testing, Verification and Validation,
pages 303–312, March 2014.

[BNSB16] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and
Domenico Bianculli. Testing the untestable: Model testing
of complex software-intensive systems. In Proceedings of
the 38th International Conference on Software Engineering
Companion, ICSE ’16, pages 789–792, New York, NY, USA,
2016. ACM.

[Boe79] BW Boehm. Guidelines for verifying and validating soft-
ware requirements and design specifications, pa samet. In
Proc. of the EURO IFIP, volume 79, 1979.

215

[Bos01] Jan Bosch. Software product lines: Organizational alterna-
tives. In Proceedings of the 23rd International Conference
on Software Engineering, ICSE ’01, pages 91–100, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[BSC10] David Benavides, Sergio Segura, and Antonio Ruiz Cortés.
Automated analysis of feature models 20 years later: A
literature review. Inf. Syst., 35(6):615–636, 2010.

[BSL+10] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wą-
sowski, and Krzysztof Czarnecki. Variability modeling in
the real: A perspective from the operating systems domain.
In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, ASE ’10, pages 73–82,
New York, NY, USA, 2010. ACM.

[BSL+13] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wa-
sowski, and Krzysztof Czarnecki. A study of variability
models and languages in the systems software domain.
IEEE Transactions on Software Engineering, 39(12):1611–
1640, 2013.

[BSR03] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer.
Scaling step-wise refinement. In Proceedings of the 25th
International Conference on Software Engineering, ICSE
’03, pages 187–197, Washington, DC, USA, 2003. IEEE
Computer Society.

[BSZ+20] Thorsten Berger, Jan-Philipp Steghöfer, Tewfik Ziadi,
Jacques Robin, and Jabier Martinez. The state of adoption
and the challenges of systematic variability management in
industry. Empirical Software Engineering, 25(3):1755–1797,
2020.

[BX16] Benjamin Busjaeger and Tao Xie. Learning for test prior-
itization: an industrial case study. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 975–980. ACM,
2016.

216

[CDFP97] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The aetg system: an approach to testing based
on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–444, Jul 1997.

[CDS07] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi.
Interaction testing of highly-configurable systems in the
presence of constraints. In Proceedings of the 2007 Interna-
tional Symposium on Software Testing and Analysis, ISSTA
’07, pages 129–139, New York, NY, USA, 2007. ACM.

[CDS08] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi.
Constructing interaction test suites for highly-configurable
systems in the presence of constraints: A greedy approach.
IEEE Trans. Softw. Eng., 34(5):633–650, September 2008.

[CGHX19] Yuntianyi Chen, Yongfeng Gu, Lulu He, and Jifeng Xuan.
Regression models for performance ranking of configurable
systems: A comparative study. In International Work-
shop on Structured Object-Oriented Formal Language and
Method, pages 243–258. Springer, 2019.

[Che17a] Hong Chen. Applications of cyber-physical system: a
literature review. Journal of Industrial Integration and
Management, 2(03):1750012, 2017.

[Che17b] Hong Chen. Theoretical foundations for cyber-physical sys-
tems: a literature review. Journal of Industrial Integration
and Management, 2(03):1750013, 2017.

[CKMT10] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse.
Adaptive random testing: The art of test case diversity.
Journal of Systems and Software, 83:60 – 66, 2010.

[CLGGB20] Ana Eva Chacón-Luna, Antonio Manuel Gutiérrez, José A
Galindo, and David Benavides. Empirical software product
line engineering: a systematic literature review. Informa-
tion and Software Technology, 128:106389, 2020.

[CM13] Cagatay Catal and Deepti Mishra. Test case prioritization:
a systematic mapping study. Software Quality Journal,
21(3):445–478, Sep 2013.

217

[CMM+18] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth
Mehra, Siddhant Gawsane, Taylor T. Johnson, and
Christoph Csallner. Automatically finding bugs in a com-
mercial cyber-physical system development tool chain with
slforge. In Proceedings of the 40th International Conference
on Software Engineering, ICSE ’18, pages 981–992, New
York, NY, USA, 2018. ACM.

[CN01] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software Engineering.
Addison–Wesley, August 2001.

[dCMMCDA14] Ivan do Carmo Machado, John D McGregor,
Yguaratã Cerqueira Cavalcanti, and Eduardo San-
tana De Almeida. On strategies for testing software
product lines: A systematic literature review. Information
and Software Technology, 56(10):1183–1199, 2014.

[DH18] Ashraf Darwish and Aboul Ella Hassanien. Cyber physical
systems design, methodology, and integration: the current
status and future outlook. Journal of Ambient Intelligence
and Humanized Computing, 9(5):1541–1556, 2018.

[DLV12] P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli. Mod-
eling cyber-physical systems. Proceedings of the IEEE,
100(1):13–28, Jan 2012.

[dMSNdCMM+11] Paulo Anselmo da Mota Silveira Neto, Ivan
do Carmo Machado, John D. McGregor, Eduardo Santana
de Almeida, and Silvio Romero de Lemos Meira. A
systematic mapping study of software product lines testing.
Information and Software Technology, 53(5):407–423, may
2011.

[DNABL13] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche.
Coverage-based test case prioritisation: An industrial case
study. In Sixth International Conference on Software Test-
ing, Verification and Validation, pages 302 – 11, Los Alami-
tos, CA, USA, 2013.

218

[DPC+14] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Pierre-
Yves Schobbens, Axel Legay, and Patrick Heymans. To-
wards statistical prioritization for software product lines
testing. In Proceedings of the Eighth International Work-
shop on Variability Modelling of Software-Intensive Sys-
tems, page 10. ACM, 2014.

[DPC+15] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Hamza
Samih, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. Statistical prioritization for software product
line testing: an experience report. Software & Systems
Modeling, pages 1–19, 2015.

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir
Duszynski, Martin Becker, and Krzysztof Czarnecki. An
exploratory study of cloning in industrial software prod-
uct lines. In 2013 17th European Conference on Software
Maintenance and Reengineering, pages 25–34. IEEE, 2013.

[EBA+11] Alireza Ensan, Ebrahim Bagheri, Mohsen Asadi, Dragan
Gasevic, and Yevgen Biletskiy. Goal-oriented test case
selection and prioritization for product line feature models.
In Proceedings of the 2011 Eighth International Confer-
ence on Information Technology: New Generations, ITNG
’11, pages 291–298, Washington, DC, USA, 2011. IEEE
Computer Society.

[EBG12] Faezeh Ensan, Ebrahim Bagheri, and Dragan Gašević. Evo-
lutionary search-based test generation for software product
line feature models. In Proceedings of the 24th International
Conference on Advanced Information Systems Engineer-
ing, CAiSE’12, pages 613–628, Berlin, Heidelberg, 2012.
Springer-Verlag.

[ELM+17] Leire Etxeberria, Felix Larrinaga, Urtzi Markiegi, Aitor
Arrieta, and Goiuria Sagardui. Enabling co-simulation of
smart energy control systems for buildings and districts.
In 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–4.
IEEE, 2017.

219

[EMR02] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test
case prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering, 28(2):159–182, Feb
2002.

[ER11] Emelie Engström and Per Runeson. Software product
line testing–a systematic mapping study. Information and
Software Technology, 53(1):2–13, 2011.

[ERL11] Emelie Engström, Per Runeson, and Andreas Ljung. Im-
proving regression testing transparency and efficiency with
history-based prioritization–an industrial case study. In
2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, pages 367–376. IEEE,
2011.

[ERP14] Sebastian Elbaum, Gregg Rothermel, and John Penix. Tech-
niques for improving regression testing in continuous inte-
gration development environments. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE’14), pages 235–245.
ACM, 2014.

[ESYES19] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus
Schmid. Metrics for analyzing variability and its implemen-
tation in software product lines: A systematic literature
review. Information and Software Technology, 106:1–30,
2019.

[EYHB15] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Ed-
mund K. Burke. Empirical evaluation of pareto efficient
multi-objective regression test case prioritisation. In Pro-
ceedings of the 2015 International Symposium on Software
Testing and Analysis, ISSTA 2015, pages 234–245, New
York, NY, USA, 2015. ACM.

[FCWZ14] Chunrong Fang, Zhenyu Chen, Kun Wu, and Zhihong
Zhao. Similarity-based test case prioritization using ordered
sequences of program entities. Software Quality Journal,
22(2):335–361, 2014.

220

[FLHE18] Stefan Fischer, Roberto Erick Lopez-Herrejon, and Alexan-
der Egyed. Towards a fault-detection benchmark for eval-
uating software product line testing approaches. In Pro-
ceedings of the 33rd Annual ACM Symposium on Applied
Computing, pages 2034–2041, 2018.

[FMR+20] Stefan Fischer, Gabriela Karoline Michelon, Rudolf Ramler,
Lukas Linsbauer, and Alexander Egyed. Automated test
reuse for highly configurable software. Empirical Software
Engineering, 25(6):5295–5332, 2020.

[FPCY16] R. Feldt, S. Poulding, D. Clark, and S. Yoo. Test set
diameter: Quantifying the diversity of sets of test cases. In
2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 223–233, April
2016.

[FR19] Gordon Fraser and José Miguel Rojas. Software testing. In
Handbook of Software Engineering, pages 123–192. Springer,
2019.

[GBT21] Didem Gürdür Broo, Ulf Boman, and Martin Törngren.
Cyber-physical systems research and education in 2030:
Scenarios and strategies. Journal of Industrial Information
Integration, 21:100192, 2021.

[GCD11] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer.
Evaluating improvements to a meta-heuristic search for
constrained interaction testing. Empirical Software Engi-
neering, 16(1):61–102, 2011.

[GSB+19] Sergio García, Daniel Strüber, Davide Brugali, Alessan-
dro Di Fava, Philipp Schillinger, Patrizio Pelliccione, and
Thorsten Berger. Variability modeling of service robots:
Experiences and challenges. In Proceedings of the 13th In-
ternational Workshop on Variability Modelling of Software-
Intensive Systems, VAMOS ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[HAB13] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Achiev-
ing scalable model-based testing through test case diversity.

221

ACM Trans. Softw. Eng. Methodol., 22(1):6:1–6:42, March
2013.

[Ham50] Rw Hamming. Error detecting and error correcting codes.
Bell System Technical Journal, 26(2):147–160, 1950.

[HBT16] Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh
Tung. A novel fitness function of metaheuristic algorithms
for test data generation for simulink models based on mu-
tation analysis. Journal of Systems and Software, 120:17 –
30, 2016.

[HFM15] H. Hemmati, Z. Fang, and M. V. Mäntylä. Prioritizing
manual test cases in traditional and rapid release environ-
ments. In Proceedings of the 8th International Conference
on Software Testing, Verification and Validation (ICST’15),
pages 1–10, 2015.

[HGPB20] Ines Hajri, Arda Goknil, Fabrizio Pastore, and Lionel C
Briand. Automating system test case classification and
prioritization for use case-driven testing in product lines.
Empirical Software Engineering, 25(5):3711–3769, 2020.

[HJK+14] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and
Y. Zhang. Search based software engineering for software
product line engineering: A survey and directions for future
work. In Proceedings of the 18th International Software
Product Line Conference - Volume 1, SPLC ’14, pages 5–18,
New York, NY, USA, 2014. ACM.

[HLL+16] Robert M. Hierons, Miqing Li, Xiaohui Liu, Sergio Se-
gura, and Wei Zheng. Sip: Optimal product selection from
feature models using many-objective evolutionary optimiza-
tion. ACM Trans. Softw. Eng. Methodol., 25(2):17:1–17:39,
April 2016.

[HMZ12] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang.
Search-based software engineering: Trends, techniques and
applications. ACM Comput. Surv., 45(1):11:1–11:61, De-
cember 2012.

222

[HPF19] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. Soft-
ware product line engineering: a practical experience. In
Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume A, pages 164–176, 2019.

[HPH12] Yu-Chi Huang, Kuan-Li Peng, and Chin-Yu Huang. A
history-based cost-cognizant test case prioritization tech-
nique in regression testing. Journal of Systems and Soft-
ware, 85(3):626–637, 2012.

[HPH+16] Christopher Henard, Mike Papadakis, Mark Harman, Yue
Jia, and Yves Le Traon. Comparing white-box and black-
box test prioritization. In Proceedings of the 38th Inter-
national Conference on Software Engineering, ICSE ’16,
pages 523–534, New York, NY, USA, 2016. ACM.

[HPHT15] Christopher Henard, Mike Papadakis, Mark Harmany, and
Yves Le Traon. Combining multi-objective search and
constraint solving for configuring large scale software prod-
uct lines. In 37th International Conference on Software
Engineering (ICSE’15), pages 517–528, 2015.

[HPLT14] Christopher Henard, Mike Papadakis, and Yves Le Traon.
Mutation-Based Generation of Software Product Line Test
Configurations, pages 92–106. Springer International Pub-
lishing, Cham, 2014.

[HPMFA+16] Ruben Heradio, Hector Perez-Morago, David Fernandez-
Amoros, Francisco Javier Cabrerizo, and Enrique Herrera-
Viedma. A bibliometric analysis of 20 years of research on
software product lines. Information and Software Technol-
ogy, 72:1–15, 2016.

[HPP+13a] Christopher Henard, Mike Papadakis, Gilles Perrouin,
Jacques Klein, and Yves Le Traon. Assessing software
product line testing via model-based mutation: An applica-
tion to similarity testing. In Software Testing, Verification
and Validation Workshops (ICSTW), 2013 IEEE Sixth
International Conference on, pages 188–197. IEEE, 2013.

223

[HPP+13b] Christopher Henard, Mike Papadakis, Gilles Perrouin,
Jacques Klein, and Yves Le Traon. Multi-objective test
generation for software product lines. In Proceedings of
the 17th International Software Product Line Conference,
pages 62–71. ACM, 2013.

[HPP+14] C Henard, M Papadakis, G Perrouin, J Klein, P Heymans,
and Y Le Traon. Bypassing the combinatorial explosion:
Using similarity to generate and prioritize t-wise test config-
urations for software product lines. IEEE Trans. Software
Eng., 40(7):650–670, 2014.

[HVCR01] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K.
Rierson. A practical tutorial on modified condition/decision
coverage. Technical report, NASA, 2001.

[HWJ13] Kagermann H., Wahlster W., and Helbig J. Recommenda-
tions for implementing the strategic initiative industrie 4.0.
Technical report, acatech, National Academy of Science
and Engineering, 2013.

[HZS+16] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian
Kästner, Olaf Leßenich, Martin Becker, and Sven Apel.
Preprocessor-based variability in open-source and indus-
trial software systems: An empirical study. Empirical
Software Engineering, 21(2):449–482, 2016.

[HZZ+16] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie.
To be optimal or not in test-case prioritization. IEEE
Transactions on Software Engineering, 42(5):490–505, May
2016.

[Jaz14] N. Jazdi. Cyber physical systems in the context of industry
4.0. In 2014 IEEE International Conference on Automation,
Quality and Testing, Robotics, pages 1–4, May 2014.

[JC15] Bo Jiang and W.K. Chan. Input-based adaptive random-
ized test case prioritization: A local beam search approach.
Journal of Systems and Software, 105(0):91 – 106, 2015.

224

[JCL11] Jeff C Jensen, Danica H Chang, and Edward A Lee. A
model-based design methodology for cyber-physical sys-
tems. In 2011 7th international wireless communications
and mobile computing conference, pages 1666–1671. IEEE,
2011.

[JH03] James A Jones and Mary Jean Harrold. Test-suite reduction
and prioritization for modified condition/decision coverage.
IEEE Transactions on software Engineering, 29(3):195–209,
2003.

[JH10] Yue Jia and Mark Harman. An analysis and survey of the
development of mutation testing. IEEE transactions on
software engineering, 37(5):649–678, 2010.

[JHF11a] Martin Fagereng Johansen, Oystein Haugen, and Franck
Fleurey. Properties of realistic feature models make com-
binatorial testing of product lines feasible. In Proceed-
ings of the 14th International Conference on Model Driven
Engineering Languages and Systems, MODELS’11, pages
638–652, Berlin, Heidelberg, 2011. Springer-Verlag.

[JHF11b] Martin Fagereng Johansen, Øystein Haugen, and Franck
Fleurey. A survey of empirics of strategies for software
product line testing. In 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation
Workshops, pages 266–269. IEEE, 2011.

[JHF12] Martin Fagereng Johansen, Oystein Haugen, and Franck
Fleurey. An algorithm for generating t-wise covering arrays
from large feature models. In Proceedings of the 16th
International Software Product Line Conference - Volume
1, SPLC ’12, pages 46–55, New York, NY, USA, 2012.
ACM.

[JHQJ08] Li Jin-Hua, Li Qiong, and Li Jing. The w-model for testing
software product lines. In 2008 International Symposium
on Computer Science and Computational Technology, vol-
ume 1, pages 690–693. IEEE, 2008.

225

[JJI+14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D.
Ernst, Reid Holmes, and Gordon Fraser. Are mutants
a valid substitute for real faults in software testing? In
Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE
2014, pages 654–665, New York, NY, USA, 2014. ACM.

[KAF12] Alireza Khalilian, Mohammad Abdollahi Azgomi, and
Yalda Fazlalizadeh. An improved method for test case
prioritization by incorporating historical test case data.
Science of Computer Programming, 78(1):93–116, 2012.

[KAuR+09] Christian Kästner, Sven Apel, Syed Saif ur Rahman, Marko
Rosenmüller, Don Batory, and Gunter Saake. On the im-
pact of the optional feature problem: Analysis and case
studies. In Proceedings of the 13th International Software
Product Line Conference, SPLC ’09, pages 181–190, Pitts-
burgh, PA, USA, 2009. Carnegie Mellon University.

[KBK11] C. H. P. Kim, D. S. Batory, and S. Khurshid. Reducing
combinatorics in testing product lines. In AOSD ’11, pages
57–68, 2011.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-Oriented domain analysis (FODA) feasibility study.
Technical report, 1990.

[KDJ+16] James Kapinski, Jyotirmoy V Deshmukh, Xiaoqing Jin,
Hisahiro Ito, and Ken Butts. Simulation-based approaches
for verification of embedded control systems: An overview
of traditional and advanced modeling, testing, and verifica-
tion techniques. IEEE Control Systems Magazine, 36(6):45–
64, 2016.

[KIJT18] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang
N. A. Jawawi, and Rooster Tumeng. Test case prioritization
approaches in regression testing: A systematic literature
review. Information and Software Technology, 93:74 – 93,
2018.

226

[Kim17] Jin Ho Kim. A review of cyber-physical system research rel-
evant to the emerging it trends: industry 4.0, iot, big data,
and cloud computing. Journal of industrial integration and
management, 2(03):1750011, 2017.

[KKLH09] Rick Kuhn, Raghu Kacker, Yu Lei, and Justin Hunter.
Combinatorial software testing. Computer, 42:94–96, 2009.

[KKT08] Bogdan Korel, George Koutsogiannakis, and Luay H Tahat.
Application of system models in regression test suite pri-
oritization. In Software Maintenance, 2008. ICSM 2008.
IEEE International Conference on, pages 247–256. IEEE,
2008.

[KKW+18] Sebastian Krieter, Jacob Krüger, Nico Weichbrodt,
Vasily A Sartakov, Rüdiger Kapitza, and Thomas Leich.
Towards secure dynamic product lines in the cloud. In Pro-
ceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, pages 5–8,
2018.

[KM03] R Kolb and D Muthig. Challenges in testing software
product lines. In Proceedings of CONQUEST, volume 3,
pages 81–95, 2003.

[KMTG18] J. Krüger, Al-Hajjaji M., Leich T., and Saake G. Muta-
tion operators for feature-oriented software product lines.
Software Testing, Verification and Reliability, 2018.

[KNK+17] Jacob Krüger, Sebastian Nielebock, Sebastian Krieter,
Christian Diedrich, Thomas Leich, Gunter Saake, Sebas-
tian Zug, and Frank Ortmeier. Beyond software product
lines: Variability modeling in cyber-physical systems. In
Proceedings of the 21st International Systems and Software
Product Line Conference-Volume A, pages 237–241, 2017.

[KP02] Jung-Min Kim and Adam Porter. A history-based test
prioritization technique for regression testing in resource
constrained environments. In Proceedings of the 24th inter-
national conference on software engineering, pages 119–129.
ACM, 2002.

227

[KSK+19] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner,
Alexander Grebhahn, and Sven Apel. Tradeoffs in model-
ing performance of highly configurable software systems.
Software & Systems Modeling, 18(3):2265–2283, 2019.

[KTH05] Bogdan Korel, Luay Ho Tahat, and Mark Harman. Test pri-
oritization using system models. In Software Maintenance,
2005. ICSM’05. Proceedings of the 21st IEEE International
Conference on, pages 559–568. IEEE, 2005.

[LAHTS17] Sascha Lity, Mustafa Al-Hajjaji, Thomas Thüm, and Ina
Schaefer. Optimizing product orders using graph algo-
rithms for improving incremental product-line analysis. In
Proceedings of the Eleventh International Workshop on
Variability Modelling of Software-intensive Systems, VA-
MOS ’17, pages 60–67, New York, NY, USA, 2017. ACM.

[LBB15] Zhou Lu, MM Bezemer, and JF Broenink. Model-driven
design of simulation support for the terra robot software
tool suite. Communicating process architectures 2015, pages
143–158, 2015.

[LBK15] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-
physical systems architecture for industry 4.0-based manu-
facturing systems. Manufacturing Letters, 3:18 – 23, 2015.

[LBL+17] Remo Lachmann, Simon Beddig, Sascha Lity, Sandro
Schulze, and Ina Schaefer. Risk-based integration testing
of software product lines. In Proceedings of the Eleventh In-
ternational Workshop on Variability Modelling of Software-
intensive Systems, VAMOS ’17, pages 52–59, New York,
NY, USA, 2017. ACM.

[LCTK13] Chu-Ti Lin, Cheng-Ding Chen, Chang-Shi Tsai, and Gre-
gory M Kapfhammer. History-based test case prioritization
with software version awareness. In 2013 18th International
Conference on Engineering of Complex Computer Systems,
pages 171–172. IEEE, 2013.

[LFN+17] R. Lachmann, M. Felderer, M. Nieke, S. Schulze, C. Seidl,
and I. Schaefer. Multi-objective black-box test case selec-

228

tion for system testing. In GECCO ’17, pages 1311–1318.
ACM, 2017.

[LHFC+14] Roberto E Lopez-Herrejon, Javier Ferrer, Francisco Chi-
cano, Lukas Linsbauer, Alexander Egyed, and Enrique
Alba. A hitchhiker’s guide to search-based software en-
gineering for software product lines. Computer Research
Repositori (CoRR), 2014.

[LHFC+16] Roberto E Lopez-Herrejon, Javier Ferrer, Francisco Chi-
cano, Alexander Egyed, and Enrique Alba. Evolutionary
computation for software product line testing: an overview
and open challenges. In Computational Intelligence and
Quantitative Software Engineering, pages 59–87. Springer,
2016.

[LHFRE15] Roberto E Lopez-Herrejon, Stefan Fischer, Rudolf Ramler,
and Alexander Egyed. A first systematic mapping study on
combinatorial interaction testing for software product lines.
In Software Testing, Verification and Validation Workshops
(ICSTW), 2015 IEEE Eighth International Conference on,
pages 1–10. IEEE, 2015.

[LHLE15] Roberto E. Lopez-Herrejon, Lukas Linsbauer, and Alexan-
der Egyed. A systematic mapping study of search-based
software engineering for software product lines. Information
and Software Technology, 61:33 – 51, 2015.

[LKJ20] Jihyun Lee, Sungwon Kang, and Pilsu Jung. Test coverage
criteria for software product line testing: Systematic litera-
ture review. Information and Software Technology, page
106272, 2020.

[LKL12] Jihyun Lee, Sungwon Kang, and Danhyung Lee. A survey
on software product line testing. In Proceedings of the 16th
International Software Product Line Conference-Volume 1,
pages 31–40. ACM, 2012.

[LLL+15] Remo Lachmann, Sascha Lity, Sabrina Lischke, Simon
Beddig, Sandro Schulze, and Ina Schaefer. Delta-oriented
test case prioritization for integration testing of software

229

product lines. In Proceedings of the 19th International
Conference on Software Product Line, SPLC ’15, pages
81–90, New York, NY, USA, 2015. ACM.

[LLN+16] Bing Liu, Lucia, Shiva Nejati, Lionel C. Briand, and
Thomas Bruckmann. Simulink fault localization: an it-
erative statistical debugging approach. Software Testing,
Verification and Reliability, 26(6):431–459, 2016.

[LLNB17] Bing Liu, Lucia Lucia, Shiva Nejati, and Lionel Briand. Im-
proving fault localization for simulink models using search-
based testing and prediction models. In 24th IEEE Inter-
national Conference on Software Analysis, Evolution, and
Reengineering (SANER 2017), 2017.

[LMP16] Qi Luo, Kevin Moran, and Denys Poshyvanyk. A large-
scale empirical comparison of static and dynamic test case
prioritization techniques. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 559–570. ACM, 2016.

[LMZP19] Q. Luo, K. Moran, L. Zhang, and D. Poshyvanyk. How
do static and dynamic test case prioritization techniques
perform on modern software systems? an extensive study
on github projects. IEEE Transactions on Software Engi-
neering, 45(11):1054–1080, Nov 2019.

[LNLB19] Bing Liu, Shiva Nejati, Lucia, and Lionel C. Briand. Ef-
fective fault localization of automotive simulink models:
achieving the trade-off between test oracle effort and fault
localization accuracy. Empirical Software Engineering,
24(1):444–490, Feb 2019.

[LPBM12] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Na-
dine Mandran. Prioritizing test cases with string distances.
Automated Software Engineering, 19(1):65–95, 2012.

[LS14] Hartmut Lackner and Martin Schmidt. Towards the assess-
ment of software product line tests: A mutation system for
variable systems. In Proceedings of the 18th International
Software Product Line Conference: Companion Volume for

230

Workshops, Demonstrations and Tools - Volume 2, SPLC
’14, pages 62–69, New York, NY, USA, 2014. ACM.

[LS17] Edward A. Lee and Sanjit A. Seshia. Introduction to Em-
bedded Systems, A Cyber-Physical Systems Approach. MIT
Press Ltd, second edition edition, 2017.

[LSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes.
Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2007.

[LTMHT14] Khuat Thanh Le Thi My Hanh and Nguyen Thanh Binh
Tung. Mutation-based test data generation for simulink
models using genetic algorithm and simulated annealing.
International Journal of Computer and Information Tech-
nology, 3(04):763–771, 2014.

[LUV09] Beatriz P’erez Lamancha, Macario Polo Usaola, and
Mario Piattini Velthius. Software product line testing:
A systematic review. ICSOFT (1), pages 23–30, 2009.

[LYA20] Hong Lu, Tao Yue, and Shaukat Ali. Pattern-based inter-
active configuration derivation for cyber-physical system
product lines. ACM Transactions on Cyber-Physical Sys-
tems, 4(4):1–24, 2020.

[MAES19a] Urtzi Markiegi, Aitor Arrieta, Leire Etxeberria, and
Goiuria Sagardui. Test case selection using structural cov-
erage in software product lines for time-budget constrained
scenarios. In Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing, pages 2362–2371, 2019.

[MAES19b] Urtzi Markiegi, Aitor Arrieta, Leire Etxeberria, and
Goiuria Sagardui. White-box and black-box test quality
metrics for configurable simulation models. In Proceedings
of the 23rd International Systems and Software Product
Line Conference, SPLC 2019, Volume B, Paris, France,
September 9-13, 2019, pages 92:1–92:4. ACM, 2019.

231

[MASE17] Urtzi Markiegi, Aitor Arrieta, Goiuria Sagardui, and Leire
Etxeberria. Search-based product line fault detection al-
locating test cases iteratively. In Proceedings of the 21st
International Systems and Software Product Line Confer-
ence - Volume A, SPLC ’17, pages 123–132, New York, NY,
USA, 2017. ACM.

[Mat21] The mathworks, inc. - simulink tool. https://www.

mathworks.com/products/simulink.html, 2021. Last ac-
cessed: 2021-04-15.

[MB03] M. Marré and A. Bertolino. Using spanning sets for cover-
age testing. IEEE Transactions on Software Engineering,
29:974–984, 2003.

[McG01] John D McGregor. Testing a software product line. techre-
port CMU/SEI-2001-TR-022, Software Engineering Insti-
tute, Carnegie Mellon University, December 2001.

[MCVB18] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and
Antonia Bertolino. Fast approaches to scalable similarity-
based test case prioritization. In Proceedings of the 40th
International Conference on Software Engineering, pages
222–232. ACM, 2018.

[MGS13] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. Test case
prioritization for continuous regression testing: An indus-
trial case study. In Proceedings of the 2013 IEEE Inter-
national Conference on Software Maintenance (ICSM’13),
pages 540–543. IEEE Computer Society, 2013.

[MGSH13] Dusica Marijan, Arnaud Gotlieb, Sagar Sen, and Aymeric
Hervieu. Practical pairwise testing for software product
lines. In Proceedings of the 17th International Software
Product Line Conference, SPLC ’13, pages 227–235, New
York, NY, USA, 2013. ACM.

[MM63] J. C. Miller and C. J. Maloney. Systematic mistake analysis
of digital computer programs. Communications of the ACM,
6:58–63, 1963.

232

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

[MNB17] Reza Matinnejad, Shiva Nejati, and Lionel C Briand. Au-
tomated testing of hybrid simulink/stateflow controllers:
industrial case studies. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
pages 938–943, 2017.

[MNBB15] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and
Thomas Bruckmann. Effective test suites for mixed discrete-
continuous stateflow controllers. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 84–95, New York, NY, USA, 2015.
ACM.

[MNBB16] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and
Thomas Bruckmann. Automated test suite generation for
time-continuous simulink models. In Proceedings of the 38th
International Conference on Software Engineering, ICSE
’16, pages 595–606, New York, NY, USA, 2016. ACM.

[MNBB19] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann.
Test generation and test prioritization for simulink models
with dynamic behavior. IEEE Transactions on Software
Engineering, 45(9):919–944, Sep. 2019.

[MNBP20] Claudio Menghi, Shiva Nejati, Lionel Briand, and
Yago Isasi Parache. Approximation-refinement testing of
compute-intensive cyber-physical models: An approach
based on system identification. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE),
pages 372–384. IEEE, 2020.

[MP14] Andreas Metzger and Klaus Pohl. Software product line
engineering and variability management: achievements and
challenges. In Proceedings of the on Future of Software
Engineering, pages 70–84. ACM, 2014.

[MSB+14] Pieter J. Mosterman, David Escobar Sanabria, Enes Bilgin,
Kun Zhang, and Justyna Zander. Automating humanitar-
ian missions with a heterogeneous fleet of vehicles. Annual
Reviews in Control, 38(2):259–270, 2014.

233

[MTS+17] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian
Benduhn, Thomas Leich, and Gunter Saake. Mastering
software variability with FeatureIDE. Springer, 2017.

[MWVK20] Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, and
Christian Kästner. Exploring differences and commonal-
ities between feature flags and configuration options. In
Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering: Software Engineering in
Practice, pages 233–242, 2020.

[MZ16a] Pieter J Mosterman and Justyna Zander. Cyber-physical
systems challenges: a needs analysis for collaborating em-
bedded software systems. Software & Systems Modeling,
15(1):5–16, 2016.

[MZ16b] Pieter J Mosterman and Justyna Zander. Industry 4.0 as a
cyber-physical system study. Software & Systems Modeling,
15(1):17–29, 2016.

[NAY17] Phu H Nguyen, Shaukat Ali, and Tao Yue. Model-based
security engineering for cyber-physical systems: A system-
atic mapping study. Information and Software Technology,
83:116–135, 2017.

[NdCMM+11] Paulo Anselmo da Mota Silveira Neto, Ivan
do Carmo Machado, John D McGregor, Eduardo Santana
De Almeida, and Silvio Romero de Lemos Meira. A
systematic mapping study of software product lines testing.
Information and Software Technology, 53(5):407–423, 2011.

[NH15] Tanzeem Bin Noor and Hadi Hemmati. A similarity-based
approach for test case prioritization using historical failure
data. In 2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE), pages 58–68.
IEEE, 2015.

[NL11] Changhai Nie and Hareton Leung. A survey of combi-
natorial testing. ACM Comput. Surv., 43(2):11:1–11:29,
February 2011.

234

[NMP20] Alessia Napoleone, Marco Macchi, and Alessandro Pozzetti.
A review on the characteristics of cyber-physical systems
for the future smart factories. Journal of Manufacturing
Systems, 54:305–335, 2020.

[NOM06] Robert Nilsson, Jeff Offutt, and Jonas Mellin. Test case
generation for mutation-based testing of timeliness. Elec-
tronic Notes in Theoretical Computer Science, 164(4):97–
114, 2006.

[NWF+15] Tadahiro Noguchi, Hironori Washizaki, Yoshiaki Fukazawa,
Atsutoshi Sato, and Kenichiro Ota. History-based test
case prioritization for black box testing using ant colony
optimization. In 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST),
pages 1–2. IEEE, 2015.

[OMR10] Sebastian Oster, Florian Markert, and Philipp Ritter. Au-
tomated incremental pairwise testing of software product
lines. In Proceedings of the 14th International Conference
on Software Product Lines: Going Beyond, SPLC’10, pages
196–210, Berlin, Heidelberg, 2010. Springer-Verlag.

[OWES11] Sebastian Oster, Andreas Wübbeke, Gregor Engels, and
Andy Schürr. A survey of model-based software product
lines testing. In Model-based testing for embedded systems,
chapter 13, pages 339–381. CRC Press, 2011.

[OZML11] Sebastian Oster, Ivan Zorcic, Florian Markert, and Malte
Lochau. Moso-polite - tool support for pairwise and model-
based software product line testing. In VaMoS, pages 79–82,
2011.

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden.
Software Product Line Engineering: Foundations, Prin-
ciples and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[PHH+16] Mike Papadakis, Christopher Henard, Mark Harman, Yue
Jia, and Yves Le Traon. Threats to the validity of mutation-
based test assessment. In Proceedings of the 25th Interna-

235

tional Symposium on Software Testing and Analysis, ISSTA
2016, pages 354–365, New York, NY, USA, 2016. ACM.

[PII+19] Hervé Panetto, Benoit Iung, Dmitry Ivanov, Georg Weich-
hart, and Xiaofan Wang. Challenges for the cyber-physical
manufacturing enterprises of the future. Annual Reviews
in Control, 47:200–213, 2019.

[PJHLT15] Mike Papadakis, Yue Jia, Mark Harman, and Yves
Le Traon. Trivial compiler equivalence: A large scale
empirical study of a simple, fast and effective equivalent
mutant detection technique. In Proceedings of the 37th In-
ternational Conference on Software Engineering - Volume
1, ICSE ’15, pages 936–946, Piscataway, NJ, USA, 2015.
IEEE Press.

[PKZ+19] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves
Le Traon, and Mark Harman. Mutation testing advances:
an analysis and survey. In Advances in Computers, volume
112, pages 275–378. Elsevier, 2019.

[PMB+12] Andreas Polzer, Daniel Merschen, Goetz Botterweck, An-
dreas Pleuss, Jacques Thomas, Bernd Hedenetz, and Ste-
fan Kowalewski. Managing complexity and variability of
a model-based embedded software product line. Innova-
tions in Systems and Software Engineering, 8(1):35–49,
Mar 2012.

[POS+12] Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein,
Benoit Baudry, and Yves Le Traon. Pairwise testing for
software product lines: Comparison of two approaches.
Software Quality Journal, 20(3-4):605–643, 2012.

[PQM+18] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai,
Thorsten Berger, Sven Apel, Krzysztof Czarnecki, and
Jesus Padilla. A study of feature scattering in the linux
kernel. IEEE Transactions on Software Engineering, 2018.

[ps06] pure systems. Variant management with pure::variants.
techreport, pure-systems GmbH, 2006.

236

[PSK+10] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry,
and Yves Le Traon. Automated and scalable t-wise test
case generation strategies for software product lines. In
2010 Third international conference on software testing,
verification and validation, pages 459–468. IEEE, 2010.

[PSS+16] José A. Parejo, Ana B Sánchez, Sergio Segura, Antonio
Ruiz-Cortés, Roberto E. Lopez-Herrejon, and Alexander
Egyed. Multi-objective test case prioritization in highly
configurable systems: A case study. Journal of Systems
and Software, pages –, 2016.

[PUS17] Thomas W. Pieber, Thomas Ulz, and Christian Steger. Sys-
temC test case generation with the gazebo simulator. In
Proceedings of the 7th International Conference on Simula-
tion and Modeling Methodologies, Technologies and Applica-
tions. SCITEPRESS - Science and Technology Publications,
2017.

[PWA+18] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and
Marius Liaaen. Remap: Using rule mining and multi-
objective search for dynamic test case prioritization. In
2018 IEEE 11th International Conference on Software Test-
ing, Verification and Validation (ICST), pages 46–57. IEEE,
2018.

[PWA+19] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and
Marius Liaaen. Employing rule mining and multi-objective
search for dynamic test case prioritization. Journal of
Systems and Software, 153:86–104, 2019.

[RALS09] Marko Rosenmüller, Sven Apel, Thomas Leich, and Gunter
Saake. Tailor-made data management for embedded sys-
tems: A case study on berkeley db. Data & Knowledge
Engineering, 68(12):1493–1512, 2009.

[RBT13] Erik Rogstad, Lionel Briand, and Richard Torkar. Test case
selection for black-box regression testing of database appli-
cations. Information and Software Technology, 55(10):1781–
1795, 2013.

237

[RDNK16] Raj Rajkumar, Dionisio De Niz, and Mark Klein. Cyber-
physical systems. Addison-Wesley Professional, 2016.

[RE12] Per Runeson and Emelie Engström. Chapter 7 - regression
testing in software product line engineering. volume 86 of
Advances in Computers, pages 223–263. Elsevier, 2012.

[RLSS10] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John
Stankovic. Cyber-physical systems: the next computing
revolution. In Design automation conference, pages 731–
736. IEEE, 2010.

[RRKP06] Andreas Reuys, Sacha Reis, Erik Kamsties, and Klaus
Pohl. The scented method for testing software product
lines. In Software Product Lines, chapter 13, pages 479–520.
Springer-Verlag Berlin Heidelberg, 2006.

[RSB+18] Rick Rabiser, Klaus Schmid, Martin Becker, Goetz Botter-
weck, Matthias Galster, Iris Groher, and Danny Weyns. A
study and comparison of industrial vs. academic software
product line research published at splc. In Proceedings of
the 22nd International Systems and Software Product Line
Conference-Volume 1, pages 14–24, 2018.

[RUCH99] Gregg Rothermel, Roland H Untch, Chengyun Chu, and
Mary Jean Harrold. Test case prioritization: An empirical
study. In Software Maintenance, 1999.(ICSM’99) Proceed-
ings. IEEE International Conference on, pages 179–188.
IEEE, 1999.

[RUCH01] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and
Mary Jean Harrold. Prioritizing test cases for regres-
sion testing. IEEE Transactions on software engineering,
27(10):929–948, 2001.

[RWSH08] A. Rajan, M. Whalen, M. Staats, and M. Heimdahl. Re-
quirements coverage as an adequacy measure for confor-
mance testing. Formal Methods and Software Engineering,
pages 86–104, 2008.

238

[RZ21] Rick Rabiser and Alois Zoitl. Towards mastering variability
in software-intensive cyber-physical production systems.
Procedia Computer Science, 180:50–59, 2021.

[SAM+17] Goiuria Sagardui, Joseba Agirre, Urtzi Markiegi, Aitor
Arrieta, Carlos Fernando Nicolás, and Jose María Martín.
Multiplex: A co-simulation architecture for elevators valida-
tion. In 2017 IEEE International Workshop of Electronics,
Control, Measurement, Signals and their Application to
Mechatronics (ECMSM), pages 1–6. IEEE, 2017.

[San16] Ana B. Sanchez. Test case prioritization in highly con-
figurable systems. phdthesis, Universidad de Sevilla, May
2016.

[SCC16] Hema Srikanth, Mikaela Cashman, and Myra B Cohen.
Test case prioritization of build acceptance tests for an en-
terprise cloud application: An industrial case study. Jour-
nal of Systems and Software, 119:122–135, 2016.

[SEA+17] Goiuria Sagardui, Leire Etxeberria, Joseba A Agirre, Aitor
Arrieta, Carlos Fernando Nicolas, and Jose Maria Martin.
A configurable validation environment for refactored em-
bedded software: An application to the vertical transport
domain. In 2017 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops (ISSREW), pages
16–19. IEEE, 2017.

[SER21] Qunying Song, Emelie Engström, and Per Runeson.
Concepts in testing of autonomous systems: Aca-
demic literature and industry practice. arXiv preprint
arXiv:2103.07157, 2021.

[SF12] Sriram Sankaranarayanan and Georgios Fainekos. Sim-
ulating insulin infusion pump risks by in-silico modeling
of the insulin-glucose regulatory system. In International
Conference on Computational Methods in Systems Biology,
pages 322–341. Springer, 2012.

[SGAK15] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and
Christian Kästner. Performance-influence models for highly

239

configurable systems. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pages
284–294, 2015.

[SGMM17] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and
Morten Mossige. Reinforcement learning for automatic test
case prioritization and selection in continuous integration.
In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 12–22.
ACM, 2017.

[SGS+15] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel,
and Krzysztof Czarnecki. Cost-efficient sampling for per-
formance prediction of configurable systems (t). In 2015
30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 342–352. IEEE, 2015.

[SH09] H. Shokry and M. Hinchey. Model-based verification of
embedded software. Computer, 42(4):53 – 59, 2009.

[SJH17] Muhammad Sahak, Dayang NA Jawawi, and Shahliza A
Halim. An experiment of different similarity measures on
test case prioritization for software product lines. Journal of
Telecommunication, Electronic and Computer Engineering
(JTEC), 9(3-4):177–185, 2017.

[SKN+11] Detlef Streitferdt, Florian Kantz, Philipp Nenninger,
Thomas Ruschival, Holger Kaul, Thomas Bauer, Tanvir
Hussain, and Robert Eschbach. Model-Based Testing of
Highly Configurable Embedded Systems in the Automation
Domain, volume 2, chapter chapter 10, pages 22–41. IGI
Global, 2011.

[SKT+16] Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian
Benduhn, and Gunter Saake. Feature-model interfaces: the
highway to compositional analyses of highly-configurable
systems. In Proceedings of the 38th International Confer-
ence on Software Engineering, pages 667–678, 2016.

240

[SL12] S. Shyam Sunder and Edward A. Lee. Cyber-physical sys-
tems - a concept map. techreport, UC Berkeley, December
2012.

[SLB+11] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wą-
sowski, and Krzysztof Czarnecki. Reverse engineering fea-
ture models. In Proceedings of the 33rd International Con-
ference on Software Engineering, pages 461–470, 2011.

[SLY+21] Safdar Safdar, Hong Lu, Tao Yue, Shaukat Ali, and Kun-
ming Nie. A framework for automated multi-stage and
multi-step product configuration of cyber-physical systems.
Software and Systems Modeling, 19, 02 2021.

[SMP10] Vanessa Stricker, Andreas Metzger, and Klaus Pohl. Avoid-
ing redundant testing in application engineering. In
Software Product Lines: Going Beyond, pages 226–240.
Springer, 2010.

[SNS+18] Seung Yeob Shin, Shiva Nejati, Mehrdad Sabetzadeh, Li-
onel C. Briand, and Frank Zimmer. Test case prioritization
for acceptance testing of cyber physical systems: A multi-
objective search-based approach. In Proceedings of the
27th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2018, pages 49–60, New
York, NY, USA, 2018. ACM.

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A
comparison of decision modeling approaches in product
lines. In Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, VaMoS ’11, pages
119–126, New York, NY, USA, 2011.

[SRJ+17] Houbing Song, Danda B Rawat, Sabina Jeschke, et al.
Cyber-physical systems: Foundations, principles and appli-
cations. Academic Press/Elsevier, 2017.

[SSPRC15] Ana B Sánchez, Sergio Segura, José A Parejo, and Antonio
Ruiz-Cortés. Variability testing in the wild: the drupal
case study. Software & Systems Modeling, 16(1):173–194,
2015.

241

[SSRC14a] Ana B. Sánchez, S. Segura, and Antonio Ruiz-Cortés. A
comparison of test case prioritization criteria for software
product lines. In IEEE International Conference on Soft-
ware Testing, Verification, and Validation, pages 41–50,
2014.

[SSRC14b] Ana B Sánchez, Sergio Segura, and Antonio Ruiz-Cortés.
The drupal framework: A case study to evaluate variability
testing techniques. In Proceedings of the Eighth Inter-
national Workshop on Variability Modelling of Software-
Intensive Systems, page 11. ACM, 2014.

[SWYS11] J. Shi, J. Wan, H. Yan, and H. Suo. A survey of cyber-
physical systems. In 2011 International Conference on
Wireless Communications and Signal Processing (WCSP),
pages 1–6, Nov 2011.

[TAK+14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer,
and Gunter Saake. A classification and survey of analysis
strategies for software product lines. ACM Computing
Surveys (CSUR), 47(1):6, 2014.

[THHB14] Stephen W. Thomas, Hadi Hemmati, Ahmed E. Hassan,
and Dorothea Blostein. Static test case prioritization using
topic models. Empirical Software Engineering, 19(1):182–
212, 2014.

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens
Meinicke, Gunter Saake, and Thomas Leich. Featureide:
An extensible framework for feature-oriented software de-
velopment. Science of Computer Programming, 79:70 –
85, 2014. Experimental Software and Toolkits (EST 4):
A special issue of the Workshop on Academic Software
Development Tools and Techniques (WASDeTT-3 2010).

[TTK04] Antti Tevanlinna, Juha Taina, and Raine Kauppinen. Prod-
uct family testing: a survey. ACM SIGSOFT Software
Engineering Notes, 29(2):12–12, 2004.

242

[UKB10] E. Uzuncaova, S. Khurshid, and D. Batory. Incremental test
generation for software product lines. IEEE Transactions
on Software Engineering, 36(3):309–322, May 2010.

[UL10] M. Utting and B. Legeard. Practical model-based testing:
a tools approach. Elsevier, 2010.

[UPL12] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verifi-
cation and Reliability, 22:297–312, 2012.

[VAHT+18] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, To-
bias Runge, Mohammad Reza Mousavi, and Ina Schaefer.
A classification of product sampling for software product
lines. In Proceedings of the 22nd International Systems and
Software Product Line Conference-Volume 1, pages 1–13,
2018.

[VG07] Markus Voelter and Iris Groher. Product line implemen-
tation using aspect-oriented and model-driven software
development. In 11th International Software Product Line
Conference (SPLC 2007), pages 233–242. IEEE, 2007.

[VK04] Vijay Vaishnavi and William Kuechler. Design research
in information systems. Published on design science re-
search in information systems and technology website
http://desrist.org/desrist/, January 2004.

[WAC12] James A Whittaker, Jason Arbon, and Jeff Carollo. How
Google tests software. Addison-Wesley, 2012.

[WAG13] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. Minimizing
test suites in software product lines using weight-based
genetic algorithms. In Proceedings of the 2013 Genetic and
Evolutionary Computation Conference, pages 1493 – 1500,
Amsterdam, Netherlands, 2013.

[WAG15] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. Cost-
effective test suite minimization in product lines using
search techniques. Journal of Systems and Software,
103:370–391, may 2015.

243

[WAGL15] Shuai Wang, Shaukat Ali, Arnaud Gotlieb, and Marius
Liaaen. Automated product line test case selection: in-
dustrial case study and controlled experiment. Software &
Systems Modeling, pages 1–25, 2015.

[WAGL16a] Shuai Wang, Shaukat Ali, Arnaud Gotlieb, and Marius
Liaaen. A systematic test case selection methodology for
product lines: results and insights from an industrial case
study. Empirical Software Engineering, pages 1–37, 2016.

[WAGL16b] Shuai Wang, Shaukat Ali, Arnaud Gotlieb, and Marius
Liaaen. A systematic test case selection methodology for
product lines: results and insights from an industrial case
study. Empirical Software Engineering, 21(4):1586–1622,
2016.

[WAY+16] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius
Liaaen. A practical guide to select quality indicators for
assessing pareto-based search algorithms in search-based
software engineering. In Proceedings of the 38th Interna-
tional Conference on Software Engineering, pages 631–642.
ACM, 2016.

[WBA+14] Shuai Wang, David Buchmann, Shaukat Ali, Arnaud
Gotlieb, Dipesh Pradhan, and Marius Liaaen. Multi-
objective test prioritization in software product line testing:
An industrial case study. In Proceedings of the 18th In-
ternational Software Product Line Conference - Volume 1,
SPLC ’14, pages 32–41, New York, NY, USA, 2014. ACM.

[Wei08] David M. Weiss. The product line hall of fame. In Pro-
ceedings of the 2008 12th International Software Product
Line Conference, SPLC ’08, pages 395–, Washington, DC,
USA, 2008. IEEE Computer Society.

[WGAL13] Shuai Wang, Arnaud Gotlieb, Shaukat Ali, and Marius
Liaaen. Automated test case selection using feature model:
An industrial case study. In Ana Moreira, Bernhard Schätz,
Jeff Gray, Antonio Vallecillo, and Peter Clarke, editors,
Model-Driven Engineering Languages and Systems: 16th In-
ternational Conference, MODELS 2013, Miami, FL, USA,

244

September 29 – October 4, 2013. Proceedings, pages 237–
253, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[WL13] S. Weißleder and H. Lackner. Top-down and bottom-up
approach for model-based testing of product lines. In MBT,
pages 82–94, 2013.

[WNK14] H. Wu, C. Nie, and F.-C. Kuo. Test suite prioritization by
switching cost. In IWCT ’14, 2014.

[WSKR06] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfham-
mer, and Robert S. Roos. Time-aware test suite prioritiza-
tion. In Proceedings of the 2006 International Symposium
on Software Testing and Analysis, ISSTA ’06, pages 1–12,
New York, NY, USA, 2006. ACM.

[XXL18] Li Da Xu, Eric L Xu, and Ling Li. Industry 4.0: state of the
art and future trends. International Journal of Production
Research, 56(8):2941–2962, 2018.

[YH07] S. Yoo and M. Harman. Pareto efficient multi-objective
test case selection. In ISSTA ’07, pages 140–150, 2007.

[YH12] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: a survey. Software Testing,
Verification and Reliability, 22:67–120, 2012.

[YHTS09] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi.
Clustering test cases to achieve effective and scalable pri-
oritisation incorporating expert knowledge. In Proceedings
of the Eighteenth International Symposium on Software
Testing and Analysis, ISSTA ’09, pages 201–212, New York,
NY, USA, 2009. ACM.

[YSN+20] Jean-Paul A Yaacoub, Ola Salman, Hassan N Noura, Nes-
rine Kaaniche, Ali Chehab, and Mohamad Malli. Cyber-
physical systems security: Limitations, issues and future
trends. Microprocessors and Microsystems, 77:103201,
2020.

245

[ZGHY18] Xin Zhou, Xiaodong Gou, Tingting Huang, and Shunkun
Yang. Review on testing of cyber physical systems: Meth-
ods and testbeds. IEEE Access, 6:52179–52194, 2018.

[ZHZ+13] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel,
and Hong Mei. Bridging the gap between the total and
additional test-case prioritization strategies. In Proceedings
of the 2013 International Conference on Software Engineer-
ing, ICSE ’13, pages 192–201, Piscataway, NJ, USA, 2013.
IEEE Press.

[ZN08] Justyna Zander-Nowicka. Model-based testing of real-time
embedded systems in the automotive domain. phdthesis,
Electrical Engineering and Computer Science, Technical
University Berlin, December 2008.

[ZSM17] Justyna Zander, Ina Schieferdecker, and Pieter J Moster-
man. Model-based testing for embedded systems. CRC press,
2017.

[ZSV18] Qi Zhu and Alberto Sangiovanni-Vincentelli. Codesign
methodologies and tools for cyber–physical systems. Pro-
ceedings of the IEEE, 106(9):1484–1500, 2018.

246

	Contents
	Acronyms
	Foundation and Context
	Introduction
	Motivation and Scope of the Research
	Research Methodology
	Technical Contributions
	Publications
	Related Activities
	Document structure

	Technical Background
	Cyber-Physical Systems (CPS)
	Highly-Configurable Systems (HCS)
	Highly-Configurable Cyber-Physical System (HCCPS)
	Complementary notions

	State of the Art
	Testing Strategies
	Product Selection
	Product Prioritization
	Test Case Selection
	Test Case Prioritization
	Critical analysis of the state of the art

	Theoretical framework
	Research objectives
	Research Hypotheses
	Theoretical Framework Overview
	Case Studies

	HCCPS Test Optimization
	Search-Based Test Allocation for Iterative testing of HCCPS
	Contribution overview
	Introduction
	Search-based Test Allocation
	Evaluation
	Related Work
	Conclusions

	Test Case Selection of HCCPS using Structural Coverage
	Contribution overview
	Introduction
	Test Case Selection compared methods
	Evaluation
	Related Work
	Conclusions

	Dynamic prioritization of Products and Test Cases for testing HCCPS
	Contribution overview
	Introduction
	Dynamic test prioritization of product lines
	Application of the Approach on Configurable Simulation Models
	Evaluation
	Related Work
	Conclusions

	Final Remarks
	Conclusion
	Conclusions
	Perspectives and Future Work

	Appendices
	Structural Coverage Introduction
	Dynamic Prioritization Approach - Statistical Analysis supplementary tables

	Bibliography

