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A B S T R A C T

To boost competitiveness and meet changing customer demands, the manufacturing sector
is taking advantage of Information and Communication Technologies (ICT). Machining is
no exception, and machining processes are moving toward a more intelligent and connected
network to become part of an industrial digital ecosystem.

Despite the advances made to date, there are still considerable opportunities for improvement
because of the complexity of machining processes. In this context, extracting and analysing data
from machining operations can provide valuable information to predict undesirable aspects,
and take actions to reduce or prevent them.

The machining process taken as the focus of the present work is drilling. Drilling is one of
the most commonly used and critical machining operations on many machined components.
It is carried out in the last stages of product manufacture, where a mistake can result in a
defective part. In this thesis, a comparison and selection of the sensors with the best prediction
capacity of tool condition and surface roughness is carried out for the development of data
driven models that predict the mentioned parameters of the drilling process.

Various sensors were installed on a drilling machine, as well as internal machine signals, to
take series of physical measurements of the tool condition and the machined component. The
resulting data determines relationships for the creation of predictive models to identify errors
that may have occurred in the drilling operation based on acquired signals.

Through statistical analysis (t-test) of the results obtained from the data-driven models,
insight was gained into the predictive capability of each sensor. The most viable ones for tool
condition monitoring systems were then selected.

The features of the signals that best adapt to specific surface finish were established. Based
on a series of random measurements of the machined surface roughness, a methodology was
developed to map the signal features that best suit the roughness distribution of the machined
holes. By using hierarchical clustering and principal component analysis of the mapped signal
features, clusters are created to identify holes with damaged surfaces.

The adaptability of machining process monitoring systems to various input parameters is a
fundamental challenge for the automatic reconfiguration of such systems. For this reason the
dimensions of the features obtained were reduced to two dimensions using principal component
analysis as t-distributed stochastic neighbour embedding to be able to better identify the input
parameters.
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L A B U R P E N A

Lehiakortasuna bultzatzeko eta bezeroen eskaera aldakorrei erantzuteko, fabrikazio sektorea
Informazio eta Komunikazio Teknologiak (IKT) aprobetxatzen ari da. Mekanizazioa ez da
salbuespena, eta mekanizazio prozesuak sare adimentsuago eta konektatuago baterantz doaz
ekosistema digital industrial baten parte izateko.

Mekanizazio prozesuen konplexutasuna dela eta orain arte aurrerapenak lortu diren arren,
oraindik hobetzeko aukerak daude. Testuinguru horretan, mekanizazio prozesuetatik ater-
atako datuak, material edo erremintarako egoera arriskutsuak aurreikusteko eta prebenitzeko
informazio iturri bat izan daitezke.

Lan honen ardatz nagusia zulaketa prozesua da. Zulaketa, mekanizatutako atal askotan
gehien erabiltzen den operazio kritikoenetakoa da eta produktuaren fabrikazioko azken etapetan
egiten denez, akats batek pieza hondatu dezake. Tesi honetan sentsoreek barautzen desgastea eta
piezan lortutako zimurtasuna iragartzeko duten gaitasuna aztertzen da datuetan oinarritutako
ereduen bidez aipatutako parametroen iragarpena egiteko.

Hainbat sentsore instalatu ziren zulatzeko makina batean, baita makinaren barneko seinaleak
ere, erremintaren eta mekanizatutako atalen egoeraren zeharkako neurketa emateko. Zulaketa
prozesuan gerta litezkeen akatsak identifikatzeko, lortutako datuek parametro fisikoekin di-
tuzten korrelazioek zehazten dute iragarpen ereduak sortzeko gaitasuna.

Datuetan oinarritutako ereduetatik lortutako emaitzen analisi estatistikoaren (t-test) bidez,
sentsore bakoitzaren gaitasun iragarleari buruzko ezagutza lortu zen. Erremintaren egoera
kontrolatzeko sistemetarako bideragarrienak hautatzea bideratuz.

Ebaketa prozesuen errepikakortasunaren zehaztasuna funtsezko alderdi bat da mekanizatu-
tako piezaren akabera jakin bat bermatzeko. Mekanizatutako laginen artean, zimurtasunaren
ausazko neurketen arabera, zimurtasun profilaren distribuzioari gehien egokitzen zaizkien
seinaleen ezaugarrien aukeraketa egiten da. Taldekatze hierarkikoa aplikatuz, aukeratutako
ezaugarrien osagai nagusiak aztertuz eta sortutako taldeak irudikatuz, kaltetutako edo ez
kaltetutako zuloen bereizketa erakusten da.

Mekanizazio prozesuak kontrolatzeko sistemak sarrerako parametroetara egokitzea oinar-
rizko erronka da sistema horien birkonfigurazio automatikoa lortzeko. Hori dela eta, instalatu-
tako sentsore eta barne seinale bakoitzetik lortutako ezaugarrien osagai nagusien analisian eta t
distribuzioan banatutako bizilagunen txertatze estokastikoaren analisiak konparatuz sarrerako
parametroak bi dimentsiotan ikustea eta sailkatzea lortzen da.
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R E S U M E N

Para impulsar la competitividad y satisfacer las cambiantes demandas de los clientes, el sector
de la fabricación está aprovechando las tecnologías de la información y la comunicación (TIC).
El mecanizado no es una excepción, y los procesos de mecanizado están avanzando hacia una
red más inteligente y conectada para formar parte de un ecosistema digital industrial.

A pesar de los avances logrados hasta la fecha, todavía existen considerables oportunidades
de mejora debido a la complejidad de los procesos de mecanizado. En este contexto, la extracción
y el análisis de los datos de las operaciones de mecanizado pueden proporcionar información
valiosa para predecir los aspectos no deseados y tomar medidas para reducirlos o prevenirlos.

El proceso de mecanizado en el que se centra el presente trabajo es el taladrado. El taladrado
es una de las operaciones de mecanizado más utilizadas y críticas en muchos componentes
mecanizados. Se lleva a cabo en las últimas etapas de la fabricación del producto, donde un
error puede dar lugar a una pieza defectuosa. En esta tesis se realiza una comparación y
selección de los sensores con mejor capacidad de predicción del estado de la herramienta y
de la rugosidad superficial para el desarrollo de modelos basados en datos que predigan los
parámetros mencionados del proceso de taladrado.

Se instalaron diversos sensores en una máquina de taladrado, así como señales internas
de la máquina, para tomar medidas indirectas físicas del estado de la herramienta y del
componente mecanizado. Los datos resultantes determinan relaciones para la creación de
modelos predictivos que permitan identificar los errores que puedan haberse producido en la
operación de taladrado.

Mediante el análisis estadístico (prueba t) de los resultados obtenidos de los modelos basados
en datos, se obtuvo una visión de la capacidad de predicción de cada sensor. A continuación, se
seleccionaron los más viables para los sistemas de monitorización del estado de las herramientas.

Se establecieron las características de las señales que mejor se adaptan al acabado superficial
específico. A partir de una serie de mediciones aleatorias de la rugosidad de la superficie
mecanizada, se desarrolló una metodología para mapear las características de las señales que
mejor se adaptan a la distribución de la rugosidad de los agujeros mecanizados. Mediante el
uso de la agrupación jerárquica y el análisis de componentes principales de las características
de las señales mapeadas, se crean clusters para identificar los agujeros con superficies dañadas.

La adaptabilidad de los sistemas de monitorización del proceso de mecanizado a diversos
parámetros de entrada es un reto fundamental para la reconfiguración automática de dichos
sistemas. Por este motivo, las dimensiones de las características obtenidas se redujeron a dos
dimensiones utilizando el análisis de componentes principales como incrustación de vecinos
estocásticos distribuidos en t para poder identificar mejor los parámetros de entrada.
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1
I N T R O D U C T I O N

The technologies employed in industrial environments have always been in a state
of continuous evolution. Figure 1.1 shows the evolution of industrial and Machine
Learning (ML) from the point of view of complexity over time. After a long trajectory,
the so-called fourth industrial revolution at the turn of the 21st century has witnessed
the emergence of concepts such as the Internet of Things (IoT), big data and cyber-
physical systems. The application of these advances to industrial contexts has given
rise to a new concept of intelligent factories. In these environments, the exploitation
of the information captured during the manufacturing processes is essential to the
implementation of new production strategies.

The digital transformation of industrial processes and the introduction of the con-
cept of Industry 4.0 has opened up a wide range of opportunities in manufacturing
environments. This most recent revolution aims to adapt to the needs and variability
of production processes to increase resource allocation efficiency. The digitisation of

Figure 1.1 The evolution of Industrial and Artificial Intelligence, complexity over time

1



2 introduction

manufacturing means that we can reduce the time taken to market; increase process
flexibility, product quality, and energy efficiency; and improve the security of our
industrial networks. This all results in reduced costs and a more sustainable industrial
environment.

This shift towards industry 4.0 is brought about by integrating Internet and Com-
munication Technology (ICT) into manufacturing processes. In this scenario, diverse
physical objects are interconnected through the Internet. Collaboration between net-
worked elements, together with interaction with humans, can give machines greater
autonomy as they learn to recognise the surrounding environment based on previous
states. This close link between physical objects and the Internet is causing innovative
technologies to emerge continually, bringing with it a number of advantages:

Efficiency: With increased human-machine activity, decisions can be taken much faster
and more efficiently.

Reliability: With data analysis, more reliable products are obtained, which allows
both the quality control of the products and even the improvement of the quality.

Agility: When the link between the specifications of a product and its own production
process is tightened, it accelerates the entire production processes.

Innovation: Since Industry 4.0 production lines can accommodate high mix and low
volumes, they are ideal for the introduction of new products and experimentation
in design.

Customer experience: The responsiveness of customer requirements and greater
availability of information in Industry 4.0 means that manufacturers can offer
customers better service.

Costs: While Industry 4.0 requires initial investment, once intelligence is built into
products and processes, costs will fall significantly. Fewer quality problems lead
to less material waste, as well as lower personnel and operating costs.

According to the International Academy for Production Engineering (CIRP), machin-
ing covers almost half of all manufacturing processes. The term machining refers to
a range of processes where the manufacturing of components is made by material re-
moval: turning, drilling, milling etc. These processes are used in a range of applications
where in general high accuracy, productivity, reliability is required (Schmitz and Smith,
2009).

Some of the most strategic sectors where machining is applied are automotive, energy,
aerospace and railway. In the automotive sector, machining is applied to produce the
steering, transmission and central unit components. The energy sector has applications
in all sources, including thermal, nuclear, hydroelectric, wind, oil, and solar. In the
aerospace industry, manufacturing turbines, landing gears, and stabilisers are produced
by cutting tool machines, as are the railway sector rails and train wheels.

However, in the US alone more than $10 billion is wasted annually due to non-
optimal practices in the machining industry (Umbrello et al., 2004; Jawahir and Wang,
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2007; Equeter et al., 2020). These include incorrect use of cutting conditions, improper
selection of cutting tools and premature tool replacement. These losses would be
even greater, if the number of discarded components that do not meet specific sector
standards were to be aggregated. Additionally, it should be considered that surface
material properties can be modified by machining and thus the useful life of the
machined component can be reduced. Correcting only 1% of the abovementioned
malpractices could save $100 million per year.

The development of unmanned processes capable of performing human operator
tasks, can deliver significant improvements in productivity, cost and quality. Such pro-
cesses are created in human-machine collaborative environments, that allow machines
to gain autonomy from the operator experience through the use of appropriate ML

tools. In the context of machining, intelligence developed in the machine can learn to:
(I) replace cutting tools when they result in a defective state, (II) evaluate the quality
of the machined component, (III) modify the cutting conditions if necessary, and (IV)
detect situations that endanger the integrity of the part, tool or machine tool (collisions,
lack of coolant or chip tangling).

The collection and storage of sensor data can ensure more efficient use of cutting
tools and more effective selection of cutting condition parameters. Sensor data is not
merely a measurement of a physical parameter produced by a component. It also
has predictive capabilities for physical parameters that cannot be measured during
the manufacturing process. To ensure the closest information to what happens in the
process, sensors should be located as close as possible to the cutting process without
obstructing operations. The signals acquired are categorised as "far from the process"
or "close to the process" (Abubakr et al., 2021). The former includes machine current,
machine voltage, motor driver temperature, and motor power; while the latter refers
to dynamometers, accelerometers, acoustic emissions, strain, sound or temperature
measurements.

The selection of input parameters is a critical step in machining, with a very real
impact on the performance of the final part. The direct measurement of machined
component parameters describes the process performance, and the input parameters
are adapted to obtain the required product quality. Cleaning and adapting the data
to obtain signal features that provide information about the physical parameters of
interest, and the application of ML techniques to obtain explanatory or predictive
models are fundamental steps in moving towards a more automated, efficient and
sustainable production environment.

Through the use of ML technologies, machines learn for themselves the optimal
behaviour to meet production requirements. Furthermore, process monitoring makes
decision-making more efficient therefore, faster. This is called data-driven manufactur-
ing; where unlike physical models, decisions are based on the data collected during
the cutting process, eliminating assumptions and impressions. Figure 2.21 shows the
data-driven manufacturing cycle. The data generated in the production processes is
acquired either physically, through direct measurements, such as material properties,
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and tool condition; or via sensor measurements, such as vibrations, cutting forces,
and acoustic emissions. The data is then stored for analysis and subsequent decision
making.

Figure 1.2 Data-driven manufacturing (Xu et al., 2020)

In data-driven manufacturing, the machine should be in charge of predicting its
condition. Automatic alarm systems or notifications about the cutting process state are
fundamental for the future of machined parts. The data is the basis of this transition,
and will greatly assist the machine learning process and the prediction of future events.

The amount of data currently available to the scientific community to develop moni-
toring strategies is very limited, as data acquisition can be costly. The present research
therefore analyses approaches for developing predictive models capable of answering
the demands of the industrial environment, from the design and execution of process
experiments to the creation of models with acceptable results. ML techniques that
could be of great applicability in machining are explored by analysing and comparing
different sensor data sources. This gives a more comprehensive vision of each the
effectiveness of each sensor for different monitoring purposes.

The manufacturing process which we take as our focus is drilling. The drilling
process is a widely employed machining operation and one of the most demanding
operations in terms of chip removal processes. It is also one of the most critical steps
in a component production chain since it is performed, together with other finishing
operations, in the final stages of the manufacturing process. A failure generated during
drilling can spoil or lead to the premature deterioration of the desired component.

There is thus a clear need to optimise the drilling operation, increase the accuracy
of the machined parts, and reduce costs. Given the specifications to be met by the
machined part, improved monitoring and control of processes is also essential. Through
the use of the proper data analysis tools, the virtualisation and control of operations
becomes a reality, and steps are being taken towards transforming the machine tool
sector to a more automatic environment.
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research objectives

To determine the predictive capacity of each of the sensors installed in a drilling
machine and to find those variables that best adapt to certain characteristics of the
cutting process, the following objectives have been defined:

General objective: Establish a methodology that working on parameters such as
acoustic emission, cutting forces, vibrations, and those provided by the machine allows
discriminating tool condition, surface roughness and material damage that would have
occurred in the drilling operation to create data-driven predictive models for timely
decision-making.

Specific objectives:

• Design and development of an experimental set-up to perform drilling tests
collecting the sufficient quantity of signals and physical measurable parameters.

– Establish the drilling experiments to be carried out.

– Set up the different sensors and design the system for simultaneous acquisi-
tion of the internal machine signals and the installed sensors.

– Perform detailed measurements of tool condition, surface roughness and
material damage.

• Obtain reliable signal features to find robust relationships with those physical
parameters measured in the laboratory.

– Clean the signals to obtain the specific machining parts.

– Use feature extraction techniques from acquired signals.

• Label unknown observations based on the signal features and the limited number
of physical parameters measured during data acquisition.

– Employ machine learning techniques to establish relationships between the
physical parameters measured and their respective signal features at the
measured observations.

– From the relationships found, impute labels to the unknown observations.

• Apply ML algorithms to understand the features of the most representative
signals for different monitoring objectives of the drilling process.

– Employ machine learning algorithms on the collected signals to predict tool
condition, surface roughness or material damage.

– Perform statistical comparison of the results obtained with each of the signals
and the algorithms used.
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• Make a limited selection of physical sensors to detect tool condition, surface
roughness and material damage errors that may have occurred during the drilling
process.

– Identify signal features with the best predictive capability for the physical
parameters measured.

– On the basis of the most suitable features, select the sensors that have the
best predictive capability for the measured parameters.

This dissertation presents a data-driven process monitoring framework of drilling
process. This framework is envisaged in four layers, as shown in Figure 1.3. In the
machine layer, where the cutting takes place, several output parameters are generated,
and these are then collected in the data acquisition layer. The output parameters are
classified into two categories: industrial and scientific. Industrial parameters are physical
parameters that are to be improved or controlled and are usually measured directly,
stopping the cutting process. Scientific parameters on the other hand, are measured
by sensors, and provide information about physical process behaviour. Therefore, the
setup and data acquisition methodology was designed to be acquire the full range
of drilling process variability. In the data preparation layer analysis of the raw data
is carried out by processing, extracting features, and preparing sensor signals for the
measured physical parameters or target variables. The target variables are the tool
condition and aspects related to surface integrity (roughness and material damage).
In the machine learning layer, the most relevant features related to the defined target
variable are obtained. Once the most suitable signal features are identified, models are
generated to make predictions about future data.
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Figure 1.3 Process monitoring framework
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dissertation structure

The dissertation contains 8 chapters represented in Figure 1.4 . The following are the
summaries of each one of them.

Figure 1.4 Research methodology
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Chapter 2

Literature review: This chapter describes the fundamentals of cutting processes. It
shows those scientific variables used to control or understand the desired industrial
variables for process monitoring purposes. It also shows the most advanced applications
in this area, making a more in depth analysis of drilling processes. This chapter aims
to explore in depth the framework for monitoring cutting processes, particularly the
drilling process.

Chapter 3

Drilling process data collection, processing and cleaning methodologies: This chapter
focuses on the methodology employed for data collection during and after drilling
operations, data cleaning and signals feature extraction. The collection of data is the
key to the development of the thesis. The data collection was carried out in three test
batches on BLS 35CrMo4 Low S Steel with two different tool geometries and on Inconel
718 with three tool geometries.

Chapter 4

Tool condition classification through signal performance evaluation in BLS 35CrMo4
Low S Steel material with previously wear induced tools: In this chapter, the predictive
capacity of statistical features in the time domain of internal and external signals for the
prediction of flank wear in drilling processes is analysed. To this end, a methodology
based on automatic learning algorithms was developed. Secondly, once the most
sensitive signals to flank wear were identified, algorithms with signals of a specific
tool geometry were trained, and a model was obtained to predict the flank wear of a
different tool geometry. The results show that the feed force (external) and the z-axis
motor torque (internal) are able to perform the task adequately.

Chapter 5

Tool wear curve reconstruction in end-of-life tests and subsequent prediction of tool
breakage in Inconel 718: This chapter presents the results obtained in drilling process
monitoring carried out on Inconel 718. The main objective was to evaluate the capacity
of each acquisition source to reconstruct the flank wear curve and, subsequently, the
tool breakage detection. The methodology used to analyse the data makes it possible
to have a comparative analysis of each of these sources potential for tool flank wear
monitoring during the drilling process. The results indicate that cutting forces from
internal signals or external signals can carry out this task accurately. At the same time of
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data acquisition, detailed tool wear measurements were added. In addition, roughness
and material damage were analysed to examine the effect of tool wear on these two
characteristics of the machined component.

Chapter 6

Surface anomaly detection in BLS 35CrMo4 LoW S steel on a long machined time:
When analysing the surface generated, inevitable variability in the roughness profiles
obtained can be observed. External signal to the machine tool was acquired with sensors
(cutting forces, vibrations and acoustic emissions) as well as internal signals (spindle
power, spindle torque in the Z-axis, spindle current and positions, speeds, accelerations
and jerk of the tool tip in the three axes of the machine). The hierarchical clustering of
the process external and internal signals statistical features was compared with clusters
obtained using roughness parameters. Results show that clusters appear using signals
positively related to the roughness parameters obtained from the measured profiles,
confirming a mapping between the acquired signals during the machining process and
the roughness profile parameters.

Chapter 7

Influence of tool geometry, material and cutting conditions in sensor signals: dimen-
sionality reduction and data analysis: The input parameters of a cutting process are
fundamental for the creation of predictive models of the process. Systems must be
able to detect and identify changes in the input parameters and adapt the predictions
to the demands of the moment. This chapter question is to what extent changes in
input parameters can be interpreted in the signal features acquired during the drilling
process. Thus, discriminate the input parameter used in the proposed process window.
Two techniques of dimensionality reduction and visualisation were used; PCA and
tSNE.

Chapter 8

Conclusions and future development: The general conclusions and future develop-
ments of the research work are presented.

Chapter 9

Contributions: The scientific contributions made during the development of the the-
sis are mentioned, as well as journal articles, attended conferences and open-access
datasets.
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L I T E R AT U R E R E V I E W

This chapter aims to present the basic principles of the cutting process, define the
variables of interest in industrial environments and describe which signals are used
by the scientific community to explain these industrial key features. Finally, a review
of industrial applications and different works carried out up to date regarding the
monitoring of cutting processes based on ML, especially drilling are shown.

2.1 machining

Machining is defined as an industrial process in which a piece of material is shaped by
removing unwanted material (Schmitz and Smith, 2009). The geometrical specifications
of a component are produced by the relative movements of the tool and the workpiece.
These processes are a fundamental production branch of the automotive, railway,
naval, aviation, appliances and construction sectors. All these sectors require innovative
manufacturing processes for the development of new products with improved quality
and durability properties and, at the same time, reduce the production cost. Monitoring
and control of the cutting processes are essential to achieve customer specifications.

The cutting process can be presented as a set of input elements and output elements,
as shown in Figure 2.1. The input parameters are physical components and quantitative
parameters that define the process behaviour. Two concepts define the output of the
process, the industrial parameters and scientific parameters. Industrial parameters are
those which are desired to control or improve (surface roughness, tool life-cost, material
damage, etc.) because they define the characteristics of the component and scientific
parameters (cutting forces, vibrations, acoustic emissions, spindle power, etc.) which
are used to understand the cutting process.

Although almost all machining operations are performed in three dimensions, many
investigations are simplified to two dimensions to understand some of the complexities
of this process. Thus, this chapter will introduce the cutting process in 2D (Orthogonal
cutting), where the basic principles (chip formation process, cutting forces and heat
generation) are explained. The cutting process in 3D will then be presented, starting
with the turning process and followed by the drilling process.

11
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Figure 2.1 Input/output parameters of a cutting process

2.1.1 Orthogonal cutting

The most popular simplification for the cutting process analysis is the orthogonal
cutting system since it reduces the complications derived from the most advanced tool
geometry (El-Hofy, 2019).

The orthogonal cutting consists of sliding a wedge-shaped tool with a straight cutting
edge relative to the working material where a layer of metal of a given thickness (h) is
removed to form the chip.

Figure 2.2 shows the basic principles of the orthogonal cutting process. The workpiece
moves against the cutting tools at the cutting speed (Vc). The thickness of the material
to be removed is known as the uncut chip thickness (h), and it is expressed in (mm).

The tool geometry is defined by a series of surfaces oriented by angles. The surfaces
and angles defining a basic tool geometry for 2D are the following:

Rake face: It is the surface over which the chip slides.

Flank face: It is the surface in front of the generated surface.

Cutting edge: It is edge generated by the intersection of the rake and flank faces.
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Figure 2.2 Orthogonal cutting process, shear zones and cutting conditions

Rake angle (γ): This angle defines the orientation of the rake surface and has a
remarkable influence on the chip formation process. As its value becomes more
positive, cutting forces will be decreased.

Clearance angle (α): This angle, also known as relief angle, defines the orientation of
the flank face. This angle should be positive to prevent the flank from rubbing
against the material.

Shear angle (Φ): The angle made by the shear plane and the new surface.

When the workpiece material faces the cutting tool, it is deformed plastically in three
zones/areas (Kilicaslan, 2009).

Primary shear zone is the area where, according to some research works, the major
amount of plastic strain is produced to form the chip.

Secondary shear zone: It is the area where the chip is in contact with the rake
surface. Apart from the plastic deformation, friction between the tool and chip is
produced, generating a relevant temperature area.

Tertiary shear zone: is the area where the fresh surface generated rubs against the
tool. If the tool is fresh, the amount of plastic work and friction generated is low.
However, if the tool is worn, this area becomes very relevant, generating high
temperatures, which promotes microstructure damage and affects the surface
integrity condition.
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Dead zone of material: In some cases, due to the high mechanical loads, a dead
zone is created over the cutting edge Built-Up Edge (BUE), which modifies the
geometry of the cutting tool generating the chip formation process.

Cutting forces need to be applied by the cutting tools to generate the chip and the
plastic work. Two forces are defined in the orthogonal cutting:

Fc: Cutting force acting on cutting velocity direction.

Ft: Thrust force acting on thrust direction.

The resultant cutting force (R), is decomposed into two components Ft and Fc. Fc is
the force acting in the direction of the cutting speed (Vc) and is the amount of force
required to move the cutting tool through a given distance. The force Ft does no work,
but both components produce a deflection in the workpiece and in the cutting tool
during operation.

The plastics deformation produced at high strain rates generates a large amount of
heat distributed in the chip, tool and workpiece. The heat generated by friction in the
secondary zone adds an additional heat source to the process.

According to the working condition and workpiece material, different types of chips
morphologies can be formed. Figure 2.3 shows four basic shapes that can take the chip;
these are examples of the types of chips that can be formed in machining processes.

(a) Continuous chip (b) Discontinuous chip (c) Continuous chip
with BUE

(d) Serrated chip

Figure 2.3 Different chip formations (Childs et al., 2000)

Continuous chip is formed by cutting ductile metals at high cutting speeds, while the
discontinuous chip is generated at low cutting speeds in the same type of materials or
fragile materials. The continuous chip with BUE is created when low carbon steels are
machined with high-speed steel tools under low cutting speeds. Finally, the serrated
chip is the frequent chip morphology during high-speed machining of ductile materials
(Kilicaslan, 2009).
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2.1.2 Three-dimensional cutting processes (3D)

The most common machining operations are turning, milling and drilling. This sec-
tion aims to explain the metal cutting process in 3D, specifically the drilling process.
For this purpose, the turning process is described first since its nature is the most
straightforward process mentioned above. Next, the drilling process is explained.

2.1.2.1 Turning

Turning is the most common process in cutting processes by chip removal (Figure 2.4).
It is a process in which cylindrical parts are produced using a single-edged cutting tool.
In this operation, the workpiece is the one that rotates, keeping the tool stationary. The
cutting conditions to consider in this operation are the cutting speed Vc (m ·min−1),
the depth of cut ap (mm) and feed rate f (mm · rev−1), which is the one that makes the
difference compared to the simplified cutting process explained in the previous section.
Vc is considered the linear velocity of the periphery of the part in contact with the tool
material, so the cutting speed varies along the cutting edge.

Figure 2.4 Turning process and variables related to cutting conditions

The turning process involves different operations: external turning, internal turning,
longitudinal turning, profiling, or facing. Each operation affects the choice of tool and
cutting conditions. Besides, each of the operations may be either roughing or finishing,
affecting the initial decisions for turning.

2.1.2.2 Drilling

Drilling is the most productive method for machining holes (Figure 2.5). Before starting
a drilling process, the most critical parameters to consider are diameter, depth and
quality (tolerance, surface finish and straightness). These parameters influence the
choice of the tool to be used. In this process, it is the tool that carries out the cutting
movements. In this case, the cutting conditions to take into account are the cutting
speed (Vc) and the feed per revolution (f).
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Figure 2.5 Drilling operation and related variables (Adapted from: Astakhov (2010))

This operation usually occurs in the final stages of the production of an element,
followed by some finishing operations, boring, reaming, etc.; therefore, it is one of the
most critical manufacturing operations. According to Jindal (2012), an almost finished
part can be destroyed during the drilling process, causing a higher cost or leaving the
production line inactive for a while. Thus, it is an operation in which the control and
optimization of the process itself are of great importance to avoid problems and detect
the different errors in time.

The cutting speed varies along the cutting edge in drilling operations, with 0 at the
centre and Vcmax at the drill periphery. For this reason, the mechanisms of generation
of the chip will be very different according to which it is the chip entry zone (Zhao
et al., 2015).

A twist drill usually has two cutting edges that cut the material as in a turning
process, while in the centre of the drill, the material is removed by extrusion by the
chisel edge (Swinburne, 2005) which is the main responsible for geometrical errors and
high thrust forces (Smith, 2008). Figure 2.5 shows a drill geometry with two cutting
edges.
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An unlimited number of cutting tool designs can be found for drilling processes.
Each one of them designed to eliminate specific problems that occur during the cutting
process: increase the useful life of the tool, facilitate chip evacuation, reduce cutting
forces by increasing the penetration rate, improve the roughness of the machined part,
improve dimensional tolerances, etc.

Figure 2.6 represents an schematic view for cutting force generation in drilling
process. Assuming that the drill geometry is perfectly symmetrical, the cutting lips
produce most of the torque with a small part contributed through the chisel edge while
rotating against the resistance opposed by the workpiece material. The thrust force
results from several parameters involved in the drilling process: feed speed, hardness
of the working material, and coolant presence on the cutting lips. The cutting lips must
be of symmetrical length for the proper balancing of the cutting process, the chisel edge
is the part that has the highest contribution to the thrust force, and finally, the edges of
the drill bit, through friction, also contribute to the increase of the thrust force (Smith,
2008).

(a) Thrust forces (b) Torque forces

Figure 2.6 Compensation of cutting forces in drilling processes (Smith, 2008)

The thermal loads generated in drilling processes are essential as they affect the
deformation process for chip generation, workpiece finishing conditions and tool wear.
The distribution of the heat generated during drilling depends on the tool, workpiece
and chip thermal properties. Cooling of the cutting zone allows for greater chip control
and to reduce cutting temperatures during machining.

2.1.3 Industrial parameters to control

In cutting processes, surface integrity, dimensional deviations, and burr characteristics
provide information about the machined component quality. All these parameters could
be conditioned by tool wear, one of the major causes of faults in the machined part. In
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this section, a literature review is made on works related to these characteristics of the
machined part to identify the cutting process parameters that can have a relation with
them.

2.1.3.1 Tool wear

During the machining processes, the thermomechanical loads reached in the cutting tool
generate tool wear. This tool wear is responsible for some defects found in machined
workpieces, such as bad surface integrity condition, burr formation and inadequate
geometrical and dimensional tolerances. If the tool wear value is too high, sudden tool
breakage may destroy the machined part. One of the industrial techniques to avoid
premature tool failure or to guarantee a component surface integrity is to change the tool
frequently (Arrazola et al., 2014). The use of this technique increases the manufacturing
costs of specific components as well as paralysing the production process for a certain
period. This is why it is necessary to create optimisation mechanisms that allow
prolonging its useful life.

Tool wear mechanisms

Tool wear mechanisms can be mechanical, thermal or chemical and are defined as
follows by Trent and Wright (2000):

Abrasion: This mechanism takes place at the moment when a hard particle slides
over a softer surface. Therefore, it is a wear mechanism that depends on the
composition of both the working material and the tool. If the workpiece material
has harder particles than the tool, the wear is accelerated.

Diffusion: The wear created by this type of mechanism is due to the chemical affinity
between two materials. The atoms of the tool material are displaced to the surface
being machined due to high temperatures. At low cutting speeds, the crater wear
formed by this mechanism occurs slowly. It depends on the high temperatures
and the flow with which the material is removed from the working material
surface.

Oxidation: Nitrogen plays an important role in protecting the tool from this mecha-
nism, the areas where the temperature is high and are more exposed to oxygen
are mostly affected by this problem.

Fatigue: Both (I) mechanical and (II) thermal fatigue are factors that affect tool life,
and this mechanism can fracture the tool before other mechanisms become more
visible. (I) Intermittent loads applied against the tool can cause the tool to fracture
at the early stages of an operation. (II) Thermal fatigue causes small cracks in the
tool due to shrinkage and expansion of the tool surface layers as the tool heats up
during the cutting process and cools down between cutting operations. If there
are a large number of cracks, the tool could fracture.
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Adhesion: Also known as BUE. It is the adhesion of the chip to the cutting tool.
Over time, the chip becomes unstable, taking with it pieces of the tool material.
However, the BUE can sometimes protect the tool causing a positive effect on the
process.

The wear mechanisms appear depending on the conditions in which the machining
is being produced. Figure 2.7 shows the locations where the wear mechanisms occur
and their relationship to the machining process conditions.

Figure 2.7 Wear mechanism in metal cutting (Adapted from: Gao et al. (2015))

The wear mechanisms are dependent on the cutting temperature. At low cutting
temperatures, mechanisms such as adhesion BUE or abrasion are predominant. At high
cutting temperatures, the material adhered parts become more unstable thanks to the
material softening. However, other wear mechanisms such as diffusion and oxidation
appear.

Types of tool wear

From the above mechanisms, different defects can occur on the surface of the tool faces.
High temperatures, frictions or chemical affinity between the tool material and the
workpiece material negatively affect the tool life. Figure 2.8 shows the main tool wear
types.

Regarding the creation of monitoring systems, the most desired wear is flank wear,
since it predominates in the early stages of cutting processes, as it has been observed in
different works, (Eckstein et al., 2016; El-Wardany et al., 1996). In Khleif and Abdullah
(2017) the flank wear is described according to ISO 8688:1989 (Tool-life testing in milling)
and ISO 3685:1993 (Tool-life testing with single-point turning tools) as the loss of tool
particles along the cutting edge, and it is classified into three categories:

• Uniform flank wear: wear maintains a constant width along the entire cutting
edge.
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(a) Flank wear (b) Crater wear (c) Chisel edge wear

(d) Margin wear (e) Chipping (f) Tool periphery breakage

Figure 2.8 Types of drill wear

• Irregular flank wear: wear is at fixed points along the cutting edge.

• Fixed location flank wear: wear occurs at a fixed point on edge.

Figure 2.9 shows the flank Vb and margin wear Wm represented in a two cutting
edge drill and the interaction between minor cutting edges and workpiece material.
The flank wear measurement is an approximation of real wear since the average wear
length is Vb. The Vbmax is the maximum wear length found on the flank face, and it is
measured perpendicular to the major cutting edge. Wear is accelerated with the cutting
speed, so it is common for the tool to suffer more significant wear where the speed is
maximum. However, the minor cutting edge is where the new surface of the machined
material is generated. So this area is of great interest as far as drilling is concerned.

The tool geometry defines the aggressiveness with which the cut occurs; this is
fundamental for less damage to the surface of the material. Sharman et al. (2008)
studied the machinability of Inconel 718 with a curved edge drill with radius on the
periphery and a straight edge drill with a sharp periphery showing that the first option
results in longer tool life.

The coating protects the tool from the various wear mechanisms. Rahim and Sharif
(2007) made a comparison between the TiAlN and supernitride coatings, concluding that
the supernitride coating having a higher Al concentration protects the tool better when
Ti-6Al-4V material is machined. Ucun and Kaplan (2017) made a comparison between
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Figure 2.9 Flank and margin wear on drill bit according to cutting speed and drill minor
cutting edge/material interaction areas (Adapted from: Kwong et al. (2009a))

plasma-nitride coated High Speed Steel (HSS) and uncoated HSS bits. Concluding that
this type of coating increases the hardness of the drill bit extending its useful life.

Tool wear is subject to the cutting conditions used in the cutting process. At high
cutting speeds, the tool useful life is reduced. Increasing the cutting speed, the temper-
atures generated during the cutting process increase, accelerating the erosion process.
This causes the generation of low-quality holes (Rahim and Sharif, 2006; Jindal, 2012).

2.1.3.2 Surface integrity

The surface integrity (roughness, residual stresses, material damage, etc.) condition of a
components will define its behaviour, aspects such as fatigue life, tribology or corrosion.
According to Moussaoui et al. (2013), this characteristic of the machined component is
defined based on three parameters:

Geometrical parameter: roughness

Mechanical parameter: residual stresses

Metallurgical parameter: microhardness and microstructure

Surface specifications will be different depending on the function of the machined
component. Some components will have (I) mechanical functions, which will suffer
mechanical loads. Others will have to fulfil (II) thermal functions, heat-resistant com-
ponents with high thermal conductivity. Components with (III) tribological functions
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interact with other components. Components with (IV) optical functions with high
light reflection capacity or (V) flow functions that will be in contact with fluids.

Surface roughness

Surface roughness is a widely used indicator of technical requirements of a component
(Benardos and Vosniakos, 2003). Gadelmawla et al. (2002) defined the parameters that
can be calculated from roughness profiles. They explained measures of amplitude, space
and hybrids. Some of these parameters need to be adapted to the user requirements,
depending on the component application.

As reported by Bhushan (2000), among the different ways of measuring roughness
(contact roughness meter, optical profilometry, atomic force microscopes, etc.), they
showed that optical profilers are non-contact and can produce three-dimensional
profiles rapidly and without any lateral motion between the optical spindle and the
sample. Three-dimensional roughness height data can be processed to calculate a
variety of amplitude and spatial functions and parameters. 3D measurements can
provide more information than 2D measurements. In industrial environments, 3D
measurement practice can be difficult, given the constraints of the environment (dust
or vibrations from the environment) and the preparation of the area to be measured.
Table 2.1 shows the parameters that can be obtained from roughness profiles.

Table 2.1 Roughness parameters (Source: ISO 4287-1997 (1998))

Name Description Unit

Ra Average roughness of profile µm

Rq Root-Mean-Square roughness of profile µm

Rt Maximum peak to valley height of roughness profile µm

Rz Mean peak to valley height of roughness profile µm

Rmax Maximum peak to valley height of roughness profile within a sampling length µm

Rp Maximum peak height of roughness profile µm

Rv Maximum valley height of roughness profile µm

Rc Mean height of profile irregularities of roughness profile µm

Rsm Mean spacing of profile irregularities of roughness profile µm

Rsk Skewness of roughness profile
Rku Kurtosis of roughness profile
Rdq Root-Mean-Square slope of roughness profile
Rt/Rz Extreme Scratch/Peak value of roughness profile, (>= 1), higher values represent larger scratches/peaks

Among all these parameters, the most used one is Ra. However, this parameter
alone does not explain the entire roughness profile. Most of the common machining
processes produce surfaces with asymmetric (non-Gaussian) profiles. Turning and
shaping generate rough surfaces with positive skewness. Whereas grinding, honing
and milling generate rough surfaces with negative skewness and high kurtosis, a
surface with negative skewness always has a larger contact area ratio (Zhang et al.,
2014). In the case of drilling processes, Wern et al. (1993) showed that this process
generates a negative skewness and high kurtosis. Figure 2.10 a) shows two different
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roughness profiles with the same Ra and different skewness, Figure 2.10 b) shows
two different roughness profiles with the same Ra and different kurtosis. Amor et al.
(2015) showed that profiles with the same level of roughness Ra and different degree
of skewness Rsk do not have the same contact properties. They also showed that the
negative skewness and the lower value of Ra are advisable to achieve a high normal
contact stiffness. The profile with positive skewness shows a smaller support area.
However, the negative skewness profile can lead to fracture propagation and can hurt
a component fatigue life. Thus, it is important to consider more than one parameter
among those obtained from the roughness profile to reference the requirements to be
fulfilled by the machined component. The kurtosis value Rku indicates the uniformity
of peaks along with the measured roughness profile. This value provides information
about lubrication retention problems on in-service components or wear on industrial
components caused by random peaks on the machined surface (Smith, 2008).

(a) Profile skewness (b) Profile kurtosis

Figure 2.10 Surface roughness profiles with same Ra parameter a) different skewness distribu-
tions b) different kurtosis distributions (Adapted from: Gadelmawla et al. (2002))

Rahim and Sharif (2006) investigated the effect of cutting speed on the tool and
surface integrity when drilling two different titanium alloys. They showed that a worse
roughness is achieved at low cutting speeds, but the tool life is extended. On the
contrary, at high cutting speeds, the tool wear is accelerated, but a better roughness
is obtained. They suggest that this effect could be due to the increase in temperature
of the cutting area which leads to a modification of the separation mechanisms of the
material.

In the aeronautical industry, a finishing operation is necessary to meet the require-
ments for the assembly of components in many cases. Eckstein et al. (2016) analysed
the drilling of holes on Inconel 718 using both the roughing process (drilling) and the
finishing process (reaming). The roughness tends to be similar in both cases obtaining
better results in the finishing process. The roughness improves in the early stages in
both processes, and it is suggested that this tendency is due to the rounding effect of
the cutting edges. Zhao et al. (2015) compared the roughness of holes made by drilling
and helical milling (Figure 2.11), concluding that drilling resulted in a better roughness.

According to Benardos and Vosniakos (2003) the roughness could be influenced by
the workpiece properties: hardness, diameter, length. The cutting tool properties: nose
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Figure 2.11 Surface roughness in drilling and helical milling (Adapted from: Zhao et al. (2015))

radius, tool material, tool shape. Machining parameters: process kinematics, tool angle,
step-over, depth of cut, feed rate, cutting speed, and the machine itself and cutting
phenomena involved in the process like vibrations, accelerations, chip formation and
friction in the cutting zone affect the roughness profile.

At first instance, it seems that the feed is the most influential parameter in the ma-
chined part roughness. The most used parameters to characterize the surface roughness
are Ra, Rz and Rt. These parameters only explain the amplitude details of the roughness
profile. As we have already seen, the parameter Ra can adopt the same values indepen-
dently of the shape of the profile. Therefore several statistical parameters concerning
the roughness profile are needed to evaluate a machined surface.

In drilling, roughness is more complicated than in other processes. When deepening
in the hole, the tool and generated chip both exert rubbing on the machined part.
Therefore, the roughness profile could be altered from the machined roughness profile
to the obtained roughness profile.

Residual stresses

As reported by Kudryavtsev (2008) residual stresses in a structural material or compo-
nent are those stresses that exist in the object without applying any service or other
external loads. Residual stress could be caused by localised yielding of the material
because of a sharp notch or specific surface treatments like shot peening or surface
hardening.

Residual stresses are introduced into the machined parts in manufacturing processes
by plastic deformations or metallurgical deformations (Smith, 2008). This influences
both the fatigue strength and the fracture strength of the machined component, includ-
ing corrosion resistance (Lu, 2002). Tensile stresses (positive stresses) tend to reduce
component fatigue life, while compressive stresses (negative stresses) tend to increase



2.1 machining 25

this characteristic as it was observed by Zhao et al. (2015). Therefore to increase the
fatigue strength of a component, compressive stresses are of major interest.

König et al. (1993) analysed the residual stresses in a turning process, Figure 2.12

shows the distribution of the residual stresses they obtained in their research. It can be
seen that tensile residual stresses do not appear in the surface layer until machining
has been carried out for a certain period. Thus, these results confirm that the tensile
residual stresses are affected by the tool wear Vb.

Figure 2.12 Residual stresses in turning (Adapted from: König et al. (1993))

Kwong et al. (2009a) measured residual stresses in drilling process of RR1000 alloy
for new and worn tools along the hole depth (Figure 2.13 a)). They showed compressive
residual stresses in axial direction while in hoop direction the trend was mainly tensile.
When the tool is worn, compressive residual stresses were observed at the entrance of
the hole due to the friction generated by the interaction of the worn minor cutting edge
and the workpiece material. In other work made by Kwong et al. (2009b) the residual
stress profile measured at 4mm hole depth was observed (Figure 2.13 b)), showing that
in the hoop direction at the surface there are tensile stresses becoming compressive as
it deepens into the posterior layers.

Micro-hardness and micro-structure

The main defects found in the machined microstructure are feed marks, chip rede-
position on the machined surface, grain deformation, particle plucking and particle
redeposition. These particles can cause dragging and tearing (Ulutan and Ozel, 2011).
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(a) Residual stresess through hole depth (f = 0.1mm/rev,n = 1061 − 1592rpm) (Adapted from:
Kwong et al. (2009a))

(b) Residual stresses at 4mm hole depth (MRR ≈ 10000mm3/min,� = 1.1mm) (Adapted from:
Kwong et al. (2009b))

Figure 2.13 Residual stress profile along depth of hole and at 4mm subsurface residual stresses

Figure 2.14 shows examples of material damage with the white layer or plastic
deformations found by Zhao et al. (2015) in drilling and helical milling. When the tool
is worn, the white layer of the surface is discontinuous. The increase of friction between
the flank and the workpiece material causes the temperature to increase, breaking the
white layer.

According to Herbert et al. (2012), the characteristics of the deformed layers found
during drilling are somewhat different from other processes. This is probably due to
increased contact between the workpiece surface and the worn major and minor cutting
edges, which resulted in the removal/fracture of the white layer as the drill advances
into the workpiece. Formation of the white layer during drilling can be removed if the
process is followed by plunge milling.
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(a) Drilling (b) Helical milling

Figure 2.14 Example of micro-structural damage a) Drilling operation b) Helical milling
finishing operation (Adapted from: Zhao et al. (2015))

Thakur and Gangopadhyay (2016) revealed that alloy 720Li and RR1000 having
smaller grain size, higher yield strength and ultimate tensile strength than waspalloy
and alloy 718 demonstrated higher thickness of Severe Plastic Deformation (SPD)
white layer during abusive drilling as shown in Figure 2.15. Moreover, the same
layer for alloy 720Li and RR1000 also exhibited delamination and cracks near the free
surface and at the interface between layer and bulk material due to more pronounced
thermomechanical loading. The white layer can also be specified and evaluated based
on cutting parameters, cutting environment, type of tools and tool wear. The hard
and brittle nature of this widely deformed region contributes to fatigue failure of the
machined component in a given operating environment. Therefore, the study of how to
minimise the thickness of this deformed region is of great importance.

Figure 2.15 SEM close view of the severe plastic deformation layers produced by abusive
drilling (Vc of 35 m/min, f of 0.12 mm/rev, dry environment) of a) Alloy 718, b)
Waspaloy, c) Alloy 720Li, d) and RR1000 (Thakur and Gangopadhyay, 2016)
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Sharman et al. (2008) analysed the deformed layer of the material with different tool
geometries in drilling processes on Inconel 718. They showed that there is no significant
increase in the deformed layer despite the different tool wear patterns. The depth of the
deformed layer with each tool geometry obtained in this study can be seen in Figure
2.16. They did not expect these results. However, they said that the cutting action of
minor cutting edges could significantly influence the material damage since they have
closer contact with the generated surface.

Figure 2.16 Grain boundary deformation in drilling process for Inconel 718 with different
tool geometries, Vc = 25m/min, f = 0.1mm/rev (Adapted from: Sharman et al.
(2008))

Zhao et al. (2015) observed how in drilling operations, the micro-hardness decreases
concerning the raw material at the hole entrance because of the thermal softening. As
the tool advances, the micro-hardness increases again, decreasing at the hole exit to
values equal to the bulk material. In contrast with the helical milling, they obtain a
maximum in the micro-hardness at the hole entrance to decrease until the exit. The
same phenomenon has been observed in both cases for worn and new tools.

As stated by Thakur and Gangopadhyay (2016) workpiece hardening phenomena can
be effectively captured by progressively measuring micro-hardness at various depths
below the machined surface. The results indicate that the machined surface hardness
gradually approaches its bulk value as distance increases away from the machined
surface. Alloy 720Li and RR1000 showed a higher value of nano-hardness along with
the deformed layer than those for waspalloy and alloy 718. Variation of work hardening
of different materials is shown in Figure 2.17.

2.1.3.3 Burr

Some of the cutting processes do not generate well-finished edges on machined parts.
Irregular edges, raised surfaces known as burring, can appear (Lee and Dornfeld, 2005).

The formation of burrs in drilling processes is a problem for the machined component
durability and the assembly with other parts. Therefore, second operations are necessary
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Figure 2.17 Nano-hardness profiles under the abusive drilling (Vc of 35 m/min, f of
0.12 mm/rev, dry environment) of the four Ni-based superalloys (Adapted
from: Thakur and Gangopadhyay (2016))

to remove the burrs formed during the process. Figure 2.18 shows some cases of burr
in the drilling process.

Figure 2.18 Types of burr in drilling process (Min et al., 2001)

The appearance of burrs in drilling processes is formed by the tool geometry, proper-
ties of the working material and cutting conditions. The most controllable parameters
are the cutting conditions. Specifically, the feed per revolution and the cutting speed (Ab-
delhafeez et al., 2015).

Karnik and Gaitonde (2008) showed that there is a non-linear relationship between
cutting conditions and burr height. The interaction between different parameters and
the height of the burr is different from the width of the burr. The feed is the most
significant parameter in burr formation, while the cutting speed is negligible in terms
of burr height. The lower the clearance angle, the lower the height and width of the
burr.

In micro milling processes, deburring can be a problem due to the machined part
small size. Conventional deburring processes cannot be easily applied. Besides, the
deburring process can introduce dimensional errors and could destroy the machined
part. Lee and Dornfeld (2005) studied the effect of cutting conditions when machining
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holes in micro-milling processes observing that burr height is related to tool wear and
feed per revolution. Zhao et al. (2015) showed that finishing a hole with helical milling
produces less burr than conventional drilling.

2.1.3.4 Dimensional and geometrical tolerances

In specific industries, the precision with which a hole is machined is essential in
assembly requirements. This is why a proper selection of cutting conditions must be
made before a part is machined. Incorrect selection of cutting conditions can lead to
rougher surfaces and dimensional errors, which can cause a deviation from the correct
operation of the assembled part.

Various factors such as diameter deviation, hole tapering, angularity or location errors
can be analysed (Dechow, 1998). Dimensional errors can also be measured in terms
of circularity and cylindricity (Sultan et al., 2015). Each of these aspects is measured
depending on the application and requirements of the machined part.

Circularity is a 2D dimension measured in any portion transversal to the axis of
the hole, which indicates whether a hole in that position meets previously established
tolerances. This measure can be applied to any circular body such as spheres, cones,
etc. On the other hand, cylindricity is a 3D dimension, and it can be only be applied
to cylindrical shapes. This measure indicates if the whole hole respects a previously
established tolerance along the whole axis (Sultan et al., 2015). Figure 2.19 shows the
measurement of these dimensions graphically.

Figure 2.19 Graphic representation of geometrical tolerances (Adapted from: Souza et al.
(2012))

Jindal (2012), Abdelhafeez et al. (2015), and Waqar et al. (2016) reported that the
diameter of the hole is larger at the entrance than at the exit. This is because the tool
is in continuous contact with the holes entry, and there is a displacement of the drill
when it comes into contact with the working material. Both Abdelhafeez et al. (2015)
and Waqar et al. (2016) found no linear relationship between the cutting conditions
and the deviation of the hole diameter, so other factors affect this parameter as the
vibrations, diameter of the tool, etc. On the contrary Sultan et al. (2015) registered that
there is less deviation from the diameter at a low cutting speed. This is because the
spindle vibrates less when the cutting speed is low.
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Ranjan et al. (2020) analysed the roundness errors of various cutting conditions in a
microdrilling process. They observed an increase in the mean roundness error subject
to increasing cutting speed and increasing feed rate (Figure 2.20). They also showed
that the roundness error is similar to vibration with respect to the drilled hole number.

Figure 2.20 Roundness error for microdrilling at different cutting conditions
(diameter=0.4mm) (Adapted from: Ranjan et al. (2020))

2.1.4 Cutting process modelling

The modelling allows to obtain a precise analysis in order to have a better control
over the cutting process. Given the variety of physical phenomena involved in cutting
processes (thermomechanical coupling, friction or material failure), there are several
techniques for modelling and simulate cutting processes: analytical, experimental, finite
element, mechanistic and data-driven modelling. This section presents the fundamentals
of each of these methods and briefly discusses them.

Analytical modelling represents the system in terms of a set of mathematical equa-
tions that specify the parametric relationships and associated parameter values as a
function of time, space and other system parameters. Most studies try to determine
equations without any experimental work that can be used to look for relationships
with other parameters, such as tool wear (Markopoulos, 2013). However, in the review
made by Ehmann et al., 1997, it is stated that analytical models do not obtain accurate
results because the model response depends on more variables than the analytical
model takes into account. The cutting mechanism, the interaction between the tool
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flank and the workpiece material and the interaction between the chip and the cutting
tool are the main reasons.

Experimental methods seek to find relationships between the cutting parameters
and the phenomena that occur during cutting processes. However, the physical phe-
nomena are ignored, and the view of the dynamics of the process is lost. Although
expressions have been found that relate the parameters involved in material removal to
the phenomena, in most cases, these methods are not practical for many applications.

Mechanistic modelling, which is not purely analytical as it depends on coefficients
obtained from experimental tests. It is a combination of analytical and experimental
methods. They are based on understanding the behaviour of the components of a
system. It aims to establish a mechanical relationship between inputs and outputs,
and it is difficult to incorporate information from multiple spatial and temporal scales
with precision. Once validated, can be used as a predictive tool where experiments are
difficult or costly to perform. Mathematical methods introduce some numerical errors,
and the determination of model coefficients can be a costly task.

Numerical simulation by the finite element method has proven to be a reliable
alternative to analyse several metal forming operations. Plastic deformation takes place
in small areas, and the temperature increase in the local area due to plastic deformation
and friction induces softening and changes the material properties of the part in terms
of strain rates and temperatures. Therefore, it is necessary to take the temperature
rise into account in the calculations performed, which means that, in addition to the
mechanical problem, a heat transfer problem must be treated in a simulated form,
thus requiring a coupled analysis. In the finite element method, the basic principle is
the replacement of a continuum by finite elements forming a mesh. This procedure is
called discretisation. Each finite element is simpler in geometry and, therefore, easier
to analyse than the whole structure. However, it needs high computational power to
produce accurate results (Markopoulos, 2013).

Experience gained from machining processes, audio-visual observations and human
intelligence have contributed to a better understanding of the cutting process. However,
analytical, empirical, mechanistic, and finite element modelling have to simplify since
accurate predictions require tedious trial-and-error processes and excessive computing
power for validation. Thus, data-driven models have emerged as an alternative to the
methods mentioned above. Figure 2.21 shows the difference between conventional
process modelling methods and data-driven manufacturing.

In opposition to conventional modelling methods, data-driven is based on the data
obtained from the cutting process, which is the key enabler to realise smart manufac-
turing. A model is trained to accurately predict the target in the limit of the input data
provided for training without considering any physical parameters. These methods
are characterised by modelling nonlinear and multidimensional problems with a fast
response that makes them feasible for real-time monitoring. The disadvantages are (i)
the large amount of data required for training and (ii) some algorithms are based on
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the black box concept, which does not allow to understand the key variables that allow
obtaining the output.

Figure 2.21 Model-based manufacturing and data-driven manufacturing (Xu et al., 2020)
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2.2 process monitoring

The monitoring of cutting processes is a fundamental branch to avoid problems during
the production of components to achieve greater automation and reduce operating costs.
Current approaches used in the industry exhibit disadvantages in their reliability due to
process uncertainties. Therefore, the strategies employed by the scientific community are
an alternative to the disadvantages present in the industry. This section first introduces
industrial monitoring systems and then presents the framework developed within
the scientific community to overcome the limitations of the strategies of industrial
monitoring systems.

2.2.1 Industrial monitoring systems

There are several industrial products for tool condition monitoring, employing, most
of them, the same methods like those presented by Jemielniak (1999). The monitoring
strategies in the industry are based on fixing limits based on the acquired signal
and triggering alarms if a new signal exceeds the established limits. Static limits can
be of three types: (I) The limits can be established from the beginning by the user,
(II) or they can be fixed by a signal acquired after one part machining with a new
tool automatically, these first two are offered by most of the suppliers of tool wear
monitoring systems. (III) In the case of using floating limits, the program resets the
limits from one machined part to another. The option to use this type of limits only
allows for Montronix (Montronix, n.d.) and Nordmann (Nordmann, n.d.) systems. (IV)
Dynamic limits in which the system itself adapts the limits taking into account the
fluctuations that could occur in a given signal are offered by Sandvik coroPlus system
(Sandvik Coromant, n.d.). In Table 2.2 the sensors and monitoring strategies used by
industrial systems can be consulted.

The Promicron spike technology uses a dedicated tool holder to measure forces and
bending moment in the X and Y directions directly on the tool. In milling processes,
polar coordinate displays are used to detect tool wear (Figure 2.22). The successive
polar coordinate system is compared against the original one to see each of the leaves
formed in the visualisation chart.

Fixed limits are set at N% above the learning curve and N% below, using various
limits. For example, the recorded signal represents the 100%, the limit1 is fixed at 200%
while the limit2 is fixed at 150%, finally the limit3 is fixed at 50%. If the signal exceeds
the limit1 an alarm is triggered for tool change. If the signal exceeds the limit2 indicate
a worn tool. In the event that the curve falls below the lower limit prematurely (limit3),
an alarm will also be given to indicate a missing tool. Figure 2.23 shows an example of
the fixed and part defined limits of the Montronix systems (Montronix, n.d.).

The floating limits are a type of fixed limit and are automatically reset to the next
cycle based on the previous cycles, resetting the established limits. This allows detecting
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Table 2.2 Sensor and monitoring strategies used by industrial tool condition monitoring
systems

Suppliers Sensors
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strategy
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Promicron spike (Promicron, n.d.) x x
Artis CTM (ARTIS, n.d.) x x x x x
Montronix (Montronix, n.d.) x x x x x x x x
Sandvik coroPlus (Sandvik Coromant, n.d.) x x x x x x x
Nordmann (Nordmann, n.d.) x x x x x x x
Caron Eng. TMAC 3.0 (Caron, n.d.) x x x x
WattPilote (Wattpilote, n.d.) x x x

Figure 2.22 Spike system polar plot for milling process tool condition detection (Adapted
from: Promicron (n.d.))

tool breakage without exceeding the limit of tool wear, e.g. in multispindle applications
(Montronix, n.d.; Nordmann, n.d.). Figure 2.24 shows an example of Nordmann’s
monitoring system in drilling. It shows an example of drill bit breakage detection in
multi-spindle with 6 drill heads. The changes in measured value height due to the
breakage of a single drill are smaller than the changes due to the wear of all drills. The
sliding envelope limit (limit2) changes from workpiece to workpiece in height due to
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(a) Fixed limit

(b) Part defined limit

Figure 2.23 Static fixed limits and part defined limits on Montronix system (Adapted from:
Montronix (n.d.))

tool wear. This allows a much smaller distance between the envelope (limit2) and the
measuring curve.

The Sandvik Coroplus system offers dynamic limits (Figure 2.25) where they are
basically to detect tool breakage. An adjustable relative distance is used, which ac-
companies the signal in a variable way. The signal only exceeds the limit with a rapid
change (with adjustable sensitivity). This helps to detect breakage without the risk of
setting the limits too low or too high.

The use of these techniques may be limited to tool diameters or cutting conditions
employed during the cutting process because the cutting forces and the power generated
can be very low. Among the suppliers of such systems, specified limits may range from
� = 0.1mm on the Nordmann (n.d.) systems, � = 1mm on Wattpilote (n.d.) systems
or � < 3mm on Montronix (n.d.) systems.
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Figure 2.24 Nordmann system floating limit monitoring strategy based on motor effective
power measurement (Adapted from: Nordmann (n.d.))

(a) Stable performance (b) Tool breakage

Figure 2.25 Sandvik coroplus dynamic limits for tool wear monitoring (Adapted from: Sandvik
Coromant (n.d.))

Industrial tool monitoring systems have employed the same strategies for years. The
system offered by Promicron spike is one of the most different from the rest because of
the visualisation strategy and the smart tool holder it employs. Most of these systems
lead to false positives due to process uncertainties, especially in flexible machining
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processes, and therefore the reliability is questionable (O’Donnell et al., 2001). These
systems often have close ranges of performance or require considerable training or
set-up time to operate properly.

2.2.2 A framework for intelligent process monitoring

This section defines the most commonly used signals for monitoring cutting processes,
to detect the premature tool breakage, tool wear and component finishing conditions,
without disturbing the machining process and an easy and cost effective maintenance.

2.2.2.1 Sensing techniques

Sensor signals facilitate the detection of premature tool breakage, tool wear and compo-
nent finishing conditions. This must be done without disturbing the machining process.
Besides, maintenance should be easy and cost-effective. This section defines the most
commonly used signals for monitoring cutting processes.

Cutting forces

The cutting force is mainly affected by cutting conditions (Vc, f, ap), cutting tool
geometry and workpiece material properties. According to Rahim and Sharif (2006) and
Wei et al. (2016) the thrust force (Fz) decreases with increasing Vc. This happens as a
result of increasing temperatures in the cutting process. As the cutting speed increases,
the shear angle also increases, and the shear plane length decreases decreasing also the
generated chip thickness. Reducing the shear plane length requires less cutting force to
produce the necessary stress for the workpiece material deformation. As the process
continues under specific cutting conditions, the micro-geometry of the tool is altered
(tool wear), thus increasing the friction between the material and the flank face in the
tertiary shear zone and increasing the thrust force (Arrazola et al., 2014).

Subramanian and Cook (1977) showed that the cutting forces are dependent on the
hardness of the material. They concluded that cutting forces for tool wear monitoring
is only possible if there is a tolerance of 5% in the hardness of the workpiece material.
It is also known that the increase in temperature varies essentially in proportion to
the hardness. They found a very rapid increase in flank wear at the end of tool life,
accompanied by a significant increase in torque, thrust, and spindle power. They said
that unless the workpiece hardness value is closely controlled, thrust force cannot be
used as a meaningful variable for sensing drill wear. Similar arguments can be extended
for the torque measurements also.

Brinksmeier (1990) showed that by installing a sensor to measure the cutting torque
in the drill shank, the measurement is more sensitive to the cutting process due to
the closeness to the cutting area. The spindle mass and the drive unit damping char-
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acteristics are of minor importance. Therefore, accurate measurements were achieved
and he showed that it is also possible to predict tool fracture by evaluating the higher
frequency content of drill torque.

In Balsamo et al. (2016) the tool breakage was detected in the turning process from
time domain features extracted from the three components (Fx, Fy, Fz) of the cutting
forces, creating a robust system capable of detecting tool catastrophic failure in early
stages of the turning process with the mean and variance of these signals.

Shah et al. (2010) showed the linear relationship between tool wear and Fz/ Mz

signals (Figure 2.26) recorded by an stationary dynamometer in drilling process. Despite
the high relationship, they said that the acquisition of these signals is more expensive
than other measurements due to sensor costs and geometrical limitations.

Figure 2.26 Thrust force and torque signal relationship with tool wear in drilling process
(Adapted from: Shah et al. (2010))

To sum up, cutting forces are signals that are sensitive to the tool geometry. Therefore,
when modifying the micro-geometry of the tool, the tool wear increases cutting forces.
The assembly and adjustment of dynamometer sensors can be a problem in industrial
production environments, so it is considered the use of other types of measurements.
Problems like geometric constraints on three-axis dynamometers where the size of the
part is restricted by the size of the dynamometer.

Acoustic emissions

Acoustic Emission (AE) are a way of identifying different phenomena in materials or
structures in a wide range of frequency, from 100 to 900kHz. In general, this signal is
used to locate micro-cracks, plastic deformations, corrosion, etc. In machining oper-
ations locating the source of the acoustic emissions is a difficult task. Therefore, the
most common use is to detect transient signals (Grosse and Linzer, 2008). According
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to Bhuiyan et al. (2016), this signal is based on two types of components, continuous
and transient. The continuum is caused by the plastic deformations that take place in
the cutting process. Transients are components of the signal caused sporadically by
micro-cracking, corrosion, etc. AE is a wave of tension that travels through the material
due to some sudden release of tensile energy. It can also be defined as the elastic
energy released spontaneously during a local, dynamic and irreversible change in the
microstructure of the material (Maia et al., 2015). Figure 2.27 shows the different types
of sources that can have this type of signals in machining operations.

Figure 2.27 Acoustic emission sources in machining (Karpuschewski, 2001)

In Gómez et al. (2010) different features of acoustic emissions were studied to detect
tool wear. It was proposed to use Mean Power (MP) as a parameter for monitoring. In
this case, the Moving Average Mean Power (MAMP) as a function of Moving Variance
Mean Power (MVMP) are the parameters that best represent tool conditions.

Patra (2011) used the wavelet packet method for the decomposition of acoustic emis-
sions. They showed that the features extracted from the packages could be indicators for
the prediction of tool wear. This work tries to extract wear sensitive features from the
analysis of AE sensor signals at low-frequency range to avoid massive data storage and
retrieval memory requirements for high-frequency analysis. The acquired AE signals
were filtered through a bandpass (500 Hz - 50 kHz) digital filter.

One of the biggest challenges lies in obtaining the necessary information for the
characterization of each of these phenomena in AE. Babatunde et al. (2017) said that
observing the amplitude of the acoustic emissions is sufficient to monitor tool wear in
milling finishing processes. The acoustic emission amplitude increases with tool wear
due to increased friction between the flank and the working material. However, other
phenomena could be detected with this signal, such as chipping, plucking, chip shape or
surface drag. These phenomena arise more spontaneously, so advanced signal analysis
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techniques and advanced knowledge in acoustic emissions are needed. Jemielniak and
Kossakowska (2010) showed a good relationship between machining time and acoustic
emissions after wavelet packet transform shown in Figure 2.28.

In a recent study Sun et al. (2020) proposed a tool breakage monitoring method
based on acoustic emission signal for milling process based on 12 features (rise time,
rms, absolute energy, average signal level, etc.) extracted from Short Time Fourier
Transform (STFT) over the signal. The results are promising, although the authors
comment that the limitations are the input conditions. The results are promising, but
the authors comment that in case of changing the cutting conditions, the model has to
be retrained.

To sum up, acoustic emissions seem to contain much information, and the problem
lies in separating that information from the data and identifying what causes the
transient energy outputs that occur when machining. Any impact on the material, the
chip evacuation, and the simple fall of the chip on the workpiece material can cause
transient signals that confuse the different phenomena.

Figure 2.28 Evolution of energy of detail after Wavelet Packet Transform of acoustic emissions
in turning operation for different repetitions (Adapted from: Jemielniak and
Kossakowska (2010))

Sound pressure

This measurement technique does not require direct contact with any part involved in
the process as it is the atmospheric variation transmitted through the air, the acquisition
of such signals is quite simple as it can be recorded by a microphone and the frequency
range varies from 0 to 20kHz. However, sound pressure-based monitoring has several
drawbacks. Noise caused by systems outside the cutting process (other machining
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centres, noise caused by the operator during the cutting process, etc.) can hurt the
measurement of such signals, so the sensor positioning concerning the cutting area is
essential for the correct measurement of the signal. Therefore the reduction of noises
that can affect the measurements is of great importance (Huo et al., 2014).

Kothuru et al. (2017) proposed a monitoring method based on audible sound signals
for tool wear prediction. They processed the signal every one second to obtain the
Fourier transform and used a unique value extracted from the spectrum as a feature.
They obtained good results, although the need for more sophisticated data processing
methods is required to extract more robust features.

Rafezi et al. (2012) studied different features of sound pressure, and it was concluded
that the Root Mean Square (RMS), peak and variance of the signal in the time domain
are the most sensitive variables to tool wear. In particular, the signal value RMS has a
strong relationship with the increase in tool flank wear. Also, the frequency domain
of sound pressure was studied to determine which frequency bands tool wear affects.
The analysis in the frequency domain was carried out in two stages. On the one hand,
the Fourier transform was performed to determine which bands are affected by tool
wear. The analysis was then performed based on the Wavelet Packet Transform (WPT)
to extract the information from the frequency bands where tool wear affects.

Seemuang et al. (2016) tried to predict tool wear with the spindle audible sound signal
in turning operation, concluding that the magnitude of spindle noise frequency spec-
trum and its cumulative value could be used as monitoring features in tool condition
monitoring as shown in Figure 2.29.

,

Figure 2.29 Magnitude of power spectrum of spindle noise and flank wear in turning process
(Adapted from: Seemuang et al. (2016))

Although a relationship can be established between sound pressure features and
characteristics of the cutting process, this practice is limited by the effect of the sur-
rounding environment and is not as widespread as the measurement of the other
signals presented in this section. The signal processing used is very dedicated to a



2.2 process monitoring 43

specific application, and the search for the most relevant features may change from
application to application and requires expert knowledge to perform the task.

Vibrations

Vibrations are a widely used signal to monitor cutting processes. Vibrations arise from
cyclic variations in dynamic cutting forces. The vibration signal arising from the metal
cutting process is such that it incorporates aspects of free, forced, periodic and random
types of vibration (Dimla Snr., 2000; Bhuiyan and Choudhury, 2014). The advantage of
this method is the simplicity of deployment, which does not involve any alteration of
the machine tool or workpiece fixture. The disadvantages are the dependence of the
recorded signals on the workpiece material, cutting conditions, machine structure and
clamping force (Heyns, 2007).

Harun et al. (2017) monitored the tool condition based on features obtained from
triaxial accelerometer vibration signals by performing single spectrum analysis in the
drilling process. Rmili et al. (2016) proposed a monitoring system for the three phases
of tool wear (initial wear, steady-state or accelerated wear) in drilling processes. The
analysis was carried out based on the average signal power, which seems to be a
parameter sensitive to the various transitions suffered by a cutting tool. They concluded
that it is a valid parameter for detecting the different tool wear phases. These three
phases consist of a transition where the tool wear is accelerated, another transition
where the wear remains stable and the last transition where the wear is accelerated
until the tool breakage. A variation in amplitude of vibration signals caused due
to variation in distance between accelerometer position and the hole was found by
Nakandhrakumar et al. (2016) in the drilling process. This clarified that the position of
the sensor affected the wear monitoring and increased uncertainty in prediction. They
proposed a normalisation procedure to nullify the distance between the sensor and the
drill hole on the received vibration signals.

El-Wardany et al. (1996) induced to the cutting tools a set of artificial defects to later
machine and measure the vibrations produced with each one of them and identify each
of the errors produced in the spectrum of the vibration signal. Subsequently, carrying
out an end-of-life tool test, checks that the features identified in the signal spectrum
correspond to those identified in the end-of-life test. Besides, a cepstrum analysis was
performed to detect tool breakage. In the study, different holes were made until the
tool breakage was reached, being able to detect the phenomena that are represented in
the Table 2.3.

García Plaza and Núñez López (2017) concluded that it is possible to monitor the
value Ra of the roughness using vibration signals and Singular Spectrum Analysis (SSA).
They proved that SSA applied to the sum of the three vibration components acquired
on the tool of a turning process allows faster predictions than applying the analysis to
the individual components. To make an adequate prediction of the parameter Ra of
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Table 2.3 Types of tool wear found in vibration signal spectrum (El-Wardany et al. (1996))

Hole No Phenomenon Spectrum band

6 Plastic deformations and chisel edge wear 3.9 y 5.3 kHz

21 Corner wear 3.2 kHz
32 Margin wear 4.5 kHz
60 The magnitude of vibrations increases 2.4 a 5.8 kHz

128 Flank, chisel, corner and margin wear
Increasing amplitude in
the interval 2.4 to 5.8 kHz

151 BUE (Built up edge) chisel edge 4.8 kHz
211 High amplitude peaks
217 Start of tool failure

the machined surface, the author assumes all the machined surface profiles are equal,
which implies a dangerous assumption.

Spindle power

Spindle power is easy to collect and the sensor easy to install there is a strong relation-
ship between the spindle power and the tangential cutting force. In Corne et al. (2017)
the possibility of using spindle power to predict tool wear instead of thrust force was
considered. In this case, although the thrust force maintains a higher relationship with
tool wear, it was concluded that it is possible to monitor tool wear using the spindle
power thanks to its high relationship with the torque. Figure 2.30 shows a comparison
between the two signals having a significant relationship between both for fresh and
worn tool conditions.

Patra et al. (2006) observed that the magnitude of the current increases with increasing
drill wear when all other cutting conditions remain constant. The magnitude of the
current also depends on the cutting conditions. Time-domain features are susceptible
to cutting conditions, so it is challenging to develop a tool wear monitoring system
suitable for a wide range of machining conditions. Ao and Qiao (2010) stated that
spindle current is sensitive to the wear in medium and heavy cutting conditions. So the
use in low cutting conditions or micro-drilling processes could be limited. Franco-Gasca
et al. (2006) also showed that spindle current is related to the cutting process dynamics
allowing to determine the moment of tool change after performing Discrete Wavelet
Transform (DWT).

Drouillet et al. (2016) used a power sensor to measure the RMS of spindle power to
predict Remaining Useful Life (RUL) in milling processes. After normalizing the values
for different cutting speeds, they can predict the RUL for different cutting speeds. The
normalization of the values is done to reference the nominal value for different cutting
conditions.
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Figure 2.30 Spindle power and torque comparison in drilling process (Duo et al., 2019)

In Stavropoulos et al. (2016), the average of the spindle electrical current is used
to study its correlation with tool wear. In this case, it was concluded that the spindle
electrical current provides better results than the vibration signal since it is not affected
by external noises and is easier to process.

Sensor fusion

The use of various sensors to extract statistical features and their combination allows
obtaining more information about the state of the cutting process. In the literature,
several sensors for detecting the tool condition can be observed as a trend. This principle
is based on the experience that if several sensors indicate a malfunction of the tool
condition, the response of the system is more credible (Bhuiyan and Choudhury,
2014). The fundamental problem is that a tool condition detection system must be
scalable, cost-effective and not obstruct the cutting process. One of the unknowns is the
improvement of a tool condition detection system based on a single sensor or a fusion
of sensors. Furthermore, in the event of a failure of one of the sensors, whether the
system would continue to give the same response.

Several works showed efforts to use different sensors for the detection of the tool
condition. Caggiano et al. (2017) used the cutting forces, acoustic emissions and vi-
brations signals for tool state monitoring in turning processes. Once the time domain
features have been extracted, the most relevant variables have been selected based on
the Pearson correlation coefficient. The RMS value of the acoustic emissions is estab-
lished together with the features of the cutting force signals in the three axes (Fx, Fy,
Fz) as the most representative in terms of tool wear. In another study Caggiano (2018)
also collected the same signals to select the most robust variables through a Principal
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Component Analysis (PCA) analysis on the features; mean, variance, skewness and
kurtosis of the cutting forces of the three axes, the AE RMS signal and vibrations in the
three axes. From the 28 of the total features extracted, they reduce the dimensionality
to two features.

Jemielniak et al. (2011) used a dynamometer (Kistler 9017B) and an acoustic emission
sensor (Kistler 8152B121) for tool condition monitoring in rough turning. The authors
said that use of features of two sensors improved the performance of the system.
Statistical analysis would have confirmed the hypothesis that the signals acquired from
the two sensors have a relevant impact on the performance over employing sensors
individually.

The monitoring system proposed by Rajeev et al. (2017) for turning processes is
based on the mean value of the cutting forces and the power spectral density of the
vibration signal in the 4.5-5.5 kHz band. In the study, it is observed that these variables
are feasible for tool wear monitoring. Like Dimla and Lister (2000) in the Z-axis, a
greater amplitude of the vibrations is obtained, the reason why it is the component of
the vibrations with more meaningful information.

Vibrations and cutting forces are the most commonly used signals for detecting tool
wear. So Wu et al. (2017b) used these two signals on the three axes together with the
acoustic emissions to detect tool wear in milling processes. They extract the mean,
median, standard deviation and maximum and then use them in a wear prediction
model from all the collected signals.

Nowadays, numerical controls offer the opportunity to obtain machine-internal
signals. These signals can also be used for tool condition monitoring and complemented
with a single sensor or obtain responses from two different systems for the same
purpose. A multi-sensor system to only establish the current status of the tool is an
expensive practice. This is why a selection of sensor features best suited to a particular
purpose must be made to establish monitoring of the status of the cutting and finishing
process of the complete workpiece and make a monitoring system even more cost-
effective in this sense.

2.2.2.2 Feature extraction

Signal processing techniques are applied to obtain feasible features related to the cutting
process conditions. First, it involves the pre-processing of the acquired signal: signal
cleaning, drift removal or filtering. Time domain, frequency domain and time-frequency
domain are the methods used for this purpose. According to Jemielniak (2019) as many
features as possible should be extracted from the available signals as most of them are
considered irrelevant.

The acquisition of signals to obtain information about the cutting process results in
large volumes of data. According to ISO/IEC/IEEE 60559:2011 a double floating-point
of 8 bytes covers the range from 4.94065645841246544e−324 to 1.79769313486231570e308

(positive or negative), knowing this and assuming that we are storing each sample
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based on this type of data and that we are acquiring with a sampling rate of 1Mhz,
we would acquire one Gb in 125s. For this reason, the manipulation and extraction of
information must be done appropriately, making a selection of the features that best
express the physical quality of the cutting process to be controlled and storing data
containing relevant information about the cutting process.

Time domain analysis

Different features describing the signal distribution while preserving the relevant
information must be obtained, as have been seen in different works (Caggiano et al.,
2018a; Caggiano et al., 2018b; Elangovan et al., 2011; Scheffer and Heyns, 2001). The
most common features in the time domain can be seen in Table 2.4.

Table 2.4 Signal feature expressions

Name Features Observations

Mean X̄ =

r∑
i=1

xini

N

Variance σ2 =

r∑
i=1

(xi − x̄)2ni

N

Standard deviation σ =
√
σ2

Kurtosis g1 =

r∑
i=1

(xi − x̄)3ni

N
r∑

i=1

(xi − x̄)2ni

N



3

2

g1 = 0 Symmetrical distribution
g1 > 0 Asymmetrical right-hand or positive distribution
g1 < 0 Asymmetrical left-hand or negative distribution

Skewness g2 =
m4

σ4
− 3

g2 = 0 Similar to normal distribution. Mesokurtic distribution
g2 > 0 Positive kurtosis. Leptokurtic distribution
g2 < 0 Negative kurtosis. Platykurtic distribution

Root Mean Square RMS =

√√√√√ r∑
i=1

x2ini

N

Frequency and time-frequency domain analysis

The frequency-domain can contribute additional information about a signal. The analy-
sis of the frequency components of a signal can present information about the events
that occur in a cutting process. Representation in the different domains sometimes
provides insight and points out properties that are hard to discern or see in other
representations. Besides, there are helpful techniques to represent the signal in time-
frequency.
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- Discrete Fourier transform

The Discrete Fourier Transform (DFT) is used in a discrete and periodic data set to
obtain the frequency domain of a signal. Having a xi signal, the Fourier transform is
done using the equation 2.1.

Xk =

N−1∑
i=0

e−j 2πN knxi (2.1)

When calculating the signal spectrum, two main problems can appear; aliasing and
leakage. Aliasing implies that there is not enough data to represent the high-frequency
components. The solution is to filter the signal before it is discretised to eliminate those
high-frequency components or increase the sampling frequency. Spectral leakage is
a phenomenon that takes place due to finite windowing of the data. In addition to
the lobe due to the frequency components, additional lobes start appearing in the DFT

spectrum. Therefore, if a non-rectangular window can be used and its frequency domain
characteristics are uniform in nature, the effect can be reduced. The spectrogram based
on STFT is another tool for displaying the frequency components of a signal. In this case,
it assumes the representation of these frequency components in time (Teti et al., 2010).

- Discrete wavelet transform and wavelet packet transform

The wavelet packages are another way to visualise the data without losing infor-
mation. It consists of separating the signal into fragments, and the original signal is
systematically filtered with a high pass filter and a low pass filter. Having the approxi-
mations in high scale, low frequency and the details in low-scale, high-frequency. The
DWT is described with the following equation.

W(j,k) =
∑
j

∑
k

x(k)2(−j/2)Ψ(2−jn− k) (2.2)

Ψ(t) is a time function with finite energy and fast decay called the mother wavelet.
The DWT analysis can be performed using a fast, pyramidal algorithm related to multi-
rate filter-banks. As a multi-rate filter-bank, the DWT can be viewed as a constant Q
filter-bank with octave spacing between the filter centres. Each sub-band contains half
the samples of the neighbouring higher frequency subband. The signal is analysed
at different frequency bands with different resolution in the pyramidal algorithm by
decomposing the signal into a coarse approximation and detail information. The coarse
approximation is then further decomposed using the same wavelet decomposition step.
This is achieved by successive high-pass and low-pass filtering of the time domain
signal and is defined by the following equations:
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Ylow[n] =

8∑
k=− 8

x[k]g[2n− k] Yhigh[n] =

8∑
k=− 8

x[k]h[2n− k] (2.3)

Where h[n] and g[n] are typically called low-pass and high-pass filters in the as-
sociated filter bank. In fact, the signals Ylow and Yhigh are the convolutions of x[k]
with the filters h[n] and g[n] followed by a down-sampling of factor 2. The graphical
representation of this method can be seen in Figure 2.31.

In the WPT both approximations and details are decomposed to provide more fre-
quency bands, increasing the probability of obtaining relevant features from the original
signal. As seen in the work done by Jemielniak and Kossakowska (2010) the WPT is
most valued for obtaining relevant features for tool condition monitoring. Other works
have applied the WPT by obtaining relevant signal features related to measured physical
parameters, like tool wear Kumar et al. (2015) or hole roundness errors Ranjan et al.
(2020).

Figure 2.31 Three-level WPT decomposition, where blackened fields indicate the frequency
band of the original signal (Adapted from: Jemielniak et al. (2011))

2.2.2.3 Feature selection

Feature selection is based on the selection of a subset of features from an original set
of features. The main idea is to eliminate irrelevant and redundant features, which
can be beneficial to obtain more accurate results and reduce learning time (Cai et al.,
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2018). Teti et al. (2010) said that only 15% used some technique for the selection of
relevant features during tool condition monitoring. Overall, applying feature selection
will always provide benefits such as providing insight into the data, a better classifier
model, enhance generalisation and identification of irrelevant variables. Mehmood
et al. (2012) commented that there is no method for selecting variables consistently
superior to the rest. It is probable to be an interaction between the method and the data
properties. There are several criteria for the selection of variables, which are briefly
described below.

Filter methods

Filtering methods do not incorporate any learning techniques and evaluate each feature
relative to the target variable. The existing filter algorithms are computationally cheaper,
but they fail to identify and remove all redundant features. Besides, there is a danger
that the features selected by a filter method can decrease the correlation coefficient of a
learning algorithm (Karagiannopoulos et al., 2007). The most used filtering method for
variable selection is the Pearson correlation coefficient (equation 2.4) that assumes a
Gaussian distribution to each variable and reports on their linear relationships.

rXY =

∑n
i=1(Xi −X)(Yi − Y)√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y)2
(2.4)

Another filtering method is Information Gain (IG), based on entropy reduction
between the independent variables and the target variable. It tries to find those variables
with the highest information gain, which in turn minimises entropy. The algorithms
find weights of independent variables basing on their correlation with a continuous
class attribute.

IG = H(target) +H(atrribute) −H(target,atrribute) (2.5)

where H(X) is Shannon entropy for variable X and H(X,Y) is a joint Shannon entropy
for a variable X with a condition to Y.

Wrapper methods

Wrapper methods use a ML algorithm to measure the quality of subsets of features
without incorporating knowledge about the specific structure of the classification or
regression function and can therefore be combined with any machine learning algorithm.
The sequential selection algorithms start with an empty set (Forward selection) or
a complete set (Backward selection) and add features or remove features until the
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maximum objective function is obtained. A problem with forward selection is that
it may fail to include interdependent attributes, as it adds variables one at a time.
However, it may locate small effective subsets quite rapidly, as the early evaluations,
involving relatively few variables, are fast. In contrast, in the backward selection, inter-
dependencies are well managed, but early evaluations are relatively expensive (Liu and
Motoda, 1998).

In Sequential Backward Search, the primary idea is to sequentially remove features
from the given features list consisting of N features to reach the list of K-features, where
K<N. At each stage of removal, the feature that causes the least performance loss gets
removed. The search for features is based on a combinatorial search algorithm where
the subset of features get selected from a combination, and the score is calculated for
the subset and compared to other subsets.

Embedded methods

In contrast to filter and wrapper approaches, the learning part and the feature selection
part can not be separated in embedded methods. Some induction algorithms models
include implicitly a search for optimal features with respect to the target. It is the case
of Random Forest (RF) trees that allows to obtain a ranking of the most important
variables to create a model. In each split of the tree, the feature used for the splitting is
the one that has an impact of the overall error of the model.

Apart from that, regularization is a form of regression that discourages learning
a more complex or flexible model to avoid the risk of overfitting. There are two
regularization algorithms, LASSO and ridge regression (Zou and Hastie, 2005). The
main difference is that LASSO regression is better than ridge regression at reducing
variance if there are useless features. Elastic Net is a regularisation based on LASSO
and Ridge regression that tries to minimize the loss function of equation 2.6.

LelasticNet =

∑
i(yi −β ′xi)

2

2n
+ λ

(
α

K∑
k=1

|βk|+
1−α

2

K∑
k=1

β2
k

)
(2.6)

If α = 1 the expression corresponds to LASSO regression, and if α = 0, the expression
corresponds to ridge regression. With a cross-validation process, it was possible to tune
different λ values for different α values and get a suitable group of features with this
method and reduce overfitting.

2.2.2.4 Machine learning for machining process monitoring

Learning algorithms allow extracting unknown information from previously collected
data. This information can offer advantages in decision-making and provide knowledge
about the problem.
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In machining processes, learning algorithms are generally used to learn the behaviour
of a process based on previous data. The learned models can detect subsequent un-
wanted or desired phenomena, both in the machined part and in the cutting tool. There
are two different processes that a pattern recognition system executes in the acquired
instances. On the one hand, the system must be trained with a series of known instances.
Once the training phase has concluded, there is the operational mode where the system
makes decisions.

An automatic learning system must have four different fundamental characteristics
in order to make predictions autonomously (Wu et al., 2017b):

• It should train the system automatically and improve results as more data input
arrives, this means that the system must be self-updating and learning periodi-
cally.

• Discover or recognise patterns and intelligence with input data.

• Predicate on unknown data.

• The system should acquire knowledge from data and solve problems.

There are two categories of ML, supervised and unsupervised. In supervised training,
all instances belong to a particular class (classification). On the other hand, in non-
supervised training, the system does not recognise the entry instance, so it assigns a
new class and adjusts the clustering parameters.

Active learning is a ML approach that lets users play an active role in the learning
process. An active learning approach can ask a user (e.g., a domain expert) to label an
example, from a set of unlabeled examples or synthesised by the learning program.
The goal is to optimise the model quality by acquiring knowledge from human users,
given a constraint on how many examples they can be asked to label.

The algorithms used can provide more or fewer advantages, depending on the case
to be analysed. Therefore, it is essential to compare the results obtained. The algorithms
can be compared concerning the following criteria according to Han et al. (2012):

Predictive accuracy: It is the ability of the model to predict a class correctly.

Speed: It is the cost of computing that the model needs for learning or use.

Robustness: The model can make predictions with data with noise or lack of attributes.

Scalability: Ability to create an efficient model providing large volumes of data.

Interpretation: It is the ability to understand what the model provides as information.

Supervised learning

In this category are problems of (I) classification, which tries to map inputs to output
labels, and (II) regression, which tries to map inputs to a continuous variable. There are
several strategies for accomplishing both tasks. The most commonly used are briefly
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described below. The works cited in each of the strategies are discussed in section
2.2.2.5.

- Instance based learning

Instance-based algorithms compare new observations with the observations in the
training set based on distance measures. One of the advantages of this type of algorithm
is the ability to adapt to observations not included in the training set. These types of
algorithms can be used to perform classification or regression. The most commonly
used distance is the Euclidean distance, but there are other distance measures such
as Hamming, Manhattan or Mikowski. Instance-based learning was used by Dheeraj
Simon and Deivanathan (2019) and Kilundu et al. (2011).

- Probability based algorithms

This type of algorithm, such as the Naive Bayes classifier, uses the probability that
an event has occurred before to obtain the probability of the event covered by the new
observation (posterior probability). One of the disadvantages is that a new observation
not covered in the training set will get a probability of 0 (Kumar et al., 2015). Bayes
theorem provides a way to calculate the posterior probability (equation 2.7).

P(c|x) =
P(x|c)P(c)

P(x)
(2.7)

- Decision trees

They are a family in which data is continuously separated based on certain input
parameters. These types of algorithms are based on the idea of divide and conquer.
The input data is divided into subsets until the subsets are sufficiently homogeneous.
Although they are simple to construct, they can be over-trained, and creating a tree can
become very complex if there are small changes in the input data (Elangovan et al.,
2011; Krishnakumar et al., 2015).

- Support vector machines

This type of algorithms identifies hyperplanes that separate groups of data. The hyper-
planes are decision boundaries, and the hyperplane dimension depends on the number
of input features for the prediction. When there are 2 features, the hyperplane is a line,
and if there are 3 features, the hyperplane is a plane. The support vectors are the points
closest to the hyperplane and are the ones that allow maximising the margin of the
classifier (Wu et al., 2017b).

- Neural Networks

A neural network trains a set of weights associated with each input to the neuron based
on the training set. A basic neural network consists of an input layer, a hidden layer
and an output layer. Most neural networks are fully connected, and each connection
has an associated weight. The larger the weight, the more influence the neuron will
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have on the output. Optimising the weights associated with each neuron is done using
backpropagation, comparing the actual and predicted output and updating the weights
to minimise the error produced (Caggiano et al., 2017; Abu-Mahfouz, 2003; Jaini et al.,
2020).

Unsupervised learning

This practice results in learning the structure of the data without having the data labels.
In this category, the common use results in the exploratory analysis of the data.

Clustering is an unsupervised method that allows the understanding of groups and
could improve the knowledge about the process, dealing with unlabelled data and
explaining groups created from this data. Clustering methods organise the observations
into an efficient representation that characterises the target population of the sample
(Maimon and Rokach, 2011). Unsupervised methods can be divided into two groups,
(i) hierarchical or (ii) partitioning methods. (i) Hierarchical methods build the groups
by dividing the observations recursively. The result is a dendrogram representing the
groupings of observations and their level of similarity. (ii) Partitioning methods create an
initial partition and reallocate observations from one group to another. These methods
usually require the number of groups to be selected previously. The hierarchical
methods are divided into two groups, agglomerative methods, which consider each of
the observations as an independent cluster and group them. Divisive methods, which
consider the whole set of observations as a cluster and separate them into subgroups.
Among the agglomerative methods, different inter-group proximity measures may
show more or less interpretable results in the same group of observations (Everitt et al.,
2011).

- Hierarchical clustering

Hierarchical clustering is a tool for unsupervised data analysis. Specifically, it consists
of grouping independent observations that are closest to each other. In bottom-up
or agglomerative hierarchical clustering, a tree is built by joining small subsets of
observations until the central node of the tree contains all the elements. This is done
iteratively by joining the two most similar clusters in each iteration.

The distance between two observations can be calculated in different ways (Hamming,
Manhattan, Minkowski distances). The most commonly used is the Euclidean distance
(equation 2.8).

While for the linkage (the criteria for merging two clusters), the Ward criterion
(equation 2.9), which tries to minimise the error sum of squares, is the one that more
stable results achieve with numerical data (Mingoti and Lima, 2006).

D(p,q) =

√√√√ N∑
i=1

(pi − qi)2 (2.8)
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δ(Xi,Xj) =
ninj

ni +nj
||c(Xi) − c(Xj)||

2 (2.9)

This creates a dendrogram, depicted in Figure 2.32. From the created dendrogram,
clusters are obtained by horizontal cuts at a specified height, which represents the
degree of similarity of groups.

Figure 2.32 Conceptual representation of a dendrogram

Dimensionality reduction

Dimensional reduction techniques allow visualising possible hidden data patterns in a
dataset. PCA is one of the most popular algorithms for dimensional reduction. It was
originally developed by Pearson (1901) to overcome the problem of visualising a data
system on a limited feature space. It is a method to describe a feature space on a set of
non-correlated linear components. t Distributed Stochastic Neighbour Embedding (tSNE)
(Maaten and Hinton, 2008) is a non-linear dimensionality reduction data visualization
method. It models each high-dimensional object by a two- or three-dimensional point in
such a way that similar objects are modelled by nearby points, and distant points model
dissimilar objects with high probability. The main difference between both approaches
is that tSNE does not preserve the input feature space characteristics like PCA. Thus,
it can not be used as a preprocessing method directly. To overcome this limitation,
Oliveira et al. (2018) used first tSNE for dimensionality reduction and then a neural
network for new data mapping to the reduced feature space.

- Linear dimensionality reduction: Principal component analysis

PCA allows to reduce a big feature space d into lower feature space k, where k < d,
preserving the original d dimensional space information. Each k dimensions will be
transformed as linear combinations of d dimensional feature space. The dimensions
on the k feature space are called principal components, and each principal component
Dimn will have the form of,
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Dim1 = a1x1 + a2x2 + · · ·+ anxn (2.10)

The Dim1 is obtained so that the variance is the maximum subject to the total variance
that remains fixed. This is achieved by calculating eigenvalues and eigenvectors. In
the PCA method, each of the principal components corresponds to an eigenvector, and
the order of components is established by decreasing the order of eigenvalue. Thus,
the first component is the eigenvector with the highest associated eigenvalue. This is a
powerful tool to simplify data visualisation.

- Non-linear dimensionality reduction: t stochastic neighbour embedding

tSNE tries to place a point from a high-dimensional space in a low-dimensional one
so as to preserve neighbourhood identity. The similarity of xi to the point xj in high
dimensionality is obtained by the joint probability pij using a Gaussian distribution
expressed in equation 2.11.

pij =
exp

(
− || xi − xj ||

2 /2σ2
)∑

k

∑
l ̸=k exp (− || xk − xl ||2 /2σ2)

(2.11)

In low dimensionality uses a Student’s t-distribution distribution to measure similari-
ties yi and yj of the high-dimensional data points xi and xj, it is computed a similar
joint probability denoted by qij.

qij =

(
1+ || yi − yj ||

2
)−1∑

k

∑
l ̸=k (1+ || yk − yl ||2)

−1
(2.12)

And minimizes a single Kullback-Leibler divergence between a joint probability
distribution, P, in the high-dimensional space and a joint probability distribution, Q, in
the low-dimensional space:

KL(P || Q) = pijlog
pij

qij
(2.13)

The differences between P and Q must be 0. To obtain these probabilities, a sigma

value must be selected. For dense regions, a smaller sigma value is more appropriate
than for sparse regions. A search for the sigma value is performed using a user-defined
perplexity value which is the number of neighbouring observations used in each local
estimate.
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2.2.2.5 Tool condition monitoring based on indirect sensing techniques

The most widely known regression algorithm is linear regression. However, limited
ability and simplicity are often not applicable to real-life data. Therefore, the use of
other types of algorithms capable of dealing with non-linear data should be employed.
Neural networks are widely used for tool wear monitoring, Caggiano et al. (2018b)
employed backpropagation Artificial Neural Network (ANN) for tool wear curve predic-
tion in Carbon Fiber Reinforced Plastic (CFRP) drilling operation, obtaining a minimum
RMSE = 0.00023. They used time-domain features of thrust force and torque. In a
similar work, Caggiano et al. (2018a) in addition to the thrust force and the cutting
torque, they acquired the acoustic emissions, in this occasion, they applied PCA on the
features with high correlation coefficient with tool wear curve always obtaining an
RMSE < 0.00217. Liu and Anantharaman (1994) employed dynamometer data for tool
wear curve prediction based on time-domain features of cutting forces and ANN with
adaptive activation-function slopes concluding that adaptive activation functions are
a better solution than conventional neural networks. Mohsen et al. (2020) employed
Adaptive Neuro Fuzzy Inference System (ANFIS) for tool wear regression making a
comparison of different activation functions concluding that the sigmoid function is
the most suitable for the regression of the wear curve in turning processes. Corne
et al. (2017) compared different backpropagation algorithm performances for tool wear
prediction in drilling operations based on spindle power data, and they conclude that
the Levenberg Marquart algorithm was the best option. Balazinski et al. (2002) made
a comparison between three different ML methods, ANN, a Fuzzy Decision Support
System (FDSS) and ANFIS for tool wear curve reconstruction in turning process. They did
not see any superior method to the rest, but they concluded that ANFIS was the most
practical ML algorithm given its practicality. Making use of the same process data and
the same algorithms, Ren et al. (2010) added to the comparison the Takagi-Sugeno-Kang
(TSK) fuzzy modelling based on subtractive clustering method, showing its superi-
ority to the rest ML algorithms. Garg et al. (2010) compared Radial Basis Function
Network (RBFN) trained based on k-means clustering and Genetic Algorithm (GA) in
drilling operation for tool wear curve prediction showing the best result for GA training.

Elangovan et al. (2011) employed C4.5 decision trees to classify different tool wear
levels using the vibration signal. They made a comparison between a feature selection
made through C4.5 and using the best two principal components (PCA) of acquired fea-
tures, concluding that the features based on the decision tree obtain a better result with
a classification accuracy of 77.22%. Remarkably, PCA is not a feature selection method,
it is the rotation of dimensions of the feature space based on linear combinations of all
the feature space. Jaini et al. (2020) used a gap sensor for tool condition classification in
the drilling process. By obtaining the head movement kurtosis and skewness features,
they can classify 11 drills with different damage. Multi Layer Perceptron (MLP) was
used in this study with two hidden layers. Dheeraj Simon and Deivanathan (2019) used
the vibration signal time-domain features to detect the presence of wear in drilling
processes, using the K-Star algorithm. Wu et al. (2017a) made a comparison between
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algorithms based on ANN, Support Vector Machine (SVM) and Random Forest (RF),
showing the superiority of RF over the other methods. Ao and Qiao (2010) used Logistic
Regression (LR) and Auto Regressive Mooving Average (ARMA) models to predict the
RUL. Abu-Mahfouz (2003) classified artificially induced wear types using the vibration
signal. For this purpose, he used frequency Harmonic Wavelet Coefficients (HWC)
and Maximum Entropy Spectral Analysis (MESA) features and time-domain features
of vibration signals and ANN. He compared different input combinations of features
concluding that frequency domain features provide better classification accuracy.

Deep learning has also been employed for tool wear prediction. By constructing
images from the polar coordinates of the cutting forces in milling processes (Gouarir
et al., 2018) and using convolutional neural networks, a cloud-based system capable of
classifying the level of tool wear was deployed by Terrazas et al. (2018). Although the
authors state that this is not a cost-effective solution given the type of sensor used, they
showed the applicability of the system. Table 2.5 summarises the main works consulted
on the subject.

Based on the information revealed by the table above, most of the works employ
neural networks for tool wear prediction based on features obtained in the time domain.
Some compare different algorithms for the same purpose to get a broader view of the
capability of different algorithms. As a target, the most commonly used unit is the tool
wear curve itself, since by its nature and because it is a continuous value, it makes
more sense to reconstruct the wear curve progressively based on previous data. A few
works face the problem as a classification of different tool wear levels, although this
may involve different criteria when defining the boundaries at which each level will
be found. As has already been seen, different types of wear can appear on the tool,
and some works focus on identifying the presence of the different types of wear that
may appear, this being subject to the conditions of the cutting process and the wear
mechanisms that may be activated throughout the process. Finally, few of the papers
employ feature selection techniques that are best suited to the prediction of tool wear,
and it appears that the practice of variable selection has been increasing in recent years.
Among the techniques employed are correlation coefficients between features and tool
wear or variable selection techniques embedded in algorithms, such as decision trees,
variables that contribute most to the principal components, or variable discrimination
techniques.

Some works used a data partitioning method for the training and testing phase (i.e.
70% for training and 30% for testing) (Wang et al., 2013; Shankar et al., 2018). Indirectly,
data leakage is induced on the testing phase, which can lead to better results than those
obtained in a real system overestimating the produced model. The testing phase should
be carried out in a completely new tool to obtain adequate results and validate the
created model. The data leakage problem for tool wear curve estimation is illustrated
in Figure 2.33.

The monitoring process is different in each of the cutting operations. The tool,
cutting conditions or the resources available to make the acquisitions of the signals
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Table 2.5 Summary of indirect tool conditions monitoring techniques through automatic
learning algorithms
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Figure 2.33 Data leakage problem in tool wear prediction

that best represent the phenomenon could condition the predictions. Identifying the
features related to the phenomenon in consideration is essential since it allows the
creation of simpler and lighter models. Addressing the problem as a classification does
not establish criteria for deciding what flank wear limits should be established as a
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target for the predictions. Furthermore, depending on the machining operation, cutting
conditions or the tool used, these criteria may vary. Trying to address the problem as
regression can be costly as the whole process wear curve must be constructed with the
number of measurements that imply. Signal fusion for tool wear prediction is common
in laboratory environments; however, increasing the number of sensors in an industrial
plant for a particular machine can be expensive and not practical. It seems essential
to design and develop hybrid systems for industrial applications to benefit from the
different advantages of the different algorithms and information sources to scale and
introduce more process complexity based on different sensors.

2.2.2.6 Surface roughness monitoring based on indirect sensing techniques

The increase in demand for components with more precise finishes means that qual-
ity inspection of machined parts is becoming more critical and must be carried out
with greater precision. This is a challenge for repetitive parts that must meet specific
requirements, but also for the production of small batches of high benefit components.
Decisions regarding critical events that may occur during a process must be made as
quickly as possible. Automation tasks for the quality control of components play an
important role in increasing the reliability of components with specific requirements.

Venkata Rao et al. (2014) used neural networks to predict roughness in a boring
process using the cutting conditions and geometry of the tool used as input, obtaining
an error percentage of 4.51%. In the same way, Vrabel et al. (2012) monitored the
Ra parameter in drilling processes on Udimet 720, using the cutting conditions and
the thrust force as inputs to the neural network. However, they only test the neural
network in 9 of the 41 holes made. They obtain good results (RMSE = 12.7%), but they
did not test all the cutting conditions used. Akincioǧlu et al. (2013) were conducting
a similar study on steel intending to predict the Ra parameter. They used different
cutting conditions for each hole they make, so they do not consider the phenomena
that could appear during the drilling of holes under established cutting conditions in
long cutting time. 32 holes were drilled, 26 were used for the learning phase and 6 for
the testing phase obtaining RMSE = 0.010. Mia and Dhar, 2016 compared different
supervised learning algorithms for Ra prediction in turning processes using cutting
conditions, material hardness and dry or High-Pressure Coolant as input variables
obtaining acceptable results, RMSE = 0.031. Rodríguez et al. (2016) compared 35

different machine learning algorithms to classify Ra and Rz parameters based on ISO
4288 : 1996 standard levels in milling process. Among all the algorithms, they concluded
that decision tree J48 was the best method due to its simplicity and accuracy of 79.75%.
In a similar work Samanta (2009) tested ANFIS, ANFIS-GA and ANN networks for Ra
parameter prediction in the milling process, showing the superiority of ANFIS-GA over
other 2 algorithms. Table 2.6 shows the works identified in the literature to predict the
Ra parameter.

García Plaza et al. (2019) showed different vibration signal analysis techniques in
a turning process. They obtain signal features that allow predicting the roughness



2.3 summary 61

parameter Ra under different cutting conditions obtaining accurate results (correlation
coefficient of 0.94 between observed and predicted values) for online prediction through
WPT. They also used SSA, Time Direct Analysis (TDA) and Power Spectral Density (PSD)
and TDA+PSD obtaining slightly worst results than WPT.

Table 2.6 Summary of indirect roughness monitoring techniques through automatic learning
algorithms
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x x x -ANN 54 8 Error percentage 4.5185% Venkata Rao et al. (2014)

x x x x -ANN 32 9 RMSE=12.7% Vrabel et al. (2012)

x x x
-ANFIS

-ANN

-GA-ANFIS

120 36 RMSE=0.0757 Samanta (2009)

x x x -ANN 26 6

RMSE=0.010594

R2=0.999739

Akincioǧlu et al. (2013)

x x x -Regression 20 - R2=0.952 Yang et al. (2017)

x x -Regression 360 - R2=0.94 García Plaza et al. (2019)

x x x -G-SSA 270 90 R2=87.82 García Plaza and Núñez López (2017)

x x -Decision trees 225 Cross val. Accuracy=79.75% Rodríguez et al. (2016)

x x x x x -ANN 120 30

MAE=1.34%

R2=98.76

Deshpande et al. (2019)

x x x -ANN 16 8 MSE=0.023 Zain et al. (2010)

x x x -ANN 55 5

RMSE=0.00069

R2= 0.99985

Nalbant et al. (2009)

x x -ANN 243 7 MSE= 1.48% Erzurumlu and Oktem (2007)

2.3 summary

The new solutions based on ML techniques published in the last years, despite achieving
accurate predictions of the current value of the tool condition, have not yet reached the
market. This situation is indicative of the costly work involved in data collection and
storage. In laboratory environments, data is limited and accurate approximations to
direct measurements are obtained. However, in industrial environments, data acqui-
sition is perhaps more limited because it is time-consuming and costly. Nevertheless,
the consideration of failure mechanism and prior knowledge should be utilised and
integrated closely to improve diagnostic performance.

The metal cutting process is a complex operation that requires simple solutions as
far as possible for process monitoring. In the consulted works, there are successful
works as not so successful. The processing and feature extraction methods are highly
application-dependent and use sophisticated methods that are difficult to generalise
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in a practical and fast way. The most practical methods, however, are believed to be
temporal signal analysis and wavelet packet transform. These methods allow a large
number of signal features to be obtained directly; however, selecting the most suitable
ones for a particular purpose is a difficult task.

The literature review has shown that sensor fusion can be a valuable strategy, achiev-
ing higher accuracy in the predictions. If a single sensor malfunctions, it is not known
what the response of the system might be. Thus, it involves the maintenance of the
measurement systems as a whole. Tool wear monitoring using a dynamometer can
be as effective as the more economical accelerometer. The difference in cost between
one sensor and the other is significant. In order to achieve cost-effective solutions, the
advantages of one sensor over the others must be understood. Thus, the interpretation
of the predictive capabilities of each sensor is essential for modern manufacturing. The
user must adopt the best flexible data analysis methods to achieve accurate predictions
in a range of process input conditions. It seems essential to design and develop hybrid
systems, one sensor one ML model and sensor fusion models for industrial applica-
tions to benefit from the different characteristics of the different algorithms and signal
features. This practice can help reduce false positives caused by both electrical and
mechanical noise.

The collection of physical data is limited in terms of machining processes; the mea-
surement of the physical characteristics of both the tool and the machined component
is expensive to carry out. The nature of tool wear may allow extrapolation of the mea-
surements made to unlabelled observations. However, the properties of the machined
component are more complex due to process uncertainty. In industry, a defined number
of components are measured in random order to ensure the quality of a production
batch. However, this practice assumes risks in those components that quality is not
analysed. To overcome this limitation, it is necessary to deal with unlabelled observa-
tions using the data collected throughout the process and the limited measurements to
obtain a broader view of the entire production batch.

Significant effort is focused on the use of sensors external to the machine for tool
wear monitoring. CNC-controlled machines provide access to internal signals such as
spindle motor power and process parameters. The interpretation and relationship of
certain features of these signals should be compared with those obtained from external
sensors for possible replacement. This would allow process monitoring to be carried
out without installing any sensors that could obstruct the process and make prediction
models cost-effective.

The selection of the features best suited to the monitoring need is fundamental to
achieve an accurate response. The reconfiguration and adaptation of the models to
different input parameters (different operations, materials, tool geometries and cutting
conditions) to integrate such systems in industrial environments.

Most of the works consulted in the literature as far as component surface quality
detection is concerned were based on the use of neural networks for the prediction of
the Ra parameter, thus supervised learning is needed. Furthermore, most works used
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as learning data the cutting conditions used, assuming that the same roughness will
always be obtained at specific cutting conditions. These tools can be helpful for the
selection of the cutting conditions before starting a cutting process but shall not be
used to monitor the characteristics of the machined surface.

The use of signals external (Cutting forces, vibrations or acoustic emissions) or in-
ternal (Spindle power, current...) to the machine could deal with the classification of
roughness. However, the systematic measurement of a component roughness could be
a problem since it is time expensive. Most works are based on changing the cutting
conditions, but few repetitions are made with each condition, not achieving a good gen-
eralisation. In extended machining time, the probability of an undesirable phenomenon
and a resulting defective component is high.

There are still a low number of observations for implementing a simple roughness
monitoring system based on machine learning supervised classification algorithms. This
low number of observations shows the difficulty in measuring and preparing data for a
monitoring system of the roughness in drilling processes. Besides that, the consulted
works did not consider different roughness parameters such as Rsk or Rku which
explain the non-Gaussian nature of a roughness profile. Roughness characterization
based on additional parameters obtained from the roughness profile can give more
information, and a model can show a greater generalization of the obtained data.

From another perspective, most of the work observed focuses on supervised learning.
This implies the measurement and extraction of the variables to be monitored before
the learning phase. On the other hand, clustering is an unsupervised method that
allows the understanding of groups and improves the knowledge about the process,
dealing with unlabelled data and explaining groups created from this data.





3
D R I L L I N G P R O C E S S D ATA C O L L E C T I O N , P R O C E S S I N G A N D
C L E A N I N G M E T H O D O L O G I E S

Monitoring of machining processes is essential for better component quality, higher
production and increased automation. Direct measurements of the industrial parame-
ters of interest are dimensional acquisitions of component quality or the cutting tool
condition. These methods are expensive and difficult to apply in production environ-
ments. Indirect measurement methods are based on measurements of signals related to
the cutting process (vibrations, cutting forces, acoustic emissions or spindle power) to
correlate them to physical measurements of the industrial parameters (Li and Chen,
2013).

External installed sensors can be intrusive in specific cutting processes. However,
they can be installed closer to the area where the material is being cut. CNC-controlled
machines provide signals that can be used as a substitute for installed sensors, although
these are acquired further away from the cutting area, and do not provide such direct
information about the process.

Each sensor measures a physical quantity (mechanical, electrical or thermal energy)
and converts it into a signal that acquisition instruments can quantify. Each of these
quantities can correlate to a greater or lesser extent to industrial parameters. Therefore,
there is a need to assess the suitability of various physical quantities adapted to each
monitoring unit.

Set-ups must be designed to be large enough to acquire signals from several informa-
tion sources (installed sensors and internal machine signals). Besides, the acquisition
must be simultaneously and at sampling frequencies adapted to the frequency re-
sponses of each of the installed sensors and sufficient to relate the signal features to the
industrial parameters to be observed.

Industrial parameters must be measured by direct methods to obtain a target variable
that describes the quality of the machined component or the state of the cutting process
periodically. It is also essential to trace the physical measurements and the acquisition
of the signals to carry out the analyses that make it possible to quantify or relate one to
the other. The signals, once acquired, will have parts not related to the cutting process.
These segments correspond to machining in an air cutting or transient moments where
the tool starts to have or lose contact with the machined material. The processing of the
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signal to eliminate the parts irrelevant to the machining and obtain the most related
features to the cutting process also requires special attention.

This chapter describes the methodology used for data collection in drilling processes.
The data collection was carried out in three test batches. All the tests were carried out
on a Lagun B1050 vertical machining centre with Computer Numerical Control (CNC)
Fagor 8070. Among the internal signals provided by the CNC, it was unclear which of
them would give information about the tool condition or even whether any of them
would provide the information necessary to detect defects that may occur during the
process. Therefore, other sensors were installed to acquire signals that are not accessible
from the CNC.

Both the internal and external variables and the type of sensor used to capture them
are shown in Table 3.1. It was decided to install four types of sensors. Among the
consulted works are the most used signals for studying industrial parameters of the
cutting process.

Among all the signals presented, internal signals are always accessible from the CNC,
while the sensors need to be installed. During the execution of the 3 test batches, some
sensors were removed or replaced. The following sections will explain which elements
have been modified between the different test rounds and the characteristics of each
group of tests performed.

Among internal signals, the power produced by the machine to cut the material
(TV50, TV51, TV2 and TV3), the position of tool tip and successive derivatives in the
three axes (POS, V , ACCEL and JERK) and cutting conditions (SREAL and FREAL) has
been obtained.

A Kistler 9123 4-component rotational dynamometer, a PCB piezoelectric accelerome-
ter J356A45, a Brüel & Kjaer 4321 charge output accelerometer, a Kistler 8152C acoustic
emission sensor and a G.R.A.S. 40AE microphone were used among all three batches
of experiments.

As part of the industrial parameters, the tool condition was measured periodically
by a LeicaDMS1000 macroscope. No standard has been found to measure tool wear in
drilling processes, so the measurements have been based on ISO 8688 : 1989 (tool-life
testing in milling) and ISO 3685 : 1993 (tool-life testing with single-point turning tools)
standards. The roughness of certain holes drilled and material damage caused by
machining was also measured.

The sections in this chapter present the methodology used throughout the thesis to
acquire signals related to the drilling process. It also explains the combination of input
parameters of the cutting processes, the methods followed for cleaning and obtaining the
signal features and the methodologies carried out to measure the industrial parameters
related to the cutting process.
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Table 3.1 Acquired signals, sampling frequency and sensor details
Source Signal ID Description Units Range Sensitivity Fs (Hz)

TV50

Spindle motor
power feedback

W ±2147483647 - 250

TV51

Active power
supplied by the drive

W ±100000 W - 250

TV2 Z-axis motor torque N
±1000 % of the stall
torque of the motor

- 250

TV3

Power percentage used with
respect to the maximum power
available in the servo system

0..3276.3% - 250

POS_(X-Y-Z) Tool tip position mm - - 250

V_(X-Y-Z) Tool tip speed mm · s−1 - - 250

ACCEL_(X-Y-Z) Tool tip acceleration mm · s−2 - - 250

JERK_(X-Y-Z) Tool tip jerk mm · s−3 - - 250

SREAL Spindle speed rpm - - 250

Internal

FREAL Feed rate mm · min−1 - - 250

F(X-Y-Z) Cutting force in three axes N ±20e3N 0.5 mV/Ibf 10e3
Kistler 9123

Mz Torque N ·m ±200N ·m 0.5 mV/N cm 10e3

PCB J356A45 ACC_Z Vibration in Z axis m · s−2 ±50g pk 100 mV/g 25.6e3
Kistler 8152C AE Acoustic emissions v 10 dB 48 dBref 1Vs/m 1e6

Brüel & Kjaer 4321 ACC_(X-Y-Z) Vibration in three axis m · s−2 ±500g pk 1pC/ms−2 50e3

G.R.A.S 40AE SP Sound pressure Pascal 15dB(A)to148dB 50mV/Pa 50e3

3.1 preliminary tests on bls 35crmo4 low s steel with previously

induced wear

The signals shown in section 2.2.2.1 have been acquired in addition to the internal
signals to find correlations between the signals themselves and tool wear. The set-up
used in the preliminary tests can be seen in Figure 3.1.

In this set-up, no signal synchronisation architecture was used, and the simultaneous
acquisitions are limited to the sampling frequency. The thrust force (Fz) and torque
(Mz) (Kistler 9123) 1 were acquired through the analogue inputs available on the CNC,
so their sampling frequency was equal to that of the internal signals, and thus, they
were acquired simultaneously. Vibrations (Brüel & Kjaer 4321) 2 and sound pressure
(G.R.A.S. 40AE) 3 were acquired at 50kHz, while acoustic emissions (Kistler 8152C)
4 were acquired at 1MHz. NI 9234 and NI USB 6361 were used respectively for the

acquisitions. The internal signals 5 were acquired at a sampling frequency of 250Hz.

It is worth mentioning that although the accelerometer installed is of the triaxial type.
Only the Z-axis signal was acquired due to wiring problems.

The material used for these tests was a steel of composition BLS35CrMo4 (Table 3.2).
Two types of drills were used, Kendu R204.6D curved edge drill with a helix angle of
30◦, and BH04.5D straight edge drill with a helix angle of 15◦, both of �8mm diameter.
The tests were carried out dry and a jaw was used to clamp the workpiece. The cutting
conditions were Vc = 100m/min and f = 0.15mm/rev for tool R204.6D and 3 levels
of tool condition were considered, Vb = 0mm, Vb = 0.1mm and Vb = 0.2mm. For
tool BH04.5D the cutting conditions were Vc = 40m/min and f = 0.07mm/rev and
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Figure 3.1 Employed set-up configuration, sensor positions and signal acquisition system

4 levels of tool wear were considered, Vb = 0mm, Vb = 0.1mm, Vb = 0.2mm and
Vb = 0.3mm.

Table 3.2 Chemical composition of the workpiece material (BLS 35CrMo4 Low S)

Material C Mn Si P S Cr Ni Mo V Cu Al Sn Ti

Weight % 0.32 0.79 0.33 0.03 0.003 1.07 0.11 0.21 0.004 0.17 0.007 0.011 0.003
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The industrial output parameter measured directly was the tool condition before and
after the tests, using a LeicaDMS1000 macroscope and Alicona IFG4 3D profilometer.
Fig. 3.2 shows the proposed set-up conceptually.

Figure 3.2 Input/Outputs of the proposed experimental set-up on preliminary tests

All the tools were measured before and after performing the trials. These measure-
ments were made in terms of cutting edge geometry. Thus, the flank wear was measured
in a Leica DMS1000 macroscope and the cutting-edge radius, and the cutting-edge
angle was measured in an Alicona IFG4 3D profilometer. The measurements were taken
at the periphery of the cutting edge, where the cutting speed reaches its maximum
value, as shown in Figure 3.3 (a-e). In the same Figure 3.3 (b-c-d-f-g-h) can be seen the
different levels of wear considered in this work with their cutting edge profile. While in
R204.6D the tool flank wear of 0.1mm and 0.2mm was generated, making preliminary
tests aside of the experimental test, in BH04.5D tool flank wear was generated by
sharpening.
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(a) R204.6D

(b) Fresh (c) Vb = 0.1mm (d) Vb = 0.2mm

(e) BH04.5D

(f) Fresh (g) Vb = 0.1mm (h) Vb = 0.2mm

Figure 3.3 Drill bit geometries a-e) General geometry b-c-d-f-g-h) Considered tool wears: fresh,
Vb=0.1 and Vb=0.2 with their cutting edge profile at measuring point

Table 3.3 shows the cutting conditions, tool geometry and tool identification. The
main modified parameter was the flank wear, which is considered an input parameter
to the cutting operation. Due to the lack of precision in preparing the tools, a unique
value was assigned to represent the tool wear. Each of the tools was assigned an
approximation of the wear value closest to those considered in this work (0, 0.1, 0.2
mm). The cutting speed, feed rate and hole depth were the same for each type of drill
bit. A total of 90 holes were made.

3.2 tests on bls 35crmo4 low s

In this set-up, some changes were made regarding the external signals. In this case,
a Kistler 9123 1 4-component rotational dynamometer, a PCB J356A45 2 triaxial
accelerometer and a Kistler 8152C 3 acoustic emission sensor were installed for
signal acquisition. The sound pressure sensor was removed from the set-up because
of the inaccurate measurements due to external noise. The accelerometer position is
transferred from the workpiece to the spindle, ensuring that there is always the same
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Table 3.3 Cutting conditions, cutting edge geometry and number of holes related to drill
number

Drill identification
Cutting edge geometry

Cutting conditions
Vb(mm) β (◦) r(µm)

Drill n◦ Drill ID Vb σ2 · 10−4 β σ2 r σ2 Vc(m · min−1) fn(mm · rev−1) L(mm) �(mm) N◦ of holes

1 R204.6D_1_0 0 0 54.9 0.24 15 2 100 0.15 16 8 5

2 R204.6D_2_0 0 0 53.3 0.6 15 2 100 0.15 16 8 10

3 R204.6D_1_01 0.08 2.2 66.7 12.5 5.5 0.5 100 0.15 16 8 5

4 R204.6D_2_01 0.08 3.1 61.1 2.6 4 0 100 0.15 16 8 5

5 R204.6D_1_02 0.15 5.8 63.8 0.72 3.5 0.5 100 0.15 16 8 5

6 R204.6D_2_02 0.17 26.1 62.7 11.5 11 0 100 0.15 16 8 5

7 BH04.5D_1_0 0 0 79.6 0.32 6 2 40 0.07 5 8 5

8 BH04.5D_2_0 0 0 79.6 0.12 7.5 0.5 40 0.07 5 8 10

9 BH04.5D_1_01 0.14 0.5 91.5 0 7.5 4.5 40 0.07 5 8 5

10 BH04.5D_2_01 0.1 0 92.1 0.02 10.5 4.5 40 0.07 5 8 5

11 BH04.5D_3_01 0.12 2 91.5 0.08 9 2 40 0.07 5 8 5

12 BH04.5D_4_01 0.12 0 90.6 0.08 11 0 40 0.07 5 8 5

13 BH04.5D_1_02 0.28 0 90.2 0.02 11 18 40 0.07 5 8 5

14 BH04.5D_2_02 0.24 0.5 90.2 0.125 11.5 4.5 40 0.07 5 8 5

15 BH04.5D_3_02 0.2 0 90.5 0.125 8 0 40 0.07 5 8 5

16 BH04.5D_4_02 0.28 0.5 89.7 0.4 10.5 0.5 40 0.07 5 8 5

Total 90 holes

distance from the cutting process to the sensor and avoiding collisions between the tool
and the sensor. The acoustic emission sensor was placed on the workpiece material. All
the internal signals 4 were acquired as in the preliminary tests (i.e. those shown in
Table 3.1). Figure 3.4 shows the configuration of the employed set-up.

For the simultaneous acquisition of the signals, the threshold (PFI0) was configured in
the acquisition cards (NI cDAQ 9178 and NI USB 6361). When the internal acquisition
starts, the external signals will start to be collected simultaneously. An analogue output
(ao0 of the CNC) of the machine tool was used to obtain a threshold at the acquisition
time. This allows obtaining both internal and external signals simultaneously. The
workpiece surface is Z = 0mm, when the position of the tool tip is Z = 1mm, the
command is given to start the simultaneous acquisition on the NI USB 6361 and NI
cDAQ 9178 acquisition cards. The internal signals of the machine were acquired at the
CNC hard disc, while the external signals were acquired in an external PC. Given the
deployed simultaneous acquisition system, the dynamometer signals, instead of being
acquired together with the internal signals, have been obtained at a higher sampling
frequency (10kHz). In this case, in addition to the thrust force and torque signals, the
force in the X direction and the Y direction were also acquired. The sampling frequency
of the accelerometer signal was also reduced to 25.6kHz.

In this case the set-up configuration did not change much except for the signal
acquisition methodology used. The same machine and material BLS35CrMo4 were
used. The same tool geometries were used as in the tests described in the previous
section (section 3.1) (R204.6D and BH04.5D) and a total of 600 holes were produced
with each tool. The cutting conditions have been kept the same for the tool R204.6D
(Vc = 100m/min and f = 0.15mm/rev), while for tool BH04.5D have been changed to
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Figure 3.4 Employed set-up configuration and sensor positions and simultaneous acquisition
of internal and external signals
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Vc = 70m/min and f = 0.15mm/rev. All the holes were throughout holes with a length
of L = 5mm. The conceptual set-up is shown in Figure 3.5.

Figure 3.5 Input/Outputs of the proposed experimental set-up on BLS 35CrMo4 Low S steel
tests

During tests, the tool was inspected on the lip and outer corner of the point at a
periodicity of 20 holes in a Leica DMS1000 macroscope with no evidence of tool wear
as shown in Figure 3.6. The workpiece material was a BLS 35CrMo4 Low S steel. This
was not expected as the intention was to carry out end-of-life tests. On the other hand,
sensor data was obtained from the different data sources over a long time.

3.3 tests on inconel 718

In the third batch of tests, the position of sensors was the same as in the previous set-up
(section 3.2), and the same system was used to acquire sensor data and internal signals
simultaneously.

The tests were performed in the same machine (Lagun vertical machining centre),
3 different tool geometries were used, and 3 repetitions were made with each tool
geometry. A total of 9 tools were used. Two of the geometries were used in the two
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(a) Flank (fresh) (b) Flank (hole 600)

(c) Margin (fresh) (d) Margin (hole 600)

(e) Flank (fresh) (f) Flank (hole 600)

(g) Margin (fresh) (h) Margin (hole 600)

Figure 3.6 Tool condition before and after tests for each tool geometry a-b-c-d) R204.6D tool
geometry, e-f-g-h) BH04.5D tool geometry

previous test batches (R204.6D and BH04.5D), the third geometry corresponds to a
SUMITOMO solid TiAlN coated carbide tool (MDS080SK) with a helix angle of 30◦ as
shown in Figure 3.7.

Figure 3.7 Input/Outputs of the proposed experimental set-up on Inconel 718
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The workpiece material was Inconel 718, the chemical composition of this material can
be seen in Table 3.4, the following cutting conditions were used for all the repetitions;
Vc = 15m/min, f = 0.1mm/rev, �8mm diameter and 6.5mm depth throughout holes
for all the repetitions. In contrast to previous tests, these were carried out with coolant.

Table 3.4 Chemical composition of the workpiece material (Inconel 718)
Material Cr Fe Nb Mo Ti Al Co Si Cu C Ta S Ni

Weight % 18.63 17.66 4.94 2.89 0.92 0.59 0.24 0.13 0.12 0.03 0.01 0.0002 Balance

The tools were periodically measured for every 10 holes. The criteria for the end
of the tests was the breakage of the periphery of the tool or flank wear of 0.3mm.
The single cutting tool wear measurement was taken as the average between the two
cutting edges and estimated as a polynomial of degree 3. R204.6D tool suffered from
the beginning, and it was broken in every single repetition during the drilling of the
first 10 holes. Therefore, the data concerning this tool was discarded for further analysis.
The tool geometries can be seen in Figure 3.8.

(a) BH04.5D (b) R204.6D (c) MDS080SK

Figure 3.8 Tool geometries used in end-of-life tests on Inconel 718

3.4 signal cleaning and feature extraction

The data cleaning process was made according to Signal Stable Lenght Window (SSLW).
Figure 3.9 shows the extracted segment. This segment is established from when the tool
tip has completely penetrated the workpiece material until it emerges from the bottom.
Thus, SSLW = HD− 2TH, where HD is the hole depth and TH the tool tip height.

The extraction of information can be done both in the time domain and in the
acquired signal frequency domain. In the time domain, the parameters of interest are
those statistical features capable of explaining or providing information about the
acquired signal. The frequency domain is characterised by representing the frequency
components that vary according to the phenomenon to be controlled.

One of the biggest challenges results in the extraction of the features that best
represent the analysed process. The features of the acquired signals are statistical
indicators that preserve and explain the essential signal elements. On SSLW segment,
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Figure 3.9 Signal segmentation strategy; HD: Hole depth, TH: Tool tip height, SSLW: Signal
stable length window. Example for Inconel 718 tests

different statistical features were extracted: mean, RMS, standard deviation, maximum,
minimum, kurtosis, skewness and signal amplitude. Additionally, a third level WPT

was applied to the external signals, and the same statistical features were extracted
from the wavelet packets, Figure 3.10 shows an example for the vibration signal in the
Z-axis at Inconel 718.

This part can be seen in Figure 3.12 represented as SSLW. This task was carried out
using the tool tip position (POS_Z). Knowing where the tool tip is, and performing a
simultaneous acquisition of all the signals, it is possible to obtain the segment belonging
to the stable machining zone that runs through the whole hole.

Figure 3.10 Example of Wavelet packet transform obtained from vibrations in Z axis for
Inconel 718
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Figure 3.11 Signals acquired by sensors and corresponding drilling states
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Figure 3.12 Machine internal signals and corresponding drilling states



3.5 surface integrity data collection 79

3.5 surface integrity data collection

One of the variables to be taken into account is the roughness of the machined surface.
These measurements were carried out with the help of a roughness meter and Alicona
IFG4 profilometer. The contact roughness meter was used to reference and adapt the
Alicona profilometer parameters to the expected roughness ranges. The advantage of
Alicona is that it allows obtaining a surface visual profile of the machined material,
being able to extract different profiles of a single measurement or to make superficial
analysis in 3D. It also makes possible the visual identification of superficial errors that
may have occurred during machining.

In addition, the microstructural damage of the material was measured by metal-
lographic analysis for the inspection of the occurrence of White Layer (WL), Heavily
Distorted Layer (HDL) or Strain Hardening (SH).

The steps that were followed to analyse the surface integrity are shown in the Figure
3.13. First, the hole was removed by EDM cutting. Then, the hole was cut with a
precision cutter to measure the surface generated on opposite sides of the hole in each
part cross-section. The parameters used for the roughness measurements were based on
ISO 4287− 1997. A x20 objective, a cut-off wavelength of λc = 0.8mm and a measuring
width of rtip = 2µm. Each of the measurements is 7.16◦ of the hole perimeter.

One of the two parts was cut out again to obtain two longitudinal sections. Finally,
the obtained parts (longitudinal and cross-sections) were crimped together, and thus
the material damage caused by the machining process was measured in a cross section
Z = L/2 and Z = L.

Figure 3.13 Cutting procedure for micro-structural and roughness measurements in EDM and
precision cutting machine
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T O O L C O N D I T I O N C L A S S I F I C AT I O N T H R O U G H S I G N A L
P E R F O R M A N C E E VA L UAT I O N I N B L S 3 5 C R M O 4 L O W S S T E E L
M AT E R I A L W I T H P R E V I O U S LY W E A R - I N D U C E D T O O L S

It is estimated that the non-service time of a machine tool is 20% due to the mal-
functioning of the cutting tool (Liang et al., 2004), the incorrect selection of cutting
tool geometry and working conditions. This problem can produce a quicker tool wear
than expected and thus, can cause components not reaching the expected quality and
increased manufacturing costs. Therefore, continuous inspection of the cutting tool
condition is essential to reduce machine downtime, reduce the number of components
scrapped due to poor cutting tool performance and increase the service life of the tools
for more sustainable machining.

Tool wear leads to changes in the micro-geometry of the tool and consequently in the
machining performance. The different wear mechanisms observed in cutting (abrasive,
diffusion, adhesive, oxidation or fatigue) do not follow a linear wear rate over time.
Therefore, the use of suitable sensors for indirect measurement of tool wear is essential
to achieve acceptable quality in manufacturing processes.

Tool condition monitoring may be a costly task, and not all sensors can reproduce
measured physical phenomena of cutting processes with the same accuracy. Increasing
the number of sensors for tool wear prediction allows more data to be obtained.
However, this can lead to confusion due to the complexity of the data. During the
literature review, it has been observed that works using both individual and fused
sensors have obtained successful and not so successful results. However, there is
no comprehensive view on which sensors are the most suitable for tool condition
monitoring in the different machining operations.

Tool wear is usually measured in the cutting edge formed by the major and minor
cutting edge. The most common type of cutting tools wear is flank wear (Vb). The value
defining the maximum tool life would be 0.3mm, and this can be reached in drilling
after 5− 20 minutes of machining time.

The main objective in this chapter is to understand the relationship between external
and internal sensor measurements and check their capability to detect tool wear under
the set-up and experimental plan explained in section 3.1 (Preliminary tests). The
replacement of the external signals by the internal signals for tool wear detection
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will allow the development of a non-intrusive tool condition detection system. Two
drills (R204.6D and BH04.5D) previously ground with flank wear of new tools, 0.1 and
0.2mm in the major cutting edge will be employed to analyse.

The first objective of this chapter is to identify the most sensitive signals to predict
tool wear. For this purpose, a statistical comparison of the most widely used signals
for tool wear detection was made from the point of view of machine learning. The
methodology used identifies the most sensitive signals for both drill bit configurations
using the recorded raw data. The second objective is to predict the tool wear of one
tool geometry using the model created from the data from another tool geometry. Once
the most sensitive signal and the most accurate algorithm were identified, the data
acquired using one of the drill bits were used to predict the tool wear of the other drill
bit configuration. In this study, only the temporal features of the acquired signals are
considered.

4.1 methodology

The data used in this chapter corresponds to the setup presented in section 3.1. There-
fore, this section explains the data analysis methodology used to compare the different
signals acquired during the drilling process to predict the previously induced wear.

4.1.1 Sensitivity analysis through machine learning algorithms

The predictive capacity of the statistical features extracted from the signals was carried
out using machine learning algorithms. To that end, the following statistical features
were calculated for each signal in the time domain: mean, RMS, standard deviation,
maximum, minimum, kurtosis, skewness, variance and coefficient of variation. These
statistical features explain the distribution of the signal, so automatic learning is applied
to them.

First of all, the data which constituted the dataset was selected. The rows of the dataset
are called instances, while the columns are attributes. Table 4.1 shows a generalized
dataset of any of the acquired signals. In addition to the calculated statistical features,
some process parameters were added to the datasets: cutting speed (Vc), feed per
revolution (fn), drilled depth (L), the cutting-edge angle (β) and the cutting edge radius
(r). All these attributes were used to predict the class, which is the tool wear (Vb)
measured before the experiments. Vc and fn variables were obtained acquiring FREAL

and SREAL signals, which are penetration rate and spindle speed, respectively acquired
from the drilling process.

Overall, eleven datasets were created for each type of drill, one for each of the
acquired signals. Among them, the ones with the name TV50, TV51, TV2, Mz, Fz, SP
and V_Z were created with 14 attributes and the target or class. In contrast, V(X-Y-Z),
ACCEL(X-Y-Z) and JERK(X-Y-Z) were built with 32 attributes and the class. This is



4.1 methodology 83

Table 4.1 Generalized example of a signal dataset. Constituted by statistical features extracted
from the signal, process input parameters, and the class

Statistical features Process parameters C

mean rms std. desv. max. min. kurt skew var coef. var Vc fn L β r Vb

Hole1: 1st instance
Hole2: 2nd instance

...
HoleN: Nth instance

because signals composed of more than one component were set together in a dataset.
The R204.6D drill type datasets had 35 instances, while the BH04.5D type drill datasets
had 55, having a total of 90 instances, one for each of the holes made.

Machine learning algorithms were used within a 10 folds cross-validation process.
Due to their differences in approximation at the time of generating the models, J48

(Krishnakumar et al., 2015; Ferreiro et al., 2011) (Decision tree), LMT (Logistic Model
tree) (Kilundu et al., 2011) (Decision tree with logistic regressions on the leaves),
IBk (Krishnakumar et al., 2015; Ferreiro et al., 2011) (Instance-based learning) and
NaiveBayes (Probability-based algorithm) available in the Weka platform were tested,
each of the strategies followed are briefly explained in the literature review (section
2.2.2.4). 10 folds cross-validation process consists of performing 10 iterations, where in
each iteration the data is partitioned in 10 subsets. The analysis (also called training)
is performed in 9 of these subsets, while the validation or testing uses the remaining
subset. It is repeated 10 times, rotating the validation subset until every instance has
been validated once. The same validation process was applied to all datasets.

Further statistical significance of the differences in these algorithm accuracies was
also carried out at three different levels of difficulty. From the simplest classification to
the more complex one, the three difficulty levels are listed below:

V1: In the first version, only the holes made with new drill bits (Vb = 0mm) and
those with the maximum flank wear (Vb = 0.2mm) were considered. But, still the
classification was in binary mode (false if the hole was made with a new drill bit,
true if the hole was made with a worn drill bit)

V2: Apart from holes made with new drill bits (Vb = 0mm) and those with the
maximum flank wear (Vb = 0.2mm), instances corresponding to holes made with
Vb = 0.1mm drill bit were added. In this case, the classification was also carried
out in binary mode (false if the hole was made with a new drill bit, true if the
hole was made with a worn drill bit).

V3: All flank wear levels were considered, Vb = 0mm, Vb = 0.1mm and Vb = 0.2mm
in a multi-class classification process.
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After the cross-validation process had been applied, a T-test was performed. The
sensitivity analysis was performed using the WEKA software experimenter. For the
paired T-test, the first signal is the dominant signal, while all other signals are compared
against the dominant signal. Therefore, the most accurate signal was chosen as the
dominant one. This test aims to obtain the statistical significance of the signals analysed
in this work concerning the most accurate signal to predict tool wear. The results of
this methodology can be found in section 4.2.

4.1.2 Testing with different drill bits

To test the ability of one model created from one drill geometry to predict the tool wear
of the other drill geometry, the models created with the most sensitive signals in drill
R204.6D were used to test the wear on instances of both drills.

Figure 4.1 shows a picture explaining the general process. Firstly, statistical featuers
of selected signals and process parameters (Vc, fn, L, β ) along with Vb for R204.6D
were used to train 1 , and then, the model was tested to predict Vb for both 2 .

Figure 4.1 Model training and testing using different geometries of drill bits

Further feature extraction processes made us distinguish between three different
strategies explained below:

S1: Calculates the statistical features of the entire signal for each hole. The signal has
been considered from the beginning of the hole to the end of the hole, omitting
any part that does not belong to the drilling process.

S2: Calculates the statistical features for each millimetre depth of cut, segmenting
the signal for one hole in as many segments as mm it has. As both tools are the
same diameter, statistical features correspond to the same volume of material
removed using this approach. For different cutting conditions, the 1mm window
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was calculated using equation 4.1. As a consequence, the number of instances
available for the same hole could increase.

W1mm =
fs · 60
av

(4.1)

Where W1mm is the 1mm window length (Samples · mm−1), av is the feed rate
(mm · min−1) and fs is the sampling frequency (Samples · seg−1).

S3: The predictions were made using the predictions made for each segment of the
hole in a voting scheme. If the majority of the segments predicted one specific
value for Vb, this would be the final decision for the predicted wear in this hole.

4.2 sensitivity of the signals to tool wear

As already mentioned, the sensitivity analysis was carried out based on a two-tailed
paired T-test using 10-fold-cross-validation 10 times. In the 3 versions proposed (V1,
V2, V3) and for both types of tools used.

Table 4.2 shows each signal accuracy concerning the algorithm used for the type
BH04.5D drill bit. TV2 signal was chosen as the most accurate signal to predict tool
wear. Therefore, T paired test is applied against the TV2 signal. In the first version (V1),
only new tools and tools with flank wear were classified. In all signals, at least one or
more algorithms fulfil the null hypothesis. In the second version (V2), although the
classification is done in binary form, the degree of difficulty is increased, so the number
of signals that fulfil the null hypothesis is considerably reduced. In the last version (V3),
the only signal which fulfils the null hypothesis concerning TV2 that the difference
of the means for the accuracy of the paired data is 0, is Fz. About the other signals,
none of them is statistically relevant. Therefore, they are not considered as signals with
statistical features capable of predicting tool wear in the time domain better than TV2

or Fz do.

Regarding the prediction of the wear for the R204.6D type drill bit, Table 4.3 shows
the corresponding results. The signal chosen as most accurate was Fz and the paired-T
test was applied against it. As in the previous case, the highest number of signals that
accept the null hypothesis is found in the first version (V1) proposed. However, the
same number of successes are not achieved as in the previous case. This may be due
to differences in tool geometry. In the second version (V2), as expected, the number
of successes is significantly reduced. In the last one (V3), results indicate that the TV2

signal is the one that makes most of the algorithms accept the null hypothesis.

The results match both tool geometries. Given the two tool configurations, it can be
seen from the results that the straight-edged tool (BH04.5D) has better results for some
of the signals. This may be due to geometrical differences between the two tools or the
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Table 4.2 Statistical significance of signals in a two tailed paired T-test for accuracy in pre-
dicting BH04.5D tool flank wear for three proposed versions for S1. In white, the
signals with the same mean in accuracy as TV2. In grey, the signals with different
mean in accuracy

Internal External

TV2 TV50 TV51 V ACCEL JERK Fz Mz AE Sound Vib

J48 97 97 96 85 88 91 97 90 86 96 86

LMT 99 91 91 84 84 87 100 96 82 96 84

IBK 100 94 91 85 86 85 100 99 89 97 89

V1

NB 100 94 93 91 84 94 100 95 89 95 82

J48 98 77 66 81 82 95 97 89 86 98 89

LMT 98 69 72 85 80 89 100 87 82 95 86

IBK 100 71 70 84 80 86 100 96 90 90 88

V2

NB 100 82 75 77 81 90 100 81 83 96 87

J48 94 68 55 67 61 78 91 77 70 66 72

LMT 94 64 69 75 72 80 94 80 73 70 57

IBK 96 59 63 72 74 72 98 86 78 63 68

V3

NB 94 77 63 79 72 81 98 75 63 69 53

preparation before testing. The BH04.5D tools were sharpened by the tool manufacturer,
leaving more uniform wear along the flank of the tool. As expected, the results showed
that the Fz and TV2 signals were the most sensitive when predicting the tool wear.

The location of the hole changes constantly, changing the source of the signal to be
measured, so measurements are likely to vary as the hole changes location. In this case,
the acoustic emission sensor, the vibration sensor and the sound pressure sensor are
affected by this phenomenon.

4.3 model testing for different tool geometries

To check the impact of the tool geometry in the models used for tool wear detection,
an algorithm was trained using R204.6D drill bits and then tested with R204.6D and
BH04.5D tool signals, using for that TV2 and Fz, the most sensitive signals for tool
wear detection.

Figure 4.2 shows the proportion of correct and incorrect predictions made for each
proposed strategy and considered algorithms. The TV2 signal shows a good perfor-
mance in terms of the first strategy (S1). However, despite the percentage of correct
results obtained, other classification strategies have been carried out to improve the
results. The second strategy (S2) involves the segmentation of signals and therefore
contains a more significant number of instances for both the training and testing phases.
The IBk algorithm has optimal performance when training with a more significant
number of instances. In the last strategy (S3), a voting system was added to the previous
classification strategy. Comparing S3 strategy with S1, it can be seen how it significantly
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Table 4.3 Statistical significance of signals in a two tailed paired T-test for accuracy in predict-
ing R204.6D tool flank wear for three proposed versions for S1. In white, the signals
with the same mean in accuracy as Fz. In gray, the signals with different mean in
accuracy

Internal External

TV2 TV50 TV51 V ACCEL JERK Fz Mz AE Sound Vib

J48 96 79 91 60 65 74 99 83 71 54 69

LMT 99 94 91 64 70 72 100 89 72 72 64

IBK 96 88 84 73 65 70 100 85 49 73 61

V1

NB 96 91 91 69 61 57 96 86 66 65 65

J48 93 72 73 68 71 71 100 70 58 52 75

LMT 88 95 87 69 69 73 100 83 53 63 66

IBK 79 78 76 75 70 71 100 73 58 53 69

V2

NB 75 77 77 70 69 71 97 72 53 54 68

J48 85 56 63 55 59 59 91 63 54 46 65

LMT 84 90 83 65 60 58 92 74 63 48 67

IBK 74 69 59 73 56 55 95 63 57 52 67

V3

NB 87 75 72 74 63 55 91 70 66 38 69

improves all the algorithm behaviour. Thus, the segmentation of signals and the voting
system presents better behaviour than the complete signal.

Observing Figure 4.2, the Fz signal shows a worse behaviour regarding the first strat-
egy (S1) than TV2 signal. As for the second strategy (S2), the Fz signal appears to have
a favourable effect on the number of correctly classified instances. The segmentation of
the signal into independent instances seems to affect the precision of the algorithms
positively. It does not seem to have the same effect on the TV2 signal with which in
this case, the proportion of correctly classified decreases for the first strategy (S1). As in
the first strategy (S1), in the last strategy (S3), predictions are made in terms of a hole
made. For both signals, the amount of correctly classified increases yields considerable
improvement in all the algorithms.

A confusion matrix shows the performance of a classification model, columns rep-
resent current values of a target (Measured Vb) and, in rows, the values predicted
(Predicted Vb) by a model. the values in the cells represent the number of instances
for which the Measured Vb has a certain Predicted Vb. Any value out of the confusion
matrix diagonal corresponds to the number of wrongly classified instances. Precision is
the fraction of all relevant instances divided among the obtained instances. The recall is
the fraction of relevant instances obtained over the total number of relevant instances.
The column on the far right of the plot shows the recall for each predicted class, while
the row at the bottom of the plot shows the precision for each true class. The cell in the
bottom right of the plot shows the overall accuracy.

In S2, for both signals, an optimal result is achieved using the IBk algorithm. There-
fore, this algorithm benefits from the number of instances available for the training
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(a) TV2 signal

(b) FZ signal
Figure 4.2 Performance of all the strategies and algorithms tested for the third version of

dataset (V3)



4.3 model testing for different tool geometries 89

phase. Figure 4.3 shows the confusion matrices for the predictions made using the IBk
algorithm for the S2 and S3 strategies with the TV2 and Fz signals. Using S2 (Figure 4.3
a, c), a good percentage of correctly classified instances is obtained, 90.4% for TV2 and
92.7% for Fz. For both signals in S2, the worst instances at the time of being classified
are the worn tools to Vb = 0.1mm. This is because there are overlaps between the
proposed labels for wear classification between the different statistical features extracted
from the signals. This supposes a challenge when assigning the labels based on the
Leica DMS1000 macroscope measurements and Alicona profilometer.
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Figure 4.3 Confusion matrices applying strategies 2 and 3 for the IBK algorithm and the TV2
and Fz signals

Figure 4.4 compares the performance of the J48 algorithm using the TV2 for strategies
1 and 3. The improvement is remarkable. The final classification is the same in both
strategies. On the one hand, the complete signal (S1) statistical features are taken into
account. On the other hand, the classification is made based on the segments obtained
(S3). So the difference is in the use that is made of the data obtained from the process.
The five holes made with 0.1mm wear tools classified as new tools in S3 belong to
a single tool, the tool labelled with ID: BH04.5D_2_01. It is the tool with the lowest
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wear measured directly, making it difficult to distinguish them from the new ones. In
general, it can be observed that precision and recall increase from S1 to S3. The number
of false positives is reduced, observing a considerable improvement when performing a
classification based on signal segments. This way of handling the data allows increasing
the probability of success of a certain model since, in addition to the current output, it
takes into account previous system outputs.
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Figure 4.4 Confusion matrix: J48 algorithm for TV2 signal

4.4 conclusions

In this chapter, a comparative study of the sensibility of the most commonly used
signals for tool wear detection in drilling processes has been carried out. Tests were
performed with two different types of drill bits under a complete setup in which
multiple signals were acquired to evaluate their sensitivity to tool wear in drilling
processes. The methodology used has made it possible to identify the most sensitive
signals in the time domain, with the TV2 (Z-axis motor torque) and Fz (thrust force)
being the most sensitive to tool wear. Besides, based on the algorithms training phase
with the TV2 signal of R204.6D type drill bits, tool wear of BH04.5D type drills has
been predicted.

• The methodology used has made it possible to identify the variables of interest for
this study. This methodology has helped identify the extent to which the different
signals collected can detect tool wear.

• Once the sensitivity analysis has been carried out, it has been possible to see that
the most affected signals by tool wear are the Fz and the TV2. With the above
mentioned signals, quite precise results have been achieved by predicting tool
wear with both types of drill bits.
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• The model created with the TV2 signal from R204.6D drill bits shows great
accuracy in predicting tool wear for BH04.5D drill bits. The Fz signal does not
perform as well as TV2 in this respect.

• The strategy of segmenting the signals with a 1mm hole depth window means an
increase in the number of instances available for the algorithm training phase. In
both cases (TV2 and Fz) a better result is achieved with the added voting system
than in the first pursued strategy.

• The signals have been analysed in the time domain. They need to be analysed
further to obtain accurate indicators of tool wear. It is necessary to apply different
treatments to the signals to obtain better indicators for detecting tool wear.

• With this work, it has been possible to identify the TV2 signal as the most
predictive internal signal for a combination of a given material, two different
tool geometry types, and two different cutting conditions for tool wear level
prediction.
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According to Dudzinski et al. (2004), broaching, turning and drilling are the main
operations in the manufacture of discs for gas turbine engines for the aerospace industry.
These parts are produced from Nickel-based superalloys due to their resistance to high
temperatures and corrosion. Chen and Liao (2003) reported that during the machining of
Nickel-based alloys, the tool wear is accelerated, being the abrasion wear the mechanism
that predominates in the initial stages. Changes in tool microgeometry due to wear,
cause increased friction on the machined material and may cause alterations to the
surface integrity. Thus, accurate indirect measurement of tool condition is of great
importance on Nickel-based superalloys.

Among the several strategies for detecting tool wear, given the continuous nature and
continuous data acquisition from the cutting process, it makes more sense to perform
it as a continuous value prediction. The most common algorithm for this purpose is
linear regression. However, its insufficient capacity and primitiveness are often not
appropriate to real-life data. Therefore, algorithms that attempt to model the non-linear
wear of cutting tools must be used.

Sudden changes in the tool, such as the loss of part of the cutting edge, can lead to
inadequate cutting and thus produce poor quality surfaces. It is essential to assess the
risk of irreversible damage to the tool for premature tool change to prevent machining
errors while monitoring the progression of wear. Each sensor or acquired signal can
give a different response, so it is essential to evaluate the predictive capability of the
acquired signals for a given target before selecting the sensors that can best meet the
monitoring requirements of the cutting process.

In the previous chapter, the capacity of each collected signal for the classification
of previously induced tool wear levels has been shown. The thrust force (Fz) and the
Z-axis motor torque (TV2) signal were the most accurate signals when classifying
different tool wear levels. However, the use of dynamometer signals practicability is
debatable. O’Donnell et al. (2001) showed that cutting torque is the most informative
signal regarding tool wear in the drilling process. Its use in industrial environments is
not practical due to a lack of adaptability and geometrical limitations, both measured
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by a three-dimensional dynamometer or rotational dynamometer. Thus, the TV2 signal,
which corresponds to the Z-axis motor torque of the machine, shows more practical
behaviour.

In this chapter, the main objective is to evaluate each sensor signal to reconstruct the
wear curve in end-of-life tests and the capacity to detect tool periphery breakage on
Inconel 718. The data from the set-up explained in section 3.3 (Tests on Inconel 718) is
used. Besides, the effect of wear on surface roughness and material damage has also
been analysed. The results indicate that reconstruction of the wear curve is possible
using both the internal machine signals and the sensors used. With the exception of
the acoustic emissions, which in the analysis carried out and among the features of
the extracted signals do not show sufficient capacity to reconstruct the wear curve.
The signals acquired with the rotational dynamometer and the internal signals show a
greater ability than the signals acquired with the accelerometer to detect tool breakage.
Furthermore, roughness and material damage measurements do not show a trend with
respect to tool condition.

In the following sections, first, the methodology used is explained, which involves
estimation of the class (target) to be predicted. Then, the methodology for feature
selection for tool wear prediction, selection of the algorithm that best fits the data for
target prediction and modelling based on the selected variables for estimation of the
risk that a tool may break are shown. The results obtained for each sensor or sources of
information considered in this study are then presented, and finally, the conclusions
are outlined.

5.1 methodology

The presented methodology follows several steps with many interdependences and
basically will follow the following steps: a) gather data on different tools and many
different sensors and internal signals for the drilling process, adding data relative to the
wear, b) extract features and select the best ones using indistinctly data from different
tools, c) choose the best algorithm between five of them using indistinctly data from
different tools d) use knowledge from steps b and c to predict wear curve on each tool
data separately, e) use knowledge from steps b and c to predict wear/breakage on each
tool data separately.

5.1.1 Wear target estimation

During the machining process and for the reconstruction of the wear curve, the tool
condition at each cutting edge was measured with a periodicity of 10 holes at the
periphery of the major cutting edge. (Figure 5.1 a)), calculating then an average of the
wear on the two cutting edges. Once the process was finished, using those estimated
wear values, a curve was adjusted through a 3rd degree polynomial fitting shown in
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Figure 5.1 b). The first hole in which a sign of breakage was observed on the periphery
of the tool (intersection point between the minor and major cutting edges) was also
identified and labelled. The criteria to finish the test was to achieve a wear value of
Vb = 0.3mm or 10 holes after the first breakage point was identified.

(a) Measuring area

(b) Wear target estimations

Figure 5.1 Tool wear measurements, third-degree polynomial curve and tool breakage mea-
sured hole for each repetition

The third-degree polynomial curves estimated from the tests measurements are used
as the target for ML algorithms. During the evolution of the wear curve, four phases
have been identified. (i) Break-in period, is the phase where the tool wears out quickly.
At the beginning of the process, for every tool, a Vb = 0.1mm is reached after the first
ten holes (ii) Steady stage, the tool wear curve is smoothed and continues growing
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progressively. (iii) Failure region, where the tool suffers some breakage in the cutting
edge (iv) Breakage period, one or both cutting edges have suffered irreversible damage.

During the tests, it has been observed in tool 1 that the first occurrence of a breakage
appears in between holes 80-90, while in tools 2 and 3, the breakage was observed
between holes 40-50, in the Figure 5.1 shown as failure region. Even though the holes
were drilled under the same cutting conditions, the breakage on the periphery of the
tool has been observed at different periods in the tool life.

Once the polynomial adjustment has been made, the datasets created with internal
and external feature values and the estimated wear curve are joined as shown in Figure
5.2 (Complete feature spaces) for each information source, including data for every
tool.

5.1.2 Feature selection

The non-relevant or redundant features must be removed from each data-set cor-
responding to one unique sensor for predicting the wear curve. The final decision
regarding feature selection has been carried out through a voting scheme between
different methods; a) two embedded methods, b) a wrapper method and c) a filter
was used. The methods selected for this step have been Elastic Net (EN), Sequential
Backward Search (SBS), Random Forest (RF) and Information Gain (IG).

In this work every decision on selecting (1) or not (0) of a feature by an algorithm is
added. In this way, each feature can obtain a maximum score of 4 (all the algorithms
considered this specific feature as a candidate for tool wear curve prediction) and
a minimum of 0. The selected features for each one of the sensors have been those
that would have only features that obtain a score greater or equal to 3. Ensuring that
different criteria have been involved in the selection of these features (At least 3 of the
algorithms consider the selected features as relevant). The feature selection process is
represented in Figure 5.2 and was carried out per each sensor separately.

Specific names are used for the rest of this work to specify these reduced feature
spaces. Dynamometer Reduced Feature Space (FC_RFS), Accelerometer Reduced Feature
Space (ACC_RFS) and INT_RFS were obtained. In the case of acoustic emissions no relevant
features have been found using these algorithms.

5.1.3 Algorithm selection and flank wear curve prediction

The performance of algorithms predicting tool wear curve values was validated before
and after the previous variable selection process using 10 fold 10 times cross-validation.
This way, the behaviour of the selected algorithms for the prediction of the wear curve
is evaluated under different input feature space.
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Figure 5.2 Complete feature space, feature selection process and reduced feature spaces for
each sensor

The algorithms tested for the prediction of the wear curve were: (i) neural network
(NNET) (Artificial neural network), (ii) generalized linear model (GLM) (a generaliza-
tion of linear regression), (iii) K nearest neighbour (KNN) (Instance-based learning),
(iv) M5 model rules (M5) (Decision tree) and (v) Linear SVM for regression (Support
vector machine).

To evaluate the capacity to reconstruct the wear curve in another tool, the bootstrap
sampling method was used. This method consists of selecting a part of the training data
(training samples) and another part for testing (out-of-bag samples) (Kuhn, Johnson,
et al., 2013). The training samples belong to two of the three tools used, and the out-of-
bag samples belong to the remaining tool. After three iterations, the prediction of the
wear curve for the three tools used in this work are obtained.
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To measure the behaviour of the model fitting against the measured tool wear curve,
Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and R square (R2) metrics
were used, the mathematical notations of these metrics can be found in Table 5.1.

The results obtained from the comparison of the different algorithms in the whole
feature space and in the reduced feature space for each sensor can be consulted in
section 5.2 as well as results from bootstrapping process.

Table 5.1 Model evaluation metrics used for regression

Model evaluation metrics

MAE = 1
n

∑n
j=1 | yj − ŷj |

RMSE =
√

1
n

∑n
j=1(yj − ŷj)2

R2 = 1−
∑

(yj−ŷj)
2∑

(yj−ȳj)2

5.1.4 Tool breakage prediction

In this section, the selected features during the feature selection process have been used
to detect tool periphery breakage according to the levels established in section 5.1.1.
The algorithm used to create the models for detecting the tool periphery breakage was
the Logistic Model Tree (LMT) because of its simplicity of interpreting the obtained
model and identifying the features that evaluate the probability of risk to suffer a tool
periphery breakage. LMT combines logistic regression models with tree induction. A
logistic model tree is a standard decision tree structure with logistic regression functions
in the leaves (Landwehr et al., 2005). Unlike conventional decision trees, the leaves have
an associated logistic regression function instead of a class label. At the leaves of the
LMT, the functions F(x) and −F(x) determine the class membership probabilities by
equations 5.1 and 5.2.

Pr(withoutfailure) =
eF(x)

eF(x) + e−F(x)
(5.1)

Pr(toolbreak) =
e−F(x)

eF(x) + e−F(x)
(5.2)

Where F(x) is a linear model for the leave with the next form,

F(x) = a
j
0 +

m∑
k=1

a
j
vkvk (5.3)
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Where a
j
0 is the intersection and a

j
vk

is the coefficient of the corresponding vk feature.

Figure 5.3 shows the logistic regression curve of probabilities for each case. −F(x) de-
termines the probability of a tool failure (label=1), while F(x) determines the probability
of a tool without failure (label=0).

Figure 5.3 Model interpretation through logistic model trees

When F(x) has a high value, the probability of belonging to class 0 "without failure"
is higher. When F(x) is closer to 0, the probability of belonging to one class or another
is more doubtful, so this is the critical area or failure region, where a tool can go from a
"without failure" (label:0) to a "tool failure" (label:1) state.

Before the final model is created that will predict the presence of breakage, several
previous stages are used to impute values on unknown data that gradually control the
uncertainty. A description of these stages can be seen in Figure 5.4. The results obtained
from this methodology can be consulted in section 5.3.

S1 The first stage only considers those instances correctly labelled for each separate
tool, without considering the failure region data where the tool is known to have
suffered substantial and irreversible damage. This allows us to observe that the
created model effectively differentiates a bad state from a good state of the tool.

S2 The second stage uses instances of every tool together without considering the
failure region, as in the first stage.

S3 The third stage trains the models with the well-labelled instances of a single
tool and tests them using instances on the failure region. In this way, the labels
obtained in this stage are used for value imputation for instances in the failure
region.
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Figure 5.4 Followed methodology for tool breakage detection

S4 The fourth stage follows the same steps that stage S3 but considering all the
instances of all the tools together. This will also help in imputing the appropriate
labels to the instances on the failure region.

S5 With all the instances labelled, in stage S4, training in 70% of the data and testing in
the remaining 30% on tools 2 and 3. To ensure the early detection of tool breakage
the first instances of this period have been introduced in the test partition.

S6 The last stage follows the same steps that in S5 but with data of all tools 1,2,3
together.

There are more holes not presenting a breakage in the periphery of the tool than
those that are performed with tool breakage, resulting in an imbalanced data problem.
Having a few instances that belong to the tool failure class makes it more difficult
for the algorithm to learn what the decision boundary is. The training data has been
balanced using the Synthetic Minority Oversampling Technique (SMOTE) algorithm to
avoid this problem. It chooses two neighbouring minority instances and creates a new
minority instance based on selected ones (Chawla et al., 2002). This allows the models
to better generalize in terms of the minority class; in this case, the class that indicates
tool failure. According to Luque et al. (2019) for this type of imbalanced classification,
the best evaluation metric results in the use of Matthews Correlation Coefficient (MCC)
since it takes into account the equilibrium ratios of the four categories in the confusion
matrix (TP: true positives, TN: true negatives, FP: false positives, FN: false negatives)
as seen in equation 5.4. The value of this metric is distributed from −1 to 1, being
−1 the total disagreement between the predicted and the real value, 0 means random
predictions and 1 the total agreement between the predicted and the real value.
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MCC =
TP · TN− FP · FN√

(TP+ FP) · (TP+ FN) · (TN+ FP) · (TN+ FN)
(5.4)

5.2 tool flank wear curve modelling through machine learning al-
gorithms

The reconstruction of the wear curve has been carried out with the features of each
of the sensors separately. The results obtained with the acoustic emission signal have
not been presented since they do not show any predictive capacity concerning the tool
wear curve.

Different algorithms have been compared for each of the sensors used in this study.
The models obtained were compared using the entire feature space and the reduced
feature space for each sensor. In the case of the accelerometer, the reduced feature space
is ACC_RFS. These features are those obtaining a score greater or equal to 3 during the
feature selection process.

ACC_RFS = [WP5_ACCx_rms, WP5_ACCx_max, WP7_ACCx_rms, WP8_ACCx_rms,
WP2_ACCy_rms, WP4_ACCy_kurt, WP3_ACCz_rms, ACCx_max, ACCx_skew,
WP2_ACCx_rms, WP2_ACCx_max, WP2_ACCx_peak, WP4_ACCx_rms,
WP6_ACCy_rms, WP7_ACCy_mean, WP3_ACCz_max, WP7_ACCz_kurt,
WP8_ACCz_max, WP8_ACCz_peak]

The complete feature space obtained from the accelerometer was of 243 features, once
the process of feature selection was applied, this number was reduced to 19 features.
Figure 5.5 shows the results obtained by cross-validation with the features obtained
from the accelerometer sensor. On the one hand, the entire feature space results are
shown (243 features). On the other hand, the results obtained after applying the feature
selection process (ACC_RFS).

All the algorithms create a model with better behaviour in terms of the accelerometer
with the reduced feature space. Considering the complete feature space, the KNN
algorithm obtains the best result. Besides, all the other algorithms obtain a p− value <

0.05 concerning KNN, which indicates a statistically significant worse behaviour than
KNN. Once the feature space is reduced, the best result is obtained with the NNET
algorithm. KNN and M5 obtain the same mean in model performance with a p−

value > 0.05, indicating that there is not a statistically significant difference between
the results obtained by each of these algorithms.

In the features obtained from the dynamometer, the feature space was reduced from
324 to 10 features (FC_RFS). Thus, having a considerable feature reduction.

FC_RFS= [WP2_Fy_rms, Fx_mean, Fx_kurt, Mz_mean, WP2_Fy_min, WP2_Fy_skew,
WP2_Fy_peak, WP2_Mz_rms, WP2_Mz_kurt, WP2_Mz_skew]
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Figure 5.5 Results of algorithms using the accelerometer signals applying 10 folds 10 times
cross-validation in all feature space and reduced feature space for each algorithm.
The green square indicates the best result achieved with all feature space. The
purple square indicates the best result achieved with the reduced feature space and
the dashed line purple square indicates those algorithms with the same mean in
results to the NNET algorithm (p− value > 0.05)

The results obtained with the signals acquired with the dynamometer can be seen
in Figure 5.6. In this case, the same procedure as with the accelerometer has been
followed. In the figure below, the metrics of all the algorithms used can be seen for the
cross-validation process for both complete feature space and reduced feature space.

Similarly, as with accelerometer signals, better results were obtained in the reduced
space using the FC_RFS features. The most remarkable improvement is obtained in the
GLM algorithm using the reduced space of the features obtained from the signals of
the dynamometer. The best result is obtained with the reduced space of features using
the NNET algorithm, KNN and M5 algorithms show similar behaviour, as they do not
show a statistically significant difference.
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Figure 5.6 Results of algorithms using the dynamometer signals applying 10 folds 10 times
cross-validation in all feature space and reduced feature space for each algorithm.
The green square indicates the best result achieved with all feature space. The
purple square indicates the best result achieved with the reduced feature space and
the dashed line purple square indicates those algorithms with the same mean in
results to the NNET algorithm (p− value > 0.05)

Regarding CNC internal signals from 81 feature space, it was reduced to 16 as seen
in INT_RFS feature vector.

INT_RFS= [TV50_mean, TV50_max, TV50F_std, TV51_max, TV2_mean, TV2_min,
Vz_std, Vz_skew, TV50F_max, TV2_max, Vz_rms, Vz_max, JERKx_kurt,
TV3_max, TV3_min, CV3_min]

Figure 5.7 shows the results obtained from the cross-validation process of all feature
space obtained from the CNC provided signals. It should be noted that obtaining these
signals does not require installing any sensor and is, therefore, the most practical option
for creating tool condition monitoring systems.

In the case of internal signals, the KNN algorithm is the one that obtains the best
results for the reconstruction of the wear curve in the reduced feature space INT_RFS.
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Figure 5.7 Results of algorithms using the internal signals applying 10 folds 10 times cross-
validation in all feature space and reduced feature space for each algorithm. The
green square indicates the best result achieved with all feature space. The purple
square indicates the best result achieved with the reduced feature space and the
dashed line purple square indicates those algorithms with the same mean in results
with respect to NNET algorithm (p− value > 0.05)

It is possible to reconstruct the wear curve both by using external signals of vibrations
and cutting forces and the machine internal signals. Slightly worse results are obtained
with the accelerometer, although acceptable for environments that do not have the
possibility of collecting internal signals or installing a dynamometer. Although several
works show the ability of acoustic emissions to monitor tool wear, in this work, no
trend has been observed that would allow good results to be obtained with this sensor.

Once the comparison of the different algorithms has been made, it has been decided
to use the NNET algorithm to reconstruct the wear curve. The process has been carried
out by training with two of the tools and testing on the remaining tool. Table 5.2
shows the results obtained for each of the repetitions carried out. The best and worst
tool wear reconstruction performances with each sensor reduced feature space can
be consulted in Figure 5.8, Figure 5.9 and Figure 5.10. The tool in repetition number
1 shows tool breakage later than the other 2 repetitions performed, but even so, the
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algorithm generalises well by keeping the predictions within the wear ranges of both
cutting edges using the data on each of the sensors analysed.

(a) MAE= 0.009; RMSE= 0.012; R2= 0.985

(b) MAE= 0.017; RMSE= 0.023; R2= 0.982

Figure 5.8 Best and worst tool wear prediction performances for each sensor reduced feature
space from bootstrapping process on geometry MDS080SK for FC_RFS a)training
samples: tools 1 and 3, test on tool 2, b) training samples: tools 2 and 3, test on tool
1

The internal signals obtain the best result since the lowest average error is obtained
among the three tools. The cutting force signals tend to obtain a similar result with
slightly higher errors. The accelerometer is, in this case, the one that obtains the worst
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(a) MAE= 0.012; RMSE= 0.015; R2= 0.960

(b) MAE= 0.023; RMSE= 0.034; R2= 0.944

Figure 5.9 Best and worst tool wear prediction performances for each sensor reduced feature
space from bootstrapping process on geometry MDS080SK for ACC_RFS a) train-
ing samples: tools 1 and 2, test on tool 3, b) training samples: 2 and 3, test on tool 1
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(a) MAE= 0.009; RMSE= 0.011; R2= 0.986

(b) MAE= 0.015; RMSE= 0.018; R2= 0.987

Figure 5.10 Best and worst tool wear prediction performances for each sensor reduced feature
space from bootstrapping process on geometry MDS080SK for INT_RFS a) train-
ing samples: tools 1 and 2, test on tool 3 b) training samples: tools 2 and 3, test on
tool 1
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Table 5.2 Model performance from bootstrapping process for each tool and the mean value of
considered metrics for each sensor reduced feature space

FC_RFS ACC_RFS INT_RFS

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Tool 1 0.017 0.023 0.982 0.023 0.034 0.944 0.015 0.018 0.987
Tool 2 0.009 0.012 0.985 0.014 0.016 0.951 0.012 0.014 0.966
Tool 3 0.013 0.018 0.955 0.012 0.015 0.960 0.009 0.011 0.986

Mean 0.013 0.017 0.974 0.016 0.021 0.951 0.012 0.014 0.979

result with the highest error. However, in general terms, good results are obtained in
all cases, and all options are valid for a tool wear curve reconstruction.

5.2.1 Model performance in BH04.5D tool geometry

Once the behaviour of the model on the same tool geometry has been observed, the
model created with one tool geometry has been tested for the reconstruction of the
wear curve on another tool geometry. Specifically, it has been trained with all the data
of the MDS080SK geometry and tested on the 3 repetitions made on BH04.5D.

In the first repetition carried out with the BH04.5D tool geometry, there were some
errors during signal acquisition, so that the data relevant to the first 15 holes made
in the first repetition are not available. Therefore, it has been decided to use the data
of BH04.5D as test data for a model created from the MDS080SK geometry. Table 5.3
shows the results obtained from the model created for each of the subsets selected
in the variable selection stage. Each of the metrics was obtained with respect to the
average between the wear of the two cutting edges.

Table 5.3 Model performance on BH04.5D tool geometry after training on MDS080SK in each
sensor selected feature space

FC_RFS ACC_RFS INT_RFS

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Tool 1 0.054 0.070 0.653 0.019 0.024 0.837 0.061 0.066 0.89
Tool 2 0.026 0.031 0.968 0.065 0.072 0.916 0.054 0.064 0.954
Tool 3 0.046 0.072 0.838 0.042 0.058 0.913 0.097 0.110 0.855

Mean 0.042 0.057 0.819 0.042 0.051 0.888 0.070 0.080 0.89

It should be mentioned that no data from BH04.5D tool geometry was used for the
training of the model, but still acceptable results are obtained for the external signals
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(ACC_RFS and FC_RFS). A general decreasing trend in performance can be observed
for all sensors when predicting the tool wear of BH04.5D tool geometry. The most
stable subset appears to be ACC_RFS with a more remarkable ability to adapt the
predictions made to other tool geometry. In general, in most cases, the non-linearity
is well modelled with correlation coefficients around 0.9; on the other hand, the mean
absolute errors are high, indicating that there may be a small offset with respect to
measured tool wear value. The standardization is done based on the MDS080SK tool
data. The data from tool BH04.5D are subtracted from the mean of the data from tool
MDS080SK and divided by the standard deviation. The internal signals show more
difficulty in fitting the tool wear prediction in the BH04.5D tool. In the best case, the
non-linearity of the curve is well modelled with an R2 = 0.95. However, it shows a high
mean absolute error.

5.3 tool breakage prediction through logistic regression

Once the wear curve has been reconstructed, the tool breakage must also be detected
not to damage or damage the minimum number of components possible. Rather than
detecting the sudden change of a tool breaking, the risk of a tool breakage must be
established in order to take appropriate action.

During the first and second stage (S1 and S2), it was not difficult to predict the state
of the tool. In all cases, it has been successfully tested that the models created from
the features of any of the sensors successfully differentiate between good and bad tool
condition. So the results have been satisfactory in 100% of the cases.

In the transition phase, where it is unknown at what point the tool has suffered
irreversible damage, it is unknown in which of the holes it has broken. So the breakage
or non-breakage label must be attributed based on the pre-breakage and post-breakage
labels. The S3 and S4 (3rd and 4th strategies) aim to assign labels to the transition area
instances. Table 5.4 shows the label imputations made with each of the sensors. There
can be seen the labels obtained with S3 and S4, the third stage consists on training an
algorithm with the features of each of the tools separately, and the imputation was
made based on each of the tools. The 4th stage involves training the algorithm with
both tools and using the holes from the transition area as testing.
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Table 5.4 Label imputation for transition phase during tool breakage a) 3rd stage (S3) b) 4th

stage (S4). H2 correspond to the labels imputed to the transition phase of the 2nd

tool while H3 corresponds to the 3rd tool

a) S3 H2 H3

FC_RFS 0000000001 0001110111

ACC_RFS 0000000000 0001111111

INT_RFS 0000000000 0111111111

[FC_RFS, ACC_RFS, INT_RFS] 0000000000 0111111111

b) S4 H2 H3

FC_RFS 0000000101 0101111101

ACC_RFS 0000000000 1001000000

INT_RFS 0000000001 0111111111

[FC_RFS, ACC_RFS, INT_RFS] 0000000001 0111101111

Imputation 0000000001 0111111111

The labels were imputed through an agreement between the different results. Thus,
the final results labels are those from the imputation row.

After allocating the labels corresponding to each of the tools, models were created
using all the labels corresponding to tool 2 and tool 3 (those with a comparable tool
life). 70% of the data was used to train the models and 30% to test them. The confusion
matrices are shown in Figure 5.11.
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Figure 5.11 Confusion matrices for each sensor reduced feature space for S5 (stage 5)
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Only taking into account tools 2 and 3, which have a comparable tool life and are
broken in the same failure region, 100% accuracy is achieved with dynamometer and
internal signals. The accelerometer sensor has the greatest difficulty for tool breakage
detection.

Up to now, only the second and third tools have been tested for tool periphery
breakage automatic detection. To see how the behaviour of the created models is
altered, the instances of tool 1 have been introduced in S6. Given the limited data
available, training with two of the tools and testing with the remaining one is not
possible as not all the variability of the data was collected. Given this situation, 70% of
the data has been separated to train and create the model and 30% of the data to test it.

The results obtained with all sensors can be seen in Figure 5.12. It shows the confusion
matrix and the wear curves indicating the correctly and incorrectly classified instances
for each of the classes. False positives are those instances in the "without failure" zone
that are classified as "tool failure", while false negative are those instances in the "tool
failure" zone classified as "without failure".

Finally, the results obtained by each of the sensors have been statistically compared
against INT_RFS obtained results. A sampling (70%-30%) was done 30 times, and a
t-test was applied between the results obtained with each of the sensors. Table 5.5
shows the mean values of MCC of the models and the p values.

Table 5.5 Mean in MCC for each of the sensors and p values of t-test results

MCC INT_RFS FC_RFS

INT_RFS 0.9807

FC_RFS 0.8818 7.796e-08

ACC_RFS 0.3899 2.2e-16 2.2e-16

The results show that the internal signals can detect tool breakage with the best mean
in MCC. Both the dynamometer and the accelerometer have significantly different
averages with a p− value < 0.05.

Below is an example of the model achieved with the S6 for internal signals. Specifi-
cally, it is obtained the probability that the tool is not broken in holes 49 and 50 made
with tool 2. It is in these holes where the tool has passed from "without failure" to "tool
failure" state.

The model for internal signals in S6 shown in section 5.3.1 on Table 5.16 is given by
the following equation.

F(x) = 10.59 + TV50mean · (−14) + TV51max · 0.61 + TV2mean · (−18.88) + Vzstd ·
1.42+ Vzskew · 2.41+ TV50max · (−5.78) + TV3max · (−1.82)
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Figure 5.12 Results obtained in S6 (stage 6) for each of the sensors in testing subset. a-c-d)
Confusion matrices for each sensor reduced feature space on test set. b-d-f) Wear
curve prediction and breakage detection for each sensor reduced feature space on
test set
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Substituting the values of the features by the normalized values (µ = 0, σ = 1) of
hole 49 the expression is as follows,

Fhole49 = 10.59 + 0.13 · (−14) + (−0.28) · 0.61 + 0.4 · (−18.88) + 0.39 · 1.42 + 0.07 ·
2.41+ 0.10 · (−5.78) + (−0.40) · (−1.82) = 1.4

And the probability that in hole 49 the tool has not suffered a breakage is,

Pr(withoutbreakage)hole49 = e1.4

e1.4+e−1.4 = 0.94

In hole 50, in the same way, making the substitution of the values the expression is,

Fhole50 = 10.59 + 0.758 · (−14) + 0.097 · 0.61 + 1.194 · (−18.88) + (−0.561) · 1.42 +

(−1.431) · 2.41+ 0.654 · (−5.78) + 0.317 · (−1.82) = −31.13

And the probability that in hole 50 the tool has not suffered a breakage is,

Pr(withoutbreakage)hole50 = e−31.13

e−31.13+e31.13 = 9.137e− 28

When F(x) starts to get close to 0, the process should be stopped for premature tool
change before the tool breaks.

The following sections show the models obtained for the detection of tool breakage.

5.3.1 Logistic model trees for each sensor for tool breakage detection

The logistic regressions shown in this section belong to class 0 ("without failure") (F(x)).
The logistic regressions for class 1 ("tool failure") are therefore the opposite of those
shown (−F(x)). It can be seen that with the dynamometer and the internal signals,
simpler and more interpretable expressions were obtained. The coefficients represent
the effect of the variable per one unit of change in the predictor feature.

Cutting forces

Model obtained with dynamometer signal reduced feature space (FC_RFS) on stage 5.
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Table 5.6 Logistic model for stage 5 using FC_RFS

Inter. Fx_mean Mz_mean WP2_Fy_peak

13.11 3.22 -15.75 0.9

Model obtained with dynamometer signal reduced feature space (FC_RFS) on stage 6.

Table 5.7 Logistic model for stage 6 using FC_RFS

Inter. WP2_Fy_rms Fx_mean Mz_mean WP2_Fy_min WP2_Fy_peak

5.42 3.58 1.1 -17.53 -0.23 0.56

WP2_Mz_rms WP2_Mz_skew

1 -1.77

In both strategies a single logistic model is obtained. The complexity added in stage
6 can be clearly seen as there are more features that are part of the decision. However,
both models have only one leave. The most relevant feature for tool breakage detection
is Mz_mean since it has the highest coefficient on both strategies.

Accelerometer

Model obtained with accelerometer signal reduced feature space (ACC_RFS) on stage
5.

WP2_ACCx_rms <= −0.337507 : LM_1

WP2_ACCx_rms > −0.337507

WP4_ACCx_rms <= −0.677682 : LM_2

WP4_ACCx_rms > −0.677682 : LM_3

Number of Leaves : 3

LM_1:

Table 5.8 Logistic model 1st leave for stage 5 using ACC_RFS

Inter WP3_ACCz_max

1.24 -0.19



5.3 tool breakage prediction through logistic regression 115

LM_2:

Table 5.9 Logistic model 2nd leave for stage 5 using ACC_RFS

Inter. WP2_ACCy_rms WP4_ACCx_rms WP3_ACCz_max

-0.55 -1.43 0.47 -0.3

LM_3:

Table 5.10 Logistic model 3rd leave for stage 5 using ACC_RFS

Inter. ACCx_max WP4_ACCx_rms WP3_ACCz_max

0.71 -0.45 0.47 -0.3

Model obtained with accelerometer signal reduced feature space (ACC_RFS) on
stage 6.

WP2_ACCy_rms <= 0.719511

WP2_ACCy_rms <= −0.814449 : LM_1

WP2_ACCy_rms > −0.814449

WP4_ACCx_rms <= −0.68583 : LM_2

WP4_ACCx_rms > −0.68583 : LM_3 WP2_ACCy_rms > 0.719511 : LM_4

Number of Leaves : 4

LM_1:

Table 5.11 Logistic model 1st leave for stage 6 using ACC_RFS

Inter. WP7_ACCx_rms WP8_ACCx_rms WP2_ACCy_rms WP4_ACCy_kurt WP3_ACCz_rms

24.96 -0.33 -0.54 -0.55 -1.02 7.56

ACCx_max ACCx_skew WP2_ACCx_rms WP2_ACCx_max WP2_ACCx_peak WP4_ACCx_rms

0.16 -262.45 -2.4 0.27 -6.32 0.84

WP6_ACCy_rms WP7_ACCy_mean WP3_ACCz_max WP7_ACCz_kurt WP8_ACCz_max

-0.39 1.54 -1.08 -57.62 1.87
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LM_2:

Table 5.12 Logistic model 2nd leave for stage 6 using ACC_RFS

Inter WP5_ACCx_rms WP5_ACCx_max WP7_ACCx_rms WP8_ACCx_rms WP2_ACCy_rms

-5.18 0.57 -2.68 -0.33 -1.26 0.3

WP4_ACCy_kurt WP3_ACCz_rms ACCx_max ACCx_skew WP2_ACCx_rms WP2_ACCx_max

-1.2 1.78 0.16 -101.13 -0.35 15.74

WP2_ACCx_peak WP4_ACCx_rms WP6_ACCy_rms WP7_ACCy_mean WP3_ACCz_max WP7_ACCz_kurt

-0.03 0.95 -0.45 -0.19 -1.17 33.87

WP8_ACCz_max WP8_ACCz_peak

-0.2 0.13

LM_3:

Table 5.13 Logistic model 3rd leave for stage 6 using ACC_RFS

Inter. WP5_ACCx_rms WP5_ACCx_max WP7_ACCx_rms WP8_ACCx_rms WP2_ACCy_rms

12.04 0.57 -3.12 -0.33 -1.26 1

WP4_ACCy_kurt WP3_ACCz_rms ACCx_max ACCx_skew WP2_ACCx_rms WP2_ACCx_max

-2.9 2.58 0.16 -160.26 -0.64 0.12

WP2_ACCx_peak WP4_ACCx_rms WP6_ACCy_rms WP7_ACCy_mean WP3_ACCz_max WP7_ACCz_kurt

-0.75 1.89 -0.97 -0.48 -1.17 3.33

WP8_ACCz_max WP8_ACCz_peak

-0.2 0.13

LM_4:

Table 5.14 Logistic model 4th leave for stage 6 using ACC_RFS

Inter. WP7_ACCx_rms WP2_ACCy_rms WP3_ACCz_rms ACCx_max ACCx_skew

21.16 -0.47 0.34 1.1 -0.1 -30.22

WP7_ACCy_mean WP2_ACCx_rms WP2_ACCx_max WP2_ACCx_peak WP4_ACCx_rms WP6_ACCy_rms

-0.08 -0.38 0.27 0.1 0.43 -0.39

WP3_ACCz_max WP7_ACCz_kurt WP8_ACCz_max WP8_ACCz_peak

-0.61 1.53 -0.2 0.01

In the accelerometer signals, more complex models are obtained; in stage 5, 3 logistic
models are obtained while in stage 6, 4 are obtained. To give rise to each of these
models, the rules created in the tree must be fulfilled, and therefore the detection of
tool periphery breakage is more complex, manifesting itself in the accelerometer signals
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in different ways. In stage 6 it is possible to identify the variables WP7_ACCz_kurt
and ACCx_skew as the variables on which tool breakage can have the most significant
impact.

Internal signals

Model obtained with internal signal reduced feature space (INT_RFS) on stage 5.

Table 5.15 Logistic model for stage 5 using INT_RFS

Inter TV2_mean

0.56 -0.72

Model obtained with internal signal reduced feature space (INT_RFS) on stage 6.

Table 5.16 Logistic model for stage 6 using INT_RFS

Inter. TV50_mean TV51_max TV2_mean Vz_std Vz_skew TV50F_max TV3_max

10.59 −14 0.61 −18.88 1.42 2.41 −5.78 −1.82

Regarding the internal signals, the signal with the greatest weight and that can best
interpret the breakage of the tool periphery is the TV2_mean feature which appears as
relevant in both strategies. In a more complex scenario, the TV50_mean feature is also
considered relevant.

It can be seen that by introducing a slightly different tool (with different life ex-
pectancy), more complicated models are obtained in which a greater number of features
are involved. In the case of the dynamometer, the signal with the highest weight co-
efficient is Mz_mean for both strategies (S5 and S6). It can also be seen that in both
models, the same features are present. However, in S6 a greater number of features are
involved. In the accelerometer case, the models obtained are not comparable. Although
the variables of stage 5 appear in the stage 6 the obtained models are of great complexity.
Thus, it has little ability to generalize the employed data. In the case of internal signals,
they present the best results. The variable with the highest weight in the model in
both cases is TV2_mean, and it is remarkable that in the S6 only 7 features participate,
obtaining a good generalization to testing data.

Figure 5.13 shows the function F(x) obtained based on INT_RFS as a function of the
holes drilled, the plot on the right margin shows the density plot of F(x) for each
tool. The minimum value among the maximum of F(x) between the 3 tools before the
breakage is −17 (the most conservative value), while the maximum value is −13. As
can be seen, tools 2 and 3 have a similar tool life, while tool 1 has allowed a greater
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number of holes to be drilled. This is because the inherent variability of the process,
material properties, variability in tool manufacture or the degree of effectiveness of the
coolant in reaching the cutting zone can cause these variabilities. The figure also shows
the polynomial fit of each of the curves. In the equations obtained, it can be seen that
as the first coefficient increases, the tool has a shorter life. Under the same conditions,
there may be situations where the tool is prematurely changed in the hole 40 when
double the number of holes could have been made. Therefore, the use of techniques
to assess the condition of the tool based on the signals collected during the process is
essential to avoid these situations.

Figure 5.13 Logistic model function based on INT_RFS. On the horizontal axis are marked the
holes where tool breakage has been observed for each tool. On the vertical axis
are marked the F(x) values at which tool breakage has been observed

5.4 surface integrity analysis

Three holes were selected from among the holes made from two of the repetitions made
with the BH04.5D tool and two repetitions of the MDS080SK tool. A total of 12 holes
have been analysed to see if there is a relationship with tool wear in the end-of-life tests.
In each of the repetitions, holes corresponding to different tool conditions were selected.
Figure 5.14 shows the test points for each of the repetitions carried out. The figure
shows the moment of completion of the tests (Vb = 0.3mm), but some additional holes
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were drilled to observe the damage caused to the material when the tool is practically
unusable. The moment at which the periphery of the tool breaks has also been marked.

Figure 5.14 Surface integrity testing points for 2 different tool geometries on different tool
conditions

Figure 5.15 shows the condition of the tool for each of the repetitions in the last test
point. On tools of type MDS080SK the first breakage was observed earlier than on
BH04.5D tools. However, when the tool breaks at the periphery, it becomes unstable
and wear is rapidly accelerated.

5.4.1 Roughness

The distribution of each of the holes measured at different tool wears can be seen in
Figure 5.16. The kernel density estimation of the two measured roughness profiles on
each hole and their corresponding mean are shown, besides their confidence intervals
are also pointed. This way of visualising the roughness profile gives an insight into
the stability of a roughness profile, i.e. how much deviation the roughness profile
data suffers. The kernel density estimation is non-parametric method that shows the
probability of a randomly distributed variable. So applying on roughness profile, the
frequency distribution of each value in the surface of the component can be seen.
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(a) Schematic view of tool photographs

(b) BH04.5D− rep2 (c) BH04.5D− rep3

(d) MDS080SK− rep2 (e) MDS080SK− rep3

Figure 5.15 Tool condition in the last testing point for each tool in both cutting edges (rake
face, flank face and margin)
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(a) (b)

(c) (d)

Figure 5.16 Kernel Density estimations of roughness profiles on different tool wear levels and
their corresponding confidence interval levels. The dashed lines represent each
of the measurement distributions, while the continuous line represents the mean
between the two measurements made for each of the holes. The vertical dashed
lines correspond to the confidence intervals of each of the means obtained for
each tool condition
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The 95% confidence interval maintains a proportional relationship to the Ra parameter
of the roughness profile in all cases.

In geometry BH04.5D, in the repetition 2, the probability that the central values of
the roughness profile remain in the centre decreases with increasing tool wear. The
confidence interval is similar on Vb = 0.46mm and Vb = 0.12mm. The Rsk value
decreases with increasing tool wear, indicating a higher probability that more values
are in the negative tail of the distribution. So there is an increased risk of fatigue crack
initiation on the component.

In repetition 3 of the same tool geometry, the confidence interval is the widest
when the tool is worn to a Vb = 0.09mm. When the tool is more worn (Vb = 0.2mm)
the confidence interval decreases to the minimum, indicating an improvement of
the Ra parameter of the roughness profile, and then worsens when the tool is worn
(Vb = 0.48mm). Although in all cases the Rsk value remains below 0, at Vb = 0.2mm

is the instant when it is closest to 0, the Rku value is above 3, indicating a leptokurtic
distribution, in which the values are more centred. Regarding the surface generated
during the drilling process, this is the distribution in which the probability of crack
initiation is reduced, and the best contact properties are obtained.

Concerning repetition 2 of geometry MDS080SK, it can be seen that the confidence
intervals are wide, indicating that the values are more dispersed, resulting in rougher
surfaces.

With repetition 3, similar values to tool repetition 3 of geometry BH04.5D are ob-
tained, having the most centred distribution with wear Vb = 0.2mm. However, in this
case, the Rsk values are positive, indicating a greater probability that the profile values
are in the distributions positive tail. This means a higher resistance to cracks but a
disadvantage in terms of assembly.

It can be seen that the only cases where more than 50% of the roughness values
remain more centred are at Vb = 0.2mm in repetition 3 of both tool geometries.

In any case, no clear trend is observed for tool wear and roughness obtained. In
Figure 5.17 3 roughness profiles are observed of tool geometry MDS080SK on repetition
3 for different tool conditions.

5.4.2 Material damage

Among the repetitions performed on Inconel 718, the material damage was measured
in 2 repetitions performed with the BH04.5D tool and 2 repetitions performed with
the MDS080SK tool at 3 levels of wear. However, no relationship with tool wear or
between the two geometries has been found. Figure 5.18 shows the measured length of
the damaged layer in terms of both White/HDL and SH for each of the repetitions.

The only case that maintains a relationship with tool wear is in BH04.5D− rep2, in
which an upward trend is observed with tool wear both at the hole entrance and the
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(a) Vb = 0.1mm

(b) Vb = 0.2mm

(c) Vb = 0.4mm

Figure 5.17 Surface roughness profiles on each tool condition for tool geometry MDS080SK
on repetition 3

exit concerning both HDL and SH. On the other hand, there is more damage at the
hole exit than at the entrance in all cases.

These results were not as expected, as it was thought that a more evident trend in
material damage would be observed in relation to tool condition. However, according
to Sharman et al. (2008), in drilling, the greatest cutting action occurs on the chisel
and major cutting edges, but the surface area is generated at the periphery of the tool
due to the minor cutting edge. Even though the periphery of the tool may be broken,
the minor cutting edge will remove some of the damaged material. In drilling, the
cut is produced by two or more cutting edges. Even if one of the cutting edges shows
more damage, the other cutting edge will cut the part of the material that the damaged
cutting edge has not cut.

Figure 5.19 shows the material damage caused by MDS080SK tool geometry on
repetition 3 in different the last testing point. In the hole exit for a Vb = 0.4mm, more
surface drag can be observed in the direction of the cutting speed. However, there is no
clear trend on the layer of damaged material concerning tool wear.
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(a) White Layer/Heavily Distorted Layer

(b) Strain Hardening

Figure 5.18 Material damage on holes performed with MDS080SK and BH04.5D tool geome-
tries in different tool conditions

(a) Hole entry (Vb = 0.4mm) (b) Hole exit (Vb = 0.4mm)

Figure 5.19 Material damage generated on the last testing point for tool geometry MDS080SK
on repetition 3 at hole entry and hole exit
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For tool BH04.5D in the 2 repeat, an increase in roughness can be seen as tool wear
increases. This trend is also seen in the material damage for the same tool. However,
it is the only tool that shows a trend of worsening surface integrity in all the repeats
analysed. The rest of the measurements show a constant trend both at the entrance and
exit of the hole.

5.5 conclusions

The deployed set-up results in the use of different sensors to monitor tool wear and
detect peripheral tool breakage. A methodology based on ML techniques is used
to select the most suitable sensor for tool wear monitoring. On the one hand, the
reconstruction of the wear curve is addressed using features obtained from each of the
sensors separately and comparing different algorithm performances. Besides, the ANN

model created for wear curve reconstruction is tested on a different tool geometry. On
the other hand, tool breakage is detected automatically using a methodology for the
imputation of labels that are not known which class they belong to. Surface integrity
has also been analysed in terms of roughness and material damage caused by the
drilling process under different tool conditions.

• In all cases, better results are obtained once the feature selection process has been
applied, so applying feature selection can improve the behaviour of the used
algorithms. In this way, irrelevant and redundant features that can penalise the
result obtained are removed.

• The feasibility of each of the sensors lies in (i) the implementation of the sensor
in the machine environment, (ii) the amount of data generated by each of the
sensors, (iii) the cost of installing the sensor in the work environment and (iv)
the prediction capacity provided. In our experience, the most practical signals for
monitoring the tool condition are those provided by the machine itself (Internal
signals). No sensor installation is required, the highest sampling frequency is
250Hz, so it does not generate a large amount of data and provides good predictive
capabilities in terms of tool wear, both for the reconstruction of the wear curve
and the detection of tool breakage. In cases where it is not possible to collect this
type of signal, the most practical option is the accelerometer, as it results in a
cheaper sensor than a dynamometer and less invasive although it generates a more
significant amount of data than internal signals. Nevertheless, the accelerometer
does not give the capacity to detect tool breakage, or at least in the feature space
analysed in this work.

• During the model testing for the reconstruction of the wear curve on another
tool geometry, it has been observed that the internal signals are the most affected
in terms of performance. However, with another tool geometry (BH04.5D) and
having standardised the data based on the MDS080SK geometry, fairly good
results have been obtained, and the non-linearity of the wear curve has been
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modelled quite well. The search for mechanisms to compensate the offset of the
predictions is of great interest given the results presented in this chapter.

• The simplest models are those that best generalise to the test data. Stage 6 (S6)
involves 7 features in the models created with the dynamometer and the internal
signals, having interpretable models.

• The most relevant features with the highest coefficients for tool periphery breakage
detection were Mz_mean, WP7_ACCz_kurt and ACCx_skew and TV50_mean
and TV2_mean for the reduced spaces of the FC_RFS, ACC_RFS and INT_RFS
respectively. Using FC_RFS, 95% accuracy has been obtained with misclassification
occurring late in the process, having few false positives. With ACC_RFS, 75%
accuracy has been obtained and the time point at which false positives occur is
early in the process. However, even more serious are the cases in which false
negatives are detected, determining that a bad tool is still in good condition. The
best result in these experiments was obtained with INT_RFS with 100% accuracy
for the three tools used.

• It has been observed that the same tool geometry under the same cutting condi-
tions in the same material can vary in terms of tool life. Tool 1 has a life of 70

holes during the steady stage phase, while tools 2 and 3 have a life of 30 holes in
the same phase. Creating hybrid models to simultaneous predict two phenomena
at the same time is a strategy that not only provides information about where
the wear curve is at any given moment, one of the two models can warn that the
process is not in the ideal conditions to continue gaining in robustness in terms
of monitoring tool condition.

• As far as surface integrity is concerned, the expected results were not observed.
However, the main wear measured was flank wear. The interaction between
the margin and the surface can cause the results seen. The first hole measured
was hole number 6, in which the wear progression is in the break-in period.
Measuring hole number 1 would be interesting, as the tool is completely new and
differences could be observed with respect to the holes measured in this work. In
the absence of differences, surface integrity in drilling processes on Inconel 718

may be affected by other factors.



6
S U R FA C E A N O M A LY D E T E C T I O N I N B L S 3 5 C R M O 4 L O W S S T E E L
O N A L O N G M A C H I N E D T I M E

The roughness of the machined part is an essential industrial parameter concerning the
durability property of the component. The monitoring of the surface condition is not
widespread because of the low number of observations for machine learning models
creation and the challenge of getting reliable predictions. At present, most of the works
on the prediction and analysis of errors that may appear on the machined surface
focuses on the analysis of the Ra parameter, which is the average roughness of the
profile. The works consulted in section 2.2.2.6 test the models on a small number of mea-
surements, which suppose a challenge in obtaining reliable model performance metrics.
There are many parameters of the roughness profiles that retain the information of the
generated surface distribution. These are described in Table 2.1 in the literature review.
These parameters characterise the surface and inform about the contact properties of a
component. With the increasing demand for more precise requirements, it is necessary
to analyse the obtained surface profile distributions based on more parameters than
the mere use of the Ra parameter.

In drilling processes, the chip required for a better finish is in the fan-shaped form,
as this is evacuated more efficiently, thus preventing the chip from rubbing against the
machined surface and chip clogging. Currently, in industrial environments the method
used for the evaluation of the generated surface is randomly chosen test points. This
is a dangerous practice as it could risk the non-detection of errors that could lead to
future problems in the operational life of the components. Although most research
is focused on developing tool condition monitoring systems that can extend tool life
and anticipate possible tool breakage, the development of new methodologies that
allow detecting surface or subsurface machining errors is still in its infancy. This is a
fundamental branch of research into the monitoring of cutting processes to achieve
better-finished components and reduce the probabilities of component malfunctions.
In the given input conditions, one of the biggest challenges is to replicate the surface
finish on all parts machined under these conditions. However, given the dynamics of
the machine, this is still hardly achievable.

Clustering algorithms can help to measure the degree of replicability of surface
roughness of a particular process under established cutting conditions. The major
challenge is to select those features of the signals that maintain a relationship with

127
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the measured roughness parameters that allow to evaluate the differences between the
distributions of the roughness profiles.

Mingoti and Lima (2006) compared different partitioning and hierarchical cluster-
ing algorithms, SOM (Self Organizing Map) networks, Fuzzy c-mean, K-means and
hierarchical agglomerative clustering on simulated overlapped data. In the study, they
showed that Fuzzy c-means behaves well concerning the other partitioning algorithms.
Regarding the hierarchical agglomerative algorithm, among the various measures used
of inter-group proximity, they showed that the Ward linkage method is the one that
obtains the most stable behaviour. Diaz-Rozo et al. (2017) used both hierarchical and
partitioning clustering algorithms to diagnose the state of a spindle. Xiaoli and Zhejun
(1998) used fuzzy partitioning algorithms to classify different tool wear levels in boring
operations. Partitional Around Medoids (PAM) algorithm was used by Li et al. (2017)
for tool condition clustering in milling operations showing its superiority over k means,
and fuzzy c means algorithms based on cutting force signal. Zhou et al. (2017) used
vibration signal time-frequency features, and fuzzy c means algorithm to classify 3

roughness Ra ranges in the drilling operation. They assumed the Gaussian nature
of the surface roughness, and they classified a high and low Ra value categories by
relating each hit of acoustic emission with each tool pass. Kubišová et al. (2019) used
hierarchical clustering to compare original surface roughness with replicated surface
roughness based on Euclidean distances of various roughness parameters showing that
it can be a good tool for replicability measurements of obtained surface profiles.

Based on the work done by Kubišová et al. (2019), where supported by different
roughness parameters, compare an original surface with a replicated surface employing
a hierarchical clustering. In this chapter, the same idea is followed, but the proposal
is to perform it with the signals acquired during the drilling process instead of using
roughness parameters. A mapping between signal features and roughness parameters
is performed. In this way, a set of signal features that allow to create the same similarity
groups created based only on the roughness parameters is obtained. Consequently,
based on a limited number of roughness measurements, a series of signal features
are selected to create clusters for a larger population of holes. Once the clusters were
obtained, a series of additional measurements were carried out for validation purposes.

6.1 methodology for surface anomaly detection

The data obtained from the setup presented in the section 3.2 (Tests on BLS 35CrMo4

Low S) is used. Several potential statistical features are evaluated using agglomerative
hierarchical clustering to create the same groups obtained from roughness parameters
of a limited number of holes measured in the Alicona profilometer.
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6.1.1 Acquired signal segmentation and feature extraction

As seen in chapter 3, the signals have been filtered to obtain the stable part or zone of
the machining. In Figure 6.1 the signals of each of the tool geometries used for this
analysis can be seen.

Figure 6.1 External and Internal signal acquired for each tool geometry on hole 196 for
R204.6D tool geometry and hole 287 for BH04.5D tool geometry

As part of the first stage, pre-processing task, to eliminate some noise introduced
by the machine in the vibration signals, these have been filtered with a low pass
Butterworth filter of order 10 with cut-off frequency Fc = 3600Hz and a bandpass filter
with Fc1 = 4000Hz and Fc2 = 6000Hz. On the one hand, we have the vibrations that
happen below 3600Hz (named ACC(x− y− z)_1) and in the other hand, vibrations in
the sub-band 4000− 6000Hz (named ACC(x− y− z)_2). Six vibration signals overall,
two for each signal acquired on each of the three axes.

15 signals are available for the clustering of the holes roughness. After extracting eight
statistical features for each one, mean, rms, standard deviation, maximum, minimum,
kurtosis, skewness and variance, 120 statistical features are available.

Hole roughness measurements (post-process measurements) and sensor signals (in-
process measurements) obtained in the drilling process were obtained and related to
each other. These main analysis steps can be seen schematically represented in Figure
6.2.
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Figure 6.2 External and Internal signal statistical feature selection for hole surface anomaly
detection

After obtaining the signal statistical features and the roughness parameters, redun-
dant roughness parameters are removed (those having a coefficient above 99%), and a
clustering performed with the filtered parameters to see hole surface differences shown
in section 6.1.2. The roughness parameters obtained in this filter are used to observe
linear relationships with the acquired signal features that have a correlation coefficient
above 90%.

To evaluate the suitability of the selected signal features, hierarchical clustering is
carried out only considering the features that belong to the measured holes. These
results can be seen in section 6.1.3.

For the creation of the bottom-up dendrograms in hierarchical clustering, the Eu-
clidean distance was used. For linkage purposes, Ward’s minimum variance method,
in which the fusion of two clusters is based on the size of an error sum-of-squares
criterion (this is the criterion for joining two subgroups that are at a minimum distance
to create the dendrogram). The objective at each stage is to minimize the increase in the
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total within-cluster error sum of squares. Finally, the rest of the holes are projected on
these clusters to see if they are representative of the extended population of holes.

6.1.2 Roughness parameter selection for clustering

Hierarchical clustering was used to classify the deviation on the machined surface
roughness profiles, using initially 6 measured holes for each tool. The clusters were
created from the roughness parameter data obtained from the Alicona system measure-
ments after the tests. As many of these parameters were highly related, those highly
correlated variables were removed to avoid redundancies. Then, parameters have been
normalized to have an average equal to 0 and a standard deviation of 1 (µ = 0, σ = 1).

From the 13 initial variables, Ra, Rp, Rv, Rsm, Rsk, Rku, Rdq Rq, Rt, Rz, Rmax, Rc, Rt/Rz,
7 were not highly correlated (R2 < 0.99). Figure 6.3 shows the parameters selected and
their respective dendrograms for each of the measured holes corresponding to each
tool.

(a) Ra, Rp, Rv, Rsm, Rsk, Rku, Rdq (b) Ra, Rq, Rz, Rp, Rc, Rsk, Rdq

Figure 6.3 Uncorrelated (R2 < 0.99) surface parameters and their respective dendrograms for
the different tools, a) R204.6D tool with uncorrelated parameters Ra, Rp, Rv, Rsm,
Rsk, Rku, Rdq, b) BH04.5D tool with uncorrelated parameters Ra, Rq, Rz, Rp, Rc,
Rsk, Rdq

The y-axis shows how similar the observations or groups of observations are. Each
connection of two groups is represented in the graph by dividing a vertical line into
two vertical lines. The vertical position of the division, shown by the horizontal bar,
gives the distance (dissimilarity) between two groups. As shown in Figure 6.3, holes
196 and 287 are remarkably different from the rest of the observations for tools R204.6D
and BH04.5D, respectively.

Specifically, for the holes made with tool R204.6D, the parameters Rq, Rt, Rz, Rmax,
Rc, Rt/Rz have been neglected and not taken into account in the analysis. For the holes
made with the BH04.5D tool, Rt, Rmax, Rp, Rv, Rku, Rt/Rz are the parameters that were
neglected. Using two clusters, holes 196 and 287 were identified as different from the
rest of the holes for tools R204.6D and BH04.5D respectively.
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The observation of the differences of hole roughness parameters through clustering
results was the next step. Figure 6.4 shows Ra, Rsk and Rku parameters obtained by
each of the tools where the different groups obtained during the clustering of the
holes can be seen represented in colours. Each point represents the average of the two
measurements made on each of the holes and is labelled with the number of the hole
made with each tool and coloured with results of clustering groups shown in Figure
6.3.

(a) BH04.5D

(b) R204.6D

Figure 6.4 Individual roughness parameters (Ra, Rku, Rsk) coloured based on clustering results
a) BH04.5D b) R204.6D. The index is the number of measurement (6 holes per each
tool geometry)

For every hole made with each of the tools, two types of surface profiles have been
observed. On the one hand, in the hole 287, made with tool BH04.5D, there were marks
that did not correspond to the tool feed rate (surface tearing), and holes with no visible
damage have been observed. In hole 196, made with the tool R204.6D, deep feed marks
were seen compared to the rest of the holes. These observed phenomena caused the
roughness to be affected at certain points of the process.
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Discarding the damaged surface values (hole 196 for R204.6D and hole 287 for
BH04.5D of which the measured profiles can be seen in the Figure 6.5) the average Ra
values are 0.71µm and 0.78µm for R204.6D and BH04.5D tools respectively.

(a) BH04.5D

(b) R204.6D

Figure 6.5 Example of Alicona measurements for hole 196 of R204.6D tool and hole 287 of
BH04.5D tool a) 1st and 2nd measurement of hole number 196 made with BH04.5D
tool b) 1st and 2nd measurement of hole number 287 made with R204.6D tool

The holes shown in the previous figure have a very similar Ra value (in the range of
(1− 1.2µm)), however, the profile distribution is very different. Figure 6.6 shows the
difference assuming that the distribution is normal and a kernel density estimation for
two holes made with R204.6D and two holes made with BH04.5D. It can be seen that
assuming the distribution is normal, there are no large differences between distributions
with a similar Ra value. Instead, the kernel density estimation gives an insight into
the differences between the holes. The 306 hole made with the R204.5D tool and the
181 hole made with the BH04.5D tool have a lower Ra and show a similar distribution,
whereas the 196 holes from the R204.6D tool and the 287 hole from the BH04.5D tool
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have a higher Ra and show differences in the roughness profile distributions due to
surface errors occurred during machining.

(a) Normal distribution (b) Kernel distribution

Figure 6.6 Comparison of different distribution function assumption for roughness profiles a)
Normal distribution b) Kernel density estimation

6.1.3 Surface roughness clustering based on signal features

For selecting the most representative signals regarding roughness, correlation analysis
has been carried out concerning the filtered roughness parameters among all the
statistical features obtained from the signals. Statistical features with correlations to
roughness measures above 90% were selected and neglected below 90% independently
of whether the correlation coefficient is positive or negative. Table 6.1 shows features
with a high correlation coefficient with one or more roughness parameters.

Table 6.1 Correlations higher than 90% between acquired signal statistical features and rough-
ness measured parameters and a) R204.6D tool measured holes b) BH04.5D tool
measured holes

a) R204.6D Ra Rp Rv Rsm Rsk Rku Rdq b) BH04.5D Ra Rq Rz Rp Rc Rsk Rdq

Fy_skew 0.81 0.45 0.84 0.91 −0.89 0.82 0.21 Mz_mean 0.03 −0.11 0.14 0.20 −0.01 0.33 0.91
ACCx1_min −0.89 −0.75 −0.86 −0.81 0.78 −0.92 −0.56 ACCy_max 0.06 −0.04 0.24 0.32 0.08 0.26 0.97
ACCx1_kurt 0.94 0.76 0.91 0.79 −0.78 0.96 0.68 ACCx2_mean −0.76 −0.76 −0.82 −0.93 −0.81 −0.62 −0.55
ACCy2_skew 0.93 0.68 0.92 0.79 −0.77 0.97 0.7 ACCx2_rms −0.82 −0.86 −0.81 −0.94 −0.87 0.75 −0.33
AE_kurt 0.93 0.67 0.91 0.81 −0.77 0.88 0.61 ACCz2_rms −0.84 −0.93 −0.81 −0.81 −0.9 0.96 0.08
TV2_max 0.63 0.96 0.48 0.40 −0.24 0.67 0.81 ACCz2_min 0.75 0.84 0.71 0.62 0.81 −0.93 −0.26
TV3_min 0.82 0.31 0.89 0.96 −0.98 0.71 0.04 TV50_mean 0.23 0.11 0.34 0.43 0.21 0.12 0.96

TV50_max 0.21 0.09 0.32 0.43 0.19 0.13 0.95

Both the roughness parameters and the acquired signal features have been filtered
differently for each tool, as the phenomena observed in the roughness profiles are
also different. In the holes made with the R204.6D tool, in the worst-case scenario,
more visible feed marks are seen (Figure 6.5), which causes the roughness to increase,
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having a negative impact in the profile skewness value. In the worst-case scenario
measured with the BH04.5D tool (hole 287), the surface tearing can be seen, which
highly increases the Ra value.

In a next step, the statistical features of the signals shown in Table 6.1 were the inputs
for another hierarchical clustering to compare the similarities shown by these statistical
features and those obtained from the roughness parameters in Figure 6.3. Figure 6.7
shows the dendrograms obtained as a result of this process. At low levels of similarity,
differences can be seen between the groups created with respect to the dendrograms in
Figure 6.3, however the differences observed at high levels of similarity are identical.

(a) R204.6D (b) BH04.5D

Figure 6.7 Clustering of measured holes using the signal statistical features of signals shown
in Table 6.1

Following with the proposed methodology, hierarchical clustering has been applied
to the entire set of observations made for each of the tools using the signal features
during the selection of variables to see how accurately the selected signals can predict
the differences between the profile distributions. Figure 6.8 shows the dendrograms
obtained for the holes made with each of the tools, in the dendrograms, two groups
can be seen clearly.

(a) R204.6D (b) BH04.5D

Figure 6.8 Dendrograms using the statistical features of all the holes for each of the cutting
tools used
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During the assignment of the clusters, the Si (silhouette coefficient) of each one of the
observations has been evaluated. The silhouette coefficient (Si) measures how similar
an object i is to the other objects in its cluster compared to those in the neighbouring
cluster. Those observations with a silhouette coefficient below 0 have been taken to the
nearest neighbour; this operation is carried out recursively until all the observations
assigned to a given cluster have a Si higher than 0.

6.2 visualization of obtained clusters and analysis of the principal

components

For the display of the clusters, the principal component analysis was used. Figure 6.9
shows the two principal components for the holes made with each of the tools. The
colours show each of the clusters. The length of the original variables represents the
weight of each variable on each principal component.

For tool R204.6D, holes 45, 196, 411 belongs to cluster 2 while holes 306, 310, and
521 belongs to cluster 1. Holes 45 and 411 that was supposed to be in cluster 1 falls in
cluster 2. The holes are in the boundary of the two clusters, so they are more confusing.
Regarding tool BH04.5D hole 287 belong to group 2 (green), the rest of the measured
holes belongs to group 1 (red).

The percentage of the variance of each dimension obtained in the principal component
analysis and the contribution of each of the features in the two principal components
have been obtained, to find out which variables have the greatest variability in each of
the dimensions. This can be seen in Figure 6.10.

In the holes made with the R204.6D tool, in the first dimension, the kurtosis value
of the vibrations in the X-axis at low frequencies (ACCx1_kurt) and the minimum of
the same signal (ACCx1_min) are the ones that have the most significant contribution.
In the second dimension TV2_max, TV3_min, AE_kurt and Fy_skew are the ones that
have the most significant contribution.

The holes made with the BH04.5D tool, the statistical features ACCx2_rms,
ACCz2_rms, ACCz2_min and ACCy_max are the ones that contribute most to the first
dimension. In this tool, the vibration signals are more affected by what happens on
the working material surface. In the second dimension, TV51_max and TV51_mean
have an equal contribution. The ACCx2_mean feature has a null contribution; this was
expected since the centre of the vibration signal is around 0, so this feature could be
removed to reduce the feature space.

In Table 6.2 the centroids of each of the clusters can be seen for R204.6D tool. The
centroids are the mean value of each variable for each cluster and explain how the
roughness has suffered on that particular variable. The contributions of each variable to
dimensions 1 and 2 of the principal component analysis can also be seen in the table.

The same procedure can be seen in table 6.3 for tool BH04.5D.
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(a) R204.6D

(b) BH04.5D

Figure 6.9 Visualization of two principal components for obtained clusters a) R204.6D tool b)
BH04.5D tool
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(a) R204.6D (b) BH04.5D

(c) R204.6D (d) BH04.5D

(e) R204.6D (f) BH04.5D

Figure 6.10 Principal component analysis a) Percentage of explained variance for R204.6D tool
c) Contribution of each statistical feature to Dim1 of R204.6D tool e) Contribution
of each statistical feature to Dim2 of R204.6D tool b)Percentage of explained
variance for BH04.5D tool d) Contribution of each statistical feature to Dim1 of
BH04.5D tool f) Contribution of each statistical feature to Dim2 of BH04.5D tool

Table 6.2 Cluster centroids for R204.6D tool drilled holes and feature contribution to each
dimension

Cluster Holes
Dim2 Dim1 Dim1 Dim2 Dim2 Dim2

Fy_skew

(15%)

ACCx1_min

(49%)

ACCx1_kurt

(49%)

ACCy2_skew

(-)

AE_kurt

(21%)

TV2_max

(34%)

TV3_min

(24%)

1 45,196,411 -0.1582 -0.1722 0.1694 -0.0304 -0.2964 -0.1994 -0.4003

2 306,310,521 0.2697 0.2935 -0.2887 0.0518 0.5053 0.3398 0.6822
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Table 6.3 Cluster centroids for BH04.5D tool drilled holes and feature contribution to each
dimension

Cluster Holes
Dim1 Dim1 Dim1 Dim1 Dim2 Dim2

ACCy_max

(19%)

ACCx2_mean

(-)

ACCx2_rms

(37%)

ACCz2_rms

(36%)

ACCz2_min

(35%)

TV50_mean

(49%)

TV50_max

(49%)

1 183,381,181,182,581 0.3765 -0.0276 0.5508 0.5099 -0.4339 0.0517 0.0650

2 287 -0.8189 0.06 -1.1980 -1.1090 0.9438 -0.1124 -0.1414

To analyse the compactness of each of the clusters, the intra-cluster distance has been
measured, which indicates how compact a cluster is. For this purpose, the mean of the
distances from the observations to the centroid of their cluster is calculated. Besides,
the distances of the holes considered for measurement to the centre of the clusters have
been included. This information can be seen in Tables 6.4 and 6.5. The numbers in bold
are the distances to the clusters to which each hole belongs.

Table 6.4 Intra cluster distance and distance between measured holes and cluster centroids
R204.6D tool

Cluster Intra cluster distance
Distance between measured holes and cluster centroids

Hole 45 Hole 196 Hole 306 Hole 310 Hole 411 Hole 521

1 2.14 2.069 3.426 1.576 1.448 1.844 1.157
2 2.57 1.588 2.533 1.773 1.871 1.345 1.713

In the case of tool R204.6D, holes 45 and 411 belong to cluster 2, and are located at
the boundary of the clusters, as shown in Figure 6.13 a). These were expected to be
in cluster 1, and as they are located in a boundary region between two clusters, the
correct assignment is more complicated.

Table 6.5 Intra cluster distance and distance between measured holes and cluster centroids
BH04.5D tool

Cluster Intra cluster distance
Distance between measured holes and cluster centroids

Hole 181 Hole 182 Hole 183 Hole 287 Hole 381 Hole 581

1 2.252 2.268 2.224 1.206 3.226 2.221 2.417
2 3.499 3.355 2.982 3.360 1.430 4.109 3.067

Concerning the BH04.5D tool, cluster 1 is the most compact, and cluster 2 show an
increase in the mean values of their corresponding observation distances. The randomly
selected holes for this tool are more central to their cluster centroids.
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6.3 validation of obtained clusters

A new branch of holes has been selected again to validate the obtained clusters.

The clusters obtained for the BH04.5D tool are shown in Figure 6.11. In this case, all
the holes measured for the validation correspond to their respective clusters. Figure
6.11 a) shows the clusters in the first two principal components of the signal features
considered for creating the clusters. Figure 6.11 b) shows the dendrogram of the
roughness parameters obtained from the profiles measured in Alicona. The mapping
made between the signal statistical features and the measured holes matches 100% of
the total measured holes.

Expressions 6.1 and 6.2 show the linear combinations of the two principal components
used to display the obtained clusters in Figure 6.11 a).

Dim1 = −0.51 ·ACCx2rms − 0.51 ·ACCz2rms + 0.5 ·ACCz2min − 0.44 ·ACCymax

(6.1)

Dim2 = 0.69 · TV50max + 0.69 · TV50mean (6.2)

To establish the space covered by the selection of the statistical features, the corre-
sponding area to the two principal components A = 55.45 and the area corresponding to
the holes measured for the creation of the clusters A(181, 182, 183, 287, 381, 581) = 11.82
has been calculated. Overall, 21% of the area has been covered and the distance between
two clusters, that is, the inter-cluster distance, is 3.014. Figure 6.12 shows the measured
surfaces and their corresponding roughness profiles. Figure 6.12 a) shows the surfaces
where some error has been observed, in this case, surface tearing. Figure 6.12 b) shows
those surfaces that are free of visible defects.

Concerning tool R204.6D, Figure 6.13 a) shows the clusters from the features of the
acquired signals and the boundary between the two clusters. Figure 6.13 b) shows the
dendrogram made with the roughness parameters obtained from the profiles.

The dendrogram shows that holes 45, 411 and 376 (marked in green) belong to cluster
2 although they were expected to be in cluster 1. The same happens with holes 27 and
173, which should belong to cluster 2 and are classified in cluster 1. In the zoom made in
Figure 6.13 a), it can be observed that these holes belong to the cluster boundary. Holes
that are not in the boundary and are observed further away are correctly classified.

Expressions 6.3 and 6.4 show the linear combinations of the two principal components
used to display the obtained clusters in Figure 6.13 a).



6.3 validation of obtained clusters 141

(a) 2 Principal components of features and density plots

(b) Roughness parameters dendrogram (Ra, Rq, Rz, Rp, Rc, Rsk, Rdq)

Figure 6.11 Validation data for BH04.5D (straight edge) tool, a) Obtained clusters from sensor
data in two principal component space of the selected features, labels in black are
the holes used for the cluster creation, labels in blue are the holes measured after
the clusters where created b) Obtained clusters from surface measurement data
(green and red colours express the clusters of the figure a)



142 surface anomaly detection based on unsupervised learning

(a) Surface tearing observed profiles

(b) Damage free surfaces

Figure 6.12 Hole surfaces and surface profiles obtained with BH04.5D tool a) Observed surface
tearing b) Free damage surfaces
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(a) 2 Principal components of features and density plots

(b) Roughness parameters dendrogram (Ra, Rp, Rv, Rsm, Rsk, Rku, Rdq)

Figure 6.13 Validation data for R204.6D (curved edge) tool, a) Obtained clusters from sensor
data in two principal component space of the selected features and holes in
clusters boundarie b) Obtained clusters from surface measurement data. Red
colour corresponds to cluster 1 and green color to cluster 2 of Figure a)
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Dim1 = 0.69 ·ACCx1min − 0.68 ·ACCx1kurt (6.3)

Dim2 = 0.55 ·AEkurt+0.46 ·Fyskew+0.41 ·TV3min+0.41 ·TV2max+0.34 ·ACCy2skew

(6.4)

The area corresponding to the two principal components is A = 107.45 and
the area corresponding to the holes measured for the creation of the clusters is
A(45, 196, 306, 310, 411, 521) = 6.02. Therefore, 5.6% of the area has been covered. The
inter-cluster distance is 1.65. Figure 6.14 shows the measured surfaces and their cor-
responding roughness profiles. Figure 6.14 a) more visible feed marks can be seen,
whereas in Figure 6.14 b) holes with a lower surface roughness are seen with no visible
feed marks. These feed marks do not show a trend in terms of the time series in which
the holes have been made and could be due to other factors such as a built-up edge on
the periphery of the tool.

In the BH04.5D tool, the area covered by the measured holes is more extensive than in
the R204.6D tool, and better results are obtained, achieving a better separation between
the clusters.

The creation of a supervised learning system requires the measurement of a large
number of observations. The feasibility of this depends on the resources and time
available. Obtaining classification models of roughness, in case of not having internal or
external signals or only having process parameters is a complex task. Several parameters
influence the roughness of a component and influence the features of the signals that
can be collected during an operation. In this work, we show a methodology that can
create descriptors of the roughness obtained by measuring a small sample of the
set of observations to be evaluated. Although it is not an exact value of roughness,
the descriptors are based on different parameters of the measured profile to create
a model capable of classifying each of the holes made without the need for physical
measurement. As in work done by Kubišová et al. (2019) the use of hierarchical
clustering is highly valued to obtain information about the replicability of surfaces
under specific cutting conditions.

The area covered by the holes measured on the map of the principal components
plays an essential role in the methodology developed. It was found that with the
R204.6D tool some of the holes were in the cluster boundary, while with the BH04.5D
tool all the holes measured, both prior and for the validation, were identified in 100%
of the measured cases on each respective clusters.

There is no direct effect on the features of a given signal directly related to the
roughness profile of a component as can be the case with tool wear, which has been
shown that the increase in thrust force in drilling processes is very closely related to
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(a) Feed marks observed profiles

(b) Damage free surfaces

Figure 6.14 Hole surfaces and surface profiles obtained with R204.6D tool a) Observed feed
marks b) Free of feed marks
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the tool wear curve Lin and Ting (1995). Although many works show an increase in
roughness values and tool wear, some temporal event in the middle of the process may
cause the surface of the component to be damaged or the roughness value to increase
for some reason with the same tool condition. This study shows that with two different
cutting tools blocking the cutting conditions, surface roughness variations can be seen
without tool wear.

The works consulted to date only contemplate the parameter Ra for monitoring the
roughness of a given component (Deshpande et al., 2019; Mia and Dhar, 2016), as seen
in Djebala et al. (2015) other roughness parameters can describe the fatigue or assembly
properties. The Rsk value of a roughness profile can be of great importance; thus, an
excessively negative skewness could lead to early fracture occurrence. However, it
can be beneficial for assembly. Conversely, a positive skewness can lead to assembly
problems and be beneficial for components where long useful life is expected. Therefore,
the system proposed in this work has the benefit of using several roughness profile
parameters. This leads to a better interpretation of the surface property characteristics
of a component depending on the sector for which it is being manufactured.

The chip is fan-shaped on the R204.6D tool, which occurs when the chip is broken
before a complete revolution; this is the ideal chip in drilling processes and the one
that is best evacuated (Batzer et al., 1998). On the BH04.5D tool, the chip is somewhat
longer and is a mixture of fan-shaped and conical, presenting a higher difficulty in the
evacuation, and therefore could lead to surface tearing on the machined surface.

The surface tearing observed in the holes made with tool BH04.5D (straight edge)
could be due to chip clogging. The phenomenon has been observed in the first half of
the hole, in all cases (Z < 2.5mm), which suggests that it is the part of the surface that
experiences the most damage during drilling.

Concerning the descriptors (categories) created, it is possible that for each of the tools
used in other cutting conditions, there are other possible phenomena not visualised
in the measurements made under the cutting conditions used. Tool wear, which is not
analysed in this study, could also lead to the appearance of other types of defects that
cause the machined surface to be negatively affected. So it is of interest to analyse the
phenomena that may appear to decrease the limitations of this system. The statistical
features related to the roughness profiles shown could change. Thus, a study of different
cutting conditions and different tool conditions that increase the space of variables
used and, consequently, creating a greater number of clusters is of interest.

6.4 conclusions

Hierarchical clustering of holes is made with different tool geometries to describe the
surface roughness obtained. For the characterization of the roughness of the machined
components, several surface profile parameters measured in the Alicona profilometer
were used. Once the statistical features of collected signals during drilling have been
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identified, clustering is carried out for 600 holes made with each of the tools. The major
contribution of this work results in the development of a new methodology capable of
giving a descriptor of the quality of the surface generated in drilling processes based on
the least number of measurements possible through the use of hierarchical clustering
and internal and external signals to the cutting process. The result is a virtual metrology
system for a more extensive set of holes than those physically measured. The following
are the main conclusions:

• As contact properties of machined surfaces depend on the parameters of the
roughness profile distribution, more than one parameter extracted from the
profile must be taken into account for predictive modelling.

• It should be noted, in any case, that the measurement of roughness is a costly
task but affordable in case of parts belonging to critical sectors.

• There was no tool wear identified during the tests. However, there was a variation
in roughness. Events that occur at specific points in the cutting process cause the
surface profile of the machined component to be affected.

• The events or phenomena observed on the machined surface that appear using
two tool geometries are different. Consequently, the signals used to characterise
the roughness result to be different, avoiding the use of the same variables to
characterise the surface generated in the drilling processes.

• Clustering algorithms used with signals can approximate the roughness obtained
and perform a classification of the holes without the need to measure a large
number of them. In this way, a roughness estimation can be obtained by measuring
just a few holes and projecting them in the signal space.

• The area covered with the measurements on the data observation space is of
great relevance for a good mapping of the roughness parameters using the data
gathered during the process. As can be seen with the R204.6D tool, not all the
erroneous holes have been identified in their respective clusters, while with the
BH04.5D tool, 100% have been identified.
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I N F L U E N C E O F T O O L G E O M E T RY, M AT E R I A L A N D C U T T I N G
C O N D I T I O N S I N S E N S O R S I G N A L S : D I M E N S I O N A L I T Y
R E D U C T I O N A N D D ATA A N A LY S I S

Sensor measurements are affected by the input parameters of the cutting process
(workpiece material, cutting conditions, tool geometry, tool material or coolant). This
represents a challenge in terms of monitoring the cutting process. The measurement
accuracy of the sensors must be interpreted using statistical tools. In such a way that it
helps to reflect the detection sensitivity to a series of phenomena that are desired to
predict. Using algorithms that allow classification through probability theory and the
clustering of similar data groups, it is possible to identify data patterns related to the
cutting process.

In general, the learning algorithms have as input variables, all the input conditions
set for a cutting process for generalization purpose. The cost of developing a model
that adapts to different machining conditions is high. An interpreter that identifies
sensor data changes to adapt wear curves based on the set input conditions could
abstract the design of predictive models to a wider process window. A single value
(feature) from the set of sensor features can automatically recognise the change in input
conditions of the machining process. If an equivalent set of features could be identified
for different cutting processes (turning, milling, drilling), the trained algorithm would
even be equivalent to the same in all cases. This can be done by transforming the feature
set into two dimensions that can rearrange the data points to be easily identifiable.

The main idea of this chapter is that from the feature spaces of the sensors, it is
possible to visualise the input parameters in two dimensions by analysing dimen-
sionality reduction techniques. A comparison of PCA and tSNE is made to classify the
input parameters used during the tests. This analysis allows the creation of data maps
capable of identifying and visualising the differences between input parameters in two
dimensions through sensor signals.

7.1 methodology

The data used in this chapter correspond to the tests described in sections 3.2 and 3.3.
Figure 7.1 represents input parameters variation concerning the acquired signals. In
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steel BLS 35CrMo4, one feed rate, two cutting speeds and two different tool geometries
were used, while in Inconel 718, one feed rate, one cutting speed and three different
tool geometries were used. The main idea is the automatic identification of each of the
set of input parameters used.

Figure 7.1 Different input parameters to the drilling process considered in this chapter

The comparison of the two strategies was made taking into account the schemes
shown in Figure 7.2. The difference lies in the fact that applying PCA a direct transfor-
mation is learned to apply in new data. While tSNE can produce different visualization
maps in each execution, a neural network is trained to predict the dimensions created
by the tSNE algorithm.

Figure 7.2 a) shows the methodology involved in the use of PCA. In the training
phase, principal component analysis is applied to obtain the projection of the statistical
features in two-dimensions on the 70% of all available observations. The kNN algorithm
is applied to the transformed new features to identify the different input parameters.
In the testing phase, the PCA transform and the created model are applied to 30% of
the remaining data to obtain the metrics that allow us to evaluate the pursued strategy.
On the other hand, in Figure 7.2 b) the strategy followed with the tSNE algorithm
is observed. As the model cannot be reproduced on new data, a neural network is
trained to transform new data to the new projection of the components obtained by
this method.

A backpropagation neural network was developed in R using keras for tSNE dimen-
sion multi-output predictions. The neural network has the following architecture [n : n :
32 : 2], where n is the number of input features of each of the sensor feature space. The
loss function used was MAE and two regularization methods where used for training
purpose and to get a better generalization. On the one hand, a dropout layer was used
between the two hidden layers with a 0.2 rate, and on the other hand, an early stopping
callback to get the best weights with a patience of 5, this means that the training will
stop 5 epoch later if a better performance is not achieved. This configuration was used
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(a) PCA

(b) tSNE

Figure 7.2 Compared two scenarios for the same objective a) PCA based model b) tSNE based
model)
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for each feature space used in this work. One epoch is when an entire dataset is passed
forward and backward through the neural network only once.

To compare the same algorithm performance with both methods a kNN algorithm
was selected as it is based on the k neighbours between data points. And, as the
idea is to group the similar data points and kNN classifier is generally used in this
type of paradigms we chose this algorithm. The training dataset used does not have
so much data points (750) and the reduced feature space is of 2 dimensions. (i) The
algorithm first compute the distances of the new point to the rest of data points in the
training dataset. (ii) Then, it selects the k nearest neighbours, that is, the ones with the
lower distances. (iii) Finally, a voting is made between the classes of these k nearest
neighbours. The class that predominates in the voting is assigned to the new point.

7.2 visualization and classification of different input parameters

using pca an tsne on different sensors

Visualisations and classifications of the different input parameters have been made
using each installed sensor and sensor fusion. Only the results obtained in the case
of sensor fusion are shown in Figures 7.3 and 7.4 as there would be too many graphs,
however the results achieved with each of the sensors are commented and discussed.
The data have been coloured based on the interaction of cutting conditions (Vc-f) and
tool geometry and material interaction. The summary of the results achieved using
both the PCA and tSNE method for each sensor can be seen in Table 7.1.

Using the features of all the signals in the strategy pursued with PCA, visually, 3

large clusters can be observed in the case of the cutting conditions (Figure 7.3 a)).
However, in Figure 7.3 b), although the groups created with the 3 geometries in Inconel
718 are very close together, they are easily identifiable. The classification results indicate
that the material and cutting conditions are identified with 100% and 98.4% accuracy
respectively. However, this classification is reduced to 90% when it comes to classifying
tool geometry. The worst case is obtained by predicting the R204.6D used in Inconel
718 with only 55.6% success rate. The behaviour of this tool geometry on Inconel 718

was weak as it broke in the first few holes drilled.

Using tSNE with all the available signal features, the visualisation of the data is similar
to that obtained with PCA. However, in this case, more compact and more separated
clusters can be seen in Figure 7.4. The tests performed in the same material are closer
to each other; on the right, the data for steel and the left, the data for Inconel 718

can be seen. The differences between the two groups on steel are due to the cutting
conditions and tool geometry. Observing the distances of the groups in the same cutting
conditions and different tool geometries in Inconel 718, the separation of the groups in
steel is more pronounced by cutting condition differences. In Inconel 718, the data are
more similar; the only parameter varied between them is the tool geometry, keeping
all other parameters fixed. However, in this visualization, more significant differences
can be observed than those obtained in PCA. Both material and cutting conditions are



7.2 visualization and classification of different input parameters 153

(a) Cutting conditions (b) Geometry/Material interaction

Figure 7.3 PCA based on sensor fusion a) Visualization based on cutting conditions b) Visu-
alization based on Geometry/Material interaction c) Classification of material d)
Classification of cutting conditions e) Classification of Geometry/Material interac-
tion
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predicted with a 100% success rate, tool geometry is predicted with a 98% success rate
with only 4 misclassified holes being made on Inconel 718 with R204.6D and BH04.5D
tool geometries.

(a) Cutting conditions (b) Geometry/Material interaction

Figure 7.4 t-SNE based on Sensor fusion a) Visualization based on cutting conditions b) Visu-
alization based on Geometry/Material interaction c) Classification of material e)
Classification of cutting conditions f) Classification of Geometry/Material interac-
tion
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The same analysis has been carried out for each of the sensors separately. Table 7.1
shows the summary and comparison of each of the sensors for each of the methods
used. Internal signals are those that can be acquired from the CNC, the sensor fusion
are the features of [ACC, FC, AE, Internal] together.

Table 7.1 Comparison of the success rate between PCA and tSNE for identifying process input
parameters

Method Sensor Material Conditions Geom/Mat

ACC 100 94.6 83.7

FC 100 97.8 70.1

AE 95.1 90.2 75.5

Internal 100 100 88.6

PCA

Sensor fusion 100 100 90.8

ACC 100 98.4 84.2

FC 100 98.9 91.3

AE 98.4 92.9 77.7

Internal 100 100 91.3

tSNE

Sensor fusion 100 100 97.8

Using both PCA and tSNE, the material and cutting conditions give good results.
In terms of the material used, the worst result is obtained using acoustic emissions
and PCA with a 95% success rate, and this percentage is improved by using tSNE
with a 98% success rate. All other sensors can determine the material (Inconel 718 or
BLS35CrMo4 steel) with a 100% accuracy. The cutting conditions are more misclassified,
and slightly worse results are obtained. The worst result is again obtained using the
acoustic emissions with 90% correct, with the accelerometer and cutting forces 94%
and 97% of the cases are correctly classified respectively, all of them using PCA. In the
tSNE scenario, all these results are improved, indicating that tSNE can better join the
most similar data and separate the different ones. Finally, the geometry of the tool is
the most difficult to classify. The best case using PCA is obtained with sensor fusion
(shown in Figure 7.3), the worst case is obtained using cutting forces with a 70% success
rate. The tSNE obtains better results, and the most noticeable improvement is obtained
by using cutting forces, increasing the success rate to 91%.

One of the advantages of PCA is that it is possible to analyse those characteristics
that contribute most to each of the principal components obtained. However, the t-SNE
can facilitate the separation of the groups with greater precision.

The cutting conditions and the material used are easily identifiable using both PCA
and t-SNE, although better results are obtained using t-SNE as it allows the separation
of the groups according to the parameters in a more noticeable way.
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Tool geometry is the most challenging input parameter to identify using the signals
acquired during the drilling process. This indicates a lower variability of the acquired
signals concerning this input; by merging the sensors used, the separation of the
groups for the identification of the used geometry results in an increased probability of
identifying this condition.

Similarly, the same occurs with the cutting conditions used except for the accelerom-
eter and the PCA strategy, which places the cutting conditions used in BLS 35CrMo4 as
if they were both carried out at Vc = 100m/min and f = 0.15mm/rev. This is not the
case for the t-SNE based strategy as it allows to increase the classification accuracy to
100% of the cases with the accelerometer signal.

The achieved two dimensional visualisation of the input parameters of the drilling
process based on the acquired signals is interesting. Reducing the dimensions of the
features of the individual sensors allows the construction of visualisation maps in which
both similarities and differences that these parameters produce on the acquired signals
can be identified. In flexible machining processes, where there are changes in input
parameters, this form of visualisation can help develop the intelligence of the sensors.
It can identify the changes and adapt the predictions to the specific combination of
input parameters of the cutting process since the sensor data will be in other range of
measurement. It is a form of visualisation which allows the identification of errors in
the cutting conditions used at any given stage.

An illustration of the predictions made in the section 5.2.1 where the model was
trained with the tool MDS080SK and predictions were made about the tool BH04.5D
to predict the tool flank wear (Vb) on Inconel 718 can be seen on Figure 7.5. The lack
of predictive ability shown by the model was because of geometry modification on
the combination of input parameters. These visualisation maps inform that a model
was trained to predict data for a specific input parameter combination and that the
predictions intended to be made do not belong to the same process window as the data
used to train the model. Consequently, the predictions may not be accurate, or at least
were not validated at the time of model training.

7.3 conclusions

In this chapter the dimensionality reduction of the features obtained from the sensors
installed during the drilling process have been visualised and the accuracy of the kNN
algorithm for the identification of the groups created from the reduced dimensionality
has been evaluated.

• In general, the machined material properties have a significant effect on all the
signals analysed. The cutting conditions used, or at least the cutting speed, which
is the only one that has been modified on the steel material, also have an important
effect. The tool geometry is the one that presents the most problems when it
comes to being identified with either of the 2 methods used.
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Figure 7.5 Input parameter combination changes used on section 5.2.1 to predict tool flank
wear

• The tSNE method allows to separate the different groups with a more significant
effect by joining those holes that have more similarities in the group of features
analysed, and distancing those with differences.

• Instead of analysing each of the features separately, dimension reduction can
provide a broader view of the effect on sensor signals when modifying one of the
input parameters.

• PCA allows for the analysis of linear combinations of signal features that preserve
the highest variance and at the same time do not present a redundancy. The tSNE
allows for better visualisations but does not preserve the original structure of the
data. This means that it does not allow the direct transformation of the new data
to the dimensions created, requiring a neural network trained to obtain the new
data in the transformed dimensions. The other way to transform the new data is
to apply the whole process from the beginning, including the old and the new
data.

• Sensor data can identify changes in the combination of input parameters to create
data-driven models. In many cases, changes made to some parameter of the input
conditions may not generate the expected sensor acquisition (measurement range
for accurate prediction) for data-driven prediction, so identifying the combination
of input parameters just based on the acquired sensor data can help to create
more reliable models.
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The drilling operation involves several industrial outputs that must be controlled for the
proper operation of the machined component. Uncertain and random instabilities can
cause errors in the component, leading to premature failure. The general framework
of this research project was to create data-driven predictive models for the prediction
of laboratory-measured errors. To this end, external (sensors) and internal (machine)
signals were collected from the drilling process, and statistical analysis was applied
to determine the signal features best suited to specific process monitoring (tool wear
evolution, tool breakage or surface integrity condition). Modern manufacturing requires
strategies to identify the type of error that may have occurred during machining and
enable automatic detection of incorrect machining process behaviour. However, there
are a wide variety of cutting process parameters that require monitoring. This makes it
difficult to identify the sensors that better adapt or relate to the cutting process-specific
parameters.

In this research project, a setup complete enough to acquire different drilling opera-
tion signals simultaneously was developed. Tests were carried out with different tool
geometries on BLS 35CrMo4 Low S steel and Inconel 718 in three batches. The errors
analysed and measured in detail in the laboratory were tool wear and hole surface
roughness. Material damage was also measured, to evaluate the relationship between
tool wear, surface roughness and material damage under specific cutting conditions.

The results show the high capability of specific signal features for detecting tool
condition or determining a tool breakage risk. The analysis carried out has made it
possible to assess the capacity of each of the signals acquired for the identification or
reconstruction of the tool condition.

However, the installation of several sensors is an impractical solution that can chal-
lenge the indirect measurement of the tool condition, and each signal can achieve
different robustness. Thus, the requirements for monitoring the cutting process must
be determined to select the sensors best suited to the specific monitoring needs.

Identifying signal features related to errors that compromise the machined surface
integrity is a difficult task. Depending on the type of error that may occur during
machining, the signals can show greater or lesser sensitivity to process instabilities. The
roughness profile parameters can help to identify the signal features that are best suited

159



160 conclusions and future lines

to surface errors. However, the results show that changes in the input parameters cause
different surface errors. Therefore, the features selected to determine the type of error
that may have occurred can change, or might not be effective in all cases.

8.1 tool condition monitoring

Chapters 4 and 5 are mainly focused on the evaluation of information sources (sensors
and internal machine signals) for the prediction of the cutting tool condition. This
evaluation was carried out, considering that not all information sources have the same
capacity to predict the tool condition. The signals acquired during the cutting process
were compared following two strategies for predicting tool wear.

On the one hand, the analysis of each of the signals was carried out separately to
classify different wear levels on previously worn tools on steel BLS 35CrMo4 employing
two different tool geometries (Kendu BH04.5D and R204.6D). On the other hand,
a reconstruction of the tool condition with three different tool geometries (Kendu
BH04.5D and R204.6D and SUMITOMO MDS080SK) on Inconel 718, was performed in
three repetitions with each of the tool geometries. The tool R204.6D broke prematurely
at the beginning of the drilling process, and was excluded from further analysis.

The results of these analyses indicate that both internal and external signals can
perform the task adequately. Hence, it is possible to exchange some of the acquired
external signals for some of the acquired internal signals, without compromising
robustness for tool wear prediction.

In the process conditions established in this study, the best external sensor was found
to be the dynamometer for both classification and regression. However, given their
predictive capability for tool wear, the internal signals were identified as candidates for
replacing the dynamometer since they indirectly monitor cutting force signals. The cost
of acquiring internal signals is less expensive, and there is no need to install sensors on
the machine.

From the signal features extracted, acoustic emissions were not able to predict the
wear curve. It may be however, that another sensor location or another pre-processing
would allow the reconstruction of the said curve. The accelerometer is a sufficiently
robust candidate for the reconstruction of the wear curve. However, after the variable
selection process, the sensor has the highest number of features shown to be needed.

Using the data of a specific tool geometry as training, the prediction of another
tool geometry is possible up to a point. Chapter 4 focuses on a classification strategy,
in which the models can identify the class membership of second tool geometry
with a high degree of accuracy using the internal signal of the Z-axis torque TV2.
The reconstruction is more complicated however, when the strategy employed is to
reconstruct the wear curve, as seen in chapter 5. The signal that presented the most
notable adaptation was the accelerometer. Although the accelerometer was able to
model the non-linearity of the wear curve, it was more difficult to compensate the offset
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of the predictions and achieve accurate results. This indicates that these systems are
case sensitive and need calibration with data from different input conditions to the
cutting process for fine tuning (tool geometries, cutting conditions or materials).

The risk of tool periphery breakage was predicted using logistic model trees. This
algorithm is particularly valuable in determining the probability breakage at the tool
periphery. In this case, the signals identified as the most capable of performing the
task were the internal signals and cutting forces, since they produced more simple and
interpretable models.

The amount of data generated by each sensor and the capacity of the monitoring unit
to process and store it should also be considered when selecting features. In controlled
laboratory environments, as in this study, the volume of data generated is limited.
However, in industrial environments, data volume can grow considerably and limit the
available resources, causing system degradation.

8.2 surface condition monitoring

Although monitoring the Ra parameter is a widespread practice, direct measurement
to create supervised learning models is costly. Furthermore, the same Ra level on
two "identically" machined components does not necessarily mean the same contact
properties. Thus, the surface condition was evaluated by performing unsupervised
learning on several roughness profile parameters to compare the repeatability of
the drilling process and acquire the desired surface contact properties. The applied
methodology is the closest to the methods used in production environments. By
measuring a sub-population of holes randomly selected from the total number of holes
drilled and applying hierarchical clustering, the similarity between the measured holes
is established. The developed unsupervised learning methodology can respond to a
more significant unknown than merely evaluating a single roughness profile parameter.
When the surface errors that can appear on a given component with a given tool
geometry and cutting conditions are characterised, it is possible to create clusters from
the signals that distinguish those damaged surfaces with different contact properties.

The findings show that vibration signals are the most likely to be related to the
generated surface. However, other signals such as cutting torque, spindle power, Y-
axis cutting force, acoustic emissions, or Z-axis motor torque or current could also be
present.

In the tool BH04.5D, dimension 1 of the principal components in which the features
ACCx2_rms, ACCz2_rms, ACCz2_min and ACCy_max have the greatest contribution,
is where a greater separation of the obtained groups (clusters) is observed. Therefore it
can be concluded that the features obtained from the accelerometer contribute to the
identification of the holes that present a surface error. In the case of this tool, surface
tearing.
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In the case of tool R204.6D no specific sensor contribution is observed. In dimension
1, ACCx1_min and ACCx1_kurt contribute, while in dimension 2 a larger number
of features (AE_kurt, Fy_skew, TV3_min, TV2_max, ACCy_skew) contribute. Cluster
separation and visualisation based on PCA show that the cluster boundary separates the
clusters in dimension 2. Although most of the measured holes belong to their cluster
there are a number of holes that are misclassified.

No direct relationship was found between roughness and tool wear. This is thought
to be because minor cutting edges generate the final surface of the hole.

8.3 input parameter recognition through sensors

A broader analysis of the signals acquired was conducted by reducing the feature set
dimensionality and visualising these new dimensions according to the cutting process
input parameters. The results showed that PCA and tSNE are capable of representing
input parameters based on sensor data. This can help process monitoring systems
reconfigure and adapt to various metals, tool geometries and cutting conditions, and
even different processes.

tSNE and PCA methods effectively identified the change of workpiece material
and cutting conditions. Tool geometry changes however, proved more challenging to
identify. In this case, tSNE identified the tool geometry with better results than that
achieved with PCA using any of the employed sensors. The best result was obtained by
sensor fusion in both PCA and tSNE however, this identification must be based on the
sensor or sensors used to monitor the cutting process.

8.4 future development

Future monitoring systems must obtain as many signal features as possible, differen-
tiate those that are unrelated to the monitoring unit, eliminate redundancy that may
introduce undesirable features into the prediction models, and make robust predictions
for accurate and automatic decision making. The quality of model predictions must
also be monitored to ensure adequate feedback. This indicates that the deployment and
implementation of predictive models in production environments are not static. Con-
tinuous feedback has to be received to guarantee prediction accuracy. Active learning
also plays a key role in model deployment. As new data is produced, this should be
validated to update predictive capacity.

In the context of the set of input parameters used in this work, the signals have
performed quite accurately. However, their use may be limited to specific cutting
parameters. The definition of the process window (tool diameter, cutting conditions
or different materials) in which each signal can operate for wear monitoring is critical.
For this purpose, tests need to be carried out on different materials and under different
input conditions to establish the capability limits of each specific sensor.
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In processes such as drilling, there is no direct relationship between tool wear and
the level of roughness. The measurement of the similarity of two machined surfaces
under established cutting conditions is thus of considerable interest. Methodologies
that assess whether two components manufactured under the same conditions meet
the specified requirements can increase productivity and speed up decision-making
without expensive direct inspections.

The results show that material damage does not depend only on tool wear or tool
geometry. The parameters that can affect material damage in drilling processes should
be investigated in more detail to identify the signal features that can maintain a
relationship with these parameter.

In this research work, only tool condition and surface integrity were analysed.
However, as reported in the literature, more parameters influence the lifetime of
the machined component, such as dimensional tolerances, residual stresses or burr
formation. These industrial parameters should also be related to the acquired signals,
so as to increase machining accuracy by adapting input parameters to the machined
component.
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