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ABSTRACT 

The present research work aims at evaluating the economical feasibility and the 
technological viability of implementing intelligent control systems in complex industrial 
manufacturing processes; in this case forming processes. Forming processes are 
manufacturing processes that use force and pressure in order to modify the shape of a 
material part until getting the final product. The wide range of non-linear factors 
(material properties, tool geometry, machine parameters and lubrication variables) that 
determine the final quality of the parts manufactured by these processes makes them 
to be inherently quite unstable. Thus, the control made by human operators is still 
essential nowadays. On the other hand, although human operators have demonstrated 
to be a very successful strategy when controlling this type of processes, the actual 
market evolution towards the fabrication of more complex parts, made of lower 
formability materials at higher production rates is decreasing their capacity of reaction 
when solving the daily problems. 

Therefore, the development of new automatic and global control systems based, not on 
traditional control techniques and mathematical models but on the control strategy that 
has been successfully used for many years, the control through the experience and 
knowledge, is now even more necessary. In the present research work, two intelligent 
control systems based on AI techniques have been developed and evaluated. The 
main purpose of these intelligent control systems is to identify the process failures at 
forming processes and to propose the right solutions that should lead to their solution, 
all this in a quick and reliable way. Following this strategy, the solution of the process 
failures is considerably simplified because, after any process failure of defective part 
detection, human operators find a report where an explanation of the incidence, as well 
as its causes and the way to solve it, are displayed. This has the inherent advantage of 
decreasing the length of the downtimes at the manufacturing facilities and thus 
increasing the number of parts produced.  

Together with the previously described core of the global control systems, two 
monitoring systems have been developed and implemented in a forming facility too. 
The purpose of these monitoring systems is to work as the senses of the intelligent 
control systems. The first one, an artificial vision system, is aimed at evaluating the 
quality of the produced parts by carrying out a 100% quality control at the end of the 
forming process. This will assure the right quality of all the products shipped to the 
customer. The second one, a sensors based process monitoring system, is aimed at 
detecting any process failure at the forming facility by means of force and acoustic 
emissions measurements. This will reduce the internal defective and will assure the 
security of the forming facility. Both systems are in charge of detecting any process 
failure and defective part and of reporting about them to the intelligent control system. 

Since the aim of the research work was to evaluate the feasibility of implementing 
global intelligent control systems in the industry, all the developments and results 
achieved through the present research work have been carried out in an industrial 
environment. The research work is principally divided into three main parts; 1) the 
development and implementation of the sensors based process monitoring system, 2) 
the development and implementation of the AV monitoring system and 3) the 
development of the intelligent control systems. At the end, a summary of all the results 
and conclusions achieved through the development of the previous mentioned systems 
is given too. 
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RESUMEN 

El presente trabajo de investigación tiene como objetivo evaluar en qué condiciones es 
económicamente viable y tecnológicamente factible la implementación de sistemas 
inteligentes de control en procesos de fabricación complejos; en este caso procesos 
de conformado. Los procesos de conformado son procesos de fabricación basados en 
la aplicación de esfuerzos o presiones sobre componentes con el objetivo de modificar 
su forma geométrica hasta conseguir un producto final. El gran abanico de variables 
no lineales (propiedades de materiales, geometría de herramientas, parámetros de 
máquinas y/o lubricación) que determinan la calidad final de las piezas conformadas 
hacen que estos procesos sean inherentemente inestables. Por ello, aun hoy en día, el 
control de estos procesos se realiza mediante operarios humanos. Por otro lado, 
aunque la experiencia ha demostrado que los operarios son capaces de controlar 
estos procesos de manera eficiente, la actual tendencia hacia la fabricación de piezas 
más complejas, fabricadas en materiales menos deformables y todo ello a cadencias 
de fabricación mayores, ha hecho que la capacidad de los operarios para reaccionar 
ante imprevistos se haya visto mermada.  

Por lo tanto, el desarrollo de nuevos sistemas automáticos e inteligentes de 
supervisión y control basados, no en técnicas tradicionales de control o en modelos 
matemáticos, sino en la estrategia de control que ha dado buenos resultados a lo largo 
de los años, el control basado en la experiencia y el conocimiento, es cada vez más 
necesario. En el presente trabajo de investigación, se han desarrollado y evaluado dos 
sistemas inteligentes de control basados en técnicas de inteligencia artificial. El 
principal objetivo de estos sistemas es ser capaces de identificar los fallos de proceso 
en procesos de conformado así como de plantear, automáticamente, las instrucciones 
para su resolución, todo ello de una manera rápida y robusta. Siguiendo esta 
estrategia, la resolución de los fallos de proceso se simplifica ya que, tras una parada 
de máquina o la detección de piezas defectuosas, el sistema proporciona al operario 
un informe donde se detallan las acciones a llevar a cabo. Esto tiene como ventaja una 
reducción en los tiempos de parada de máquina (y por lo tanto aumento en la cantidad 
de piezas producidas) ya que la identificación de los fallos es inmediata.  

Junto con el núcleo del sistema global de control, se han desarrollado e 
implementando en una instalación de corte progresivo dos sistemas de monitorización. 
El objetivo de estos dos sistemas de monitorización es recoger información sobre el 
proceso y enviársela al sistema de control. El primero, un sistema de visión artificial, 
tiene como objetivo analizar la calidad del 100% de las piezas fabricadas. Esto 
asegura la correcta calidad de todas las piezas enviadas a los clientes. El segundo, un 
sistema de monitorización de procesos basado en sensores, tiene como objetivo la 
detección de cualquier fallo de proceso. Esto reduce el defectivo interno y protege a 
las instalaciones frente a anomalías de proceso. Por lo tanto, ambos sistemas tienen 
como misión la detección de cualquier anomalía de proceso o pieza defectiva así 
como informar al sistema de control sobre las mismas.  

Puesto que el objetivo de este trabajo es evaluar la capacidad de los sistemas 
anteriormente citados en el entorno industrial, todos los desarrollos y resultados 
obtenidos a lo largo del mismo se han llevado a cabo en una empresa. El trabajo se 
puede dividir en tres partes: 1) el desarrollo e implementación del sistema de 
monitorización basado en sensores, 2) el desarrollo e implementación del sistema de 
visión artificial y 3) el desarrollo de los sistemas de control inteligentes. 
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LABURPENA 

Ikerkuntza lan honen helburua sistema adimendunak fabrikazio prozesu konplexuak 
kontrolatzeko erabiltzearen bideragarritasuna aztertzea da, bai ekonomikoki eta 
teknologikoki. Kasu honetan, konformazio prozesuetan inplementatutako sistema 
adimenduak ikertu dira. Konformazio prozesuak, amaierako produktua lortzeko, 
hasierako materialari esfortzu edo presioen bidez forma geometrikoa aldatzean 
datzate. Konformaturiko piezen amaierako kalitatea finkatzen duten aldagai ez-linealen 
ugaritasun zabalak (materialen propietateak, lanabesen geometriak, makinen 
parametroak eta/edo lubrifikazioa) prozesu hauek ezegonkorrak izatea ondorioztatzen 
du. Hori dela medio, gaur egun ere, prozesu hauen kontrola giza-langile bidez egiten 
da. Langileak prozesu hauek modu eraginkorrean kontrolatzeko gai direla erakutsi du 
esperientziak. Dena den, deformagarritasun txikiagoko materialez eginiko pieza 
konplexuagoak kadentzia altuagoetan fabrikatzeko gaur egungo joerak, langileek 
ezustekoen aurrean erantzuteko duten gaitasuna gutxitu du. 

Ondorioz, prozesua gainbegiratu eta kontrolatzen duten sistema automatiko eta 
adimendu berrien garapena beharrezkoa bihurtu da. Sistema hauek ez daude kontrol 
teknika tradizional edo eredu matematikoetan oinarrituak. Sistema hauen kontrola 
ezagutza eta esperientzian oinarriturik dago, zeinak azken urteetan emaitza onak 
eman dituen. Ikerkuntza lan honetan adimen artifizial tekniketan oinarrituriko bi kontrol 
sistema adimendun garatu eta baloratu dira. Sistema hauen helburu nagusia 
konformazio prozesuetan emaniko akatsak identifikatu eta automatikoki ebazpen-
proposamenak aurkeztea da, modu azkar eta sendoan. Estrategia hau jarraituz, 
prozesuko akatsen ebazpena errazten da, pieza akastunak atzematean edo makinaren 
geldialdi baten aurrean, sistemak langilea eman beharreko pausuak azaltzen dizkion 
txosten batez hornituko baitu. Makinaren geldialdiaren murriztea eta ondorioz, 
produktibitatea igotzea da honen abantaila nagusia, akatsen identifikazioa berehalakoa 
baita. 

Kontrol sistema garatzeaz gain, puntzonaketa instalakuntza batean bi monitorizazio 
sistema martxan jarri dira. Bi monitorizazio sistema hauen helburua prozesuaren 
informazioa jaso eta kontrol sistemari bidaltzea da. Lehenengoa ikuspen artifizialeko 
sistema bat da, zeinaren helburua ekoiztutako piezen %100aren kalitatea aztertzea 
den. Honenbestez, bezeroei bidalitako piezen kalitate egokia bermatzen da. Bigarrena 
sentsoreetan oinarrituriko prozesuen monitorizazio sistema bat da. Bere helburua 
prozesuan emaniko edozein akats antzematea da. Honek akastun piezen kantitatea 
gutxitzen du eta instalakuntzak prozesuen ezegonkortasunetatik babesten ditu. 
Ondorioz, bi sistemen helburua prozesuan izandako arazo edo pieza akastunak 
antzematea eta kontrol sistemari hauen berri ematea da. 

Lan honen helburua aurrez aipaturiko sistemen gaitasuna industri ingurunean 
ebaluatzea denez, aurkezturiko garapen eta emaitzak enpresa batean burutu dira. Hiru 
atal nagusi bereiz daitezke lan honetan: 1) sentsoreetan oinarrituriko monitorizazio 
sistema baten garapen eta inplementazioa; 2) ikuskapen artifizialeko sistemaren 
garapen eta inplementazioa; eta 3) adimendun kontrolean oinarrituriko sistemen 
garapena. 
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1.- INTRODUCTION 

The present thesis, entitled “Application of Artificial Intelligence techniques to the smart 
control of sheet metal forming processes”, has been carried out within the research 
area “Ciencía, Tecnología y Procesos de Transformación de Materiales” at the 
department of “Mecánica y Producción Industrial” in Mondragón Goi Eskola 
Politeknikoa (Mondragón University). 

1.1. The Motivation and Concerns of the Research 

Industry, and more specifically manufacturing industry, plays a vital economic role all 
over the world. As an example, manufacturing activity in Europe represents 
approximately 22 % of the EU GNP [EUR03] and manufacturing-related activities 
account for around 75% of the EU GDP [EUR08]. Although manufacturing industry 
plays a vital role in the economy of most of the developed countries, it is being 
increasingly challenged by the global competitive environment – and in particular by 
the ever more significant role of Asian manufacturers. In order to face this challenge, 
the manufacturing industries located at the developed countries have evolved towards 
the production of higher complexity parts, manufactured with less formable materials, 
using fewer steps production processes and all this at higher production rates and with 
stricter quality requisites.  

Among manufacturing processes, forming processes, and more specifically forming 
processes, are especially sensitive to the aforementioned changes. Forming processes 
can be defined as manufacturing processes that use force and pressure in order to 
modify the shape of raw materials until getting final products. The wide range of non-
linear factors that drive this sort of manufacturing processes makes them to be very 
complex and inherently quite unstable. On one hand, slight changes in the production 
parameters or in the material quality are usually enough to get the process out of its 
stability condition and to produce bad quality parts. On the other hand, when a tooling 
breakage or excessive wear occurs, the resulting parts are also defective. This 
situation is especially difficult to detect when producing small size parts, often 
manufactured in large quantities using high speed and production rate equipment. As a 
result, production of defective parts goes on until a statistical control is able to detect it 
and to stop the machine. 

To avoid the aforementioned situation and guarantee a high reliability of manufacturing 
processes in general, a field of investigation named “robust processes” has evolved 
during the last years. This field of investigation tries to increase the stability of 
manufacturing processes by reducing or eliminating their sensitivity to the input 
variables. At forming processes, although traditional control techniques, mostly PID 
controllers, based on mathematical models, were initially widely used for this purpose, 
their high complexity became a big handicap and the development of global controllers 
able to maintain stable those forming processes was not achieved. At the same time, it 
was observed that the figure of the operator, able to successfully supervise and control 
forming processes based on his/her experience, was, and still is nowadays, an 
appropriate way to guarantee the right performance of these manufacturing processes. 
Then, and taking into account these past experiences, it was concluded that future 
attempts to improve the robustness of forming processes should be based, not on the 
use of traditional control techniques based on mathematical models, but on the control 
strategy that has been successfully used for many years: the human control based on 
the experience and on the knowledge. 
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At the same time, it must also be recognised that during the last few years, and due to 
the increasingly complexity of manufacturing processes, specific techniques able to 
help human operators to supervise and control them have also been developed. 
Among all these techniques, sensors based process and tool condition monitoring 
systems on the one hand, and artificial vision (AV) systems on the other hand, have 
been used in some types of industries. Both techniques try to complement the senses 
of human operators because they are able to capture more and richer information 
regarding the efficiency of the manufacturing processes than human beings are. For 
example, sensors based process and tool condition monitoring systems are used to 
evaluate specific process signals and to detect the presence of anomalous working 
procedures at the manufacturing facilities. From a different perspective, AV systems 
are used in manufacturing processes to evaluate the final quality of the products and to 
detect the presence of products which quality do not match with the predefined quality 
requisites. Thus, it is concluded that the combined application of both techniques into 
manufacturing processes should generate profitable synergies towards the detection of 
a wider range of malfunctions.  

In fact, it seems that the combination of the previous mentioned monitoring techniques 
with artificial intelligence (AI) based control techniques will lead to an scenario where 
intelligent control systems will support human operators to survey and control 
manufacturing processes by, first, detecting the malfunctions at the processes and by, 
second, identifying those process malfunctions. This opens the gate towards the 
development of autonomous systems, able to reason the necessary solving actions to 
be carried out, in case of process malfunctions.  

At the present research work, an industrial sheet metal forming facility consecrated to 
the manufacturing of small size retaining rings by means of blanking operations has 
been used as a demonstrator in order to verify all these assumptions. In this 
experimental case, and limited nowadays by the available actuators, all the developed 
systems are conceived as a support to the human operator but in future developments, 
if adequate actuators able to carry out the necessary actions to correct the 
manufacturing processes are developed, more autonomous manufacturing processes 
could be achieved. 

1.2. The goal 

The main objective of the present research work is to analyse the feasibility and the 
technological viability of automatic control systems, where sensors based 
process monitoring systems, artificial vision systems and artificial intelligence 
techniques work together, in industrial manufacturing environments consecrated 
to the mass production of small size mechanical components at high rates with 
the aim of: 

1. Achieving the zero defect manufacturing at the client’s facilitates. 
2. Reducing the downtime of the production facilities. 
3. Reducing the internal defective. 
4. Reducing the time (and therefore the cost) associated to inspection tasks. 

Understanding feasibility as: 

1. The economic cost of the complete system. 
2. The set up cost in terms of the time necessary to tune the system up. 
3. The achievable results, concerning the zero defects production, the reduction of 

downtimes, the reduction of internal defective and the reduction of time associated 
to inspection tasks. 
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4. The universality of the system in terms of its capacity to work with different 
processes or references. 

5. The usability denoting the ease with which operators employ it. 
6. The capacity to cope with or even to increase the production rate of the facilities. 
7. The maintainability denoting the ease with which operators and/or maintenance 

personnel update it. 

The attainment of the previous global objective is linked to the achievement of the next 
specific ones: 

1. Development and implementation of sensors based process monitoring strategies 
into progressive blanking processes in order to detect the onset of process 
malfunctions. 

2. Development and implementation of high performance AV strategies into 
progressive blanking processes in order to evaluate the quality of small size parts 
at high production rates.  

3. Development and implementation of intelligent control strategies into progressive 
blanking processes consecrated to the manufacturing of small size parts in order to 
identify and promptly correct the process malfunctions. 

The consecution of these partial objectives will bring to the manufacturing industry the 
next advantages: 

1. Elimination of the external defective: since a 100% quality control is pursued by 
means of the implementation of an AV system, all the products will be analysed 
before shipping to customer and thus no defective products will be sent to the 
clients. 

2. Reduction of the internal defective: complementing the previous advantage, 
through the implementation of an online sensors based process monitoring system, 
besides the surveillance of the integrity of the manufacturing goods, a big 
percentage of the defective parts produced will be immediately detected in process 
(earlier than with the visual evaluation). Therefore, and due to the immediateness 
of the detection, the internal percentage of defective parts will decrease.  

3. Increment of the man machine ratio: and finally, and once that the external 
defective has been eliminated and that the internal defective has been reduced, 
another very important factor is the man machine ratio. In order to increase this 
factor, it is necessary to decrease the length of the downtimes at the production 
facilities. For this purpose, the developed intelligent control system will identify the 
malfunctions at the facilities and will suggest the operator the right actions to be 
carried out to solve them. This way, the necessary time to restart the production will 
be reduced and the productivity of the facilities increased. 

1.3. Outline of the thesis 

Since one of the key aspects at the present thesis is the fact that it has been carried 
out in an industrial environment, several determining factors were taken into account 
from the early beginning. Among others, the most remarkable ones are the high 
production rate of the facilities (and the impossibility to modify it), the presence of many 
different process failures and part defects, the variability of the production schedule at 
the forming facilities, the lay-out of the facilities within the company (what influences on 
the implementation of the systems), the loading of the raw material and the unloading 
of the produced parts (what influences on the development of the developed systems), 
the possible incidences during the production like for example, sudden tooling 
breakages or operators illnesses, the quality requisites of the parts, the ever present 
dirtiness in the industrial field or the lightening problems due to the environment. 
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Therefore, and taking into consideration all the previous factors, a logical task schedule 
able to achieve successful results has driven the present research work. An outline of 
the tasks (subsequent chapters) of this thesis is given below: 

Chapter 2. The literature review provides the background material for this thesis. A 
brief overview on sheet metal forming processes and a deeper overview 
on sensors based process monitoring systems, AV systems and AI 
techniques is given. Among AI techniques, rule-based expert systems and 
case based reasoning techniques have been identified as the most 
suitable ones for the purposes of the research work. An explanation of the 
fundamentals, possibilities and advantages of each technique is given. 

Chapter 3. The industrial environment where the entire intelligent system developed 
at the present research work has been evaluated is explained in detail. A 
description of the parts produced, the necessary tools and the forming 
facility where they are produced are briefly explained to help the reader to 
understand the working procedure and environment and its limitations. 

Chapter 4. The implementation of a sensors based process monitoring system into 
the blanking facility used at the present research work and the results 
achieved are explained in chapter 4. The chapter comprises an 
explanation of the procedure to install the sensors at the tooling and at the 
blanking facility, a brief explanation of the work carried out with the 
sensors based process monitoring system and both, the process 
malfunctions that could be detected and the process malfunctions that 
could not be detected during the running of the process.  

Chapter 5. The development and implementation of a high performance AV system 
into the blanking facility used at the present research work and the results 
achieved are explained in chapter 5. The chapter comprises an 
explanation of the hardware and the software developed to evaluate the 
parts as well as the results achieved through the part quality evaluation 
carried out. A summary of the defects that could be detected and the 
defects that could not be detected by the AV system is given too. 

Chapter 6. Two intelligent control systems based on AI techniques and the results 
achieved through their implementation into the progressive blanking 
process are explained in chapter 6. The first intelligent system is based on 
rule based expert systems and the second one is based on case based 
reasoning techniques. The chapter details the results achieved by each 
technique, compares them and provides guidance about when is more 
suitable the application of each one of the evaluated techniques. 

Chapter 7. General conclusions, discussion and suggestions for future work are 
presented in chapter 7. This chapter summarizes the performance of the 
intelligent systems developed and the results of the research work. It also 
discusses several important issues concerned, draws general conclusions 
and suggests the way forward.  

Chapter 8. The dissemination at both, scientific and industrial level, carried out during 
the present dissertation is gathered in present 8. The chapter details the 
papers presented at international conferences and published in scientific 
journals where the knowledge created along the present research work 
has been spread over the scientific and industrial world. 

1.4. Original contributions 

Among all the works carried out during the present research work, next ones are the 
most remarkable ones in terms of novelty and originality: 

1. Integration of a sensors based process monitoring system and an AV system into 
an industrial progressive blanking process in order to generate synergies and to 
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create a global control system focused on both, the process stability and the part 
quality. 

2. Development and integration into an industrial progressive blanking process of a 
vision system based on a hardware / software co-design architecture able to 
improve the efficiency of actual vision systems and therefore able to work at high 
production rates not becoming a bottleneck in the process. 

3. Development and integration of an intelligent control system in an industrial 
progressive blanking process able to identify the failures of the process and the 
defects at the produced parts and able to suggest the operator the right actions to 
solve them and to promptly restart the production.  
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2.- SCIENTIFIC AND TECHNOLOGICAL BACKGROUND 

The contents of this chapter cover four different parts. The first part is a very brief 
introduction to the most important processes included in the family of sheet metal 
forming processes. The main aim of this initial part is to quickly explain the reader the 
basis of the manufacturing processes where the global intelligent control system 
developed at the present research work has been implemented. 

The second part examines the monitoring strategies applied in sheet metal forming 
processes and briefly explains their evolution, their advantages and disadvantages, 
and the improvements that their implementation introduces into the forming industry. 
The aim is to briefly explain the reader about the techniques used at the present 
research work in order to evaluate the stability of forming facilities. 

The third part briefly describes artificial vision systems and their role in the actual 
industry regarding inspection tasks. Some examples of previous works where artificial 
vision systems were applied in order to check the quality of manufactured products are 
given and a comparison between PC-based solutions and FPGA-based solutions is 
given too. The aim is to briefly explain the reader about the techniques used at the 
present research work to evaluate the quality of the parts produced at forming facilities. 

And fourth part of this chapter gives an overview of knowledge-based systems and 
their role in the development of intelligent systems. At this point two different 
approaches towards the development of intelligent systems are given: rule-based 
expert systems and case-based reasoning. The advantages and disadvantages of 
each approach are summarised and systems developed in previous research works 
are described too. The aim is to briefly explain the reader the basis of the techniques 
used at the present research work to develop the intelligent control system that will 
help operators to face the daily problems at forming facilities. 

Finally, a critical review of the explained techniques is given and the future challenges 
necessary to apply them into the forming processes are given too. At the same time, 
the advantages that the combined application of the previous mentioned techniques 
would bring to the forming industry are explained.  

2.1. Production processes used in the field of forming technology 

As described in DIN 8580, manufacturing processes are classified into six main groups: 
primary shaping, material forming, dividing, joining, modifying material property and 
coating (see Figure 2.1a) [SCH98]. Forming is defined by DIN 8580 as manufacturing 
through the three-dimensional or plastic modification of a shape while retaining its 
mass and material cohesion. In contrast to deformation, forming is the modification of a 
shape with controlled geometry. Forming processes are categorized as chipless or 
non-material removal processes. In practice, the field of “forming technology” includes 
not only the main category of forming but also subtopics, the most important of which 
are dividing and joining through forming (see Figure 2.1b).  
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Figure 2.1: a) Classification made by DIN8580 of manufacturing processes, b) Production processes 

used in the field of forming technology [SCH98]. 

Since the present research work pursues the application of intelligent control 
techniques in forming processes, next the branches of forming and parting at Figure 
2.1b will be briefly explained, not being covered at the present research work the 
branch joining.  

2.1.1. Forming 

Forming techniques are classified in accordance with DIN8582 depending on the main 
direction of the applied stress (see Figure 2.1b): 

1. Forming under compressive conditions. 
2. Forming under combined tensile and compressive conditions. 
3. Forming under tensile conditions. 
4. Forming by bending. 
5. Forming under shear conditions. 

At the same time, the DIN standard differentiates between 17 distinct forming 
processes according to the relative movement between die and workpiece, die 
geometry and workpiece geometry (see Figure 2.2). 

 

Figure 2.2: Classification of production processes used in forming in accordance with DIN 8582 

[SCH98]. 
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Among the 17 distinct forming processes, the deep drawing process, classified inside 
the group of processes “Forming under combined tensile and compressive conditions”, 
is one of the most widely used at the industry. A brief description of this forming 
process is given next. 

2.1.1.1 Deep drawing 

Deep drawing is a method of forming under compressive and tensile conditions 
whereby a sheet metal blank is transformed into a hollow cup, or a hollow cup is 
transformed into a similar part of smaller dimensions without any intention of altering 
the sheet thickness (see Figure 2.3). Using the single draw deep drawing technique, it 
is possible to produce a drawn part from a blank with a single working stroke of the 
press. In case of large deformations, the forming process is performed by means of 
redrawing, generally using a number of drawing operations. This can be performed in 
the same direction by means of a telescopic punch or by means of reverse drawing, 
which involves the second punch acting in opposite direction to the punch motion of the 
previous deep drawing operation.  

 

Figure 2.3: Deep drawing operation [SCH98]. 

The most significant case of deep drawing is done with a rigid tool. This comprises a 
punch, a bottom die and a blank holder, which is intended to prevent the formation of 
wrinkles as the metal is drawn into the die (when no feeding of material is allowed the 
process is named as stretch forming). In special cases, the punch or die can also be 
made of a soft material. There are deep drawing methods that make use of active 
media and active energy. Deep drawing using active media is the drawing of a blank or 
hollow body into a rigid die through the action of a medium. Active media includes 
formless solid substances such as sand or steel balls, fluids (oil, water) and gases, 
whereby the forming work is performed by a press using a method similar to that 
employed with the rigid tools. The greatest field of application of this technique is 
hydromechanical drawing, for example, for the manufacture of stainless steel 
components. 

2.1.2. Parting 

Figure 2.1a showed that parting is the second group of production processes used in 
the field of forming technology. Dividing (see Figure 2.4) is the first subgroup under the 
heading of parting, but is generally categorized as a “forming technique” since it is 
often used with other complementary production processes. According to the definition 
of the term, dividing is taken to mean the mechanical separation of workpieces without 
the creation of chips (non-cutting). The dividing category (according to DIN 8588) 
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includes the subcategories shear cutting, wedge-action cutting, tearing and breaking. 
Among these, the shear cutting is the most applied in the industrial field. 

 

Figure 2.4: Parting techniques classified under forming [SCH98]. 

2.1.2.1 Shear cutting  

Shear cutting, known in practice as shearing for short, is the separation of workpieces 
between two cutting edges moving each other. During single stroke shearing, the 
material separation is performed along the shearing line in a single stroke, in much the 
same way as using a compound cutting tool. Among shear cutting techniques, blanking 
processes are widely applied in the industry. Figure 2.5 shows schematically the 
blanking process for a closed contour, for example, when piercing. Here, the process is 
applied using blanking dies. The relative movement of the blanking punch to the female 
blanking die separates the metal (see Figure 2.5). The punch makes contact with the 
sheet metal, initially causing elastic deformation. The plastic deformation stage then 
follows, leaving the sheet metal with a permanent camber. The upper edge of the sheet 
metal then bends and draws in, followed by a shearing action that leaves a visible, 
smooth area on the cut surface. If the shearing strength is exceeded, cracks are 
formed. These generally run from the edges of the female blanking die and lead to 
complete breakthrough of the metal as the movement of the punch progresses. 

 

Figure 2.5: Phases of the blanking process [SCH98]. 

2.1.2.2 Fine blanking  

A special process among blanking methods is fine blanking. Fine blanking (see Figure 
2.6) is a single stroke shearing method that uses an annular serrated blank holder and 
a counter pressure pad. Thus, the generated blanked surface is free of any incipient 
burrs or flaws, which in frequently used as a functional surface. 



Scientific and technological background 

-15- 

 

Figure 2.6: Fine blanking [SCH98]. 

2.1.3. The lack of stability of the process parameters 

The factors that determine the final quality of the parts manufactured by sheet metal 
forming processes are divided into four main groups: material properties, tool 
geometry, machine parameters and lubrication variables. Thus, when the 
manufacturing process for a new reference must be designed, these are the main 
factors that must be determined. Material properties are implicit to the material used to 
produce the parts. There is no possibility to modify or adequate them and usually 
experience fluctuations that affect the final quality of the produced parts. Tool 
geometry, machine parameters and lubrication variables are defined at the beginning 
of the manufacturing process taking into account the material properties and the final 
characteristics of the part to be manufactured. Their values are usually calculated with 
the help of simulation tools at an initial step followed by a trial and error process 
(setting up of the process) that is very often based on the operator’s experience. 
Having done all this, the quality of the produced parts is, in most of the cases, good at 
the beginning of the production.  

Nevertheless, problems start when the number of produced parts increases and then 
some other factors, not considered during the setting up of the process, start to have 
great importance. The main factor to take into account is the wear of the tools. When 
the number of produced parts increases, the wear of the tools also increases. As the 
wear of the tools increases, some other variables must be readjusted to compensate 
this wear and to avoid the production of bad quality parts. For example, it is very 
common to modify the quantity or quality of lubrication applied when the wear of the 
tools increases. The problem is that this kind of factors, such as lubrication, are very 
difficult to calculate accurately during the simulation stage and are also difficult to 
control during the production set-up, being the operator the responsible of realizing 
about them and adopting the accordingly actions.  

Therefore, control systems able to continuously monitor the processes and able to take 
the right decisions that compensate the fluctuations in the process parameters should 
be available. For example, in the case of tool wearing in blanking processes, there are 
two ways of realizing about it. The first and most commonly used is checking the 
quality of the produced parts. Mainly in blanking processes, when the wear increases, 
the burr in the cutting edge also increases and this is how the operator knows that 
he/she must modify the lubrication. When the burr is too big, the operator takes the 
decision of resharpening the tool. Another way is by using sensors based process 
monitoring systems that graphics the force or the acoustic emission (AE from now on) 
curves of the process. These systems are based on the fact that these curves increase 
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when the wear of the tool increases and when the curves go beyond a predefined 
threshold, the system stops the facility for tool resharpening. 

And finally, and as aforementioned, process parameters also depend on the properties 
of the material. During the simulation and set-up of the process, the operator is working 
with predefined properties of the material (achieved from supplier information or tensile 
tests). Problems may appear when the properties of the material vary within the same 
coil or in a new coil. Then, again the operator must take new decisions about what 
process parameters modify in order to get the right quality of the parts based on their 
quality or on the information from the sensors based process monitoring system. 

What is clear in this kind of processes is that, even if the right set-up of the production 
is achieved at the beginning, there are some factors that modify the quality of the 
produced parts during the production. It is clear too that these variations cannot be a 
priori modelled and the operator must change on line the process parameters to 
compensate them. The capacity of the operator to continuously readjust the process 
parameters is based on his/her knowledge that has been gained through his/her 
experience. 

2.2. Process and tool condition monitoring in SMF processes 

The increasing complexity that the facilities consecrated to sheet metal forming 
processes have experienced during the last few years (manufacturing of more complex 
parts in fewer operations), has led to a situation where in-die monitoring equipments 
have become a necessity within the stamping industry. Historically, die monitoring 
meant adding a spring ground probe to act as a short-feed sensor, with possibly an 
optical sensor monitoring part ejection from the tool. The operator typically located the 
sensor as an additional step when loading a new tool. Die monitoring requirements 
were modest and simple systems monitored just a few sensors in the past.  

On the other hand, the new manufacturing scenario in sheet metal forming processes 
with smaller lot sizes and lead times, reduction of direct labour and increment of the 
part quality has also as a consequence that more complex tooling are used. The 
increment of the steps within the tools also increases the likelihood and severity of die 
crashes and the necessity of on line part inspections inside the tools for quality 
assurance. To solve all the above mentioned drawbacks due to the new manufacturing 
strategies, new monitoring systems have emerged in the market with some main 
features: more sophisticated with higher electronics and automation requirements, 
larger number of sensors and combination of digital and analogical sensors [WEN05]. 

First monitoring systems in sheet metal forming processes were based on force 
measurement. The main purpose of those basic force-monitoring systems was to plot 
the total force that the press needed to form the parts, avoiding this way overloads in 
the facilities. Therefore, from a security point of view those basic force-monitoring 
systems gave very good results, but from a process monitoring point of view they did 
not give much information to the operators. Anyway, process control using force 
signals has for many years proven to be reliable and relatively low cost. Force signals 
have provided the following benefits: machine and tool protection, increased 
productivity and improved product quality. On the other hand, in the cold forming 
industry there has been and still there is a trend to boost machine output by increasing 
the running speed with additionally growing demands upon product quality. At the 
same time, the cold-formed parts are also increasing in their complexity and hence the 
probability of a higher failure rate is also increased. Thus, there is a need for monitoring 
devices with improved control accuracy.  
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Experience has shown that force-monitoring systems can be either too late in 
recognising, or unable to recognise, cracks in punches, dies, ejectors and spring 
elements. Experience has also shown that this problem can be overcome with the 
introduction of AE monitoring. The cracks, tears and breakages produce a short-term 
acoustic pulse that can be immediately recognised (see Figure 2.7) [TER96]. 

 

Figure 2.7: Comparison between force and AE signals during a crack growth and a punch 

breakage [TER96]. 

Therefore, the AE signals generated by the material during the deformation stage have 
become a promising technique to monitor and control sheet metal forming processes. It 
has been well known for centuries that wood and rocks emitted noises when they 
started cracking or breaking. Later, similar noise was identified during bending of tin 
bars, which is often known as “tin cry”. Joseph Kaiser, at the Technical University of 
Munich, made the first pioneering work on AE in 1950. Joseph Kaiser was able to 
examine the noise emitted by the deformation of materials by means of electronic 
equipment capable of detecting non-audible signals. One of the observations made 
was that irreversible processes were involved with this phenomenon, an effect later 
named the Kaiser effect [LIC79]. 

AE monitoring techniques, combined with force monitoring techniques, have been and 
still are nowadays the most successful sensors based process monitoring techniques 
in metal forming processes. The higher sensitivity of AE allows this technique to detect 
future failures before producing catastrophic consequences [BRA94]. Therefore, 
nowadays, sensors based process monitoring systems applied to sheet metal forming 
processes are based mainly on the measurement of two variables: forces and AE 
[COW00]. For example, Figure 2.8 shows the representation of two curves; one 
measuring the load of a press during a combined blanking-stamping operation and 
another one measuring the AE signals during a blanking operation. 
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Figure 2.8: Force and AE curves [COW00]. 

2.2.1. Strategies to monitor blanking processes with AE signals 

Among the forming processes, AE was first applied to the monitoring of blanking 
processes. Blanking processes are the most suitable process for AE monitoring among 
all sheet metal forming processes because of the high frequencies of the emitted AE 
signals. Several studies have been focused on finding the signature of these processes 
and the effect of the different variables into this signature. The signature of a process 
could be defined as the typical AE curve (signal) during the process. This curve (with 
the force curve) is shown in Figure 2.9 and is divided into three stages which are 
[KIM83, KIM83/2]: 

1. The initial low amplitude part is due to the punch impact on the stock and the 
subsequent elastic deformation in the stock. During this period, the punch and ram 
do not experience any appreciable resistive force and are still in harmonic motion. 

2. After this elastic period, plastic deformation takes place on both sides of the stock 
and an extrusion-type shearing fracture begins to occur. While this process 
continues, a strong resistive force is being built in the peripheral area of the stock 
between the punch and the die. Then, as the ram motion slows down (departing 
from the harmonic motion), the medium amplitude second portion of the AE signal 
is emitted. 

3. When enough force has been built up in the punch and the ram to overcome the 
resistive force of the stock the final separation occurs. This type of fracture is 
instantaneous. Therefore the ram moves down rapidly after the snap-through and 
tries to recover the steady harmonic motion. The highest amplitude portion of the 
AE signal is emitted during this period and a ring down process follows. 

 

Figure 2.9: AE and force signals during a blanking process [MAR87]. 
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A very important conclusion of the previous mentioned works is that real time analysis 
of stress waves using AE techniques is a very reliable method for detecting abnormal 
operation conditions that can lead to catastrophic failures in blanking processes 
[KIM83]. 

2.2.2. Strategies to monitor drawing processes with AE signals 

Due mainly to the very good results obtained when monitoring blanking processes, the 
same strategies have been tried to be applied to the monitoring of drawing processes.  

2.2.2.1 AE sources identification in stretching and drawing processes 

First attempts were focused on the stretching process because of its larger simplicity. 
Stretching process is a drawing process where a very high blank holder force is applied 
and therefore the sliding between the die and the blank is prevented, guarantying pure 
stretching conditions [LIA86, LIA87]. The results of these first studies showed that the 
AE curve generated during this process can be divided into different stages as shown 
in Figure 2.10: 

1. Initial contact and workpiece deformation (r=0-0.32) where r is the ratio between 
the displacement of the punch tip at any instance and the displacement of the 
punch tip when the material fractures an RMS voltage spike is seen at the 
beginning of operation due to the impact on the workpiece by the punch. Following 
the impact, the RMS voltage increases rather rapidly until a deformation ratio of 
0.08. Then, the RMS voltage increases at a much lower rate to a ratio of 0.32. 

2. Subsequent deformation and fracture (r= 0.32-1): over this period of stretching, the 
RMS voltage decreases almost linearly with increasing strain until the specimen 
fractures.  

3. Post-fracture (r>1): the RMS voltage maintains a constant level through the 
remainder of the experiment. 

 

Figure 2.10: RMS voltage of AE during punch stretching process [LIA86]. 

Conclusions are that the AE signals come mainly from three sources: plastic 
deformation of the material, friction between the blank and the tools and the final 
rupture of the material. It was also concluded that although the third source is very 
easy to differentiate from the other two because of its high frequency signals, the first 
two sources have very similar frequencies and are almost impossible to differentiate. 



Scientific and technological background 

-20- 

This is shown in Figure 2.11, where an AE curve of a test similar to the previous one 
but with lubrication is shown. 

 

Figure 2.11: RMS voltage of AE during lubricated punch stretching process [LIA86]. 

The main differences between Figure 2.10 and Figure 2.11 are: 

1. The initial RMS voltage spike at r=0.02 is not observed when the interface is 
lubricated. This can be easily explained by the fact that the interfaced lubrication 
layer absorbs the impact of the punch and the workpiece. 

2. When the interface is lubricated, the overall RMS voltage level is lower than that in 
the non-lubricated case. This is primarily a result of the elimination of the resistive 
friction, which generates AE. This effect is more notorious over the plastic 
deformation range and the RMS peak at r=0,32 is less pronounced due to reduced 
punch/workpiece friction. 

3. When interface lubrication is applied, RMS voltage is reduced by 10-20% before 
workpiece fractures. No significant different in the RMS reduction after workpiece 
fractures is noticed. 

Therefore the AE from the plastic deformation of the material and from the friction 
between the blank and the tools are almost identical and are very difficult to 
differentiate. This is the main reason why AE signals do not offer as good results in 
stretching or drawing operations as they do in blanking operations. What is more, in 
drawing operations the results are more complex because the material is not stick and 
the friction between the blank and the blank holder introduces new AE signals. A curve 
of the AE signals generated during a deep drawing process (deep drawing of an 
aluminium 1100 blank with a thickness of 1.27mm and a diameter of 156.21mm, deep 
drawn by means of a hemispherical punch with a diameter of 76.2mm) is shown in 
Figure 2.12 [LIA90]. 
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Figure 2.12: AE signal during a deep drawing process [LIA90]. 

From the curve shown in Figure 2.12 four different stages can be observed: 

1. An RMS peak appears at the beginning of the operation as a result of punch/blank 
contact. 

2. During the early stage of punch penetration (2mm-18mm), the AE energy rate 
shows a global maximum at a punch travel distance of 9 mm. There are 3 major 
sources of AE over this period: I) the stretching of the unsupported region. The 
specimen experiences mainly stretching action over this period since blank 
reduction ratio is quite small. Therefore the dislocation avalanche associated with 
initial yielding causes the RMS voltage to increase and subsequent strain 
hardening of the material causes the RMS voltage to decrease, as would be 
expected in a pure stretch forming operation. II) formation of wrinkles on the flange. 
Flange wrinkles are observed to form continuously starting from the beginning of 
the operation. Energy is consumed to plastically bend the flange into wrinkles and 
to continuously generate AE. III) small amount of sliding between flange and die. 
The friction between sliding flange and die generates AE. 

3. During 18-47 mm of punch travel, the AE energy rate reduced drastically from the 
previous stage due to the transition of the dominant mechanism from axial 
stretching to deep drawing, where the associated AE activity is seen to be less 
intensive. 

4. The final fracture of the workpiece is characterised by a high RMS level at a punch 
travel distance of 47 mm. 

So deep drawing curve is a bit more complex than stretching curve and still has the 
same problem: AE from the plastic deformation of the material and from the friction 
between blank and tools are mixed. In order to separate AE from friction and plastic 
deformation there have been different studies to measure the AE from friction in 
drawing operations (for example [YAN03]).  

2.2.2.2 Friction identification in drawing processes by means of AE measurement 

In the case of the friction between a tool and a workpiece, the AE is due to adhesion 
and debonding or ploughing at the contact interface, which is a kind of fracture of 
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material. While the holding pressure exceeds the yield stress of the workpiece, the 
contact point of the asperities yield and new surfaces appear at the contact surface, 
which cause a strong adhesion. During sliding the shearing force overcomes the 
adhesion so that the sticking points debond and emit AE due to the elastic release of 
the asperities under contact. In order to find the location of the friction sources in deep 
drawing processes, Yang et al. attached several AE transducers to a drawing tool and 
taking into account their position and the arrival time of the AE signals due to friction, 
the location of the AE sources was achieved. Figure 2.13 shows the apparatus used to 
measure the AE signals from the friction. 

 

Figure 2.13: Apparatus developed to measure the AE signals from friction [YAN03]. 

In Figure 2.14, the results measured with the transducer are shown. It is well known 
that the signals from friction have low frequency. Therefore, as shown in Figure 2.14, 
the frequencies higher than 625 KHz were filtered from the original signals. The 
conclusion is that it is very difficult to distinguish AE signals generated by friction 
phenomena and AE signals generated by the plastic deformation of the material 
because both kinds of AE signals have the same frequency range.  

 

Figure 2.14: AE signals and their spectrum as measured and after reduction of noise [YAN03]. 

2.2.2.3 Wrinkles detection in drawing processes by means of AE measurement 

Another process defect that must be taken into consideration in drawing processes is 
the formation of wrinkles in the flange of the parts. Wrinkles are generated by the 
tangential compression stresses that occur within the flange area when the material is 
fed towards the centre of the part. Although no research work has been found where 
attempts to detect wrinkles by means of AE measurements have been carried out, 
some other research works have proven the suitability of some other techniques to 
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measure wrinkles in drawing processes. For example, Figure 2.15 shows the suitability 
of force signals to detect the formation of wrinkles in drawn parts (some other research 
works prove the same conclusion [GAR05, MAR02, ALM00]).  

 

Figure 2.15: Force signals in a drawing process; a) good quality part, b) part with wrinkles 

[GAR05]. 

At the same time the formation of wrinkles leads to a gap increment between the tool 
sections blank holder and die. For measuring the height of wrinkles, Yoshihara et al. 
[YOS99] used inductive displacement transducers, which were attached either at the 
outer edge of the tools or directly in the corner area of the flange.  

Therefore, and from the conclusions drawn in some of the works previously mentioned 
[LIA86, LIA87] at the present review, it can be deduced that since wrinkles are formed 
by means of a plastic deformation, the AE signals generated by this phenomena should 
be very identical (low frequency signals) to the signals generated by the plastic 
deformation of the material in the forming area and the signals generated by the friction 
generated during the sliding of the material inside the tool. Then, the application of the 
two techniques above mentioned for the measurement of wrinkles (force measurement 
and gap between die and blank holder measurement) seems to be much more 
suitable. 

2.2.2.4 Tears detection in drawing processes by means of AE measurement 

The other main defect in drawing operations is tearing. As it was previously said 
(“Chapter 2.2. Process and tool condition monitoring system”), tears are easier to 
detect with the use of AE techniques because the emitted signals have very high 
frequencies, which are very easy to separate from the signals coming from friction or 
plastic deformation. Therefore, as Figure 2.12 showed, there is a clearly differentiable 
peak in the AE curves of drawing operations that marks the appearance of tears. 
Figure 2.16 also shows AE curves and how the appearance of peaks when necking of 
cracking of the parts occurs [KIR95]. 
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Figure 2.16: Force and AE signals in deep drawing operations [KIR95]. 

It must also be taken into account that tears are also very easy to detect with the use of 
force sensors (see Figure 2.17). As it was previously said (“Chapter 2.2. Process and 
tool condition monitoring system”), the use of force sensors is better because these 
sensors are much cheaper and the treatment of the signals is much simpler. Therefore, 
tear detection in sheet metal forming processes is more prompt to be done by force 
than by AE techniques. As it is shown in Figure 2.17, when a tear happens in the part 
the force curve falls instantaneously denoting the crack in the part (valley at the top of 
the drawing force curve in Figure 2.17b). More research works have been found in the 
literature with the same conclusion [GAR05, MAR02, ALM00]. 

 

Figure 2.17: Force signals in a drawing process; a) good quality part, b) part with tears [GAR05]. 

2.2.3. Conclusions regarding monitoring of blanking and drawing processes 

Two manufacturing processes, sheet metal blanking and sheet metal drawing 
processes have been briefly explained from a process failure detection point of view. 
For this analysis, the two variables most used in the industry nowadays have been 
taken into account: force measurement and AE measurement. 



Scientific and technological background 

-25- 

Sheet metal blanking processes are very prompt to be surveyed by sensor nets that 
combine force and AE measurement. The reason for this is that, besides the high 
efficiency of force sensors that are able to gathered a great amount of information at 
low cost, the principal phenomena at these processes (the blanking of the material) 
generates high frequency AE signals that can be very easily identified. This way, the 
combined acquisition of force and AE signals generates very clear process signatures 
where the initial contact between punch and metal strip, the initial deformation of the 
material and its final blanking are clearly identified (see Figure 2.9). 

On the other hand, when analysing drawing processes, it is stated that the principal 
phenomena that drives these processes, the plastic deformation of the material, 
generates lower frequency AE signals. Besides this, the friction phenomena, also very 
important in drawing processes, also generate low frequency AE signals. Therefore in 
drawing processes, AE signals generated by plastic deformation and AE signals 
generated by the friction phenomena can not be distinguished being AE signals not 
able to produce reliable process signatures. Table 2.I summarises the most important 
process failures to be identified in drawing processes and the most suitable 
measurement techniques for all them. 

Table 2.I: Process failures and techniques for their detection in drawing processes. 

Process 
failure 

AE frequency 
range 

Variable to be 
measured Type of sensor Paper 

Necking High AE Piezoelectric [KIR95] 

Cracks/tears High AE/Force * Piezoelectric [KIR95]/ [GAR05, 
MAR02, ALM00] 

Wrinkles Low Displacement/Force Inductive/Piezoelectric [YOS99] / [GAR05, 
MAR02, ALM00] 

* Force measurement is more widely used because it is cheaper and more robust 
than AE measurement.  

Therefore and analysing Table 2.I, it can be stated that force measurement is a 
suitable technique for the monitoring of drawing processes, being this technique the 
most widely used nowadays to monitor these processes in the industry. 

Finally, and as a summary, taking into account the data gathered at the present 
subchapter and since it was decided that the present research work will deal with 
blanking processes, it was decided that the most advantageous sensors based process 
monitoring system for the present research work should be integrated by force 
measurement and AE signals measurement (shown in “Chapter 4. Sensors based 
process monitoring”). “Chapter 4. Sensors based process monitoring” shows the 
reliability of the developed monitoring system, which follows this architecture regarding 
the detection of process malfunctions in blanking processes. 

2.3. Artificial vision systems for part quality assurance in SMF processes 

Artificial vision (AV from now on) is a branch of the engineering field that uses video 
cameras and computers to replace human vision in evaluation and inspection tasks 
that are precise, repetitive or carried out at high speed rates. One of the most important 
advantages of AV is the possibility of improving the quality of the products while 
lowering their costs. AV systems have been increasingly introduced in the industry 
during the last few years and among their most successful applications visual 
inspection, robot position or robot visual servoing can be found [VIL83]. At the present 
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research work and since the developed work was aimed at evaluating the quality of 
parts produced by forming processes, next subchapter is focused on the application of 
vision systems to visual inspection tasks.  

2.3.1 Machine vision for visual inspection tasks 

Machine vision is suitable at inspection when the task to be carried out is fast, well 
defined (the systems knows exactly what to do, how to do it and what is expected), 
precise and repetitive. On the other hand, human inspectors are better in low-speed 
and low-precision inspection or in inspection tasks that changes often [DAL07]. In 
machine visual inspection tasks, a camera or a set of cameras are used to take images 
of a part and to, after an image processing that could be patter matching or edge 
detection, find if the quality of the part is within the predefined tolerances. Figure 2.18 
shows a vision system for automotive parts inspection. The purpose is to verify the 
presence of the holes within the stamped part. 

 

Figure 2.18:National Instrument AV system interface [NI07]. 

The reason for the progressive and continuous introduction of AV based quality 
controls in the industry is that video camera technology has been considerably 
developed over the recent past years, mainly by the invention of the Charge Coupled 
Device (from now on CCD). CCD uses light sensitive materials to convert light photons 
to electrical charge. Until approximately twenty years ago, Vidicon tubes were used as 
camera sensors, which meant that cameras were large in size and strictly limited to 
standard video timing defined by the designers of television. This technology was not 
well suited to industrial or scientific applications for a number of reasons (such as size 
or robustness) but mainly because it was very often necessary to control/reset the 
camera timing to coincide with products passing through the field of view [DAL07]. 

On the other hand, in CCD technology, and also in its latest variant CMOS 
(Complementary Metal Oxide Semiconductor), thousands of light sensitive diodes are 
positioned very accurately in a matrix array and shift registers transfer the charge from 
each pixel to form a video signal. Therefore, modern machine vision cameras are 
sophisticated, offering complete control of timing, high speed shuttering, sensitivity and 
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many other important features. Cameras are now very compact (for example, the size 
of one of the cameras (MicroEye) used at the present research work is 34*32*34,4 mm 
and its weight is 75 grams) and machine vision is used in an ever-increasing number of 
sectors of the industrial and scientific market, replacing contact measurement systems 
and offering a method for complete quality assurance checking and automation 
[DAL07]. 

Nowadays, there are two main types of machine vision cameras in use: area-scan and 
linescan. The term area-scan refers to the camera sensor covering an area rather than 
a single line, as is the case with linescan cameras. An area-scan camera produces an 
image of an area, normally with an aspect ratio of approximately 4 to 3 and only needs 
one shooting to get the final image of the part. On the other hand, in applications where 
full vertical resolution is required with fast moving objects, a progressive scan camera 
is used. The concept of line scanning involves building up an image, one line at a time, 
using a line sensor (linear array), which passes in a linear motion over an object, or 
where the object passes in a linear motion under the sensor [DAL07]. 

In parallel to the development of most efficient and robust AV cameras, the lightening 
in AV systems has also been drastically improved. Nowadays, several light sources 
can be found in the markets that boost the results in hostile environments like industry. 
Among them, the most important ones are optical fibre illumination, fluorescent 
illumination, laser illumination or LEDs illumination. At the same time, during the last 
years, different illumination strategies have been developed for facing different 
problems. Among others, the most important illumination strategies are front 
illumination, back illumination, diffuse illumination, radial illumination or bright field 
[DCM07, INF07]. 

Another reason for the rapid introduction of AV systems in the industry has been the 
vast reduction of the image processing time and the increment in the results accuracy 
when treating the images. Some years ago, the main problem for the development of 
AV systems was the poor capacities of the processors that offered image processing 
times much longer than the cycle time of the manufacturing processes. This fact forced 
the AV developers to place the system in parallel to the manufacturing line instead of 
placing it in serial. Parallel AV systems were used to check some of the produced parts 
and to get statistical results of the production but never got to check the 100% of the 
produced parts. On the other hand, and thanks to the developments in this field, the 
final objective of actual AV systems (placed within the manufacturing line) is to check 
the 100% of the manufactured parts. This way, traditionally, image-processing 
algorithms have been implemented in high-level languages (C, C++, etc.) using 
personal computers (PC) and digitalisation boards (usually PCI bus based) to read the 
video signal delivered by CCD cameras into the RAM memory of the PC. Nowadays 
with the improvement of the computer capacities, several are the companies (Xcaliper 
[XCA03], Halcon [HAL03], CVB [CVB03], National Instruments [NI07] etc.) that sell 
vision systems containing optimised image processing algorithms for PCs and other 
workstations. In most cases, they allow fast testing and developing of vision solutions 
(e.g. by allowing one to integrate their system into visual programming tools as Visual 
Basic, Visual C++, creation of DLLs, ActiveX components, etc.). The drawbacks of this 
type of systems are their relatively high price (on the order of between 1,000€ and 
5,000€), the lack of the source code of their algorithms, and the fact that the system is 
tied to one particular computer architecture (e.g. a PC), and operating systems (e.g. 
Windows XP, Linux, etc.). 

At the same time, in the last few years a variety of solutions aimed at developing smart 
cameras have been attempted. Smart cameras are vision devices able to process 
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vision algorithms what has as a consequence two main advantages. First is that since 
an important part of the processing can be made at the camera the need for powerful 
central stations is avoided and second since the cameras must only transmit the 
information obtained from the images the quantity of data transmitted is considerably 
reduced. The most important solutions applied to the development of smart cameras 
are summarised next: 

1. The integration of a microprocessor within the camera is the most intuitive way of 
developing a smart camera. In fact, there are already in the market cameras that 
follow this design [BRM04]. However, most common microprocessors have very 
limited parallelization capacities, being mainly sequential and therefore do not take 
advantage of the parallelization possibilities of most of the low level image 
processing algorithms. 

2. A variation of the previous solution are the SIMDs (Single Instruction Multiple Data) 
processors which are basically an array of simple processors. This solution allows 
to execute the same operation in multiple pixels in parallel what makes them very 
suitable for low level image processing algorithms [HEY05, KLE04, ZIV08].  

3. Another possibility is the application of DSP (Digital Signal Processor) which are 
specialised microprocessors designed specifically for digital signal processing, 
generally in real time processing. Although this solution offers high speed 
performances, the DSP are better suited for the sequential processing, what makes 
them not suitable for the processing of the low level image processing algorithms 
[FLE07]. 

4. And finally, the last possibility is based on reconfigurable hardware such as FPGA 
(Field Programmable Get Array). The application of FPGA enables a great amount 
of flexibility and online reconfigurable possibilities. FPGAs are best used in 
processing parallel algorithms and thus are very well suited for processing low level 
image processing algorithms [LEE04, SHI06]. 

The solutions based on FPGAs (Field Programmable Get Arrays) have emerged in the 
market oriented to high speed processes or big products control quality guarantee. 
FPGA is a semiconductor device containing programmable logic components called 
"logic blocks", and programmable interconnects. Among others, the main advantages 
provided by the implementation of data, signal or image processing algorithms on 
FPGA (when such an implementation is possible), instead of implementing them on 
DSP or standard microprocessors are that [IZA07, RUS95, FIL01, FIL02]:  

1. The processing times are reduced by 10 if compared to an implementation on DSP, 
and by 100 if compared to an implementation on a standard microprocessor. 

2. High miniaturization possibilities are offered (sometimes no PC is needed). 
3. The design of compact systems is allowed (the so called intelligent cameras) easier 

to harden that offer important advantages for use in applications where the 
environment is difficult or hostile (difficult industrial environments where vibrations 
or dirtiness are present; outdoor and space applications; etc). 

4. Better guaranties for processing algorithms implementation perpetuity are offered, 
through a better control of the development chain (less dependency on proprietary 
tools). 

Then, FPGAs based solutions allow the users to create quality inspection systems that 
check more than 2000 parts per minute, placing the inspection system in serial and 
allowing the system to check the 100% of the produced parts (Figure 2.19 shows an 
intelligent camera based on FPGA) [SAW88, COU89]. 
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Figure 2.19: Altera FPGA board and DTSO intelligent camera [IZA07]. 

Furthermore, hardware programmable systems (FPGAs, ASICS, etc.) are becoming 
faster and cheaper. Main vendors, Xilinx [XIL03] and Altera [ATE03/1], not only 
develop the chip and environment to program these FPGAs, but they also provide IP-
cores [ATE03/2], i.e. building blocks for FPGA design (e.g. one can buy an IP-core with 
the functionality of an 8051 microprocessor, thus having this microprocessor inside the 
FPGA). More and more web sites are related to free IP-cores [IP03], where one can 
download the cores that may be helpful to the development of his solution (even Xilinx 
and Altera have free-cores).  

However, although the development of FPGAs has been considerably powerful during 
the last few years, smart cameras based on FPGAs or IPs in VHDL (Very High Speed 
Hardware Description Language) for advanced image processing are very difficult to 
find in the market and nowadays only smart cameras based on standard embedded 
microprocessors (e.g. PowerPC) or DSPs are commercially available [WIL07]. This 
way, standard in-camera processing functions, for commercially available FPGA-based 
cameras, are sensor configuration (e.g. gain, offset), region of interest programming, 
image subsampling, thresholding or image convolution. Many research teams are 
facing the problem of implementing advanced image processing algorithms on FPGA 
or developing FPGA-based smart cameras [CHA07, JEO07] defining direct co-design 
tools for the rapid prototyping and the implementation of distributed real time 
applications on mono or multicomponent architectures [KAO03, ELO04] or defining 
direct generic VHDL synthesis tools [ARA02/2]. 

Anyway, some research teams have already developed proprietary vision system in 
FPGAs (e.g. [ARR01]). As an example, the project TRIDICAM [ARA02/1] carried out 
the implementation over a FPGA of the image digitalization, image algorithms and 
control system of a laser 3D measurement camera based system. Some other 
references dealing with the use of FPGAs for image and AV applications are [ARA01, 
ZUE01, ARA02/2, MUK02, STO04, WEC04, WIN04].  

Focusing on metallic forming processes, several are the AV systems developed to 
check the quality of the final products or the performance of the facilities. One example 
was the application of AV systems to the control quality of steel strip manufactured by 
rolling processes carried out by Garcia et al. The objective of this system was to 
calculate flatness indexes in the rolling industry for every strip, by comparing the length 
of its lateral profiles with the central length. The flatness inspection problem was largely 
based on the measurement of the height of the strip in each sample period. The optical 
triangulation method was applied to measure this height. In this method, a laser sends 
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a monochromatic light beam over the strip surface. This light beam is reflected towards 
the lens of a linear camera. Thus, a relationship between the position where the laser 
beam strikes the camera photodiode line and the strip height can be established 
[GAD99]. 

The previous mentioned application can be achieved with the so-called 3D cameras 
(see Figure 2.20). Those are linear cameras able to measure 3D shapes with 
acquisition rates up to 30 thousands lines per second. The complete system is based 
on a linear laser lighting that is focused on the part to be measured and a linear CCD 
sensor with a resolution of up to 2048 points. The CCD linear sensor captures the 
reflexion of the laser light in the part surface and based on triangulation software 
reconstruct the surface of the part. The characteristics of the object to be measured are 
captured when this moves in front of the camera, working this last as a linear camera 
and communicating the data to the PC via the protocol CameraLink which allows a high 
speed transfer of data [INF07]. 

More recently and in the same manufacturing field, Olmedo et al developed an 
automatic visual inspection system for the detection of superficial defects in cold rolled 
carbon steel coils. The system was composed of five lineal CCD cameras and special 
illumination to filter the shines due to the lubrication coat of the metal coils. The system 
was able to deal with coils, which width was up to 2000mm and the maximum 
surveillance speed was up to 250 meters per minute. The improvements achieved 
were a reduction in the annual waste, a reduction in the external defective sent to the 
clients, what improves the image of the company and the identification of the defects 
provoked during the transportation of the raw materials from the customers [OLM08].  

 

Figure 2.20: 3D laser scanning camera [INF07]. 

Another application of AV systems within the forming processes was the detection of 
surface anomalies on continuously moving long metal tubes manufactured by rolling 
and longitudinally welding carried out by Truchetet et al. The AV solution was based on 
a set of ten CCD linear cameras that continuously recorded images of the tube that 
was illuminated with special diffuse lights. After an image processing, the control 
system rejected the tubes that had superficial defects [TRU94, TRU97]. 

AV systems have also been applied to the visual inspection of three-dimensional 
metallic surfaces such as body parts or skin parts of the automobiles. In this case, the 
results achieved have not been very successful due to the big size of these 
components and to the small dimensions of the defects to be identified. For example, 
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Gayubo et al. developed an AV system oriented to the detection of defects in car body 
parts where only the most problematic areas of the parts where controlled. This way, a 
camera was mounted into a 6 degrees of freedom robot arm and the movements of the 
robot were predefined depending on the reference to be controlled. Then, the 2D 
camera was placed in front of the most problematic areas of the parts and, by 
illuminating them with special lights, good quality images were captured [GAY04].  

AV systems have also been applied to blanking processes in high speed presses, 
although this application has not been widely spread. Main factors that have inhibited 
the introduction of AV systems in SMEs (blanking or drawing companies are in most of 
the case SMEs), are the lack of time, staff and capital, and perhaps most poignantly 
the lack of specialist skills that are widely available in larger organizations. The main 
application of AV system in this type of companies is the detection of holes within a 
sheet using back illumination and matricidal CCD cameras. Some examples are the 
detection of holes within a field of view of 5 millimetres, with accuracies of 0.02 
millimetres and production rates up to 1500 parts per minute [ASB85, PET99]. 

2.3.2 Conclusions regarding artificial vision inspection tasks in the industry 

In conclusion, the development of AV systems for the quality evaluation of the 
produced parts in the manufacturing industry has reached such a high level of 
development that some PC based commercial solutions have appeared in the market 
during the last 10 years. These commercial solutions are, of course, very well suited for 
the industry because they are easy to implement and there is no need of high skills 
technicians within the companies (mainly in SME companies) although their processing 
times are too high for most of the SMF processes. On the other hand, FPGAs based 
solutions offer several advantages over PC based solutions in terms of higher 
throughputs, more stable performances and more robust solutions for industrial 
environments but they are not widely available in the market yet. The only 
disadvantage of FPGAs based solution over PC based solutions is its higher 
development time, its higher development difficulty and its lower flexibility. This is the 
reason why a mixed architecture, where the high time consuming algorithms (distortion 
correction, noise filtering, binarization, contour extraction…) are implemented in smart 
cameras based on FPGAs and the low time consuming algorithms (dimensions 
extraction, defects detection, part validity assessment…) are implemented in PC, 
seems to be a reasonable good solution [IZA07]. At the present research work, an AV 
system following such architecture will be developed to check the quality of the parts 
produced in a high production rate blanking facility. The development of the mentioned 
system and the improvements achieved after its application in the blanking facility are 
explained in “Chapter 5. Parts quality control”. 

2.4. Computing techniques for intelligent control systems development 

Artificial Intelligence (AI) is the part of computer science concerned with designing 
intelligent computer systems, that is, systems that exhibit the characteristics associated 
with intelligence in human behaviour: understanding, language, learning, reasoning, 
solving problems and so on [BAR81]. In other words, AI is concerned with 
programming computers to perform tasks that are presently done better by humans, 
because they involve such higher mental processes such as perceptual learning, 
memory organization and judgemental reasoning [MIN68]. In the end, AI is about the 
emulation of human behaviour: the discovery of techniques that will allow human 
beings to design and program machines that simulate or extend their mental 
capabilities [JAC90]. Since the work developed at the present research work is aimed 
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at intelligently surveying and controlling forming processes, next subchapter is focused 
on the application of AI techniques to these purposes in forming processes.  

2.4.1 Metal forming processes traditional control techniques 

Human operators helped by local controllers have traditionally controlled industrial 
processes. The function of these local controllers in the industrial field has been to 
maintain the main process parameters close to the target values estimated by the 
operators. Therefore, human operators have represented, and still nowadays 
represent, the real global “control” of the industrial processes, and local controllers just 
guarantee that the control decisions taken by the operators are fulfilled. This control 
strategy still remains in most of the manufacturing environments being the presence of 
the human operator crucial.  

The reason why successful automatic and non-human dependant global controllers 
have not been developed and applied yet to industrial processes is that, although 
traditional control techniques, such as optimal control, adaptive control or predictive 
control are suitable for the development of the previous aforementioned local 
controllers, they are not suitable for the development of global controllers except in a 
few specific cases. In this scenario, the most widely applied traditional control strategy 
has been the process control with feedback (for example PID controllers). Although 
feedback control has been applied to many fields, experience has shown that this 
traditional control strategy only yields satisfactory results when the next specific 
conditions are fulfilled:  

1. The process to be controlled is linear, or at least the behaviour of the process in a 
small range close to the optimal values of the main variables, is linear.  

2. The process response is quick; otherwise the control system is saturated.  
3. There are not any external disturbances (noises) that could affect the behaviour of 

the system. 

If the previous conditions are not fulfilled, the solution goes through the application of 
some other traditional control techniques that work based on mathematical models of 
the processes. These techniques are feedforward control techniques, like predictive 
control, adaptive control, model base control, optimal control or modal control. The 
biggest limitation when applying these techniques is that the development of a detailed 
model of virtually any real industrial process, even a relatively simple one, is likely to be 
very complicated. Therefore, the control engineer usually faces a solution in which a 
control system must be designed on the basis of a simplified description (model) of a 
complex process and consequently, the final results are quite poor. 

Among others, the fields where traditional controllers have reached good performance 
are level control, pressure control, control of volume flow and volume mass, control of 
energy or control of temperature and enthalpy. Direct applications can be found in the 
control of mechanical separation processes, the control of heat exchangers, the control 
of evaporators or the control of drying processes. And the final industrial users, among 
others, are the pulp and paper industry, the oil extraction and refining industry or the 
petrochemical industry [BAL88]. 

On the other hand, there exist some other processes that show a high non-linear 
behaviour and that are almost impossible to be defined with mathematical models 
(described as non-formalised problems in [RYB05]). A clear example is sheet metal 
forming processes. These processes are inherently quite unstable processes which 
main variables, like the material behaviour under deformation, the lubrication and the 
friction at the material/tool interface or the wear of the tools are highly non linear. 
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Therefore, the application of traditional controllers to these processes has not offered 
good results yet. 

Due to the presence of so many different process behaviours within the industry, there 
has been a tendency towards two schools of thought in the choice of a model structure 
for use in a control system. One school believes that the model should be based on 
known physical phenomena that characterise the process (model based control); that 
is, a first principle model (traditional control techniques). The other school tends 
towards a “black box” approach, which uses observed relations between the inputs 
and the outputs of the processes to characterise a general, usually non-linear 
transformation (transfer function), which internal parameters are sometimes unknown 
[BAL88]. 

2.4.2. Artificial Intelligence Techniques: Knowledge Based Systems 

Among the different techniques based on the observed relations between the inputs 
and the outputs, AI has shown very successful results. AI is a science which main 
purpose is the replication of both the human reasoning processes and behaviour, with 
the aid of computers and other artificial devices, as well as the construction of 
machines able to simulate the decision making made by humans in imprecise and 
uncertain environments [ALI01]. Therefore, AI, as previously mentioned, is defined as 
the branch of the computer science that takes care of the automation of the intelligent 
behaviour, gathering a group of techniques and tools which main purpose is to simulate 
the human behaviour and to apply it to different life fields [HER85].  

In order to understand this better, some of the capabilities normally associated with 
machines and with humans are described next. Machines, for example, are good at 
performing repetitive tasks, responding quickly to stimuli and controlling great forces 
with precision. They can also process, store and retrieve vast amounts of numerical 
data. Humans, on the other hand, perceive patterns well and can generalize by 
applying originality to conclusions and profiting from experience. Humans can also 
improvise, exercise good judgement, selectively recall past experiences, and adapt to 
the unanticipated. In this context, AI tries to bridge the gap between humans and 
machines by giving the machines some aspects of human capabilities [HER85]. 

One of the most successful applications of AI techniques has been the development of 
intelligent systems able to, by emulating human expertise, replace or support human 
beings during the decision making phase (for example, when surveying or controlling 
industrial processes). These intelligent systems, widely named as Knowledge Base 
Systems (from now on KBSs) have been developed for a variety of reasons, including: 
the archiving of rare skills, preserving the knowledge of retiring personnel and to 
aggregate all of the available knowledge in a specific domain from several experts 
and/or machines. The implementation of KBSs into different fields and domains, 
formerly managed by human beings, has given as a result several advantages to the 
industry like the achievement of more consistent answers for repetitive tasks, decisions 
and processes, in a more efficient and fast way and without any lack of performance 
because of pressure or tiredness [NOR05].  

Research works carried out in the field during the last decades have shown how KBSs 
have achieved high success due to the implicit advantages that they offer over human 
expert beings. Lu et al summarised all these advantages as follow [LUS02]: 

1. Provide consistent answers for repetitive decisions, processes and tasks. 
2. Reduce the amount of human errors. 
3. Sometimes can explain their reasoning and the proposed solutions. 
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4. Deal with incomplete information. 
5. Create efficiencies and reduce the time needed to solve problems. 
6. Combine multiple human expert intelligences. 
7. Can be applied to a broad range of domains. 
8. Centralize the decision making process. 
9. Reduce employee-training costs. 
10. Avoid repeating mistakes made in the past. 
11. Review transactions that human experts may overlook. 

Although KBSs offer all the previously mentioned advantages, they also have some 
limitations when compared to the reasoning of human beings. Lu et al also summarised 
the disadvantages as follow:  

1. Lack of human common sense needed in some decision-making processes. 
2. Not able to give the creative responses that human experts can give in unusual 

circumstances. 
3. Some domain experts cannot clearly explain their logic and reasoning (drawback 

for rules generation). 
4. Lack of flexibility and ability to adapt to changing environments. 
5. Complex knowledge requires many rules 

Anyway, all the previous mentioned advantages (even considering the limitations) 
represent, as the primary economic benefit of KBSs, an increment of the productivity by 
speeding professional and semi-professional work by factors of tens to hundreds 
[FEI90]. 

Although KBSs give response to a wide variety of applications, a general problem-
solving category of them was summarised by Ching-Yu Tyan et al. in [TYA93]: 

1. Interpretation: forming high-level conclusions or descriptions from collections of raw 
data. 

2. Decision making: devising a series of actions and analysing consequences of given 
situations of human decision support. 

3. Diagnosis: detecting the cause of malfunctions in complex systems based on 
observable symptoms.  

4. Design: determining a configuration of system components that meets certain 
performance goal while satisfying a set of constraints. 

5. Monitoring: comparing the observed behaviour of a system to its expected 
behaviour. 

6. Control: governing the behaviour of a complex environment.  

At the present research work, the developed KBS is focused on the third category, 
named diagnosis, that aims to find the causes of the malfunctions in complex systems 
(in this case sheet metal forming processes) based on observable symptoms (force 
and AE signals and part quality). 

The process of developing KBSs is called Knowledge Engineering (from now on KE). 
The KE process is composed of the next six steps which final purpose is the building 
and maintenance of KBSs [LUS02]: 

1. Problem selection: the first step in KE is selecting the "right problem", which is the 
goal of the project. 

2. Knowledge acquisition: the objective of knowledge acquisition step is to acquire the 
knowledge of the problem, which is the foundation of expert system development. 
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3. Knowledge representation: this step involves representing the knowledge in the 
knowledge base as rules, frame scripts, semantic networks, or some combination 
of them. 

4. Knowledge encoding: this step entails using the expert system shell/programming 
language to encode the knowledge. 

5. Knowledge testing and evaluation: the major task of this step is to validate the 
overall structure of the system and its knowledge. 

6. Implementation and maintenance: to periodically refine or update the knowledge to 
meet current needs after the system has been implemented. 

From all the previous mentioned steps, knowledge acquisition and its further 
representation are the most important ones because the final success of KBSs relies 
very much on the richness of the acquired knowledge and the way it is represented. At 
this point a very important factor must be considered; whether the knowledge about the 
domain to be studied is deep enough to develop a rich knowledge base or not. In real 
life, domains vary in the degree to which they are understood, ranging from those that 
can be codified completely and correctly in terms of a set of rules of behaviour, to those 
for which no such rules are known. For each of the previous mentioned scenarios there 
are different techniques available that allow the user to develop the most suitable final 
system.  

For example, in domains where a deep understanding is available, rule-based expert 
systems are the most suitable technique [GUI05, VAS96]. This way, it can be stated 
that rule-based expert systems are suitable in domains where a priori knowledge of the 
domain is very well known and thus the knowledge is easily implemented in the form of 
IF-THEN rules to develop a suitable knowledge base. At the present research work and 
since the human operator has all the knowledge regarding the blanking process to be 
controlled, rule-based expert system is a very suitable technique to develop the 
intelligent control system pursued.  

On the other hand, in domains where a priori knowledge is not achievable and 
therefore no such rules are feasible, or when a simplification of the knowledge 
acquisition phase is pursued, there exist some other techniques that allow the system 
to automatically acquire the knowledge of the domain and to create a suitable 
knowledge base. Among others techniques, Aztiria et al identified four different learning 
techniques that are able to learn at domains where a priori knowledge is difficult to be 
identified or does not exist [AZT09]: 

1. Artificial Neural Networks: ANN can be defined as extreme simplifications of the 
human brain functions which main objective is to develop representative models of 
unknown domains by using data gathered from those domains. In order to get this, 
a set of input-output data is fed into the ANN that internally generates a model able 
to match the input-output pairs. [UGA94]. This learning technique is not suitable at 
the present research work due to two principal facts: first fact is that a set of initial 
data (input-output pairs) is necessary to develop the model or the rules of the 
knowledge base and, as it will be explained later, the aim of the present research 
work is to use a learning technique able to learn without any set of initial data. And 
second fact is that ANN work like a “black box” approach where the final knowledge 
cannot be extracted in the form of IF-THEN rules. 

2. Rule induction: rule induction, often referred as “learning sets of rules”, is a learning 
technique which represents the target function by means of if-then rules that jointly 
define the function. The limitation of this technique at the present research work is 
that a set of initial data must also be available to develop the IF-THEN rules. 
Therefore, this technique is not feasible at the present research work either. 
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3. Reinforcement learning: reinforcement learning algorithms is a learning strategy 
that tries to improve the performance of an initial model taking into account the 
reward or penalty that a trainer provides. This way, their performance is 
dynamically changed in order to get more optimised solutions. This technique is 
more focused on the improvement of an already initial developed model and 
therefore is not feasible at the present research work either.  

4. Case-based reasoning (CBR): in contrast to the rest of the learning methods 
mentioned before, instance-based learning methods, often referred as “lazy” 
learning methods, (being CBR its most successful application) instead of 
constructing an explicit target function or IF-THEN rules knowledge base using 
training examples, they simply store the training examples to find the right solution 
for future examples. This learning technique perfectly matches the necessities of 
the present research work because it is able to start learning from the beginning 
and there is no need for any set of initial data. This can help during the knowledge 
acquisition phase making this phase much simpler that in the case of using rule-
based expert systems. Therefore, CBR systems are very suitable for domains 
where the knowledge understating is not enough for its codification [GUI05, VAS96] 
and where no set of initial data is available for the constructing of the model or the 
knowledge base.  

Summarising, depending on the initial available knowledge at the domain and, 
therefore, depending on the necessity of a learning phase, two different techniques can 
be implemented: rule-based expert system (for very well known domains) and case-
based reasoning (for domains where the knowledge is not identified or even when a 
simpler knowledge acquisition phase is pursued). Next, an example found in the 
literature where a common domain is solved by these two approaches, is given. In the 
legal domain, when legal expert systems use rule-based formalisms to represent 
statutes (knowledge is known), the legal decision-making process is mechanically 
reproduced by an inference procedure that searches among the implemented rules 
[SER86]. On the other hand, legal CBR systems accomplish the decision-making 
process by establishing relations with judicial decision precedents by means of a 
matching process [RIS87, GUI05]. Next both knowledge representation methodologies, 
rule-based expert systems and case-based reasoning are briefly explained.  

2.4.3.Rule-based Expert Systems 

The first methodology able to deal with the acquisition of the knowledge and its further 
implementation into knowledge-based systems is rule-based expert systems (or simply 
named Expert Systems). This subchapter briefly explains the most important features 
of this methodology in addition to some of the successful applications found in the 
literature. 

2.4.3.1. Definition 

First some of the many Expert System (from now on ES) definitions found in the 
literature are given: 

1. ES are sophisticated computer programs that manipulate knowledge to solve 
problems efficiently and effectively in a narrow problem area [WAT86].  

2. ES are a class of computer programs that can advise, analyse, categorize, 
communicate, consult, design, diagnose, explain, explore, forecast, form concepts, 
identify, interpret, justify, learn, manage, monitor, plan, present, retrieve, schedule, 
test and tutor. They address problems normally thought to require human 
specialists for their solution [FIR89]. 
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3. An ES is a computer program that uses knowledge and reasoning techniques to solve 
problems that normally require the services of a human expert [ALL93]. 

4. An ES is a system that provides for solving problems in a particular application area 
by drawing inferences from a knowledge base acquired by human expertise 
[MCD94]. 

5. ES are automated systems that incorporate the knowledge of top human experts 
and use it to respond to the emerging problems in a similar way, as the top experts 
would do [NGU97]. 

6. An ES is a program which mimics human problem-solvers in several senses: for 
example it contains an explicit representation of the knowledge which is used by 
humans who are experts at solving tasks in some problem domain, or it can explain 
its answers to its users in the same way as a human expert can explain his 
conclusions to his clients [JAC99]. 

7. An ES is a computer program that reasons in a narrow but deep field of expertise 
emulating the decision-making ability of a human expert and performing as well as, 
if not better than, humans operating in the same field [LUS02]. 

It can be concluded from the previous definitions, that rule-based ES are computer 
programs that codify specific domain knowledge, as a set of IF-THEN rules in 
knowledge bases, and further use the codified rules to solve problems related to the 
specific domain. Rule-based ES use the codified rules along with information contained 
in the working memory (definition of the actual problem) to solve problems in the next 
way: when the "IF" portion of the rule matches the information contained in the working 
memory, the system performs the action specified in the "THEN" part of the rule 
[LUS02]. Figure 2.21 shows schematically how rule-based ES work.  

 

Figure 2.21: Schematic representation of rule-based expert systems [FAC08]. 

Therefore, while an ES is a computer program, it does not follow the traditional 
approach where the programmer specifies each step in solving the problem. Rather, 
the programmer (a knowledge engineer) codifies a large number of facts about the 
problem domain as rules. Rules specify one or more facts that may be inferred with 
some degree of certainty when some other facts are known to be true. A relatively 
simple control program called an inference engine can then be used to examine the 
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rules in light of known facts. The ES methodology allows a system to draw useful 
conclusions even with incomplete or uncertain data. It is especially useful for solving 
problems where an algorithmic approach is either difficult or impossible to implement 
(traditional control strategies based on PID controllers) [MIL85, HAR90]. Following this 
reasoning, it is found that ES differ from the conventional application programs in that 
[JAC90]: 

1. The main function of conventional programs is to store and to retrieve data, to carry 
out calculations and to do graphics. A conventional program cannot reason with the 
knowledge. On the other hand, an ES stores and retrieves knowledge and reasons 
with it. 

2. ES simulate human reasoning about a problem in a narrow domain. They focus on 
emulating an expert's problem solving abilities. 

3. ES solve problems by heuristic or approximate methods, which unlike algorithmic 
solutions, are not guaranteed to succeed. Such methods do not require perfect 
data and the solutions derived by the system may be proposed with varying 
degrees of certainty. 

4. ES are capable of explaining and justifying solutions or recommendations, which 
helps the user to judge if the reasoning is in fact correct. 

These properties are remarkably different from properties of a conventional program. 
Conventional programs basically depend upon the accuracy and integrity of the 
models. Thus, if any of the input data is missing or inaccurate, the conventional system 
will respond with error messages or it may output incomprehensible results. Whereas 
an ES can operate in the face of adversity, it does not need all the data to be accurate; 
it can use its reasoning facility to fill in or circumvent the gaps and it will return with 
results that include an estimation of reliability [LUS02].  

2.4.3.2. When is profitable to use rule-based ES 

In many application areas (e.g., in medicine, geology, economy, engineering), human 
beings often need to make decisions when they do not have the exact knowledge of 
the situation, and therefore, they cannot even formulate (not to say solve) the decision 
problems in precise mathematical terms. There are also some other cases when 
although human beings can formulate the problem precisely, this formulation leads to a 
complicated mathematical optimisation problem of the type that cannot yet be solved  

In the middle 1980s and early 1990s, the scientific and commercial success of ES 
showed that, in actual practice, there is a sufficiently large class of problems that 
cannot be solved by the aforementioned methods of conventional programming (for 
example, when it is impossible to formulate the solution of the problem in mathematical 
terms in the form of a system of equations). This short of problems (named as 
nonformalized problems (NF-problems) in contrast to formalized problems (F-
problems) in [RYB05]), have one or several of the following characteristics: they cannot 
be given in a numerical form; the goals cannot be expressed in terms of a strictly 
defined goal function; and an algorithmic solution exists, but cannot be used due to the 
limited resources (time and/or memory).  

In all these cases, expertise is in charge of making decisions and human experts are 
who make reasonably good decisions: expert doctors successfully cure diseases, 
expert geologist find oil, expert astronauts know how to dock and land the Space 
Shuttle or expert operators know how to operate a chemical plant. In this scenario, 
where the problems to be solved are such complicated that can not be modelled by 
means of mathematical equations and where human experience and expertise is the 
only way to solve them successfully, is where it is desirable the availability of 
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automated systems that, by incorporating the knowledge of human experts, will help 
people in making decisions. These systems are called ES [NGU97]. 

2.4.3.3 Components of an ES 

One of the main characteristics of ES is the separation between the knowledge to be 
used in a specific domain and the procedures that manipulate that knowledge. The 
main advantage of this characteristic is that the knowledge is used in a more effectively 
and efficiently way. Following this criterion, ES are divided into three major components 
that are the knowledge base, the working memory and the inference mechanism. The 
linkage between the aforementioned components and the user is achieved by the 
graphical user interface (or just interface) as shown in Figure 2.22 [LUS85, KOW00, 
LUS02].  

 

Figure 2.22: Structure of a complete Expert System [LUS85]. 

2.4.3.3.1 Knowledge base 

The knowledge base of an ES is the component that stores, by means of rules, all the 
knowledge regarding the domain where the ES will be applied. A rule is a knowledge 
structure that relates some known information to other information that can be 
concluded from the known one. Therefore, a rule is a form of procedural knowledge 
that associates given information to some action. Rules represent reasoning 
knowledge and handle the complex relationship between facts. Rules can embody 
vague concepts, simple heuristics, mathematical expressions, data expressions, time 
expressions, character string expressions or functions. In rule-base ES, rules are 
written in an IF-THEN-ELSE format. Whereas the IF-AND-OR part of the rule is called 
the "premise or antecedent", the THEN-ELSE part is called the "conclusion or 
consequence" [LUS02]. 

The knowledge stored in the knowledge base can be classified in many different ways 
depending on what it represents (e.g, knowledge based on experience and heuristics, 
knowledge based on first principles and general theories, meta-knowledge). Generally, 
knowledge bases are composed of factual and heuristic knowledge [KOW00]: 
1. Factual knowledge is that knowledge of the task domain that is widely shared, 

typically found in textbooks or journals, and commonly agreed upon by those 
knowledgeable in the particular field. 
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2. Heuristic knowledge is the less rigorous, more experimental, more judgmental 
knowledge of performance. In contrast to factual knowledge, heuristic knowledge is 
largely based upon past experiences and knowledge gained. For instance the 
knowledge that, if the same pattern of events take place then the same conclusion 
could be expected. It is the knowledge built from ‘thumb rules’.  

At the same time and from a representation point of view, the knowledge can roughly 
be divided into two main categories principally: declarative and procedural knowledge 
[RAJ91]: 

1. Declarative knowledge is represented as a static collection of facts that will require 
a set of general procedures to manipulate them. Advantages of declarative 
representation are the convenience of adding new facts to the knowledge base and 
that facts only need to be stored once. 

2. Procedural knowledge represents knowledge as procedures. Procedural 
representation is convenient to heuristic knowledge, for describing how to do things 
and for representing complex logic such as probabilistic reasoning  

Therefore and summarising, the knowledge base is the part of the ES where all the 
knowledge that later will be used to solve the given problems is stored; in rule-based 
ES the knowledge is stored by means of IF-THEN rules. 

2.4.3.3.2 The working memory 

The working memory is the component of the ES in charge of storing all the information 
related to the process to be solved. Thus, the working memory initially contains the 
facts (or symptoms) of the problem that are used to infer the right conclusions, and at 
the end of the solving procedure, contains the problem conclusions inferred by the 
system. In order to get this, the working memory communicates with the inference 
mechanism that matches the symptoms (or initial information about the problem) stored 
in the working memory with the knowledge (IF-THEN rules) contained in the knowledge 
base. Whenever any of the initial symptoms matches with any of the IF-THEN rules 
antecedents, the consequences of that rule are transmitted to the working memory as 
the final conclusions [LUS02].  

The working memory can load the initial information (symptoms of the problem) from 
different sources like external storage such as databases, spreadsheets, or sensors at 
the beginning of the consultation process. Sometimes, the system may obtain the 
information supplied by the user too. In the manufacturing field, the sensors that 
monitor the process usually supply the information to the working memory although the 
user can also provide valuable information. In the same way, at the end of the solving 
procedure, the final conclusions can be stored in the previous mentioned sources or 
can be directly transmitted to the user. When the user supplies the initial information or 
when the final conclusions want to be transmitted to the user, a Graphical User 
Interface (GUI), explained later, is necessary.  

2.4.3.3.3 The inference mechanism 

The inference engine (or mechanism) in an ES is a processor that matches the facts 
contained in the working memory with the domain knowledge contained in the 
knowledge base in order to draw conclusions about the problem. When an ES starts to 
examine the problem, it searches the rules for a match between the premises (or 
antecedents of the rule) and the information contained in the working memory (facts of 
the problem to be solved). When the inference engine finds a match, it adds the rule's 
conclusion (or consequence of the rule) to the working memory and continues to scan 
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the rules looking for new matches. Either of the following two types of searching 
strategies can be used in an inference engine [LUS02]:  

1. Forward reasoning (also named as modus ponens) starts with assertions about the 
problem, makes inferences looking for “matching” with the antecedents of the rules 
and draws conclusions (the consequences of the rules that are “fired”). This 
strategy is used when all the knowledge to make a decision is available before 
session begins.  

2. Backward reasoning (also named as modus tollens) starts with the answer and 
works backwards to the problem description. The rule selection is guided by the 
conclusions rather than the conditions. This strategy is used in situations where the 
user can make a good guess about a possible solution and when more goals than 
combinations of initial assertions exist.  

Summarising, forward reasoning is a search procedure or reasoning process using 
known facts to produce new facts and to reach a final conclusion. On the other hand, 
backward reasoning is a reasoning process, which starts with a desired goal and works 
backward, looking for facts and rules that support the desired result. In problem 
solving, since the reasoning procedure usually begins with the collection of facts (for 
example process variables in an industrial facility) and then the information is reasoned 
with the purpose of inferring the logical conclusions, forward reasoning is the most 
applied searching method. This way, the inference strategy of forward reasoning starts 
with a set of known facts, derives new facts using rules whose premises match the 
known facts, and continues this process until a goal is reached (for example right 
action to restart the production in the manufacturing field) or until no further rules have 
premises that match the known or derived facts (see Figure 2.23 for schematic 
explanation).  

 

Figure 2.23: Forward reasoning process [LUS02]. 

Therefore, when ES are applied to problem solving procedures, what basically 
performs the inference mechanism is the activation of the consequents (solutions to the 
problem) of the rules which antecedents (problem symptoms) are fulfilled. A clear 
example is the application of rule-based ES to medical diagnosis. In these cases, the 
rule-based ES is fed with the symptoms of the patient to be treated and it searches for 
an illness, which symptoms match with the symptoms of the patient.  

2.4.3.3.4. Graphical User Interface (GUI) 
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Although not directly integrated into the core of the ES, the communication with the 
users is also a very important factor to be taken into account when developing ES. 
Even if the ES has been developed correctly, with a knowledge base that describes 
perfectly the process and an inference mechanism that executes always the best 
possible action to be taken, if the user does not understand this information, the ES 
can be described as an “island of intelligence” within the factory. Therefore another 
very important component of ES is the interface with the users. The interface must 
allow all users, from the mechanical department head to the operator of the process, to 
understand and communicate with the system easily [RAJ91]. It is generally said that 
the interface of the ES must fulfil the next requirements:  

1. To be very easy to learn by the user. 
2. To avoid the entrance to the system of wrong data. 
3. To show the results and actions in a very transparent way to the user. 

2.4.3.4. Some previous successful applications of rule-based ES methodology in the 
literature 

ES has been used in most processing applications, even very large ones needed for 
major chemical processes, metallurgical processes, quality control in pulp and paper 
and oil industries, cost control in power plants and other applications. Among other 
applications, operators and engineers have used ES for fault diagnosis. In such 
processes, ES can find the most probable cause and suggest corrective actions, being 
for example very useful in alarm management because, by communicating the critical 
alarms immediately, operators can react fast and correct the problem. This saves 
process downtime, operator time in locating the problem, and in the long run, saves 
money and reduces off-specification products [LUS02].  

Since the first ES named DENDRAL, created by Lederberg and Feigenbaum in 1965 at 
Stanford University, this AI methodology has been broadly applied both in the 
academic and in the industrial field. Next some previous research works focused on the 
identification of failures, the topic that the present research work covers, are briefly 
explained:  

1. Chun Cheung Siu et al. developed a rule-based ES able to deal with fuzzy 
knowledge, and applied it to the identification of vibration causes in rotating 
machines. The system was able to generate ranked fault hypothesis within an 
incrementally consultation and allowed for the revision of diagnosis results with 
respect to the revision of symptoms presented by the user [SIU97]. 

2. R. Amyot et al. developed an operational ES prototype to help mill operators and 
engineers to troubleshoot and optimise the steam and condensate portion of paper 
machine dryer sections. A major output of the prototype was to quantify the 
thermodynamic performance of the machine in order to inform the user when the 
steam and condensate system was wasting energy. This way, when the machine 
was operating outside of specified thresholds, the ES entered into a diagnostic 
dialog with the user to obtain more information aimed at determining the possible 
cause(s) of the deteriorated performance. A three-month validation phase 
conducted simultaneously in two mills led to the overall conclusion that, despite 
some room for improvement in the system's usability and functionality, it is a 
fundamentally sound and useful tool for monitoring and recording the performance 
of a S&C system, and for helping to diagnose the causes of poor performance 
[GOW01].  

3. Warren R. Becraft et al. developed an operator advisory (INNATE/QUALMS) 
composed of a rule-based ES combined with artificial neural networks able to help 
operators at large-scale chemical process plants to diagnosis process failures. The 
developed diagnostic system exhibited good diagnostic performance under a 
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variety of conditions including novel faults, and the presence of sensor noise 
[BEC91].  

4. D. Chester et al. developed FALCON, a rule-based ES able to identify probable 
causes of disturbances in a chemical process plant by interpreting data consisting 
of numerical values from gauges and the status of alarms and switches. The 
system interpreted the data by using knowledge of the effects induced by a fault in 
a given component and how disturbances in the input of a component lead to 
disturbances in the output [CHE84].  

5. William R. Nelson et al. developed REACTOR, an ES able to assist operators in the 
diagnosis and treatment of nuclear reactor accidents. The purpose of REACTOR 
was to monitor a nuclear reactor facility, detect deviations from normal operating 
conditions, determine the significance of the situation and recommend an 
appropriate response [NEL82]. 

6. Massimo Gallanti et al. developed PROP, an ES for malfunction diagnosis and 
process surveillance concerning on-line monitoring of water pollution in a thermal 
power plant [GAL85].  

7. Peter Chan, during his PhD work, developed a prototype rule based ES for civil 
engineering applications in the knowledge domain of diagnosis of deterioration and 
other problems in reinforced concrete structures. The developed system performed 
satisfactorily with about a 70% rate of success in real cases. The confidence values 
provided were found to be reasonable and the system was shown to be adequate 
in providing diagnosis of common problems of reinforced concrete but it did not 
perform well in special cases outside its knowledge domain [CHA96].  

8. Agre et al. developed a rule-based ES intended to help the maintenance staff in 
search of faults in the personal computers of the family PRAVETS-8 (Apple-2 
compatible) [AGR85]. At the same time Sgurev et al. also developed another rule-
based ES intended to help the maintenance staff in the search of faults in disk 
subsystems, consisting of a controller and a hard disk drive module with 300 or 600 
MB capacity [SGU91].  

2.4.4.Case-based reasoning methodology  

The second methodology studied at the present research work, able to deal with the 
acquisition of the knowledge and its further implementation into knowledge-based 
systems, is Case-Based Reasoning (from now on CBR). This subchapter briefly 
explains the most important features of this methodology in addition to some of the 
successful applications found in the literature. 

2.4.4.1. Definition 

First some of the many CBR definitions found in the literature are given: 

1. CBR (e.g., [KOL93, RIE89]) is a paradigm that models the role of experience in 
refining problem-solving ability [LEA95].  

2. CBR is based on the fundamental principle that problem solving can benefit from 
solutions to past problems that have been attempted [VER99]. 

3. CBR is a methodology for solving problems by utilizing previous experiences. It 
involves retaining a memory of previous problems and their solutions and, by 
referencing them, solve new problems [MAI00].  

4. CBR is a problem solving method that uses knowledge from a past situation to help 
with the complexities of solving a new design problem [COB07]. 

It can be concluded from the previous definitions that CBR is based on the idea of 
utilizing solutions to past problems to solve new problems (see Figure 2.24). Thus, the 
solutions to ‘similar’ problems are retrieved from a case memory of solutions, and 
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applied to new problems. This way, when a CBR system is presented with a similar 
problem, it does not re-reason from an initial set of facts and rules. Instead, it uses the 
plan that embodies the reasoning already utilized in the retrieved solution [VER99].  

 

Figure 2.24:How CBR methodology generates a new solution [LEA96]. 

CBR can be traced back to the work of Schank’s dynamic memory model [SCH82], but 
was Kolodner [KOL93] who developed the first case-based reasoner, known as 
CYRUS. CYRUS was based on the abovementioned Schank’s memory model and was 
a question and answer system that contained the knowledge, as cases, of the travels 
and meetings of ex-US Secretary-of-State Cyrus Vance [COB07].  

Generally, a case-based reasoner will receive a problem presented by either a user or 
another program or system. The case-based reasoner then searches its memory of 
past cases (the case base) and attempts to find a case that has the same problem 
specification as the current case. If the reasoner cannot find an identical case in its 
case base, it will attempt to find the case or cases in the case base that most closely 
match the current query case.  

In the situation where a previous identical case is retrieved, presuming its solution was 
successful, it can be returned as the current problem’s solution. In the more likely case 
that the retrieved case is not identical to the current case, an adaptation phase occurs. 
In adaptation, the differences between the current case and the retrieved case must 
first be identified and then the solution associated with the retrieved case must be 
modified taking into account these differences. The solution returned in response to the 
current problem specification may then be tried in the appropriate domain setting 
[MAI00]. As a final stage, the adapted case is then added to the case library for future 
use, making learning an integral part of the CBR process [LEA95].  

As an example, consider a scenario of a doctor treating a patient. If the cure to a 
patient’s illness involves the use of a combination of drugs, the doctor may refer to the 
patient’s past medical record for prescription history. If, in the past, the patient 
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responded to the drug in a positive way, the same prescription might be given, while if 
the response were negative or slower than anticipated, the doctor might try to improve 
the chances of recovery by introducing (adapting) a different combination of drugs. 
However, if there is no record of past illness and treatment, the doctor may use the 
experience induced from the treatment of other patients (or other well established 
sources) for treatment. Evidently, the doctor always keeps treatment cases 
categorizing and organizing them in an easy-to-retrieve manner, and reuses them to 
justify future treatment plans. In the same manner, CBR is configured to work on the 
basis of past experiences [VER99]. 

2.4.4.2. When is profitable to use CBR 

The CBR methodology is known to be well suited to those domains where formalized 
and widely recognized background knowledge is not available [MAI00]. In these 
scenarios, the acquisition of cases becomes a natural mechanism for knowledge 
acquisition and avoids the need to extract the principles underlying a domain. Many 
works in the literature suggest that this significantly alleviates the knowledge 
acquisition problem, the main purpose of the use of this methodology at the present 
research work [LEA95].  

This way, CBR actually allows one to build a knowledge base of past situations 
(cases), which represent an “implicit” (i.e. operative) form of knowledge that can be 
reused in present problems, possibly after an adaptation step. Representing a real-
world situation as a case is often straightforward: given a set of meaningful features for 
the application domain, it is sufficient to identify the value that they assume in the 
situation at hand; typically, a case also stores information about the solution applied 
and the outcome obtained. Due to the simplicity of this process, and, as mentioned 
before, in many real world examples the knowledge acquisition bottleneck can be 
significantly reduced in comparison with the exploitation of other reasoning 
methodologies. Moreover, new knowledge is automatically stored in the case base 
during the normal working process and, as the case library grows, more and more 
representative examples are collected, what makes easier to find a proper solution to a 
new problem by means of this paradigm [MAI00]. 

2.4.4.3. Description of the CBR methodology 

Although many authors have described the steps involved in the application of the CBR 
methodology [COB07, MAI00, VER99, WAT97], in general, CBR can be described in 
terms of five different tasks: mapping, retrieval, adaptation, revision, and storage 
[KOL93]. 

1. Mapping: recalling a case from the case memory is a pattern-matching problem that 
is based on the specification of a new problem. In order to map cases in case 
memory, the specification of a new problem is transformed into a pattern to be 
matched. The pattern may be taken directly as the user input specification or it may 
be modified, for example, to include an order of importance of the attributes. 

2. Retrieval: the retrieval task in CBR searches in the case memory for matches 
between individual cases and the pattern that serves to index the cases. Each case 
in the case memory may be compared to the pattern, or the pattern may provide a 
set of indices to partition case memory, thus only a relevant subset of cases are 
compared with the pattern. Retrieval can be based on a perfect match, where the 
pattern is found exactly, or on partial matches. If partial matches are retrieved, a 
threshold may be set to determine when a partial match is close enough (always 
retrieve the best plan). 
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3. Adaptation or reuse: this function is responsible for applying the case solution from 
a retrieved problem to the problem at hand. In some problems, a selected case 
provides a solution to the new problem. In most problem solving, however, the 
selected case needs to be modified to be appropriate as a solution to the new 
problem. Adapting a case from case memory to solve a new problem requires 
additional knowledge. The form that this knowledge takes depends on how 
adaptation is done. The original case is called a base case, while the adapted case 
is called a derived case. 

4. Revision: this is the actual running of the adapted plan against the problem. 
Application of the new plan needs to be evaluated in order to prepare it for storing. 
Zeid et al. suggested that a revision process can be modelled as a sequence of 
transitions from an initial or existing state to its final state [ZEI97]. Therefore, the 
revision process is necessary and useful in making sure that the final state of the 
plan is valid before storing it in the case memory for future use. 

5. Storage or retain: this is concerned with adding and organizing the readjusted plan 
to the case memory. Once the plan is revised, it is introduced to the case memory 
to be stored. Whenever a new plan is introduced to the case memory, a storing 
procedure is activated. Indeed, if the plan deems satisfactory, the plan is stored, 
and if not, it may be discarded. 

Figure 2.25 shows schematically the steps involved in the CBR methodology.  

 

Figure 2.25: The Case-Based Reasoning cycle [LOP06].  

Therefore, CBR is based on the storage of previous successful solved cases and its 
use for the solution of future problems. A case can be said to be the record of a 
previous experience or problem. The information recorded about this past experience 
will, by necessity, depend on the domain of the reasoner and the purpose to which the 
case will be used. In the instance of a problem solving CBR system, the cases will 
usually include the specification of the problem and the relevant attributes of the 
environment that are the circumstances of the problem. The other vital part of the 
cases is the solution that was applied in the previous situation. Depending on how the 
CBR system reasons with cases, this solution may include only the facts of the 
solution, or, additionally, the steps or processes involved in obtaining the solution. It is 
also important to include the achieved measure of success in the case description if the 
cases in the case base have achieved different degrees of success or failure [MAI00].  

Since the solution to the actual problem is based on the previous solved cases, another 
very important point in CBR is the representation of the cases into the case base. The 
essential points for determining what is in case memory and how it is represented 
depends on the nature of the goals and constraints of each system. Initialization of 
case memory is needed to establish and represent the contents of each case. The 
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representation of the contents of each case needs to be appropriately structured to 
operate effectively. The organization of the set of cases in case memory provides 
mechanisms for locating one case or a part of a case in case memory. The cases may 
be clustered or accessed by common attributes. As case memory becomes very large, 
the need for organizational structures becomes more important. The representation of 
a case is usually generalized for all cases in case memory, so that all cases are 
described by the same set of attributes or part-subpart relationships. This way, the 
organization of cases in case memory provides a template or model for defining the 
content of a case and for adding new cases to an existing case memory [VER99].  

After analysing the cases and identifying their most fruitful representation, another very 
important decision is the election of the strategy to retrieve the most similar cases. 
Cases retrieval is based on the similarity index calculation between cases. Case 
indexing processes usually fall into one of these three kinds: nearest neighbour, 
inductive, and knowledge-guided or a combination of these [BAR91]. The following list 
briefly describes the main points of each of these techniques:  

1. Indexing by nearest neighbour. 

9 The technique compares a weighted sum of features in the input case against 
cases in memory.  

9 The technique works well if the retrieval goal is not well defined or if only a few 
cases are available.  

9 The main difficulty with this technique is that the feature weights are often 
context dependent.  

2. Inductive indexing.  

9 The technique is well adapted to situations where the retrieval goal or case 
outcome is well defined.  

9 It can automatically, objectively, and rigorously analyse cases to determine the 
best features for distinguishing them.  

9 The cases can be organized for retrieval into a hierarchical structure, a feature 
that speeds up appreciably the retrieval of cases.  

9 This approach needs a reasonable quantity of cases to run smoothly.  
9 The up front inductive analysis can be very time consuming.  

3. Knowledge-based indexing.  

9 The technique applies existing knowledge to each case.  
9 Applicable only if explanatory knowledge is available and representable.  
9 It is often difficult to codify enough explanatory information to complete 

knowledge-based indexing on a wide range of possible case inputs.  

At the present research work, indexing by nearest neighbour has been selected to 
evaluate the actual case to be solved because the system will go though an initial 
learning period and because it is intended to achieve successful results as early as 
possible during this learning phase. 

2.4.4.4. Some previous successful applications of CBR methodology in the literature 

As mentioned before, first CBR system, CYRUS, was developed in 1982. Since then, 
CBR methodology has been broadly applied both in the academic and in the industrial 
field. Some previous research works focused on the identification of failures, the topic 
that the present research work covers, are briefly explained next:  

1. Stefania Montani et al. applied CBR for failure diagnosis and remediation in 
software systems with the purpose of developing distributed software systems with 
self-healing capabilities. The suitability of the approach was demonstrated by some 
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tests conducted on the Moodle application, running on a distributed architecture. 
Moreover, it was also demonstrated the no necessity of structured knowledge, such 
as models of the system behaviour, thus easing its applicability to large-scale, 
complex software systems [MON06].  

2. Erik Olsson et al. demonstrated the successful performance of CBR methodology 
to the identification and diagnosis of faults during the assembly of robots based on 
the recording of abnormal acoustic signals [OLS04].  

3. Paal Skalle et al. also applied CBR in the oil extraction industry to the identification 
and solution of lost circulation during oil well drilling. The author demonstrated the 
capacity of CBR to provided useful knowledge such as cause factors and remedial 
actions when new problems arrived to the system [SKA00].  

4. T. Warren Liao et al. implemented CBR methodology to the correct detection and 
identification of welding flaws in automated weld inspection systems. The system 
developed used radiographic weld images of the welding line and compared them 
to previous already classified welding flaws to perform a correct identification of the 
flaw at the part. The results obtained in the study indicated that better performance 
in terms of higher accuracy rate and lower false positive rate can be achieved than 
that of the fuzzy clustering methods employed before [LIA03].  

5. Mark Devaney et al. developed a log identification system able to provide the data 
necessary to characterize operating cycles, maintenance schedules, periodic 
breakdowns, and most importantly, to identify and address abnormal failure rates in 
big industrial facilities before critical problems arise. All the knowledge was 
implemented into a database using a CBR methodology and the identification of 
new operating failures was provided to experienced maintenance engineers and 
managers who assessed the utility of the system [DEV05/1].  

6. Mark Devaney et al. also developed a case-based reasoner for gas turbine 
diagnosis at the monitoring and diagnosis centre of General Electric in Atlanta. The 
main purpose of the developed system was to improve turbine and system 
reliability, reduced turbine operating/maintenance costs, and produce the greatest 
possible sustained availability from the power generation equipment. The case-
based reasoner worked in next way: right after any gas turbine shut down, the 
monitoring and diagnosis centre of General Electric in Atlanta automatically 
received the operating data of the turbine. Then the data were analysed and the 
reasons and solutions to be apply were identified based on the data recorded from 
previous experiences. Finally the solutions to be applied were communicated to the 
maintenance personnel of the corresponding gas turbine [DEV05/2].  

2.4.5 Conclusions regarding knowledge based systems in the industry 

Since traditional control techniques do not have the abilities that autonomous control 
systems need to survey and govern very complex processes, some other techniques 
able to deal with them have emerged during the last few years. Among all these 
techniques, AI has shown a great performance in different complex fields ranging from, 
for example, engineering to medicine. Although AI has not been directly applied to the 
control of forming processes, the way that these industrial processes are controlled 
nowadays makes the application of AI techniques to become very suitable regarding 
their control. It has been stated over the time that human expert operators are the best 
solution to the control of forming processes and even, still nowadays, they are in 
charge of carrying out the control of forming processes helped by local control systems. 
Therefore, a suitable technique able to survey and control forming processes in the 
same way that human expert operators do, should be based not on mathematical 
equations that model the process, but on the knowledge and the experience.  

KBSs are the branch of AI focused on the development of intelligent systems able to, 
by emulating human expertise, replace or support human beings during the decision 
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making phase (for example, when surveying or controlling forming processes). The 
implementation of KBSs into different fields and domains, formerly managed by human 
beings, has already given as a result several advantages to the industry, like the 
achievement of more consistent answers for repetitive tasks, decisions and processes, 
in a more efficient and fast way and without any lack of performance because of 
pressure or tiredness. Therefore, it is concluded that the application of a KBS to the 
control of forming processes should bring a better performance and a higher efficiency. 

Within the different available techniques used to create KBSs, rule-based ES is the 
most applied one and the one that more profitable results has offered over the time. 
Rule-based ES is a very suitable technique when a priori knowledge about the process 
to be controlled is available. At the present research work, and since a priori knowledge 
was available in the figure of the human expert operator, this technique has been 
chosen to implement all the knowledge that the operator has into a computerised 
system. This way, an intelligent process control system able to support the operator 
during the decision-making phase will be created.  

Another important reason has been considered when choosing rule-based ES as the 
technique to be used for the development of the intelligent control system: its 
“transparency”. Since the implementation of the knowledge that the operator owns is in 
the form of IF-THEN rules, it is very easy to understand and visualize the control 
strategy being developed. This way, the application of this strategy allows to evaluate 
in a deeper way the suitability of AI techniques to create intelligent systems and to 
apply them to the control of forming processes.  

Finally, and after determining the suitability of rule-based ES, CBR techniques have 
also been selected with the aim of making easier the knowledge acquisition phase and, 
thus, allowing the creation of more universal intelligent control systems able to evolve 
and to be applied in different forming processes and fields. At this point, it must be 
taken into account that the initial use of rule-based ES is considerably valuable 
because a deeper understanding of the processes to be controlled can be gained. This 
initial step will help the research team during the creation of the intelligent control 
system based on CBR techniques.  

As a summary, taking into account the data gathered at the present subchapter and 
since the present research work deals with blanking processes, it was decided that the 
most advantageous AI techniques for the development of an intelligent control system 
should be Rule-Based ES and CBR techniques (shown in “Chapter 6. Intelligence 
Control System”). “Chapter 6. Intelligence Control Module” shows the systems created 
by the implementation of these both AI techniques, the results achieved by each one of 
them and a comparison between them. 

2.5. Critical review of the current state of the art: work scope definition. 

Sheet metal forming processes are inherently highly non-linear and complex processes 
where many different process parameters can affect the final quality of the 
manufactured products. In the last few years, and as a tool to help human operators to 
survey and control these processes, a wide range of sensors based process and tool 
condition monitoring systems has evolved within the market. Nowadays the most 
applied ones are based on force and acoustic emissions measurement and their main 
objectives are to protect the forming facilities avoiding catastrophic tool breakages and 
to identify instabilities at the forming processes. At the present research work, sheet 
metal blanking processes have been chosen to evaluate the capacities of sensors 
based process monitoring systems for the on-line detection of process malfunctions. 
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Following the directories of the state of the art, the sensors based process monitoring 
system used at the present research work will be composed of force and acoustic 
emission sensors installed in both, the tools and the blanking facility. The development 
of the mentioned system and the results achieved after its application in the blanking 
facility are explained in “Chapter 4. Sensors based process monitoring”. 

On the other hand, and although the detection of some process instabilities can also 
lead to the detection of defective parts, the verification of the correct quality of the 
produced parts is not the main objective of sensors based process monitoring systems 
and therefore they are not able to assure that the 100% of the manufactured parts are 
good quality parts. Taking into account the limitations of these systems, another type of 
monitoring systems able to verify the right quality of all the manufactured parts is 
necessary. AV systems match perfectly with this market need (usually called as 
production under 0 ppm) because they are focused on checking the quality of the 
manufactured parts and thus, they can guarantee that all the parts sent to the client 
fulfil the quality requirements.  

However, AV systems have not been widely used in the industrial field due to several 
reasons like the presence of dusty environments (what reduces the quality of the image 
acquisition), the expensive investment necessary to implement AV systems, the big 
size of the systems or the low efficiency of the computing techniques. In spite of this, 
during the last few years, due to the enormous improvement in the computing field and 
due to the new solutions developed, like for example intelligent cameras based on 
FPGAs, most of the drawbacks have been overcome and AV systems are more and 
more suitable for the manufacturing industry. This way, mixed architectures where the 
high time consuming algorithms (distortion correction, noise filtering, binarization, 
contour extraction…) are implemented in smart cameras based on FPGAs and the low 
time consuming algorithms (dimensions extraction, defects detection, part validity 
assessment…) are implemented in PC, seem to boost the capacities of AV systems 
although only laboratory attempts have been carried out. At the present research work, 
an AV system following such architecture will be developed to check the quality of the 
parts produced in a high production rate blanking facility. The development of the 
mentioned system and the results achieved after its implementation in the blanking 
facility are explained in “Chapter 5. Parts quality control”. 

Following the previous reasoning and taking into account the capacities of each 
mentioned monitoring system, it can be stated that the combined application of both 
monitoring systems into forming facilities should profit from the advantages of both 
them, creating profitable synergies. Among all the advantages, remarkable ones are 
the next: 

1. The AV system eliminates the faulty parts sent to the customer (external defective) 
what improves the image of the company towards its clients, avoids potential big 
economical losses due to rejection of complete sets of parts and reduce the chance 
of losing clients due to quality reasons. However, it must be considered that the 
control carried out by the AV system is off-line, after producing the parts. 

2. Complementing the previous one, the sensors based process and tool condition 
monitoring system reduces the percentage of faulty parts produced within the 
company (internal defective) because it is an on-line monitoring system capable of 
instantaneously detecting some process failures that can lead to defective parts. At 
the same time, this system is able to protect the forming facilities and tooling, 
reducing economical losses and downtimes. 

3. And finally, and since sensors based process and tool condition monitoring 
systems guarantees the security of the forming facilities and tooling and, at the 
same time, AV systems guarantees the right quality of the manufactured parts, their 
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combination opens a door towards a future manufacturing of parts without human 
presence, what should boost the productivity of the companies. 

Although the previously mentioned improvements represents by itself an enormous 
advantage with respect to actual manufacturing procedures, they still have a limitation; 
production is stopped when any of the monitoring systems detects a malfunction in the 
manufacturing process. This condition leads to a scenario where luckily, if the process 
does not suffer any malfunction, it produces good quality parts for long periods of time 
without the presence of human operators. On the other hand, if any of the monitoring 
systems detects a process malfunction or defective parts are detected, the presence of 
the human operator to solve it and restart the production is required. Thus, next logical 
step towards autonomous facilities able to produce with a minimum presence of human 
operators is the creation of intelligent systems able to, besides detecting the process 
malfunctions or defective parts (achievable nowadays), find their causes and propose 
the right solutions to correctly restart the production.  

The techniques of the AI used to create such an intelligent control system at the 
present research work will be rule-based ES and CBR techniques. Rule-based ES 
have been chosen because initially the knowledge of the human expert operator is 
available and because this technique offers a high understanding of the knowledge 
when is implemented into the control system. Therefore rule-based ES will be used to 
create an intelligent control system and to evaluate the capacity of AI techniques to 
deal with forming processes (in this case a blanking process). And finally, CBR 
techniques will also be used in order to make easier the knowledge acquisition phase 
during the development of such an intelligent control system. At the same time, the use 
of CBR techniques will allow the development of intelligent controllers able to learn and 
evolve over the time, what will spread the developed methodology to other blanking 
references, and even forming processes, without big efforts. 

As a summary, the potential of this global methodology will be industrially evaluated at 
the present research work. First, a sensors based process and tool monitoring system 
and an AV system will be combined to verify the correct running of an industrial 
blanking facility. And second, a KBS able to, in case of any process failure or defective 
part detection, identify its reason and right solution will be developed too. The achieved 
system is not completely autonomous because human operators will carry out the 
solutions inferred by the KBS, but the main purpose is to validate the performance of 
such an intelligent system and, if valuable results are achieved, proper actuators 
should be developed in the future. 
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3.- INDUSTRIAL PROCESS DESCRIPTION 

With the purpose of facing the future challenges mentioned in “Chapter 2. Scientific 
and technological background”, an industrial manufacturing process has been selected. 
The selected industrial manufacturing process, briefly explained at the present chapter, 
is where the intelligent control system developed at the present research work has 
been implemented and evaluated. The selected process is the manufacturing of small 
retaining rings using progressive blanking tools and is carried out into a blanking facility 
consecrated to the production of small size parts at high production rates. The 
productive facility belongs to a SME (Small and Medium Size Enterprises) company 
located in the Basque Country, Industrias Alzuaran S.L. dedicated to the manufacturing 
of circlips, retaining rings, washers and special parts.  

Before the implementation of the intelligent control system, the stability control of the 
process was based on a Brankamp PK550 unit and carried out by the operator. The 
Brankamp unit measured the force signal at the connection rod of the blanking facility 
and the acoustic signals generated during the process. Besides, the operator made a 
visual quality control of the produced parts following a predefined control procedure. 
The operator checked the quality of the parts by measuring their main dimensions and 
by detecting the presence of critical defects like excessive burrs. This quality control 
was made in predefined periods of time and the operator rejected the parts produced 
since the previous quality control if defective parts were found. 

Although the Brankamp sensors based process monitoring system and the visual 
inspection made by the operator were able to detect some of the defects at the 
production, these methods did not assure the production in zero defects. For example, 
the Brankamp sensors based process monitoring system was able to detect some 
process instabilities like double parts inside the tool or punch breakages, but it was not 
able to detect the presence of local areas in the parts with big burrs due to punch micro 
cracks. On the other hand, although the operator was able to detect this last defect by 
visual inspection, it could happen that thousands of defective parts could have already 
been produced with the corresponding economical losses. Therefore, the main idea is 
to create a control system able to detect defective parts during their production leading 
to two consequences: the elimination of the external defective (defective parts sent to 
the customer) and the reduction as much as possible of the internal defective 
(defective parts detected during the manufacturing process). 

At the present chapter, first, a very brief description of Industrias Alzuaran S.L., the 
company where the intelligent control system has been installed is given. And second, 
a deeper description of the blanking facility selected for the installation of the intelligent 
control system, the references to be controlled as well as the tools necessary for the 
manufacturing of the selected references is written down.  

3.1. Industrias Alzuaran S.L.: a real industrial challenge 

Since one of the aims of the present research work was to evaluate the developed 
intelligent control system in an industrial environment, with the advantages and 
constrains that it encompasses, a company consecrated to the manufacturing of small 
size parts by means of metal forming processes was initially selected (see Figure 
3.1a). Industrias Alzuaran S.L. is a SME company founded in 1958 and dedicated to 
the manufacturing of circlips, retaining rings, washers and special parts for a wide 
variety of markets like locksmithing, trade distributors, household appliance white 
goods or the automotive industry (see Figure 3.1b). The factory is situated in Zaldibar 
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with a usable surface of 5000 square meters and with a workforce composed of 35 
people.  

 

Figure 3.1: a) Outside view of Industrias Alzuaran S.L. located in Zaldibar (Spain) and b) Family 

of parts produced at Industrias Alzuaran S.L. 

The factory is composed of four main productive areas (see Figure 3.2). The first area 
is consecrated to the production of special parts and is composed of 6 non-standard 
forming machines. In this area, raw materials (spring steel) displayed in coils are 
converted into special formed parts by means of progressive forming tools. The second 
area is consecrated to the manufacturing of standard and non-standard circlips, 
retaining rings and washers and is composed of 12 mechanical presses ranging from 
50 to 200 tons. In this second area the raw materials are again spring steel in coils that 
are transformed into standard and non-standard parts by means of progressive 
blanking tools. The third area is composed of two furnaces where a heat treatment is 
applied to the parts to get the final hardness at the material. And finally, the fourth area 
is composed of tangential grinding machines where the burr produced during the 
blanking process is eliminated.  

 

Figure 3.2: Schematic explanation of the manufacturing processes at Industrias Alzuaran S.L. 

The manufacturing process of the references selected to be analysed at the present 
research work goes through the productive areas two, three and fourth described 
above. In the productive area two, as it will be explained more deeply later, spring steel 
in coils are transformed into the final parts by means of progressive blanking tools. At 
the end of this process, the parts get the final shape and dimensions but the hardness 
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of the material is not high enough yet (following heat treatment in productive area 
three) and the burr created during the blanking process must be eliminated (following 
grinding process in productive area four). The heat treatment of productive area three 
and the deburring process of productive area four do not modify the quality of the final 
parts. This way, if the quality of the parts at the end of the process in productive area 
two matches with the predefined specifications, the final quality of the parts will be 
good. On the other hand, an excessive burr height in the parts at the end of the second 
productive area will not be eliminated in productive area four leading to the final 
production of defective parts with excessive burr. 

Therefore a good quality, all dimensions within tolerances and not excessive burr, at 
the end of productive area two will lead to the production of good quality parts and this 
is the reason why the developed intelligent control system has been applied into one of 
the blanking facilities consecrated to the manufacturing of standard and non standard 
circlips, retaining rings and washers in productive area two.  

3.2. The process: blanking of small retaining rings at high production rates  

After evaluating several references produced at Industrias Alzuaran S.L., the most 
critical ones regarding defects were chosen. Finally, and as it will be explained later, 
three references that are manufactured in a common blanking facility were chosen. 
This way, three different cases could be studied by only applying the intelligent control 
system into one blanking facility. Next, the selected references, the blanking facility 
where they are produced and the tools for their production are briefly explained. 

3.2.1. Description of the selected references 

In the next lines, the references that have been studied during the present research 
work are described. As it was stated above, three references were chosen; reference 
IA-04, reference 0863-012 and reference 5828-001. The three references belong to the 
family of retaining rings. A retaining ring is a piece of hardware that holds on to a shaft 
in order to locate other items on the shaft, or to locate the shaft to a fixed item. There 
are external retaining rings, which go on the outside of the shaft and internal retaining 
rings, which go on the inside of the shaft [1]. Next, each of the references is briefly 
explained. 

3.2.1.1. Reference IA-04 

The reference described in the following lines is a washer clip that belongs to the family 
of retaining rings. This reference is used as a security ring to fix elements in axles in 
order to avoid relative linear movements of the elements with regard to the axles. This 
reference (IA-04) can be used as an exterior security ring or as an interior security ring. 
The reference IA-04 is applied in steering systems for the automotive industry and is 
used to fix some of the elements of these steering systems. Therefore, it can be 
considered to be a security part for the automobile industry. 
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Figure 3.3: Main dimensions of the reference IA-04. 

From a quality point of view, the principal characteristics to be fulfilled, in addition to the 
mechanical properties of the material, is that all the dimensions of the part must be 
within the tolerances that are presented in Figure 3.3: 

• The diameter “A” must be between 21,56 and 22,11 mm. 
• The dimension “B” must be between 4 and 6,5 mm. 
• The dimension “H” must be between 2,25 and 2,5 mm. 
• The thickness “E” must be between 1,23 and 1,28 mm. 
• Burr height limited (under operator consideration). 

3.2.1.2. Reference 0863-012 

The second reference also belongs to the family of retaining rings and is an interior 
retaining ring. This reference works as a security ring and as it was explained for the 
first reference, is usually used to fix elements to axles, so these elements cannot move 
axially along it. This reference can only be used as an interior security ring. The 
reference 0863-012 is applied in steering systems for the automotive industry and is 
used to fix some of the elements of these steering systems. Therefore it can be 
considered to be a security part for the automobile industry. 

 

Figure 3.4: Main dimensions of the reference 0863-012. 
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As in the case of the first reference, the dimensions of the parts must be controlled very 
strictly and must be within the predefined tolerances. The dimensions that must be 
within the tolerances are described in Figure 3.4 and summarised next: 

• The dimension “b” must be between 3,25 and 3,55 mm. 
• The diameter “d3” must between 38,30 and 37,55 mm. 
• The dimension “a” must be 5,5 mm as maximum. 
• The diameter “d5” must be between 1,23 and 1,28 mm. 
• The thickness “s” must be between 1,5 and 1,495 mm. 
• Burr height limited (under operator consideration). 

3.2.1.3. Reference 5828-001 

And finally, the third reference also belongs to the family of retaining rings and as the 
second reference is an interior ring. This reference works as a security ring and as it 
was explained for the previous references, is usually used to fix elements to axles, so 
these elements cannot move axially along it. As mentioned with the second reference, 
this reference can only be used as an interior security ring. The reference 5828-001 is 
applied in air conditioning systems also for the automotive industry and used to fix 
some of the elements of these air conditioning systems.  

 

Figure 3.5: Main dimensions of the reference 5828-001. 

As in the case of the previous references, the dimensions of the parts must be 
controlled very strictly and must be within the predefined tolerances. The dimensions 
that must be between the tolerances are described in Figure 3.5 and summarised next: 

• The internal diameter “d3” must be between 21,60 and 22,00 mm. 
• The external diameter must be between 33,75 and 34,50 mm. 
• The diameter at the holes “d5” must be greater than 2,5 mm. 
• The thickness must be between 1,14 and 1,2 mm. 
• Burr height limited (under operator consideration). 

Besides the above-described tolerances for each reference, a common and very 
problematic defect in the production of this kind of parts is the presence of local big 
burrs due to the appearance of micro cracks in the punches. The Brankamp sensors 
based process monitoring unit is not able to detect the punch micro cracks because 
they generate very small signals (see Figure 3.6). At the same time this is a repetitive 
defect and once the micro crack appears in the punch, all the parts that are produced 
until the operator realises and stops the machine are defective parts. 



Industrial process description 

-68- 

 

Figure 3.6: Micro cracks in blanking punches and their consequences regarding part quality. 

The three references are produced with the same material, spring steel DIN 17222 
CK67. Figure 3.7 shows the mechanical properties and chemical composition of the 
steel used for producing the references. 

 

Figure 3.7: Chemical composition and mechanical properties of CK67 spring steel. 

3.2.2. Description of the production facility 

All the selected references are manufactured in the same production facility. The 
production facility consists of a 125 tons Fagor mechanical press and a decoiler and 
straightener that supply the mechanical press with the raw material, steel sheet in coils 
(see Figure 3.8). The decoiler feeds the mechanical press and the straightener placed 
between the decoiler and the mechanical press straightens the material. At the 
entrance of the mechanical press there is a mechanically driven system connected to 
the press crankshaft that feeds the material into the tool. This way, the horizontal 
motion of the material through the tool is synchronized with the vertical motion of the 
ram. Once the material reaches the tool, the blanking operations take place and the 
manufactured parts are separated from the steel strip. The parts, depending on the 
tool’s architecture, are pushed downwards through the die or are evacuated from the 
tool by means of pressurize air. In both cases, the manufactured parts reach the 
metallic box where the operator will perform the quality control. At the same time, the 
remaining strip of material is cut in portions of 300 millimetres and is stored in the red 
metallic box situated in the left of the forming facility.  
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Figure 3.8: Blanking facility in Industrias Alzuaran S.L. 

The production rate available at the forming facility ranges from 40 to 70 strokes per 
minute. The actual production rate selected by the operator is around 50 strokes per 
minute. The main reason for choosing this production rate is the fact that the operator 
is responsible of three more production facilities like the aforementioned described, and 
increments in the production rate could lead to a deficient supervision of the processes. 
Therefore, nowadays the production rate is 50 strokes per minute and since two parts 
per stroke are produced, 100 parts per minute are manufactured.  

3.2.3. Description of the blanking tools 

After describing the references and the manufacturing facility where they are produced, 
the necessary tools to produce the selected references are briefly described in the next 
lines. The description of the tools is very important to later understand (as it will be 
explained in “Chapter 4. Sensors based process monitoring”) the position of the force 
and acoustic Brankamp sensors. A common characteristic of the three tools is that they 
are progressive medium size tools that produce two parts per stroke (two lanes exist 
within each tool). Next, a brief explanation of each tool is given. 

3.2.3.1. Reference IA-04 

The manufacturing process of the reference IA04 is briefly explained in the following 
lines. As it was stated before, the part is produced in a progressive blanking tool (see 
Figure 3.9). The progressive blanking tool is composed of three stations. The forming 
steps are explained next: 



Industrial process description 

-70- 

 

Figure 3.9: Tool and manufacturing process for the reference IA-04. 

1. In the first station two cylindrical punches (see Figure 3.9, blanking for positioning 
pin) shear the metal sheet generating two circular holes. The geometry generated 
in this first station does not belong to the final parts, but it is used for positioning the 
strip within the progressive tool by means of the positioning pins. 

2. In the second station, a sand clock shape punch (see Figure 3.9, central area 
blanking) shears a central area of the strip generating the opening of two 
consecutive parts.  

3. And finally, in the third station, two punches (one per lane at the tool) (final 
blanking) shear the material in two diameters (external and internal final diameter of 
the parts) generating two parts per stroke that have a ring form as it can be seen in 
Figure 3.9 (final blanking). The parts are blown out by means of pressurize air and 
leave the blanking facility through two PVC tubes. The strip of material is cut in 
portions of 300 millimetres and is stored in a metallic box placed close to the 
forming facility. 

3.2.3.2. Reference 0863-012 

The manufacturing process of the reference 0863-012 is briefly explained in the 
following lines. As in the previous explained reference, the part is produced in a 
progressive blanking tool composed of three stations (see Figure 3.10). The forming 
steps are explained next: 
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Figure 3.10: Tool and manufacturing process for the reference 0863-012. 

1. As in the previous explained reference, and very common in this type of processes, 
the first station consists of two cylindrical punches (see Figure 3.10, blanking for 
positioning pin) that generate two circular holes. The geometry generated in this 
first station does not belong to the final parts, but it is used for positioning the strip 
within the progressive tool by means of the positioning pins. 

2. The second station consists of four small cylindrical punches (see Figure 3.10, 
holes blanking) that create the corresponding small holes at the ears of the parts. 
After this second station, there is a checking station that verifies if the four holes 
were made. In order to make this verification, four pins goes through the previous 
sheared holes. If any of the pins is not able to go through the holes, the presence of 
a punch breakage is detected and a switch stops the blanking facility. 

3. In the third and last station, two punches (one per lane at the tool) with the same 
shape as the final parts, shears the material and separate the final parts from the 
strip (final blanking). The final parts (see Figure 3.10) fall down through the cutting 
die and are stored in a metallic box under the blanking facility. The strip of material 
is cut in portions of 300 millimetres and is stored in a metallic box placed close to 
the forming facility. 

3.2.3.3. Reference 5828-001 

The manufacturing process of the reference 5828-001 is very similar to the 
manufacturing process of the reference 0863-012. Actually, the only difference 
between these two references is the shape of the final parts. The forming steps of the 
reference 5828-001 are briefly explained next: 

1. As in the previous explained references, the first station consists of two cylindrical 
punches (see Figure 3.11, blanking for positioning pin) that generate two circular 
holes. The geometry generated in this first station does not belong to the final parts, 
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but is used for positioning the strip within the progressive tool by means of the 
positioning pins. 

2. As in the reference 0863-012, the second station consists of four small cylindrical 
punches (see Figure 3.11, holes blanking) that create the corresponding small 
holes at the ears of the parts. After this second station, there is a checking station 
that verifies if the four holes were made. In order to make this verification, four pins 
goes through the previous sheared holes. If any of the pins is not able to go 
through the holes, the presence of a punch breakage is detected and a switch 
stops the blanking facility. 

3. In the third and last station, two punches (one per lane at the tool) with the same 
shape as the final parts, shears the material and separate the final parts from the 
strip (final blanking). Despite what happened with reference 0863-012, the final 
parts at this reference (see Figure 3.11) are blown out by means of pressurize air 
and leave the blanking facility through two PVC tubes (as happened with reference 
IA-04). On the other hand, as happened with reference IA-04 and reference 0863-
012, the strip of material is cut in portions of 300 millimetres and is stored in a 
metallic box placed close to the forming facility. 

 

Figure 3.11: Tool and manufacturing process for the reference 5828.001. 

3.3. Summary 

The present chapter describes the industrial environment where the intelligent control 
system developed at the present research work has been implemented and tested. The 
industrial environment selected is a SME company consecrated to the manufacturing of 
circlips, retaining rings, washers and special parts. The manufacturing process 
selected within the mentioned company is the production of small retaining rings 
(external diameter around 50 millimetres) at high production rates (around 120 parts 
per minute). Since it was desired to carry out as many industrial tests as possible in 
Industrias Alzuaran S.L., three references, included in the retaining rings family, were 
selected; reference IA-04, reference 0863-012 and reference 5828-001. These three 
references were selected because they are very similar one each other and the 
process failures and defects are very similar for the three of them. Another reason for 
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the election is that the three references are produced at the same production facility. 
The production facility is a 125 tons mechanical press and its correspondent decoiler 
and straightener that supply the mechanical press with the raw material, in the form of 
steel sheet coils. Finally the tools necessary to produce the selected references were 
also evaluated regarding the future introduction of the force and AE sensors that will 
survey the manufacturing process.  

3.4. Bibliography 

[WIK08] http://en.wikipedia.org/wiki/Retaining_ring 
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4.- SENSORS BASED PROCESS MONITORING 

The present chapter describes the approach carried out to monitor an industrial 
blanking process. This approach uses a sensors based process monitoring system in 
order to detect the process failures in the production facility. The chapter explains the 
installation of the sensors based process monitoring system into the blanking facility 
described in “Chapter 3. Industrial process description” and summarizes all the 
achieved results during the experimental phase.  

First of all, a brief worldwide benchmarking of the technology is given. The main 
purpose of the benchmarking is to select the industrial system that will be used during 
the research work. After this, a brief description of the sensors based process 
monitoring system selected for the present research work, the sensing techniques that 
this monitoring system uses and how the monitoring unit works is explained. 

Next, the sensors architecture installed at each of the tools studied during the present 
research work is described. It is explained the different types of sensors and the 
different position of the sensors in both the facility and the blanking tools. 

And finally, the results achieved with the sensors based process monitoring system 
during the experimental phase are written down. The results summarize the process 
failures that the sensors based process monitoring unit was able to detect during the 
experimental phase and the process failures that were not detected. 

Since one of the process failures not detected by the sensors based process 
monitoring system during the experimental phase is the burr growth in the cutting edge 
of the parts, a study to find the relationship between this burr growth and the evolution 
of the blanking forces is presented next.  

The chapter finishes with a brief summary of the results and conclusions achieved 
during the present research work regarding the monitoring of blanking processes by 
means of a sensors based process monitoring system.  

4.1. Introduction. 

Krzysztof Jemielniak, in his paper “Commercial Tool Condition Monitoring (TCM) 
Systems” [JEM99], presented a state of the art in commercially available TCM systems 
where summarised the leading suppliers of this technology in the market at the end of 
the last century. Almost 10 years have gone by since then, and the leader companies 
consecrated to the development of TCM systems are almost the same.  

Each TCM system consists of one or more sensors, strategically installed in the 
production facility/tool, signal conditioners or amplifiers to treat the process signals and 
a monitor. The function of the monitor is, by means of a predefined strategy, to analyse 
the process signals coming from the sensors and to provide reliable detection of tool 
and process failures. It can be equipped with some signal visualisation system 
(interface with the operator) and is usually connected to the production facility control. 

Although TCM systems have been applied to the surveillance of both cutting and 
forming processes, most of the TCM systems suppliers have been traditionally 
consecrated to the development of systems applied to cutting processes. This way, 
companies like Artis (Germany) [ART07], Kistler (Germany) [KIS07], Brankamp 
(Germany) [BRA07/1], Montronix (USA) [MON07], Nordman (Germany) [NOR07] and 
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Prometec (Germany) [PRO07] are nowadays the main market suppliers for TCM 
systems applied to cutting processes.  

Regarding forming processes, the topic of the present research work, there are not so 
many companies consecrated to the development of TCM systems. Four companies 
are nowadays the leaders at this market.  

1. Schwer and kopka (Germany) [SCH07] is also a company consecrated to the 
development and application of TCM to cold forming processes. Two people 
(Schwer and Kopka), who previously worked in Brankamp, founded this company 
in 1990. The TCM systems developed by this company are focused on both the 
structural integrity of the forming facilities and on the detection of the process 
failures. The TCM systems are equipped with a few sensing technologies ranging 
from piezoelectric sensors for force measurement, acoustic emission sensors, 
motor load sensors, inductive sensors for detection of metal parts to strain 
measurement sensors.  

2. Unidor (Germany) [UNI09] is a company consecrated to the development of 
monitoring system for the forming industry. The TCM systems developed by this 
company are focused on both the structural integrity of the forming facilities and 
forming tools and also on the detection of the process failures. Unidor offers a wide 
variety of sensors like digital light barriers, analog inductive proximity sensors, force 
sensors, acoustic emission sensors, eddy current sensors or incremental and 
absolute path measurement sensors.  

3. Siegfried (Czech Republic) [SIE09] is a company consecrated to the development 
of monitoring system for the forming industry. The TCM systems developed by this 
company are able to work with up to 8 channels.  

4. Helm (US) [HELM09] is a company consecrated to the development of technology 
for many industrial applications like TCM system for both, the stamping and cutting 
industry. Helm offers a wide variety of products with TCM systems able to monitor 
up to 8 channels in real time. The sensors used for this company are principally 
strain gains and piezoelectric sensors in order to measure forces.  

5. Imco (US) [IMC09] is a company consecrated to the development of precision load 
monitors and die overload detection systems. The systems developed by this 
company do not cover process monitoring but mainly care about the forces carried 
out by the facility to form the parts. These systems are very suitable for the 
detection of overloads that could lead to catastrophic breakages.  

6. Brankamp (Germany) [BRA07/1] is considered to be one of the worldwide leaders 
in the development and application of TCM systems to stamping and presswork 
processes. Brankamp offers a wider variety of sensing techniques than its 
competitors and also offers several TCM systems that provide the users with many 
possibilities and opportunities to improve their processes. Brankamp is the TCM 
supplier chosen for the present research work. More information about the 
company and about its TCM systems is provided next. 

4.2. Description of a sensors based process monitoring system. 

Brankamp System Prozassautomation Gmbh is a German company founded in 1977 
by Prof. Klaus Brankamp. The company's head office is in Erkrath, near Düsseldorf. 
The workforce of the company consists of 65 employees and the annual sales reach 
approximately € 10 million. Brankamp is considered to be one of the worldwide leaders 
in process monitoring with over 50.000 applications worldwide, around 30.000 
applications located in Central Europe [BRA07/1]. 
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Brankamp offers a wide variety of sensors based process monitoring systems 
[BRA07/2]. Up to 17 different sensors based process monitoring systems are offered 
depending on the process to be controlled and on the functions demanded by the user. 
The sensors based monitoring systems range from the simplest one, the Brankamp 
B100 [BRA07/3], able to measure up to two different channels to the most 
sophisticated one, the Brankamp PK6000 [BRA07/4], a windows embedded operating 
system able to measure up to 12 channels and equipped with a touch screen for an 
easier communication with the operator. 

4.2.1. The monitoring unit. 

The Brankamp system selected at the present research work is the PK550 unit 
[BRA07/5]. The PK550 unit is a sensors based process monitoring system specially 
designed for the monitoring of forming presses and thread rolling machines. It is able to 
measure up to 12 different channels, usually force and acoustic emission signals (see 
Figure 4.1).  

 

Figure 4.1: Process signal at Brankamp PK550 unit. 

The Brankamp PK550 unit is a sensors based process monitoring system designed to 
monitor the tool and/or facility condition and the product quality during production by 
evaluating signals specific to the process [BRA07/6]. This Brankamp sensors based 
process monitoring system works in the following way: after getting a correct process 
set up at the beginning of the production, a learning phase, during which the signals 
coming from the process are recorded, is carried out. The recorded signals correspond 
to a process behaving correctly and producing good quality parts.  

As a result, two envelope curves are created, an upper envelope curve and a lower 
envelope curve. These envelope curves represent the limits that distinguish a nominal 
production (green area in curves of Figure 4.2) from a faulty production (red areas in 
curves of Figure 4.9). The operator sets up the distance between the envelope curves. 
This distance, named sensitivity (see Figure 4.2), depends principally on how stable 
the process is. For very stable processes, the sensitivity and therefore distance 
between upper and lower envelope curves can be established around a value of 15 for 
force signals and 30 for acoustic signals [BRA07/4]. On the other hand, if the process 
is not very stable, the sensitivity must be set up at greater values, because otherwise, 
too many false machine stops would happen. The drawback of setting up big 
sensitivities is that some process failures could be hidden inside the envelope curves 
and not being detected. Therefore, the ideal situation is to get a very stable signal 
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(sensor located close to the point where the signal is generated) in a very stable 
process. In this case the operator can choose a small sensitivity value and even small 
process disturbances will be detected by the system (right side at Figure 4.2).  

 

Figure 4.2: Sensitivity set up at Brankamp PK550 unit. 

Once this is achieved, the monitoring system is turn into the Auto mode and compares 
stroke by stroke the signals coming from the process with the envelope curves. In the 
Auto mode, whenever at least one of the process signals (for example, Figure 4.2 
shows the signal of the sensor/channel number 1 in the left side and the signal of the 
sensor/channel number 4 at the right side of a blanking process) goes beyond the 
envelope curves, it is interpreted as a disturbance of the process and a faulty 
production signal is immediately sent to the press control which can react by stopping 
the facility, issuing a warning or activating a sorter [BRA07/6]. 

An example of one process failure detection is shown in Figure 4.3. In this case, a slug 
of material inside the tool blocked the motion of the strip and made it not to move the 
right distance. As a result, in the next stroke the pilot pins of the tool crashed into the 
strip generating a faulty production. Figure 4.3 shows how the monitoring system 
detects a force peak at the beginning of the stroke and identifies that something 
unusual is happening inside the tool.  



Sensors based process monitoring 

-81- 

 

Figure 4.3: Machine feeder failure detection by force measurement. 

4.2.2. Sensing techniques in metal forming (MF) process monitoring. 

The very first variable used to monitor metal forming processes were the forces 
generated during the process. Force measurement offered a very good balance 
between the necessary investment and the achieved results. With the past of the time, 
and mainly due to the increasingly complexity of the dies and the higher production 
rates of the facilities, it was detected a lost in the efficiency of the systems that were 
only based on force measurement. Experience has shown that the monitoring systems 
that are only based on force measurement can be either too late in recognising or 
unable to recognise process failures, such as cracks in punches or dies that could lead 
to catastrophic failures. This is the reason why a newer variable, the measurement of 
the acoustic signals generated within the material during its deformation, has 
experienced a huge evolution and is nowadays the best complement to force 
measurement in sheet metal forming monitoring systems [TER96]. Consequently, 
sheet metal forming monitoring systems are mainly based on two variables nowadays: 
the forces generated during the process and the acoustic emission (AE) signals 
generated within the material during its deformation [COW00]. 

The aforementioned sensing techniques, force and acoustic emissions, are the ones 
used at the present research work. Three different types of sensors have been used, 
two of them for measuring force signals and the third one for measuring acoustic 
emission signals. All the sensors belong to the same family of transducers: the 
piezoelectric transducers. A piezoelectric sensor, or transducer, is a device that uses 
the piezoelectric effect to measure pressure, acceleration or force, by converting them 
to an electrical signal [WIK07]. Therefore when a force, pressure or acceleration is 
applied over the material the piezoelectric sensors will react by generating a 
proportional electrical signal. The applied load can be calculated by measuring the 
generated electrical signal. Next, the sensors used at the present research work are 
briefly explained.  
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4.2.2.1. The Vario Sensor. 

The first type of sensor used at the present research work is the Vario Sensor. The 
Vario Sensor is a force acquisition piezoelectric sensor for indirect force measurement 
in machine structures. The sensors itself is able to work up to 500 KHz although for 
force measurements the amplifier only works up to 1 kHz. It is usually clamped in the 
connection rods of the machines and used to measure the tensile and compressive 
forces at the machine structure. The sensor is inserted in an 8 millimetres borehole 
(usually made at the connection rod of the press) and an integrated clamping device is 
used to preload the sensor (see Figure 4.4) [BRA07/2]. 

 

 

Figure 4.4: Schematic view of the Vario sensor and its installation. 

4.2.2.2. The piezoelectric sensor (universal sensor). 

The second type of sensor is the universal sensor which is used to measure the strains 
on the surface of the tools. This type of sensors offers much better responses than 
Vario Sensors because force measurement using Vario Sensors in the connection rod 
of the machine has three main limitations.  

1. First limitation comes from the fact that there can be a long distance between the 
point where the force is generated and the point where the force is measured. The 
greater the distance is the more information that is lost in the way to the 
measurement point. In this case, since the force is generated within the tool and is 
measured in the connection rod, part of the force can be dissipated in the tool or 
even in the structure of the machine and not very accurate results are achieved.  

2. Second is that the disadjustments in the bearings of the press or in some other 
dynamic elements can lead to noises and unstable measurements.  

3. And third, when the force is measured in the connection rod of the machine, it is not 
possible to analyse separately the forces made at each station of the tool. On the 
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contrary, the sensor measures the complete force made by the machine at each 
stroke. 

Summarising, when the purpose of the system is to work as an overload protection for 
the machine or for the tool, a Vario Sensor in the structure or in the connection rod of 
the machine is enough. On the other hand, when process monitoring wants to be 
achieved, the installation of universal sensors in the tools is much more efficient. The 
installation of universal sensors in the tools leads to more stable process signals and 
offers the chance to evaluate each station of the tool separately by installing several 
sensors in the tool. 

Universal sensors are installed in the tools by inserting and sticking the sensor in a 
groove made at the base plate of the tools. This installation is very efficient because 
the sensor can be installed close to the punches and dies in the tool. This way a direct 
measurement is achieved leading to better results. For example, Figure 4.5 shows how 
for the reference IA-04 at the present research work, five grooves for the installation of 
five universal sensors were created in the tool. It can be seen how this way, the 
universal sensors can be installed very close to the punches and dies of the tools 
leading to very accurate measurements [BRA07/2].  

 

Figure 4.5: Schematic view of the universal sensor and its installation in the tool. 

4.2.2.3. The Acoustic Emission (AE) sensor. 

And finally, the third type of sensors is the Acoustic Emission (AE) sensor. As it was 
said above, AE sensors are nowadays the best complement to force measurement in 
forming processes. At the present research work, Brankamp provided AE sensors for 
detection of tool breakage in the low frequency (LF) range, from 1 kHz up to 30 kHz. 
These sensors are equipped with a partly free vibrating ceramic piezo element and are 
mounted with a M8 screw to the surface of the tool [BRA07/2]. AE sensors are usually 
installed in the upper tool. The reason is that the main purpose of these sensors is to 
detect the breakages of the punches at the tool. Figure 4.6 shows schematically how 
one of the AE sensors used at the present research work was mounted in the upper 
tool that produces the reference 0863-012. 
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Figure 4.6: Schematic view of the AE sensor and its installation. 

4.2.3. The measuring chain and the process signals. 

After describing the PK unit and the sensors typology, next a brief description of the 
measuring chain at the process is given (see Figure 4.7).  

1. The piezoelectric sensors, either force or acoustic emission sensors attached to 
both the tool and the machine, generate charge proportional to the forces or 
acoustic emissions signals generated during the process.  

2. These electrical signals are driven to a connection box usually placed at the ram of 
the machine (for sensors attached to the top tool) or at the bed of the machine (for 
sensors attached to the bottom tool). The main function of the connection box is to 
make easier for the operator the connection of sensors from different tool 
references.  

3. From this connection box the signals are driven to the amplifier box. In the amplifier 
box, specific electronic cards get voltage signals (0 to 10 volts). Each type of signal 
(force or acoustic emission signals) has specific cards and is filtered at specific 
frequencies. This amplification makes the signals more robust and therefore more 
accurate results are achieved.  

4. After amplifying the signals, these are driven to the PK unit. In the PK unit, an 
analog to digital converter transforms the signals in order to compute them. Stroke 
by stroke, the process signals are compared and shown in the screen of the PK 
unit together with the envelope curves. Whenever the process curves are out of the 
envelopes, the PK unit sends a signal to the controller of the forming facility in order 
to activate a sorter and reject the part or to stop the production facility. 
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Figure 4.7: Measuring chain from the sensor to the PK unit. 

The previous explained one is the working procedure of the Brankamp commercial 
systems. Besides this and for the actual research work, a computer was connected to 
the PK unit in order to download and record the process signals. The computer was 
connected to the PK unit through a serial line and text files containing the information of 
the process signals were downloaded into the hard disk of the computer (see Figure 
4.8). In the PC, and as it will be explained in “Chapter 6. Intelligent Control System”, 
the signals coming from the process have been analysed with the purpose of 
identifying the process failure at the facility, its reason and the solution that should be 
applied to solve it. Figure 4.8 shows the representation of a process failure detected by 
the Brankamp PK unit. It shows how the text files downloaded from the Brankamp PK 
unit contain four rows of numerical values per sensor. First row is the time scale, 
second row is the lower envelope curve, third row is the actual process curve and 
fourth row is the upper envelope curve. Figure 4.8 also shows the representation of 
one text file made in Microsoft Excel where the process failure is clearly detected. 

 

Figure 4.8: Text file containing the data of the process and its representation in Excel. 
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4.3. Implementation of the sensors based process monitoring system into the 
sheet metal blanking process.  

Next, the sensor architecture proposed for each of the references studied at the 
present research work will be explained. At the beginning of the research work the 
blanking facility was already equipped with the Brankamp PK550 unit and three 
different process signals were recorded. The process signals captured were the force 
at the connection rod by a Vario Sensor and the acoustic emissions generated within 
the material during the cutting process and during the withdrawal of the ram by two AE 
sensors. With this architecture, the Brankamp PK 550 unit was able to detect some of 
the process failures at the blanking facility but was not able to detect all the possible 
process failures. The process failures detected with the previous sensor architecture 
are shown in Figure 4.9. 

 

Figure 4.9: Process failures detected by the former sensor architecture. 

As it is shown in Figure 4.9, with the former sensor architecture some of the process 
failures like double parts inside the tool due to malfunctions of the evacuation system, 
bad evacuated slugs of material due to misalignments in the punches / dies or punch 
breakages at the tool were able to be detected. It was also stated that the detection of 
these defects was not 100% assured due to the low reliability of the sensors (Vario 
Sensor in the connection rod). This former configuration had the advantage that no big 
modifications were needed when new references were produced at the blanking 
facility: only two screws at the new tool for the AE sensors. On the other hand, this 
former configuration based on a Vario Sensor in the connection rod and two AE 
sensors in the tool had a few drawbacks that are summarised next: 

1. Not all the process failures were detected with the former sensor architecture. For 
example, as it will be shown later, the Vario Sensor at the connection rod of the 
machine was not able to detect the adhesion of the strip to the pilot pins or punches 
at the tool. This process failure leads to malfunctions of the feeding system. 
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2. The position of the Vario Sensor in the connection rod, far away from the blanking 
process, made this sensor not to get all the information from the process. 
Therefore, the reliability at the detection of the process failures was not very high, 
and happened that the same process failure was sometimes detected and some 
other times not detected.  

3. Regarding the Vario Sensor in the connection rod, it was also found that the 
disadjustments in the bearings of the machine introduced noises into the captured 
signal. This made the Vario Sensor to behave very unstably, stopping the blanking 
facility many times. The consequence was that the operator always worked with a 
big sensitivity at this sensor and therefore some process failures were not detected 
due to this very permissible sensitivity.  

4. In the cases when the sensors were able to detect a process failure, the position of 
the failure at the tool was not identified. Since the sensors were capturing the 
signals coming from all the stations at the tool, they were able to detect a process 
failure, but its position within the tool had to be found by the operator. It will be 
shown later how, with the sensor architecture proposed at the present research 
work, the position of the failure at the tool is also found by the sensors based 
process monitoring system. 

After analysing all the previous mentioned drawbacks, it was decided to include 
universal sensors in the three tools that have been studied in the present research 
work. In order to achieve the best results, initial trials were carried out to evaluate the 
best position for the universal sensors within the tools. This way, sensors in the upper 
and lower side of the tools were placed ones in front of the others (as closer as 
possible to the blanking area). The conclusion, as shown in [SAE07], was that the 
sensitivity of the sensors placed in the upper side of the tools was bigger than the 
sensitivity of the sensors placed in the lower side of the tools. This fact is due to the 
place where the sensors can be positioned inside the tool; the sensors in the upper tool 
are completely centred with the cutting area whereas the sensors in the lower tool can 
not be centred because the parts, some of the references, are evacuated through the 
dies (in reference 0863-012 at the present research work).  

This way, the three aforementioned sensors, the Vario Sensor at the connection rod 
and the two AE sensors in the tools were kept and the new universal sensors were 
installed in the upper blanking tools. A universal sensor was installed for each one of 
the stations at each tool in order to have the possibility of determining the station where 
the process failures happen. Next, a brief description of the sensors included for each 
reference is given. 

4.3.1. Reference IA-04 

As described in “Chapter 3.2.3. Description of the blanking tools”, the tool that 
produces the reference IA-04 can be divided into three stations. In the first station, two 
circular holes for guiding the strip through the tool are blanked. In the second station, a 
central area common to two consecutive parts is blanked. And in the third station, both 
parts are blanked and therefore released from the strip. It was decided to install 
universal sensors in all the blanking stations at the tool. As it is shown in Figure 4.10, 
five universal sensors were installed in the upper base plate of the tool.  

1. Two sensors measure the force at the punches that blank the holes for the pilot 
pins.  

2. One more sensor measures the force at the punch that creates the central area 
common to two consecutive parts in the strip. 

3. And two more sensors measure the force at the main punches of the tool, the 
punches that blank the contour of the parts releasing them from the strip.  
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Figure 4.10: Universal sensors installation in reference IA-04 tool. 

The installation procedure was the one explained in “Chapter 4.2.2. Sensing 
techniques in MF process monitoring”. This way, five grooves were machined in the 
base plate of the upper tool and the sensors were installed by means of specific glue.  

The installation of all these sensors lead to a process monitored by eight different 
sensors. Next, the final sensor architecture applied to this reference is summarised 
(see also Figure 4.10 for force sensors attached to the tool).  

9 Sensor 1: Force sensor at the connection rod of the machine. 
9 Sensor 2: AE sensor capturing signal during the blanking phase. 
9 Sensor 3: AE sensor capturing signal during the withdrawal phase. 
9 Sensor 4: Force sensor at blanking for positioning pins (first) station in lane 1. 
9 Sensor 5: Force sensor at blanking for positioning pins (first) station in lane 2. 
9 Sensor 6: Force sensor at central area blanking (second) station. 
9 Sensor 7: Force sensor at final blanking (third) station in lane 1. 
9 Sensor 8: Force sensor at final blanking (third) station in lane 2. 

After the installation, tests to check the performance of the sensors were made. The 
results are described in “Chapter 4.4. Results achieved with the sensors based process 
monitoring system”. 

4.3.2. Reference 0863-012 

As described in “Chapter 3.2.3. Description of the blanking tools”, the tool that 
produces the reference 0863-012 can be divided into three stations. In the first station, 
two circular holes for guiding the strip through the tool are blanked. In the second 
station, four small cylindrical punches blank four small circular holes in the central area 
of the strip. These small circular holes correspond to the holes at the ears of two 
consecutive parts. And in the third station, both parts are blanked and therefore 
released from the strip. At this tool, and since the station where the holes for the pilot 
pins are blanked was already monitored in the reference IA-04, it was decided to install 
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sensors only in second and third stations. This way, four universal sensors were 
installed in the tool as it is shown in Figure 4.11.  

1. One sensor measures the force that the four small cylindrical punches make when 
the small circular holes are created. 

2. Another sensor is placed in the area where four pilot pins check if the small holes at 
the ears of the parts were correctly punched in the previous station.  

3. And two more sensors measure the force at the main punches of the tool, the 
punches that blank the external contour of the parts releasing them from the strip. 

 

Figure 4.11: Universal sensors installation in reference 0863-012 tool. 

Again, the installation procedure was the one explained in “Chapter 4.2.2. Sensing 
techniques in MF process monitoring”. In this case, four grooves were machined in the 
base plate of the upper tool and the sensors were installed by means of specific glue.  

The installation of all these sensors lead to a process monitored by seven different 
sensors. Next, the final sensor architecture applied to this reference is summarised 
(see also Figure 4.11 for force sensors attached to the tool).  

9 Sensor 1: Force sensor at the connection rod of the machine. 
9 Sensor 2: AE sensor capturing signal during the blanking phase. 
9 Sensor 3: AE sensor capturing signal during the withdrawal phase. 
9 Sensor 4: Force sensor at the holes blanking (second) station. 
9 Sensor 5: Force sensor at the holes “checking” (second) station. 
9 Sensor 6: Force sensor at final blanking (third) station in lane 1. 
9 Sensor 7: Force sensor at final blanking (third) station in lane 2. 

After the installation, tests to check the performance of the sensors were made. The 
results are described in “Chapter 4.4. Results achieved with the sensors based process 
monitoring system”. 
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4.3.3. Reference 5828-001 

Finally, and as it was mentioned in “Chapter 3.2.3. Description of the blanking tools”, 
the manufacturing process and therefore the tool for producing the reference 5828-001 
is very similar to the tool used for producing the reference 0863-012. Again, the tool 
can be divided into three main stations. In the first station, two circular holes for guiding 
the strip through the tool are blanked. In the second station, four small cylindrical 
punches blank four small circular holes in the central area of the strip. These small 
circular holes correspond to the holes at the ears of two consecutive parts. And in the 
third station, both parts are blanked and therefore released from the strip. In this case, 
three universal sensors were installed in the tool, as it is shown in Figure 4.12.  

1. One sensor measures the force that the four small cylindrical punches make when 
the small circular holes are blanked. 

2. Two more sensors measure the force at the main punches of the tool, the punches 
that blank the external contour of the parts releasing them from the strip. 

 

Figure 4.12: Universal sensors installation in reference 5828-001 tool. 

And finally, the installation procedure was again the one explained in “Chapter 4.2.2. 
Sensing techniques in MF process monitoring”. In this case, three grooves were 
machined in the base plate of the upper tool and the sensors were installed by means 
of specific glue.  

The installation of all these sensors lead to a process monitored by six different 
sensors. Next, the final sensor architecture applied to this reference is summarised 
(see also Figure 4.12 for force sensors attached to the tool).  

9 Sensor 1: Force sensor at the connection rod of the machine. 
9 Sensor 2: AE sensor capturing signal during the blanking phase. 
9 Sensor 3: AE sensor capturing signal during the withdrawal phase. 
9 Sensor 4: Force sensor at the holes blanking (second) station. 
9 Sensor 5: Force sensor at final blanking (third) station in lane 1. 
9 Sensor 6: Force sensor at final blanking (third) station in lane 2. 
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After the installation, tests to check the performance of the sensors were made. The 
results are described in “Chapter 4.4. Results achieve with the sensors based process 
monitoring system”. 

4.4. Results achieved with the sensors based process monitoring system. 

During the experimental phase, at the blanking facility in Industrias Alzuaran S.L., the 
aforementioned references as well as some other references produced at the same 
blanking facility were monitored. The reason for this is that the experimental phase was 
carried out in an industrial facility and the references to be produced were decided by 
the production manager in Industrias Alzuaran S.L. As mentioned before, this was also 
the reason for introducing sensors in more than one reference, to be able to produce 
as many parts as possible with sensorised tooling. Therefore, when the 
aforementioned references were monitored, the signals described in “Chapter 4.3” 
were recorded. On the other hand, when some other references were produced at the 
blanking facility, the experimental phase was carried out with the monitoring of the next 
described signals: 

9 Sensor 1: Force sensor at the connection rod of the machine. 
9 Sensor 2: AE sensor capturing signal during the blanking phase. 
9 Sensor 3: AE sensor capturing signal during the withdrawal phase. 

Since most of the references produced at the blanking facility belong to the family of 
retaining rings and their manufacturing processes are very similar, it can be stated that 
the set of process failures detected at the blanking facility are common to all this family 
of parts. Next, a summary of all the process failures detected at the blanking facility for 
the produced references is described. At the same time, after describing the process 
failures that were detected, a small summary of the process failures that were not 
successfully detected using the Brankamp sensors based process monitoring system 
will be also described. 

4.4.1. Process failures detected by the sensors based process monitoring system 

Next, the process failures detected during the experimental phase with the help of the 
Brankamp sensors based process monitoring system are described. Up to nine 
different process failures were successfully detected with the Brankamp sensors based 
process monitoring system, what means approximately 95% of the possible process 
failures at the blanking facility. The other 5% of defective parts belongs principally to 
parts with local big burrs and parts out of tolerances (defects explained in “Chapter 5. 
Part quality control”) and parts with excessive burr (topic explained in “Chapter 4.5. 
Evolution of the process signals and part’s edge quality during the production”). 

4.4.1.1. Feed failure I: Strip completely blocked  

First process failure detected at the blanking facility happens when the metal strip is 
completely blocked and the feeding system cannot advance it between two 
consecutive strokes. When this happens, in the second stroke the punches go through 
the holes blanked in the previous stroke and the machine does not apply force at all 
over the strip.  

Next, an example of this process failure during the production of the reference IA-04 is 
given. Figure 4.13 shows how the process failure is detected by the sensors based 
process monitoring system. The force and the acoustic signals in all the sensors are 
completely flat. This process failure happens when there is some metal slug inside the 
tool that has not been correctly evacuated. The metal slug blocks the movement of the 
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strip and in consequence, the strip remains in the same position. This process failure 
does not represent an instant threat for the integrity of the tool or machine but at the 
same time stops the manufacturing process because no parts are produced. When this 
problem failure happens, the operator has to release the metal strip from the tool and 
find and evacuate the metal slug that avoids the advance of the strip. 

 

Figure 4.13: Process signals during feed failure I: Strip completely blocked (reference IA-04). 

4.4.1.2. Feed failure II: Strip partially blocked  

Second process failure detected at the blanking facility is very similar to the first one 
described above. In this case although the feeding system is able to advance the metal 
strip, this does not reach the right position because something is blocking its 
movement. When this happens and the metal strip does not get the right position inside 
the tool, the pilot pins, instead of crossing the centring holes, crash the metal strip 
generating faulty centring holes. These faulty holes and their consequences are shown 
in Figure 4.14 (during manufacturing of reference IA-04): the pilot pins blank the metal 
strip and therefore the right position of the strip inside the tool is lost. This could have 
two consequences: first consequence is that the quality of the produced part is lost 
because there is a misalignment between stations at the tool. And second and more 
problematic is that if this process failure is not detected on time, the dies and punches 
at future stations could suffer catastrophic failures due to the incorrect position of the 
strip inside the tool. 
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Figure 4.14: Consequences of the feed failure in the metal strip. 

Since the pilot pins are longer than the blanking punches because they have to position 
the metal strip before the punches blank the new holes, the sensors based process 
monitoring system is able to find this defect due to the force increment detected at the 
beginning of the stroke. This force increment is due to the force that the pilot pins make 
for blanking the metal strip and is shown in Figure 4.15.  

Since the pilot pins are located in the first and second station of the tool, is in this area 
of the tool where the forces are higher at the beginning of the stroke. It is shown in 
Figure 4.15 how the force signal at the beginning in sensor 4, sensor 5, sensor 6 and 
sensor 7 is bigger than the nominal. It also can be seen how the force signal is much 
bigger in sensor 4, sensor 5 and sensor 6 than in sensor 7. This is due to the proximity 
of the sensors to the area of the tool where the process failure happened. It can be 
concluded with this information that the process failure happened in the first and 
second station of the tool and not in the last station. 

 

Figure 4.15: Process signals during feed failure II: Strip partially blocked. 
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At the same time, another fact must be taken into consideration. Although it is shown in 
Figure 4.15 that the signals coming from the machine are most of time out of the 
envelopes (represented as red area), it must be considered that only the first area 
where the signals are out of the envelopes represents the process failure. The reason 
for this is that once the sensors based process monitoring system detects this initial 
faulty area, the machine is stopped and therefore all the process signals are modified. 
Therefore, although it could be concluded that this process failure is also detected at 
references monitored only with the force sensor at the connection rod (first sensor), this 
is not so clear because the failure detected by this sensor (red area) in this case was 
due to the machine stop and not to the process failure itself. The force at the beginning 
of the stroke for sensor number one remains inside the envelopes (too big sensitivity 
due to an unstable signal).  

The restarting procedure is the same as the one applied in the previous case: the 
operator has to release the metal strip from the tool and find and evacuate the metal 
slug that avoids the correct advance of the strip. 

4.4.1.3. Metal slug in pilot pins station 

Third process failure detected at the blanking facility is the presence of a badly 
evacuated metal slug inside the tool. An example of this process failure detected when 
the reference IA-04 was being produced is explained next. The tool for producing this 
reference evacuates the metal slugs through the dies in the first station. The punches, 
after blanking the initial holes for guiding the metal strip, push down the metal slugs 
through the dies. If the punches do not push the metal slugs down enough, these last 
remain in the area where the blanking process is carried out.  

If the presence of the metal slugs does not avoid the correct advance of the strip, the 
punches will find them during their next downwards movement. This will have as a 
consequence that the metal slugs will be scratched against the metal strip generating 
“marks” in the metal strip that could lead to bad quality parts. These “marks” are shown 
in Figure 4.16. At the same time, and depending on the position of the metal slugs 
inside the tool, this process failure could lead to catastrophic tool failures. 

 

Figure 4.16: Marks in the metal strip due to bad evacuated metal slugs in first station. 

Figure 4.17 shows how the sensors based process monitoring system detects this 
process failure. In this case, the position of the metal slug corresponds to the position 
where sensor number 5 was placed inside the tool. As it can be seen in Figure 4.17, 
the presence of metal slugs in the tool can represent two modifications in the process 
signals. First modification (most common one) is that the force rising begins earlier. 
The metal slugs make the strip to be a bit higher inside the tool and this is why the 
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force increment starts a bit earlier than the nominal one. And second (not always 
detected), since the punches find, beside the metal strip, the metal slug, the necessary 
blanking force is bigger than the nominal. These two facts are shown in sensor number 
5, where the force starts a bit earlier and is bigger than the nominal one. It can also be 
seen in Figure 4.17 how sensor number 1 in the connection rod was not able to detect 
the presence of the metal slug.  

 

Figure 4.17: Process signals during “Metal slug in pilot pins station” failure. 

The restarting procedure is the same as the one applied in the previous cases: the 
operator has to release the metal strip from the tool and find and evacuate the metal 
slug. In this case the operator finds the metal slug easier and faster because he/she 
knows the station of the tool where the process failure happened.  

4.4.1.4. Metal slug in central area station 

Fourth process failure is very similar to the previous one with only one difference: the 
position in the tool where it happens. Next, an example of this process failure detected 
during the production of the reference IA-04 is given. The previous process failure was 
due to the presence of a badly evacuated metal slug in the first station. In this case, the 
sensors based process monitoring system detects a badly evacuated metal slug in the 
second station of the tool. The consequences of this badly evacuated metal slug in the 
second station are shown in Figure 4.18 where the “marks” that the badly evacuated 
metal slug creates in the strip are shown. Again, this could have consequences 
regarding the quality of the produced parts and regarding catastrophic failures of the 
tool. 
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Figure 4.18: Marks in the metal strip due to bad evacuated metal slugs in second station. 

Figure 4.19 shows the position of the process failure inside the tool. In previous failure, 
sensor number 5 was the faulty channel. At this time, sensor number 6, which detects 
the process failure, corresponds to the second station where the central area common 
to two consecutive parts is blanked. Therefore, the operator can identify from the 
sensors based process monitoring system the position of the process failure at the tool. 
At the same time, and regarding the typology of the process failure, it is shown in 
Figure 4.19 how the force rising starts a bit earlier in channel number 6. 

 

Figure 4.19: Process signals during “Metal slug in central area station” failure. 

The restarting procedure is the same as the one applied in the previous case: the 
operator has to release the metal strip from the tool and find and evacuate the metal 
slug. In this case, as in the previous case, the operator finds the metal slug easier and 
faster because he/she knows the station of the tool where the process failure has 
happened.  
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4.4.1.5. Evacuation system failure I: “Double parts in pilot pins” 

Fifth process failure detected during the experimental phase was the presence of badly 
evacuated parts inside the tool. At this point, it must be explained that regarding the 
final blanking station, the tools monitored at the present research work can be divided 
into two different groups. The final blanking station at the tool that produces the 
reference 0863-012 performs a simple action blanking process. This way, the punch, 
with the same external contour as the part and placed in the upper tool, blanks the part 
and pushes it downwards through the die.  

On the other hand, the final stations at tools that produce the references IA-04 and 
5828-001 perform a double action blanking process. These final stations are composed 
of two punches and two dies each. A first “couple”, punch and die, blanks the external 
contour of the part. After this, a second “couple” blanks the internal contour of the part 
releasing this from the metal strip. At this second blanking, the part is kept inside the 
die that is placed in the upper tool. After this, when the ram of the machine is in the 
upper position, one ejection system pushes the part out of the die. Then, when the part 
is falling down from the upper tool towards the lower tool, the air evacuation system 
blows the part out of the tool. 

 

Figure 4.20: Double action final blanking station. 

It was detected during the experimental phase that the air evacuation system does not 
always work properly and that sometimes the parts were not evacuated from the tool. 
The process failure described in the present lines was detected during the production 
of the reference IA-04. Figure 4.21 shows how two parts were not evacuated from the 
tool generating a process failure in the next stroke of the machine. This process failure 
could lead, depending on the position of the badly evacuated parts in the tool, to the 
production of bad quality parts and also to catastrophic failures of the tool. 
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Figure 4.21: Marks in the metal strip due to bad evacuated parts in first station. 

The detection of these badly evacuated parts inside the tool is very similar to the 
detection of badly evacuated metal slugs. Generally, the presence of the parts makes 
the punches to find the metal strip earlier, and therefore, there is a force rising right at 
the beginning of the force curve. This fact is shown in Figure 4.22 where sensor 
number 4, sensor number 5 and sensor number 6 suffer a force rising right at the 
beginning of the blanking curve.  

 

Figure 4.22: Process signals during “Double parts in pilot pins” failure. 

The position of the parts inside the tool can also be determined with the sensors based 
process monitoring system. As explained in “Chapter 4.3.1. Reference IA-04”, sensor 
number 4 and sensor number 5 are placed in the first station of the tool meanwhile 
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sensor number 6 watches over the second station of the tool. Therefore it can be 
concluded from the process signals that the badly evacuated parts are in the first and 
second station of the tool. This diagnosis matches with Figure 4.21 where the presence 
of two badly evacuated parts in the first station and close to the second station of the 
tool is shown. 

The restarting procedure consists on releasing the metal strip from the tool and find 
and evacuate the badly evacuated part. In this case, and as in the previous cases, the 
operator can find the badly evacuated part easy and fast, because he/she knows the 
station of the tool where the process failure has happened. At the same time, the 
operator has to check the right performance of the air evacuation system. Sometimes, 
and due to the vibration of the machine, this system suffers misalignments from its right 
position and this is the reason for its malfunction.  

4.4.1.6. Evacuation system failure II: “Double parts in final blanking station” 

Sixth process failure is very similar to the previous one with only one difference: the 
position in the tool where it happens. Next, an example of this process failure detected 
during the production of the reference 5828-001 is given. In the previous process 
failure, badly evacuated parts were detected in the first station of the tool. In this case, 
one badly evacuated part is detected at the final station of the tool.  

When this process failure happens, the part that has not been evacuated in the 
previous stroke is compressed between the punch and the metal strip. Figure 4.23 
shows the consequences of this process failure. First consequence is generation of 
“marks” in the metal strip. These “marks” can lead to the future production of parts with 
“marks” that will be defective. At the same time, and depending on the position of the 
badly evacuated part inside the tool, catastrophic failures in this last one could be 
generated. And finally, as shown in the right side at Figure 4.23, if the badly evacuated 
part is blanked and correctly evacuated from the tool in the next stroke, a defective part 
would be manufactured and sent to the customer with the associated problematic; 
rejection of the batch and economical losses. 

 

Figure 4.23: Marks in the strip and bad quality part due to bad evacuated parts in the final station. 

The detection of this “double part” inside the tool is very similar to the previous 
explained process failure. The main difference is that instead of detecting the process 
failure in the sensors placed at the first station of the tool, the process failure is 
detected in the third station of the tool. Figure 4.24 shows how the process failure is 
detected in sensor number 5, placed in the final blanking station in lane 1.  
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Again, the presence of the bad evacuated part makes the punches to find the metal 
strip a bit earlier, and therefore, there is a force rising right at the beginning of the force 
curve. This fact is shown in Figure 4.24 where sensor number 5 suffers a force 
increment right at the beginning of the blanking curve. 

 

Figure 4.24: Process signals during “Bad evacuated parts in third station” failure. 

The restarting procedure consists on releasing the metal strip from the tool and find 
and evacuate the badly evacuated part. In this case, and as in the previous cases, the 
operator can find the badly evacuated part easy and fast because he/she knows the 
station of the tool where the process failure happened. At the same time and as in the 
previous case, the operator has to check the right performance of the air evacuation 
system. Sometimes, and due to the vibration of the machine, this system suffers 
misalignments from its right position and this is the reason for its malfunction.  

4.4.1.7. Ejector failure: “Double parts inside the blanking dies” 

Seventh process failure happens when the ejection system that releases the parts from 
the dies in the double action blanking systems fails. Next, an example of this process 
failure detected when the reference IA-04 was being produced is given. The ejection 
system is composed of several pins that push the part down. When the ejection system 
fails, the part remains inside the die during the next stroke. When this process failure 
happens, the blanking of the parts in the next stroke is made correctly and no process 
failure is detected by the system. On the other hand, and right after blanking the parts 
and before arriving the ram to the lower dead point, the sensor placed in the final 
station detects a force rising.  

Figure 4.25 shows this force increment at the end of the force curve in sensor number 
8 that corresponds to the final blanking station in lane 2 of the tool. What happens in 
this process failure is that after blanking the part (with the previous part inside the die), 
this second part is also kept inside the blanking die. The presence of both parts inside 
the same die makes that when the ram of the machine reaches the lower dead point, 
both parts are compressed between the upper and lower tool generating a force rising. 
This force rising is monitored by the system that detects the process failure.  
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Figure 4.25: Process signals during “Double part inside the blanking die” failure for ref. IA-04. 

The force variation experimented by the sensor during this process failure depends on 
several factors. In order to explain this better, the same process failure detected by 
sensor number 1 (placed at the connection rod) (see Figure 4.26) and detected by a 
universal sensor (placed at the tool) (see Figure 4.25 sensor 8) when producing the 
reference IA-04 are compared. Theory says that the detection of the process failure at 
the tool where the universal sensor was installed should be clearer. Reality, however, 
shows that the detection of the process failure in Figure 4.26 (sensor in connection rod) 
is clearer than the detection of the same process failure in Figure 4.25 (universal 
sensor inside the tool). The reason for this is that the sensor signal, besides the 
sensitivity of the sensor, also depends on the overload size. Channel 8 at Figure 4.25 
shows how the overload generated is very small and only the universal sensor placed 
at the tool is able to detect it. In this case, the sensor placed at the connection rod does 
not detect this process failure. On the other hand, the overload generated in Figure 
4.26 is so big that even the sensor placed at the connection rod is able to detect it. The 
value of the overload depends on the thickness of the produced parts and on the 
remaining distance between the upper and lower tool during the normal production 
(only one part inside the die). The restarting procedure consists on extracting the parts 
from the die and checking the reason why the ejection system is not working properly. 
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Figure 4.26: Process signals during “Double part inside the blanking die” failure (another ref). 

4.4.1.8. Punch breakage 

Eighth process failure corresponds to the detection of punch breakage. An example of 
this process failure that happened during the production of the reference 0863-012 is 
given next. This process failure usually happens when the wear at the blanking 
punches is considerably high. Contrary to popular belief, the breakage of the punches 
happens during the withdrawal of the ram. During the blanking phase the punches 
suffer compression stresses. On the other hand during the withdrawal of the tool, and 
due to the elastic recovery of the metal strip, the punches suffer tensile stresses and is 
during this phase when they are more prompt to be broken. For this reason, one AE 
sensor was installed in the tools and monitors the withdrawal of the ram.  

Figure 4.27 shows the consequences regarding the quality of the produced parts. It is 
shown how one of the holes at the ears of the part was not completely blanked and 
therefore the quality of the produced part is not good. At the same time, if this process 
failure were not detected, the broken tip of the punch would be clamped in the metal 
strip leading to future process failures like defective advance of the strip through the 
tool that could have as a consequence catastrophic failures.  

 

Figure 4.27: Part produced with a punch broken inside the tool. 
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Figure 4.28 shows how the sensors based process monitoring system detects the 
breakage of the punch during the withdrawal of the tool. It is clearly shown how the 
acoustic signal in sensor number 3 suddenly increases when the punch breaks. 
Another important conclusion is that this AE sensor is really important in this short of 
blanking facilities because it is able to stop the machine before the next stroke. Without 
this AE sensor the force sensor would detect this breakage only after next stroke, what 
could have already leaded to catastrophic consequences. This is the reason why AE 
sensors are the best complement to force sensors in forming processes monitoring.  

 

Figure 4.28: Process signals during “Punch breakage” failure. 

The restarting procedure consists on extracting the metal strip from the tool, 
dismounting the broken punch and replacing it with a new punch. Depending on the 
length of the broken punch two different protocols could be used to replace it. 

4.4.1.9. Metal strip adhesion to pilot pins  

Ninth and last process failure detected during the experimental phase is the adhesion 
of the metal strip to the pilot pins due to an excessive burr at the guiding holes. An 
example of this process failure that happened during the production of the reference 
0863-012 is given next. An excessive burr at the guiding holes makes these to have 
more adhesion to the pilot pins. Then the metal strip is vertically moved following the 
upper tool. This vertical movement leads to misalignments of the metal strip inside the 
tool and problems with the feeding system.  
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Figure 4.29 shows how the sensors based process monitoring system detects the 
adhesion of the strip to the pilot pins. Sensor number 5, sensor number 6 and sensor 
number 7, placed respectively in the second and third station (lane 1 and lane 2 in third 
station) of the tool detect a time gap in the signals coming from the process. This gap 
in the signals is directly linked to this process failure at the blanking tool.  

 

Figure 4.29: Process signals during "Metal strip adhesion to pilot pins" failure. 

When this process failure happens, the operator has to find which one of the blanking 
punches at station one is wear and produces an excessive burr in the guiding holes 
and replace it with a new punch.  

4.4.2. Process failures non detected by the sensors based process monitoring system 

Although most of the process failures at the blanking facility were detected with the 
sensors based process monitoring system, there are also some other process failures 
that were not detected. The process failures that were not detected with the sensors 
based process monitoring system are mostly related to the quality of the manufactured 
parts and not related to process instabilities. Next, the process failures not detected 
during the experimental phase with the help of the Brankamp sensors based process 
monitoring system are described. 

4.4.2.1. Local big burr due to punch micro-cracks 

A very common process failure in blanking processes is the formation of small micro-
cracks in the edge of the blanking punches. Micro-cracks in blanking tool structure may 
be originated from the onset of brittle fracture due to cyclic loading during blanking 
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(fatigue damage) [KLA06]. Figure 4.30 shows micro-cracks detected in different 
blanking punches during the experimental phase. 

 

Figure 4.30: Micro cracks and cracks in the blanking punches. 

The generation of these micro-cracks in the edge of the punches do not follow any 
predefined rule and cannot be predicted by any mathematical function. Micro-cracks 
can appear in the edge of the punch at the very beginning of the production, after a few 
thousand strokes or cannot appear during the entire production. Their growth depends 
on several factors like for example the roughness of the surface and the quality of the 
edge after the grinding process. 

When these small micro-cracks appear in the edge of the tool, some quality defects 
appear also in the manufactured parts. When the parts are blanked in the final station 
of the tool, the material can flow through these micro-cracks in the punches and 
generates local big burrs in the manufactured parts. Although the parts go through a 
grinding process later, these local big burrs are not eliminated and bad quality parts are 
produced. This is a very important defect to take into consideration because once the 
micro-crack appears in the edge of one punch, all the following manufactured parts 
present these local big burrs and therefore are bad quality parts. Figure 4.31 shows an 
example of one part (5828-001 reference) with this defect.  

 

Figure 4.31: Local big burr in reference 5828-001 due to punch micro cracks. 
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Regarding the detection of this process failure, it has been stated during the 
experimental phase that the sensors based process monitoring system is not able to 
detect it. The growth of these micro-cracks represents a force variation in the blanking 
process, but this force variation is so small that even the universal sensors placed 
close to the punches in the tool are not sensible enough. At the same time the AE 
sensors do not experience any big changing when these micro-cracks growth in the 
punches. 

Therefore, nowadays and since the sensors based process monitoring system is not 
able to detect this process failure, the operator of the blanking facility checks 
periodically the appearance of this defect in the parts. When parts with local big burrs 
are found in one periodical inspection, the operator stops the blanking facility and 
rejects the parts that have been produced since the previous inspection.  

As it will be explained in “Chapter 5. Parts quality control”, an artificial vision (AV) 
system has been developed at the present research work to verify the quality and 
check for this short of defects in the 100% of manufactured parts. With this approach, 
an online control quality of the manufactured parts is achieved reducing the 
manufacturing of this short of defective parts and avoiding the shipment of these 
defective parts to the customer. 

4.4.2.2. Excessive burr due to punch wearing 

Second process failure regarding the quality of the manufactured parts that was not 
detected with the sensors based process monitoring system was the growth of the burr 
at the edges of the parts. Although the parts go through a deburring process at the end 
of their manufacturing process, there exists a limit burr height from which the deburring 
process is not effective any more (variable H in Figure 4.41). Therefore, the height of 
the burr at the parts must be controlled in order to re-sharpen the punches when these 
last ones present excessive wearing.  

Nowadays the operator is in charge of checking the burr height periodically although he 
does not use any measuring device for it. The procedure is the next: the operator takes 
a few parts and “feels” with the fingers the height of the burr. Depending on his criteria, 
the operator decides to continue producing parts or to stop the production and re-
sharpen the punches. This quality control is very subjective and depends principally in 
the experience of the operator. 
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Figure 4.32: Burr growth at the edge of the parts. 

Figure 4.32 shows how the edge of the parts suffers an evolution as the number of 
manufactured parts increases. The left side of the figure shows the edge of the parts at 
the beginning of the production. It is shown how at this point there is no burr at the 
edge of the parts. The right side of Figure 4.32 shows the edge of the parts after 
40.000 strokes. It is shown how the height of the burr at this point has reached 73 
microns. At this burr height the operator decided to re-sharpen the punches. 

After the experimental phase, it was concluded that the sensors based process 
monitoring system by itself is not able to detect this increment in the wear of the 
punches, and therefore, the growth of the burr at the parts. On the other hand, it was 
also concluded that there exist a relationship between the variation of the blanking 
force and the wear of the punches and, therefore, the growth of the burr at the parts. A 
deeper study on this relationship was carried out in order to use the sensors based 
process monitoring system as a tool to predict the growth of the burr over the maximum 
allowable limit. This study is presented in the following chapter. 

4.5. Evolution of the process signals and part’s edge quality during the 
production 

As mentioned in the previous subchapter, one of the conclusions during the 
experimental phase is that the sensors based process monitoring system is not able to 
detect when the burr height reaches its maximum allowable value. The reason for this 
is that the sensors based process monitoring system is more oriented to sudden 
changes at the signals coming from the process. On the other hand, the wear of the 
punches, besides generating the burr at the produced parts, has also as a 
consequence a smooth increment of the force necessary to blank the parts.  

Therefore, although the sensors based process monitoring system is not able to detect 
by itself the maximum allowable burr height, a study has been carried out in order to 
find any possible relationship between the increment of the burr height and the 
variation of the process signals measured by the sensors based process monitoring 
system. This way, the operator will be able to use the sensors based process 
monitoring system to detect when the burr at the parts reaches the maximum allowable 
height and the decision to re-sharpen the punches will be taken in a more objective and 
robust way.  
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The present research was carried out during the production of the reference 0863-012. 
Figure 4.33 shows the two variables studied: the evolution of the process signals 
(examples given in different colours in the right graphic and further explained in 
Chapter 4.5.1) and the evolution of the edge quality (example given in the left graphic 
and further explained in Chapter 4.5.2) as the number of parts produced increments. 
Samples of the process signals and samples of the manufactured parts were taken at 
the blanking facility after 500, 10.000, 20.000, 30.000 and 40.000 strokes. After 40.000 
strokes the operator decided to re-sharpen the punches because, following his criteria, 
the burr at the parts had reached its maximum allowable limit. 

 

 

Figure 4.33: Process variables studied during the burr and force evolution study. 

Next all the achieved results are shown. First, the process signals evolution for all the 
force and AE sensors used at the reference 0863-012 are shown. After this, the 
evolution of the edge quality, both internal and external, at the parts is shown. And 
finally, a comparison between these two factors is made and the consequent 
conclusions are written down.  

4.5.1. Evolution of the process signals 

First variable studied is the evolution of the process signal over the production of the 
reference 0863-012. In order to carry out this analysis, samples of the process signals 
were taken at some predefined intervals, after 500, 10.000, 20.000, 30.000 and 40.000 
strokes. The samples collection was carried out in the next way: at each predefined 
interval, 20 consecutive process signals were downloaded from the Brankamp PK 550 
unit to the hard disk of a computer. Since the process signals were recorded in an 
industrial environment and not all the variables were under control, it was decided to 
record 20 consecutive process signals in order to calculate their average and avoid the 
possibility of introducing noises in the measurements.  

The analysis of the process signals was carried out using Microsoft Excel. After 
calculating the average value of the process signals, three different diagrams were 
developed to compare the process signals at the different manufacturing intervals (for 
example see Figure 4.34): 
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1. First diagram (force or AE signals depending on the sensor) represents the 
average value of the 20 recorded process signals. The vertical axis represents the 
value of the recorded signal. This vertical axis is measured in Volts, although it 
does not offer a real measurement of the blanking forces because the sensors are 
not calibrated. And the horizontal axis represents the crank angle of the machine. 
The unit is crank degrees.  

2. Second diagram (upper area of the signals) is a zoom of the force signals at their 
maximum values area (this diagram was only developed for the force signals). The 
vertical axis represents the relation between the measured forces and the forces at 
the beginning of the production (500 strokes). The horizontal axis represents the 
crank angle of the machine. The unit is crank degrees. 

3. And finally, third diagram (maximum force or maximum noise level) represents the 
maximum value of the curve for each process signal (both force and acoustic 
emission curves). The vertical axis represents again the signal variation with 
respect to the initial signal. This vertical axis is again measured in Volts and the 
values are relative to the maximum signal value at 500 strokes curve. The 
horizontal axis represents the number of strokes at which the samples were taken 
during the production.  

The samples taken at the predefined intervals contain the information related to six 
sensors at the 0863-012 reference tool. Sensor number 5, installed in the station where 
the presence of the holes at the ears of the parts was checked, did not provide much 
information because this station does not perform any blanking process. A brief 
explanation of the sensors is given next, and the signals recorded at the present study 
are shown after. 

9 Sensor 1: Force signal captured by the Vario sensor in the connection rod of the 
forming facility. 

9 Sensor 2: AE signal captured during the blanking phase. 
9 Sensor 3: AE signal captured during the ram withdrawal. 
9 Sensor 4: Force signal captured by the universal sensor placed at the second 

station in the tool (blanking of small holes at the ears of the parts). 
9 Sensor 6: Force signal captured by the universal sensor placed at the third station 

(first lane) of the tool (final blanking of parts). 
9 Sensor 7: Force signal captured by the universal sensor placed at the third station 

(second lane) of the tool (final blanking of parts). 

4.5.1.1. Sensor 1: Force signals at the connection rod 

First process signal analysed at the present study is the force measured by the sensor 
placed at the connection rod of the machine that measures the total force that the 
machine needs to blank the metal strip.  

The first diagram (top left in Figure 4.34) shows the force curves measured at the 
predefined manufacturing intervals. It can be distinguished how signals show a slight 
instability, with several waves at the beginning and at the end of the blanking phase, 
instead of being smooth curves. This is due to the distance between the signal source 
and the signal measurement point, and also due to the possible disadjustments due to 
wearing in the bearings of the blanking facility. This makes this sensor not to be a very 
reliable information source. 

Regarding the maximum force, the second diagram (top right in Figure 4.34) shows the 
area where the machine applies the maximum load for blanking the metal strip. This 
zoom of the maximum force area shows how the maximum forces increases as the 
number of produced parts increases too. This tendency is clear although this diagram 
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also shows how the force at 20.000 strokes suffers a big decrement being even smaller 
than the force at the beginning of the production. This fact does not match with the 
clear tendency of the forces at the connection rod and this is the reason why it was 
concluded that something unknown happened that made those samples not to be the 
correct ones. Again, and as a possible explanation, the distance of the sensor to the 
tool and the disadjustments in the moving elements of the blanking facility appears as 
the cause of this incorrect measurement. 

And finally, third diagram (bottom centre in Figure 4.34) shows the tendency of the 
force only considering the greatest value at each force curve. For this diagram, the 
greatest value at 500 strokes curve was taken as the reference. It is shown how there 
is a clear tendency towards an increment in the maximum value of the force curves 
except for the force curves taken after 20.000 strokes. This value was not taken under 
consideration and it was concluded that the maximum force applied by the machine 
after 40.000 strokes is 33% bigger than the force applied at the beginning of the 
production. 

 

Figure 4.34: Process signals from force sensor at the connection rod. 

4.5.1.2. Sensor 2: AE signals during blanking phase 

Second process signal analysed at the present study is the AE measured during the 
blanking phase. The AE sensor is attached to the tool by means of one screw and in 
this case “listens” the process during the blanking phase, when the ram is moving 
down and the punches blanks the metal strip.  

The first diagram (top left in Figure 4.35) shows the signals captured by the sensor. 
Each signal is composed of two peaks that represent the two phases during the 
blanking of the metal strip. First peak represents the sound emitted due to the impact of 
the punches with the metal strip. And second peak represents the ending of the 
material piercing.  

Regarding the maximum noise level, the second diagram (top right in Figure 4.35) 
shows the tendency of the noise level only considering the greatest value at each 
acoustic curve. This second diagram shows the values for the first peak, the impact of 



Sensors based process monitoring 

-111- 

the punches and the metal strip. For this diagram, the greatest value at 500 strokes 
curve was taken as the reference again. In this case the tendency of the maximum 
value is not very clear and does not contribute with much information about the 
process. At the beginning there is a clear increment up to 10.000 strokes but later the 
noise level decrements until the end of the production. No clear conclusions were 
drawn out. 

On the other hand, the third diagram (bottom centre in Figure 4.35) shows the 
maximum values for the second peak, the piercing of the metal strip. For this diagram, 
the greatest value at 500 strokes curve was taken as the reference again. In this case it 
is shown how there is a tendency towards an increment in the maximum value 
although this increment is not very clear because there are two small decrements (at 
20.000 and 40.000 strokes). Anyway, it can be concluded that the noise level 
increments with the number of produced parts. At the end of the production the noise 
level incremented around 28%.  

 

Figure 4.35: Process signals from AE sensor during blanking phase. 

4.5.1.3. Sensor 3: AE signals during ram withdrawal 

Third process signal analysed at the present study is the AE measured during the 
withdrawal of the upper tool. The AE sensor is attached to the tool by means of one 
screw and in this case “listens” the process during the withdrawal phase, when the ram 
is moving up. The main purpose of this sensor is to detect the breakage of the punches 
due to tensile stresses. These tensile stresses are generated when the material strip 
clamps the punches due to the elastic recovery of the material after being blanked. 
During this study no punch breakage took place, and therefore, not much information 
was extracted from this sensor. 

The first diagram (top left in Figure 4.36) shows the signals captured by the AE sensor 
during the withdrawal of the upper tool. It shows how there is no clear information, the 
signals level is very low and they are very unstable. No major changes are shown in 
the signals during the manufacturing process.  

Regarding the maximum noise level, the second diagram (bottom right in Figure 4.36) 
shows the tendency of the noise level only considering the greatest value at each 
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acoustic curve. For this diagram, the greatest value at 500 strokes curve was taken as 
the reference again. In this case, the tendency of the maximum value does not 
contribute with much information about the process. It increments a bit at the beginning 
of the production but later remains constant until the end. No major conclusions can be 
drawn out from the information of these process signals.  

 

Figure 4.36: Process signals from AE sensor during ram withdrawal phase. 

4.5.1.4. Sensor 4: Force signals at station 2 (small holes blanking station) 

Fourth process signal analysed at the present study is the force measured by the 
universal sensor placed at the second station of the tool, which measures the force that 
the blanking punches at this station need to create the four small holes at the ears of 
the parts.  

The first diagram (top left in Figure 4.37) shows the force curves measured at the 
predefined manufacturing intervals. It can be distinguished how, unlike the sensor 
placed at the connection rod, the stability of the captured signal is very good and no 
major instabilities are shown.  

Regarding the maximum force, the second diagram (top right in Figure 4.37) shows the 
area where the small punches apply the maximum force for blanking the four small 
circular holes. This zoom of the maximum force area shows how the maximum force 
increases as the number of produced parts increases too. This tendency is clear 
although this diagram also shows how the force at 10.000 strokes is slightly smaller 
than the force at 500 strokes. One possible explanation is that since the tool needs to 
be opened every time that the punches are re-sharpened, once the tool is closed it 
needs a time to find the right position again and when this happens the force 
decreases a bit. Anyway, after this initial small decrement, it is shown how the forces 
increases progressively with the number of produced parts.  
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And finally, third diagram (bottom centre in Figure 4.37) shows the tendency of the 
force only considering the greatest value at each force curve. For this diagram, the 
greatest value at 500 strokes curve was taken as the reference again. It is shown how 
there is a clear tendency towards an increment in the maximum value of the force 
curves except for the initial slight decrement after 10.000 strokes. The diagram shows 
that the maximum force applied by the machine after 40.000 strokes is 8% bigger than 
the force applied at the beginning of the production. 

 

Figure 4.37: Process signals from force sensor at the second station in the tool. 

4.5.1.5. Sensor 6: Force signals at station 3 (final blanking) lane 1 

Fifth process signal analysed at the present study is the force measured by the 
universal sensor placed in the first lane at the third station of the tool. This sensor 
measures the necessary force to blank one part and separate it from the metal strip.  

The first diagram (top left in Figure 4.38) shows the force curves measured at the 
predefined manufacturing intervals. It can be distinguished how the stability of this 
universal sensor is very good and no major instabilities are shown. 

Regarding the maximum force, the second diagram (top right in Figure 4.38) shows the 
area where the punch at third station in the tool applies the maximum force for blanking 
the part of the first tool lane and separate it from the metal strip. This zoom of the 
maximum force area shows how the maximum forces increases as the number of 
produced parts increases too. This tendency is clear although this diagram shows 
again how the force at 10.000 strokes is slightly smaller than the force at 500 strokes. 
The possible explanation for this effect is the same as in the previous case; the tool 
must find its right position. Anyway after this initial small decrement, it is shown how the 
forces increase progressively with the number of produced parts.  

And finally third diagram (bottom centre in Figure 4.38) shows the tendency of the force 
only considering the greatest value at each force curve. For this diagram, the greatest 
value at 500 strokes curve was taken as the reference again. It is shown how there is a 
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clear tendency towards an increment in the maximum value of the force curves except 
for the initial slight decrement after 10.000 strokes. The diagram shows that the 
maximum force applied by the machine after 40.000 strokes is 11% bigger than the 
force applied at the beginning of the production. 

 

Figure 4.38: Process signals from force sensor at the third station in the tool (lane 1). 

4.5.1.6. Sensor 7: Force signals at station 3 (final blanking) lane 2 

And finally, the sixth process signal analysed at the present study is the force 
measured by the universal sensor placed in the second lane at the third station of the 
tool. This sensor measures the necessary force to blank one part and separate it from 
the metal strip.  

The first diagram (top left in Figure 4.39) shows the force curves measured at the 
predefined manufacturing intervals. It can be distinguished how the stability of this 
universal sensor is very good and no major instabilities are shown. Therefore, the 
difference between the Vario Sensor (first process signal) and the universal sensors at 
the tool (fourth, fifth and sixth process signals) regarding the stability of the signals 
captured is very clear in this research. This is one of the reasons why universal 
sensors at the tool offer much better results than Vario Sensors at the connection rod 
of the facility.  

Regarding the maximum force, the second diagram (top right in Figure 4.39) shows the 
area where the punch at third station in the tool applies the maximum force for blanking 
the part of the second tool lane separating it from the metal strip. This zoom of the 
maximum force area shows how the maximum forces increase as the number of 
produced parts increases too. This tendency is clear and in this case even the forces 
after 10.000 strokes are greater than the forces after 500 strokes. The aforementioned 
effect is not detected in this process signal. Therefore, it is shown how the forces 
increases progressively with the number of produced parts.  



Sensors based process monitoring 

-115- 

And finally, third diagram (bottom centre in Figure 4.39) shows the tendency of the 
force only considering the greatest value at each force curve. For this diagram, as in 
the previous cases, the greatest value at 500 strokes curve was taken as the reference 
too. It is shown how there is a clear tendency towards an increment in the maximum 
value of the force curves from the beginning until the end of the production. The 
diagram shows that the maximum force applied by the machine after 40.000 strokes is 
22% bigger than the force applied at the beginning of the production. 

 

Figure 4.39: Process signals from force sensor at the third station in the tool (lane 2). 

4.5.2. Evolution of the part’s edge quality 

The second branch of the present study consists on analysing the evolution of the edge 
quality at the manufactured parts. Again samples were taken after 500, 10.000, 20.000, 
30.000 and 40.000 strokes. In this case, samples consist of several parts that were 
recollected after the predefined intervals.  

After collecting and classifying all the parts, a (WED) wire electrodischarge machine 
(Charmilles Technologies Robofil 100) was used to cut the parts along the line A-A 
shown in Figure 4.40. It was decided to cut the parts using a wire electrodischarge 
machine because this is a contactless cutting method and therefore no loads are 
applied to the edge area during the cutting phase. The main purpose was not to modify 
the edge area and get accurate results.  
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Figure 4.40: Internal and external edge measured at the optical microscope. 

Figure 4.40 shows the procedure that was followed in order to prepare the specimens. 
Parts were cut following the cutting line A-A and after this both, the external and 
internal edges, were measured with an optical microscope Leica DM IRM. Next the 
evolution of both, the internal and the external edge, are described.  

4.5.2.1. Evolution of the internal edge quality 

Figure 4.41 shows the evolution of the internal edge quality during the entire 
production. Top side of Figure 4.41 shows the images acquired at the optical 
microscope for the specimens taken at 500, 10.000, 20.000, 30.000 and 40.000 
machine strokes. And bottom side of Figure 4.41 shows the evolution of the different 
dimensions that determine the quality of the edge. The centre shows a schematic 
explanation [FAB07] of the sheared edge dimensions.  

1. Dimension A represents the rollover depth. At the beginning of the blanking 
process, the punch engages the metal strip pulling the material downward. This 
initial contact draws the material into the clearance, which creates the rollover.  

2. Dimension B represents the burnished depth. After the initial drawing, the punch 
continues to penetrate and shear the upper portion of the material, which creates a 
burnished area. 

3. Dimension C represents the fractured depth. When the punch reaches a limit 
depth, the material becomes locked between the punch and the die and is fractured 
or separated completely due to the downward motion of the punch.  

4. Dimension H represents the burr height. The burr is the protuberance that is formed 
at the bottom of the sheared edge due to the inclined fracture of the material. 

5. And finally, dimension W represents the burr width. 
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Figure 4.41: Evolution of the internal edge quality at the predefined intervals. 

Since the most important variable regarding the quality of the part edge is the burr 
height, the present study will be focused on this variable. Anyway, and since the part 
edges were measured in the optical microscope, all the dimensions of the part edges 
are given in the Figure 4.41. In the bottom left side the evolution of the internal edge 
dimensions except the height of the burr are given. At the same time in the bottom right 
side the evolution of the burr height is given. The evolution of the burr height is very 
clear. At the beginning during the first 10.000 strokes the burr height is zero. After 
these 10.000 strokes the burr increments almost linearly up to 73 microns. At this burr 
height the operator sent the punches to be re-sharpened. 

4.5.2.2. Evolution of the external edge quality 

The same study was carried out for the external edge of the parts. Top side of Figure 
4.42 shows the images acquired at the optical microscope for the specimens taken at 
500, 10.000, 20.000, 30.000 and 40.000 machine strokes. And bottom side of the 
figure shows the evolution of the different dimensions that determine the quality of the 
edge. Again, all the dimensions that describe the edge (bottom centre) were extracted 
with the optical microscope. In the bottom left side, the evolution of the external edge 
dimensions except the height of the burr are given. At the same time, in the bottom 
right side, the evolution of the burr height is given. The evolution of the burr height is 
very clear. As happened in the internal edge, at the beginning during the first 10.000 
strokes the burr height is zero. After these 10.000 strokes the burr increments almost 
linearly up to 60 microns. At this burr height the operator sent the punches to be re-
sharpened. 
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Figure 4.42: Evolution of the external edge quality at the predefined intervals. 

4.5.3. Final comparison between process signals and part’s edge quality  

Finally, and since the main purpose of the study was to find the relationship between 
the variation of the edge quality and the variation of the process signals, a comparison 
between the aforementioned results has been done.  

Figure 4.43 shows all the results achieved during the present study. The horizontal axis 
represents the number of strokes at which the samples were taken during the 
production. The vertical axis represents the signal variation for each variable with 
respect to the initial signal value (500 strokes) at each variable. Therefore, this vertical 
axis is dimensionless and the values are relative to the value at 500 strokes curve for 
each variable. 

 

Figure 4.43: Comparison of the evolution in the edge quality and in the process signals. 

All the analysed variables show an incremental tendency from the beginning until the 
end of the production. The only measurement that does not follow this tendency is the 
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force measured after 20.000 strokes in the connection rod. As it has been previously 
explained, the reason for this “incorrect” measurement can be the low reliability of the 
Vario Sensor placed in the connection rod of the machine. Next, a brief description of 
the tendency of all the variables is given. 

1. The force at the connection rod shows an incremental tendency being at the end of 
the production 32,22% bigger than the initial force. Although the force after 20.000 
strokes does not match with this tendency, the rest of the measurements draw 
almost a linear incremental tendency. 

2. The AE signals recorded during the blanking phase show also an incremental 
tendency although in this case the tendency is not so clear. As it is shown in Figure 
4.43, AE signals after 20.000 strokes are slightly smaller that at 10.000 strokes, 
and the same happens when the signals after 40.000 strokes are compared with 
the signals after 30.000 strokes. Anyway, the AE signals at the end of production 
are 17,44% bigger than at the beginning of the production.  

3. The force at second station of the tool, the station where four small circular holes 
corresponding to two consecutives parts are blanked, also experiences an 
incremental tendency during the entire production. It must be noticed that the force 
increment is almost zero during the first 10.000 strokes. On the other hand, after 
these initial 10.000 strokes the force increases almost linearly being after 40.000 
strokes 8,07% bigger than at the beginning of the production. 

4. The force at third station of the tool in first lane, where one of the parts is blanked 
out from the metal strip, also experiences an incremental tendency. In this case the 
tendency is not so clear again and the force after 10.000 strokes is slightly smaller 
that at the beginning, and the force after 40.000 strokes is slightly smaller than after 
30,000 strokes. Anyway, the incremental tendency along the entire production is 
clear and the force at the end of the production is 10,77% bigger than at the 
beginning.  

5. The force at third station of the tool in second lane, where the other part is blanked 
out from the metal strip, also experiences an incremental tendency. In this case the 
incremental tendency is clearer than in the previous case although this tendency is 
not completely linear. The force at the end of the production is 20,03% bigger than 
at the beginning.  

6. And finally, both burrs, external and internal burr, also follow an incremental patter 
during the entire production. Figure 4.43 shows how the height of both burrs 
increases as the number of strokes increases too. Figure 4.43 shows relative 
values in order to have the chance to compare the increment of the burrs height 
and the increment of the forces and the AE captured by the sensors based process 
monitoring system. The final value of the burrs, as explained in previous 
subchapter, was 73 microns for the internal burr and 60 microns for the external 
burr. 

Therefore, a direct relationship between the edge quality (increment of the burr height) 
and the process signals (increment of the blanking force) has been observed during the 
present study. After this initial observation, a deeper analysis of the results has been 
carried out using the software MatLab.  

Table 4.I: Burr and blanking forces correlation factors for reference 0863-012. 

Correlation factor External Burr Internal Burr 
Blanking force at lane 1 0.9343 0.9350 
Blanking force at lane 2 0.9549 0.9378 

Table 4.I shows the correlation factors calculated that shows how the growth of the burr 
at the parts and the force increment are almost linearly related (factor of 1 means a 
perfect correlation). Figure 4.44 shows the evolution of both, the internal and the 
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external burr, compared to the evolution of the blanking forces (in this case for the 
second lane).  

 

Figure 4.44: Correlation of both, the internal and external burr, with the blanking forces at lane 2. 

This high correlation factor will help the operator to decide the right moment to re-
sharpen the punches, and this way, this decision will be more objective than before 
starting the present research work (the operator used his fingers to “measure” the 
burr). 

4.6. Summary of results and conclusions 

A Brankamp sensors based process monitoring system has been implemented into a 
blanking facility and its performance has been evaluated. Three common sensors have 
been used for all the references produced at the blanking facility meanwhile three 
specific references have been also equipped with sensors inside the tools. First 
conclusion is that force and AE signals recorded directly at the tool offer much better 
reliability than signals recorded in the connection rod or in the machine structure.  

From a process failure detection point of view, the sensors based process monitoring 
system has been able to detect up to nine different process failures at the blanking 
facility. Most of the process failures are related with the malfunction of the feeding 
system, the presence of metal slugs inside the tool and malfunctions of the air 
evacuation system used to extract the parts from the tool. At the same time, punch 
breakages, malfunctions of the ejection system in the double action tools and 
adhesions of the strip to the pilot pins of the tool were also detected. Figure 4.45 shows 
a summary of the process failures detected at the blanking facility during the 
experimental phase.  
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Figure 4.45: Process failures detected during the experimental phase [SAE08]. 

Another important conclusion regarding the detection of these process failures is the 
ability of the sensors based process monitoring system to locate the position at the tool 
where the process failure takes place. Since several sensors were installed in the 
references studied during the research work, the sensors based process monitoring 
system is able to find the position where the process failure takes place. The analysis 
of this data in a suitable way can be converted into very useful information for the 
operator as it will be shown in “Chapter 6. Intelligent Control System” where the 
knowledge for the expert system is acquired and implemented. This ability to determine 
the position (and also the type as shown in Chapter 6) of the failure within the tool 
represents an improvement of the current monitoring systems implemented in the 
forming industry. 

On the other hand, the sensors based process monitoring system was not able to 
detect some process failures at the blanking facility during the experimental phase. The 
most important process failure that the sensors based process monitoring system was 
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not able to detect was the formation of micro cracks in the blanking punches. The 
formation of these micro-cracks represents a slight change of the force applied by the 
machine to blank the material but this change is so insignificant that the sensors based 
process monitoring system is not able to detect it. The consequence of these small 
micro cracks in the punches is the production of bad quality parts due to the presence 
of local big burrs. Next chapter explains how an artificial vision system has been 
developed in order to complement the sensors based process monitoring system and 
to detect this process failure not detected at this chapter.  

And finally, another process variable that the sensors based process monitoring 
system was not able to detect directly is the growth of the burr over the predefined 
height limit. It is well stated in the literature that, as the blanking facility produces more 
parts, the edges of the punches get wear and change from a sharpen shape into a 
rounded shape. This effect has two direct consequences. First consequence is that the 
burr in the edges of the parts grows up. And second consequence is that the force to 
blank the material increases. At the present research work a study to evaluate how the 
wearing of the punches influences these two previous mentioned consequences at the 
industrial field has been carried out. The most important conclusion (complementing 
the current state of the art that mainly covers laboratory researches) is that a direct 
relationship between the height of the burr and the force necessary to blank the 
material was found. Following this direct relationship, the sensors based process 
monitoring system can be used to indirectly (by measuring the blanking forces) 
measure the burr height at the parts. The observed relationship at the present research 
work has been a blanking force increment of around 2,33% every 10 microns for the 
external edge and a blanking force increment of around 4% every 10 microns for the 
internal edge. More detailed conclusions are given in “Chapter 4.5.3. Final comparison 
between process signals and part’s edge quality”.  
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5.- PARTS QUALITY CONTROL 

The results achieved in the previous chapter showed that the sensors based process 
monitoring system is not able to detect some of the process failures at the blanking 
facility. The sensors based process monitoring system showed its capability to detect 
process failures like punch breakages, bad evacuated parts or feeding malfunctions in 
the blanking facility but, at the same time, it was not able to detect the presence of local 
big burrs in the parts due to punch micro cracks. Therefore, the present chapter 
explains the work that has been carried out in order to develop an artificial vision (AV) 
system, complementary to the previous sensors based process monitoring system, that 
will detect the process failures that were not detected by the sensors based process 
monitoring system. Furthermore, this AV system will measure the main dimensions of 
the manufactured parts controlling whether all the dimensions are within the predefined 
tolerances or not. The AV system is able to control the 100% of the produced parts at a 
high rate. 

In this chapter, the handling system developed to manage the parts from the blanking 
facility to the final containers is described first. As shown later, this handling system 
was developed to fulfil the requisites directly linked to the geometry of the parts and the 
characteristics of the manufacturing process. After this, a brief explanation of the vision 
hardware elements that have been chosen to develop the vision system is given too. 
The hardware elements depend principally on the geometry of the evaluated parts and 
the features to be calculated from them. Next, the vision algorithms developed for the 
processing of the images acquired from the parts are briefly explained. These vision 
algorithms have been created with the aim of their further implementation on intelligent 
cameras in order to boost the processing rate of the vision system. 

After evaluating that the implementation of the processing algorithms on a traditional 
architecture based on commercial cameras and image processing on PC was not fast 
enough for the purposes of the present research work, two FPGA based intelligent 
cameras have been implemented into the vision system speeding up the throughput of 
evaluated parts. This way, the production rate of the blanking facility was not limited by 
the vision system.  

Finally, the results achieved by the AV system regarding the detection of local big burrs 
(not detected by the sensors based process monitoring system), the accuracy of the 
dimensions measured and the evaluation rate per part achieved are given. The chapter 
finishes with the main conclusions drawn during the development of the AV system and 
during the experimental phase.  

5.1. Case studied: Retaining rings for the automobile industry 

As mentioned before, the parts selected to carry out the present research work belong 
to the family of retaining rings. A retaining ring is a piece of hardware that holds on to a 
shaft in order to locate other items on the shaft, or to locate the shaft to a fixed item 
[WIK08]. In the present research work, the three selected retaining rings are very 
similar references used at the automotive industry, ranging their main diameter from 25 
millimetres to 38 millimetres. All of them can be considered as small to medium size 
parts and are manufactured at medium to high production rates (approximately 100-
120 parts per minute). 

Regarding the quality control of the selected references during their production 
process, the results achieved in the previous chapter showed that a force and AE 
monitoring approach is very well suited to detect some process failures, like possible 
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scratches in the surface of the parts due to bad evacuated parts or bad evacuated 
metal slugs from the tool, which at the same time are usually very difficult to detect 
using AV approaches. On the other hand, it was also stated that sensors based 
process monitoring systems are not well fitted to detect process failures like the 
presence of local big burrs due to punch micro cracks or parts out of tolerances, which 
can be detected accurately with AV systems. Therefore, the AV system developed at 
the present research work pursues to become a quality control tool complementary to 
the sensors based process monitoring system explained in the previous chapter. This 
way, both monitoring systems working together will create the necessary synergies to 
achieve a zero defect production. 

The references and the dimensions to be controlled by the AV system during this 
research work are described in Figure 5.1. Although the three references belong to the 
same family of parts being very similar, the system necessary to handle them through 
an AV system should have different dimensions (to avoid blockages) and therefore it 
was decided to develop an industrial AV prototype for one of them. In this case the 
reference selected was reference 5828-001 because it was the mostly produced one at 
Industrias Alzuaran S.L. 

 

Figure 5.1:Dimensions to be controlled in the selected references. 

Considering that the main objective of the AV system is to detect the process failures 
not detected by the sensors based process monitoring system (principally local big 
burrs due to punch micro cracks) and to evaluate the quality of the manufactured parts 
(verify that the aforementioned dimensions are within tolerances), it was decided to 
develop a vision system composed of two cameras. The first camera “looks” at the 
parts from above and evaluates their dimensions and the second camera “looks” at the 
parts from the side in order to detect local big burrs. Figure 5.2 shows a schematic 
concept of the developed vision system.  
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Figure 5.2: Schematic concept of the AV prototype developed. 

After defining that the vision system should be composed of two cameras placed 
perpendicularly, next chapter explains the development of the entire AV system that 
will carry out the quality evaluation of the aforementioned references. 

5.2. AV industrial prototype for retaining rings quality assurance 

The AV system developed in the present research work is an automatic device able to 
capture two images per part and to evaluate around 100 to 120 parts per minute 
(although the image processing is much faster, approximately 500 parts per minute, the 
system is currently limited by the handling of the parts). Its development includes the 
integration of mechanical devices (for the handling of the parts), hardware automation 
(pneumatic elements for the process coordination), electronic devices (vision cameras 
and illuminations, triggers for shooting the cameras, etc….) and computing software 
(vision algorithms for the parts quality evaluation). The handling strategy that allows to 
get high quality images of the parts, the image acquisition strategy, the vision hardware 
and the algorithms that process the aforementioned images are explained next. 

5.2.1. Mechanical design: handling of the parts  

The acquisition of good quality images of the parts to be evaluated is one of the most 
important factors in AV systems. Good quality images means that the vision algorithms 
will be able to find accurately the contours of the parts and, therefore, that the vision 
system will classify the quality of the inspected parts correctly. At this point the 
importance of a good handling system must be considered. A handling system can be 
defined as a mechanical device able to evacuate the parts from the blanking facility, 
position the parts in the area where the images are taken and finally direct the parts 
towards the right container (good or defective parts) depending on the AV system’s 
decision. To carry out all these tasks at high production rates is usually quite complex, 
and this is the reason why it is very difficult to develop universal handling systems able 
to manage different kind of parts.  
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Initially, and since the three references are very similar, the development of a handling 
system able to work with the three references was proposed. Following this initial 
purpose, a flexible handling prototype specially developed for these references was 
built up and tests with the three references were carried out. After the initial trials, it 
was concluded that, for industrial purposes where the system must be able to handle 
high quantity of parts per minute, and no blockage of parts is allowed, more specific 
handling systems must be developed.  

Then, it was decided that, in order to accomplish the objectives of the present research 
work, the handling prototype should be prepared only for one of the studied references. 
This way, the results of the handling prototype would be evaluated for one reference 
allowing at the same time its future adaptation to more references. Since the reference 
mostly produced in Industrias Alzuaran S.L. is the reference 5828-001, it was decided 
that the handling system and therefore the final AV prototype should be tuned up for 
the requisites of this reference. 

The global handling prototype developed in the present research work is divided into 
two main blocks: the first block is in charge of transporting the parts from the blanking 
facility to the entrance of the AV system and the second block is in charge of handling 
the parts through the AV system. Next a brief description of each block is given.  

5.2.1.1. Parts handling from the blanking facility to the AV system 

After analysing the parts to be evaluated, the blanking process and the blanking facility 
where the parts are produced, the requirements for the evacuation of the parts from the 
blanking facility and its further transportation to the AV system were established: 

1. A very important requirement is that due to the special geometry of the parts to be 
evaluated, the system must be able to separate them because they get tangled 
very easily and later is not possible to disentangle them.  

2. Second requirement is linked to the way the parts are evacuated from the blanking 
facility. Since the final blanking station is a double action tool (explained in “Chapter 
4.4.1.5. Evacuation system failure I: Double parts in pilot pins”) and the throughput 
of parts is between 100 and 120 parts per minute, the current evacuation system at 
the blanking facility is based on the evacuation of the parts by blowing them out of 
the tool by means of air.  

3. Third requirement is the necessity of positioning the parts at the entrance of the AV 
system. Since the throughput of parts ranges between 100 and 120 parts per 
minute, it is necessary to place the parts in a specific configuration at the entrance 
of the AV system; this way, the feeding of the parts into the AV system is carried 
out efficiently. 

4. Fourth requirement is that, since the feeding area of the AV system is located in a 
higher position than the final position of the parts after being blown away from the 
blanking facility, a system to raise the parts is necessary. Therefore, a conveyor 
belt was implemented to transport and to raise the parts high enough to reach the 
entrance of the AV system. 

Considering all the previous mentioned requisites, a specific handling system that links 
the blanking facility with the AV system was developed. The system is briefly explained 
next. As mentioned before, the final station of the tool used to produce the reference 
5828-001 is a double action blanking station (see Figure 4.20). When the parts are 
blanked from the strip, the parts remain within the upper tool and when the ram of the 
machine is in the upper position, an ejector hits the parts pushing them down. When 
the parts are falling from the upper tool downwards to the lower tool, an air flow blows 
the parts out of the tool (image 1 in Figure 5.3). By means of the air flow, the parts 
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leave the tool and go into two metallic funnels, especially designed to match with the 
tool. The metallic funnels and the PVC tubes where these metallic funnels end are 
shown in image 2 in Figure 5.3. Image 3 in Figure 5.3 shows the PVC tubes used to 
transport the parts to the conveyor belt.  

After this, the parts arrive to the conveyor belt by means of a connection that links the 
PVC tubes and the conveyor belt (shown in image 4 in Figure 5.3). With this 
connection, the parts coming from the different lanes of the tool get a different position 
in the conveyor belt and the tangling of the parts is avoided. As mentioned before, this 
has been a main requisite in order to avoid blockages in the AV system. Finally, image 
5 in Figure 5.3 shows how the parts go up through the conveyor belt and are thrown in 
the funnels that represent the beginning of the feeding area of the AV system (shown in 
image 6 in Figure 5.4).  

 

Figure 5.3: Handling of the parts from the blanking facility to the AV system. 

5.2.1.2. Parts handling through the AV system  

Once the parts arrive to the feeding area of the AV system, they go through the 
following way. First of all, the parts fall down into two different funnels, one funnel per 
lane in the tool (image 6 in Figure 5.4). These funnels lead the parts to their entrance 
into the “positioning boxes“ (developed together with the University of Suttgart) as 
shown in image 7 in Figure 5.4. The main purpose of the “positioning boxes” 
(graphically explained in Figure 5.5) is to position all the parts in the same configuration 
for their feeding into the AV system. Thus, at the end of the “positioning boxes” two 
vertical buffers gather the parts positioned one above the others. These vertical buffers 
allow the feeding system to reach a high feeding rate and to work independently from 
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the blanking facility, compensating punctual variations in the arrival of the parts to the 
AV system. The concept of these “positioning boxes“ is explained in Figure 5.5. 
Basically the idea is to provoke the rotation of the parts making them to achieve the 
same orientation. This way, the opening of the parts finds the middle vertical wall and 
by gravity they are positioned brazing the vertical cylindrical buffer. From these vertical 
buffers, two lateral tongues feed alternatively parts to the area where the pictures are 
taken (shown in image 8 in Figure 5.4 and further described in “Chapter 5.2.1.3. Parts 
handling in the image acquisition station of the AV system”)  

 

Figure 5.4: Handling of the parts through the AV system. 

After acquiring and processing the images of the parts, an air flow pushes the parts 
down and a rotational cylinder sort out the parts depending on their quality (this is 
shown in position 9 of Figure 5.4). Finally, at the end of the AV system there are two 
containers, one for the good quality parts and another one for the parts that are 
defective (this is shown in position 10 of Figure 5.4). 
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Figure 5.5: Positioning boxes for the AV system developed for Industrias Alzuaran S.L. 

5.2.1.3. Parts handling in the image acquisition station of the AV system  

In this chapter, a brief explanation of the parts handling in the station of the AV system 
where the images are taken (shown in image 8 in Figure 5.4) is given. Again, and this 
time after evaluating the parts to be controlled and the dimensions to be measured, the 
requirements that should be taken into account for the design of this station were 
established. 

1. Since the production rate was between 100 to 120 parts per minute, the handling 
system must be able to feed one part, position it in the area where the images are 
taken and later direct it to the right container approximately every half a second. 

2. From preliminary tests made with several references, it was concluded that the 
parts must be static when both, the upper view and the lateral view images, are 
taken (see Figure 5.6).  

 

Figure 5.6: Image quality for parts flying, parts moving over a metallic ramp and static parts. 

3. And finally, and as mentioned before, another requirement is the necessity of two 
vision cameras, one for taking the upper view image and another one for taking the 
lateral view image. Each camera has its own lens and illumination system and 
needs a suitable background able to provide a good contrast with the parts to be 
evaluated. All these requisites also influence the design of the area of the handling 
system where the parts will be stopped for the images acquisition.  
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Figure 5.7: Upper view and lateral view cameras positioning inside the vision system. 

Therefore, and aiming to fulfil the previous requirements, the station where the images 
are taken was designed for the introduction of both cameras. The position between 
both cameras forms a 90 degrees angle in order to capture an upper view image and a 
lateral view image (see Figure 5.7). This way, a third axis (perpendicular to the position 
of both cameras) is used to feed and withdraw the parts from the image acquisition 
area. 

At the same time and fulfilling the necessity of capturing the images when the parts are 
static, Figure 5.8 explains the procedure developed to first stop and position the parts 
in front of the cameras and to later evacuate them from the image acquisition area.  

1. In a first step, the parts coming from the feeding system (pushed by the tongues of 
the vertical buffers) fall over a slopping metallic ramp and “cut” a non-contact 
photoelectric trigger that initialises the image capturing sequence. At that time, the 
centring device (V-shaped part in Figure 5.8) is placed in the area where the 
images will be taken. 

2. In a second step, the centring device stops the part and thanks to the V shape of 
this last one, the part gets the right position in the area where the images will be 
taken. A few milliseconds after cutting the trigger, an electromagnet placed under 
the ramp is activated. This electromagnet forces the part to keep the right position 
within the area where the images are taken. 

3. In a third step and a few milliseconds after activating the electromagnet, the 
centring device is moved backwards. This way, the part remains in the right position 
and the centring device is not any more in the field of view of the cameras.  

4. And finally, in a forth step, both cameras take the images consecutively, first the 
upper view camera and right after the lateral view camera. A few milliseconds later, 
the electromagnet is disconnected, the part falls down blown by air, and finally, the 
centring device is moved forward to receive the next part. 
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Figure 5.8: Strategy developed for stopping the parts for the images acquisition. 

5.2.1.4. Results achieved by the handling system  

Following the aforementioned steps, the quality of the images taken is very high what 
makes easier the extraction of the contours of the parts and therefore improves the 
quality of the evaluation. Figure 5.9 shows two examples of images taken following the 
aforementioned strategy. The images correspond to the reference 5828-001.  

The left side of Figure 5.9 shows how the sharpness of the upper view image taken to 
the reference 5828-001 is very high. Among other factors, like the vision hardware 
chosen for this application that will be later explained, one of the most important ones 
is the fact that the part remains static when the images are acquired. This fact 
increases very much the sharpness of the images (what reduces the complexity of the 
algorithms and avoids the problems encountered with the parts in motion) and at the 
same time ensures the right position of the parts in front of the cameras (within the field 
of view and parallel to the cameras). 

In the right side of Figure 5.9, a lateral view image of the reference 5828-001 is shown. 
Here again, the sharpness of the image is clearly shown. Figure 5.9 illustrates the 
detection of one process failure that was not detected with the sensors based process 
monitoring system: local big burrs due to punches micro cracks.  
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Figure 5.9: Upper view and lateral view images of reference 5828-001 taken with static parts. 

5.2.2.Electronic design: selection of the vision hardware elements  

The acquisition of good quality images in AV systems involves a few hardware devices. 
The minimum vision set to acquire images for part quality evaluation purposes includes 
an industrial camera with its correspondent lens and a suitable illumination system. The 
camera is in charge of digitalizing the image from a continuous (analog) signal into 
samples called pixels creating a digital image that later can be processed by 
algorithms. The function of the lens is to project the image to be acquired into the 
sensor of the camera. And the function of the illumination system is to enhance as 
much as possible the features of the parts to be evaluated.  

These elements of the acquisition chain must be chosen to minimize noise in the 
images and optimise image quality. The parts to be evaluated have to be distinguished 
from the background as easily as possible, and the part features to be controlled have 
to be enhanced as much as possible. Since the AV system will be implemented into an 
industrial process, some environmental constrains have to be taken into consideration. 
The most influencing environmental constrains in this case are the vibrations generated 
by the blanking facilities in the company environment, the variability of the light level 
around the vision system and the dirtiness of the produced parts (e.g. presence of oil in 
the parts could lead to light reflections and therefore to false or difficult feature 
extractions).  

A study was carried out in order to evaluate the consequences of these environmental 
constrains and to propose solutions for minimising their consequences. It was found 
that the vibrations in the environment do not generate fuzziness in the images, so this 
environmental constrain was discarded. Regarding the changeable light level in the 
environment and the dirtiness of the parts, special industrial illuminations like red Light 
Emitted Diodes (LED) were chosen. The main advantage of these special illuminations 
is their capacity to reduce or even eliminate brightness in metallic surfaces. The use of 
these special vision hardware increased the quality of the images taken by the 
cameras, reduced the complexity of the subsequent algorithmic processing step and 
produced good results regarding the evaluation of the produced parts.  

Next, the vision hardware selected for both images, upper view and lateral view image, 
will be briefly described. At this point, it must be stated that the lenses and illumination 
systems described next have been used during the entire development of the system, 
from the initial setting up until the final prototype. On the other hand, two different kinds 
of cameras have been used during the development of the system. The initial cameras, 
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commercial cameras purchased from the German company IDS, were used to set up 
and to evaluate the necessities of the vision system regarding the image acquisition 
process (distance of the cameras to the parts, acquisition timing of the cameras, 
selection of suitable lenses and illumination systems and further characteristics). After 
finishing these initial trials and once that the right setting up of the vision system was 
carried out, two proprietary iCam intelligent cameras, developed by Delta 
Technologies, were integrated within the AV system for speeding up the image 
processing.  

5.2.2.1. Vision hardware elements for the upper view image acquisition 

The first image acquired by the cameras is an upper view image of the parts to be 
evaluated (left image in Figure 5.9). The main aim of this image is to allow control of 
the main dimensions of the parts as explained in Figure 5.1.  

Figure 5.10 gives an explanation of the architecture developed for the acquisition of the 
upper view image. For this image and since the purpose is to extract the contours of 
the part, the most suitable approach would have been a back illumination strategy. This 
strategy could not be applied because the part is in contact with the surface and even if 
a transparent material had been used, this surface would have scratched over the time 
making the quality of the illumination worse. Therefore, it was decided to apply a front 
illumination approach as shown in Figure 5.10.Furthermore, the material selected for 
the surface where the part is stopped for the image acquisition was black Teflon©, 
allowing to improve the contrast in the images between the part and the background 
(see Figure 5.10).  

 

Figure 5.10: Hardware architecture for acquiring the upper view image. 

For the upper view image, monochromic cameras (initially a commercial CCD camera 
for the set up and finally an intelligent CMOS camera for the final prototype) with a 
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resolution of 1280*1024 pixels have been used at the present research work. It was 
calculated that sensors with this resolution, 1280*1024 pixels, allowed the system to 
achieve a spatial resolution of 50 microns per pixel, what is enough to evaluate the 
quality of the parts. At the same time, this sensor resolution is a standard size what 
made easier the acquisition of the components for the development of an intelligent 
camera with this resolution. 

Regarding the optics, the camera was equipped with a standard (16mm F1.4 C 2/3”) 
optocentric lens from the German company Opto Engineering. Since the necessary 
depth of view for the image is approximately the thickness of the part, in this case 1,2 
millimetres, no special lens are needed to capture the image. The optical distortion 
inherent to the optocentric lens (that could lead to errors in the measurements) was 
algorithmically compensated. 

And finally the illumination used for the upper view image is a special red LED 
illumination ring which main purpose was to decrease the brightness due to the 
presence of dust or oil in the parts. At the same time, this kind of illumination supplies 
the light in an oblique angle, what stands out the part contours. 

5.2.2.2. Vision hardware elements for the lateral view image acquisition 

The second image acquired by the cameras is a lateral view image of the parts to be 
evaluated (right image in Figure 5.9 and also shown in Figure 5.11). The main aim of 
this image is to detect the presence of local big burrs that are not detected by the 
sensors based process monitoring system.  

 

Figure 5.11: Hardware architecture for acquiring the lateral view image. 

Figure 5.11 gives an explanation of the architecture used for the acquisition of the 
lateral view image. As happened in the previous case, since the purpose is to extract 
the contours of the part, the most suitable approach is a back illumination strategy. For 
the lateral view image, this back illumination approach has been used because there is 
no need for a surface between the camera and the illumination. Therefore, the image 
acquisition hardware for the lateral view image is composed of a camera, a telecentric 
lens and a fluorescent illumination. These elements are briefly explained next. 
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For the lateral view image the same reasoning as the one made for the upper view 
image was carried out. Monochromic cameras (initially a commercial CCD camera for 
the set up and finally an intelligent CMOS camera for the final prototype) with a 
resolution of 1280*1024 pixels were used. It was calculated again that sensors with this 
resolution, 1280*1024 pixels, allowed the system to achieve a spatial resolution of 50 
microns per pixel, what is enough for the detection of local big burrs. At the same time, 
this is a standard sensor resolution, what made easier the acquisition of the 
components for the development of an intelligent camera with this resolution. 

The lateral view camera was equipped with a telecentric lens from the German 
company Opto Engineering. The reason for choosing a telecentric lens instead of an 
optocentric lens is that a large depth of view (at least similar to the diameter of the 
parts in order to detect local big burrs at any position on the part) was needed. 

Finally, and since the illumination strategy was back illumination, a powerful fluorescent 
illumination located behind the part was used. This powerful fluorescent illumination 
sticks out the contour of the parts, which allows to identify their silhouette correctly.  

5.2.3.Computing design: vision algorithms development  

After acquiring the images, the next step is their processing. Basically, the processing 
of the images consists on extracting the contour of the parts and verifying their right 
dimensions. At the present research work, two different vision algorithms have been 
created, one algorithm for the processing of the upper view image and another 
algorithm for the processing of the lateral view image. The processing of the upper 
view image, carried out by Delta Technologies and verified together with Mondragón 
University, evaluates whether all the dimensions of the part are within the tolerances 
specified in Figure 5.1 or not. And the processing of the lateral view image, carried out 
by Mondragón University, allows to detect the presence of local big burrs due to punch 
micro cracks (see Figure 5.2). In the next paragraphs, the algorithms developed for the 
processing of both, the upper view and the lateral view image, of the selected 
references are described.  

5.2.3.1. Algorithms developed for the upper view image processing 

Figure 5.12 shows the algorithmic approach developed for the evaluation of the upper 
view image. Figure 5.12 also shows an original image of the reference 0863-012 taken 
by the upper view camera. The algorithmic approach for processing the upper view 
image is divided into four main blocks that are briefly explained next. Since the final 
purpose has been to implement the vision algorithms in FPGA, the most suitable 
algorithms for their further implementation into FPGA were selected. 
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Figure 5.12: Algorithmic architecture for processing the upper view image (reference 0863-012). 

5.2.3.1.1. Part detection and filtering  

The first main block of the algorithm consists on generating a mask of the part. This 
mask of the part represents the part, once it has been separated from the background 
(the Teflon© background here) and the noise has been filtered. In order to obtain this 
mask, first an image thresholding is carried out and later all contours are detected and 
filtered depending on their size (see Figure 5.13). 
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Figure 5.13: Thresholding and noise filtering for reference 0863-012. 

5.2.3.1.2. Part centre detection  

In the second block of the algorithm and taking as input the binarised image calculated 
in the previous block, the bounding box of the part is calculated and the part’s external 
circular contour points are extracted (step 1 in Figure 5.14) in order to find the centre of 
the part. A least squares circle fitting of these contour points is performed in two steps. 
The first step computes an initial estimation of the centre (step 2 in Figure 5.14), and 
the second step deletes points that do not belong to the fitting circle (step 3 in Figure 
5.14), allowing to refine the estimation of the circular contour and the part centre. 

 

Figure 5.14: Detection of the external contour of the part. 
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5.2.3.1.3. Rotating radius method 

In the third block, a procedure named rotating radius is carried out in order to calculate 
the main dimensions of the part. The rotating radius method uses a radius starting from 
the centre of the part that rotates over 360°, one degree per step. This radius looks for 
transitions of “black and white” pixels from the centre of the part towards its outside at 
each rotation (see Figure 5.15). This way, a first transition, from “black to white” pixels, 
corresponds to the internal contour of the part and a second transition, from “white to 
black” pixels, corresponds to the external contour of the part. Two profiles of distances, 
first profile representing the distance between the centre of the part and the internal 
contour and second profile representing the distance between the internal contour and 
the external contour, are built (red and blue contour in Figure 5.15)  

Angle in 
radian 

distance 

Distance between the internal 
contour and the external contour 

2Π Π 

Distance between the part centre 
and the internal contour 

Slot position 

 

Figure 5.15: Rotating radius procedure to detect the internal and external contour of the part. 

5.2.3.1.4. Final computation of the part dimensions  

Through the implementation of the previously explained algorithmic approach, the 
calculation of the part dimensions is carried out. As explained in “Chapter 3.2.1.2. 
Reference 0863-012”, four main dimensions of the part must be controlled using the 
upper view image (also for reference 5828-001). The dimensions and the tolerances for 
reference 0863-012 and the approach for their calculation are summarised next: 

• The dimension A must be between 3,25 and 3,55 mm. 
• The dimension B must be 5,5 mm as maximum. 
• The diameter C of the internal holes must be greater than 2,5. 
• The diameter D must between 38,30 and 37,55 mm. 

Dimension A: 

Dimension A is the width of the part along its symmetry axis (left side in Figure 5.16). In 
order to calculate this width, three features have been derived from the previous 
calculations. The first feature is the mask of the part. The second feature is the centre 
of the two small holes at the ears of the part (being the ears of the part the thick areas 
of the part where the small holes are located). And the third feature is the centre of the 
part. Using the centre of the part and the centres of the two holes, the symmetry axis of 
the part is calculated (right side in Figure 5.16). Once the symmetry axis is calculated, 
transitions in the mask along this axis are detected. Two transitions are detected, first 
one from “black to white” pixels (internal contour of the part) and second one from 
“white to black” pixel (external contour of the part). After this, the distance between 
both transitions is calculated giving as the result the width “A” (left side in Figure 5.16).  
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Figure 5.16: Width (A) of the part along the symmetry axis. 

Dimension B: 

Dimension B, the width at the ears of the part, was calculated too. In the information 
calculated in “Chapter 5.2.3.1.3. Rotating radius method”, the blue distance profile 
represents the distance between the external and internal contour (see Figure 5.17). 
This information was used to measure the maximal distance between these two 
contours at the ears calculating this way dimension “B” (top left side at Figure 5.17).  

 

Figure 5.17: Width (B) at the ears of the part. 

Diameter C: 

To calculate diameter C, the diameter of the internal holes at the ears of the part, the 
bounding boxes, one per hole, created to localise these holes in the image were used 
(see Figure 5.18). A least squares circle fitting of the holes contours could have been 
made because each hole diameter is about 60 pixels but the targeting application does 
not require the accuracy of a circle fitting. Therefore, an approximation of the diameter 
of the holes was derived from the size of their bounding boxes.  



Parts quality control 

-144- 

 

Figure 5.18: Diameter (C) of the holes at the ears of reference 0863-012. 

Diameter D: 

And finally, diameter D (shown in Figure 5.19), the external diameter of the part, was 
calculated using the external points of the contour of the part calculated in “Chapter 
5.2.3.1.2. Part centre detection”. 

 

Figure 5.19: Main external diameter (D) for reference 0863-012. 

5.2.3.2. Algorithms developed for the lateral view image processing 

Regarding the lateral view image, an algorithm used for all the references has been 
created in order to detect the presence of local big burrs due to punch micro cracks. 
Figure 5.20 shows three lateral view images of the reference 5828-001. The image at 
the left side of Figure 5.20 corresponds to a part with a local big burr oriented upwards, 
the image at the centre corresponds to a correct part and the image on the right side 
corresponds to a part with a local big burr oriented downwards. The algorithm must be 
able to detect these process failures, which can not be detected with the sensors 
based process monitoring system.  
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Figure 5.20: Local big burr upwards, correct part and local big burr downwards. 

Figure 5.21 shows the main skeleton of the algorithmic approach for the processing of 
the lateral view image that consists of three main blocks that will be briefly described 
next. 

 

Figure 5.21: Algorithmic architecture for processing the lateral view image (all references).  

5.2.3.2.1. Part detection and filtering  

The algorithm used for the detection and noise filtering of the lateral view image is 
based on the algorithm applied for the upper view image in “Chapter 5.2.3.1.1. Part 
detection and filtering”. Therefore, after an image thresholding all contours are detected 
and filtered depending on their size (see Figure 5.22). The final output is the mask of 
the part. 
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Figure 5.22: Steps at the processing of the lateral view image; from the original image to the mask.  

During the contours extraction procedure, if any contour is found between the part and 
the Teflon© surface, as shown in right side at Figure 5. 23, it is interpreted as a part 
with a local big burr oriented downwards. This means that the parts with local big burrs 
oriented downwards are detected at this first block of the algorithmic approach. 

 

Figure 5. 23: Contour detection between the part and the Teflon© surface. 

5.2.3.2.2. Part support position  

The second block consists on determining the surface (base line in Figure 5.24) of the 
Teflon© where the part is located when the lateral view image is taken. The base line is 
computed doing a line fitting on a few points (grey points in Figure 5.24) extracted at 
the right and the left side of the mask image. These points are computed by detecting 
the transitions of the “black to white” pixels in the mask image (red lines in Figure 5.24). 

 

Figure 5.24: Base line of the Teflon© plate calculation. 

5.2.3.2.3. Study of upper geometry  

The final block consists on determining if there is any local big burr oriented upwards in 
the image. The first step consists on localising the transitions between the background 
(illumination) and the part in the mask image. In order to do it, vertical lines are used to 
find the nearest edges from the top of the image (see Figure 5.25).  
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Figure 5.25: Detection of the upper contour of the part. 

Through the searching strategy explained in Figure 5.25, the local big burr is the 
highest point of the part in the image whenever the top surface of the part remains 
horizontal. At the present case, a non-horizontal top surface could be provoked by two 
reasons. The first reason is the presence of a local big burr oriented downwards, which 
is previously detected by the second block of the algorithm. And the second reason is 
an erroneous positioning of the part on the Teflon© surface, which has not been critical 
in the present research work. 

Assuming a horizontal top surface, when the highest point is localised, the height of the 
neighbour points in both directions, right and left direction, are calculated too. In case 
of any local big burr oriented upwards, the height of these points is lower (see Figure 
5.26). At the present research work, and after evaluating the size of the local big burrs 
in the reference 5828-001, it was estimated that the local big burrs are correctly 
detected when a height difference of four or more pixels (corresponding each pixel to 
50 microns) is found in the image. The distance in the horizontal axis between p2 and 
p1 and between p2 and p3 is five pixels. 

 

Figure 5.26: Schematic representation of a local big burr oriented upwards. 

5.2.4. Vision system: a hardware / software co-design architecture approach 

After developing the vision algorithms, a vision prototype working with two commercial 
cameras (uEye cameras of the German company IDS) connected via USB 2.0 to a PC 
(Pentium 4 at 3Ghz) where the image processing was carried out was developed. First 
trials showed that this vision architecture was not able to face the manufacturing rate at 
Industrias Alzuaran S.L. The main constrain of this initial vision architecture relies in the 
communication between the cameras and the PC. It was stated that when the cycle 
time was reduced to reach the aforementioned rate, the synchronization between the 
computer and the cameras represented a bottleneck for the system and some of the 
images received by the computer were corrupted.  
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The conclusion of these first trials was that another vision architecture able to speed up 
the cycle time of the images processing was necessary in order to face the current 
production rate in Industrias Alzuaran S.L. (120 parts per minute) and also to reach 
faster production rates of future applications (up to 1800 parts per minute). In order to 
do that, a hardware / software co-design image processing architecture approach was 
proposed. In this architecture some of the algorithms have been implemented in a 
standard microprocessor embedded in the main processing station of the system (a 
PC) and the rest of the algorithms have been implemented on FPGA (Field 
Programmable Get Array) embedded in the iCam smart cameras developed by Delta 
Technologies. 

Among other reasons, this hardware / software co-design architecture has been 
chosen because the implementation of data, signal or image processing algorithms on 
FPGA (when such an implementation is possible) instead of implementing them on 
DSP (Digital Signal Processor) or standard microprocessors offers processing time 
reduction of 10 if compared to an implementation on DSP, and by 100 if compared to 
an implementation on a standard microprocessor [RUS95, FIL01, FIL07/2, FIL08]. 
Another important advantage of this hardware / software co-design architecture is the 
achievement of more compact and robust industrial solutions that in applications where 
the environment is difficult or hostile (difficult industrial environments where vibrations 
or dirt are present; outdoor and space applications; etc) offer good performances. At 
the same time, it offers high miniaturization possibilities [FIL07/2]. 

Since some kind of algorithms are suitable for implementation in FPGA while others 
are not, a study of the algorithms developed for the quality evaluation of the parts was 
carried out. Looking at them, two kinds of algorithms can be distinguished: low level 
algorithms and high level algorithms. Low level algorithms, which correspond to 
systematic processes applied to all the pixels of the image, like image thresholding or 
noise filtering are very suitable for being implemented on FPGAs. The reason for this is 
that such algorithms involve systematic non conditional processing and are easily 
parallelizable. On the other hand, high level algorithms process less data than the low 
level algorithms and present a conditional, non-parallel architecture that makes them 
not suitable for being implemented on FPGAs. Furthermore, low level algorithms 
process all pixels of an image (more than 1,3 million pixels per image), whereas high 
level algorithms process sparse data (e.g. image contours). In the present research 
work, the low level algorithms correspond to the first steps, i.e. thresholding, noise 
filtering, mask development and the high level algorithms correspond to the extraction 
and analysis of the part features.  

In order to evaluate the difference between the low level and the high level algorithms 
developed at the present research work and to select the algorithms to be implemented 
on FPGAs, a study was carried out with the vision algorithms that process the upper 
view image. The vision algorithms for the upper view image have been selected 
because they are more complex, and therefore more time consuming, than the vision 
algorithms developed for the lateral view image. Therefore, the image processing 
algorithms developed for the upper view image of the reference IA-04 and the 
reference 0863-012 (also used for the reference 5828-001) were implemented and 
tested in a PC (Pentium 4 at 3Ghz) using free software libraries (OpenCv libraries for 
image), and Visual C++ using Gtk libraries for display. The algorithmic approach was 
divided into three steps and the computing time for each step was calculated. First step 
corresponds to the detection of the part, to the noise filtering and to the distortion 
correction. Second step corresponds to the centre calculation using the Least Square 
approach. And third step corresponds to the calculation of the dimensions of the part 
using the Rotating Radius approach. The processing times for both references are 
given in table 5.I. 
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Table 5.I: Processing time at a PC for the references IA-04 and 0863-012. 

 Ref.- IA-04 Ref.-0863-012 

Part Detection + Image filtering 
+ Distortion Correction (Step 1) 33 msec. 1818 analyses/min. 35 msec. 1740 analyses/min. 

Center Calculation (Step 2) 0.64 msec. 93720 analyses/min. 0.58msec. 103440 analyses/min.

Dimension Calculation (Step 3) 4.4 msec. 13440 analyses/min. 3.8 msec. 15540 analyses/min. 

Total time Calculation 38 msec. 1580 analyses/min. 39 msec. 1538 analyses/min. 

First conclusion of the study is that the processing rate of a computer does not reach 
the optimal targeting one, 1800 parts per minute. Table 5.I shows that a PC is not able 
to reach the desired rate even when only the processing time (not including the 
acquisition time) of only one of the two images (the upper view image here) is 
considered. At the same time, these results have been used to decide which 
processing steps should be implemented in the intelligent cameras. The bottleneck 
corresponds to step 1 of the algorithm in Table 5.I. Step 1 of the algorithm takes 
86,84% of the computation time for the reference IA-04 and 89,74% for the reference 
0863-012. Step 1 of the algorithm is a low level algorithm that processes all the pixels 
at the image. Therefore, and since it is very easily parallelizable and adequate for its 
implementation in FPGAs, it has been decided to implement step 1 of the algorithm in 
FPGAs on board the smart cameras.  

Step 2 of the algorithm, although also parallelizable, takes the smallest amount of time 
(takes 1,68% of the computation time for the reference IA-04 and 1,48% for the 
reference 0863-012); the implementation of this algorithm in FPGA would lead to a 
negligible decrement in the processing time. Furthermore, processing time of step 2 of 
the algorithm copes by far with the targeting throughputs for the image processing 
(1800 parts per minute). Thus and for the present research work, it has been decided 
to implement step 2 of the algorithm in PC and not on FPGAs. For future applications 
where higher production rates will be faced, step 2 of the algorithm could be 
implemented in FPGAs too. 

Finally, step 3 of the algorithm takes much smaller time than step 1 (takes 11,57% of 
the computation time for the reference IA-04 and 9,74% for the reference 0863-012), 
and it is hard to implement in FPGA because it is a decisional algorithm. For this 
reason, step 3 of the algorithm has also been implemented in PC. Furthermore, it must 
be considered that a suitable approach goes through the implementation of the 
algorithm steps that are valid for several references in FPGA (step 1 and step 2 of the 
algorithm) and the algorithm steps that depend on each reference (step 3 of the 
algorithm) in PC, for being reprogrammed easily. 

The final vision acquisition chain developed at the present research work is composed 
of two intelligent cameras and an industrial PC (double core Pentium 4 at 2.4Ghz with 
RAM 2048 Mb). Figure 5.27 shows the vision algorithms that are implemented in the 
intelligent cameras and the vision algorithms that are implemented in the PC. On the 
one hand, onboard the intelligent cameras, the parallelizable bottlenecked low level 
image processing algorithms are implemented. The distortion correction, a noise 
filtering by image convolution and a thresholding before sending data to the PC are 
carried out (left side at Figure 5.27). On the other hand, the post-processing part 
consists of proprietary non-bottlenecked image processing algorithms, implemented in 
a PC, using open source libraries that carries out the part contour detection and 
analysis, the part features extraction and the part validity assessment (right side at 
Figure 5.27). This new architecture reduces the computing time of the low level 
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algorithms and, at the same time, reduces the time necessary to transmit the 
information from the cameras to the PC.  

 

Figure 5.27: Hardware and software co-design and their corresponding algorithms. 

Each intelligent camera contains a CMOS (Complementary Metal Oxide 
Semiconductor) sensor, FPGAs, RAMs (Random Access Memory) and a USB 2.0 
(Universal Serial Bus) connection for the communication with the PC. Figure 5.28 
shows the camera, its characteristics, the internal cards and the corresponding 
functional diagrams. The first card is the CMOS image sensor. The second card is the 
processing card, including one FPGA component and several memories: 2 EEPROM 
(Electrically-Erasable Programmable Read-Only Memory) memories are used to store 
the parameters for hardware/camera configuration and the processing parameters. 
This second card also includes RAM memory. The third card is the power supply card. 
And the last one is the input/output card, allowing power supply input and containing a 
USB 2.0 connection.  

 

Figure 5.28: iCam intelligent camera and its internal cards. 

The results achieved with the proposed hardware / software co-design regarding the 
processing time of the images are shown next. Figure 5.29 shows the time that the new 
vision architecture needs to acquire and to process both, the upper view and the lateral 
view image, per part. The horizontal axis is the time in milliseconds that measures the 
interval from the moment when the PC orders the cameras to start the images 
acquisition until the moment when the vision algorithms determine the quality of the 
evaluated part. This measure time interval includes the acquisition of the images, the 
pre processing made by the cameras, the transferring of the images from the cameras 
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to the PC and the final image processing step in the PC. The vertical axis shows the 
percentage of parts (out of 3000 measurements made during the manufacturing of the 
reference 5828-001) that corresponds to each time interval. The global processing time 
ranges from 110 to 140 milliseconds (depending on the processes run by the computer 
at the moment that the images are taken) and the average time is around 120 
milliseconds. At this point, it must be taken into account that the computer is in charge 
of managing all the pneumatic and electrical actuators necessary to handle the parts 
through the AV system and that the algorithms at the PC have not been completely 
parallelized. These results mean that the develop hardware / software co-design image 
processing architecture approach is able to acquire and process 8,33 parts per second 
(what means 500 parts or 1000 images per minute) 
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Figure 5.29: Time for the acquisition and processing of both images per part. 

5.3. Results achieved with the developed artificial vision prototype 

Figure 5.30 shows the final AV prototype where the two intelligent cameras and the PC 
for the final image processing have been integrated. The complete AV prototype, 
composed of the intelligent cameras, the PC for the final processing of the images and 
the pneumatic and electric actuators necessary for the handling of the parts were 
mounted in a conveyor belt in charge of carrying the parts from the blanking facility to 
the area where the images are taken.  
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Figure 5.30: Final AV prototype. 

The results regarding the evaluation rate achieved by the AV prototype and the results 
regarding the quality control achieved with the developed AV prototype are briefly 
explained next. The results regarding the quality control are divided into two main 
groups: the results achieved with the upper view intelligent camera and the results 
achieved with the lateral view intelligent camera. All the results were recorded during 
the tests campaigns carried out in Industrias Alzuaran S.L during the production period 
of the reference 5828-001. The manufacturing rate was around 100 parts per minute 
and the dimensions measured for the reference 5828-001 are presented again in 
Figure 5.31. 

 

Figure 5.31: Control dimensions measured for reference 5828-001. 

Width (A) of the part along the symmetry axis, width (B) at the ears of the part, 
diameter C, the diameter of the small holes at the ears of the parts and diameter D, the 
external diameter of the part are measured with the upper view camera. At the same 
time, the lateral view camera allows to check for the presence of local big burrs due to 
punch micro cracks.  
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5.3.1. Evaluation rate achieved by the AV prototype in Industrias Alzuaran S.L. 

The cycle time of the AV prototype was measured during the experimental phase 
carried out in the blanking facility in Industrias Alzuaran S.L. The complete cycle time of 
the AV prototype includes the time necessary to feed one part from the vertical buffers 
in the AV system, position it in front of the cameras, acquire and process both images 
and evacuate the part from the image acquisition area directing it towards the right 
container. Figure 5.32 shows the evaluation rate results achieved by the AV prototype 
working in Industrias Alzuaran S.L.  
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Figure 5.32: Cycle time per part at the developed AV system. 

In Figure 5.32, the horizontal axis is time in milliseconds and measures the time 
interval from the moment when one part “cuts” the trigger that initialises the evaluation 
cycle until the moment when the next part cuts the trigger again. The vertical axis 
shows the percentage of parts (out of 3000 measurements made during the 
manufacturing of the reference 5828-001) that belongs to each time interval. The global 
cycle time ranges from 515 to 781 milliseconds and the average time is around 580 
milliseconds. The cycle time variation is due to the fact that the parts are fed into the 
image acquisition area by means of the gravity and therefore the feeding is not 
completely controlled. These results mean that the vision system is able to evaluate 
1,72 parts per second, which means an evaluation rate of approximately 103 parts per 
minute. 

Therefore, it is concluded that the AV prototype is able to work at the production rate of 
the blanking facility in Industrias Alzuaran S.L. The current limitation of the AV 
prototype is the handling of the parts (103 parts per minute) that limits the processing 
rate of the AV prototype that is 1000 images (500 parts) per minute (as shown in Figure 
5.29). Thus, through the implementation of a faster handling system, the evaluation 
rate of the AV system could be currently improved up to 500 parts per minute. 

5.3.2. Results achieved for the upper view image in Industrias Alzuaran S.L.. 

The results achieved by the upper view camera of the AV prototype are described next. 
Regarding the spatial resolution of the upper view camera, although initially a 
resolution of 50 microns was achieved, the optical distortion correction methodology 
implemented on board in the camera for speeding up the processing of the images 
provided images with a spatial resolution of 100 microns (because of hardware 
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constrains related to the memories onboard the smart cameras). The following results 
were recorded during the production of around three thousand consecutive parts of the 
reference 5828-001 in Industrias Alzuaran S.L. The results obtained for each one of the 
dimensions to be controlled at the part are briefly described next.  

5.3.1.1. Width A: width of the part along the symmetry axis. 

According to the part’s specifications in Figure 5.31, dimension A must be smaller than 
6.1 millimetres. Figure 5.33 shows the results of the measurements carried out for the 
dimension A where it is shown that around 80% of the measurements are within 5.78 
and 5.95 millimetres, being the average value of the measurement 5.83 millimetres. On 
the other hand, 0,6% of the measured parts were out of tolerances (19 parts out of 
3.120 measured parts) representing the percentage of false negatives (good quality 
parts classified as bad parts) of the system.  
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Figure 5.33: Dimension A of reference 5828-001 measured at 3000 consecutive parts. 

It was observed during the experimental phase that a possible reason for these false 
negatives is the high evaluation rate (low cycle time) of the AV system (currently limited 
by the handling system). This high evaluation rate (working very close to the limits of 
the system) has as a consequence that some of the parts are not well located neither 
static in front of the cameras when these take the images. In order to evaluate this 
problematic, the production rate of the vision system was decreased down to 1 part per 
second and it was stated that the percentage of false negatives decreased from 0.6% 
down to 0.4%. Therefore, the handling strategy proposed for the AV system must be 
re-evaluated in order to reduce the false negatives. 

At the same time, it was observed that the upper view camera needs a better spatial 
resolution in order to improve the measurement accuracy and decrease the false 
negatives. This way, if the spatial resolution of the camera was improved down to the 
initial proposed one, 50 microns per pixel (the CMOS sensor is compatible but the 
internal EEPROM memories of the smart camera need more capacity), the number of 
pixels covering the tolerance range (6 pixels nowadays) would be increased and the 
percentage of false negatives reduced.  

5.3.1.2. Width B: width at the ears of the part. 

According to the part’s specifications in Figure 5.31, dimension B must be smaller than 
6.1 millimetres. Figure 5.34 shows the results of the measurements carried out for the 
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dimension B where it is shown that around 80% of the measurements are within 5.77 
and 5.94 millimetres being the average value of the measurement of 5.87 millimetres. 
On the other hand, 2,4% of the measured parts were out of tolerances (74 parts out of 
3.120 measured parts). In the same experiment carried out at an evaluation rate of 1 
part per second, the percentage of false negatives decreased down to 1.2%, what 
means a reduction of around 50%. Therefore the effect of the evaluation rate (limited 
by the handling of the parts) is also important for this dimension. Again, and as 
happened for width A, an improvement of the upper view camera resolution would 
increase the number of pixels within the tolerance range too (5 pixels nowadays) and 
this would reduce the false negatives.  
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Figure 5.34: Dimension B of reference 5828-001 measured at 3000 consecutive parts. 

5.3.1.3. Diameter C: diameter of the small holes at the ears of the part 

According to the part’s specifications in Figure 5.31, diameter C must be greater than 
2.5 millimetres. Indeed diameter C is directly related with the diameter of the punches 
that shear the material. Since the diameter of the punches decreases along the 
production due to wearing, the dimension of this diameter decreases too. Figure 5.35 
shows the results of the measurements carried out for the dimension C where it is 
shown that around 96% of the measurements are within 2.62 and 2.73 millimetres 
being the average value of the measurement of 2.69 millimetres. In this case no parts 
were found out of tolerances. 
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Figure 5.35: Dimension C of reference 5828-001 measured at 3000 consecutive parts. 

5.3.1.4. Diameter D: external diameter of the part. 

According to the part’s specifications in Figure 5.31, diameter D must be within 33.75 
and 34.5 millimetres. Figure 5.36 shows the results of the measurements carried out 
for the diameter D where it is shown that around 81% of the measurements are within 
34.05 and 34.25 millimetres being the average value of the measurement of 34.08 
millimetres. On the other hand, 3.96% of the measured parts were out of tolerances 
(123 parts out of 3.120 measured parts). For this dimension, in the experimental phase 
carried out at an evaluation rate of 1 part per second, the percentage of false negatives 
decreased down to 1.2%. Thus, it is necessary for this dimension too to re-evaluate the 
handling system if the percentage of false negatives wants to be reduced. Finally, an 
improvement of the upper view camera resolution would increase the number of pixels 
within the tolerance range too (6 pixels nowadays) and this would reduce the false 
negatives.  
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Figure 5.36: Dimension D of reference 5828-001 measured at 3000 consecutive parts. 

As a final summary of the results achieved with the upper view camera, next table 
represents its overall performance during the experimental phase. The table specifies, 
out of 3.120 measurements, for each of the dimensions measured at the part, the lower 
and upper tolerances, the average value of the each dimension, the standard deviation 
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of each dimension and the percentage of false negatives and false positives (bad 
quality parts that were classified as good parts) achieved for each dimension. The most 
important values at the table are the standard deviation that represents the variability of 
the measurements (around 150 microns the biggest one) and the false negatives 
(mentioned before) and false positives (cero because no defective parts were produced 
during the testing period). Finally, the last column represents the percentage of false 
negatives when the evaluation rate of the system was decreased down to 1 part per 
second. 

Table 5.II: Results summary for measurements of the upper view camera (reference 5828-001). 

 
Lower 

tolerance 
(mm) 

Upper 
tolerance 

(mm) 

Average 
(mm) 

Standard 
Deviation 

(mm) 

False 
negatives 

(%) 

False 
positives 

(%)  

False negatives 
(%) at low rate 

Dimension A ------ 6,10 5,8392 0,0937 0,6089 0 0,3952 

Dimension B ------ 6,10 5,8706 0,0978 2,4046 0 1,1857 

Dimension C 2,55 ------ 2,6987 0,0578 0 0 0 

Dimension D 33,75 34,5 34,0849 0,1540 3,9600 0 1,1857 

The main conclusion of this chapter is that, although the AV system is working properly 
(with a low standard deviation), the percentage of false negatives should be decreased. 
In order to achieve this, two solutions are proposed for the future. First one is to slightly 
decrease the evaluation rate of the AV system in order to have a better positioning of 
the parts in front of the cameras when these take the images. And second is to 
increase the internal EEPROM memories of the cameras in order to acquire higher 
resolution images of the parts. This will have as a consequence that a greater number 
of pixels will cover the tolerance ranges and therefore the accuracy of the system will 
be better (this could be easily evaluated by implementing the optical distortion 
correction on the PC when working at low production rates). 

5.3.3. Results achieved for the lateral view image in Industrias Alzuaran S.L. 

Regarding the lateral view image of the parts, the presence of local big burrs due to 
punch micro cracks is currently detected. In this case, the AV system does not 
qualitatively measure this defect and the detection is given through a binary signal, 
encoding the presence or absence of local big burr. Figure 5.37 shows an example of 
the detection of a local big burr in the preliminary tests carried out with the reference 
IA-04.  
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Figure 5.37: Local big burr detection through lateral view image processing. 

The aim of the tests carried out at the laboratory was to determine the efficiency of the 
system and the percentage of false positives and false negatives of the system. In 
order to get it, two tests were carried out. In the first test, 100 parts with local big burrs 
were passed through the system. Out of the 100 parts, the vision system localised the 
big burr in 97 parts and 3 local big burrs were not detected. The conclusion of this first 
test is that the percentage of false positives is around 3%. The second test consisted 
on passing through the system 100 good quality parts mixed with one part with local 
big burr. After the test, it was shown that the system was able to detect the local big 
burr and to sort it out and, at the same time, it was shown that the system also 
classified two good quality parts as parts with local big burrs, what means a percentage 
of false negatives of around 2%. 

5.4. Conclusions 

An AV prototype for the quality evaluation of the reference 5828-001 has been 
developed. The AV prototype consists of two intelligent cameras that “look” at the parts 
to be evaluated from above (upper view image) and from the side (lateral view image) 
and a PC where the final processing of the images is carried out.  

Figure 5.38 shows the final command window of the AV prototype. This command 
window was only used during the set up of the AV system. Currently the AV system is 
linked to the intelligent control system (explained in “Chapter 6. Intelligent Control 
System”) and the measurements are shown to the operator through its graphical user 
interface. Figure 5.38 shows all the information that the AV prototype gathers for each 
controlled part. The information related to the image 1.bmp in Figure 5.38 corresponds 
to the image taken by the upper view camera. The command window shows the four 
main dimensions of the part and also checks if each is within its predefined tolerances. 
And the information related to the image 2.bmp in Figure 5.38 corresponds to the 
image taken by the lateral view camera. First the coordinates of the part in the image 
are given and finally the presence or absence of local big burrs is detailed. In the 
example of Figure 5.38, a local big burr was found and therefore the part was sorted 
out as a defective part. 
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Figure 5.38: Command window of the AV system; big burr detection. 

The developed AV prototype has fulfilled its main objective: to detect process failures 
that were not detected in the previous chapter with the sensors based process 
monitoring system. One critical example is the detection of local big burrs due to punch 
micro cracks. Figure 5.39 shows all the part defects that have been found during the 
setting up and during the experimental phase carried out with the AV prototype. Most of 
the defects are related with parts out of tolerances and with the localisation of local big 
burrs. 
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Figure 5.39: Part defects detected during the experimental phase. 

Therefore, the AV system is a reliable complementary monitoring tool to the sensors 
based process monitoring system. In addition to this, the AV system is able to measure 
the control dimensions of the parts with a resolution of 100 microns (the intelligent 
camera can provide a resolution of 50 microns by improving the EEPROM memory 
onboard). Part by part, the AV system checks if the control dimensions are within the 
predefined tolerances being the maximal standard deviation around 150 microns. The 
AV system controls all the parts and allows the manufacturing facility to work under 
zero defects.  

Regarding the image acquisition and processing rate, and since the evaluation time per 
part achieved with the commercial cameras at the beginning of the research work was 
not fast enough, an original hardware software co-design architecture has been 
developed and implemented into the blanking facility. The development and 
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implementation of the architecture represent themselves an original contribution to the 
current state of the art in AV systems. The main purpose of this hardware software co-
design architecture is to speed up the acquisition and the processing rate of the 
images. In the present research work, it has been pursued to optimise the throughput 
of parts beyond the possibilities of the manufacturing facility in Industrias Alzuaran S.L. 
with the aim of implementing this hardware software co-design architecture for the 
control of faster processes in the future. The time necessary for the acquisition and 
processing of both images per part was reduced down to 120 milliseconds, which 
means the possibility to control up to 8 parts per second (500 parts per minute).  

Currently, the cycle time of the complete AV system (including parts handling) is very 
close to two parts per second what means that does not represent a bottleneck in the 
blanking facility. Anyway, it must also be said that from a mechanical point of view the 
AV system is very close to its limits regarding the handling of the parts. This fact has as 
a consequence that some of the images taken, mainly by the upper view camera, do 
not have sufficient quality and this is the reason why a low percentage of false 
negatives was detected during the testing period. In order to decrease the percentage 
of false negatives, the evaluation rate of the parts should be decreased. At the same 
time, the internal EEPROM memories of the cameras could be augmented in order to 
provide higher resolution images of the parts. This will have as a consequence that a 
greater number of pixels will cover the tolerance ranges and therefore the accuracy of 
the system will be better. 

Finally, the developed “positioning boxes” represent also an original contribution to the 
handling of the retaining rings parts because they allow to reduce the manual 
operations needed to position the parts. This has been used at the present research for 
feeding the parts into the AV system but can also be used to position the parts in 
containers to be sent to customer or for the further steps in their manufacturing process 
(heat treatment of the parts for example). This fact can reduce the cost of manual 
operations what represents a big percentage of the cost of the parts. 
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6.- INTELLIGENT CONTROL SYSTEM 

At the present chapter, the intelligent control system based on Artificial Intelligence (AI) 
techniques that has been developed and implemented into the demonstrator (blanking 
facility at Industrias Alzuaran S.L.) is presented. The main purpose is to create an 
autonomous control system able to, whenever a process failure or part defect is 
detected at the blanking facility, determine what the failure is, find the reason why it 
happened and suggest the operator solutions for an efficient and fast restarting of the 
production.  

Figure 6.1 shows the main architecture of the intelligent control system developed at 
the present research work. The main core is a data processing unit that, taking as input 
the data gathered by the sensors based process monitoring system (explained in 
“Chapter 4.- Sensors based process monitoring”) and the AV system (explained in 
“Chapter 5.- Part quality control”), is able to analyse this data and to identify the 
process failure or part defect at the blanking facility.  

 

Figure 6.1: Intelligent control system architecture. 

The present chapter explains the core of the intelligent control system. Two different 
techniques have been used to developed a system that is able to first, analyse the 
information coming from the sensors based process monitoring system and from the 
AV system and later, inform the operator about the incidence at the blanking facility, its 
causes and the actions that should be carried out in order to restart the production.  

The techniques used at the present research work (selected according to the 
conclusions of the bibliographic review) are rule-based expert systems (ES) and case-
based reasoning (CBR) techniques. The first technique, rule-based ES, has been used 
to verify the capacity of AI techniques to survey and control sheet metal forming 
processes (a blanking process at the present research work). And the second 
technique, the CBR approach, has been used to verify the capacity of AI techniques to, 
besides surveying the processes, learn automatically in such processes when a priori 
knowledge is not easily available. Next both techniques and their achieved results are 
briefly explained.  



Intelligent control system 

-166- 

6.1. Intelligent control system development: rule-based ES based approach 

The first approach to develop the intelligent control system is based on the application 
of rule based ES techniques. As mentioned in “Chapter 2.- Scientific and technological 
background”, an ES can be defined as a problem-solving and decision-making system 
based on knowledge codified from the experience of human specialists in a field 
[MIL85]. The main advantages of ES compared with the traditional control strategy 
based on human operators is the achievement of more consistent answers for 
repetitive tasks, decisions and processes, efficiently and quickly and without any lack of 
performance because of pressure or tiredness. These advantages face an increasingly 
problem in the actual manufacturing processes: human operators are less and less 
able to react as quick and precise as the production rates and quality requirements 
demand. In the present research work, the human expert is the operator of the blanking 
facility at Industrias Alzuaran S. L. and the domain are the blanking processes carried 
out at Industrias Alzuaran S. L.  

Several computer software appropriate for the development of ES can be found in the 
market nowadays. A brief study was carried out in order to choose the most suitable 
one for the necessities of the present research work. The specifications that have been 
analysed for the selection of the most suitable software in the market are the next: 

• Kind of knowledge able to be implemented (Boolean and/or fuzzy). 
• Facility to communicate with other systems (process monitoring and AV system). 
• Facility to communicate with a Graphical User Interface (GUI). 
• Operative system where can be installed (Windows or Linux). 
• Existence of any commercial license (mainly for the industry). 

Among the different software at the market, CLIPS software [CLI08] has been chosen 
for the development of the rule based ES. CLIPS is a public domain software tool for 
building ES. The name is an acronym for “C Language Integrated Production System”. 
CLIPS was originally developed by the NASA in 1985 and nowadays is probably the 
most widely used ES tool because it is fast, efficient and free. CLIPS, as its own name 
details, is written down in C and like other expert languages deals with rules and facts; 
various facts can make a rule applicable and then the rule is asserted [CLI08]. The 
reasons why this software tool has been applied in the present research work are 
described next:  

1. First reason is that this software tool (considering its extension FuzzyClips) is able 
to represent both Boolean and fuzzy knowledge. Although at the present research 
work only Boolean knowledge has been used, the research team pursued a 
software tool able to work with both kinds of knowledge for future possible 
implementations.  

2. Second reason is that it is programmed and executed from C and this way it is 
moderately easy to develop a GUI (Graphical User Interface) using for example 
GTK libraries. At the same time, the communication with the AV prototype 
developed in C++ is easily achieved too. 

3. And third reason is that it can be installed in both operative systems, Windows and 
Linux. Although at the present research work Windows operative system has been 
chosen, future developments could be implemented in Linux due to its higher 
robustness and the fact that is free. 

The implementation of this kind of intelligent systems into industrial processes 
comprises a set of determined steps. Next, the steps carried out for the development 
and application of the rule-based ES into the blanking facility at Industrias Alzuaran S. 
L. are explained. 
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6.1.1. Identification of the expert 

First step consists on finding where the knowledge about the process to be controlled 
resides in. In most of the cases, this knowledge belongs to the operator (or operators if 
more than one operator control the facility). At the present research work, only one 
operator controls the forming facility in Industrias Alzuaran S. L. and therefore, and as 
mentioned before, the operator of the blanking facility at Industrias Alzuaran S. L. is the 
human expert and the domain is the blanking process carried out in progressive tools.  

Regarding the operator, two very important aspects must be taken under consideration. 
First aspect is that the operator must perceive the ES like a tool that will help him/her in 
the future, and not like something that will disturb him/her during his/her daily job. At 
this point, it is very important to explain the operator what the final purpose of the ES 
will be and how the ES will help him/her to solve the daily problems at the production 
facility. And another very important point is the ability of the expert human operator to 
specify all the knowledge about the manufacturing process that he/she has acquired 
through the experience. Sometimes happens that, although the expert human operator 
controls the process perfectly, he/she has difficulties when tries to specify all this 
knowledge. These two previous mentioned aspects are determinant for a successful 
implementation of the knowledge into the rule-based ES. 

At the present research work, the operator of the blanking facility at Industrias Alzuaran 
S. L. understood perfectly the purpose of the ES implementation and was very helpful 
during its development. The research team organised meetings with him and spent 
several days working together with him at the blanking facility. This way most of his 
knowledge was written down for its future implementation into the ES. Although most of 
the knowledge was implemented into the knowledge base during this initial phase, it 
was also concluded during the experimental phase that not all the knowledge had 
initially been acquired. Therefore during the aforementioned experimental phase, new 
knowledge was implemented into the knowledge base improving the performance of 
the ES. In order to get this, the research team worked together with the operator during 
the experimental phase and new details and aspects that were not written down 
initially, were specified. This made the ES to achieve a higher efficiency and to improve 
its results.  

6.1.2. Knowledge acquisition 

Once the knowledge is acquired from the human expert operator, next step consists on 
writing down all that knowledge into the knowledge base. The knowledge base is a 
database for knowledge management. It contains a set of data, specified by means of 
IF-THEN rules, that mimics the knowledge of the operator. At the present research 
work, the knowledge taken from the operator has been structured into the knowledge 
database in a way that replies how the operator faces the daily problems at the 
blanking facility, asking the next three questions:  

1. “What process failure(s) has happened at the blanking facility?” 
2. “Which is the reason for that process failure(s)?” 
3. “What should be done to solve the failure and restart the production?” 

Two knowledge bases were created following the previous proposed structure. The first 
knowledge base comprises the process failures detected by the sensors based 
process monitoring system and the second knowledge base comprises the part defects 
detected by the AV system. At this point, it must be stated that although one unique 
knowledge base could have been created, two different knowledge bases were 
developed for a better understanding and distinction of the process failures detected by 
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the sensors based process monitoring system and the part defects detected by the AV 
system. At the same time, the creation of two different knowledge bases allows an 
easier reusability in other processes.  

The first knowledge base, (shown in Figure 6.2), describes the process failures 
detected by the sensors based process monitoring system in Chapter 4. The process 
failures, detected by the sensors based process monitoring system in “Chapter 4.- 
Sensors based process monitoring”, are now described from a detection point of view 
in the column named “process signal” at the Figure 6.2. At the same time, first three 
columns in Figure 6.2 describe the process failures from an operator’s knowledge point 
of view, that is, how the operator reacts after the detection of the process failure. First 
column, “Failure”, gives a description of the process failures at the blanking facility. 
Second column, “Cause”, describes the cause at the blanking facility that favours each 
process failure and third column, “Solution”, explains the actions to be carried out to 
solve the process failure and to restart the production at the blanking facility. Figure 6.2 
shows how up to nine different process failures were found at the blanking facility and 
how each process failure is due to a specific cause and has a specific solving protocol 
to restart the production. 
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Figure 6.2: Knowledge base for process failures detected by the sensors based monitoring system. 

The second knowledge base, (shown in Figure 6.3), describes the part defects 
detected by the AV system in “Chapter 5.- Parts quality control”, and are now described 
from a detection point of view in the column named “part image” at the Figure 6.3. At 
the same time, first three columns in Figure 6.3 describe the part defects from an 
operator’s knowledge point of view, that is, how the operator reacts after the detection 
of the defective part. First column, “Defect”, gives a description of the defective part at 
the blanking facility. Second column, “Cause”, describes the cause at the blanking 
facility that favours the production of each defective part and third column, “Solution”, 
explains the actions to be carried out to restart the production at the blanking facility 
producing good quality parts. Figure 6.3 shows how up to nine different part defects 
were found at the blanking facility and how each part defect is due to a specific cause 
and has a specific solving protocol to restart the production. 
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Figure 6.3: Knowledge base for part defects detected by the AV system. 

6.1.3. Feeding the expert system: facts  

In previous subchapter (Figure 6.2 and Figure 6.3), the causes and solutions for all the 
possible process failures and part defects at the blanking facility have been described. 
Next step consists on creating the rules that will automatically identify the process 
failures and the part defects using the information acquired by the sensors based 
process monitoring system and the AV system. This action closes the loop and creates 
the necessary structure that allows the ES to first, identify the problem at the blanking 
facility, second, explain its causes and finally suggest, the right solution to restart the 
production. 
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Next, a brief description of the information supplied by both, the sensors based process 
monitoring system and the AV system, and used by the ES to identify the process 
failures and the part defects is given.  

6.1.3.1. Process stability information from the Brankamp sensors based process 
monitoring system 

Since in an ES the knowledge is implemented in the form of IF-THEN rules, the raw 
data, force and acoustic curves, acquired by the sensors based process monitoring 
system does not offer much information when is directly used by the ES (each process 
failure can be composed of up to 15.000 numerical values). More elaborated 
information is necessary and therefore a pre-treatment of the raw data acquired by the 
sensors based process monitoring system must be made in order to make it more 
intelligible to the ES. At the present research work, this pre-treatment consists on 
modelling the process failures by means of a set of numerical attributes that are later 
transferred as the antecedents to the knowledge base. After evaluating the appearance 
of the process failures at the studied blanking processes, and also based on the 
expertise of Brankamp GmbH, it was concluded that the set of attributes that most 
suitably define the process failures detected at the blanking facility during the 
experimental phase is the next one: 

1. Channel number: Identify the sensor where the first fault (process signal going 
beyond the envelope curves) happens. 

2. Lower/upper: Identify if the process signal has gone over the upper or under the 
lower envelope curve. 

3. Number of faults: Counts how many times the process signal has gone beyond 
the envelope curves. 

4. Initial time: Identifies the first time when the process signal has gone beyond the 
envelope curves.  

5. Real maximum value: Represents the maximum value of the process signal. 
6. Real maximum value time: Represents the time at which the process signal is 

highest. 
7. Hypothetical value: Calculates, at the time when the first process fault reaches 

its maximum value, the intermediate value between the upper envelope curve 
and the lower envelope curve (approximate value that the process signal would 
have if no fault had happened, see Figure 6.4_a). 

8. Gradient: Calculates the initial slope of the fault. In order to calculate it, the 
difference between the faulty process signal maximum value and its value when 
crosses the envelope curves is calculated (see Figure 6.4_b). 

9. Time percentage of the last fault: Calculates the length (in time percentage) of 
the last fault compared to the total length of the curve (see Figure 6.4_c). 

10. Fault in the process signal slope up: Identifies if the process signal goes 
beyond the envelope curves during the rising flank of the force curves. 

11. Fault in the process signal slope down: Identifies if the process signal goes 
beyond the envelope curves during the falling flank of the force curves (see 
Figure 6.4_d). 
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Figure 6.4: Explanation of attributes extraction from faulty process force/AE curves. 

Following the previous explanation, each process failure coming from the sensors 
based process monitoring system is pre-treated (modelled) and converted into all the 
previous mentioned attributes. These attributes are later used in the rule base to carry 
out the identification of the process failures. As an example, a process failure and the 
attributes extracted from it are described in Figure 6.5. 

 

Figure 6.5: Attributes extraction example of a faulty force curve. 

After this pre-treatment, the set of numerical values described in Figure 6.5 is 
transferred to the ES. This set of numerical values represents the antecedents at the 
ES and depending on them, and on the rules defined at the knowledge base (for 
example see Figure 6.7), the correct consequences (process failure, cause and 
solution) are then inferred.  
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6.1.3.2 Parts quality information from the Artificial Vision system 

On the other hand, since the nature of the information supplied by the AV system is 
very different, no information pre-treatment is necessary and the information can be 
directly supplied to the ES. The reason for this is that this information consists of a set 
of numerical attributes (like the attributes extracted for the sensors based process 
monitoring system in the pre-treatment phase) that in this case represent the 
dimensions to be controlled in the parts. Then, with the appropriate rules defined at the 
knowledge base, and depending on the value of the numerical attributes supplied by 
the AV system (dimensions of the part that represent the antecedents), the correct 
consequences (part defects, cause and solution) are then inferred. Figure 6.6 shows 
the information (per part) that the AV system sends to the ES. This information 
contains the main dimension of the part and evaluates the presence or absence of 
local big burrs in the part.  

 

Figure 6.6: Information transferred per part from the AV system to the ES. 

6.1.4. Knowledge specification into the rule database 

Once the knowledge has been acquired from the expert operator and the necessary 
information supplied by the sensors based process monitoring system and by the AV 
system has been defined, next step consists on developing the rule base of the ES. 
The rule base of the ES is the codification of all the aforementioned knowledge in a 
suitable way such that the inference mechanism of the ES will be able to automatically 
assert the right consequences depending on the antecedents supplied by the sensors 
based process monitoring system and the AV system. Therefore, the rule base is the 
codification of the antecedents, the consequences and the rules used to describe the 
knowledge of the operator. Figure 6.7 shows an example of how a process failure is 
codified from its antecedents (attributes extracted from the signals supplied by the 
sensors based process monitoring system) to its consequences (actions that the 
operator should carry out to restart the production) using CLIPS. Specifically, the 
process failure codified in Figure 6.7 corresponds to the detection of a punch breakage 
in the tool.  
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Figure 6.7: Example of rules codification for the detection of a punch breakage in the tool. 

Figure 6.7 shows how the rules developed in the rule base of the ES have been divided 
into three main blocks. First block of the rule in Figure 6.7 states that IF the attribute 
“gradient”, calculated in the pre-treatment phase, is smaller than 20 (what means a 
very sudden fault) AND the fault happens in sensor number three (acoustic emission 
sensor that supervises the withdrawal of the punches) AND it is an upper fault (process 
curve goes over upper envelope curve) THEN there has been a punch breakage in the 
tool. The second block of the rule states that IF there has been a punch breakage in 
the tool THEN the cause for the punch breakage in the tool is an excessive wearing of 
the punches. And finally, the third block of the rule states that the solution to solve the 
punch breakage at the tool is to replace the punch and provides two different solving 
protocols depending on the breakage length of the punch.  

6.1.5. The core of the ES: the inference mechanism 

And, finally, once the rule base has been developed, the inference mechanism of the 
ES is in charge of asserting the right consequences depending on the antecedents 
supplied by the sensors based process monitoring system and the AV system. The 
inference mechanism, or inference strategy, is a search method that performs the 
activation of the consequents (actions) of the rules which antecedents (conditions) are 
fulfilled [LUS85]. At the present research work, a data driven search method that 
emulates the operator has been used. This data driven search method works from 
known facts to the goal state like the operator does, from his/her perception of the 
process failure to the final action that successfully restart the production. Therefore, the 
ES receives information from both monitoring systems (sensors based and AV 
monitoring systems) and whenever a process failure or a part defect is detected, the 
ES is executed in the way described in Figure 6.8. 
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Figure 6.8 describes graphically the rule codified in Figure 6.7 and how the inference 
mechanism works. First step consists on finding the rule which antecedents match with 
the information supplied by the sensors based process monitoring system or the AV 
system. In this case, the antecedents which match are that the faulty channel (or faulty 
sensor) is number three (AE sensor that surveys the withdrawal of the punches), that 
the gradient value is smaller than 20 (very sudden fault) and that there is an upper 
fault. When these three antecedents are fulfilled, the rule for the punch breakage is 
“fired” and the identification of this process failure asserted. Next, the rule that links this 
process failure to their causes is activated asserting the reason of the problem. And 
finally, the ES determines the actions to solve the problem and restart the production at 
the facility. 

 

Figure 6.8: Steps in the inference mechanism during punch breakage detection in the tool. 

Therefore, with the implementation of this ES into the blanking facility, whenever any of 
the process failures described in Figure 6.2 or any of the part defects described in 
Figure 6.3 happens in the blanking process, the ES will automatically identify it and 
inform the operator about its causes and the right actions to be carried out for restarting 
the production in a quick and correct way. “Annex I. Rule base of the ES” shows all the 
rules developed at the present research work. 

6.1.6. Results achieved by the rule-based ES approach 

The rule-based ES has been implemented in the blanking facility and works in 
connection to the sensors based process monitoring system and to the AV system (see 
Figure 6.9). Nine different process failures and nine different part defects have been 
identified and implemented into the ES. All the process failures and part defects 
identified are shown in Figure 6.2 and Figure 6.3. Among the process incidences, the 
most important ones are: 

1. Strip feed failures due to bad extracted parts 
2. Strip feed failures due to slugs of material inside the tool 
3. Misalignment of the strip inside the tool 
4. Clogging of the strip to the tool during withdrawal of the ram 
5. Detection of broken punches 
6. Detection of double parts inside the tool due to bad extracted parts 
7. And detection of local big burrs due to punch micro cracks.  

Besides this, the intelligent control system is able to detect the position within the tool 
where the incidence has happened. This way, the operator only has to consult in the 
graphical user interface of the ES in order to know the incidence, its position in the tool, 
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its cause and the solution. At the same time, and regarding the part defects, the 
detection of local big burrs has been the most important incidence identified by the ES.  

 

Figure 6.9: Complete intelligent control system installed in Industrias Alzuaran S. L. 

At the end of the learning phase, which lasted during the production of more or less 
200.000 parts, 95% of the failures at the blanking facility were detected. After this 
learning phase and during the next six months (experimental phase), new knowledge 
was implemented in the ES and nowadays the success rate is close to 100%.  

Therefore, the implementation of the developed control system allows the elimination of 
the external defective because the AV system checks the quality of the 100% produced 
parts. This has three main advantages: 

1. Since Industrias Alzuaran S.L. produces the reference 5828-001 for the automotive 
industry, they can not supply any defective part to their customers. This is currently 
achieved by means of a visual inspection task made by human operators after the 
process that increases the cost of the parts around 2.5% (what correspond to 
approximately 5000€ per year for the reference 5828-001).  

2. If any defective part is shipped to the customer, Industrias Alzuaran S.L is 
responsible for the economic consequences that this originates (return of the 
complete batch, visual inspection of the complete batch and shipping of the batch 
to the customer again). Although this is not very frequent, it has sometimes 
happened originating economical losses (last year around 3000€ for the reference 
5828-001). 

3. And finally, the most important aspect but the most difficult to be quantifiable; since 
the companies working at the automotive industry are usually multinationals, the 
detection of any defective batch is known by all the companies (the reference 5828-
001 is supplied to 8 different companies in three different continents). Therefore, 
any detection of defective parts made by the clients deteriorates the image of the 
company and can lead to big decrements of the quantity of parts demanded.  
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In parallel, one of the most important achievements of the ES is the reduction in time, 
and therefore in cost, when solving the facility stops (downtimes) due to process 
failures. With the introduction of the ES, the operator do not need to look for the failure 
in the blanking facility, but he directly finds in the interface of the ES a message with 
the instructions to solve the machine stop. Based on the experimental phase carried 
out in Industrias Alzuaran S.L., it is estimated a reduction of about 40% in the time that 
the operator needs to solve each machine stop in the blanking facility after the 
implementation of the ES. Considering an average of 5 machine stops per shift (8 
hours of work), and estimating that each machine stop lasts for 10 minutes, it is 
concluded that the ES reduces the downtimes and therefore increases the productivity 
in about 4,16%. Finally, and due to the monitoring carried out at the blanking facility, 
the percentage of defective parts produced at the blanking facility is slightly decreased 
from a 0.1% down to a 0.08%, which means a 20%. Although this decrement in the 
production of defective parts has been mainly due to the implementation of the sensors 
based process monitoring system and of the AV system, the implementation of the ES 
results also in a better resolution of the process failures what leads to a reduction in 
trials and production of defective parts when solving the process failures. 

6.1.7. Limitations of the rule-based ES approach 

Although the results achieved by the intelligent control system implemented in the 
blanking facility in Industrias Alzuaran S. L. have been considerably good, it has also 
been concluded that the application of rule-based ES techniques to this kind of 
developments is not always the most suitable solution. This way, it has been verified 
how the development of the branch of the system that identifies the defective parts is 
much simpler than the development of the branch of the system that identifies the 
process failures. This dissimilarity resides on the existing initial knowledge regarding 
each monitoring system and the difference between the information supplied by the 
sensors based process monitoring system and the information supplied by the AV 
system. The reason why the rule-based ES approach is more suitable for the treatment 
of the information supplied by the AV system than for the treatment of the information 
supplied by the sensors based process monitoring system is briefly explained next.  

The information supplied by the AV system to the intelligent control system is 
composed of a set of numerical values (attributes) that represent the dimensions to be 
controlled at the part. These attributes and their numerical ranges (tolerances of the 
part) are well known from the beginning and are very easily codified into the rule base 
of the ES. As an example, a rule codified in the rule base is given next: IF the 
dimension measured at the part is smaller than its lower tolerance limit THEN the 
punch that blanks that area must be replaced because its wearing is too high. 
Following this example, two rules per dimension to be measured should be created, 
one for the upper tolerance limit and another one for the lower tolerance limit, where 
the actions to be carried out in case of any dimension out of tolerances should be 
stated. Therefore, the development of an intelligent control system based on ES is very 
suitable when the defects to be identified are a priori well known and when these 
defects are also easily identifiable in the information supplied by the monitoring system, 
in this case the AV system.  

On the other hand, all the process failures detected by the sensors based process 
monitoring system are not always a priori known and the information supplied to the 
ES, that represents the process signals during the blanking of the material, is 
composed of a vast amount of data (a time series composed of up to 15.000 numerical 
values per machine strokes at the present research work). The treatment of this 
information compared to the treatment of the information gathered by the AV system 
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has two principal differences. First difference is that, as mentioned before and in 
contrast to the defects at the parts, the process failures at the blanking facility are not a 
priori known. And second difference is that, even when the process failures are a priori 
known, the process signals, time series, associated to each process failure are not 
known. Therefore, it is not possible to initially create an IF-THEN rule base because 
both the process failures and their representation in the process signals supplied by the 
monitoring system are unknown.  

This way, the strategy applied for developing the branch of the ES able to identify the 
process failures at the present research work has been as follows. After the detection 
of each new process failure, a pre-treatment of the information supplied by the sensors 
based process monitoring system has been carried out. The main idea of this pre-
treatment is to model the process signals associated to each process failure by means 
of a set of attributes (explained in Figure 6.5). This way, the 15.000 numerical values 
recorded by the sensors based process monitoring system are converted into 11 
attributes (described in Figure 6.5) that represent the process failure and become the 
antecedents at the rule base. Next step consists on creating an IF-THEN rule that fulfil 
the previous calculated antecedents and that has as consequences the knowledge of 
the operator for that specific process failure (failure, cause and solution identification). 
This way, whenever the same process failure (very similar process signals although not 
exactly the same) arrives to the rule-based ES, very similar attributes are extracted in 
the pre-treatment, the same IF-THEN rule is fired and the same consequences are 
inferred.  

Following this strategy, whenever a new process failure wants to be identified at the 
blanking facility, at least one new rule must be developed. Regarding the antecedents it 
could happen (depends on the appearance of the new process failure in the process 
signals) that the already defined antecedents are able to model the new process failure 
or that new antecedents should be added. If this situation is extrapolated to a new 
reference or to a new forming process, a new analysis of the appearance of the 
process failures on the new process signals should be carried out and new appropriate 
antecedents and rules developed (information pre-treatment and rules must be 
customised for each studied process). As verified during the present research work, 
this analysis takes quite a long time and big effort and besides, a person able to 
program in CLIPS must carry out the later implementation into the ES. 

Previous limitations found at the intelligent control module based on rule-based ES 
when dealing with the identification of the process failures, encouraged the research 
team to develop a more universal strategy. This new strategy relies on the use of Case 
Based Reasoning (CBR) techniques for the identification of the process failures. The 
use of CBR techniques allows developers to create universal intelligent control systems 
able to be applied to different forming processes where no initial knowledge is available 
because these techniques are able to automatically learn without introducing any initial 
knowledge into the system. The intelligent control module based on CBR techniques is 
explained next.  

6.2. Intelligent control system development: CBR approach 

Second approach to develop the intelligent control system is based on the application 
of Case-based Reasoning (CBR) techniques. As mentioned in “Chapter 2.- Scientific 
and Technological background”, CBR is a methodology for solving problems by utilizing 
previous experiences. It involves retaining a memory of previous problems and their 
solutions and, by referencing these, solve new problems [MAI00].  



Intelligent control system 

-179- 

This definition matches perfectly with the analysis necessary for the information 
gathered by the sensors based process monitoring system at the present research 
work because not all the knowledge about the process failures that will be found is 
initially available and because no initial knowledge about the representation of those 
process failures in the process signals acquired by the sensors based process 
monitoring system is available either. Therefore the purpose is to use CBR techniques 
to automatically learn from the process failures found in the forming process and, after 
a learning phase, generate a case base able to autonomously identify the process 
failures at the blanking facility.  

CBR techniques have been chosen at the present research work because they 
comprise a set of techniques very suitable for certain kind of problems. Next, the 
specific factors or analysis conditions at the present research work that matches with 
the capacities of the CBR techniques are described:  

1. First important factor is that initially there is no data or knowledge available 
about the process. This means that the CBR system must go through an initial 
learning phase. Furthermore, this initial learning phase must be carried out online 
during the blanking process because no training data is initially available either. 
Therefore, the requirements of the CBR system will be that even if no data or 
knowledge is initially available, it must offer good solutions as early as possible. 

2. Second factor is the presence of the operator what converts the learning phase into 
a supervised learning. On the contrary to unsupervised learning, in supervised 
learning there is an expert who can continuously provide with the right solution to 
the CBR system. Therefore, the online learning phase can be interpreted as the 
training phase and will be carried out with the information provided by the expert 
operator, who does not need any programming skills.  

3. Third factor is that, although the learning phase will be carried out in a supervised 
learning mode, the CBR system will try to assert from the beginning the right 
solutions by itself. This means that the operator will be a passive agent and only 
will tune up the CBR system when this takes wrong decisions. Therefore, the CBR 
system will try to identify each new process failure even during the learning phase. 

4. Fourth factor is that after the initial learning phase, the CBR system must be able to 
identify the process failures in an autonomous way (although the operator will 
be able to correct and therefore teach it). The factor used to identify the nature of 
the process failures at the blanking process will be the similarity between the new 
(unknown) data gathered by the sensors based process monitoring system and the 
already existing data at the case base of the CBR system (explained in subchapter 
6.2.2). It is expected that the operator will have a more active paper during the 
learning phase and less active (only when special conditions take place at the 
facility) during the running phase. 

Since no CBR technique able to directly fulfil all the previous requisites was found in 
the literature, a special algorithm has been developed to carry out the identification of 
the process failures. The algorithm developed is based on the k-nearest neighbour 
classifier technique. The k-nearest neighbour classifier technique is a classification 
method, used to retrieve the most similar cases when CBR techniques are applied and 
is based on learning by analogy. The working methodology of this classification 
technique is as follows [HAN01]: 

1. First, all the training samples (process failures in this case) are stored in an n-
dimensional pattern space representing each sample a point. The n-dimensional 
space is based on the fact that each sample is described by n-dimensional numeric 
attributes.  

2. Second, when given a new unknown sample, a k-nearest neighbour classifier 
searches the pattern space for the k training samples that are closest to the 
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unknown sample. These k training samples are the k “nearest neighbours” of the 
unknown sample. “Closeness” is defined in terms of Euclidean distance. 

3. And finally, the unknown sample is assigned to the most common class among its k 
nearest neighbours.  

The algorithm developed is based on the previous described k-nearest neighbour 
classifier but a few modifications have been made in order to customize it for the 
necessities of the present research work. Next, the main modifications are described: 

1. The final purpose is to generate clusters composed of similar process signals, 
where each cluster will represent a process failure at the forming facility. Each 
cluster is modelled by its mean (centre) and by its deviation (distance between the 
mean and the farthest process signal at the cluster, what represents the size of the 
cluster). Therefore, the main big difference is that, contrary to the k-nearest 
approach where individual samples are used, clusters (grouping samples) will be 
created at the present research work.  

2. When a new unknown sample arrives to the CBR system, the algorithm evaluates 
its similarity (distance) with the centre of all the already existing clusters. The 
similarity, contrary to the k-nearest approach, is evaluated attribute-by-attribute and 
not using the Euclidean distance. The reason for this modification is that initial tests 
carried out using the Euclidean Distance showed that different type of samples 
could be classified within the same cluster depending on the distances distribution 
between the clusters. Once the closest cluster is identified, if its distance to the new 
unknown sample is shorter than its deviation (evaluated attribute by attribute), the 
new unknown sample is assigned to that cluster. Otherwise the CBR system will 
identify the new sample as a new process failure. 

3. The feedback of the operator is always used at the CBR system. During the first 
steps, the learning phase, the CBR system will propose the solutions to the 
operator but the operator can always give his/her feedback. When the CBR system 
is not correct and the operator introduces the right solution, appropriate actions to 
recalculate the clusters will then be carried out by the CBR system. After the 
learning phase, it is expected that the CBR system will have enough knowledge 
(previous cases) to identify all the new unknown process failures although the 
operator will have the chance to still tune it. 

The CBR based algorithm developed to identify the process failures from the 
information captured by the sensors based process monitoring system is explained 
next. The algorithm has been programmed in C++ and is nowadays working in 
connection with the sensors based process monitoring system used at the present 
research work. The algorithm is divided into two main blocks. First block makes a pre-
treatment of the information and, as happened in the rule-based ES, a set of attributes 
that modelled the faulty process signals is codified. In this case, the set is composed of 
5 “more universal” attributes per process signal (sensor at the blanking facility) as 
explained later. Second block performs the clustering and identifies which one of the 
previous recorded process failures (cluster) matches with the new unknown process 
failure. The user can constantly correct the CBR system in case that wrong 
identifications are carried out and can also add information to the CBR system for 
improving the knowledge at the case base. Next, the first and the second block of the 
algorithm developed are explained and the results achieved when treating several sets 
of process signals from different forming facilities supplied by Brankamp GmbH are 
explained too. 
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6.2.1. Attributes extraction procedure from the process signals 

The algorithm developed at the present solution is based on the calculation of the 
similarity between the faulty process signals. This way, very similar faulty process 
signals correspond to the same process failure and very dissimilar faulty process 
signals correspond to different process failures. If an efficient and fast methodology 
wants to be developed, a pre-treatment for modelling the faulty process signals must 
be initially carried out because, as mentioned before, the faulty process signals 
recorded by the sensors based process monitoring system at the present research 
work have been composed in average of 15.000 numerical values.  

Therefore, an initial modelling of the faulty process signals by means of attributes is 
carried out. The election of the attributes is one of the most important steps during the 
entire process because if irrelevant attributes are chosen undesired results will be 
achieved. At the present study, when a process failure takes place at the blanking 
facility, the process signals recorded by the sensors based process monitoring system 
go out of the envelope curves defined at the monitoring system. This way, the area 
enclosed by the actual process signal and the envelope curve when the first one is out 
of the envelope curve is a very good characterization of the process failure. Figure 6.10 
shows how the faulty area (actual curve out of the envelope curves) is calculated from 
the faulty process signals captured by the sensors based process monitoring system. 
This calculation is made for each process signal (sensor) at the sensors based process 
monitoring system. Once the areas of each process signal are calculated, they are 
modelled by means of a set of attributes that will be later used at the similarity 
calculation (second block of the algorithm).  

 

Figure 6.10: Faulty area calculation and its attributes extraction for a process failure. 

So for each process signal (sensor at the blanking facility), the pre-treatment starts with 
the calculation of all the areas where the actual curve is out of the envelope curves (in 
Figure 6.10 there is only one faulty area but more than one could exist in the curves 
provided by the sensors based process monitoring system). Since the number of 
attributes per process signal (sensor) must remain constant if a similarity comparison 
wants to be performed, only the attributes of one area can be considered. After an 
initial try-out, it was decided that the greatest faulty area at each process signal is the 
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one that best represents the process failure and that therefore smaller areas should be 
filtered.  

Next step consist on identifying the most relevant attributes to model this greatest area. 
The next five relevant attributes were selected to model the area of each process 
signal (sensor): 

1. Number of faulty areas: although following attributes model the greatest area, the 
number of faulty areas per process signal (including the greatest one) is also a very 
important attribute for the identification of some process failures. 

2. Size of the biggest faulty area: represents how big the process failure has been. It 
is calculated by integrating the faulty area. It is calculated in percentage with 
respect to the area of the actual process curve in order to take into account matters 
like the sensitivity of the information acquired. 

3. Centre of gravity in X-axis of the faulty area: locates the process failure within the 
blanking process cycle (approaching phase, blanking phase or withdrawal phase). 
It is calculated in percentage with respect to the cycle total length. 

4. Centre of gravity in Y-axis of the faulty area: evaluates the shape of the process 
failure, sharpen (very strong and sudden) or flat (not so strong but longer in time). It 
is calculated in percentage with respect to the highest point of the faulty area in 
order to take into  account matters like the sensitivity of the information acquired. 

5. Initial slope of the faulty area: this final attribute represents how sudden the process 
failure starts. This final attribute is very important for the identification of some 
process failures like punch breakages. It is calculated in degrees. 

Therefore at the end of this first block, an array of numbers that models the process 
failure is created. This array of numbers is composed of the previously calculated 
attributes repeated the number of process signals (sensors) at the blanking facility. For 
example, if the number of process signals (sensors) is ten, an array of fifty numbers will 
be created. This array of number is used at the second block of the algorithm to carry 
out the similarity calculation procedure. This procedure is explained next.  

6.2.2. Customised supervised CBR algorithm 

The second block at the algorithm performs the calculation of the similarity between the 
new unknown process failure (modelled as the array calculated at the previous block) 
and the already existing clusters at the case base. As mentioned before, each cluster is 
defined as its centre (arithmetic mean of the failures located in the cluster) and its 
deviation (distance between the centre and the furthest failure at the cluster), which 
represents the size of the cluster. Figure 6.11 shows all the possible decisions that can 
take place when a new unknown process failure arrives to the CBR system. Next, each 
branch of the decision making process is explained.  
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Figure 6.11: Supervised classification strategy architecture. 

As shown in Figure 6.11, the first part of the decision making process is carried out by 
the CBR system. In this first part, the algorithm evaluates if the new unknown process 
failures belongs to any of the already existing clusters and therefore if it can be 
identified. Here two possibilities are given: 

1. If CBR identifies the new unknown process failure as an existing failure (X): this 
happens whenever the distance between the new unknown process failure (to be 
classified and therefore identified) and the centre of one of the clusters is smaller 
than the deviation of that cluster. This way, attribute-by-attribute the algorithm 
evaluates this condition and when all the attributes fulfil this condition for one 
cluster, the new unknown process failure is located into that cluster.  

2. If CBR identifies the new unknown process failure as a new failure (Y): if no one of 
the already existing clusters in the CBR system fulfils the previous condition, the 
CBR system identifies the new unknown process failure as a new process failure 
and a new cluster is then created.  

The system could work alone based on the previous mentioned condition 
(unsupervised CBR system) and then the entire decision making procedure would be 
based on arithmetic (distances calculated between the existing clusters and the new 
unknown failures) but this initial unsupervised strategy has two limitations. First one is 
that, as mentioned previously, this short of manufacturing processes are highly non 
linear and therefore the unsupervised CBR system is not able to correctly identify all 
the process failures. The second and most important limitation is that the unsupervised 
CBR system is not able to learn because it does not know if the decisions taken are 
right or wrong. Therefore, and since the presence of the operator is necessary because 
he/she is in charge of implementing the description of the process failures, a 
supervised CBR system has been created and the operator can constantly improve the 
performance of the CBR system. This way, during the initial phase or learning phase, 
the operator will introduce knowledge into the system and will create the adequate 
clusters that correctly define the process failure at the CBR system. After this initial 
phase, and once that the right clusters have been created, the system will be able to 
autonomously identify the new unknown process failures based on the already existing 
clusters (that represent the process failures) at the CBR system. Anyway, even in the 
second phase, when special conditions take place at the blanking facility like, for 
example, the appearance of a new type of process failure that has not been detected 
during the learning phase, the operator will have the chance to introduce new 
knowledge and therefore identify the new process failure. Next the branches of the 
CBR system where the operator is involved are explained. The first branch, when the 
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CBR system identifies the process failure as one existing in the case base is explored 
next:  

1.1. True: when the operator agrees with the solution given by the CBR system, the 
new unknown process failure is inserted into the cluster proposed by the CBR 
system and the centre and the deviation of the cluster are recalculated. 

1.2. False: when the operator does not agree with the solution proposed by the CBR 
system, only two other possible solutions can be right: that the new unknown 
process failure is a process failure that had not previously been detected or that the 
new unknown process failure is different from the solution proposed by the CBR 
system. 

1.2.1. True: when the operator informs the CBR system that the new unknown 
process failure had not been previously detected, the CBR system creates a 
new cluster (associated to this new process failure) and calculates its centre 
and its deviation. 

1.2.2. False: when the operator informs the CBR system that the solution given is 
not the right one and that the new unknown process failure is another 
existing process failure at the CBR system, the new unknown process 
failure is introduced into the cluster specified by the operator and the centre 
and the deviation of both clusters (the one proposed by the CBR system 
and the one specified by the operator) are recalculated. In this case the 
deviation of the cluster proposed by the CBR system becomes smaller and 
the deviation of the cluster specified by the operator becomes bigger.  

At the same time, when the CBR system identifies the new unknown process failure as 
a new one because it had not been previously detected, the operator can take the next 
decisions: 

2.1. True: when the operator agrees with the CBR system that the new unknown 
process failure is a new type of process failure, the CBR system creates a new 
cluster (linked to the new process failure) and calculates its centre and its deviation. 

2.2. False: on the other hand, if the operator does not agree with the CBR system and 
informs it that the new unknown process failure already existed in the case base, 
the CBR system will insert the new unknown process failure into the cluster 
specified by the operator being the centre and deviation of this cluster recalculated.  

Following this strategy where the operator can constantly correct the CBR system and 
therefore this last one learns every time that a new process failure arrives, a very well 
structured case base is developed and after the arrival of several process failures 
during the learning phase, the CBR system is able to identify the process failures. Next 
subchapter explains the results achieved with the previous explained unsupervised and 
supervised CBR systems when dealing with different sets of process signals. 

6.2.3. Results achieved by the CBR approach 

In order to evaluate the efficiency of the developed CBR system, Brankamp GmbH 
provided several sets of process failures. Both the unsupervised and the supervised 
CBR strategies were used to classify the provided sets of process failures and the CBR 
strategy was evaluated. The results achieved through this analysis are given next. 
First, the results obtained by the unsupervised system are given. In this case, the 
system was provided with the files and the solution given by the system for all the files 
was considered to be right. After this first analysis, Brankamp GmbH also provided the 
right classification of the sets and the supervised clustering was executed following the 
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right classification provided by Bankamp Gmbh; when the system gave a wrong 
solution, this was externally corrected. 

6.2.3.1 Results achieved for Set 1 

Set 1 is composed of 47 files, containing each of them a process failure detected in a 
forming facility during the production of one reference. In this case the forming process 
was monitored by means of nine force sensors (six sensors monitoring six stations at 
the tool and other three sensors placed in the frame of the press). Therefore, all the 
files studied at the present set are composed of nine channels. The group of clusters 
generated by the unsupervised system are given in Table 6.I: 

Table 6.I: Results summary for the classification made by the unsupervised system for set 1. 

Cluster (failure) number File number 
U1 362 

U2.1 363 
U2.2 375, 409 
U3 364, 367 
U4 365 
U5 366 

U6.1 369 
U6.2 447, 452 
U7 370 
U8 372 
U9 373 

U10 374 
U11 390 
U12 391 
U13 392 
U14 393 
U15 399 
U16 400 
U17 401 
U18 402 

U19.1 403 
U19.2 407 
U20 404 
U21 405 

U22.1 406 
U22.2 475 
U23 408 
U24 410 
U25 411 
U26 412 
U27 413 
U28 415 
U29 416 
U30 417 
U31 427 
U32 429 
U33 431 
U34 432 
U35 450 
U36 472 
U37 474 

U (no fault detected) 414, 430, 473 
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Table 6.I shows how the unsupervised system found 37 different process failures in the 
forming process, what a priori, is an excessive number of different process failures. 
Besides this, the set also contained files with no process failure and the unsupervised 
system was able to find and cluster them (no fault detected). In order to evaluate these 
results deeper, the solution provided by Brankamp GmbH for this set is shown in Table 
6.II. 

Table 6.II: Solutions provided by Brankamp GmbH for set 1. 

Cluster (failure) number File number 
S1 362, 364, 367, 400, 407, 411, 450 
S2 365, 369, 405, 447, 452 
S3 366, 390, 412, 415 
S4 373, 399, 403, 404 
S5 429, 431 
S6 372, 416, 427, 432 
S7 375, 409 
S8 363 
S9 370 

S10 374 
S11 391 
S12 392 
S13 393 
S14 401 
S15 402 
S16 406 
S17 408 
S18 410 
S19 413 
S20 417 
S21 472 
S22 474 
S23 475 

S (no fault detected) 414, 430, 473 

The relationship between the clusters calculated by the unsupervised system (Table 
6.I) and the right cluster classification provided by Brankamp GmbH (Table 6.II) is 
given in Table 6.III.  

Table 6.III: Relationship between the solution provided by Brankamp GmbH and the classification 
calculated by the unsupervised system for set 1. 

Cluster (right solution) Non supervised cluster number 
S1 U1+U3+U16+U19.2+U25+U35 
S2 U4+U6.1+U6.2+U21 
S3 U5+U11+U26+U28 
S4 U9+U15+U19.1+U20 
S5 U32+U33 
S6 U8+U29+U31+U34 
S7 U2.2 
S8 U2.1 
S9 U7 

S10 U10 
S11 U12 
S12 U13 
S13 U14 
S14 U17 
S15 U18 
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S16 U22.1 
S17 U23 
S18 U24 
S19 U27 
S20 U30 
S21 U36 
S22 U37 
S23 U22.2 

S (no fault detected) S (no fault detected) 

When comparing the results at Table 6.I and at Table 6.II (shown in Table 6.III), two 
main conclusions are obtained: 

1. The system is working properly regarding the distinction of the different process 
failures because not even one of the clusters at Table 6.I gathers process failures 
belonging to different clusters of Table 6.II. This means that the CBR system, even 
when working without supervision, is able to distinguish the different process 
failures. 

2. The system is creating too many clusters (too many different process failures) 
because it is only based on arithmetical distances and it does not consider that files 
containing different faults could represent the same process failure (what actually 
happens). As an example, in Table 6.II, file 411 (with faults in channels 3 and 5) 
and the rest of the files in cluster number S1 (with faults in channel 3) represent the 
same process failure at the forming facility.  

After obtaining the results achieved by the unsupervised clustering, next the supervised 
clustering system was also tested for the set 1. In order to test the supervised 
clustering, the solutions provided by Brankamp GmbH were used and whenever the 
system gave a wrong solution, this was externally corrected. This way, the final solution 
achieved by the supervised module matched with the right solution provided by 
Brankamp GmbH (emulation of the operator working with the supervised system when 
surveying the forming process) and at the same time, the corrections allow the system 
to learn about the process. 

Following the structure of the supervised system, explained in “6.2.2. Customised 
supervised case based reasoning algorithm”, the solutions suggested by the 
supervised system could be:  

1. Correct: the system automatically identifies the process failure correctly. 
2. Wrong cluster: the system does not identify the process failure correctly because 

when trying to identify it, a mistake is made, and it is assigned to a wrong existing 
cluster. 

3. New cluster wrong: the system identifies the process failure as a new one, but 
actually it is an already identified process failure.  

4. Existing cluster wrong: the system identifies the process failure as one that already 
had been detected, but actually it is a new process failure not detected before.  
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Figure 6.12: Results achieved by the supervised module for the set 1. 

Figure 6.12 shows the results obtained when treating the files of set 1 with the 
supervised system. The most important conclusion achieved after evaluating the 
results shown in Figure 6.12 is that 28 out of 47 files were classified correctly, what 
means a success rate of around 60%. At the same time, it must also be stated that the 
rest of the files (40%) were considered as “New cluster wrong” (considered by the 
system as a new process failures when actually is a process failure already detected) 
due to the fact that the system needs a learning phase to determine the size of the 
clusters. Finally, it is also concluded that sets with greater number of files would 
produce better results because a set with 24 different clusters (different process 
failures), when only 47 files are provided, still is in the learning phase.  

6.2.3.2 Results achieved for Set 2 

Set 2 is composed of 30 files, containing each of them a process failure detected in a 
forming facility during the production of different references. Process signals from 
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different references were mixed in order to evaluate the universality of the CBR 
approach. The different forming processes were monitored by means of eight sensors 
and therefore, all the files studied at the present set are composed of eight channels. 
The group of clusters generated by the unsupervised system are given in Table 6.IV: 

Table 6.IV: Results summary for the classification made by the unsupervised system for set 2. 

Cluster (failure) number File number 
U1 648 
U2 649 
U3 659 
U4 660 
U5 670, 675, 683 
U6 672 
U7 679, 687, 703, 704, 705 
U8 692 
U9 694 

U10 701 
U11 706, 717 
U12 707 
U13 708, 712 
U14 713 
U15 714 
U16 728 
U17 729 
U18 731 
U19 735, 737 
U20 736 
U21 739 

Table 6.IV shows how the unsupervised system found 21 different process failures in 
the process, what a priori, is again an excessive number of different process failures. In 
order to evaluate these results, the solution provided by Brankamp GmbH for this set is 
shown in Table 6.V. 

Table 6.V: Solutions provided by Brankamp GmbH for set 2. 

Cluster (failure) number File number 

S1 648, 659, 660, 670, 675, 679, 683, 687, 692, 694, 
703, 704, 705 

S2 649, 701, 708, 712, 713 
S3 672, 707, 736, 739 
S4 706, 717 
S5 714 
S6 728, 731 
S7 729 

The relationship between the clusters calculated by the unsupervised system (Table 
6.IV) and the right cluster classification provided by Brankamp GmbH (Table 6.V) is 
given in Table 6.VI.  

Table 6.VI: Relationship between the solution provided by Brankamp GmbH and the classification 
calculated by the unsupervised system for set 2. 

Cluster (right solution) Non supervised cluster number 
S1 U1+U3+U4+U5+U7+U8+U9+U19 
S2 U2+U10+U13+U14 
S3 U6+U12+U20+U21 
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S4 U11 
S5 U15 
S6 U16+U18 
S7 U17 

When comparing the results at Table 6.IV and at Table 6.V (shown in Table 6.VI), two 
main conclusions are obtained again as happened in the case of Set1: 

1. The system is working properly regarding the distinction of the different process 
failures because not even one of the clusters at Table 6.IV gathers process failures 
belonging to different clusters of Table 6.V. This means that the CBR system, even 
when working without supervision, is able to distinguish the different process 
failures. 

2. The system is creating too many clusters (too many different process failures) 
because it is only based on arithmetical distances and it does not consider that files 
containing different faults could represent the same process failure (what actually 
happens). As an example, in Table 6.V, file 648 (with faults in channels 5 and 6), 
file 670 (with fault in channels 5) and file 735 (with fault in channel 6) represent the 
same process failure at the forming facility.  

After obtaining the results regarding the unsupervised clustering, next the supervised 
clustering module was tested. In order to test the supervised clustering, the solutions 
provided by Brankamp GmbH were used and whenever the system gave a wrong 
solution, this was externally corrected. This way, the final solution achieved by the 
supervised module matched with the right solution provided by Brankamp GmbH 
(emulation of the operator working with the supervised system when surveying the 
forming process) and at the same time, the corrections allow the system to learn about 
the process. 

Figure 6.13 shows the results obtained when treating the files of set 2 with the 
supervised system. The most important conclusion achieved after evaluating the 
results shown in Figure 6.13 is that 19 out of 30 files were classified correctly, what 
means a success rate of around 64%. At the same time, it must also be concluded that 
the rest of the files (36%) were considered as “New cluster wrong” (considered by the 
system as a new process failures when actually is a process failure already detected) 
due to the fact that system needs a learning phase to determine the size of the 
clusters. Therefore, the results of this new set are very similar to the results of Set 1. 
Finally, it is also concluded that sets with greater number of files would produce better 
results because only 30 files are provided. In this case, it must also be valuated that 
the process failures belong to different references. 
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Figure 6.13: Results achieved by the supervised module for the set 2. 

6.3. Graphical User Interface: link between the operator and the intelligent 
control system 

Although the core of the intelligent control system has been described in previous 
subchapters, another very important component of the system will be briefly explained 
next: the Graphical User Interface (named GUI from now on). A GUI is a type of user 
interface, which allows people to interact with electronic devices, like computers, hand-
held devices, household appliances and office equipment [GUI08]. At the present 
research work a GUI has been created in order to establish the communication 
between the intelligent control system and the operator of the blanking facility. Through 
this communication the intelligent control system informs the operator about the 
process failures or part defects at the blanking facility, about the causes why the 
previous mentioned process failures happened and also suggests the operator about 
the protocols to restart the production. At the same time, the operator can interact with 
the intelligent control system in order to give his/her feedback about the condition of the 
process and of the part quality. 

The main purpose during the development of the present GUI was to create a simple 
and an easy to use interface with the operator. The reason for this purpose was that 
the communication with the operator is vital for a good performance of the intelligent 
control system and that, at the same time, operators working in forming facilities are 
not very used to work with computers. Therefore, the simplest application should be 
developed if good results want to be achieved in the future.  

The software used to develop the GUI at the present research work is GTK+. GTK+ is 
a library of object oriented graphical user interface elements for developing X Window 
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applications in C/C++ and other languages. In this research work, GTK+ libraries were 
chosen because a friendly and value added GUI can be developed, because they are 
open source libraries and because can be implemented in C/C++, the programming 
language also used for the AV system and for the intelligent control system what 
makes the communication between them easier. 

Figure 6.14 shows the appearance of the developed GUI during the detection of a 
punch breakage in the blanking facility at Industrias Alzuaran S.L. Next, the main zones 
of the GUI (see Figure 6.14), and the information that each one supply to the operator 
are briefly explained: 

9 Zone 1: GUI shows the operator that there is a malfunction in the blanking facility 
because a process failure or a defective part has been found by the sensors based 
process monitoring system or by the AV system. 

9 Zone 2: GUI shows the operator the process signal (in case of a process failure) or 
the defective part (in case of a defective part detection) that the sensors based 
process monitoring system or the AV system has detected. Figure 6.14 displays the 
faulty process signal detected by the sensors based process monitoring system 
during a punch breakage. 

9 Zone 3: after the analysis of the faulty process signal or the defective part, the GUI 
shows the operator the conclusions asserted by the intelligent control module. In 
this case, a punch breakage has been detected and its causes and solutions are 
displayed to the operator. This is the most important area of the GUI because 
displays the consequences asserted by the intelligent control system. 

9 Zone 4: the GUI allows the operator to give his/her feedback to the intelligent 
control system. In this area the operator can agree with the consequences asserted 
by the intelligent control system or can disagree. If the operator disagrees with the 
proposed solutions, he/she can introduce new knowledge that will be used for 
future process failures. This way the efficiency of the system can be improved. 

9 Zone 5: finally, the GUI also allows the user to check about the previous process 
failures and defective parts and also about the efficiency (statistics) of the intelligent 
control module. By checking the previous process failures and defective parts the 
operator can extract fruitful information about the running of the process and check 
which the most common process failures or defective parts at the facility are. At the 
same time, by clicking in the statistics, the operator, and also the control engineer, 
can check about the efficiency of the intelligent control module (success rate of the 
proposed solutions). 
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Figure 6.14: Graphical User Interface during punch breakage detection. 

Therefore, the GUI developed at the present research work satisfies two main 
purposes; allows the operator to easily and friendly receive the suggestions asserted 
by the intelligent control system and, at the same time, allows the intelligent control 
system to gather new knowledge implemented by the operator. This flow of 
information, given in both directions, makes the operator to feel comfortable with the 
use of the intelligent control system and improves the performance of this last one 
because more and newer knowledge can be implemented into its knowledge base.  

6.4. Conclusions 

The main purpose of the intelligent control system has been fulfilled: to create a system 
able to identify the process failures and part defects at the blanking facility and 
therefore to help the operator to face the daily problems and to control the production 
facility efficiently. In comparison to state of the art monitoring systems, which are able 
to detect but not to identify the process failures, the developed intelligent control 
system analyses the information gathered by the sensors based process monitoring 
and the AV system at the blanking facility and informs the operator about the nature of 
the malfunction at the facility. The intelligent control system gives detailed descriptions 
to the operator about the process malfunction, its position within the blanking process, 
its causes and specific instructions to solve it and to correctly restart the production as 
soon as possible. Therefore, besides eliminating the delivery of defective parts to the 
clients through the implementation of the AV system and reducing the percentage of 
internal defective parts through the implementation of the sensors based process 
monitoring system, the implementation of the intelligent control system offers several 
advantages being the most important ones described next.  

1. Reduction of downtimes after malfunctions. This is a very important improvement 
from an economic point of view. Before the implementation of the intelligent control 
system, and in answer to any machine stop, the operator had to first identify the 
malfunction and later solve it. This could last for a long time depending on the 
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operator experience and skills. This way, sometimes the production was restarted 
very soon but some other times the operator needed to open the tool, look inside 
and extract the strip of material before finding out the problem. After the 
implementation of the intelligent control system, the operator immediately finds an 
explanation for the facility stop and he/she only has to follow the instructions to 
restart the production. This fact could be even more important for operators who 
take care of more than one machine at the same time. For these operators, the 
information could be displayed in a universal where the operator will be informed 
about the malfunction at the machine. This way the operator will react immediately 
and by the time that he arrives to the forming facility he will know what he has to do 
to restart the production.  

2. Standardization of the protocols to restart the production after process 
malfunctions. This is a very important factor and even more important at forming 
facilities where more than one operator work (forming facilities working in shifts). If 
standard protocols to restart the facility after process malfunctions are implemented 
into the intelligent control system, more consistent and robust operation procedures 
will be carried out. The advantages are the achievement of more reliable restarting 
procedures that lead to a decrement of the process failures and the fact that the 
knowledge of the operators can be written down and therefore shared between 
them, what leads to a better process control.  

At the present research work, two AI techniques have been used to develop the 
intelligent control system: rule-based ES and CBR techniques. It has been stated that 
the suitability of each technique depends on the kind of information to be treated. This 
way, it has been found that the information gathered by the AV system is more prompt 
to be analysed by means of rule-based ES techniques whereas the information 
gathered by the sensors based process monitoring system is more prompt to be 
analysed by means of CBR techniques.  

On the one hand, the information gathered by the AV system is composed of a set of 
numerical values that represent the dimensions of the reference to be controlled. By 
using rule-based ES techniques, rules to evaluate whether or not the dimensions are 
within the tolerances can be very easily defined. This way, the rules will assert the part 
defect, its cause and solution when any of the part dimensions goes out of tolerances. 
The factors that make rule-based ES techniques suitable for this kind of information is 
that all the defects at the parts are initially known and that, at the same time, the nature 
of these part defects does not change much between references. Therefore the 
application of rule-based ES to the identification of part defects is very suitable and 
does not represent a big challenge. 

On the other hand, the information gathered by the sensors based process monitoring 
system is composed of a vast amount of numerical data (up to 15.000 numerical values 
per stroke) that represent the process signals during the blanking of the material. In this 
research work, the application of rule-based ES for the identification of the process 
failures implies that adequate antecedents (attributes extracted in the pre-treatment 
phase) and rules must be defined for each new process failure; at least one new rule 
per process failure and sometimes new antecedents too. Unfortunately, the way that 
the process signals represent the process failures at the blanking facility is initially 
unknown and, therefore, it is not easy to create the rules and the antecedents at the 
rule-based ES. Therefore, although a rule-based ES, able to identify the process 
failures detected by the sensors based process monitoring system has been 
developed, proving the big potential of this technique (up to nine process failures and 
nine part defects successfully identified), it has also been stated that the application of 
this technique to the identification of new process failures and to the identification of 
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process failures in new references or processes needs big modifications at the rule-
based ES, what is very costly and undesirable. 

As a solution to the previous mentioned drawback, CBR techniques have been applied 
to analyse the information supplied by the sensors based process monitoring system. 
The most important advantage of CBR techniques at the present research work is their 
ability to develop systems able to learn from the experience (remembering previous 
cases). This way, a special algorithm able to identify the process failures from the 
information supplied by the sensors based process monitoring system has been 
developed. This algorithm extracts the most meaningful attributes of the process 
signals and evaluates their similarity with the attributes of previously recorded process 
failures (gathered as clusters). If the attributes of the new unknown process failure are 
very similar to the attributes of a previous process failure, the new one is classified and 
therefore identified as the same. Therefore, the algorithms searches for the most 
similar already identified process failure to identify the new arriving process failures. 
This algorithm works in an autonomous, but at the same time, supervised way because 
the operator has the chance to correct its decisions and thus improve the identification 
of the process failures. The developed algorithm can be applied directly to new 
references or processes without any modification what makes it more desirable than 
the solution based on rule-based ES. The results achieved with this new algorithm 
based on case-based reasoning techniques have been very good. 

Finally, a Graphical User Interface (GUI) has also been created to allow the user to 
communicate with the developed intelligent control system. It has been stated that the 
communication between the operator and the intelligent control system is very 
important if a good performance of the intelligent control system wants to be achieved. 
This way, communication must be carried out in both ways, the operator reading the 
advices of the system and the intelligent control system acquiring new knowledge from 
the operator (for correcting it and making it to work better). At the same time, the 
operator must find the GUI friendly and easy to be used; otherwise he will not 
communicate with the system. At the present research work, a GUI has been 
developed and linked to the intelligent control system. The GUI offers several data to 
the operator, like the process failure or part defect detected, the reason why it 
happened at the process, advices to solve it and an image showing how the monitoring 
system found the defect at the system. Finally, the GUI also offers the operator the 
chance to introduce new knowledge or to correct the intelligent control system when 
this last one asserts wrong solutions. 
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7.- MAIN RESULTS AND CONCLUSIONS 

This chapter summarises the main results and conclusions achieved during the present 
research work. First, a summary of the results achieved through 1) the development of 
the sensors based process monitoring system, 2) the development of the AV system 
and 3) the development of the intelligent control system is given. After this, more 
conceptual conclusions regarding the advantages and limitations that the developed 
intelligent global control system offers to forming processes are given too. Finally, 
some tasks that have been identified as the future needs towards the industrialization 
of the present research work results will be explained too. 

7.1. Summary of Results 

As stated in “Chapter 1.2: The goal”, the final objective of the present research work 
has been to analyse the feasibility and the technological viability of automatic 
control systems, where sensors based process monitoring systems, artificial 
vision systems and artificial intelligence techniques work together, in industrial 
manufacturing environments consecrated to the mass production of small size 
mechanical components at high rates with the aim of: 

1. Achieving the zero defect manufacturing at the client’s facilities. 
2. Reducing the downtime of the production facilities. 
3. Reducing the internal defective. 
4. Reducing the time (and therefore the cost) associated to inspection tasks. 

Understanding feasibility as: 

1. The economic cost of the complete system. 
2. The set up cost in terms of the time necessary to tune the system up. 
3. The achievable results, concerning the zero defects production, the reduction of 

downtimes, the reduction of internal defective and the reduction of time associated 
to inspection tasks. 

4. The universality of the system in terms of its capacity to work with different 
processes or references. 

5. The usability denoting the ease with which operators employ it. 
6. The capacity to cope with or even to increase the production rate of the facilities. 
7. The maintainability denoting the ease with which operators and/or maintenance 

personnel update it. 

In order to industrially evaluate the final objective above proposed, the present 
research work has been carried out in an industrial environment. The industrial 
demonstrator selected has been a blanking facility consecrated to the manufacturing of 
small size retaining rings at high production rates. The blanking facility consists of a 
125 tons. mechanical press, and a decoiler and the straightener that supply the 
mechanical press with the raw material, spring steel DIN 17222 CK67 sheet in coils. 
Three different references, manufactured at 60 strokes and 120 parts per minute by 
means of progressive blanking tools, have been evaluated.  

By going through the entire process, from the development of both monitoring systems 
and the controller, to their final integration in the industrial blanking facility, as shown in 
Chapters 4, 5 and 6, the evaluation of the intelligent control strategy has been carried 
out. Therefore, the research work can be divided into three principal tasks 
(development of the three subsystems), which working together as a global system, 
have evaluated the feasibility of globally controlling the industrial blanking facility. The 
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main results achieved through the consecution of each subsystem are summarised 
below: 

7.1.1. Application of a sensors based process-monitoring system into a blanking 
process. 

In “Chapter 4. Sensors based process monitoring”, the complete sensors based 
process monitoring system installed in the blanking facility has been described. 
Chapter 4 explains how the installation of the force and acoustic emission sensors is 
more efficient when these are close to the forces and acoustic emission signals 
sources and therefore, an important result, is that achieving a good monitoring strategy 
goes through the installation of all the sensors inside the tool (preferably in the upper 
tool aligned with the blanking punches). 

Thus, three different tools (that manufacture three different retaining rings references) 
have been monitored with force sensors in all the stations, in order to individually 
monitor the force at each blanking operation, and with two acoustic emission sensors in 
order to monitor the acoustics emissions produced during the blanking of the material 
and during the withdrawal of the punches. 

After the experimental phase, carried out at the daily running of the industrial blanking 
facility, it was demonstrated that, for the references studied, the sensors based process 
monitoring system is able to detect up to nine different process failures. Among all 
them, the most remarkable ones are the detection of punch breakages, the detection of 
bad evacuated parts or material slugs and the detection of malfunctions of the feeding 
system. The efficiency of the sensors based process monitoring system is very high, 
the aforementioned process failures are always detected, due to the high sensitivity of 
the sensors installed inside the tool. Another result is that, by installing several sensors 
inside the tool, it is possible to even deduce the station inside the tool where the failure 
takes place. This ability to determine the position (and also the type as shown in 
Chapter 6) of the failure within the tool represents an improvement of the current 
monitoring systems implemented in the forming industry. 

Regarding the sensors based monitoring of the process, another important result has 
been that the sensors based process monitoring system is not able to detect all the 
process failures and therefore to guarantee that the quality of the 100% produced parts 
is good. This way, during the experimental phase it has been observed how the 
sensors based process monitoring system has not been able to detect two failures; 1) 
the growth of the burr at the edge of the parts beyond the predefined limits and 2) the 
formation of micro cracks in the blanking punches that has as a consequence the 
generation of local big burrs in the parts. The reason why the sensors based process 
monitoring system is not able to detect these failures is that 1) in the case of the burr 
growth, the variation of the blanking forces as the burr grows up is so smooth that the 
sensors based process monitoring system modifies the envelope curves to adequate 
them to this variation, and 2) in the case of the formation of micro cracks in the 
blanking punches, the variation of the force is much smaller than the limits of the 
envelope curves and the sensors based process monitoring is not able to realise about 
this process failure. 

In order to detect these two process failures, two studies have been carried out. First, 
in order to evaluate the possibility of detecting the maximum allowable burr growth 
limit, a study comparing the evolution of the forces (measured with the sensors based 
process monitoring system) and the evolution of the burr growth (measured in an 
optical microscope) was carried out. The main result regarding this study is that, as the 
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current state of the art says at a research level, there is a direct relationship between 
the variation of the forces and the variation of the burr growth in the industrial field too. 
Deeper studies in this topic should create the necessary knowledge to implement into 
the sensors based process monitoring system the ability to predict the growth of the 
burr by measuring the variation of the blanking forces. 

And about the second process failure not detected by the sensors based process 
monitoring system, the presence of local big burrs due to punch micro cracks, it was 
decided that since the force variation is much smaller than the limits established by the 
envelope curves, another monitoring system able to check the final quality of the parts 
should work in parallel with the sensors based process monitoring system: an AV 
system. 

7.1.2. Development and implementation of a high efficiency artificial vision system into 
a blanking process. 

In “Chapter 5. Parts quality control”, the development of a high efficiency AV system 
and its further implementation into the blanking facility (the industrial demonstrator at 
the research work) has been described. The AV system is composed of two intelligent 
cameras that “look” at the parts to be evaluated from above (upper image) and from the 
side (lateral view image). This way, the main dimensions of the parts are evaluated by 
treating the image acquired by the upper camera and the local big burrs (not detected 
by the sensors based process monitoring system) are detected by treating the image 
acquired by the lateral view camera. The development and implementation of the 
architecture represent themselves an original contribution to the current state of the art 
in AV systems through the combination of low level processing steps made in FPGA 
with high level processing steps made in PC with the purpose of speeding the 
processing time. The results achieved by the AV system are explained next.  

Regarding the upper camera, the system is able to measure the main dimensions of 
the parts (the four principal dimensions that must be within the predefined tolerances) 
with a spatial resolution of 100 microns. This way, if any of the dimensions is out of 
tolerances, the part is sorted out. And regarding the lateral view camera, the system is 
also able to detect the presence of local big burrs in the parts (and therefore, indirectly 
the formation of micro cracks in the blanking punches), what is valuable information to 
stop the production and resharpen the blanking punches. By means of both images, it 
has been identified that the system is able to detect up to nine different defects in the 
parts, what leads to a scenario where no defective parts are sent to the clients.  

Regarding the effectiveness of the AV system, several tests were made and the results 
are that, concerning the upper camera, the AV system is able to work with a standard 
deviation lower than 0,150 millimetres, what in the practise means that the percentage 
of false negatives is smaller than 4% (no false positives were found during the 
experimental phase). Concerning the lateral view image, several tests were carried out 
too and the results are that the percentage of false positives is around 3% and that the 
percentage of false negatives is around 2%. 

Regarding the capacity of the AV system, the production facility was not slowed down 
when the AV system was implemented in the industrial field so one of the main 
purposes of the research work, avoid a reduction in the production rate of the blanking 
facility, was achieved. This way, the AV system has been working at a nominal rate of 
120 parts per minute (limited by the handling of the parts because the hardware 
software co-design architecture reached a processing rate of 1000 images per minute). 
Anyway, although the AV system has worked at the production rate, 120 parts per 
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minute, it was observed that this rate was already the limit for the system because the 
handling of the parts was excessive fast and some of the images taken by the cameras 
did not have enough quality (percentage of false negatives). This way, it was 
demonstrated that when the tests were carried out at a nominal evaluation rate of 60 
parts per minute, the percentage of false negatives was reduced down to 1%. At the 
same time, an improvement of the resolution of the upper camera, reduced during the 
research work due to a lack of memory in the internal EEPROM memories of the 
intelligent cameras, should offer better results by augmenting the number of pixels 
enclosed in the tolerance range. 

So, another important result regarding the quality control of the parts is that, although a 
very efficient AV architecture has been created and the parallel application of intelligent 
cameras based on FPGAs and algorithms on PC has given as a result a processing 
time (sum of acquisition and treatment time) of 125 milliseconds (what means the 
possibility of checking 8 parts per second), the proposed approach for the handling of 
the parts has not answered with the initial proposed objective and therefore the 
handling has become the bottleneck of the AV system (hardly working at 2 parts per 
second). 

Anyway the developed handling system represent an original contribution to the current 
state of the art handling systems focused on retaining rings. The developed system is 
able to position the parts in a row independently of the way the parts are extracted from 
the blanking facility. At the present research project the “positioning boxes” have been 
used to feed the parts into the AV system but they could also be used to reduce the 
manual operations needed to position the parts during their manufacturing process. 
This fact can reduce the cost of manual operations what represents a big percentage of 
the cost of the parts. 

7.1.3. Development and implementation of an intelligent control system into a blanking 
process. 

In “Chapter 6. Intelligent control System”, the development of an intelligent control 
system able to identify the process failures and the parts defects and to propose 
actions to solve them and to restart the production efficiently has been described. After 
analysing different AI techniques, it was concluded that the most suitable ones, for 
developing an intelligent system able to diagnostic any process failure or part defect, 
are rule based ES and CBR techniques. 

Rule based ES were initially used to develop the intelligent control module because all 
the knowledge regarding the process control was available in the figure of the operator. 
This way, the knowledge was captured by interviewing the operator and by working 
together with him during long periods of time. After this time, the rule base that linked 
each process failure and part defect with the causes and the solutions applied to solve 
them was created. Next step consisted on linking each process failure and part defect 
with the information gathered by the sensors based process monitoring system (for 
process failure identification) and the AV system (for part defect identification). 

Again, and by observing the blanking process, a set of rules (described in Annex I) able 
to link the information gathered by both monitoring systems with the knowledge 
acquired from the operator was built and the rule based intelligent control system was 
created. After the learning phase, which lasted approximately during the production of 
200.000 parts, the system codified a set of 18 rules. After this learning phase and 
during the next six months (experimental phase), new knowledge was implemented in 
the rule based ES and, at the end of this period, the success rate has been close to the 
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100%. This means that the ES is able to define very accurately most of the process 
failures. 

Although the achieved results have been considerably good, another very important 
result is that the rule based intelligent control module is very static and that is not able 
to learn automatically. Therefore, if another family of parts wants to be surveyed or if 
the intelligent control module wants to be installed in another forming facility, all the 
rules at the rule base should be learnt and implemented again. Consequently, each 
new implementation of the intelligent control system means a vast amount of work and 
makes it not feasible in the real industrial field.  

As a solution to the previous drawback, another intelligent control system based on 
CBR techniques has been developed. This new CBR system is able to automatically 
link the knowledge of the operator and the information coming from the monitoring 
systems. This improvement avoids the initial phase of knowledge implementation and 
makes the system much more feasible. The learning capacity of the CBR based 
intelligent control system has been evaluated by feeding it with several sets of process 
failures supplied by Brankamp GmbH and it has demonstrated its own capacity to learn 
and to offer good results (approximately 65% of success rate during the learning phase 
even when mixing process failures coming from several references) without the 
necessity of initially teaching it off line.  

7.2. Main Conclusions Drawn from this Research 

From all the aforementioned results achieved through the development of the present 
research work, the following main conclusions can be drawn: 

1. The main conclusion is that the implementation of automatic control systems, 
where sensors based process monitoring systems, AV systems that monitor the 
part quality and intelligent control systems work together, improves the efficiency of 
the manufacturing facilities by benefiting from the next advantages: 

9 No defective parts are delivered to the clients because AV systems check the 
quality of all the manufactured products. This advantage has by itself several 
principal benefits like: a reduction of the manufacturing costs because no 
defective parts are scrap, a reduction of possible losses due to penalty clauses 
signed in the contracts (mainly when working for the automobile industry), a 
reduction in the time necessary to check the quality of rejected batches, a 
reduction in the cost in terms of parts transportation and very important, a better 
company image due to the clients satisfaction. 

9 The man machine ratio is also increased (what means longer period of times 
producing parts) because the length of the downtimes after process failures at 
the production facilities is considerably reduced (30% approximately). The 
reason for this is that intelligent control systems are able to identify the 
malfunctions at the facilities and able to suggest the operator the right actions to 
solve them. This way, the necessary time to restart the production is reduced 
and the productivity of the facilities increased.  

9 And finally, the percentage of internal defective parts (defective parts detected 
on line during the manufacturing process) is reduced too (20% approximately) 
because the sensors based process monitoring systems survey the 
manufacturing facilities detecting a great percentage of the defective parts 
much earlier than the visual evaluation. Besides this, the implementation of 
sensors based process monitoring systems permits the control of the integrity of 
the manufacturing goods what avoids catastrophic failures reducing the 
maintenance costs and the downtimes of the facilities. 
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2. Another important conclusion, and now regarding sensors based process 
monitoring systems is that, although currently available commercial systems offer 
great advantages, these systems (at least in the application checked at the present 
research work) are not able to detect 100% of the defective parts (assumable 
because they are not focused on part quality) and they are neither able to detect 
100% of the process failures (able to detect the main process failures but not able 
to detect some small process failures like the formation of micro cracks in the 
blanking punches). For this reason, the complementary of these systems with AV 
systems is a very interesting solution to improve the performance of the 
manufacturing facilities. 

3. Another important conclusion, and now regarding AV systems, is that the 
development of co-architectures, where intelligent cameras based on FPGAs and 
algorithms running in PCs work together, considerably speeds up the acquisition 
and the treatment of the images and, therefore, allows AV systems to work in serial 
with the process at the manufacturing rate.  

4. And finally, the possibility of creating intelligent control systems able to give 
detailed descriptions to the operator about the process malfunctions or part defects, 
their causes and specific instructions to solve them and to correctly restart the 
production has been proven. Two different AI techniques have been used and good 
results have been achieved. The main advantages of this development are a 
reduction of the downtimes after process failures (because the operator directly find 
the description of the incidence and its solution and does not have to look for it) and 
the chance to create standard protocols to restart the production after process 
malfunctions (very useful for manufacturing facilities working in shifts). 

7.3. Suggestions for the Way Forward 

The present research work has demonstrated a useful, as well as interesting, modular 
approach in the development of intelligent control systems that can be quite powerful in 
tackling the huge and enormously wide subject of the identification and solution of 
process failures and part defects in forming processes and in general in manufacturing 
technologies. It is suggested that future work should aim at: 

Concerning the intelligent control system developed at the present research work: 

1. Regarding the sensors based monitoring system, more and deeper studies in order 
to find the relationship between the force increment and the burr height increment 
in industrial blanking processes should be made. This way, the necessary 
knowledge to implement into the sensors based process monitoring system a 
module to predict the growth of the burr by measuring the variation of the blanking 
forces in blanking processes would be created. 

2. Regarding the AV system, faster handling systems for the parts should be designed 
in order to achieve faster production rates because nowadays, although the 
treatment of the images can be done at a rate of 8 parts per second, the handling 
device is only able to manage 2 parts per second. Works towards this purpose 
have already started to be carried out. 

3. Regarding the intelligent control system, experiments with greater number of 
process failures should be made in order to evaluate the final capacity of the CBR 
system after its learning phase. 

Concerning future works aimed at implementing the results achieved at the present 
research work into the manufacturing field: 

1. After the final evaluation phase, the most remarkable one should go through the 
creation of a commercial intelligent control module, based on the CBR techniques 
studied at the present research work, and its further implementation into already 
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commercially available sensors based process monitoring systems. The 
achievement of this development will bring to the forming industry a great 
advantage because the already available monitoring systems will evolve into 
intelligent diagnostic systems, what means that, instead of just stopping the forming 
facility, they will provide the operators with a complete report about the process 
failures, their causes and the actions that they (operators) should carry out to 
restart the production. 

2. Future works should also aim at implementing the global strategy developed at the 
present research work into other manufacturing processes, within the forming field 
like deep drawing processes or in other fields like machining, welding or injection 
moulding processes. Following this strategy, the research team have already 
started to carry out some tasks with the aim of developing a global control system 
in the field of rolling processes. 

3. Aligned with the previous proposal, another work, already briefly covered during the 
present research work, would be the application of intelligent controllers to the 
online control of hydroforming processes. The main objective in this field should go 
through the development of intelligent controllers able to adjust online the main 
variables of hydroforming processes based on sensors based process monitoring 
systems and AI control systems. This development will bring an increment of the 
robustness of hydroforming processes, a reduction of their scrap and will minimize 
their dependence on the quality of the raw materials. 

4. Another challenge is the creation of scalable solutions that learn and improve from 
collaborative experience. This way, several intelligent control systems, 
implemented in a set of common manufacturing processes or manufacturing 
facilities, will profit by creating a common knowledge base where all process 
failures will be gathered. Therefore, right solutions will be given for the first failure at 
one manufacturing facility if the same process failure has already happened in 
another one. The same could be applied to the maintenance of the manufacturing 
facilities (detection and identification of anomalous performances). 

5. Regarding high efficiency AV systems, the potential of the AV hardware / software 
co-architecture evaluated at the present research work should also be evaluated in 
larger and higher added value parts. In this field, some movements towards the 
quality evaluation of body in white parts for the automotive industry have already 
been made. The big challenge in this field is that very small defects must be found 
in very large parts, what demands high capacity AV system and specific evaluation 
strategies.  
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Annex I.- RULE BASE OF THE EXPERT SYSTEM 

AI.1. Introduction 

The present annex summarised all the rules that the research team has developed for 
identifying the process failures detected by the sensors based process monitoring 
system and for identifying the defective parts detected by the artificial vision system. 
The annex is structured as follows: first the list of rules codified for the identification of 
the process failures is written down. Right after that, the list of rules codified for the 
identification of the defective parts is written down too. 

AI.2. Rules for the identification of process failure (sensors based process 
monitoring system) 

AI.2.1 Feed failure I: Strip completely blocked 

 

AI.2.2 Feed failure II: Strip partially blocked 
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AI.2.3 Metal slug in pilot pin station 

 

AI.2.4 Metal slug in central area station 

 

AI.2.5 Evacuation system failure I: “Double parts in pilot pins” 
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AI.2.6 Evacuation system failure II: “Double parts in final blanking station” 

 

AI.2.7 Ejector failure: “Double parts inside the blanking dies” 

 

AI.2.8 Punch breakage 
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AI.2.9 Metal strip adhesion to pilot pins 

 

 

AI.3. Rules for the identification of defective parts (artificial vision system) 

AI.3.1 Main diameter out of tolerances 

 

AI.3.2 Width at the ears out of tolerances 
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AI.3.3 Width in front of the slot out of tolerances 

 

AI.3.4 Diameter of small holes out of tolerances 

 

AI.3.5 Opening of the slot out of tolerances 
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AI.3.6 Local big burr detection 

 

AI.3.7 Bended part detection 

 

AI.3.8 Thickness of the part out of tolerances 
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AI.3.9 Detection of excessive burr height 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 


