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Abstra
t

The design of dependable systems and redu
tion of e
onomi
 
osts have

been viewed as 
on�i
ting goals. Traditional dependable design approa
hes

repli
ate system resour
es to improve fault toleran
e. However, the aggre-

gation of hardware, software or 
ommuni
ation resour
es to add re
overy


apabilities to a system fun
tion results in higher 
osts.

Instead of adding redundan
ies that provide re
overy 
apabilities to a

prede�ned system fun
tion, in Massively Networked S
enarios (MNS) there

is room to take advantage of over-dimensioning design de
isions and overlap-

ping stru
tural fun
tions by using heterogeneous redundan
ies: 
omponents

that, besides performing their primary intended design fun
tion, restore 
om-

patible fun
tionalities of other 
omponents. MNS are systems 
hara
terized

by several repli
as of system fun
tions distributed throughout the physi
al

stru
ture (e.g., a train has repli
ated fun
tions throughout its 
ars; or build-

ings have repli
ated fun
tions throughout its �oors and rooms). Besides,

in these s
enarios there are many pro
essing units, sensors and a
tuators


onne
ted to a 
ommuni
ation network for di�erent purposes.

We have designed a methodology named D3H2 (aDaptive Dependable

Design for systems with Homogeneous and Heterogeneous redundan
ies) to

design HW/SW ar
hite
tures systemati
ally applying modelling and analysis

approa
hes. These approa
hes in
lude the systematization of the next a
tiv-

ities: (1) identi�
ation of heterogeneous redundan
ies; (2) integration of re-

dundan
ies in the HW/SW ar
hite
ture in
luding ne
essary fault dete
tion,

re
on�guration and 
ommuni
ation implementations; and (3) dependability

and 
ost assessment of the designed HW/SW ar
hite
tures.

Through the appli
ation of the devised modelling and analysis ap-

proa
hes, D3H2 enables the assessment of the e�e
t of alternative redun-

dan
y and re
on�guration strategies, fault dete
tion and 
ommuni
ation im-

plementations on system dependability and 
ost. The methodology has been

applied to non-repairable and repairable systems.

Design strategies based on heterogeneous redundan
ies have shown po-

tential to improve system dependability 
ost-e�e
tively. However, the de-




ision of whi
h redundan
y strategy is better for a spe
i�
 system fun
tion

should be evaluated 
ase-by-
ase basis through the appli
ation of the D3H2

methodology.

An experimental prototype using real railway 
ommuni
ation elements

has been developed to validate some of the 
on
epts treated in the D3H2

methodology.



Resumen

El diseño de sistemas 
on�ables y la redu

ión de 
ostos han sido vistos


omo objetivos 
on�i
tivos. Las té
ni
as tradi
ionales para diseñar sistemas


on�ables repli
an los re
ursos del sistema para mejorar la toleran
ia a fallos.

Sin embargo, añadir re
ursos de hardware, software o de 
omuni
a
iones para

propor
ionar 
apa
idad de re
upera
ión al sistema resultan en un in
remento

de 
ostes.

En vez de añadir redundan
ias que propor
ionan 
apa
idad de re
u-

pera
ión a una fun
ión prede�nida en los Es
enarios Masivamente Redun-

dados (EMR) hay op
ión para aprove
har las de
isiones de diseño sobre-

dimensionadas y fun
iones que se solapan usando redundan
ias heterogéneas:


omponentes que además de desarrollar su fun
ión prin
ipal, pueden re
u-

perar las fun
ionalidades 
ompatibles de otros 
omponentes. Los EMR son

sistemas 
ara
terizados 
on varias repli
as de las fun
iones del sistema dis-

tribuidos en toda su estru
tura físi
a (p.e., un tren tiene fun
iones repli
adas

en sus 
o
hes; o los edi�
ios tienen fun
iones repli
adas en diferentes plantas

y habita
iones). Además, en estos es
enarios hay varias unidades de pro
e-

samiento, sensores y a
tuadores 
one
tados a una red de 
omuni
a
iones 
on

diferentes objetivos.

Hemos diseñado la metodología D3H2 (aDaptive Dependable Design for

systems with Homogeneous and Heterogeneous redundan
ies) para diseñar

arquite
turas HW/SW sistemáti
amente apli
ando té
ni
as de modelado y

análisis. Estas té
ni
as in
luyen la sistematiza
ión de las siguientes a
tivi-

dades: (1) identi�
a
ión de las redundan
ias heterogéneas; (2) integra
ión de

las redundan
ias en las arquite
turas HW/SW in
luyendo las implementa-


iones de dete

ión de fallos, re
on�gura
ión y 
omuni
a
ión; y (3) evalu-

a
ión de la 
on�abilidad y 
osto de las arquite
turas HW/SW diseñadas.

Mediante la apli
a
ión de las té
ni
as diseñadas de modelado y análisis,

D3H2 permite la evalua
ión del efe
to de las estrategias alternativas de re-

dundan
ia y re
on�gura
ión, y de las implementa
iones de dete

ión de fallos

y 
omuni
a
ión en la 
on�abilidad y el 
osto del sistema. La metodología

ha sido apli
ada tanto a sistemas reparables 
omo no reparables.



Las estrategias de diseño basadas en redundan
ias heterogéneas han de-

mostrado poten
ial para mejorar la 
on�abilidad del sistema sin 
omprom-

eter el 
osto. Sin embargo, la de
isión de qué estrategia de redundan
ias es

mejor para una fun
ión espe
i�
a debe ser evaluado uno por uno mediante

la apli
a
ión de la metodología D3H2.

Para evaluar algunos 
on
eptos desarrollados en la metodología D3H2 se

ha desarrollado un prototipo experimental usando elementos de 
omuni
a-


iones reales de la industria ferroviaria.



Laburpena

Sistema �dagarrien diseinua eta kostu ekonomikoaren murrizketa helburu

bateraezin bezela kontsideratu izan ohi dira. Diseinu teknika tradizionalak

sistemako errekurtsoak bikoiztu izan ohi dituzte akatsekiko tolerantzia ho-

betzeko. Hala ere, hardware, software eta komunikazio errekutsoak gehitzeak

sistemaren kostua igotzea dakar.

Erredundantzia esplizituak gehitu beharrean aukeratutako funtzioei er-

rekuperazio gaitasuna emateko, Masiboki Saretutako Eszenategietan (MSE)

posible da gain-dimentsionatutako diseinu erabakiak eta errepikatutako

funtzioak aprobetxatzea erredundantzia heterogeneoak erabiliz: hauek be-

raien diseinuko helburu nagusia betetzeaz gain beste osagaien funtzio batera-

garriak errekuperatzeko gai da. MSE-ak sistemako funtzioen hainbat kopiaz

osatuta daude eta hauek sisteam osoan zehar banatuta daude (adibidez,

tren batek bere kotxeetan errepikatutako funtzioak ditu; edo eraikuntzek

errepikatutako funtzioak dituzte beraien solairu eta gelatan zehar). Gain-

era, eszenatoki horietan hainbat prozesamendu unitate, sentsore eta eragile

daude komunikazio sarera konektatuta helburu ezberdinekin.

D3H2 (aDaptive Dependable Design for systems with Homogeneous and

Heterogeneous redundan
ies) metodologia diseinatu dugu HW/SW egit-

urak sistematikoki diseinatzeko ereduztapen eta analisi teknikak erabiliz.

Teknika hauek, ondoko jardueren sistematizazioa egiten dute: (1) erredun-

dantzia heterogeneoen identi�kazioa; (2) erredundantzia heterogeneoen tx-

ertatzea HW/SW egituran beharrezko akats detekzio, birkon�gurazio eta

komunikazio inplementazioak gehituz; eta (3) diseinatutako HW/SW egitu-

raren �dagarritasun eta kostu analisia.

Diseinatutako ereduztapen eta analisi teknikak aplikatuz, erredundantzia

eta birkon�gurazio estrategia ezberdinen, akats detektatzaile eta komu-

nikazio inplementazioen eragina aztertzen du D3H2k sistemaren �dagarrita-

sun eta kostuan. Metodologia sistema konpongarri eta konponezinei aplikatu

zaie.

Erredundantzia heterogeneotan oinarritutako diseinu estrategiak sis-

temaren �dagarritasuna kostua konpromezuan jarri gabe hobetu dezake.



Hala ere, zein erredundantzia mota den hobea funtzio espezi�ko bakoitzar-

entzat kasuz kasu aztertu beharrekoa da D3H2 metodologiaren bidez.

D3H2n garatutako kontzeptu batzuk baieztatzeko prototipo esperimental

bat garatu da benetako trenen komunikazio elementuak erabiliz.
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Chapter 1

Introdu
tion

This 
hapter des
ribes the motivation that inspired the author to resear
h in the �eld of

model-based reliability engineering so as to provide solutions to the examined problems.

The 
hapter is organised as follows:

� Se
tion 1.1 des
ribes the main motivation of this thesis.

� Se
tion 1.2 frames the s
ope of this resear
h.

� Se
tion 1.3 de�nes the resear
h obje
tives of this dissertation.

� Se
tion 1.4 sets the resear
h hypothesis, 
ontributions and limitations.

� Se
tion 1.5 explains the followed methodology to obtain the resear
h obje
tives.

� Se
tion 1.6 des
ribes the stru
ture of this thesis.

1.1 Opportunity Identi�
ation

The design of dependable systems and redu
tion of e
onomi
 
osts have been viewed

as 
on�i
ting goals (e.g., see [Somani97; Elegbede03; Izosimov05℄). Traditional depend-

able design approa
hes aim at repli
ating resour
es in order to improve fault toleran
e.

For instan
e, the widely adopted Triple Modular Redundan
y (TMR) [Avizienis85℄ (
f.

Figure 2.15) is one example among many other fault toleran
e strategies that expli
itly

add software and/or hardware 
omponents (either same or diverse) in order to improve

system dependability [Laprie92; Laprie95℄.

Nevertheless, the aggregation of resour
es leads to more failure sour
es and higher 
osts.

Therefore, one feasible dire
tion to 
onstru
t dependable systems and redu
e the e
o-

1



nomi
 
ost is the optimization of system resour
es. To do so, we fo
us on the design of

distributed Networked Control Systems (NCSs) [Wang08℄.

In distributed NCSs, remote sensors, 
ontrol algorithms allo
ated at

Pro
essing Units (PUs), and a
tuators work in 
ooperation to perform a system

fun
tion. The underlying 
hara
teristi
s of distributed NCSs (distributed nature, 
om-

puting 
apa
ity of the networked PUs) make NCSs suitable to adapt their behaviour

in the presen
e of system 
hanges su
h as 
omponent failures or atta
hment of new

devi
es.

Traditionally sensors and a
tuators perform a single fun
tion, while PUs handle multiple

tasks. For instan
e, 
onsider the air 
onditioning 
ontrol and �re prote
tion 
ontrol

fun
tions implemented in a room: for the air 
onditioning 
ontrol a temperature sensor

measures the temperature of the room and a heater warms the room a

ordingly; while

in the 
ase of �re prote
tion 
ontrol a smoke dete
tor dete
ts the presen
e of smoke

and a sprinkler extinguishes the �re of the room. Despite being independent 
ontrol

fun
tions, it is not strange to allo
ate both 
ontrol fun
tions - air 
onditioning 
ontrol

and �re prote
tion 
ontrol - in the same PU.

In this work, we 
on
entrate on optimising system resour
es to redu
e system 
ost and

improve the dependability of system fun
tions. To this end, the fun
tionalities of sen-

sors and a
tuators are extended beyond their nominal design fun
tions so as to perform

as many fun
tions as possible and feasible. Retaking the previous example of the air


onditioning 
ontrol and �re prote
tion 
ontrol fun
tions and assuming that there exists

another room next to the previously des
ribed one with the same fun
tionalities, it is

possible to reuse: (1) the temperature sensor to approximate the temperature of the 
on-

tiguous room or (2) the sprinkler (either in the same or in the 
ontiguous room) to raise

an alarm when speakers are not working. All the hardware resour
es in
luding sensors,

a
tuators and PUs, whi
h are able to perform additional fun
tions beside their nomi-

nal design fun
tions are named heterogeneous redundan
ies [Aizpurua12a℄ (see Se
tion

2.2.2).

Unfortunately, the use of heterogeneous redundan
ies is not a pana
ea. Although the

employment of heterogeneous redundan
ies may redu
e the hardware 
ost and improve

the dependability level of a system design without redundan
ies, it also introdu
es some

drawba
ks. When making use of system resour
es in further 
ir
umstan
es beside from
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their nominal design 
onsideration, additional 
osts emerge. Namely, it ne
essary to:

1. Identify and evaluate the potential resour
es whi
h 
ould provide additional 
om-

patible fun
tionalities without in
urring a 
onsiderable extra 
ost (i.e., identify

reusable resour
es).

2. Adjust the system ar
hite
ture with health management fun
tionalities and im-

plementations (i.e., fault dete
tion and re
on�guration) to make the use of het-

erogeneous redundan
ies in further system 
ontexts possible.

3. Evaluate the dependability and 
ost of the resulting system ar
hite
ture.

Given the methodology to address these issues, there is room in NCSs and more spe
if-

i
ally in massively networked s
enarios (
f. Se
tion 1.2) to optimize the use of system

resour
es by means of heterogeneous redundan
ies.

In the literature there exist many approa
hes fo
using on the adaptation of the system

ar
hite
tures to deal with 
omponent failures, however, those whi
h address the uti-

lization of heterogeneous redundan
ies or similar 
on
epts are not many. Interestingly,

when en
ompassing the system design pro
ess as a whole a

ounting for dependability,

adaptivity, and heterogeneous redundan
y-like issues, existing solutions are s
ar
e (
f.

Chapter 2). Therefore, the 
ontribution of this thesis proposes the generation of a

design methodology in order to evaluate the dependability and 
ost level of alternative

ar
hite
tures whi
h make use of heterogeneous and/or homogeneous redundan
ies.

1.2 S
ope of the Resear
h

In order to set the framework of this thesis and de�ne the s
ope of this resear
h we

de�ne the appli
ation 
ontext in whi
h this work is situated and later, we will de�ne

the faults that the proposed approa
h is intended to deal with (see Chapter 2).

Massively Networked S
enarios

The appli
ation 
ontext of this dissertation is framed within NCSs operating in mas-

sively networked s
enarios: systems 
hara
terized by several repli
as of system fun
tions
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distributed throughout the physi
al stru
ture. In these s
enarios there are many PUs,

sensors and a
tuators 
onne
ted to a 
ommuni
ation network for di�erent purposes.

For instan
e, as Figure 1.1 depi
ts, a train is an example of a NCS operating in massively

networked s
enarios. A train has repli
ated fun
tions throughout its 
ars, ea
h 
ar has

implemented its own fun
tions and (some of) these fun
tions are repli
ated throughout

the di�erent 
ars of the train.

Figure 1.1: Massively Networked S
enario: Railway Train Example

The fun
tions

1

numbered in Figure 1.1 are de�ned as follows:

1. Air Conditioning Control

2. Passenger Alarm System

3. Fire Prote
tion Control

4. Video Surveillan
e

5. Intelligent Light Control

6. Passenger Information System

7. Voi
e Communi
ation Control

8. Door Status Control

9. Passenger Counting System

Ea
h fun
tion en
losed within a re
tangle has its own set of resour
es (i.e., sensors, 
on-

trollers and a
tuators). For further details about the implementation of these fun
tions

please refer to Se
tion 2.1.

1

There exist other fun
tions whi
h have not been represented here, e.g., braking 
ontrol or power


ontrol.
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Another example of NCSs operating in massively networked s
enarios are the build-

ings. Buildings are 
onstituted by �oors and rooms, whi
h have repli
ated fun
tions

throughout its �oors and rooms as Figure 1.2 shows.

Figure 1.2: Internal Ar
hite
ture of a Building: Fun
tions and Communi
ation Interfa
es

Therefore, we 
on
entrate on studying NCSs operating in massively networked s
enarios

so as to exploit the potential heterogeneous redundan
ies whi
h may exist in these

systems.

1.3 Resear
h Obje
tives

The main goal of this thesis is to evaluate the impa
t of the reuse of system

resour
es on the overall system dependability and analyse whether it redu
es

the system development 
ost. Starting from this main goal and after performing

the study of the state of the art (
f. Se
tion 2), further underlying ne
essary obje
tives

have been de�ned.

Therefore, the main resear
h goal is divided into the following resear
h obje
tives of this

dissertation:

1. Systemati
 identi�
ation of heterogeneous redundan
ies.
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2. Systemati
 
hara
terization of HW/SW ar
hite
tures �tted with

health management fun
tions and their implementations, i.e., fault dete
tion and

re
on�guration.

3. Systemati
 evaluation of the in�uen
e of the type and number of redundan
y and

re
on�guration strategies on system dependability and 
ost.

4. Optimization of the design of 
ontrol system ar
hite
tures in massively networked

s
enarios, maximizing dependability and minimizing the 
ost.

5. De�nition of a guideline to de
ide when the reuse of system resour
es is bene�
ial

for the system (redu
e 
osts, improve dependability) and when it is better to use

homogeneous redundan
ies.

1.4 Resear
h Hypothesis, Contributions & Limita-

tions

The obje
tive of this se
tion is to de�ne the resear
h hypothesis in order to spe
ify the

foundations of this dissertation as well as the 
ontributions and limitations.

As a result of the performed literature study - in whi
h we review the works related

with this thesis (
f. Chapter 2) - and linking this survey with our resear
h obje
tives

(
f. Se
tion 1.3), the resear
h hypothesis that we are going to work with is de�ned as

follows:

�The systemati
 
onsideration of the e�e
t of homogeneous and

heterogeneous redundan
ies, fault dete
tion, re
on�guration

and 
ommuni
ation fun
tions, allows the optimization of 
ontrol

system ar
hite
tures in massively networked s
enarios, maximizing

dependability and minimizing the 
ost.�

Comparing this work with already existing approa
hes whi
h make use of heterogeneous

redundan
ies for designing adaptive dependable systems, this dissertation di�ers in the

following aspe
ts - 
ontributions:

� The systematization of the identi�
ation of heterogeneous redundan
ies.
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� The expli
it 
onsideration of the faulty behaviour of the fault dete
tion,

re
on�guration and 
ommuni
ation implementations when addressing heteroge-

neous redundan
ies.

� The systemati
 
hara
terization of HW/SW ar
hite
tures �tted alternative re-

dundan
y and re
on�guration strategies, fault dete
tion implementations and

re
on�guration resour
es.

� The systemati
 evaluation of the e�e
t on dependability and 
ost of the de-

signed HW/SW ar
hite
tures by 
onsidering both non-repairable and repairable

resour
es.

The following parts were left out of the s
ope of this work - limitations:

� The pro
ess for obtaining the failure rate data of software resour
es is not 
onsid-

ered and it is assumed a known data. Nevertheless, to deal with un
ertain data

we have implemented an un
ertainty analysis approa
h in Chapter 4.

� Exa
t solutions are not obtained, instead we 
on
entrate on simulation te
hniques.

� Analysis of low-level requirements: timing requirements that 
omponents should

meet in order to be 
ompatible and perform a fun
tion timely; memory and pro-


essing power requirements that the pro
essing units should meet; and bandwidth


onstraints of 
ommuni
ation proto
ols that the system have to adhere will not

be addressed.

1.5 Resear
h Methodology

The proposed methodology allows the validation of the stated resear
h hypothesis. Our

resear
h methodology is based on the 
hara
terization (design) of modelling and analysis

a
tivities and their 
ombined appli
ation to theoreti
al 
ase studies in order to validate

the resear
h hypothesis.

To this end, we have divided the resear
h problem into smaller problems and de�ne

solutions to ea
h of them, so that eviden
e is shown for ea
h part in parti
ular and for

the overall problem in general:
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� Systemati
 
onsideration of the implied attributes/variables in the resear
h

hypothesis - 
hara
terization of the design model:

� De�nition of a generi
 system model to design HW/SW ar
hite
tures

systemati
ally in
luding the next a
tivities:

* Systemati
 identi�
ation of heterogeneous redundan
ies.

* Pro
edural 
onsideration of fault dete
tion, re
on�guration, and


ommuni
ation fun
tions.

� Systemati
 evaluation of the e�e
t of the implied attributes/variables in the

resear
h hypothesis on dependability and 
ost - 
hara
terization of the analysis

model:

� De�nition of analysis models and algorithms to evaluate systemati-


ally the dependability and 
ost of the alternative HW/SW ar
hite
tures

designed with the generi
 system model:

* De�nition of the dependability metri
/model and an algorithm to anal-

yse the dependability level of alternative HW/SW ar
hite
tures system-

ati
ally.

* De�nition of the 
ost metri
/model and an algorithm to analyse the 
ost

of alternative HW/SW ar
hite
tures systemati
ally.

* Overall evaluation of the system's dependability and 
ost and trade-

o� analysis between these attributes.

� Automation of all the previous phases.

� Validate the feasibility of the proposed approa
h by using real hardware, software,

and 
ommuni
ation elements.

All these a
tivities have been validated 
ase by 
ase basis through the development of

theoreti
al 
ase studies. Besides, to validate the feasibility of the proposed method-

ology, a real proof-of-
on
ept has been developed using real hardware, software and


ommuni
ation elements of the railway industry

2

(
f. Chapter 6).

2

The author was a visiting resear
her at CAF Power and Automation (www.
afpower.
om) for the

last six months of 2013.
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1.6 Thesis Outline

This report is divided into 7 
hapters. The following points overview the organisation

of ea
h 
hapter:

� Chapter 2 de�nes the appli
ation example used to illustrate the 
on
epts emerg-

ing from this dissertation and it provides the needed ba
kground literature

for the development of this thesis. Through an exhaustive literature analysis of

model-based system engineering and reliability engineering �elds, the opportu-

nity (motivation) is identi�ed.

� Chapter 3 des
ribes the main 
ontribution of this dissertation: the aDaptive

Dependable Design for systems with Homogeneous and Heterogeneous

redundan
ies (D3H2) methodology. The methodology integrates all the re-

sear
h obje
tives and a
tivities identi�ed previously. For the sake of 
larity, the

explanation of the methodology is divided in two parts:

1. Modelling and analysis a
tivities to 
reate an extended HW/SW ar
hite
ture.

2. Dependability and 
ost analysis of the extended HW/SW ar
hite
ture.

This 
hapter overviews the main a
tivities of the methodology and des
ribes the

steps to 
reate an extended HW/SW ar
hite
ture.

� Taking the extended HW/SW ar
hite
ture as a starting point, Chapter 4 de�nes

the dependability evaluation algorithm for non-repairable systems and its

implementation by using simulation te
hniques.

� Taking the extended HW/SW ar
hite
ture as a starting point, Chapter 5 de�nes

the dependability evaluation algorithm for repairable systems and its im-

plementation.

� Chapter 6 des
ribes the implementation of the resear
h obje
tives by using real

railway hardware and 
ommuni
ation elements.

� Chapter 7 sets the 
on
lusions of this thesis and future resear
h goals.
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Chapter 2

Literature Review

In this 
hapter we provide the ne
essary ba
kground information for the elaboration

of the thesis and we review the previous related work so as to support our resear
h

hypothesis and set the topi
 of this dissertation. Besides, in order to have a 
onsistent

ongoing example throughout the thesis, we will also spe
ify the example 
ase study so

that we 
an illustrate the emerging 
on
epts dire
tly.

The 
hapter is organised as follows:

� Se
tion 2.1 des
ribes the illustrative appli
ation framework.

� Se
tion 2.2 presents the dependability framework for the development of this thesis

introdu
ing relevant de�nitions and 
on
epts.

� Se
tion 2.3 
lassi�es and examines the main dependability analysis te
hniques.

� Se
tion 2.4 reviews the s
ienti�
 literature examining those approa
hes whi
h

design adaptive dependable systems by using homogeneous and/or heterogeneous

redundan
ies.

� Se
tion 2.5 
on
ludes this 
hapter with 
on
lusions that will determine the orien-

tation of the forth
oming 
hapters of this thesis.

2.1 Appli
ation Framework

The goal of this se
tion is to introdu
e the running example so that all the examples

throughout this dissertation have a unique 
onsistent referen
e. The illustrative 
ase

study has been inspired from the dire
t appli
ation of this thesis: a train operating in

massively networked s
enarios. A train (usually) is 
onstituted by more than one 
ar,
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and ea
h 
ar in turn has a set of di�erent fun
tions, whi
h are repli
ated for ea
h 
ar of

the train.

Figure 2.1 depi
ts some of the fun
tions performed in a train 
ar that will be used

throughout this thesis for illustration purposes. Di�erent fun
tions are 
onne
ted to dif-

ferent 
ommuni
ation networks and there is an inter
onne
ting gateway element, whi
h

makes possible the 
ommuni
ation of resour
es 
onne
ted to di�erent 
ommuni
ation

networks. In order to make the 
ommuni
ation between di�erent 
ars of the train possi-

ble, train swit
hes are used. The inter-
ar 
ommuni
ation and intra-
ar 
ommuni
ation

are implemented a

ording to the IEC 61375 (Train Communi
ation Network) standard

[IEC07℄.

Figure 2.1: Train Car Con�guration: Fun
tions and Communi
ation Interfa
es

In Figure 2.1, ea
h fun
tion is en
losed in a box and in turn, they have their own

hardware and software resour
es. Conse
utively we will explain the main HW/SW

features of the fun
tions and they will be used throughout this dissertation to perform

di�erent analyses.

Without loss of generality, hen
eforth we will assume that ea
h 
ar of the train will have

2 
ompartments (Zone

A

, Zone

B

) and in ea
h 
ompartment there will be 2 doors lo
ated

side by side (
f. Figure 2.2).

12



Sprinkler Fire

Detector

Zone A Zone B

Reference

Temperature

Temperature

Sensor

Speaker

Heater

Emergency

Button

Zone A Zone B

Close

Detector

Open

Sensor

Motor

Open

Button

Camera

Figure 2.2: Train Car Con�guration: Physi
al Distribution

Door Status Control

Ea
h door in the train has many sensors and 
ontrol buttons for the passengers and the

driver. The doors 
losure is 
ontrolled by the driver based on a enable signal that will

be re
eived depending on the status of the train, e.g., while the train is running the

doors must remain 
losed.

In the train there is a 
omponent 
alled Train Control Monitoring System (TCMS),

whi
h 
ontrols and monitors several 
riti
al systems of the train su
h as tra
tion and

doors. This 
omponent is homogeneously dupli
ated in two reliable PUs (PU

TCMS

) for

safety purposes. The TCMS re
eives information about the speed of the train and it

will not allow the driver to open the doors while the train is running. To this end, it

provides an enable to the driver to inform about the safe operation of door opening or


losing (known as Enable Door Driver). The driver a

ordingly provides an enable to

the 
ontroller of ea
h door (known as Enable Door Passenger) to a
t safely on opening

or 
losing the doors while taking into a

ount if the train is moving and if there is an

obsta
le in the door.

As Figure 2.3 shows, in a train 
ar there is one opening and 
losing button for the driver


onne
ted to the driver's PU (PU

driver

), while ea
h door has: one opening button for

passengers, one door velo
ity sensor, one door open dete
tion sensor, one door 
losed

dete
tion sensor and one obsta
le dete
tion sensor. All these sensors, their 
ontrollers

and the door 
ontrol algorithm are lo
ated in the PU

Door

.

Figure 2.4 depi
ts the 
ontrol loop in
luding the physi
al system (Train Car Door).
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Figure 2.3: Hardware Model of the Door

Status Control Fun
tion
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Train Car Door

Close

Button

Driver

Figure 2.4: SW/Dependen
y Model of the

Door Status Control Fun
tion

The Driver

Control

software resour
e lo
ated at PU

Driver

re
eives the status information of

the train from the TCMS 
omponent (Enable Door Driver) and based on the re
eived

information and driver's open, 
lose or enable indi
ations, it provides the Enable Door

Passenger signal to the Door Control Algorithm. Door Control Algorithm lo
ated at

PU

Door

re
eives the status data of the sensors of the door and passenger 
ommands.

Then, based on driver's enable 
ommand (Enable Door Passenger) it will a
tuate on

the 
orresponding motor to open or 
lose the door of the 
orresponding 
ompartment

of the train 
ar.

Video Surveillan
e

The Video Surveillan
e fun
tion performs monitoring tasks on ea
h 
ar of the train.

Ea
h 
ar is equipped with a 
amera whi
h fo
uses towards the doors in order to prevent

hazards and injuries.

The in
oming images re
orded by the 
amera are pro
essed through an image pro
essing

algorithm (Pro
ess Image) lo
ated in PU

Cam

and in the presen
e of a hazard in any of

the 
ars it raises an emergen
y signal using the lamps and the siren. Besides, for

se
urity issues, all the images are stored in a server 
onne
ted to the same Ethernet


ommuni
ation network.

As depi
ted in Figure 2.6, the Pro
ess Image algorithm lo
ated in PU

Cam

evaluates
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e Fun
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Figure 2.6: SW/Dependen
y Model of the

Video Surveillan
e Fun
tion

hazardous situations in a train 
ar; redire
ts the 
amera images towards the storage

server; and raises the alarms when hazardous situations are dete
ted.

Air Conditioning Control

The Air Conditioning Control (ACC) sets the temperature of a train 
ar a

ording to

the referen
e temperature de�ned by the driver.

The driver is responsible for (1) a
tivating the Air Conditioning Control on the 
ar(s)

that he/she de
ides - A
tivate ACC; and (2) set the referen
e temperature of the 
or-

responding 
ar. In ea
h train 
ar's 
ompartment, there are dedi
ated PUs to perform

the Air Conditioning Control of the 
ar (PU

ACC

). To this end, in ea
h 
ar the PU

ACC

re
eives the 
urrent temperature of the 
ar through a temperature sensor and heats

the room by using a dedi
ated heater. Normally, a train 
ar 
omprises of di�erent


ompartments and a

ordingly, there exist a temperature sensor and a heater for ea
h


ompartment of the train 
ar (
f. Figure 2.7).

As depi
ted in Figure 2.8, ea
h train 
ar 
ompartment has its own 
ontrol loop so as to

heat the room a

ording to the referen
e temperature set by the driver.
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Figure 2.7: Hardware Model of Air Condi-

tion Control Fun
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Figure 2.8: SW/Dependen
y Model of Air

Condition Control Fun
tion

Fire Prote
tion Control

The Fire Prote
tion (FP) 
ontrol fun
tion aims at the �re dete
tion and extin
tion in

a train 
ar 
ompartment. The hazardous situation is dete
ted by a �re dete
tor, whi
h

based on the presen
e of smoke raises a signal, or it is triggered by a user who pushes

the emergen
y button to indi
ate an emergen
y situation (
f. Figure 2.9).

Ethernet

MVB

CAN

PU

Figure 2.9: Hardware Model of the Fire Pro-

te
tion Fun
tion

Fire

Protection

Control

Fire

Detector

Train Car

Compartment

Figure 2.10: SW/Dependen
y Model of the

Fire Prote
tion Fun
tion

As depi
ted in Figure 2.10, ea
h train 
ar 
ompartment has its own Fire Prote
tion


ontrol loop so as to extinguish the possible �res. The Fire Prote
tion Control SW

element lo
ated in PU

FP

a
tivates sprinklers whi
h are strategi
ally lo
ated in ea
h
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ompartment of the train 
ars.

Passenger Information System

The Passenger Information System (PIS) informs the passenger about the position of

the train and next stops (
f. Figure 2.11).

Ethernet

MVB

CAN

PUPISPUDriver

Figure 2.11: Hardware Model of the Passen-

ger Information System

Process

Information

GPS

Train

Car

Compartment

Display

Board

Figure 2.12: SW/Dependen
y Model of the

Passenger Information System

The PIS fun
tion makes use of the Global Positioning System (GPS) devi
e lo
ated

at driver's 
ompartment in PU

Driver

. Based on the lo
ation of the train, information

displays are updated with the 
orresponding information at runtime through the Pro
ess

Information SW algorithm lo
ated at PU

Driver

.

Light Control

Ea
h 
ar of the train may have an intelligent lighting 
ontrol system, whi
h swit
hes

on/o� the lights or lowers the light intensity automati
ally based on the presen
e/ab-

sen
e of people. To this end, there is a presen
e sensor whi
h dete
ts if anyone is in a

train 
ar and besides, the driver has its own manual a
tivation button for those 
ases

in whi
h the sensor is not working 
orre
tly (
f. Figure 2.13).

The Light Control Algorithm lo
ated in PU

Light

will be responsible for swit
hing on/o�

the lights in ea
h 
ar using a dimmer.
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Figure 2.14: SW/Dependen
y Model of the

Light Control Fun
tion

2.2 Dependability Framework

In this se
tion we introdu
e the basi
 de�nitions for the development of this thesis,

dis
uss about the essential fault tolerant design te
hniques and set the failure model of

our approa
h, i.e., the failures that our approa
h is intended to deal with.

2.2.1 Dependability: De�nitions and Classi�
ations

The �rst fundamental de�nition 
on
erns to dependability:

De�nition 2.1. Dependability: the ability to avoid failures that are more severe and

more frequent than is a

eptable [Avizienis04℄.

What is a a

eptable for a system design is de�ned by the dependability requirements,

whi
h will limit its tolerable failures. Consequently, failure-related studies (also known

as s
ien
e of failures) will guide dependability determination and evaluation.

Every system is exposed to threats, while di�erent dependability me
hanisms are used

to meet requirements. Dependability requirements are de�ned in terms of dependability

attributes. This 
hara
teristi
s will be introdu
ed in the following se
tions.
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When designing a dependable system, the 
lassi�
ation of fault, error and failure 
on-


epts, i.e., dependability threats, are fundamental so as to spe
ify dependability require-

ments a

urately.

De�nition 2.2. Fault: adjudged or hypothesized 
ause of an error. A fault is a
tive if

it produ
es an error, otherwise it remains dormant.

Fault 
lassi�
ation: elementary fault 
lasses are grouped a

ording to di�erent view-

points [Avizienis04℄:

� Phase of 
reation or o

urren
e of faults: development faults emerge during the

system development and operational faults appear during the system operation.

� System boundaries: internal faults and external faults resulting from the intera
-

tion with the physi
al or human environment.

� Phenomenologi
al 
auses: natural/hardware faults and human-made faults.

� Dimension: hardware and software faults.

� Obje
tive: mali
ious faults and non-mali
ious faults.

� Developer's intent: deliberate faults (bad de
isions) and non-deliberate faults (mis-

takes).

� Capability: a

idental faults and in
ompeten
e faults.

� Persisten
e of faults: permanent faults and transient faults.

De�nition 2.3. Error: part of the system's total state that may 
ause its subsequent

failure. Errors are the responsible for deviation between the 
omputed value and the


orre
t value [Rausand03℄.

Error 
lassi�
ation: a formal de�nition and 
lassi�
ation of errors is given by

[Powell95℄ whi
h 
hara
terizes system servi
es by the tuple 〈vsi, tsi〉 where vsi is the

value of the servi
e and tsi is the time or instant of observation of the servi
e si.

The 
orre
tness of the system servi
e si is spe
i�ed by 
orre
t 
ontent (vsi ∈ SVi) and

time instant (tsi ∈ STi) values where SVi and STi are respe
tively the spe
i�ed sets of

values and times for the servi
e item si. A

ordingly, di�erent errors are de�ned:
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� Arbitrary value error : vsi /∈ SVi

� Arbitrary timing error : tsi /∈ STi

� Early timing error: tsi < min(STi)

� Late timing error: tsi > max(STi)

� Omission (in�nitely late) error : tsi = ∞

� Impromptu error : (vsi /∈ SVi) ∧ (tsi /∈ STi)

De�nition 2.4. Failure: an event that o

urs and provokes the transition of the 
orre
t

servi
e to in
orre
t servi
e. Di�erent forms of transitions are de�ned through failure

modes.

Failure 
lassi�
ation: a servi
e is 
hara
terized by the value and time the servi
e is

delivered. The di�erent ways that deviations o

ur are failure modes and ea
h failure

mode is 
ategorized by the failure severity. Failure modes are 
hara
terized a

ording

to the following viewpoints:

� Failure domain: failures are 
lassi�ed a

ording to value and timing failures

[Bondavalli90℄:

� Value failures: in
orre
t value failures are further re�ned into 
oarse in
orre
t

(dete
table value failures), subtle in
orre
t (undete
table value failures) and

omission value failures (no output when required).

� Timing failures: in
orre
t timing failures are 
lassi�ed as early, late and

in�nitely late (omission) failures.

When both value and timing failures o

ur, failures are 
lassi�ed as:

� Halt failures: the servi
e is halted.

� Errati
 failures: the servi
e is delivered but is errati
.

� Dete
tability of failures: signalled failures and un-signalled failures.

� Consisten
y of failures: 
onsistent failures and in
onsistent (random) failures.

� Consequen
e/Criti
ality of failures: the 
onsequen
e of the failures are quanti�ed
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by the failure severities to whi
h maximum a

eptable probabilities of o

urren
e

are asso
iated. A 
ommon 
lassi�
ation of failure severities in
lude 
atastrophi
,


riti
al, major and minor 
onsequen
es.

Assuming that a system is 
onstituted by a set of intera
ting 
omponents, the state of the

system will be determined by the state of its 
onstituent 
omponents. The o

urren
e

of a fault or 
ombination of faults on hardware and software 
omponents provoke errors

and when errors lead the system fun
tion to perform in
orre
tly, system failure o

urs.

Table 2.1 and Table 2.2 display the 
lassi�
ation of faults and error/failures respe
tively.

Table 2.1: Fault Classi�
ation

Phenomenologi
al Cause

Physi
al

Human Made

System Boundaries

Internal

External

Phase of Creation

Development

Operational

Dimension

Hardware

Software

Obje
tive

Mali
ious

Non-Mali
ious

Capability

A

idental

In
ompeten
e

Persisten
e

Permanent

Transient

Table 2.2: Failure/Error Classi�
ation

Domain

Value

Coarse

Subtle

Omission

Time

Early

Late

Omission

Consisten
y

Non-Consistent

Consistent

Persisten
e

Transient

Permanent

Dete
tability

Signalled

Un-signalled

So as to spe
ify dependability requirements, let us de�ne dependability attributes:

De�nition 2.5. Reliability: ability of an item to perform a required fun
tion, under

given environmental and operational 
onditions for a stared period of time [Rausand03℄.

Statisti
ally: assuming X represents the random variable whi
h determines the time to

failure of the system, reliability (R(t)) is de�ned as the probability that the system will

be su

essfully operating from time 0 to time t:

R(t) = P(X > t) (2.1)

The failure probability or unreliability is then:
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F(t) = 1−R(t) = P(X 6 t) (2.2)

Assuming non-repairable 
omponents, reliability is expressed informally as the proba-

bility of the system remains operative throughout a time interval. If the assumption of

non-repairable 
omponents does not hold, reliability with repairs needs to be 
onsidered:

probability of the system experien
es no failures throughout a time interval given that

it was operative at the initial time instant.

De�nition 2.6. Mean Time To Failure: is de�ned as the expe
ted value of the

lifetime before a failure o

urs. Statisti
ally: assuming X is the random variable that

represents the time to failure and f(t) the probability density fun
tion of the system

lifetime (f(t) = dF(t)
dt

), the MTTF is de�ned as:

MTTF = E[X ] =
∫ ∞

0
tf(t)dt =

∫ ∞

0
R(t)dt (2.3)

De�nition 2.7. Failure Rate Fun
tion (Hazard Fun
tion): the 
onditional prob-

ability of a 
omponent of age t failing in (t, t + ∆t℄ given that it has not failed in [0,

t℄. It indi
ates the 
hanging rate in the ageing behaviour over the life of a population of


omponents.

The probability that an item will fail in the time interval (t, t+∆t℄ when we know that

the item is fun
tioning at time t is:

Pr(t < X 6 t+∆t | X > t) =
Pr(t < X 6 t+∆t)

Pr(X > t)
=

F(t+∆t)− F(t)

R(t)
(2.4)

By dividing Equation 2.4 by the length of the time interval, ∆t and letting ∆t→ 0, we

get the failure rate fun
tion (λ(t)) of the item:

λ(t) = lim
∆t→0

Pr(t < X 6 t +∆t|X > t)

∆t
= lim

∆t→0

F(t+∆t)− F(t)

∆t

1

R(t)
=

f(t)

R(t)
(2.5)

De�nition 2.8. Maintainability: ability to undergo repairs and modi�
ations to re-

store or retain to a state in whi
h 
an perform its required fun
tions.
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Informally, maintainability is the probability of isolating and repairing a fault in a system

within a given time.

De�nition 2.9. Mean Time To Repair: is the expe
ted value of the repair time.

Statisti
ally: let Y to be the random variable that represents the time to repair of a

system and g(t) the density fun
tion of the system repair time, we de�ne MTTR as:

MTTR = E[Y ] =
∫ ∞

0
tg(t)dt (2.6)

Availability 
omprehends both reliability and maintainability 
on
epts:

De�nition 2.10. Availability: Operate 
orre
tly at a 
ertain point in time when a

servi
e is requested [Rausand03℄. Statisti
ally: assuming I(t) is a Bernoulli random

variable (1: operative; 0: failed) the point availability (A(t)) is de�ned as:

A(t) = P{I(t) = 1} (2.7)

De�nition 2.11. Average Availability (Aav): is de�ned in [0, t℄ as

Aav(t) =

∫ t
0 A(t)dt

t
=

MTTF

MTTR +MTTF
(2.8)

De�nition 2.12. Safety: absen
e of 
atastrophi
 
onsequen
es on the user(s) and the

environment. The aim of safety analysis te
hniques is to evaluate whether a system

meets its safety requirements. Safety requirements are de�ned as a hazard

3

(i.e., injury

or in
idents) 
ombined with the tolerable probability of this hazard [Leveson95℄.

Sin
e se
urity aspe
ts are outside of the s
ope of this thesis, we will not 
onsider 
on-

�dentiality and integrity as dependability attributes. Hen
eforth, throughout this dis-

sertation the term dependability will fo
us on Reliability, Availability, Maintainability,

and Safety (RAMS) attributes.

3

Hazard is an state of the system, whi
h may develop into an a

ident either through the fa
tors

that are not under the 
ontrol of the system, un
ontrollable external a
tions or through a sequen
e of

normal events. It is the last de
ision point before an a

ident.
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2.2.2 Designing for Fault Toleran
e and Dependability

Based on the knowledge that faults are present within the system 
omponents, devel-

opment of an appropriate system within spe
i�ed 
onstraints will be guided by the

dependability me
hanisms [Kaani
he02; Avizienis04℄:

� Fault Prevention: prevent the o

urren
e or introdu
tion of faults, e.g., proje
t

planning and risk assessment a
tivities enable system's fault prevention.

� Fault Removal : redu
tion of the number and severity of faults in
luding veri�
a-

tion, diagnosis and modi�
ation a
tivities.

� Fault Fore
asting : estimation of the present number, future in
iden
e and the like-

lihood of the 
onsequen
e of faults. Fault fore
asting a
tivities in
lude statement

of the dependability obje
tives, allo
ation of the obje
tives and qualitative and

quantitative evaluation to assess whether the system satis�es the obje
tives.

� Fault Toleran
e: delivery of 
orre
t servi
e in the presen
e of faults, e.g., sele
tion

of the adequate fault and error handling me
hanisms.

Fault prevention and fault removal te
hniques are aimed at redu
ing system faults and

both te
hniques are in
luded in the fault avoidan
e paradigm. Fault fore
asting and

fault toleran
e are embodied in the 
on
ept of fault a

eptan
e based on the assumption

that the design of a system without faults is not a
hievable. In order to design a de-

pendable system, ea
h of the four me
hanisms need to be 
onsidered, but not ne
essarily

as separate 
on
epts. Fault toleran
e 
on
ept en
ompasses all means by stru
turing the

system so as to avoid faults. When inevitable faults o

ur, 
ountermeasures are adopted

in the form of redundan
ies to deliver 
orre
t servi
e in the presen
e of faults.

Di�erent ar
hite
tural de
isions in�uen
e both dependability and 
ost (e.g., see

[Somani97; Nord03; Cortellessa06; Gokhale07℄). Hardware 
osts, power requirements,

pro
essing time and weight of the added hardware elements (
riti
al parameter for some

�elds su
h as avioni
s) are some design 
onsequen
es that need to be 
onsidered when

designing a system for fault toleran
e. This situation leads to di�erent design strategies

su
h as optimal ar
hite
ture sele
tion based on the trade-o� between dependability at-

tributes, 
ost and 
omplexity; or re�nement of the stru
ture until a
hieving an adequate


ompromise solution.
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Fault toleran
e me
hanisms may over
ome all dependability goals, but spe
ially they

are aimed at redu
ing the frequen
y of failures and mitigating their e�e
ts (failure

avoidan
e). Designing a fault-toleran
e strategy involves the following steps [Nelson90℄:

1. Error Dete
tion: takes pla
e either during normal servi
e delivery or while normal

servi
e delivery is suspended.

2. Error Containment : prevention of the propagation of erroneous information a
ross

de�ned boundaries.

3. Error Masking : dynami
 
orre
tion of the error allowing the 
ontinuity of 
orre
t

servi
e in the presen
e of errors.

4. Error Re
overy : systemati
 or on-demand 
orre
tion of an erroneous system state.

On-demand 
orre
tion brings the system to a error-free state by applying te
h-

niques like ba
kward or forward re
overy. Error 
ompensation uses redundan
y

within the erroneous state to mask errors on-demand or systemati
ally.

5. Fault Diagnosis: identi�
ation of the module responsible for a dete
ted error.

6. Fault Repair/Re
on�guration: ex
lude or repla
e the faulty 
omponent.

7. Veri�
ation of the e�e
tiveness (or 
overage) of the fault tolerant strategy.

Redundan
y Classi�
ation

The key ingredient in fault tolerant te
hniques is redundan
y, that is, the addition of

information, time, or resour
es beyond what is needed for normal system operation.

Di�erent 
lasses of redundan
ies are employed to a
hieve dependability requirements

[Johnson84℄.

Informational redundan
y is fo
used on providing additional information to the basi


data stru
ture. This redundan
y 
an be used for: error dete
tion with the aim to

distinguish valid and invalid 
ode words (e.g., error-dete
ting 
odes, 
he
ksums); error


orre
tion allowing the real-time 
omputation without interruptions (e.g., Hamming,

Reed Solomon error-
orre
ting 
odes); or error re
overy providing a fail-over re
overy

point through the implementation of a requirement fun
tion using diverse te
hniques
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(analyti
al redundan
ies), e.g., 
al
ulation of the a

eleration using di�erent physi
al

variables (e.g., position, speed) linked with their analyti
al relationships.

Hardware redundan
y (also known as spatial redundan
y) deals with the redundan
y of

physi
al resour
es and it 
an be 
lassi�ed in three forms of repli
ation:

1. Stati
 or passive repli
ation masks prede�ned o

urren
e of faults to prevent their

propagation using the 
on
ept of majority voting to determine the output of the

system and do not o�er dete
tion, isolation or repair of a faulty module (e.g.,

Triple Modular Redundan
y (TMR), see Figure 2.15).

Figure 2.15: Triple Modular Redundan
y Example

2. Dynami
 or a
tive repli
ation does not mask faults, but dete
ts and re
on�gures

faults so that a spare 
omponent 
an be swit
hed to repla
e the faulty 
omponent

(e.g., hot and 
old spares).

3. Hybrid repli
ation uses fault masking to prevent the fault from a�e
ting the system

and fault dete
tion and re
on�guration to allow a spare module to repla
e the

faulty 
omponent (e.g., N modular redundan
y (NMR) with spares).

Temporal redundan
y is based on redundant 
omputations primarily used to distin-

guish between permanent and transient failures. To this end, multiple 
omputations

are performed with the aim to observe the behaviour of an error 
ondition. Temporal

redundan
y aims to redu
e the amount of extra hardware at the expenses of additional

time (e.g., see [Agrawal88; Thuel94℄).

Software redundan
y adds extra software to provide the system with fault toleran
e 
a-

pabilities. Single-version and multiple-version software fault toleran
e te
hniques are

distinguished [Wilfredo00℄. The former uses single version of a pie
e of software to

dete
t and re
over from faults and in
ludes 
onsiderations on the software stru
ture,
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error dete
tion and ex
eption handling. The majority of single-version software re
ov-

ery me
hanisms implement 
he
kpoint and restart strategies (either dynami
 or stati
).

The latter is 
hara
terized by the idea of building software 
omponents in di�erent ways

from a 
ommon spe
i�
ation (also known as design diversity - see [Littlewood01b℄ and

referen
es herein), in order to eliminate any sour
es of similar design faults. Examples

of multi-version software fault tolerant te
hniques are re
overy blo
k, N version pro-

gramming, N self-
he
king programming, and 
onsensus re
overy blo
ks te
hniques (see

[Pullum01℄ for details of alternative strategies).

How redundan
y is used in order to improve the dependability of the overall system is

as important as the redundan
y itself. An in
rease in the number of redundant elements

does not guarantee better fault toleran
e, instead it in
reases the overall failure proba-

bility. E�e
tiveness of fault tolerant ar
hite
ture depends on the probability of 
ommon

failures between its redundant parts [Littlewood01a℄. To this end, diversity te
hniques

are used by implementing alternative development/design te
hniques to 
reate di�erent

redundant elements whi
h may fail di�erently and prote
t the system against 
ommon


ause failures (
f. Figure 2.16). While identi
al redundan
ies address random failures,

diverse redundan
ies address both random and 
ommon 
ause failures.

Figure 2.16: Diverse Design [Littlewood00a℄

Theoreti
al models have been developed to evaluate the in�uen
e of diversity-seeking

de
isions and 
ommon 
ause failures on system reliability (e.g., see EL and LM models

[Littlewood96℄). Although these models are outside the s
ope of this work, it is worth

mentioning that the quantitative evaluation of the in�uen
e of diversity on dependability

is not a trivial task. In the well known example developed by Knight and Leveson
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[Knight86℄, they tested empiri
ally the assumption of statisti
al independen
e in N

version programming. Their results show that there is 
orrelation between independently

developed versions and therefore, the assumption of independent errors does not hold.

We fo
us on a subset of design diversity te
hniques: fun
tional diversity [Burlando92℄.

Fun
tional diversity is a methodology 
onsisting of N di�erent implementations of the

same requirement spe
i�
ation where ea
h implementation uses a di�erent input set

and di�erent algorithms to 
ompute the same required output. With respe
t to normal

diversity (e.g., N version programming), the basi
 di�eren
es are the followings: in

fun
tional diversity, N teams begin to work separately having as only 
ommon point the

system requirements. The approa
hes to the problem and input data are di�erent. In

normal diversity, the N teams begin to work separately only after the spe
i�
ation has

been written. Then ea
h team use a similar approa
h: the same modelling of the pro
ess

and the same data types; the di�eren
es among them lie only in the implementation

te
hniques and in the details of the algorithms. In everyday systems there exist many

appli
ations whi
h make use of fun
tional diversity and implement diverse redundan
y

appli
ations (i.e., deploying diverse repli
as): 
ars have dupli
ated braking systems


omprised of foot brakes and handbrakes or laptops have diverse ba
kups for ele
tri
al

power supply su
h as batteries.

The basi
 requirement to apply fun
tional diversity is that the problem should be ap-

proa
hed from di�erent viewpoints, whi
h leads to de�ning the major drawba
k of fun
-

tional diversity: the need of an (brainstorming-like) intelle
tual pro
ess to obtain di-

verse spe
i�
ations with the 
ost that this pro
ess in
urs. Therefore, an important

issue whi
h needs to be addressed when undertaking fun
tional diversity is whether the

fault toleran
e will produ
e enough reliability (dependability) gain to be worth its 
ost.

2.2.3 Fault Hypothesis & Failure/Error Model

Fault assumptions are 
losely related to the fault-toleran
e management de
isions. Any

assumption whi
h does not adhere to the real operation of the system will 
ause an over-

all de
rease on the system dependability. Therefore, it is ne
essary to de�ne whi
h faults

the system is going to tolerate, i.e., fault hypothesis, and arrange them in a failure/error

model so as to 
hara
terize the possible fault re
overy strategies systemati
ally.
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Table 2.3 des
ribes the fault hypothesis of the systems that we will deal with and Table

2.4 displays the failure/error model of the system. Examples of the faults that we

plan to address with this dissertation are: permanent software development defe
ts or

hardware deteriorations; development faults and faults whi
h emerge from designers

in
ompeten
es and a

idents. The in�uen
e of a

idental and in
ompeten
e faults will

be 
onsidered by assigning a failure rate to the human-made software resour
es. Thus,

the 
onsidered human-made faults will 
over software development faults, but we will not

address the in�uen
e of human faults as is. External environmental in�uen
es will not

be addressed neither, we will 
onsider only system's internal faults su
h as hardware,

software or 
ommuni
ation resour
es faults. Sin
e we are not dealing with se
urity

issues, mali
ious faults will not be 
ontemplated as well.

Table 2.3: Fault Hypothesis

Phenomenologi
al Cause

Physi
al X

Human Made X

System Boundaries

Internal X

External X

Phase of Creation

Development X

Operational X

Dimension

Hardware X

Software X

Obje
tive

Mali
ious X

Non-Mali
ious X

Capability

A

idental X

In
ompeten
e X

Persisten
e

Permanent X

Transient X

Table 2.4: Failure/Error Model

Domain

Value

Coarse X

Subtle X

Omission X

Time

Early X

Late X

Omission X

Consisten
y

Non-Consistent X

Consistent X

Persisten
e

Transient X

Permanent X

Dete
tability

Signalled X

Un-signalled X

Fault dete
tion te
hniques are ne
essary to dete
t the presen
e of these faults. A

ording

to the failure/error model (
f. Table 2.4), for simpli
ity we will assume 
onsistent and

permanent failures. The addressed fault dete
tion strategies are based on time and

value thresholds either as stati
ally predetermined or dynami
ally determined thresholds

(model-based fault dete
tion, e.g., see [Isermann05℄ and referen
es herein).
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Redundan
y Model

Design strategies (redundan
ies) di�er when managing di�erent kind of failures. From

the di�erent 
lasses of redundan
ies, we fo
us on hardware, software, and information

redundan
ies implemented as follows:

� Hardware redundan
y with dynami
 redundan
y strategies provides fail-over 
apa-

bilities by dete
ting faults and re
on�guring the system behaviour and/or system

stru
ture to adapt the system operation.

� Software redundan
y fo
uses on the strategi
al distribution of system fun
tionality

among di�erent PUs to repair the system fun
tionality in the presen
e of failures.

� Information redundan
y is used to provide 
ompatible fun
tionalities by reusing

and/or adapting already existing information in a system.

In order to simplify the nomen
lature when dealing with hardware, software, and in-

formation redundan
ies, based on the possibility of reusing hardware resour
es through


ompatible fun
tionalities, we de�ne two kind of redundan
ies:

De�nition 2.13. Homogeneous redundan
ies: redundan
ies whi
h expli
itly repli-


ate the nominal fun
tionality making use of additional expli
it hardware 
omponents

(and hen
e, software modules and information sour
es), e.g., N modular redundan
y.

De�nition 2.14. Heterogeneous redundan
ies [Shelton04; Wyso
ki07℄: redundan-


ies whi
h reuse existing hardware resour
es in a system and provide a 
ompatible fun
-

tionality (i.e., emerge from heterogeneous fun
tionalities) with the information that al-

ready exists in the system, e.g., analyti
al redundan
y.

2.2.4 Opportunity Analysis

Our design goal fo
uses on designing for redundan
y instead of designing for failure

diversity [Strigini05℄. Designing for failure diversity fo
uses on adding diversity-related

design approa
hes deliberately in order to improve fault toleran
e. Our work fo
uses

on adding redundan
ies (and required fault tolerant me
hanisms) where deemed ne
-

essary by exploiting impli
it diversity whi
h may exist in some spe
i�
 environments
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(see Se
tion 1.2) in order to provide fault toleran
e and redu
e 
osts. We do not fo
us

dire
tly on evaluating the in�uen
e of diversity-seeking de
isions on dependability, but

eventually this may happen as a side-e�e
t of our design goals.

The 
on
ept of fun
tional diversity is generalist and dire
tly aligned with analyti
 re-

dundan
ies in that both approa
hes use diverse algorithms to produ
e equivalent results.

Despite not following dire
tly a diversity-seeking de
ision approa
h our method make

use of diverse fun
tions and fault-tolerant 
hoi
es that a�e
t these systems: number of

redundan
ies, fault dete
tion and re
on�guration methods, and allo
ation of software

modules to the hardware modules. The primary 
on
ern of the designers when adding

fault-tolerant strategies should be to manage the 
omplexity resulted from the need to

manage additional resour
es and 
orresponding me
hanisms. Therefore, it is ne
essary

to adopt trade-o� de
isions between the in
urred 
ost and attained fault toleran
e (and

dependability) level.

In the s
ienti�
 literature there have been two di�erent viewpoints towards the 
on
ept

of heterogeneous (and homogeneous) redundan
ies: (1) redundan
y allo
ation problems

(e.g., see [yangLi10; Sharma11℄) have 
onsidered as heterogeneous redundan
ies those


omponents whi
h have di�erent 
hara
teristi
s (e.g., memory, pro
essing power). (2) In

[Shelton04℄, Shelton and Koopman introdu
ed the heterogeneous redundan
y 
on
ept

as an approa
h to redu
e 
osts through analyti
 redundan
y like te
hniques.

Aligned with the idea of Shelton and Koopman, our 
on
ept of heterogeneous redun-

dan
ies en
ompass a general 
lass of redundan
ies. These are: analyti
al redundan-


ies, redundan
ies whi
h emerge from some fun
tional diversity appli
ations and re-

dundan
ies arising from overlapped system fun
tions in massively networked s
enarios

[Aizpurua13a℄. Sin
e the reuse of hardware elements 
an emerge in di�erent situations

heterogeneous redundan
ies 
an take many forms:

� Alternative algorithms providing an equivalent output, e.g., analyti
 redundan
ies:

alternative equations by linking sensors/a
tuators in di�erent ways so that they


an provide additional (heterogeneous) fun
tions.

� Implementations/fun
tions lo
ated in alternative 
ontexts able to provide 
ompati-

ble implementations to other implementations/fun
tions, e.g., temperature sensors

lo
ated in 
ontiguous 
ompartments able to provide 
ompatible fun
tionalities to

ea
h other 
ompartments (reuse of the temperature sensor).
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� Alternative fun
tionalities able to provide 
ompatible implementations to other

fun
tions, e.g., Video Surveillan
e fun
tion may provide a 
ompatible fun
tion to

the Door Status Control fun
tion by adding a image pro
essing SW to the 
amera

(reuse of the 
amera).

Our goal with the use of heterogeneous redundan
ies is not only to redu
e hardware


osts, but also to maintain or even improve the dependability level of the system design.

Heterogeneous redundan
ies in
lude overlapping system fun
tions whi
h may add di-

versity to the system ar
hite
ture due to the inherent properties of a networked 
ontrol

system operating in massively networked s
enarios. The intuition of the advantages pro-

vided by the use of heterogeneous redundan
ies need to be demonstrated quantitatively

so that it is possible to adopt trade-o� de
isions between dependability and 
ost when

de
iding to implement alternative redundan
y te
hniques.

Motivated by these issues we outline a design approa
h whi
h evaluates systemati
ally

the in�uen
e of fault toleran
e and diversity-related design de
isions on system depend-

ability and 
ost (see Chapter 3). To do so, a dependability evaluation algorithm and

further analyses su
h as the sensitivity evaluation of redundan
ies have been imple-

mented (see Chapter 4 and Chapter 5).

2.3 Overview of the Main Dependability Analysis Ap-

proa
hes

Dependability analysis te
hniques 
an be organised by looking at how di�erent system

failures are 
hara
terized with its 
orresponding underlying formalisms. On one hand,

event-based approa
hes re�e
t the system failure behaviour and stru
tural relationships

through 
ombination of events. This analysis results in either Fault Tree (FT) like

[Vesely02℄ or Reliability Blo
k Diagram (RBD) like [Rausand03℄ stru
tures, whi
h em-

phasizes the reliability and safety attributes. On the other hand, state-based approa
hes

map the analysis models into state-based formalisms su
h as Markov 
hain or Petri nets.

These approa
hes analyse system 
hanges with respe
t to time and mainly 
on
entrate

on reliability and availability attributes. Interested readers refer to the Appendix A for

basi
 de�nitions of event-based and state-based formalisms.
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This se
tion has been divided into 2 subse
tion: Subse
tion 2.3.1 overviews extensions

of event-based approa
hes and 
ombinations of both event-based and state-based ap-

proa
hes - hybrid approa
hes; and Subse
tion 2.3.2 evaluates the utility of hybrid ap-

proa
hes to evaluate 
omplex systems - opportunity analysis.

2.3.1 Hybrid Approa
hes

Hybrid approa
hes over
ome the main limitations of event-based approa
hes and provide

me
hanisms to address some of the drawba
ks arising from state-based approa
hes.

The extended usage of event-based approa
hes for dependability-related tasks have lead

to the identi�
ation of their main limitations, see Table 2.5.

Table 2.5: Limitations of Event-Based Approa
hes [Aizpurua13b℄

ID

Limitation

L1

Event-based approa
hes are stati
 representations of the system, neither time infor-

mation nor sequen
e dependen
ies are taken into a

ount [Dugan92℄.

L2

The orientation of the event-based approa
hes 
on
entrates on the analysis of failure


hain information. Consequently, their hierar
hy re�e
ts failure in�uen
es without


onsidering system fun
tional ar
hite
ture (design) information [Kaiser03℄.

L3

Event-based (and state-based) quality evaluation models depend on the analyst's

skill to re�e
t the aspe
ts of interest. Failure modes and undesired events must

be foreseen, resulting in a pro
ess highly dependent on analyst's knowledge of the

system [Galloway02℄.

L4

Manageability and legibility of event-based (and state-based) quality evaluation mod-

els is hampered when analysing 
omplex systems. Model size, la
k of resour
es to

handle interrelated failures and repeated events/
omponents, in 
onjun
tion with

few reusability means, are its main impediments [Kaiser03℄ [Pri
e02℄.

L1 refers to the 
apability of the te
hnique to handle temporal notions. This is of

paramount importan
e when analysing fault tolerant systems taking into a

ount system

dynami
s su
h as load sharing, standby redundan
y, on-demand failures, dependent

failures, 
as
ade failures or 
ommon 
ause failures.

L2 emphasizes the interdis
iplinary work between dependability analysis and ar
hite
-

tural design. Joining both pro
edures helps obtaining a design, whi
h meets depend-
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ability requirements 
onsistently.

L3 entails a trade-o� solution between the time 
onsuming analysis resulting from under-

standing the failure behaviour of the system and the a
quired experien
e. A substantial

body of works have fo
used on the automati
 generation of analysis models from design

models addressing limitations L2 and L3 (refer to groups 3, 5 in Appendix B, Table

B.1). These approa
hes reuse design models showing the e�e
ts of design 
hanges in

the analysis results. However, the 
orre
tness of the analysis lies in the a

ura
y of the

failure annotations.

Finally, L4 underlines the 
apability of the dependability analysis model to handle the


omponent-wise nature of embedded systems. This permits obtaining a model that

better adheres to the real problem and avoids 
onfusing results.

Many authors have developed new alternatives or extended existing ones. Three groups

are identi�ed in order to gather the hybrid approa
hes with respe
t to the limitations

they address:

� L1 is addressed in the Subse
tion Dynami
 Solutions for Stati
-Logi
 Approa
hes.

� L2 and L4 are 
overed in the Subse
tion Compositional Failure Propagation Anal-

ysis Approa
hes.

� Spe
i�
ally fo
using on L3 and generally addressing the remainder of limitations

Model-Based Transformational Approa
hes are studied.

Note that some approa
hes 
annot be limited to a spe
i�
 group, hen
e they are 
lassi�ed

a

ordingly to its main 
ontribution.

Dynami
 Solutions for Stati
-Logi
 Approa
hes

The limitation 
on
erning the la
k of temporal and dependen
y information has been

addressed by several authors to deal with system dynami
s su
h as redundan
y or repair

strategies. Spe
i�
 solutions for event-based FT and RBD approa
hes and solutions

whi
h 
ombine event-based and state-based approa
hes have been proposed.

Fault Tree extensions: [Dugan92℄ introdu
ed the Dynami
 Fault Tree (DFT)

methodology to address the analysis of 
on�guration 
hanges. DFTs were 
on
eived
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to model the reliability of systems whi
h pose 
omplex dependen
ies. New gates were

added (dynami
 gates) to the traditional (stati
) Fault Tree de�nition (see Figure 2.17):

� Priority AND (PAND) gate: Y = PAND(E1, E2, ..., EN); Y is true i� all

events {E1, E2, ..., EN} are true and o

ur in the following order: E1 ⊳E2 ⊳ ... ⊳EN ;

otherwise is false (
f. Figure 2.17 (a)).

� Fun
tional Dependen
y (FDEP) gate: [E1, E2, ..., EN ] = FDEP (T ); {E1, E2,

..., EN} are true if the trigger event T o

urs or they fail by themselves; otherwise

they are false (
f. Figure 2.17 (b)).

� Sequen
e Enfor
ing (SEQ) gate: SEQ(E1, E2, ..., EN); {E1, E2, ..., EN} are

true i� all events {E1, E2, ..., EN} are true and o

ur in the following order: E1 ⊳

E2 ⊳ ... ⊳EN ; otherwise they are false (
f. Figure 2.17 (
)). Input events are for
ed

to fail in a parti
ular order and di�erent failure sequen
es 
an never take pla
e.

� Spare (SP) gate: Y = SP (EAct1, Esp1, Esp2, ..., EspN ); Y is true i� the a
tive event

EAct1 and all spares {Esp1, Esp2, ..., EspN} have failed, otherwise is false. Spares may

be in any of the following states: stand-by, working or failed. Spares 
an fail in

working and stand-by states: λActj is the failure rate of the spare that is in working

state, αActjλActj is its failure rate in the dormant state (
f. Figure 2.17 (d)).

Figure 2.17: Dynami
 Fault Tree Symbols

DFT models 
an be solved analyti
ally or via simulation [Chia

hio11℄. To solve DFT

models analyti
ally it is ne
essary to transform the DFT model into its equivalent

sto
hasti
 model. If basi
 events are 
hara
terized by the exponential distribution,

the DFT model 
an be mapped to a Continuous Time Markov Chain (CTMC) dire
tly

and solve it analyti
ally by using di�erential equations. Other alternatives to solve a
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DFT model address:

� Generalized Sto
hasti
 Petri Nets (GSPN) [Bobbio04℄ [Codetta-Raiteri05℄: Dy-

nami
 Repairable Parametri
 Fault Tree (DRPFT) approa
h allows a 
ompa
t

representation of the system in
luding repairable basi
 events. It enables folding

identi
al sub-trees in a single parametri
 sub-tree (
f. Figure 2.18). System's unre-

liability is obtained by solving the Sto
hasti
 Well Formed Net model [Bobbio04℄

or through the evaluation of GSPN models [Codetta-Raiteri05℄. The approa
h

relies on exponential failure/repair distributions.

� Dynami
 Bayesian networks [Montani08; Portinale10℄: avoids the

state-explosion problem by transforming the DFT model into a

Dynami
 Bayesian Networks (DBN) model. DBN is a sto
hasti
 transition

model fa
tored over a number of random variables. Dis
rete time is used to


ope with the high 
omputational e�ort arising from exa
t time-
ontinuous


al
ulations. It supports the analysis of repairable events and 
omponents

through repair box gates [Portinale10℄.

� Input/Output intera
tive Markov 
hains [Arnold13℄: provides a 
ompa
t repre-

sentation of the system and it supports exponential and phase-type distributions.

The I/O intera
tive Markov 
hain is a 
ompositional CTMC and it redu
es the

�nal state-spa
e. It is analysed through sto
hasti
 model 
he
king and repairable

basi
 events are not addressed (
f. Figure 2.19).

� Stru
ture fun
tion [Merle14℄: presents an algebrai
 framework to extra
t the stru
-

ture fun
tion of a DFT and 
al
ulate the exa
t solution of systems independent of

the failure distribution. The approa
h requires high 
omputational e�ort even for

small systems, it is not yet implemented, and it is unable to deal with repairable

basi
 events (see Appendix C.5 for a example).

For 
omplex systems the tra
eability from the DFT model to the state-based analysis

model and vi
e-versa is di�
ult to follow due to the �at 
hara
teristi
s of the DFT

model and its state-based analysis model. [Bobbio04; Codetta-Raiteri05℄ presented the

DRPFT approa
h to deal with the manageability issue of representing several repli
as

in a Fault Tree by taking advantage of symmetri
 DFT 
on�gurations. Sub-trees linked

with the same gates and same failure rates are folded and parametrized (
f. Figure 2.18).

However, its underlying analysis model (GSPN) is a �at state-spa
e model. Furthermore,
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if the same subsystem does not fail with the same logi
 it is not parametrizable (e.g.,

see Figure C.4).

Figure 2.18: Dynami
 Parametri
 Fault Tree Example

[Arnold13℄ over
ome the �atness of the dependability analysis model through 
ompo-

sitional Markov 
hain. Although the analysis model is 
ompositional, the DFT model

su�ers from �atness. When the size of state-spa
e model or DFT model in
reases, it

be
omes error prone and di�
ult to maintain (see Appendix C).

Figure 2.19: Composition Aggregation Method of [Arnold13℄

Other alternatives to analyse DFT models are based on simulations:

� [Rao09℄ and [Manno12b℄ implement Monte Carlo simulations to address any dis-

tribution of basi
 events. To this end, multiple 
omputations are performed over
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the DFT model 
hara
terized with the failure logi
 of the DFT gates and random

variables representing the failure times of basi
 events.

� [Manno14
℄ introdu
ed a dis
rete event simulation approa
h based on Adaptive

Transition System paradigm [Manno12a℄. This promising approa
h is able to


apture any distribution as well as repair 
hara
terizations of basi
 events.

Simulation approa
hes have been su

essfully applied to address size, repair behaviour

and statisti
al distribution assumptions/limitations. Their drawba
k 
omes from the

required 
al
ulation time, whi
h in
reases with the required a

ura
y of the results. See

Chapter 4, Subse
tion 4.2.4 for further details and implementation of Dynami
 Fault

Trees using Monte Carlo simulations.

Reliability Blo
k Diagram extensions: following the way of DFTs, an approa
h

emerged based on dynami
 RBDs.

Dynami
 RBDs (DRBDs) [Distefano07; Distefano09℄ model failures and repairs of 
om-

ponents through the spe
i�
ation of state ma
hines for ea
h 
omponent and inter-


omponent 
ause/e�e
t dependen
ies. To analyse DRBD models quantitatively, these

are transformed into GSPN models and its underlying CTMC is obtained and solved

using the WebSPN tool [Pulia�to14℄. Another solution to solve DRBD models was

presented in [Robidoux10℄ through the 
onversion of DRBDs into Coloured Petri Nets.

However, to the best of our knowledge, an integrated modelling and analysis toolset for

DRBDs is la
king.

[Signoret13℄ presented an approa
h 
alled Reliability Blo
k Diagram driven Petri nets

(RdP) whi
h uses RBDs as an interfa
e to build large Petri nets systemati
ally. The

modular 
hara
terization of Petri nets enables the intuitive 
reation of RdP models from

prede�ned module libraries.

Aligned with these formalisms, the OpenSESAME modelling environment 
onne
ts

RBDs and state-based formalisms [Walter08℄: its input models are based on RBDs

and failure dependen
y diagrams, while 
omponent tables and repair tables are used to

indi
ate 
omponent-spe
i�
 failure/repair 
hara
teristi
s and inter-
omponent depen-

den
ies. To perform the quantitative analysis of the system, OpenSESAME models are

transformed into SPN and Sto
hasti
 Pro
ess Algebra models.

Combination of event-based and state-based approa
hes: progres-
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sion in the 
onjoint use of event-based and state-based formalisms is re-

�e
ted with Boolean logi
 Driven Markov Pro
ess (BDMP) [Bouissou07℄ and

State-Event Fault Tree (SEFT) [Kaiser07℄ formalisms.

BDMP employs stati
 FT as a stru
ture fun
tion of the system and asso
iates Markov

pro
esses (or Petri nets, if ne
essary) to ea
h leaf of the tree. Triggers are used to

in�uen
e the o

urren
es of basi
 events or gates with the failure o

urren
e of other

basi
 events or gates existing in the same FT. BDMP enables modelling the repair

behaviour of basi
 events as well as sequen
es of failure events.

However, the main limitations of BDMP 
ome from the trigger event itself: (1) the failure

of the trigger event is not taken into a

ount and (2) the trigger is able to 
onsider only

two pro
esses while in some 
ases it is ne
essary to use more pro
esses to fully des
ribe

the behaviour of the system.

SEFT formalism 
ombines FT elements with both State
harts [Harel87℄ and Markov


hains, in
reasing the expressiveness of the model. SEFT deals with fun
tional and fail-

ure behaviour, a

ounts for repeated states and events, where the events are 
hara
ter-

ized as deterministi
 and/or exponentially distributed events, and allows the automati


transformation of SEFT models into Deterministi
 and Sto
hasti
 Petri Nets (DSPN)

models for state-based analysis. Besides, the SEFT model allows modelling the system


ompositionally by linking 
omponents in a FT-like stru
ture while managing system's


omplexity (refer to Appendix C for a SEFT model example and more details).

Dynami
 Fault Tree is a well-known mature approa
h for the evaluation of the system's

dynami
s. It has been widely implemented over the last years (see Appendix B Table

B.2 for the tool support) and di�erent extensions have been performed: due to the

properties of the CTMCs, the use of Dynami
 Fault Trees has been limited to model

events 
hara
terized with exponential distributions. This fa
t have awakened the s
ien-

ti�
 
ommunity to develop alternative analysis formalisms so that it is possible to model

any failure distributions (e.g., [Rao09℄,[Manno12b℄, [Manno14
℄, [Merle14℄). Moreover,

DFTs were originally 
on
eived to evaluate the unreliability of systems, but there have

been many extensions in order to in
lude repairable basi
 events and evaluate systems

unavailability, e.g., repairable DFT [Manno14
℄, BDMP [Bouissou07℄, SEFT [Kaiser07℄,

Radyban [Portinale10℄, DRBD [Distefano09℄.

As a result of the 
ombination of state-based and event-based approa
hes to solve Dy-
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nami
 Fault Tree models, spe
i�
 problems of state-based approa
hes have emerged

among Dynami
 Fault Tree solutions whi
h use state-based models for its resolution.

The main impediments are the state-explosion problem and di�
ulty to understand the

analysis model intuitively.

To improve the manageability, maintainability and tra
eability of these models,


omponent-based 
hara
terizations have been suggested [Kaiser07℄. Although limited

in modelling 
apabilities, the 
ompositional and transformational features of the SEFT

approa
h, provide an adequate abstra
tion of the system stru
ture and behaviour. Sin
e

the underlying analysis model of SEFTs is based on Deterministi
 and Sto
hasti
 Petri

Nets, it may su�er from manageability issues (�atness) and it is limited to deterministi


and exponentially distributed events.

Although the 
omponent-based 
hara
terization have been applied to SEFT models, due

to the SEFT model's limitations there is room to extend the 
ompositional paradigm

towards the dynami
 analysis of systems. Indeed, the 
omponent-based 
hara
terization

has not been integrated with Dynami
 Fault Tree models yet (see Chapter 4).

Compositional Failure Propagation Analysis Approa
hes

The main obje
tive of Compositional Failure Propagation (CFP) approa
hes is to avoid

unexpe
ted 
onsequen
es resulting from the failure generation, propagation, and trans-

formation of 
omponents. Common fa
tors for CFP approa
hes are:

� Chara
terization of the system ar
hite
tures by design 
omponents.

� Annotation of the failure behaviour of ea
h of 
omponent 
onstituting the system.

� System failure analysis based on inter-
omponents in�uen
es.

CFP approa
hes 
hara
terise the system as 
omponent-wise developed FT-like mod-

els linked with a 
ausality 
hain. System ar
hite
tural spe
i�
ations and subsequent

dependability analyses of CFP approa
hes rely on a hierar
hi
al system model. This

model 
omprises 
omponents 
omposed from sub
omponents spe
ifying system stru
-

ture and/or behaviour. CFP approa
hes analyse the system failure behaviour through


hara
terizations of individual 
omponents, whi
h lead to a
hieving a manageable failure

analysis pro
edure.

40



Failure Propagation and Transformation Notation (FPTN) [Fenelon93℄,

Hierar
hi
ally Performed Hazard Origin and Propagation Studies (HiP-HOPS)

[Papadopoulos11℄ and Component Fault Tree (CFT) [Kaiser03℄ are the prin
ipal

CFP approa
hes. Their main di�eren
e is in the failure annotations of 
omponents,

whi
h spe
ify in
oming, outgoing and internal failures to ea
h 
omponent: (1) FPTN

uses logi
al equations, (2) HiP-HOPS makes annotations using Interfa
e Fo
used

Failure Mode and E�e
t Analysis (FMEA) (IF-FMEA) tables and (3) CFT asso
iates

to ea
h 
omponent individual FTs. Subsequently, the 
onne
tions between system


omponents determines the failure �ow of the system, linking related failure annotations

of ea
h 
omponent.

Con
erning the di�erent 
ontributions of CFP approa
hes, FPTN �rst addressed the

integration of system-level dedu
tive FTA (from known e�e
ts to unknown 
auses) with


omponent-level indu
tive FMEA (from known 
auses to unknown e�e
ts).

HiP-HOPS integrates design and dependability analysis 
on
epts within a hierar
hi
al

system model. However, instead of ex
lusively linking fun
tional 
omponents with their

failure propagations like in FPTN, �rst the hierar
hi
al system model is spe
i�ed and

then, 
ompositional failure annotations are added to ea
h 
omponent by means of IF-

FMEA annotations. These annotations des
ribe the failure propagation of 
omponent

in terms of outgoing failures spe
i�ed as logi
al 
ombinations of in
oming and internal

failures (
f. Figure 2.20).

From the IF-FMEA annotations shown in Figure 2.20, the outgoing failures at the port

out_1 will be spe
i�ed as follows:

omission-out_1 = omission-in_1 AND omission-in_2 OR Stu
k at 0

On
e all the outgoing failures of all the ports are 
hara
terized, a FT synthesis algorithm

analyses the propagation of failures between 
onne
ted 
omponents. Traversing the

hierar
hi
al system model, while parsing systemati
ally the IF-FMEA annotations of

its 
onstituent 
omponents, allows the extra
tion of the system FT and FMEA models.

CFTs are a model-based extension of FTA models. The 
omponent FTs 
an be 
ombined

and reused to systemati
ally obtain the FT for any failure without having to 
reate and

annotate a FT for ea
h failure. In order to integrate analysis and design 
on
epts, it has
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Figure 2.20: Hierar
hi
al Stru
ture and CFP Annotations in HiP-HOPS

been extended in [Domis09b℄ resulting in the Safe Component Model approa
h. The

approa
h separates 
omponents' fun
tional/failure spe
i�
ation and realization views

and through the integration of the failure propagation and hierar
hi
al abstra
tion, Safe

Component Model allows obtaining a hierar
hi
al 
omponent based abstra
tion of CFTs.

They all have been extended to 
ope with o

urren
es of temporal events in�uen
ed by

the DFT approa
h. Temporal extensions for FPTN [Niu11℄ and HiP-HOPS [Walker09℄


on
entrate on non-repairable systems by examining the order of events to identify

sequen
e of events leading to the system failure, i.e., minimal 
ut-sequen
e sets.

Namely, the temporal extension of HiP-HOPS is based on the Pandora approa
h

[Walker09℄: it enables the dynami
 qualitative analysis of event sequen
es through


ut-sequen
e sets. Temporal Fault Tree (TFT) gates are de�ned to model 
omplex

time-dependent 
ir
umstan
es. For the quantitative analysis, algebrai
 models and

Monte Carlo simulations are used with the TFT gates: priority OR - output o

urs

if: the �rst input o

urs before the se
ond input and the se
ond input is not needed

to o

ur [Edifor12℄; simultaneous AND - all input events o

ur at the same time; and

parametrized SAND - output o

urs if two events happen within a given interval of time

[Edifor13℄.
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Within the approa
hes extended to deal with temporal events, there have been ap-

proa
hes whi
h have been fo
used on 
onne
ting CFP approa
hes with state-based

approa
hes: integration of CFT 
on
epts with state-based te
hniques resulted in the

SEFT formalism, whi
h is able to handle availability and maintainability properties of

repairable systems. Besides, HiP-HOPS has been 
onne
ted with state ma
hine spe
-

i�
ations to generate (temporal) Fault Trees from state ma
hine models [Mahmud12℄.

From individual state ma
hines, Pandora failure expressions are generated transforming


omponent-based state ma
hines into TFT expressions of the system failures.

Other interesting extensions in
lude me
hanisms to automate and reuse analysis 
on-


epts: Failure Propagation and Transformation Cal
ulus (FPTC) [Paige08a℄ approa
h

adds the 
hara
terization of the nominal behaviour to FPTN models and generalizes

the FPTN equations to improve the manageability and analysability. Moreover, an

algorithm is implemented to 
ope with 
y
li
 dependen
ies of feedba
k stru
tures. In

[Wolforth10℄, general failure logi
 annotation patterns were de�ned for HiP-HOPS. Sim-

ilarly, the CFP approa
h presented by [Priesterjahn11a℄ emphasizes the reuse of failure

propagation properties spe
i�ed at the port level of 
omponents. These spe
i�
ations

fo
us on the physi
al properties of di�erent types of �ows, whi
h allow reusing failure

behaviour patterns for fun
tional ar
hite
tures.

The evolution of CFP approa
hes fo
us on reusability, automation and transformation

properties. Sin
e the annotations of the failure behaviour of 
omponents depend upon

designers experien
e, reusing failure annotations leads to redu
ing the error proneness.

Based on the knowledge that di�erent dependability analyses have to be performed

when designing a system, de�nition of a unique 
onsistent model 
overing all analyses

would bene�t these approa
hes. This is why re
ent publi
ations in this �eld 
entre on

integrating existing approa
hes (see next Subse
tion). Interested readers please refer to

Appendix B Table B.3 to see the tool support of the CFP approa
hes.

Combinations of dynami
 dependability evaluation models able to model system dy-

nami
s and the 
ompositional failure propagation approa
hes would result in a approa
h

whi
h is able to model repairable systems 
ompositionally a

ording to any failure distri-

bution. Thus, motivated by this issue, a 
omponent-based approa
h for DFTs is de�ned

in Chapter 4: Component Dynami
 Fault Trees (CDFT).
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Model-Based Transformational Approa
hes

Designing a dependable system presents many 
hallenges throughout the development

phase - from system spe
i�
ation to system validation and veri�
ation. This pro
ess is

further 
ompli
ated due to the in
reasing 
omplexity of the 
urrent systems, whi
h use

many and di�erent 
omponents. Model-based design approa
hes provide me
hanisms

to manage this 
omplexity e�e
tively.

Model-based transformational approa
hes were proposed to bridge the gap between

design and analysis a
tivities. Their main goal is to 
onstru
t target dependability

analysis models (semi-)automati
ally from sour
e design models. The modelling pro
ess

of transformational approa
hes is 
onstituted of the following main a
tivities:

1. The pro
ess starts from a 
ompositional design des
ription by using 
omputer

s
ien
e modelling te
hniques.

2. The failure behaviour is spe
i�ed either by extending expli
itly the design model

or developing a separate model, whi
h is allo
ated to the design model - extended

design model.

3. Transformation rules and algorithms extra
t dependability analysis models from

the extended design model.

Ar
hite
tural Des
ription Languages (ADLs) provide an adequate ab-

stra
tion to manage the system 
omplexity [Medvidovi
00℄: Simulink

[MathWorks14℄, Ar
hite
ture Analysis and Design Language (AADL) [Feiler07℄ and

Uni�ed Modelling Language (UML) [OMG14b℄ have been used for both ar
hite
tural

and failure spe
i�
ation. UML is a widely used modelling language, whi
h has been

extended for dependability analyses following model-driven ar
hite
ture 
on
epts

[OMG03℄. Namely, pro�les allow extending and 
ustomizing modelling me
hanisms to

the dependability domain [Fuentes04℄.

Lately, a wide variety of independently developed extensions and pro�les have been

proposed for dependability analysis [Bernardi12℄. However, some generally appli
able

metamodel is la
king. In an e�ort to provide a 
onsistent pro�le CHESS ML emerged

[Monte

hi11℄. CHESS ML provides all ne
essary me
hanisms to model dependable

systems and extra
t either event-based (FMECA, FPTC) or state-based (SPN) models.
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Many analysis approa
hes have been shifted towards the model-based transformational

paradigm. Translations from high-level ar
hite
tural des
ription languages to well es-

tablished 
ompositional failure propagation analysis te
hniques, enable an early depend-

ability analysis and allow undertaking timely design de
isions, e.g.:

� The toolset for FPTC approa
h [Paige08a℄ relies on a generi
 metamodel in order

to support transformations from SysML and AADL models.

� [Adler10a℄ developed a metamodel to extra
t CFT models from fun
tional

ar
hite
ture models spe
i�ed in UML. This pro
ess permits the generation of

reusable CFT models 
onsistent with the design model.

� In the same line, integration of HiP-HOPS model with EAST-ADL2 automotive

UML pro�le is presented in [Biehl10℄.

AADL 
aptures the system ar
hite
tural model in terms of 
omponents and their inter-

a
tions des
ribing fun
tional, mapping and timing properties. The 
ore language 
an

be extended to meet spe
i�
 requirements with annex libraries. Behaviour and error

model annexes are provided with the tool. The error annex links system ar
hite
ture


omponents to their failure behaviour spe
i�
ation making possible the analysis of the

dependability attributes of the system. It has been used for event-based (FT) [Joshi07℄

and state-based (GSPN) [Rugina07℄ analysis.

AltaRi
a [Arnold99; Batteux13℄ is a dependability language, whi
h enables des
ribing

the behaviour of systems when faults o

ur. The model is 
omposed of several 
om-

ponents linked together representing an automaton of all possible behaviour s
enarios,

in
luding those 
ases when re
on�gurations o

ur due to the o

urren
e of a failure

[Romain07℄. It is possible to pro
ess su
h models by other tools for model-
he
king,

generation of FTs [Bieber02℄, Markov Chain generation, Petri Nets generation, or even

for the generation of Boolean-Driven Markov Pro
ess models [Labri14℄.

[Riedl12℄ presented a language for the spe
i�
ation of re
on�gurable and dependable

systems 
alled LARES. It expresses system's fault tolerant behaviour using a generi


language in whi
h any kind of dis
rete-event sto
hasti
 system 
an be spe
i�ed. It

is based on fully automated model transformations to measure systems dependability.

Namely, transformations into TimeNET [TU Berlin07℄ and CASPA [Riedl08℄ tools are


arried out in order to solve state-based sto
hasti
 Petri nets and sto
hasti
 pro
ess
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algebra models respe
tively.

[Cressent11℄ de�ned a method for RAMS analysis 
entred on SysML [OMG14a℄ from

where a FMEA model is dedu
ed. SysML diagrams de�ne a fun
tional model 
onne
ted

to a dysfun
tional database enabling the identi�
ation of failure modes. This database


ontains the link between system ar
hite
ture and failure behaviour giving the key for

FMEA extra
tion. Further, the methodology for dependability assessment is extended

by using AltaRi
a, AADL and Simulink models. The approa
h addresses reliability

analysis, timing analysis, and simulation of the e�e
ts of faults respe
tively.

De�nition of a model for the extra
tion of all ne
essary formalisms for a 
omplete/ex-

haustive dependability analysis is the 
ommon goal for the approa
hes in
luded in this

se
tion. Inter
onne
tions between di�erent formalisms in order to take advantage of the

strengths of ea
h ADL, allow analysing dependability properties a

urately. AltaRi
a

and AADL 
over adequately the analysis of reliability, availability and maintainability

attributes. Extra
tion of the main CFP approa
hes from ADLs should help to analyse


omprehensively system safety properties. Moreover, Simulink model simulations allow

evaluating the e�e
ts of failure and repair events in the system. Thereby, integrations

between language spe
i�
 models like in [Cressent11℄ helps evaluating a

urately all de-

pendability aspe
ts of a system. The a

eptan
e of the transformational approa
hes

depends on the availability of tool-sets 
apable of performing (automati
) transforma-

tions. Interested readers refer to Appendix B Table B.4 to see the tool-support of the

transformational approa
hes.

These approa
hes lead to adopting trade-o� de
isions between dependability design and

analysis pro
esses. On one hand, the automation and reuse of analysis te
hniques in a

manageable way makes it a worthwhile approa
h for design purposes. The impa
t of

design 
hanges on dependability attributes are analysed systemati
ally. On the other

hand, from purist's point of view of 
lassi
al analysis te
hniques, the automation pro
ess

removes the ability of these te
hniques to identify and analyse hazards or malfun
tions

in a 
omprehensive and stru
tured way.

Motivated by the la
k of model-based solutions to identify heterogeneous redundan
ies

systemati
ally and evaluate their in�uen
e of system's dependability level automati
ally,

in [Aizpurua13a℄ we presented a model-based solution to evaluate the failure probability

of systems whi
h use heterogeneous redundan
ies systemati
ally.
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Interested readers refer to Appendix B Table B.1 to see a 
lassi�
ation of the analysed

hybrid approa
hes based on the addressed limitations displayed in Table 2.5.

2.3.2 Opportunity Analysis

In order to 
lassify (dynami
) Fault Tree - related approa
hes used in this se
tion we

will take into a

ount: (1) their 
apability to model dynami
 system 
on�gurations; (2)

their possibility to 
hara
terize system's failure behaviour using the 
omponent-based

paradigm; (3) their possibility to 
hara
terize the repair behaviour of the basi
 events

of the system; and (4) their possibility to model any failure/repair distributions (
f.

Table 2.6). Using a illustrative example, the model of ea
h approa
h has been 
reated

in Appendix C in order to highlight their main 
hara
teristi
.

Table 2.6: Addressed Chara
teristi
s by the Analysed Approa
hes

Approa
h Dynami


Component

Based

Repair

Any

Distribution

Stati
 FT [Vesely02℄ (see Se
. C.1) X X X X

CFT [Kaiser03℄ (see Se
. C.2) X X X X

HiP-HOPS [Papadopoulos11℄

(see Se
. C.3)

X X X X

Dynami
 FT [Manno14b℄ (see Se
. C.4)
X X X X

Stru
ture Fun
tion [Merle14℄

(see Se
. C.5)

X X X X

BDMP [Bouissou07℄ (see Se
. C.6) X X X X

SEFT [Kaiser07℄ (see Se
. C.7) X T:X; A:X; X
only

exponential

T: Top model

A: Top model's underlying Analysis model

The approa
hes displayed in the Table 2.6 
an be 
lassi�ed a

ording to their 
apability

of analysing: (1) stati
 
on�guration and non-repairable basi
 events; (2) stati
 
on�g-

uration and repairable basi
 events; (3) dynami
 
on�guration and non-repairable basi


events; and (4) dynami
 
on�guration and repairable basi
 events.
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To 
reate an a

urate and maintainable dependability evaluation model, we �nd ne
es-

sary the following 
hara
teristi
s:

� Component-based modelling and reuse of 
omponents.

� Repair 
hara
terization of basi
 events and 
omponents.

� Any failure and repair distribution of basi
 events and 
omponents.

From the literature analysis, there exist many di�erent alternatives to address some of

these 
hara
teristi
s. However, to the best of our knowledge there is no approa
h whi
h

integrates all these 
hara
teristi
s. Therefore the integration of the Dynami
 Fault Tree

paradigm with the Component Fault Trees is deemed an interesting approa
h, so that it

is possible to take the best of both worlds. In Chapter 4 we will introdu
e the 
on
ept

of Component Dynami
 Fault Trees addressing all the aforementioned 
hara
teristi
s.

In Chapter 5 we will add 
omplex repair strategies so that we need to rely on more

powerful formalisms.

2.4 Design of Dependable Systems: Trade-O� Be-

tween Dependability & Cost

Generally, dependability design de
isions and obje
tives are related to trade-o� de
isions

between system dependability attributes and 
ost. Dependability requirements often


on�i
t with one another, e.g., safety-availability 
ompromise when a faults leads the

system to a safe shut-down in order to prevent it from propagating. The time at whi
h

design de
isions are taken determines the 
ost that the design pro
ess 
an in
ur.

Designing a dependable system within 
onsidered requirements requires a pro
ess to

mat
h and tune 
ombination of ar
hite
tural 
omponents so as to �nd an optimal solu-

tion satisfying design 
onstraints. There are other approa
hes 
on
entrated on the design

of dependable systems under the 
orre
t-by-
onstru
tion paradigm. For instan
e, the

approa
h presented in [Lopatkin11℄ 
reates a formal system spe
i�
ation preserving the


orre
tness through gradual re�nements of the system design model. However, instead

of addressing formal 
orre
t-by-
onstru
tion design approa
hes, we will overview those

approa
hes whi
h are aimed at 
hara
terizing at design time the impli
ations of design
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de
isions on dependability and 
ost.

More spe
i�
ally, we group dependable design approa
hes by looking at how system

re
overy strategies are implemented. For the design of dependable systems, there exist

alternative re
overy strategies that add redundan
ies to the system design in order to

avoid single points of failure and thus, provide fault toleran
e (
f. Subse
tion 2.2.1).

So far, the expli
it repli
ation of hardware and software resour
es has been su

essfully

applied and it is a feasible solution to re
over from failures. Interestingly, in some


ases, there exist 
ost-e�e
tive solutions that make the repair possible by reusing already

existing hardware resour
es. A

ordingly, we group in Subse
tion 2.4.1 those approa
hes

that repli
ate the nominal fun
tionality by aggregating additional hardware resour
es,

i.e., homogeneous redundan
ies and on the other side, in Subse
tion 2.4.2, we group those

approa
hes whi
h are aimed at reusing hardware 
omponents to provide a 
ompatible

fun
tionality and redu
e hardware 
osts, i.e., heterogeneous redundan
ies.

2.4.1 Design Approa
hes using Homogeneous Redundan
ies

The prin
ipal issue addressed by the approa
hes grouped in this subse
tion is the eval-

uation of the e�e
t of design 
hoi
es (e.g., robustness level of 
omponents, redundan
y


on�gurations) on dependability and 
ost.

Methodology for designing distributed 
ontrol systems by [Cau�riez04℄

[Cau�riez13℄ and [Clarhaut09℄ fo
used on designing a dependable system based on a

design methodology presented in [Cau�riez04℄. The main fo
us of this methodology

relies on the early and systemati
 
hara
terization of dependability 
riteria during the

system design a
tivities (
f. Figure 2.21).

The approa
h 
omprehends three types of ar
hite
tures: fun
tional, equipment, and op-

erational ar
hite
tures. As Figure 2.21 des
ribes, the design pro
ess is 
hara
terized as

follows: (1) it starts from the 
hara
terization of fun
tional and equipment ar
hite
tures

by addressing fun
tional and dependability 
riteria; (2) the allo
ation of the fun
tional

ar
hite
ture onto the equipment ar
hite
ture is evaluated in relation to dependability;

(3) as a result, the operational ar
hite
ture is produ
ed, whi
h 
ould require re
onsid-
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Figure 2.21: Methodology for Designing Distributed Control Systems [Cau�riez04℄

ering fun
tional and/or equipment de
isions in order to obtain a validated operational

ar
hite
ture with respe
t to dependability requirements.

Safe-SADT methodology by [Cau�riez13℄

The Safe-SADT (Stru
tured Analysis and Design Te
hnique) methodology 
on
entrates

on the analysis of repairable ar
hite
tures by evaluating how the use of alternative hard-

ware 
omponents a�e
ts system fun
tionality and dependability [Cau�riez13℄ . To do so,

they 
hara
terize system-level fun
tions in a top-down manner until lowest level subfun
-

tions are rea
hed. At the bottom layer, failure and repair rates of hardware 
omponents

permit analysing the performan
e of the system's top layer (reliability and availabil-

ity) using Monte Carlo simulations. In this way, a stru
tural fun
tion is 
hara
terized,

whi
h links fun
tions with hardware resour
es and allows evaluating alternative opera-

tional modes by asso
iating di�erent subfun
tions to perform the system-level fun
tion.

The overall design methodology for modelling and analysing alternative ar
hite
tural

design 
hoi
es has been integrated within a design tool.

Dependable design methodology by [Clarhaut09℄

[Clarhaut09℄ des
ribed a design approa
h over
oming the stati
-logi
 limitation of event-

based analysis te
hniques by identifying sequential 
omponent-wise 
ontributions to

system-level failures. During the design pro
ess, a fun
tional hierar
hi
al tree model
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hara
terizes dependen
ies between fun
tions and hardware resour
es. This model a
-


ounts for alternative ar
hite
tures to perform the modelled 
ontrol fun
tions. Subse-

quently, the Improved Multi Fault Tree (IFT) is 
onstru
ted 
hara
terizing sequential

failure relationships between Failure Modes (FM) of 
omponents and system fun
tions

designated as dreaded events.

As Figure 2.22 shows, the stru
ture of the design methodology revolves around the 
har-

a
terization, analysis, and optimization of system ar
hite
tures so as to adopt optimal

design de
isions regarding dependability and 
ost. The IFT determines the dependabil-

ity level of the overall ar
hite
ture by weighting the 
ontribution of ea
h 
omponent to

the system-level failures. Ar
hite
tural design 
hoi
es 
over a
tive and passive redundan-


ies. The 
ost asso
iated with ea
h hardware 
omponent enables progressing between

alternative ar
hite
tures toward an optimal ar
hite
ture maximizing dependability and

minimizing the 
ost.

Equipment

Architecture

Functional

Model

Figure 2.22: Design Approa
h of [Clarhaut09℄

Optimal dependable design ar
hite
tures by [Ada
hi11℄

[Ada
hi11℄ extended the HiP-HOPS approa
h with re
overy strategies to design opti-

mal ar
hite
tures redu
ing 
ost and in
reasing dependability. The re
overy strategies

are formally represented using patterns. These patterns 
hara
terize the potential to

dete
t, mitigate, and blo
k a�e
ting 
omponent failures whi
h are previously identi-

�ed with HiP-HOPS and analysed by means of Fault Tree Analysis (FTA) and FMEA.

Finally, starting from an abstra
t ar
hite
ture, re
overy strategies are introdu
ed with-

out violating user 
onstraints and an optimization algorithm allows 
onverging through

dependability and 
ost requirements.
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Adaptive dependable system design by [Perez14℄

More re
ent approa
hes 
ontinue assessing the in�uen
e of homogeneous redundan
ies

from di�erent but 
losely related points of view. For instan
e, the work presented

in [Perez14℄, evaluates the in�uen
e of the use of adaptive 
omponents in the system

availability and 
ost, 
al
ulating the availability through GSPN.

All the 
overed approa
hes in this subse
tion aim at in
reasing system dependability

through the expli
it repli
ation of nominal 
omponents. This design de
ision implies a


ost in
rease. Consequently, this de
ision needs to be justi�ed through an exhaustive

and adequate analysis of how the system design meets fun
tional and dependability

requirements.

2.4.2 Design Approa
hes using Heterogeneous Redundan
ies

One of the key properties of the systems whi
h exer
ise heterogeneous redundan
ies is the

ability to su

essfully a

ommodate 
hanges in 
ase of failure o

urren
es. Consequently,

the approa
hes 
overed in this subse
tion address dependability issues and adaptation


apabilities. A

ordingly, they are grouped as adaptive dependable design approa
hes.

Fun
tional alternatives by [Shelton04℄

Robust Self-Con�guring Embedded Systems (RoSES)

4

proje
t revolved around the idea

to build robust and adaptive embedded systems. [Shelton04℄ �rst worked on the 
on-


ept of heterogeneous redundan
ies by means of fun
tional alternative strategies. These

strategies allow to 
ompensate for 
omponent failures by 
hanging the system fun
tion-

ality. The approa
h models alternative system 
on�gurations and assigns them a relative

utility value weighing their 
ontribution to the system performan
e and dependability.

From this model, the overall utility value of the system is 
al
ulated whi
h enables the

evaluation and 
omparison of design 
hoi
es as to where allo
ate resour
es for fun
tional

alternatives or redundan
y.

4

http://www.e
e.
mu.edu/∼koopman/roses/
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Based on ea
h 
on�guration's assigned utility values and system's utility fun
tion, al-

ternative 
on�gurations are 
ompared. Although this 
hara
terization makes it possible

to evaluate how 
omponent failures a�e
t system utility, the approa
h has assumption-

s/limitations to be addressed: (1) there is no 
al
ulation of the system's failure probabil-

ity (dependability analysis te
hniques are not used); (2) there is no 
onsideration of the

in�uen
e of health management (fault dete
tion, re
on�guration) and 
ommuni
ation

me
hanisms on the system operation and dependability; and (3) the identi�
ation of

heterogeneous redundan
ies is performed 
ase-by-
ase basis.

Shared redundan
y by [Wyso
ki04℄

[Wyso
ki04℄ addressed the same design strategy under the shared redundan
y 
on
ept.

They 
on
entrated on the reuse of pro
essing units through the strategi
 distribution of

software modules. Consequently, given the failure o

urren
e of a software 
omponent,

it is possible to still 
ontinue operating through the re
on�guration of 
ommuni
ation

routes. To evaluate the reliability and safety of the alternative ar
hite
tures, �rst a FTA

is 
arried out. This analysis permits extra
ting minimal 
ombination of events whi
h

leads the system to failure (minimal 
ut-sets). Additionally, this information is used

as input for further analysis through Design of Experiments (DOE) to 
al
ulate system


ost and failure probabilities. Based on the same design 
on
ept [Galdun08℄ analysed

the reliability of a networked 
ontrol system stru
ture using Petri Nets (PN).

The approa
h 
on
entrates on the reuse of pro
essing units through strategi
al distri-

bution of software modules among pro
essing units. However, there exist some points

worth 
onsidering: (1) there is no 
onsideration of the possible 
ompatible fun
tional-

ities emerging from sensors, a
tuators and even 
ommuni
ation me
hanisms; (2) fault

dete
tion and re
on�guration me
hanisms are assumed ideal; and (3) the dependabil-

ity analysis models are FTA (without dynami
 properties) and Petri nets (�at models

limited to exponential failure rates).

ARDEA framework by [Rawashdeh06℄

[Rawashdeh06℄ presented the ARDEA (Automati
ally Re
on�gurable Distributed Em-

bedded Ar
hite
tures) re
on�guration framework with the goal of designing re
on�g-
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urable ar
hite
tures for fault tolerant embedded systems. The approa
h is based on

re
on�gurations of pro
essing units to a
hieve gra
eful degradation and 
ope with hard-

ware failures. A gra
efully degrading system tolerates system failures by providing the

same or equivalent fun
tionality with the remaining system 
omponents. Dependen
y

graphs are used to model the fun
tional information �ow by 
onsidering alternative im-

plementations. A 
entralized system manager uses dependen
y graphs and a hardware

resour
e list to �nd a viable mapping of software on the available pro
essing units. It

de
ides when to (un-)s
hedule software modules by moving obje
t 
ode among available

pro
essing units without ex
eeding pro
essor time and bandwidth.

ARDEA provides an adequate framework for the partial implementation our resear
h

ideas. However, (1) they do not perform dependability analysis of the alternative design

de
isions; (2) heterogeneous redundan
ies are limited to pro
essing units; (3) hetero-

geneous redundan
ies are identi�ed in a ad-ho
 manner; and (4) they fo
us only on


entralised re
on�guration implementations.

Impli
it redundan
ies by [Trapp07℄

In the MARS proje
t, [Trapp07℄ proposed a 
omponent based modelling and analysis

method to exploit impli
it redundan
ies so as to rea
t to system failures by reusing

hardware resour
es. They provide methodologi
al support for modelling and gathering

system 
on�gurations. Moreover, reasonable system 
on�gurations are eli
ited from a

set of possible 
andidates. The adaptive behaviour of the system is modelled based on

quality types, whi
h drive system's gra
eful degradation possibilities.

Ea
h system 
omponent operates under di�erent 
on�gurations and this is determined

by quality attributes whi
h are atta
hed to ea
h 
omponent's every I/O port. Con�g-

uration a
tivation rules are de�ned over these ports based on the needed and provided

quality attributes (
f. Figure 2.23).

For ea
h 
omponent in the system its possible 
on�guration variants are de�ned. Ea
h

port has its own 
onstraints de�ned as a
tivation pre
onditions and propagation post-


onditions. This 
hara
terization determines 
ompatible 
omponents, based on quality

attributes. As a result, system 
on�gurations are extra
ted based on a expli
itly de�ned

adaptation behaviour.
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Figure 2.23: Example of an Adaptation Spe
i�
ation View [Adler10b℄

From this modelling paradigm (MARS modelling), di�erent analyses have been 
arried

out. In [Adler08℄, transformations from MARS models into hybrid-Component Fault

Trees (hybrid-CFTs) were performed in order to 
al
ulate 
on�guration probabilities (
f.

Subse
tion 2.3.1). Hybrid-CFTs extend CFTs by using Markov 
hains models (en
losed

in a 
omponent) so that it is possible to 
hara
terize the repair behaviour of the system.

In order to ensure the 
ausality of the re
on�guration sequen
es and safety-related prop-

erties, veri�
ation a
tivities have been 
arried out in [Adler10b℄. Last but not least,

methodologi
al support for identifying an adaptation model meeting availability-
ost

trade-o� is addressed in [Adler10
℄.

Despite addressing our similar design goals, this approa
h has assumptions and there are

di�eren
es with respe
t to our methodology: (1) all the approa
hes within MARS assume

fault-free software (ideal fault dete
tion and ideal re
on�guration implementations) and

there is no 
onsideration of the in�uen
e of the 
ommuni
ation on system dependability;

(2) the model of adaptation is implemented by a 
entral runtime framework without

evaluating the feasibility of distributed re
on�guration implementations; (3) despite


onsidering the use of heterogeneous redundan
ies, the identi�
ation of heterogeneous

redundan
ies is performed in an ad-ho
 manner; (4) as for the dependability analysis,

the failure/repair 
hara
terization of hybrid-CFTs models are limited to exponential

distributions and its Markov models are limited to 
hara
terize basi
 events.

In the D3H2 methodology (
f. Chapter 3) we fo
us on addressing all these limitations

with 
onne
ted modelling and analysis a
tivities.
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Integrated Modular Avioni
s

Similar design 
on
epts are addressed in the avioni
s �eld. Namely, the Integrated

Modular Avioni
s (IMA) design paradigm de�nes robust partitioning in on-board avioni


systems so that one 
omputing module (line repla
eable unit) is able to exe
ute one or

more appli
ations of di�erent 
riti
ality levels independently. The standardised generi


hardware modules forming a network leads to looser 
oupling between hardware and

software appli
ations [Moore01℄.

SCARLETT proje
t [Bieber09℄ aims at designing re
on�gurable Integrated Modular

Avioni
s ar
hite
tures in order to mitigate the e�e
t of failures of fun
tional, fault de-

te
tion and re
on�guration implementations. On
e a permanent failure is dete
ted, the

re
on�guration supervisor pro
eeds with the following key a
tivities. Firstly, it man-

ages the modi�
ations given the 
urrent 
on�gurations and failed module. Se
ondly,

it 
he
ks the 
orre
tness of the system 
on�guration and the loaded data in the line

repla
eable unit. The 
entralized supervisor determines a suitable 
on�guration based

on a re
on�guration graph, whi
h 
ontains all possible 
on�gurations. Re
on�guration

poli
ies and real-time and resour
e 
onstraints, de�ne the set of rea
hable safe transi-

tions and states. In order to analyse the re
on�guration behaviour when failures o

ur,

a safety model leads to �nding the 
ombinations of fun
tional failures [Bieber10℄.

Based on the same 
on
epts, DIANA proje
t [Engel10℄ aims at distributing these fun
-

tionalities. This approa
h improves the availability of the re
on�guration me
hanisms

at the expense of relying on a 
omplex, resour
e 
onsuming 
ommuni
ation proto
ol.

The safety assessment of the re
on�gurable Integrated Modular Avioni
s ar
hite
tures

does 
onsider the in�uen
e of the failure of fault dete
tion and re
on�guration imple-

mentations on system operation. However, their goal is not to exploit heterogeneous

redundan
ies emerged in massively networked s
enarios, instead they are aimed at ex-

ploiting repla
eable pro
essing units and allo
ated SW units to perform re
on�gurations

e�e
tively.
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Semanti
 te
hniques for dynami
 re
on�gurations by [Hoftberger13℄

Re
ently, the use of semanti
 te
hniques for dynami
 re
on�gurations in embedded

real-time systems has been explored in [Hoftberger13℄ by means of an ontology and

algorithms that enable the runtime adaptation of these systems. The ontology de�nes

expert knowledge about the system stru
ture, relations and intera
tions between subsys-

tems. When a failure o

urs, semanti
ally equivalent servi
es are sear
hed through the

ontology. The algorithm determines if a servi
e 
an be substituted by other servi
es in

the system by exploring the ontology to �nd the required property 
on
epts. Data type,

a

ura
y, and temporal behaviour are 
ompared to 
he
k the 
ompatibility of servi
es.

Despite not addressing our target approa
h for the design pro
ess - sele
tion of 
ompo-

nents, evaluation of its in�uen
es on dependability and 
ost - it does address possible

implementation framework for the design 
on
epts treated throughout this dissertation.

The performan
e of the approa
h relies on the proposed sear
h algorithm, whi
h dire
tly

depends on the size of the ontology. For run-time determined re
on�gurations this is a


riti
al issue to be addressed.

Fault-tolerant 
ontrol & fault diagnosis approa
hes

There have been approa
hes in the fault-tolerant 
ontrol and fault diagnosis 
ommunity

aligned with the idea of reusing elements to provide additional fun
tionalities (e.g., see

[Blanke11℄ and referen
es herein). Namely, they fo
us on identifying analyti
 redun-

dan
ies systemati
ally. Proposed approa
hes in this area evaluate if it is possible to

provide the same servi
e with a 
ombination of remaining sensors, i.e., if there exists an

alternative analyti
 equation, whi
h uses di�erent set of variables (resour
es) to provide

the same (or equivalent) servi
e.

The identi�
ation of analyti
 redundan
ies is based on the stru
tural analysis: relying on

detailed mathemati
al models of the plant (system), system equations, and known and

unknown variables are related. If there exists redundant information about the system

stru
ture, i.e., if there are more 
onstraints (equations) than variables to be determined,

there may exist alternative ways to de�ne a variable (analyti
al redundan
y relations)

[Staroswie
ki89; Krysander08℄. When dealing with 
omplex systems, detailed models

are di�
ult to obtain. Thus, stru
tural analysis and graph-based analysis emerged to
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solve large 
omplex sets of equations [Staroswie
ki99℄. Analyti
al redundan
y relations

are generated from unmat
hed 
onstraints. Besides, analyti
al redundan
y relations are

used as fault dete
tion fun
tions, also known as residuals (e.g., see [Ana10; Svard10℄).

Exhaustive 
hara
terization and mathemati
al formulation of 
omplex systems is not

trivial and in some 
ases unfeasible: detailed knowledge about the system is needed to

get analyti
al redundan
y relations and therefore, fault-tolerant 
ontrol of the system.

The identi�
ation of analyti
 redundan
ies through analyti
al redundan
y relations is

feasible at subsystem level, but when 
onsidering the system as a whole, the 
omplexity

of the mathemati
al formulation in
reases due to the size of the system and its inner


omplexity. This is the rationale that led us to adopt a fun
tion-based viewpoint with

qualitative attributes, instead of the formal mathemati
al viewpoint (see Chapter 3).

Heterogeneous redundan
ies are not limited to analyti
 redundan
ies. Heterogeneous

redundan
ies in
lude 
ases in whi
h system variables are not related dire
tly, but they


an be derived using system equations and 
onstraints. In massively networked s
e-

narios, systems are 
omprised of further subsystems - a train is 
omprised of 
ars and


ompartments; or a building is 
omprised of �oors and rooms - whi
h are inter
onne
ted

using a 
ommuni
ation network.

Instead of analysing the 
onsequen
es on dependability of using alternative 
on�gura-

tions, the fo
us of the fault-tolerant 
ontrol 
ommunity has been pla
ed on �nding (1)


ontrol algorithms able to 
ontinue operating in the presen
e of failures and (2) equations

to dete
t and diagnose failed 
omponents.

Diverse redundan
ies and sensor fusion by [Flammini11℄

[Flammini11℄ introdu
ed a railway se
urity approa
h whi
h makes use of heterogeneous

redundan
ies. To this end, railway surveillan
e systems are exploited addressing hetero-

geneous data sour
es making use of diverse redundan
ies and reasoning about hetero-

geneous data (sensor fusion).

Ar
hite
ture details are presented integrating the DETECT (DE
ision Triggering

Event Composer and Tra
ker) [Flammini09℄ and SMS (Se
urity Management System)

[Flammini10℄ frameworks. SMS enables to 
olle
t the heterogeneous multi-sensor data

and store it in a database and DETECT is an s
enario-based threat dete
tion approa
h
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(expert system), whi
h provides event 
orrelation me
hanisms making possible the gen-

eration of alerts based on re
eived inputs, i.e., it is a 
entralised appli
ation of data

fusion. Alternative (diverse) sensors and intelligent 
ameras are used to improve the

dete
tion of hazards/atta
ks, e.g., to identify a 
ontaminated pla
e, Infra-red radiation

sensors or Ion Mobility spe
tros
opy dete
tors are suggested (analyti
 redundan
y).

Their viewpoint is 
lose to ours, but there are some di�eren
es worth mentioning: (1)

the use of heterogeneous redundan
ies is performed in ad-ho
 manner providing spe-


i�
 (diverse) solutions to spe
i�
 problems; (2) the main fo
us of the approa
h is on

in
reasing the probability of dete
tion of threat o

urren
es using diverse implementa-

tions; and (3) there is no overall 
al
ulation of the failure probability of the system (due

to its inner 
omponents and their in�uen
e).

Safe Software Produ
t Lines by [Jean-Pas
al13℄

In the proje
t 
alled Safe ReSA (Safe Reusable Safety Analysis and Arguments)

[Jean-Pas
al13℄ introdu
ed an approa
h 
ombining safety engineering and produ
t line

engineering dis
iplines. Software produ
t line engineering fo
uses on maximizing the

reuse through me
hanisms to model 
ommonalities and variabilities (feature modelling)

[Clements01℄. The goal of this approa
h is to apply safety engineering methods to

reusable artefa
ts emerged from produ
t line engineering. To this end, a model-based

approa
h is used to extra
t safety 
ases (eviden
es) 
overing all the phases: starting

from the de�nition of safety goals until their veri�
ation. CFTs are used as a reusable

me
hanism to analyse 
ause-e�e
t relations and Safety Con
ept Trees [Domis09a℄ to

des
ribe how a top-event is re�ned into a set of safety requirements using 
ombinatorial

gates.

Our approa
h 
an be linked with software produ
t lines paradigm be
ause we do share

the idea of reusing elements: the reuse in software produ
t lines 
on
entrates on 
reating

di�erent systems (produ
t lines) bene�ting from the shared properties among systems;

we are fo
used on the reuse of system elements (sensors, 
ontrollers, a
tuators) whi
h

already exist in the system. However, our fo
us relies on reliability engineering: we use

redundan
ies to a

ommodate 
hanges in 
ase of system failure o

urren
es and evalu-

ate the in�uen
e of alternative design de
isions on system dependability and 
ost (e.g.,


entralised/distributed re
on�guration implementations or homogeneous/heterogeneous
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redundan
ies). Making an analogy between reliability engineering and software produ
t

lines: we analyse system 
hara
teristi
s to �nd inner variabilities (heterogeneous redun-

dan
ies) or we add expli
it variabilities when ne
essary (homogeneous redundan
ies)

depending on the dependability and 
ost 
onstraints. Besides, our approa
h is limited

to networked 
ontrol systems operating in massively networked s
enarios.

2.4.3 Opportunity Analysis

In order to 
hara
terize the reviewed approa
hes within this se
tion, the following design

properties have been des
ribed in the Table 2.7:

1. Type of re
overy strategy.

2. Dependability analysis approa
h.

3. Cost evaluation.

4. Consideration of the dependability of fault dete
tion (FD), re
on�guration (R)

and 
ommuni
ation fun
tions.

5. Other tasks, e.g., optimization, veri�
ation.

Sin
e the use of heterogeneous redundan
ies requires 
onsidering system dynami
s, the

dependability analysis approa
hes des
ribed so far address the temporal behaviour

of systems either by linking event-based stati
-logi
 approa
hes with state-based for-

malisms (e.g., Hybrid-CFT) or by evaluating through approa
hes whi
h integrate the

temporal behaviour expli
itly (e.g., Monte Carlo simulations, Dynami
 Fault Tree, Petri

Nets, Dynami
 Bayesian Networks). Moreover, given the extra design 
omplexity of the

systems whi
h use heterogeneous redundan
ies, the me
hanisms whi
h help stru
turing

the analysis and reusing the models are ne
essary su
h as hierar
hi
al abstra
tions or


omponent-based design/analysis paradigms.

To obtain a predi
table system design and avoid unexpe
ted failure o

urren
es, all

the approa
hes assume design-time determined re
on�gurations. Nonetheless, it is

ne
essary to go beyond and over
ome their underlying assumptions 
on
erning the

system's 
riti
al fun
tionalities to perform re
on�gurations e�e
tively. Namely, among

all the reviewed approa
hes only [Bieber10℄ and [Ada
hi11℄ 
onsider the failure be-
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Table 2.7: Approa
hes and Addressed Design Properties

Works 1 2 3 4 5

[Cau�riez13℄

Homogeneous

Redundan
ies

Monte Carlo

simulations

HW 
ost Not Addressed

Not

Addressed

[Clarhaut09℄

Homogeneous

Redundan
ies

Improved

multi-fault

tree

HW 
ost Not Addressed Optimization

[Ada
hi11℄

Homogeneous

Redundan
ies

HiP-HOPS

HW & SW


ost

FD, R;

Communi
ation

not addressed

Optimization

[Perez14℄

Homogeneous

Redundan
ies

GSPN

Not

Addressed

Not Addressed

Not

Addressed

[Shelton04℄

Heterogeneous

Redundan
ies

Utility Values

Not

Addressed

Assumed Ideal Optimization

[Wyso
ki04℄;

[Galdun08℄

Shared

Redundan
ies

Fault Tree,

Design of

experiments;

Petri nets

Maintenan
e


ost

Communi
ation;

FD, R

Assumed Ideal

Not

Addressed

[Rawashdeh06℄

Gra
eful

Degradation

Not Addressed

Not

Addressed

Not Addressed

Not

Addressed

[Hoftberger13℄

Re
on�gurable

Ontology

Not Addressed

Not

Addressed

Assumed Ideal

Not

Addressed

[Trapp07℄

Impli
it

Redundan
y

Hybrid-CFT

HW & SW


ost

Not Addressed

Optimization,

Veri�
ation

[Bieber09℄

[Engel10℄

Re
on�gurable

IMA

Safety

analysis,

AltaRi
a

Not

Addressed

FD, R;

Communi
ation

not addressed

Not

Addressed

[Blanke11℄

Analyti


Redundan
y

Not Addressed

Not

Addressed

Not Addressed

Residuals,

fault

diagnosis

[Flammini11℄

Diverse

Redundan
y

(Dynami
)

Bayesian

Networks

Not

Addressed

Not Addressed

Not

Addressed

[Jean-Pas
al13℄

Sofware

Produ
t Lines

Component

Fault Trees

Not

Addressed

Not Addressed

Not

Addressed
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haviour of the fault dete
tion and re
on�guration implementations and [Galdun08℄ ad-

dresses the failure the 
ommuni
ation network. The evaluation of the possible faulty

behaviour of these implementations leads to obtaining an approa
h whi
h better adheres

to real implementations and 
onsequently, more reliable results. Despite not address-

ing heterogeneous redundan
y like 
on
epts dire
tly, in [Forster10℄ an approa
h 
alled


omponent logi
 models is presented whi
h does address the faulty behaviour of fault

dete
tion implementations.

Shifting from problem spe
i�
 solutions towards generi
 fault tolerant design approa
hes

requires systematizing identi�
ation, modelling and analysis steps. From our perspe
-

tive, it is ne
essary 
over the following design a
tivities in order to progress in the design

of systems whi
h use heterogeneous redundan
ies and re�ne the dependability analysis

of these systems:

� Systemati
 identi�
ation of heterogeneous redundan
ies and extra
tion of system


on�gurations to rea
t in the presen
e of failures.

� Design of the system ar
hite
ture to make the use of heterogeneous redundan
ies

possible, i.e., fault dete
tion and re
on�guration implementations.

� Evaluation of the system dependability with respe
t to dependability, adaptivity

and 
ost 
onstraints.

The systemati
 identi�
ation of heterogeneous redundan
ies and extra
tion of system


on�gurations 
alls for an approa
h whi
h allows identifying systemati
ally existing

hardware 
omponents able to provide a 
ompatible fun
tionality. To the best of our

knowledge, only the work we presented in [Aizpurua12a℄ works towards this goal. In

[Adler10b℄, authors worked on the systemati
 extra
tion of system 
on�gurations an-

notating 
omponent by 
omponent their adaptive behaviour. During this pro
ess they

evaluate in a ad-ho
 manner if it is possible to provide another 
on�guration variant

using alternative hardware 
omponents and �nally extra
t system 
on�gurations based

on inter-
omponent in�uen
es. In [Blanke11℄ a mathemati
al approa
h for the system-

ati
 identi�
ation of analyti
al redundan
ies is outlined. It is a sound and 
onsistent

approa
h, but it su�ers from s
alability issues. The use of this approa
h within NCSs

operating in massively networked s
enarios would require too mu
h details 
on
erning

the exa
t mathemati
al formulation of the system.
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The design of the system ar
hite
ture to make use of heterogeneous redundan
ies re-

quires addressing design de
isions regarding the organization of fault dete
tion and

re
on�guration implementations, i.e., their distribution and repli
ation. On one hand,

when implementing the fault dete
tion fun
tion within a networked 
ontrol system, it is

possible to allo
ate it either on the sour
e PU where the information is produ
ed (e.g.,

sensor, 
ontroller) or in the destination PU, whi
h is the target PU of the sour
e informa-

tion (e.g., 
ontroller, a
tuator) or in both PUs. On the other hand, when dealing with

re
on�guration implementations, its distribution in�uen
es the overall dependability

and 
ost of the system (
f. Table 2.8).

Table 2.8: Design De
isions and In�uen
ed Attributes

Attribute

Design

Fault Dete
tion Re
on�guration

Sour
e Destination Centralised Distributed

Dependability

Dete
tion at origin,

unable to manage


ommuni
ation

failures

Dete
tion of wrong

value & omission.

Prone to 
ommon


ause failures

Failure

proneness: single

point of failure

Multiple

re
on�guration

redundan
ies

Cost

HW/SW

implementation


osts

Costly

identi�
ation of all

failures: failure

transformation

Single

re
on�guration

implementa-

tion's HW/SW


osts

Higher 
ost:

multiple

re
on�guration

implementations

Complexity

Dire
t failure

handling

Further failure

sour
es

Less


ommuni
ation

overhead

Complex


ommuni
ation

and resour
e

management

Additionally, when adopting design de
isions within the se
ond a
tivity, it is ne
essary

to address adaptivity 
onstraints whi
h also has in�uen
e on dependability, e.g., time-

liness 
onstraints: maximal duration in whi
h the adaptation of one 
omponent 
an

be performed [Priesterjahn11b℄, dependen
y 
onstraints: dependen
ies between system


omponents, where adapting one 
omponent requires further adaptation on other 
om-

ponents [Adler10b℄ or hardware resour
e 
onstraints: limit the use of hardware resour
es,

e.g., pro
essing power, memory [Rawashdeh06℄.
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2.5 Con
lusions

Heterogeneous redundan
ies (or more generally reuse of sensors, 
ontrollers and a
tua-

tors) 
an take many forms: analyti
al redundan
y, design diversity or fail-safe 
ontrol

algorithms are some well-known examples. To the best of our knowledge, so far this task

have been fo
used on the 
reative ability of the designer. Furthermore, these approa
hes

have assumed failure-free behaviour of fault dete
tion and/or re
on�guration and/or


ommuni
ation implementations. Besides, previously there have not been an attempt

to pro�t from the physi
al organization of massively networked s
enarios: repli
ated

fun
tions distributed throughout the physi
al stru
ture of the system. Therefore, so as

to integrate these tasks, over
ome previous limitations, and evaluate the in�uen
e of

alternative design de
isions on dependability and 
ost, we have designed a methodology

entitled: aDaptive Dependable Design for systems with Homogeneous and Heteroge-

neous redundan
ies (D3H2).

Fo
using on the dependability analysis of these systems, we have identi�ed the need of an

approa
h whi
h 
omprehends the 
hara
teristi
s outlined in Subse
tion 2.3.2. Given that

su
h an approa
h exists, the analysis of 
omplex, dynami
 and repairable systems will

be
ome manageable and easier to maintain. In Chapter 4, we will introdu
e Component

Dynami
 Fault Tree 
on
ept in order to address these 
hara
teristi
s within the D3H2

methodology and in Chapter 5 we will des
ribe a pro
ess to model 
omplex repairable

systems.
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Chapter 3

D3H2 Methodology

In order to design adaptive dependable systems systemati
ally and 
ost-e�e
tively, we

propose a design methodology named aDaptive Dependable Design for Systems with

Homogeneous and Heterogeneous redundan
ies (D3H2). The methodology integrates

the variables implied in the resear
h hypothesis of this thesis: homogeneous/heteroge-

neous redundan
ies, fault dete
tion, re
on�guration, and 
ommuni
ation.

This 
hapter is organised as follows:

� As a result of the literature review done in Chapter 2, Se
tion 3.1 introdu
es the

motivation of this 
hapter.

� Se
tion 3.2 overviews the D3H2 methodology and its main a
tivities.

� Se
tion 3.3 des
ribes in detail the main a
tivities and models for designing a hard-

ware/software ar
hite
ture systemati
ally in
luding health management strate-

gies.

� Se
tion 3.4 applies the main a
tivities to the running example so as to 
onstru
t

a hardware/software ar
hite
ture.

� Se
tion 3.5 
loses this 
hapter with a dis
ussion of the limitations of the D3H2

methodology.

3.1 Introdu
tion

The design of adaptive dependable systems requires a pro
ess to mat
h and tune the

adequate 
ombinations of 
omponents a

ording to the fun
tional and dependability
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requirements. As stated in Chapter 2, the D3H2 methodology emerges from the goal of

systematizing all the design steps needed to design 
omplex dependable systems 
ost-

e�e
tively.

Heterogeneous redundan
ies may exist in diverse systems. However, usually the 
ost and

e�ort involved in identifying and exploiting whi
h implementations are able to perform

further 
ompatible fun
tions is not feasible.

Assuming that potential heterogeneous redundan
ies have been identi�ed, it is ne
essary

to evaluate quantitatively whether integrating this redundan
y is more bene�
ial - in

terms of dependability and 
ost - than using homogeneous redundan
ies instead. To

evaluate its bene�ts, �rstly it is ne
essary to 
reate an ar
hite
ture whi
h makes their

use possible. To this end, health management (fault toleran
e) me
hanisms are required:

fault dete
tion and re
on�guration.

When 
ombining all the previous design 
on
epts, the issues that a designer may

be interested on 
overing address: (1) the implementation and distribution of the

health management me
hanisms; (2) the use of homogeneous or heterogeneous redun-

dan
ies; (3) trade-o� analysis between dependability and 
ost when sele
ting alternative

ar
hite
tures (
omprised of di�erent intera
ting elements with their 
orresponding fail-

ure/repair rate and 
ost).

Repeating this pro
ess for di�erent 
ombinations of 
omponents (i.e., ar
hite
tures) 
an

be 
umbersome and 
ostly. In 
onsequen
e, the proposed methodology performs all

these tasks systemati
ally.

3.2 Overview of the D3H2 Methodology

The D3H2 methodology fo
uses on modelling and analysis a
tivities shown in Figure

3.1. The methodology 
hara
terizes a system of interest as a set of intera
ting hardware,

software, and 
ommuni
ation resour
es, taking into a

ount their interfa
es and provided

fun
tionality.

The methodology starts from the 
hara
terization of system fun
tions, required resour
es

and the physi
al lo
ation in whi
h these fun
tions are performed. These 
on
epts are
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formalised in the fun
tional model (
f. Figure 3.1 and Subse
tion 3.3.1). To this end,

the designer has to spe
ify:

� System fun
tions.

� List of resour
es in order to meet the system fun
tions.

� Physi
al lo
ation in whi
h the system fun
tions are performed within the system

physi
al stru
ture.

Figure 3.1: D3H2 Methodology [Aizpurua13a℄

The fun
tional model is obtained from the proje
tion of fun
tions onto system resour
es

while 
onsidering their physi
al lo
ation. This model addresses initial design require-

ments. To systematize its 
onstru
tion, the Fun
tional Modelling Approa
h (FMA) has

been 
reated (
f. Subse
tion 3.3.1).

Homogeneous and heterogeneous redundan
ies are identi�ed as a result of the 
ompatibil-

ity analysis (
f. Subse
tion 3.3.2). This a
tivity evaluates if there exist 
ompatibilities

in the fun
tional model. To take into a

ount these 
ompatibilities, it may be ne
essary

to aggregate additional resour
es and subfun
tions and perform the allo
ation a
tivity

for the new elements.
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Subsequently, system's re
on�guration strategies and the preliminary HW/SW

ar
hite
ture are extra
ted (
f. Subse
tion 3.3.3).

Before 
onsidering this preliminary HW/SW ar
hite
ture for further 
hara
terizations

and possible implementation, it is ne
essary to extend it with health management

fun
tions, i.e., fault dete
tion and re
on�guration, whi
h make the use of redundan-


ies possible (
f. Subse
tion 3.3.4). From the extension of the preliminary HW/SW

ar
hite
ture, the extended fun
tional model is 
onstru
ted.

The aggregation and allo
ation a
tivities allow the designer to 
reate an ex-

tended HW/SW ar
hite
ture from the extended fun
tional model. Subsequently, the

dependability analysis evaluates the dependability level of the extended HW/SW

ar
hite
ture (see Chapter 4 and Chapter 5). Moreover, the 
ost analysis allows adopting

trade-o� de
isions between the used redundan
ies and in
urred 
ost. Finally, the ex-

tended HW/SW ar
hite
ture needs to be evaluated with respe
t to system requirements

to verify if the initial requirements are met.

If system requirements are not satis�ed there are two options: Option A jumps ba
k to a

previous a
tivity and repeats the pro
ess from there (
ompatibility analysis, extension,

allo
ation, aggregation). Option B drives the design pro
ess to the starting point of the

design methodology so that design requirements are re
onsidered.

The identi�
ation of heterogeneous redundan
ies requires studying all the system

fun
tions, resour
es, and their physi
al lo
ations early at the design time. Nevertheless,

at the expense of relying on a more 
ostly design methodology - rather than simply

adding expli
it redundant resour
es where they are ne
essary - it is expe
ted that the


ost savings obtained with heterogeneous redundan
ies reward the design e�orts. The

hardware 
ost savings emerge from limiting the addition of hardware resour
es (homo-

geneous redundan
ies) by exploiting already existing hardware resour
es (heterogeneous

redundan
ies). This is something that will be evaluated in Chapter 4 and Chapter 5.

3.3 HW/SW Ar
hite
ture Design

In Subse
tion 3.3.1 the Fun
tional Modelling Approa
h (FMA) is presented. The FMA

allows the systemati
 identi�
ation of homogeneous and heterogeneous redundan
ies
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[Aizpurua12a℄. Making use of the 
onstru
ted fun
tional model, in Subse
tion 3.3.2 and

Subse
tion 3.3.3 the 
ompatibility analysis and re
on�guration strategies are presented.

Finally, the Extended Fun
tional Modelling Approa
h (EFMA) is introdu
ed in Sub-

se
tion 3.3.4. The EFMA adds fault dete
tion and re
on�guration implementations to

the preliminary HW/SW ar
hite
ture.

3.3.1 Fun
tional Modelling Approa
h

The overall goal of de�ning the Fun
tional Modelling Approa
h (FMA) is the pro
edural


onsideration of system fun
tions, resour
es and the relations between them. The FMA

has been designed deliberately to enable the systemati
 identi�
ation of heterogeneous

redundan
ies and the extra
tion of re
on�guration strategies.

The Fun
tional Modelling Approa
h is 
hara
terized in a top-down manner, starting

from a set of high-level fun
tions tra
ing down to the ne
essary resour
es to perform

these fun
tions (
f. Figure 3.2).

Figure 3.2: Fun
tional Modelling Approa
h

A high level fun
tion (e.g., di�erent train operations: train operating properly, train

stopped) is 
omprised by a set of Main Fun
tions (MFs), e.g., train operating properly

= {tra
tion system OK, signalling system OK, braking system OK,. . . }. These main

fun
tions are performed in possibly di�erent Physi
al Lo
ations (PLs), e.g., a single Air

Conditioning Control implementation may span a whole train 
ar or ea
h 
ar 
ompart-

ment in a train 
ar may have its own Air Conditioning Control. In the same way, a
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main fun
tion 
onsists of a set of Subfun
tions (SFs), e.g., input, 
ontrol and output

subfun
tions. A subfun
tion may have multiple implementations and ea
h implementa-

tion requires a set of resour
es that may be shared with other implementations of other

subfun
tions (e.g., pro
essing units).

Our model fo
uses on main fun
tions and its sub-levels to limit the s
ope of the analysis

without losing its generality (see the end of this subse
tion for further dis
ussion). The

full 
hara
terization of a subfun
tion's implementation of a generi
 main fun
tion is

spe
i�ed as follows:

Main Function.Physical Location.Subfunction.Implementation (3.1)

This 
hara
terization is 
omprised of tokens whi
h des
ribe the parti
ular Main Fun
-

tion, Physi
al Lo
ation, Subfun
tion and Implementation. These tokens are separated

by dots. However, for those tokens whi
h also have dots we surround them with square

bra
kets, e.g., 
onsidering the Physi
al Lo
ation = Train.Car.Zone:

MainFunction.[Train.Car.Zone].Subfunction.Implementation.

As a result, di�erent tokens are identi�ed straightforwardly (see Example 3.3.1).

To de�ne the physi
al lo
ation of system fun
tions 
onsistently, a physi
al lo
ation map

is de�ned for the physi
al stru
ture. Figure 3.3 shows the physi
al lo
ation map of

an hypotheti
al train, where ea
h 
ar is 
omprised of di�erent 
ompartments (Zone

A

,

Zone

B

).

Figure 3.3: Example of a Train Physi
al Lo
ation Map
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The physi
al lo
ation of ea
h main fun
tion spe
i�es the s
ope of the main fun
-

tion and its subfun
tions, e.g., zone - level: [Train.Car

1

.Zone

A

℄ ; or spe
i�
 - level:

[Train.Car

2

.Zone

B

.Door℄.

Example 3.3.1:

The 
hara
terization of the Air Conditioning Control main fun
tion's temperature

measurement subfun
tion, whi
h is performed within a train 
ar in a spe
i�
 
ompart-

ment, will be spe
i�ed as follows (
f. Se
tion 2.1):

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TemperatureMeasurement.Sensor

A

Where the implementation Sensor

A

is 
omprised of the next set of resour
es:

Sensor

A

={Temperature sensor A, PU

ACC_A

, SW

Temp

}.

A system 
on�guration is de�ned as follows: a possible realization of the main fun
tion


omprised of the ne
essary subfun
tions and their underlying implementations (and

resour
es) to perform the main fun
tion (
f. Example 3.3.2).

Example 3.3.2:

Considering the Air Conditioning Control main fun
tion introdu
ed in Se
tion 2.1 and

assuming the train 
on�guration des
ribed in Figure 3.3, the nominal 
on�guration

for the Train.Car

1

.Zone

A

will be 
omprised of the following implementations:

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempMeasurement.Sensor

A

AirConditioningControl.[Train.Car

1

.Zone

A

℄.RefTemp.RefButton

A

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.PID_Control

AirConditioningControl.[Train.Car

1

.Zone

A

℄.Heating.Heater

A

where,

Sensor

A

= {Temperature Sensor A, PU
ACC_A

};

RefButton

A

= {Reference T emperature Button A, PU
ACC_A

};

PID_Control = {PU
ACC_A

, SW
PID

, T empMeasurement,RefTemp};

Heater

A

= {Heater A, PU
ACC_A

, T empControlAlgorithm}

The high-level fun
tions modelled in Figure 3.2 des
ribe the high-level operation of the

system. These fun
tions have their own set of main fun
tions and the main fun
tions are


omprised of a set of subfun
tions. Consequently, if the whole fun
tional model is taken

into a

ount, the 
omplexity of the analysis grows up. A

ordingly, its manageability

is worse and the utility of the Fun
tional Modelling Approa
h is a�e
ted. It is for that

reason that we model starting from main fun
tions.
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Among the alternative implementations to perform the same subfun
tion, based on the

implemenation's resour
es and provided fun
tionality, we 
lassify nominal, degraded

and fail-safe implementations (
f. Figure 3.2). Nominal (N) implementations perform

the same fun
tions as intended by the initial fun
tional design 
hara
teristi
s. When

the nominal implementations are lost due to the failure of some resour
e, there may be

implementations whi
h provide a Degraded (D) but a

eptable servi
e. Fail-Safe (FS)

implementations emerge from the need to 
ope with the severe failure of resour
es, whi
h


ould result in hazard situations. In safety-
riti
al systems, fail-safe implementations

must be de�ned to avoid these situations.

Despite the des
ribed design methodology 
on
entrates on the design of new systems,

it may be 
ustomized for the design of already existing systems. Both methodologies

di�er in the orientation of the 
onstru
tion of the fun
tional model. However, for design

purposes, on
e the fun
tional model is 
reated the same steps apply for both design

strategies.

When designing a new system, the orientation of the Fun
tional Modelling Approa
h

fo
uses from system main fun
tions toward resour
es (top-down). This design strategy

requires planning and understanding 
ompletely the system so that an overall pi
ture of

the system is obtained. Nonetheless, the drawba
k of this perspe
tive is that it in
reases

the development time and sometimes not everything is known at the beginning of a

proje
t (e.g., physi
al layout of the system).

On the 
ontrary, when addressing the redesign of an already existing system, a bottom-

up �st step is needed to obtain a fun
tional model. As it is shown in Figure 3.4, the

fun
tional model is 
onstru
ted by grouping system resour
es to perform subfun
tions

and linking them with the main fun
tions they 
arry out (synthesis).

Figure 3.4: Fun
tional Modelling Approa
h for Existing Systems
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When redesigning an existing system, the synthesis of previously designed implementa-

tions and fun
tionalities is a troublesome task: taking into a

ount all implementations,

subfun
tions, and main fun
tions be
omes time 
onsuming and prone to errors.

3.3.2 Compatibility Analysis

The obje
tive of the 
ompatibility analysis is the systemati
 identi�
ation of heteroge-

neous redundan
ies.

The 
ompatibility analysis allows gathering 
ompatible implementations and identify-

ing heterogeneous redundan
ies. Two implementations are 
ompatible if they provide

the same or similar (but a

eptable) result. However, the a

eptable results need to be


on�rmed in a 
ase-by-
ase basis by the designer. Heterogeneous redundan
ies are iden-

ti�ed based on the tokens of the main fun
tion: mat
hing subfun
tions and 
ompatible

physi
al lo
ations.

There exist two 
ompatibility 
ases:

� Natural 
ompatibility emerges automati
ally from 
ompatible implementations 
ar-

rying out the same subfun
tion in 
ompatible physi
al lo
ations (
f. Example

3.3.3);

� For
ed 
ompatibility identi�es available I/O implementations lo
ated at 
ompatible

physi
al lo
ations, and then evaluates if they may ful�l additional subfun
tions

with 
ompatible implementations (
f. Example 3.3.5).

Possible 
ompatible physi
al lo
ations are de�ned as Table 3.1 displays.

Table 3.1: Possible Compatible Physi
al Lo
ations

Case Des
ription Example

1 Subfun
tions lo
ated at the same physi
al lo
ation [Car

1

℄.Zone

A

↔ [Car

1

℄.Zone

A

2
Subfun
tions lo
ated at adja
ent physi
al lo
ations [Car

1

℄.Zone

A

↔ [Car

1

℄.Zone

B

3

Subfun
tions lo
ated at a physi
al lo
ation that

span other subfun
tion lo
ated at more spe
i�


physi
al lo
ations

[Car

1

℄.[Zone

A

℄ → [Car

1

℄.[Zone

A

℄.Door
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In the natural 
ompatibility 
ase, the 
ompatibility of the physi
al lo
ation depends upon

the type of the examined subfun
tion. For input subfun
tion implementations performed

within 
ompatible physi
al lo
ations and depending on the input subfun
tion type itself,

the produ
ed out
omes of the implementations are a

eptable (
f. Example 3.3.3).

Example 3.3.3:

Considering the temperature measurements in two adja
ent 
ompartments:

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TemperatureMeasurement.Sensor

A

AirConditioningControl.[Train.Car

1

.Zone

B

℄.TemperatureMeasurement.Sensor

B

We identify that the same subfun
tion's implementations are lo
ated at a adja
ent

physi
al lo
ations ([Train.Car

1

.Zone

A

℄, [Train.Car

1

.Zone

B

℄), and the temperature mea-

surements 
arried out by Sensor

A

and Sensor

B


ould be inter
hanged in a degraded

mode of operation (assuming that the temperature di�eren
e in two adja
ent 
om-

partments is not signi�
ant).

However, spe
i�
 physi
al lo
ations limit the 
ompatibility. Generally, this is the 
ase

of output subfun
tions due to their spe
i�
 a
tuation spa
e (see Example 3.3.4).

Example 3.3.4:

Considering the spe
i�
 a
tuation spa
e of the door manipulation subfun
tions' motors

lo
ated at ea
h doors of a train 
ar (
f. Se
tion 2.1):

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorManipulation.Motor

A

DoorStatusControl.[Train.Car

1

.Zone

B

.Door℄.DoorManipulation.Motor

B

Motor

A


an only a
t in the [Train.Car

1

.Zone

A

.Door℄ and it 
an not manipulate the

door lo
ated in [Train.Car

1

.Zone

B

.Door℄.

For
ed 
ompatibility 
ase is analyses available I/O implementations and their physi
al

lo
ations and evaluates if they may ful�l additional subfun
tions (
f. Example 3.3.5).

Example 3.3.5:

Consider a train 
ar with the following fun
tionalities (
f. Se
tion 2.1):

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDete
tion.ClosedSensor

VideoSurveillan
e.[Train.Car

1

.Zone

A

℄.VideoInput.Camera

Given that we 
ould add a software fun
tionality to dete
t the 
losure of the doors using

the 
amera (e.g., ClosedCamera implementation), we 
onsider these implementations


ompatible:

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDete
tion.ClosedSensor

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDete
tion.ClosedCamera
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Using the tokenized 
hara
terization of system fun
tionalities (
f. Chara
terization 3.1),

the identi�
ation of redundan
ies is simpli�ed. This is performed in a straightforward

way by 
omparing the 
orresponding tokens of subfun
tions and physi
al lo
ations.

Based on the equivalen
es between system fun
tions, physi
al lo
ations and resour
es,

Table 3.2 displays a 
omparison between the nominal main fun
tion 
on�guration and

those whi
h use homogeneous and heterogeneous redundan
ies.

Table 3.2: Comparison of Redundan
ies with respe
t to the Nominal Con�guration

Redundan
y Subfun
tion Physi
al Lo
ation Resour
es Con�guration

Homogeneous = = = =

Heterogenous = ≡, = ≡, = ≡

same(=); 
ompatible(≡)

Diverse redundan
ies (see Subse
tion 2.2.2) provide the same fun
tionality using an al-

ternative 
on�guration. The di�eren
e between diverse and heterogeneous redundan
ies

lies on the design purpose: while heterogeneous redundan
ies already exist in the system


on�guration, diverse redundan
ies are added expli
itly to provide the system with im-

plementations whi
h fail in di�erent failure modes and avoid 
ommon 
ause failures.

As for the 
omparison between homogeneous and diverse redundan
ies, both exer
ise

additional resour
es, but homogeneous redundan
ies provide the same fun
tion within

the same physi
al lo
ation under the same 
on�guration, whereas diverse redundan
ies

provide the same fun
tion with a 
ompatible 
on�guration.

The 
ontrol subfun
tions are a spe
ial 
ase be
ause they do not depend upon the phys-

i
al lo
ation. They are able to perform the 
ontrol subfun
tion provided it re
eives

the 
orresponding input values of the spe
i�
 physi
al lo
ation. There may also exist

alternative fault-tolerant 
ontrol subfun
tion implementations, whi
h are able to 
ope

with input subfun
tion implementation failures, e.g., open-loop 
ontrol algorithms.

The implementations identi�ed in the 
ompatibility analysis may be degraded imple-

mentations. They are 
reated from a implementation whi
h is a nominal implementation

for another main fun
tion by reusing resour
es. We assume that their fun
tionality is

a

eptable, but they may in�uen
e the quality of the provided main fun
tion. A

ord-

ingly, the validation of the identi�ed heterogeneous redundan
ies is an a
tivity whi
h will
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determine whether the quality of the heterogeneous redundan
y implementation is a
-


eptable, e.g., timing requirements of an implementation. These are some 
hallenges to

be addressed in our future work to further re�ne the 
ompatibility analysis (
f. Se
tion

3.5).

3.3.3 Re
on�guration Strategies

To integrate the fun
tional model with heterogeneous and homogeneous redundan
ies in

the D3H2 methodology, re
on�guration strategies are de�ned. Re
on�guration strategies


onsist of possible system 
on�gurations and they des
ribe fault toleran
e strategies of

the system to re
over from system implementation failures.

The existen
e of 
ompatible implementations lead us to de�ne alternative 
on�gurations.

These are annotated in a re
on�guration table de�ning all implementations and assigning

priorities to ea
h of them (see Example 3.3).

Example 3.3.6:

Table 3.3 displays a hypotheti
al Air Conditioning Control main fun
tion (see Example

3.3.2) with three 
on�guration examples (C

1

, C

2

, C

3

), where C

1

refers to the nominal


on�guration ; C

2

shows a degraded operation reusing a sensor; and the C

3

indi
ates

another degraded operation reusing the referen
e button.

The hypotheti
al Air Conditioning Control for Train.Car

1

.Zone

A

is 
omprised of 2

heterogeneous redundan
y implementations: #1 ↔ #2 and #3 ↔ #4.

The prioritization pro
ess for alternative implementations is founded on a metri
 based

on the weighted sum of: (1) level of the degradation of the fun
tionality; (2) fail-

ure probability of the implementation; and (3) 
ost of the 
on�guration. The level of

the degradation depends on the relative physi
al distan
e (appli
able for heterogeneous

redundan
ies emerging from natural 
ompatibilities). This metri
 does not indi
ate

the �nal failure probability of the system sin
e it is ne
essary to extend the system

ar
hite
ture with the ne
essary health management fun
tions and implementations (
f.

Subse
tion 3.3.4). Besides, in some 
ases, it is ne
essary the designer's knowledge, e.g.,

when there exist multiple heterogeneous redundan
ies raised from for
ed 
ompatibilities.

However, it provides an initial idea of the priority of ea
h implementation to perform

the subfun
tion.
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Table 3.3: Re
on�guration Table Example

Implementation Prio C

1

C

2

C

3

#

AirConditioningControl.[Train.Car

1

.Zone

A

℄.MeasureTemp.Sensor

A

1 W F W 1

AirConditioningControl.[Train.Car

1

.Zone

A

℄.MeasureTemp.Sensor

B

2 W 2

AirConditioningControl.[Train.Car

1

.Zone

A

℄.RefTemp.RefButton

A

1 W W F 3

AirConditioningControl.[Train.Car

1

.Zone

A

℄.RefTemp.RefButton

B

2 W 4

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.PID 1 W W W 5

AirConditioningControl.[Train.Car

1

.Zone

A

℄.Heating.Heater

A

1 W W W 6

W : Working; F : Failed; Prio: Priority.

Moreover, the re
on�guration strategies enable the dire
t identi�
ation of single points

of failure. A single implementation of a subfun
tion in the re
on�guration table indi
ates

that the subfun
tion is a single point of failure (e.g., #6 in Table 3.3).

One of the limitations of the studied re
on�guration strategies is the pro
ess needed to

extra
t the re
on�guration strategies. That is, the 
hara
terization of all the system

fun
tions, resour
es and their physi
al lo
ations is a laborious task.

3.3.4 Extended Fun
tional Modelling Approa
h

The main goal of the Extended Fun
tional Modelling Approa
h (EFMA) is to add

health management fun
tions and 
orresponding implementations to the preliminary

HW/SW ar
hite
ture. Namely, it is ne
essary to add:

� Fault Dete
tion (FD) me
hanisms to dete
t the in
orre
t operation of an imple-

mentation;

� Re
on�guration (R) me
hanisms to re
over from implementation failures.

The EFMA has been designed with the goal of making it general enough to allow the sys-

temati
 design and analysis of alternative extended HW/SW ar
hite
tures. Sin
e fault

dete
tion and re
on�guration subfun
tions are subfun
tions of a given main fun
tion,

they are also modelled using tokens (
f. Chara
terization 3.1).
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The following design assumptions are adopted when 
hara
terizing the

health management subfun
tions and their implementations [Aizpurua13a℄:

� Fault dete
tion:

� Ea
h subfun
tion has an asso
iated fault dete
tion subfun
tion (FD_SF);

� All the fault dete
tion implementations of the same subfun
tion use repli
as

of the same fault dete
tion algorithm;

� The fault dete
tion subfun
tion is lo
ated at the destination pro
essing unit

where the information of the sour
e pro
essing unit is used. This de
ision en-

ables to dete
t 
ommuni
ation (timing and value) failures straightforwardly.

� Re
on�guration:

� Ea
h subfun
tion will have its own re
on�guration subfun
tion (R_SF),

whi
h re
eives fault dete
tion subfun
tion's signals and sends re
on�guration

signals to subfun
tion implementations.

� Fault dete
tion of the re
on�guration:

� Ea
h re
on�guration implementation will have its own fault dete
tion

me
hanism (FD_R_SF) implemented in keepalive 
on�guration. Ea
h

re
on�guration subfun
tion implementation sends keepalive signals to all

their fault dete
tion fun
tion implementations (FD_R_SF) to indi
ate that

it is operating (i.e., it is alive). In the absen
e of a keepalive signal during

a predetermined time slot, the re
on�guration implementation of R_SF is

assumed to be failed. When this happens, the re
on�guration's fault dete
-

tion implementation (FD_R_SF) sends an a
tivation signal to the available

re
on�guration implementation (R_SF) with the highest priority.

Instead of in
luding 
ommuni
ation fun
tion as part of the Extended Fun
tional Mod-

elling Approa
h, it is 
onsidered as a resour
e to 
arry out the 
hara
terized subfun
tions.

Although we have assumed that the implementation of the fault dete
tion fun
tion is

allo
ated on the destination PU, it is possible to allo
ate it on the (1) sour
e PUs

where the original subfun
tion is 
arried out, (2) destination PUs where the original

subfun
tion's results is being used, or (3) both. On the one hand, if the fault dete
tion
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is allo
ated on the sour
e PU, it is also ne
essary to have a me
hanism whi
h dete
ts

its performan
e omission (see Subse
tion 2.2.1) in the destination PU where it is used.

On the other hand, the allo
ation of the fault dete
tion fun
tion on the destination PU

enables implementing a single fault dete
tion fun
tion for the di�erent implementations

of the same subfun
tion (e.g., based on time and value thresholds). The latter 
ase

requires taking into a

ount at design-time all possible destination PUs and supplying

them with fault dete
tion fun
tionalities.

Con
erning the implementation of the re
on�guration fun
tion we assume that: (1) all

subfun
tion's PUs have a re
on�guration me
hanism whi
h enables them to send/re-


eive data to/from di�erent destinations/sour
es and (2) additionally, there is one (or

multiple) de
ision PU(s) to manage the re
on�gurations a

ording to the subfun
tion's

status. If all re
on�guration de
ision fun
tions are allo
ated to the same PU, we end up

with a 
entralised de
ision PU and it be
omes highly sensitive to 
ommuni
ation fail-

ures. On the other end, if re
on�guration de
ision fun
tions are distributed throughout

the system resour
es, the management of the re
on�guration de
ision fun
tions be
omes

mu
h more 
omplex, but less sensitive to 
ommon 
ause failures (
f. Table 2.8).

Figure 3.5 des
ribes an abstra
t ar
hite
ture of the main fun
tion i and the

health management me
hanism of the main fun
tion's output subfun
tion. In this �gure

overlapped re
tangles des
ribe alternative implementations for the same subfun
tion.

Figure 3.5: Abstra
t Ar
hite
ture of the Main Fun
tion i and the Health Management Im-

plementation of its Output Subfun
tion

79



There is no unique valid solution when allo
ating resour
es to fault dete
tion and

re
on�guration fun
tions. For instan
e, when 
onsidering the re
on�guration fun
tion,

alternative HW/SW ar
hite
tures emerge depending on its distribution. This model is

general enough to allow for the systemati
 analysis of alternative HW/SW ar
hite
tures

by means of the Dependability Evaluation Modelling approa
h (
f. Chapter 4 and Chap-

ter 5).

When 
onsidering the implementation of the re
on�guration strategies, we assume

design-time distribution of alternative 
on�gurations. On
e re
on�guration strategies

are 
hara
terized and 
ompleted with network addresses of di�erent implementations,

the re
on�guration table will be allo
ated partially in di�erent de
ision PUs or totally

in a unique de
ision PU to enable the runtime re
on�guration of implementations.

To make the re
on�guration possible, the following needs to be implemented in ea
h

PU whi
h has implementations to be re
on�gured: a wrapper that ensures the inter-


hangeability between 
ompatible implementations; and a re
on�guration me
hanism to

redire
t its information to di�erent destinations dynami
ally. Furthermore, the PUs in

whi
h the fault dete
tion of the re
on�guration subfun
tion implementations are allo-


ated require monitoring keepalive signals to 
ontrol the 
orre
t operation of the a
tive

re
on�guration implementation.

For these ar
hite
tures the 
ommuni
ation paradigm plays an important role: the 
om-

muni
ation proto
ol needs to be able to support the 
reation/removal of 
ommuni
a-

tions dynami
ally while 
onsidering the syn
hronization of the implementation's states

and adjudi
ation of the results. Message oriented publisher/subs
riber 
ommuni
ation

proto
ols (e.g., Data Distribution Servi
e [Pardo-Castellote03℄) address these 
hara
ter-

isti
s: alternative sour
e implementations publish data in a network lo
ation and the

destination implementations subs
ribe or unsubs
ribe to a publisher a

ording to the

re
on�guration table. Please refer to the Chapter 6 to read about pra
ti
al implemen-

tation details.
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3.4 Results

In order to illustrate how to use the modelling and analysis approa
hes presented in this


hapter, we will apply the D3H2 methodology to the train example des
ribed in Se
tion

2.1. From the fun
tions performed in a train 
ar, we will 
on
entrate on three main

fun
tion examples so as to 
hara
terize the di�erent 
ompatibility 
ases: natural 
om-

patibility (Air Conditioning Control) and for
ed 
ompatibility (Fire Prote
tion Control

and Door Status Control).

Natural Compatibility example: Air Conditioning Control

Despite not being a 
riti
al fun
tion for the safe operation of the train, the Air Con-

ditioning Control fun
tion o�ers a simple, but yet an interesting and intuitive example

to demonstrate the possibilities for using heterogeneous redundan
ies emerging from

natural 
ompatibilities (
f. Example 3.3.1).

Fun
tional Model

Let us 
onsider a train with di�erent numbered 
ars (Car

1

, Car

2

) and ea
h 
ar 
onsti-

tuted by 2 
ompartments (Zone

A

, Zone

B

) a

ording to the physi
al lo
ation map of the

train depi
ted in Figure 3.3. We assume that independent Air Conditioning Control

fun
tions are implemented in ea
h 
ompartment of the train.

As displayed in Table 3.4, the Air Conditioning Control main fun
tion implementation

for ea
h 
ompartment 
onsists of two input subfun
tions: temperature measurement and

user referen
e temperature; one 
ontrol subfun
tion: air 
onditioning 
ontrol algorithm;

and one output subfun
tion: heating. User referen
e temperature subfun
tion is 
onsti-

tuted by two alternative implementations: referen
e temperature button (#2, #8) and

software de�ned referen
e temperature (#3, #9); and also the air 
onditioning 
ontrol

algorithm 
ontains two di�erent implementations: 
losed-loop PID 
ontrol algorithm

(#4, #10) and open-loop 
ontrol algorithm, whi
h only requires temperature referen
e

set-point (#5, #11).
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Table 3.4: Fun
tional Model for Air Conditioning Control in Train.Car

1

MF PL SF Type Implementation Resour
es #

Air

Conditioning

Control

Train.

Car

1

.

Zone

A

Temperature

Measurement

I Sensor

A

Temperature Sensor A, PU

ACC_A

1

User Referen
e

Temperature

I RefButton

A

Referen
e Temperature Button A,

PU

ACC_A

2

User Referen
e

Temperature

I RefTempSW

A

SW

RefTemp

, PU

ACC_A

3

Air Conditioning

Control

Algorithm

C PID

A

Temperature Measurement, User

Referen
e Temperature, PU

ACC_A

,

SW

PID

4

Air Conditioning

Control

Algorithm

C OL

A

User Referen
e Temperature,

PU

ACC_A

, SW

OL

5

Heating O Heater

A

Air Conditioning Control

Algorithm, PU

ACC_A

, Heater A

6

Train.

Car

1

.

Zone

B

Temperature

Measurement

I Sensor

B

Temperature Sensor B, PU

ACC_B

7

User Referen
e

Temperature

I RefButton

B

Referen
e Temperature Button B,

PU

ACC_B

8

User Referen
e

Temperature

I RefTempSW

B

SW

RefTemp

, PU

ACC_B

9

Air Conditioning

Control

Algorithm

C PID

B

Temperature Measurement, User

Referen
e Temperature, PU

ACC_B

,

SW

PID

10

Air Conditioning

Control

Algorithm

C OL

B

User Referen
e Temperature,

PU

ACC_B

, SW

OL

11

Heating O Heater

B

Air Conditioning Control

Algorithm, PU

ACC_B

, Heater B

12

Legend: I: Input; C: Control; O: Output; Impl.: implementation

The single implementations of the heating subfun
tion (#6, #12) indi
ate that it is

a single point of failure for the Air Conditioning Control main fun
tion. In these


ases, if the main fun
tion's requirements are stringent, the fun
tional model points

out the need to add an homogeneous redundan
y. Sin
e in this 
ase we are not deal-

ing with a safety-
riti
al fun
tion, we will assume that it is not ne
essary to add an

homogeneous redundan
y (designer's ar
hite
ture-spe
i�
 de
ision).
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Compatibility Analysis

Automati
ally identi�ed heterogeneous redundan
ies a

ording to the natural 
ompati-

bility 
ase are:

� It is possible to use the temperature sensor lo
ated in 
ontiguous 
ompartments

for temperature measurement: #1 ↔ #7.

� It is possible to use the referen
e temperature button lo
ated 
ontiguous 
ompart-

ments for the user referen
e temperature: [#2, #3℄↔ [#8, #9℄.

� It is possible to reuse the system PUs (PU

ACC_A

, PU

ACC_B

) to perform the 
ontrol

fun
tions for both 
ompartments: [#4, #5℄ ↔ [#10, #11℄.

All these implementations are 
onsidered 
ompatible be
ause the same subfun
tion is

performed in another 
ompatible physi
al lo
ation (
f. Table 3.1). Therefore, alternative

implementations provide a degraded (but a

eptable) fun
tionality - see 
oloured 
ells in

Table 3.5. Possible 
ompatible implementations #9 and #11 were left out for simpli
ity

(
f. Table 3.4).

Extended Fun
tional Model

On
e the potential heterogeneous redundan
ies are sele
ted (
f. Table 3.5 
oloured


ells), the extended HW/SW ar
hite
ture is 
reated for the Air Conditioning Control

main fun
tion. To this end, the fun
tional model is extended with health management

fun
tions and implementations, and then we allo
ate resour
es to the aggregated sub-

fun
tions (see Table 3.6).

For the extended HW/SW ar
hite
ture example displayed in Table 3.6, we assumed

a 
entralised re
on�guration de
ision PU 
o-allo
ated with fault dete
tion imple-

mentations. This design de
ision improves the fault 
ontainment properties of the

health management me
hanisms, but also adds a single point of failure.

Please noti
e how the 
ommuni
ation in�uen
e is taken into a

ount in the destination

implementation. For instan
e, for the temperature measurement subfun
tion: (1) im-

plementation #2 requires an a
tivation signal from the re
on�guration implementation
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Table 3.5: Preliminary HW/SW Ar
hite
ture for Air Conditioning Control in

Train.Car

1

.Zone

A

MF PL SF Type Implementation Resour
es #

Air

Conditioning

Control

Train.

Car

1

.

Zone

A

Temperature

Measurement

I Sensor

A1

Temperature Sensor A, PU

ACC_A

1

Temperature

Measurement

I Sensor

A2

Temperature Sensor B, PU

ACC_B

,

Comm

2

User Referen
e

Temperature

I RefButton

A1

Referen
e Temperature Button A,

PU

ACC_A

3

User Referen
e

Temperature

I RefButton

A2

Referen
e Temperature Button B,

PU

ACC_B

, Comm

4

User Referen
e

Temperature

I RefTempSW

A

SW

RefTemp

, PU

ACC_A

5

Air Conditioning

Control

Algorithm

C PID

A1

Temperature Measurement, User

Referen
e Temperature, PU

ACC_A

,

SW

PID

, Comm

6

Air Conditioning

Control

Algorithm

C PID

A2

Temperature Measurement, User

Referen
e Temperature, PU

ACC_B

,

SW

PID

, Comm

7

Air Conditioning

Control

Algorithm

C OL

A

User Referen
e Temperature,

PU

ACC_A

, SW

OL

8

Heating O Heater

A

Air Conditioning Control

Algorithm, PU

ACC_A

, Heater A

9

#4 whi
h is allo
ated in a di�erent PU (i.e., PU

ACC_B

and PU

ACC_A

respe
tively); (2)

the fault dete
tion implementation #3 needs to monitor the 
orre
t performan
e of im-

plementations #1 and #2, from whi
h the implementation #2 is in a di�erent PU. The

same logi
 applies to the remainder of subfun
tions and implementations of the main

fun
tion.

Re
on�guration Table

Table 3.7 displays the re
on�guration table for the Air Conditioning Control main fun
-

tion implemented in the Train.Car

1

.Zone

A

.

For simpli
ity, in Table 3.7 only nominal subfun
tions with redundan
ies are in
luded.
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Table 3.6: Extended HW/SW Ar
hite
ture for the Air Conditioning Control Main Fun
tion

in Train.Car

1

.Zone

A

MF PL SF Type Implementation Resour
es #

Air

Conditioning

Control

Train.

Car

1

.

Zone

A

Temperature

Measurement

I Sensor

A1

Temperature Sensor A, PU

ACC_A

1

Temperature

Measurement

I Sensor

A2

Temperature Sensor B, PU

ACC_B

,

Comm

2

FD_Temp.Meas. FD FD_Sensor

A

PU

ACC_A

, SW

FD_TM

, Comm 3

R_Temp.Meas. R R_Sensor

A

PU

ACC_A

, SW

R_TM

4

User Referen
e

Temperature

I RefButton

A1

Referen
e Temperature Button A,

PU

ACC_A

5

User Referen
e

Temperature

I RefButton

A2

Referen
e Temperature Button B,

PU

ACC_B

, Comm

6

User Referen
e

Temperature

I RefTempSW

A

SW

RefTemp

, PU

ACC_A

7

FD_Ref.Temp. FD FD_RefTemp

A

PU

ACC_A

, SW

FD_RT

, Comm 8

R_Ref.Temp.

A

R R_RefTemp

A

PU

ACC_A

, SW

R_RT

9

Air Conditioning

Control

Algorithm

C PID

A1

Temperature Measurement, User

Referen
e Temperature,

PU

ACC_A

, SW

PID

, Comm

10

Air Conditioning

Control

Algorithm

C PID

A2

Temperature Measurement, User

Referen
e Temperature,

PU

ACC_B

, SW

PID

, Comm

11

Air Conditioning

Control

Algorithm

C OL

A

User Referen
e Temperature,

PU

ACC_A

, SW

OL

12

FD_ACCA FD FD_TempControl

A

PU

ACC_A

, SW

FD_TCA

, Comm 13

R_ACCA R R_TempControl

A

PU

ACC_A

, SW

R_TCA

14

Heating O Heater

A

Air Conditioning Control

Algorithm, PU

ACC_A

, Heater A

15

Legend: FD_X : Fault Dete
tion of the subfun
tion X; R_X : Re
on�guration of the subfun
tion X;

Temp.Meas.: Temperature Measurement (TM); Ref.Temp.: user Referen
e Temperature; ACCA: Air

Conditioning Control Algorithm
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Table 3.7: Re
on�guration Table for the Air Conditioning Control Main Fun
tion in

Train.Car

1

.Zone

A

Implementation Priority #

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TemperatureMeasurement.Sensor

A

1 1

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TemperatureMeasurement.Sensor

B

2 2

AirConditioningControl.[Train.Car

1

.Zone

A

℄.UserRefTemp.RefButton

A

1 5

AirConditioningControl.[Train.Car

1

.Zone

A

℄.UserRefTemp.RefButton

B

2 6

AirConditioningControl.[Train.Car

1

.Zone

A

℄.UserRefTemp.RefButton_SW

A

3 7

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.TCA_PID

A

1 10

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.TCA_PID

B

2 11

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.TCA_OL

A

3 12

The re
on�guration de
ision PU needs to know the address of the implementations in

the re
on�guration table in order to be signalled for (de)a
tivation purposes and make

e�e
tive the re
on�gurations.

In this 
ase, there is no need to distribute the re
on�guration table to di�erent PUs

be
ause all subfun
tion's re
on�guration implementations are lo
ated in the same PU.

Therefore, this re
on�guration table will be lo
ated at the PU

ACC_A

.

For
ed Compatibility example: Fire Prote
tion Control

In order to illustrate the pro
ess for the for
ed 
ompatibility 
ase, in this subse
tion we

analyse the Fire Prote
tion Control main fun
tion (
f. Figure 2.9 and Figure 2.10).

Fun
tional Model

In order to 
onstru
t the fun
tional model, we will limit the physi
al lo
ation to the

Train. Car

1

. Zone

A

. A

ording to the physi
al lo
ation, we model the fun
tions lo
ated

at the Zone

A

in the train Car

1

: Fire Prote
tion Control and Air Conditioning Control.

There are other fun
tions lo
ated at the same physi
al level (e.g., Light Control), but
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for the sake of 
larity we limit the fun
tional models displayed in Table 3.8 to these

fun
tions.

As des
ribed in the Se
tion 2.1, the Fire Prote
tion Control main fun
tion dete
ts

the presen
e of �re using a dedi
ated �re dete
tor and additionally, passengers signal

emergen
y situations dire
tly using a emergen
y button lo
ated in ea
h 
ompartment

of the train. In the presen
e of �re, the Fire Prote
tion Control algorithm a
tivates the

sprinklers lo
ated at ea
h 
ompartment of the train 
ar.

Table 3.8: Fun
tional Model for the Fun
tions in Train.Car

1

.Zone

A

MF PL SF Type Implementation Resour
es #

Fire

Prote
tion

Control

Train.

Car

1

.

Zone

A

User Emergen
y

Signal (UES)

I EmergButton

A

Emergen
yButton, PU

FP

1

Fire Dete
tion I FireDet

A

Fire Dete
tor, PU

FP

2

Fire Control

Algorithm

C FireControl

A

UserEmergen
ySignal,

FireDete
tion, SW

FireControl

, PU

FP

3

Fire Extin
tion O Sprinkler

A

FireControlAlgorithm, PU

FP

,

Sprinkler

4

Air

Conditioning

Control

Temperature

Measurement

I Sensor

A

Temperature Sensor A, PU

ACC_A

5

User Referen
e

Temperature

I RefButton

A

Referen
e Temperature Button A,

PU

ACC_A

6

User Referen
e

Temperature

I RefTempSW

A

SW

RefTemp

, PU

ACC_A

7

Air Conditioning

Control

Algorithm

C PID

A

Temperature Measurement, User

Referen
e Temperature, PU

ACC_A

,

SW

PID

8

Air Conditioning

Control

Algorithm

C OL

A

UserReferen
eTemperature,

PU

ACC_A

, SW

OL

9

Heating O Heater

A

AirConditioningControlAlgorithm,

PU

ACC_A

, Heater

10

Compatibility Analysis

Based on the fun
tional model, the 
ompatibility analysis is performed in order to �nd


ompatible implementations existing in the Train.Car

1

.Zone

A

.
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Automati
ally identi�ed heterogeneous redundan
ies arising from natural 
ompatibil-

ities are possible: we 
an use the �re dete
tor lo
ated in the 
ontiguous 
ompart-

ment (Train.Car

1

.Zone

B

) to dete
t �re in the Train.Car

1

.Zone

A

. However, we will

assume that it is not feasible to repla
e the �re dete
tion subfun
tion using the �re

dete
tor lo
ated in the 
ontiguous 
ompartment due to the degraded quality of the

heterogeneous redundan
y: the time needed to dete
t a �re using the 
ontiguous 
om-

partment's smoke sensor is assumed to be too high.

Semi-automati
ally identi�ed heterogeneous redundan
ies emerging from for
ed 
om-

patibilities are feasible: it is possible to use a temperature sensor to dete
t the presen
e

of �re using temperature value thresholds: #5 → #2.

Table 3.9: Preliminary HW/SW Ar
hite
ture for the Fire Prote
tion Control in

Train.Car

1

.Zone

A

MF PL SF Type Implementation Resour
es #

Fire

Prote
tion

Control

Train.

Car

1

.

Zone

A

User Emergen
y

Signal (UES)

I EmergButton

A

Emergen
yButton, PU

FP

1

Fire Dete
tion I FireDet

A

Fire Dete
tor, PU

FP

2

Fire Dete
tion I Sensor

A

Temperature Sensor A, PU

ACC_A

,

SW

FireDet

, Communi
ation CAN,

Communi
ation ETH,

Gateway

ETH-CAN

3

Fire Control

Algorithm

C FireControl

A

UserEmergen
ySignal,

FireDete
tion, SW

FireControl

, PU

FP

4

Fire Extin
tion O Sprinkler

A

FireControl, PU

FP

, Sprinkler 5

Note that the Fire Prote
tion Control and Air Conditioning Control main fun
tions are


onne
ted to di�erent 
ommuni
ation networks, i.e., CAN and Ethernet respe
tively

(
f. Figure 2.1). Therefore, a gateway devi
e is ne
essary in order to use alternative


ommuni
ation proto
ol's data.

Extended Fun
tional Model

To use these redundan
ies in massively networked s
enarios, it is ne
essary to 
om-

plete the extended HW/SW ar
hite
ture with health management and 
ommuni
ation

me
hanisms as Table 3.10 displays.
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Table 3.10: Extended HW/SW Ar
hite
ture for the Fire Prote
tion Control in

Train.Car

1

.Zone

A

MF PL SF Type Implementation Resour
es #

Fire

Prote
tion

Control

Train.

Car

1

.

Zone

A

User Emergen
y

Signal (UES)

I EmergButton

A

Emergen
yButton, PU

FP

1

Fire Dete
tion I FireDet

A

Fire Dete
tor, PU

FP

2

Fire Dete
tion I Sensor

A

Temperature Sensor A,

PU

ACC_A

, SW

FireDet

,

Communi
ation CAN,

Communi
ation ETH,

Gateway

ETH-CAN

3

FD_FireDete
tion FD FD_FireDet

A

SW

FD_FireDet

, PU

FP

,

Communi
ation CAN,

Communi
ation ETH,

Gateway

ETH-CAN

4

R_FireDete
tion

1

R R_FireDet

A1

SW

R_FireDet

, PU

FP

5

R_FireDete
tion

2

R R_FireDet

A2

SW

R_FireDet

, PU

ACC_A

,

Communi
ation CAN,

Communi
ation ETH,

Gateway

ETH-CAN

6

FD_R_FireDete
tion FD_R FD_R_FireDet

A1

SW

FD_R_FireDet

, PU

ACC_A

,

Communi
ation CAN,

Communi
ation ETH,

Gateway

ETH-CAN

7

FD_R_FireDete
tion FD_R FD_R_FireDet

A2

SW

FD_R_FireDet

, PU

FP

,

Communi
ation CAN,

Communi
ation ETH,

Gateway

ETH-CAN

8

Fire Control

Algorithm

C FireControl

A

UserEmergen
ySignal,

FireDete
tion, SW

FireControl

,

PU

FP

, Communi
ation CAN,

Communi
ation ETH,

Gateway

ETH-CAN

9

Fire Extin
tion O Sprinkler

A

FireControlAlgorithm, PU

FP

,

Sprinkler

10

Re
on�guration Table

Table 3.11 displays the re
on�guration table for the Fire Prote
tion Control main fun
-

tion implemented in the Train.Car

1

.Zone

A

. The re
on�guration table in
ludes the line

number (#) of ea
h implementation; and priority of ea
h implementation to perform a

determined subfu
tion in a de�ned physi
al lo
ation.
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Table 3.11: Re
on�guration Table of the Fire Prote
tion Main Fun
tion in the

Train.Car

1

.Zone

A

Implementation Priority #

FireProte
tionControl.[Train.Car

1

.Zone

A

℄.FireDete
tion.FireDet

A

1 2

FireProte
tionControl.[Train.Car

1

.Zone

A

℄.FireDete
tion.Sensor

A

2 3

For simpli
ity, in Table 3.11 only nominal subfun
tions with redundan
ies are in
luded.

In this 
ase, re
on�guration implementation is lo
ated in PU

FP

(#5) and PU

ACC_A

(#6). Therefore, this re
on�guration table will be pre-allo
ated in both PUs for the

re
on�guration of the �re dete
tion subfun
tion.

For
ed Compatibility example: Door Status Control

In this subse
tion we analyse the Door Status Control main fun
tion (
f. Figure 2.3 and

Figure 2.4).

Fun
tional Model

In order to 
onstru
t the fun
tional model, we will limit the physi
al lo
ation to Train.

Car

1

.Zone

A

.Door. A

ording to the physi
al lo
ation, we model those fun
tions lo
ated

at the door of the train 
ar: Door Status Control and Video Surveillan
e. There exist

other fun
tions lo
ated at the same physi
al level (e.g., Passenger Counting System),

but for the sake of 
larity we limit the fun
tional models displayed in Table 3.12 to these

fun
tions.

As des
ribed in the Se
tion 2.1, the Door Status Control main fun
tion (
f. Figure 2.3

and Figure 2.4) requires di�erent input subfun
tions to assure the safe operation of door

opening/
losing: enable subfun
tions (enable door driver, enable door passenger), mon-

itoring subfun
tions (door open dete
tion, door 
losed dete
tion, door velo
ity, obsta
le

dete
tion) and 
ommand subfun
tions (door open 
ommand and door 
lose 
ommand).

These input subfun
tions are dire
ted toward the door 
ontrol algorithm subfun
tion

whi
h determines when and how to 
lose the doors through the door manipulation sub-

90



fun
tion. Video Surveillan
e main fun
tion (
f. Figure 2.5 and Figure 2.6) re
eives

video images (video input subfun
tion), pro
esses them through the pro
ess image 
on-

trol subfun
tion and �nally, if it is the 
ase, it raises an alarm using the lamps and sirens


onne
ted to the PU

Cam

.

Table 3.12: Fun
tional Model for the Fun
tions in the Train.Car

1

.Zone

A

.Door

MF
PL SF Type Implementation Resour
es #

Door Status

Control

Train.

Car

1

.

Zone

A

.

Door

Enable Door

Driver

I EnableDriv

A1

SW

TCMS

, PU

TCMS

1

(simpli�ed) 1

I EnableDriv

A2

SW

TCMS

, PU

TCMS

2

(simpli�ed) 2

Enable Door

Passenger

I EnablePass

A

Enable Door Driver, PU

Driver

,

EnableButton

Driver

, Comm.

3

Door Close

Command

I CloseCommand

A

PU

Driver

, CloseButton

Driver

4

Door Open

Command

I OpenButton

Driv.A

PU

Driver

, OpenButton

Driver

5

I OpenButton

Pass.A

PU

DSC_A

, OpenButton

Passenger

6

Door Open

Dete
tion

I OpenSensor

A

PU

DSC_A

, OpenSensor 7

Door Closed

Dete
tion

I CloseSensor

A

PU

DSC_A

, CloseSensor 8

Door Velo
ity I Velo
itySensor

A

PU

DSC_A

, Velo
itySensor 9

Obsta
le

Dete
tion

I Obsta
leSensor

A

PU

DSC_A

, Obsta
leSensor 10

Door Control

Algorithm

C DoorControl

A

Enable Door Passenger, Door Close

Command, Door Open Command,

Door Closed Dete
tion, Door Open

Dete
tion, Door Velo
ity, Obsta
le

Dete
tion, PU

DSC_A

, SW_CL,

Comm

11

Door

Manipulation

O Motor

A

Door Control Algorithm, PU

DSC_A

,

Motor

12

Video

Surveillan
e

Train.

Car

1

.

Zone

A

.

Door

Video Input I VideoIn

A

Camera, PU

Cam

13

Pro
ess Image C Surveillan
e

A

Video Input, SW

Surveillan
e

, PU

Cam

14

Alarm O Siren

A

Pro
ess Image, PU

Cam

, Lamp, Siren 15
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Compatibility Analysis

Based on the fun
tional model, the 
ompatibility analysis is performed in order to �nd


ompatible implementations existing in the Door Status Control fun
tion.

Automati
ally identi�ed heterogeneous redundan
ies arising from natural 
ompatibili-

ties are not feasible be
ause the Door Status Control fun
tion is not dire
tly repla
eable

by other fun
tions lo
ated in other pla
es. For instan
e, it is not feasible to 
ontrol the

status of a door lo
ated in Car

1

using the status of the Car

2

door, neither it is feasible

to use the status of the door lo
ated in a 
ontiguous 
ompartment.

The 
ompatibility analysis points out the following heterogeneous redundan
ies:

� It is possible to use the 
amera and its PU

Cam

with the 
orresponding intelligent

software to identify the position of the doors: door open dete
tion (#7) or door


losed dete
tion (#8).

� It is possible to use the 
amera and its PU

Cam

with the 
orresponding intelligent

software to 
al
ulate the speed of the door (#9).

� It is possible to use the 
amera and its PU

Cam

with the 
orresponding intelligent

software to dete
t obsta
les in the door (#10).

After the extra
tion of all the input and output implementations lo
ated at 
ompatible

physi
al lo
ations, it is the designer's work to 
he
k if among the suggested list of

implementations there exist a feasible 
ompatible implementation.

For the sake of readability we will in
lude heterogeneous redundan
ies solely for the

dete
tion of the door open and 
lose positions as displays the preliminary HW/SW

ar
hite
ture in the Table 3.13 (in Chapter 4 and Chapter 5 when analysing alternative

ar
hite
ture 
on�gurations, all possible heterogeneous redundan
ies are 
onsidered).

Extended Fun
tional Model

To use these redundan
ies in massively networked s
enarios, it is ne
essary to 
omplete

the fun
tional model with health management (fault dete
tion and re
on�guration) and
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Table 3.13: Preliminary HW/SW Ar
hite
ture for the Door Status Control in the

Train.Car

1

.Zone

A

.Door

MF PL SF Type Implementation Resour
es #

Door Status

Control

Train.

Car

1

.

Zone

A

.

Door

Enable Door

Driver

I EnableDriv

A1

SW

TCMS

, PU

TCMS

1

(simpli�ed) 1

I EnableDriv

A2

SW

TCMS

, PU

TCMS

2

(simpli�ed) 2

Enable Door

Passenger

I EnablePass

A

Enable Door Driver, PU

Driver

,

EnableButton

Driver

, Comm

3

Door Close

Command

I CloseCommand

A

PU

Driver

, CloseButton

Driver

4

Door Open

Command

I OpenButton

Driv.A

PU

Driver

, OpenButton

Driver

5

I OpenButton

Pass.A

PU

DSC_A

, OpenButton

Passenger

6

Door Open

Dete
tion

I OpenSensor

A

PU

DSC_A

, OpenSensor 7

Door Open

Dete
tion

I OpenCamera

A

Camera, PU

Cam

, SW

OpenDet

,

Comm

8

Door Closed

Dete
tion

I ClosedSensor

A

PU

DSC_A

, CloseSensor 9

Door Closed

Dete
tion

I ClosedCamera

A

Camera, PU

Cam

, SW

CloseDet

,

Comm

10

Door Velo
ity I Velo
itySensor

A

PU

DSC_A

, Velo
itySensor 11

Obsta
le

Dete
tion

I Obsta
leSensor

A

PU

DSC_A

, Obsta
leSensor 12

Door Control

Algorithm

C DoorControl

A

EDP, DCC, DOC, DCD, DOD, DV,

OD, PU

DSC_A

, SW_CL, Comm

13

Door

Manipulation

O Motor

A

DCA, PU

A

, Motor 14

Legend: EDP : Enable Door Passenger; DCC : Door Closed Command; DOC : Door Open Com-

mand; DCD : Door Closed Dete
tion; DOD : Door Open Dete
tion; DV : Door Velo
ity; OD : Obsta
le

Dete
tion; DCA: Door Control Algorithm


ommuni
ation me
hanisms and adopt design de
isions with respe
t to the use of het-

erogeneous redundan
ies as Table 3.14 displays. Due to the size of the Table 3.14,

subsequently we introdu
e the a
ronyms used in this table: FD_X : fault dete
tion of

the subfun
tion X ; R_X : re
on�guration of the subfun
tion X ; FD_R_X : fault de-

te
tion of the re
on�guration of the subfun
tion X ; EDD: Enable Door Driver; EDP:

Enable Door Passenger; DCC: Door Close Command; DOC: Door Open Command;
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DOD: Door Open Dete
tion; DCD: Door Closed Dete
tion; DV: Door Velo
ity; OD:

Obsta
le Dete
tion; DCA: Door Control Algorithm; and DM: Door Manipulation.

As for the re
on�guration de
isions, we will assume a dupli
ated re
on�guration

ar
hite
ture whi
h is initially 
entralised, but its repli
as are lo
ated (distributed) in an-

other PU (PU

Cam

). This design de
ision requires monitoring whether the re
on�guration

implementations are performing 
orre
tly or not. To this end, re
on�guration's fault

dete
tion implementations are deployed (#12, #13 - FD_R_DOD; #19, #20 -

FD_R_DCD;) so as to monitor the (in)
orre
t performan
e of the re
on�guration im-

plementations (#10, #11 - R_DOD; #17, #18 - R_DCD) and swit
h them if ne
essary.

As for the 
ommuni
ation in�uen
e we 
he
k whether dependent subfun
tions are im-

plemented in di�erent PUs. For instan
e in the door open dete
tion subfun
tion 
ase

(#7) (
f. Table 3.14):

� It has an alternative implementation whi
h requires 
ommuni
ation for its a
tiva-

tion (#8).

� Sin
e the fault dete
tion of this subfun
tion (#9) is required to monitor the 
orre
t

performan
e of the implementations #7 and #8, and implementation #8 is lo
ated

in a di�erent PU, implementation#9 will also be in�uen
ed by the 
ommuni
ation.

� as for the re
on�guration implementation (e.g., R_DOD #10, #11), the im-

plementation #11 will also be in�uen
ed by the 
ommuni
ation in order to be

(re)a
tivated to perform its re
on�guration tasks.

� Re
on�guration's fault dete
tion implementations (e.g., FD_R_DOD #12, #13)

will be a
tively monitoring the 
orre
t performan
e of all the re
on�guration im-

plementations (#10, #11). Therefore, it will be dire
tly in�uen
ed by the 
om-

muni
ation.

Re
on�guration Table

Table 3.15 displays the re
on�guration table for the Door Status Control main fun
tion

implemented in the Train.Car

1

.Zone

A

.Door.

For simpli
ity, in Table 3.15 only nominal subfun
tion with redundan
ies are in
luded.
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Table 3.14: Extended HW/SW Ar
hite
ture for the Door Status Control in the

Train.Car

1

.Zone

A

.Door

MF PL SF Type Implementation Resour
es #

Door

Status

Control

Train.

Car

1

.

Zone

A

.

Door

EDD

I EnableDriv

A1

SW

TCMS

, PU

TCMS

1

(simpli�ed) 1

I EnableDriv

A2

SW

TCMS

, PU

TCMS

2

(simpli�ed) 2

EDP I EnablePass

A

EDD, PU

Driver

, EnableButton

Driver

,

Comm

3

DCC I CloseCommand

A

PU

Driver

, CloseButton

Driver

4

DOC

I OpenButton

Driv.A

PU

Driver

, OpenButton

Driver

5

I OpenButton

Pass.A

PU

DSC_A

, OpenButton

Passenger

6

DOD

I OpenSensor

A

PU

DSC_A

, OpenSensor 7

I OpenCamera

A

Camera, PU

Cam

, SW

OpenDet

, Comm 8

FD_DOD FD FD_OpenDet

A

PU

DSC_A

, SW

FD_DOD

, Comm 9

R_DOD R R_OpenDet

A1

PU

DSC_A

, SW

R_DOD

10

R_DOD R R_OpenDet

A2

PU

Cam

, SW

R_DOD

, Comm 11

FD_R_DOD FD_R FD_R_OpenDet

A1

PU

Cam

, SW

FD_R_DOD

, Comm 12

FD_R_DOD FD_R FD_R_OpenDet

A2

PU

DSC_A

, SW

FD_R_DOD

, Comm 13

DCD

I ClosedSensor

A

PU

DSC_A

, CloseSensor 14

I ClosedCamera

A

Camera, PU

Cam

, SW

CloseDet

, Comm 15

FD_DCD FD FD_CloseDet

A

PU

DSC_A

, SW

FD_DCD

, Comm 16

R_DCD R R_CloseDet

A1

PU

DSC_A

, SW

R_DCD

17

R_DCD R R_CloseDet

A2

PU

Cam

, SW

R_DCD

, Comm 18

FD_R_DCD FD_R FD_R_CloseDet

A1

PU

Cam

, SW

FD_R_DCD

, Comm 19

FD_R_DCD FD_R FD_R_CloseDet

A2

PU

DSC_A

, SW

FD_R_DCD

, Comm 20

DV I Velo
itySensor

A

PU

DSC_A

, Velo
itySensor 21

OD I Obsta
leSensor

A

PU

DSC_A

, Obsta
leSensor 22

DCA C DoorControl

A

EDP, DCC, DOC, DCD, DOD, DV, OD,

PU

DSC_A

, SW_CL, Comm

23

DM O Motor

A

DCA, PU

DSC_A

, Motor 24
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Table 3.15: Re
on�guration Table of the Door Status Control Main Fun
tion in the

Train.Car

1

.Zone

A

.Door

Implementation Priority #

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorOpenDete
tion.OpenSensor

A

1 7

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorOpenDete
tion.OpenCam

A

2 8

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDete
tion.ClosedSensor

A

1 14

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDete
tion.ClosedCam

A

2 15

In this 
ase, re
on�guration implementations are lo
ated in di�erent PUs. Therefore,

this re
on�guration table will be lo
ated at PU

DSC_A

and PU

Cam

.

3.5 Con
lusions

In this 
hapter we have introdu
ed the methodology to design HW/SW ar
hite
tures

systemati
ally. This methodology enables the systemati
 identi�
ation of redundan-


ies and single points of failure. An straightforward extension of the initial HW/SW

ar
hite
ture allows the designer to 
reate the 
ompleted extended HW/SW ar
hite
ture

whi
h a

ount for designer's de
isions with respe
t to the distribution and implementa-

tion of fault dete
tion, re
on�guration and 
ommuni
ation fun
tions.

The presented modelling approa
hes (Fun
tional Modelling Approa
h and Extended

Fun
tional Modelling Approa
h) enable an straightforward 
hara
terization of the

system and its subsequent exploitation for redundan
y identi�
ation and further analy-

ses. However, this pro
ess requires studying all the system fun
tions, resour
es, and their

physi
al lo
ations early at the design-time. At the expenses of relying on a more 
ostly

design methodology it is expe
ted that the 
ost savings obtained with heterogeneous

redundan
ies reward the design e�orts (
f. Chapter 4 and Chapter 5).

When using heterogeneous redundan
ies, the designer needs to be aware of the quality

degradation and evaluate whether it is a

eptable or not. Validation of the heterogeneous

redundan
ies is not a trivial task. Di�erent ar
hite
ture-spe
i�
 requirements subje
t

to real system operation need to be taken into a

ount, su
h as timeliness, memory and
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pro
essing 
apa
ity 
onstraints of the pro
essing units. These are some 
hallenges to be

addressed in our future work to re�ne the 
ompatibility analysis (see Chapter 7).

Another limitation of the D3H2 approa
h is the stati
 nature of re
on�guration table.

Although the re
on�guration table 
an be updated dire
tly to re�e
t system 
hanges,

dynami
ally updating the re
on�guration table would fa
ilitate its maintenan
e.
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Chapter 4

Dependability & Cost Analysis of

Non-Repairable Systems

This 
hapter de�nes the dependability evaluation algorithm to assess the extended

HW/SW ar
hite
ture de�ned in Chapter 3. This algorithm makes possible the sys-

temati
/automati
 analysis of the in�uen
e of alternative ar
hite
tural design de
isions

on dependability.

The 
hapter is organised into the next se
tions:

� Se
tion 4.1 introdu
es the analysis paradigm, states the hypotheses that this 
hap-

ter assumes and sets the motivation and goals of the 
hapter.

� Se
tion 4.2 presents the Dependability Evaluation Modelling (DEM) approa
h for

non-repairable systems. The analysis algorithm and adopted implementation te
h-

niques are presented.

� Se
tion 4.3 des
ribes the implementation of the simulation-based sensitivity anal-

ysis within the Dependability Evaluation Modelling approa
h.

� Se
tion 4.4 explains the implementation of the un
ertainty analysis in order to

deal with the la
k of exa
t failure-related data information.

� Se
tion 4.5 de�nes the assumptions and de
isions adopted to perform the 
ost

analysis of the system.

� Se
tion 4.6 applies the Dependability Evaluation Modelling approa
h and sensi-

tivity, un
ertainty and 
ost analyses to the running example of this dissertation.

� Finally, Se
tion 4.7 sums up the 
on
lusions of this 
hapter.
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4.1 Introdu
tion

The extended HW/SW ar
hite
ture is 
omprised of many di�erent design de
isions: (1)

sele
tion of the type and number of redundan
y strategies (homogeneous, heteroge-

neous); (2) sele
tion of the most adequate re
on�guration s
heme (
entralised, dis-

tributed); (3) sele
tion of the number and type of PUs (with respe
t to their reliability

and 
ost parameters); or (4) allo
ation of software fun
tions into the di�erent PUs.

The 
ombination of di�erent design de
isions produ
es di�erent results with respe
t to

dependability and 
ost. Therefore, there is room to optimize design de
isions so as to

improve dependability and redu
e system 
ost. The goal of the DEM is to analyse the

dependability level of the extended HW/SW ar
hite
ture - whi
h 
ontains any of the

previously mentioned design de
isions.

In the s
ienti�
 literature (
f. Chapter 2) there have been approa
hes implementing the

systemati
/automati
 transformation from design models to dependability analysis mod-

els (see Subse
tion 2.3.1 - Model-based Transformational Approa
hes). Besides, there

exists dependability-spe
i�
 solutions whi
h dire
tly evaluate the in�uen
e of ar
hite
-

tural design de
isions on system's dependability and 
ost (see Subse
tion 2.4.1). How-

ever, to the best of our knowledge, there are no approa
hes whi
h analyse the in�uen
e

of heterogeneous redundan
y s
hemes in
luding the failure behaviour of fault dete
tion,


ommuni
ation and alternative re
on�guration strategies (see Subse
tion 2.4.2).

To perform the systemati
 dependability assessment of the extended HW/SW

ar
hite
ture, the following assumptions are adopted:

� Fixed ar
hite
tural design de
isions with respe
t to health management imple-

mentations and their allo
ations (
f. Chapter 3):

� Fault dete
tion lo
ated at the destination implementation.

� Fault dete
tion of the re
on�guration subfun
tion implemented as heartbeat

or keepalive implementation.

� Ea
h system subfun
tion has its own re
on�guration subfun
tion, whi
h may

be 
entralised or distributed.

� Resour
e failures are non-repairable.
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Illustration of the Problem Addressed by the Chapter

Extended HW/SW ar
hite
tures are 
hara
terized by di�erent design 
hara
teristi
s and

failure in�uen
es: di�erent re
on�guration sequen
es, priorities, fun
tional dependen
ies

or 
ommon 
ause failures are some examples of these 
hara
teristi
s. The systemati


dependability assessment of the extended HW/SW ar
hite
ture requires taking into a
-


ount all the possible situations in whi
h the (
omplex) system is unable to 
ontinue

performing its design fun
tion.

The 
omplexity that emerges from dependen
ies and in�uen
ing hardware, software

and 
ommuni
ation resour
es leads to 
ompromising the maintainability (readability,

tra
eability) of the dependability analysis model of the extended HW/SW ar
hite
ture.

Therefore, 
omponent-based modelling me
hanisms [Crnkovi
03℄ are deemed a ne
es-

sary design instrument to deal with the size and 
omplexities of the extended HW/SW

ar
hite
ture.

The design-related resear
h questions that this 
hapter aims to answer are:

� Whi
h is the in�uen
e on dependability and 
ost of using di�erent re
on�guration

and redundan
y strategies?

� Whi
h is the 
ontribution of a given 
omponent on the system failure?

� Can we assume the ideal performan
e of health management and 
ommuni
ation

implementations?

The analysis of 
entralised and distributed re
on�guration strategies in itself does not

pose new 
hallenges. However, the 
ombination of alternative re
on�guration strategies

with homogeneous and/or heterogeneous redundan
ies (redundan
y strategies) sets new

issues to be analysed:

� When using heterogeneous redundan
ies, whi
h is the best trade-o� in

re
on�guration strategy with respe
t to the 
ost of the system and its

dependability?

Linked with the previous design issue, we will perform importan
e measurements so as

to evaluate quantitatively the in�uen
e of homogeneous and heterogeneous redundan
ies

(and related design de
isions) on system failure.
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So far, design approa
hes whi
h have 
onsidered the use of heterogeneous redundan
ies

have assumed the ideal performan
e of fault dete
tion and re
on�guration fun
tions (
f.

Chapter 2). In this 
hapter, we aim to evaluate the validity of this assumption through

di�erent dependability analyses.

4.2 Dependability Evaluation Modelling Approa
h

To evaluate the dependability of the extended HW/SW ar
hite
tures systemati
ally and

intuitively, we have de�ned a Dependability Evaluation Modelling (DEM) approa
h

[Aizpurua14℄.

4.2.1 Con
epts and Notation

The obje
tive of the DEM approa
h is the generi
, systemati
 and 
omplete failure

modelling of extended HW/SW ar
hite
tures to evaluate their dependability.

The failure model of the extended HW/SW ar
hite
ture in
ludes the following failure

modes: fault dete
tion implementations fail (FD_SF, FD_R_SF) in Omission (O)

when it does not dete
t a failure when it o

urs and fail in False Positive (FP) when

it dete
ts a failure when it does not exist; the re
on�guration implementation fails in

omission when it fails to re
on�gure a faulty implementation; and failure of subfun
tion's

implementations 
over value and timing failures. Figure 4.1 shows the failure model of

the extended HW/SW ar
hite
ture.

All possible failures of all system subfun
tion implementations (SF, FD_SF, R_SF,

FD_R_SF) are de�ned at the implementation level ([MF ].[PL].[SF ].[Impl] Failure)

a

ording to the failure 
hara
teristi
s of the implementation's resour
es. Based on

the 
ombination of implementation-level failures, subfun
tion-level failures are de�ned

systemati
ally ([MF ].[PL].[SF ] Failure).

Table 4.1 de�nes the notations of the failure events and working events a

ording to

their subfun
tion and failure modes. For 
larity, in subsequent 
hara
terizations we

omit the 
ommon part ([MF℄.[PL℄).
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Figure 4.1: Extended HW/SW Ar
hite
ture's Failure Model

Table 4.1: Notation of Failure and Working Events

Notation
Failure Logi
 Notation Failure/Working Logi


F
X

X failure W
X

X working

F
SF

[SF℄ failure W
SF

i

[SF℄.[Impl

i

℄ working = NOT(F
SF

i

)

F
SF

i

[SF℄.[Impl

i

℄ failure F
R

[R_SF℄ failure

F
FD

[FD_SF℄ failure F
R

i

O

[R_SF℄.[Impl

i

℄ omission

F
FD FP

[FD_SF℄ false positive F
FD_R

i

FP

[FD_{[R_SF℄.[Impl

i

℄}℄ false positive

F
FD

i

[FD_SF℄.[Impl

i

℄ failure F
FD_R

i

O

[FD_{[R_SF℄.[Impl

i

℄}℄ omission

F
FD

i

O

[FD_SF℄.[Impl

i

℄ omission

F
R

i

O/FP

[R_SF℄.[Impl

i

℄ omission or FP =

OR(F
R

i

O

,F
FD_R

i

FP

)
F
SF

i

FP

[SF℄.[Impl

i

℄ failure or FP = OR(F
SF

i

,F
FD FP

)

The sto
hasti
 failure 
hara
terization of ea
h resour
e is 
hara
-

terized by sampling randomly the failure times a

ording to their

Cumulative probability Distribution Fun
tions (CDFs) along the system lifetime.

The methodology supports any CDFs, but for the sake of simpli
ity without losing the

generality of the approa
h, in subsequent probabilisti
 
hara
terizations exponential

failure distributions are assumed.
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Therefore, the failure 
hara
terization of system resour
es is de�ned a

ording to their

failure rates (λ
Res

). The failure 
hara
terization of a SF's i -th implementation ([SF℄.

[Imp

i

℄ Failure) 
omprised of N resour
es is spe
i�ed as follows:

F
SF

i

= OR(λ
Res

1

, λ
Res

2

, . . . , λ
Res

N

) (4.1)

The same equation holds for the failure 
hara
terizations of the omission failures of:

FD_SF (F
FD

i

O

), R_SF (F
R

i

O

), and FD_R_SF (F
FD_R

i

O

) implementations. A
-


ordingly, the false positive failures of fault dete
tion implementations (F
FD FP

and

F
FD_R

i

FP

) will be 
hara
terized with their 
hara
terizing failure distribution and 
orre-

sponding parameters (e.g., exponential distribution with λ
FD FP

and λ
FD_R

i

FP

values).

4.2.2 Analysis Algorithm

The DEM approa
h de�nes an algorithm that evaluates the dynami
 failure behaviour

of systems whi
h use fault dete
tion and re
on�guration implementations while 
overing

all possible failure situations for the spe
i�ed extended HW/SW ar
hite
tures. It allows

to evaluate systemati
ally the 
onsequen
e of design de
isions on system dependability

(see Se
tion 4.1). Resulting equations 
hara
terize the failure of su
h systems 
omposi-

tionally so that the failure logi
 is kept 
lear for 
omplex systems.

To this end, the DEM approa
h 
hara
terizes 
ombinations of subfun
tion's imple-

mentation failures that prevent the extended HW/SW ar
hite
ture from performing its

intended subfun
tion

5

. The SF will fail (F
SF

) when all implementations have failed

(F
All Impl.

), an implementation fails and re
on�guration does not happen (failure unre-

solved, F
Unresolved

), or its input dependen
ies have failed (F
Dependen
ies

):

F
SF

= OR(F
All Impl.

, F
Unresolved

, F
Dependen
ies

) (4.2)

Assuming that we have N

SF

implementations of the subfun
tion, the F
All Impl.

event

happens when ea
h implementation fails or is dete
ted as failed:

5

Sin
e the failure of any subfun
tion ne
essary for a main fun
tion provokes the immediate failure

of a main fun
tion, from this point onwards we will only 
onsider the failure of a subfun
tion.
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F
All Impl.

= AND(F
SF

1

FP

, . . . , F
SF

N

SF

FP

) (4.3)

The failure unresolved (F
Unresolved

) o

urs when the working implementation fails and

either the fault is not dete
ted (failure undete
ted) or the re
on�guration itself fails

(re
on�guration failed). For ea
h implementation there are di�erent failure unresolved

events (F
Unr. Imp

i

) be
ause ea
h implementation may have di�erent failure probabilities,

however, note that the last implementation's failure 
annot be solved (non-repairability

assumption):

F
Unresolved

= OR(F
Unr. Imp

1

, . . . , F
Unr. Imp

N

SF

-1

) (4.4)

To de�ne the failure unresolved event of the i -th implementation of the generi
 sub-

fun
tion SF (F
Unr.Imp

i

), let us introdu
e two new events. The �rst event o

urs when

the i -th implementation of the subfun
tion fails and the re
on�guration has failed but

after su

essfully re
on�guring previous i -1 implementations (re
on�guration sequen
e

failure, F
R Seq.

i

). Assuming F
SF

1..i-1

FP

= AND(F
SF

1

FP

, . . . , F
SF

i-1

FP

) indi
ates the

failure or false positive from 1 to i -1 implementations:

F
R Seq.

i

= PAND(F
SF

1..i-1

FP

, F
R

, F
SF

i

FP

) (4.5)

The se
ond event o

urs when the i -th implementation of the SF fails and the fault

dete
tion of the SF has failed but after dete
ting 
orre
tly previous i -1 implementation

failures (fault dete
tion sequen
e failure, F
FD Seq.

i

). Note that fault dete
tion's false

positive and omission failures are mutually ex
lusive and therefore the false positive

does not in�uen
e F
FD Seq.

i

:

F
FD Seq.

i

= PAND(F
SF

1..i-1

, F
FD

, F
SF

i

) (4.6)

Due to the 
hara
terization of time-ordered failures, Equations 4.5 and 4.6 
annot be fur-

ther simpli�ed. A

ordingly, i -th implementation's failure unresolved event (F
Unr. Imp

i

)

o

urs when either the fault dete
tion sequen
e (F
FD Seq.

i

) fails or the re
on�guration

sequen
e (F
R Seq.

i

) fails:
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F
Unr. Imp

i

= OR(F
FD Seq.

i

, F
R Seq.

i

) (4.7)

Dependen
ies address Input (I) and Control (C) subfun
tions in�uen
e on 
ontrol and

Output (O) subfun
tions respe
tively. Control subfun
tion failure impa
ts dire
tly the

output subfun
tion failure (C→O); and the in�uen
e of input subfun
tion on 
ontrol

subfun
tion depends if the system's 
ontrol 
on�guration is operating in 
losed loop

(C_CL) or open loop (C_OL):

F
Dependen
ies

= OR(F
Dep. C_CL

, F
Dep. C_OL

) (4.8)

Assuming that W
C_X

= OR(W
C_X

1

, . . . , W
C_X

NW
) means that any NW implementa-

tions of the C_X subfun
tion are working (where X = {CL, OL}), Equations in 4.9

des
ribe the di�erent input subfun
tions that a�e
t ea
h 
ontrol 
on�guration (I_CL→

C_CL, I_OL → C_OL). F
Dep. C_OL

may not happen be
ause the open loop 
ontrol

generally does not have input dependen
ies:

F
Dep. C_CL

= AND(W
C_CL

, F
I_CL

) F
Dep. C_OL

= AND(W
C_OL

, F
I_OL

) (4.9)

The re
on�guration failure is a spe
ial 
ase among subfun
tions and therefore F
R

is

developed like Equation 4.2, ex
ept that there are no additional dependen
ies:

F
R

= OR(F
All R Impl.

, F
R Unresolved

) (4.10)

F
All R Impl.

indi
ates the failure of all re
on�guration implementations and F
R Unresolved

designates the re
on�guration's failure unresolved 
ondition. Assuming M

re
on�guration implementations:

F
All R Impl.

= AND(F
R

1

O/FP

, . . . , F
R

M

O/FP

) (4.11)

Although the system may operate 
orre
tly when a false positive o

urs, it has to as-
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sume that the information provided by the fault dete
tion is 
orre
t, sin
e there is no

me
hanism to dete
t the in
orre
t operation of fault dete
tion.

F
R Unresolved

happens when all M implementations of FD_R_SF fail in omission si-

multaneously and it is a dire
t 
onsequen
e of our design 
hoi
e: all re
on�guration's

fault dete
tion implementations (FD_R_SF) are a
tive and homogeneous redundan
ies

(heartbeat implementations):

F
R Unresolved

= AND(F
FD_R

1

O

, . . . , F
FD_R

M

O

) (4.12)

The fault dete
tion failure F
FD

is also a spe
ial 
ase among subfun
tions. It depends on

the operation of the destination subfun
tion (SF

DEST

), be
ause the FD implementation

is lo
ated at the same PU. Hen
e, F
SF_DEST

in�uen
es dire
tly F
FD

. We assume that

the 
hange of destination SF's implementation a
tivates the 
orresponding FD imple-

mentation and the previous one is dea
tivated. Equation 4.13 des
ribes the FD_SF

failure 
ase when FD_SF has K implementations:

F
FD

= OR(F
FD_Dest Seq

1

, . . . , F
FD_Dest Seq

K

) (4.13)

As for the i -th fault dete
tion implementation's failure sequen
e (F
FD_Dest Seq

i

), it ex-

presses the following event: from 1 to i -1 destination SF's implementations have failed

and re
on�gured 
orre
tly (F
SF_DEST

1..i-1

), and then either the i -th fault dete
tion or

destination SF's implementation fails:

F
FD_Dest Seq

i

= PAND(F
SF_DEST

1..i-1

, OR(F
SF_DEST

i

, F
FD

i

O

)) (4.14)

To avoid 
reating loops when evaluating system's dependability, we have 
onsidered that

the fault dete
tion implementation's failure is governed by the destination subfun
tion's

implementations failure without 
onsidering its input dependen
ies (
f. Equation 4.14).

If destination subfun
tion's dependen
ies are taken into a

ount they will 
reate logi
al

loops. Therefore, the in�uen
e of dependen
ies is taken into a

ount at the �top� sub-

fun
tion's failure level (
f. Equation 4.2). At this level, if any dependent subfun
tion

fails, it leads dire
tly to the failure o

urren
e of the subfun
tion.

107



4.2.3 Analysis of the State of the Art Approa
hes

In order to implement the equations of the DEM approa
h, existing dynami
 and 
om-

positional fault-tree-like paradigms have been analysed (
f. Table 4.2) looking for the

following 
hara
teristi
:

(1) Component based 
hara
terization: embed the failure logi
 of a set of related events

or 
omponents and (re)use it where needed instead of 
hara
terizing the system

failure behaviour in a single �at model.

(2) Dynami
 gates: 
apture the system failure logi
 a

ounting for time-ordered events.

(3) Support for any probability density fun
tion.

(4) Possibility of modelling repeated basi
 events.

(5) Possibility of modelling repeated subsystems or 
omponents.

(6) NOT gates: address the in�uen
e of fun
tional events.

Table 4.2: Approa
h and Chara
teristi
s

Approa
h (1) (2) (3) (4) (5) (6)

Stati
 FT [Vesely02℄
X X X X X X

Component FT [Kaiser03℄
X X X X X X

DFT - Galileo [Dugan92℄ X X X X X X

DFT - RAATS [Manno14b℄ X X X X X X

DFT - DFTCal
 [Arnold13℄ T: X; A: X X X X X X

DFT - Radyban [Montani08℄ T: X; A: X X X X X X

DFT - GFT [Raiteri11℄ T: X; A: X X X X X X

BDMP [Bouissou07℄ X X X X X X

SEFT [Kaiser07℄ T: X; A: X X X X X X

HiP-HOPS [Papadopoulos11℄ X X X X X X

T: Top model

A: Top model's underlying Analysis model
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The integration of stati
 fault trees and 
ompositional 
hara
terization is not new

[Kaiser03; TU Kaiserslautern09; Adler08℄: Component Fault Trees addressed this 
on-


ept prominently. Among the DFT approa
hes there exist alternatives to model systems

with any failure probability. To this end, simulation-based approa
hes are used (e.g.,

RAATSS [Manno14
℄, Radyban [Montani08℄) due to their possibility of approximating

su
h 
hara
teristi
s.

As for the 
ompositional 
hara
terization, the Generalized Fault Tree (GFT) (integra-

tion of parametri
 and repairable dynami
 fault trees [Bobbio04; Codetta-Raiteri05℄)

approa
h is the only one whi
h has worked towards this goal [Raiteri11℄. There exist

some approa
hes whi
h model the failure behaviour of a system with a user friendly

(
ompositional) formalisms (top model), but they perform the statisti
al 
al
ulation

using a less intuitive (�at) underlying formalism (analysis model). The drawba
k of

the GFT approa
h relies in the analysis of its underlying formalism (Sto
hasti
 Well-

Formed nets [Chiola93a℄) whi
h is a �at state-based system model whi
h also su�ers

from state-explosion issues. Besides, the 
ompositional (parametri
) viewpoint for this

approa
h is in folding repeated events and symmetri
 subsystems (see Figure 2.18), but

not embedding the same logi
 in a 
omponent and reusing in the same model where

deemed ne
essary as done in Component Fault Trees (see Figure C.2). HiP-HOPS also

a

ounts for the 
on
ept of Component Fault Trees using annotations [Papadopoulos11℄.

Annotated 
omponents (whi
h 
an be seen as Component Fault Trees) are parsed to


reate the Fault Tree of the system. Despite it has been extended for the extra
tion of

the 
ut sequen
e sets, the quantitative solution of dynami
 models is not an integrated

approa
h within HiP-HOPS.

To the best of our knowledge, there is no approa
h whi
h addresses expli
itly the integra-

tion of Dynami
 Fault Trees and 
omponent oriented 
hara
terization while addressing

any failure distributions. To address these 
hara
teristi
s, simulation-based analysis

te
hniques provide adequate analysis me
hanisms at the expenses of relying on a in-


reased 
omputation time.

4.2.4 Implementation: Component Dynami
 Fault Trees

Addressing all these 
hara
teristi
s, the 
on
ept of

Component Dynami
 Fault Tree (CDFT) is de�ned borrowing the de�nition of
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original Component Fault Trees introdu
ed in [Kaiser03℄:

C
Out1 Out2

OR
III

Out1

OR
III

Out1

Out
1

Out1

Out1

OR

Out1 Out1

Out1

Out1 Out2

in1

C

Figure 4.2: Component Dynami
 Fault Tree Overview

De�nition 4.1. Component Dynami
 Fault Tree: the 
omponent dynami
 fault

tree model, 
dft, is a 4-tuple < N, G, SC, E >

where:

� N is the set of Nodes, whi
h are partitioned into a set of: internal events Nintern,

input ports Nin and output ports Nout; N = {Nintern, Nin, Nout}. For in-

stan
e, for the CDFT model depi
ted in Figure 4.2, 
onsidering C

1

: Nintern =

{C1.BE1, C1.BE2}, Nin = {C1.in1, C1.in2, C1.in3, C1.in4}, Nout = {C1.Out1,

C1.Out2}.

� G is the set of Gates, where ea
h gate g ∈ G is des
ribed by: one output port g.out;

one or more input ports g.ini /i ∈ N; a dynami
 fun
tion whi
h links inputs with

outputs a

ording to stati
 (AND, OR, KooN) and/or dynami
 (PAND) Fault Tree

gates. As displayed in Table 4.3, the behaviour of the CDFT gates are 
hara
terized

a

ording to its input events (A,B), whi
h 
an be extended to an arbitrary number
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of input events.

� A set SC of Sub-Components, where ea
h sub
omponent sc ∈ SC is des
ribed by:

one or more output ports sc.outi; one or more input ports sc.ini; and a mapping to

another CDFT 
omponent's failure logi
. For instan
e, for the CDFT model de-

pi
ted in Figure 4.2, SC=C

2

: Nin = {C2.in1, C2.in2, C2.in3}, Nout = {C2.Out1};

mapping: C1.in1 → C2.in1; C1.in2 → C2.in2; C1.in3 → C2.in3; C2.out1 → OR.in2;

C2.out1 → AND.in1;

� A set of dire
ted Edges E ⊆ ((N

intern

∪ N

in

∪ G.OUT ∪ SC.OUT) × (N

out

∪

G.IN ∪ SC.IN)) where: G.OUT is set of all outputs of all gates; G.IN is set of all

inputs of all gates; SC.OUT is the set of all outputs of all sub-
omponents; and

SC.IN is the set of all inputs of all sub-
omponents.

Table 4.3: Component Dynami
 Fault Tree Gates

Gate Notation (Gate Behaviour)

Y=AND(A,B) If A fails and B fails, then Y fails

Y=OR(A,B) If A fails or B fails, then Y fails

Y=PAND(A,B) If A fails before the failure of B or at the same time, then Y fails

Y=NOT(A) If A doesn't fail, then Y fails

CDFT 
omponents des
ribe the failure logi
 of a 
omponent through temporal and/or

boolean fun
tions, determining the o

urren
e of the output events depending on the

input event o

urren
es and its 
orresponding o

urren
e time.

While a basi
 event 
hara
terizes self-
ontained simple failure logi
, a 
omponent en-


loses any-
omplexity failure logi
 (with possibly multiple I/O dependen
ies) spe
i�ed

using BEs, gates, and further sub-
omponents. Therefore, the CDFT paradigm makes

it possible to embed in a 
omponent the dynami
 failure logi
 of a (sub)system and

(re)use it where needed addressing repeated 
omponents and repeated basi
 events.

Figure 4.2 
hara
terizes a hypotheti
al CDFT model with repeated 
omponents (C

2

)

and CDFT gates. Ea
h 
omponent (C

1

, C

2

) may have gates, basi
 events and/or other


omponents as inputs. Ea
h basi
 event (BE

1

, BE

2

, ..., BE

6

) is 
hara
terized a

ording

to its probability density fun
tion and its failure rates. The failure rates may be spe
i�ed
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as a single value or interval of possible failure rate values allowing to understand their

in�uen
e on system failure behaviour (see Se
tion 4.4).

The failure evaluation algorithm for the model in Figure 4.2 is:

C2.Out1 = AND(OR(BE3, BE4), OR(BE4, BE5))

C1.Out1 = OR(BE(λ1,
′exponential′), C2)

C1.Out2 = PAND(OR(BE(λ1,
′exponential′), C2),AND(C2, BE6, BE(λ2,

′exponential′)))

where the fun
tion BE(parameters, distribution) generates the 
orresponding failure data of

basi
 events. Note: C2.Out1 is simpli�ed to C2 in the previous equations be
ause C2

has a single output.

This approa
h (as with the Component Fault Tree approa
h) enables the system re�ne-

ment through ar
hite
tural 
omponents until rea
hing a indivisible 
omponent, instead

of the 
lassi
al top-down approa
h adopted in most of the Fault Tree implementations.

To implement the CDFT paradigm, Monte Carlo simulations are performed on the

system's failure evaluation algorithm in order to estimate the failure probability. To

this end, it is exe
uted a large number of times, ea
h exe
ution 
omprising of a set of

random variables 
orresponding to the failure o

urren
es of the basi
 events. From the

law of big numbers, in the long run the failure probabilities of the system are 
al
ulated

throughout its lifetime [Zio13℄. For ea
h exe
ution: (1) the random time to failure

of basi
 events are 
al
ulated a

ording to their 
umulative probability distribution

fun
tion; (2) 
onne
ted gates and/or 
omponents use this information to determine

their out
ome (fun
tional or failed state); (3) When a failure at the output of a gate or


omponent o

urs, the failure time information is passed to the next gate/
omponent

so that the system's dynami
 failure logi
 is tra
ked from basi
 events to system-level

top-event.

In the Component Fault Tree approa
h it is possible to reuse a 
omponent throughout

the model. With Component Dynami
 Fault Trees the same 
on
ept is applied through

the reuse of the out
omes of system gates/sub
omponents and their inner CDFT failure

logi
 and basi
 events. While for the implementation of CFTs 
ombinatorial logi
 and

algorithms for the evaluation of binary de
ision diagrams are applied (see Subse
tion
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2.3.1), in order to solve CDFT models Monte Carlo simulations are used a

ounting for

the temporal o

urren
e of events and 
omponents.

Figure 4.3 depi
ts an example model that shows how the CDFT is implemented using

repeated 
omponents (IE4, IE5) and repeated events (BE2, BE5). The CDFT model

improves the readability and manageability of the dynami
 model. See Appendix C to

see how to model the same example using other formalisms.

Figure 4.3: Component Dynami
 Fault Tree Example

To analyse CDFTs, MatCarloRe tool [Manno12b℄ has been extended with NOT gates,

importan
e measurements (
f. Se
tion 4.3) and un
ertainty analyses (
f. Se
tion 4.4).
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4.3 Sensitivity Analysis

The goal of the sensitivity analysis (importan
e measurement) is to weigh the 
ontri-

bution of 
omponents (or basi
 events) to the top-event failure o

urren
e based on the

stru
ture of a system and 
omponent reliability. In the next subse
tions we explain

simulation-based methods to estimate importan
e measurement indi
es and then how

we implemented the 
hosen method.

There exist analyti
al importan
e measurement indi
es [vanderBorst01℄ and they have

been applied su

essfully by [Fri
ks03℄ and [Ou00℄. However, sin
e Component Dynami


Fault Trees are analysed through Monte Carlo simulations, in this dissertation only

simulation-based importan
e measurement index values have been 
onsidered.

4.3.1 Simulation-based Importan
e Measurement Indi
es

Owing to the in
reasing 
omplexity of 
urrent systems, in some 
ases analyti
al 
al
u-

lations of important measurements are not feasible. To over
ome this issue, simulation-

based importan
e measurements were introdu
ed [Wang04℄.

Failure Criti
ality Index (FCI): FCI value indi
ates the 
ontribution (per
entage) of the

i -th 
omponent's failure to the system overall failure:

IFCI
i =

nF
i

NF
(4.15)

where,

� IFCI
i : failure 
riti
ality index of the i -th 
omponent.

� nF
i : number of system failures 
aused by 
omponent i.

� NF
: total number of system failures.

To evaluate the frequen
y of the i -th 
omponent failure 
ausing a system failure, we

re
ord the number of system failures 
aused by the 
omponent i (nF
i ) with respe
t to

the total number of system failures (NF
).
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Other simulation-based measurements fo
us on repair 
hara
teristi
s and 
omponent's

uptime/downtime values:

Restore Criti
ality Index (RCI): RCI value indi
ates the 
ontribution (per
entage) of

the i -th 
omponent's repair to the system's overall repair:

IRCI
i =

nR
i

NR
(4.16)

where,

� IRCI
i : restore 
riti
ality index of the 
omponent i.

� nR
i : number of system repairs 
aused by 
omponent i.

� NR
: total number of system repairs.

Operational Criti
ality Index (OCI): OCI value is de�ned as the per
entage of the i -th


omponent's downtime over the system downtime:

IOCI
i =

downi

downsys

(4.17)

where,

� IOCI
i : operational 
riti
ality index of the i -th 
omponent.

� downi: downtime of the 
omponent i.

� downsys: system downtime.

Due to the ar
hite
tural design assumptions (non-repairable resour
es) importan
e mea-

surements whi
h 
onsider repair 
hara
teristi
s are not 
onsidered (restore 
riti
ality in-

dex). The operational 
riti
ality index measures downtime values of the system and of

a 
omponent, but it does not 
onsider the 
ontribution of the 
omponent to the system

failure. Therefore, we fo
us on the Failure Criti
ality Index (IFCI
i ) due to its dire
t

appli
ation with CDFTs and the signi�
an
e of its measurements. The main goal of the

FCI measurement is to identify weaknesses of the system design.
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4.3.2 Implementation of the Sensitivity Analysis

To implement the failure 
riti
ality index evaluation, we resort to the gates of the CDFT

model. For ea
h input event (E1, E2, . . . , EN), their failure 
riti
ality index values are


al
ulated by examining when the input event Ei has 
aused the o

urren
e of a gate's

output event (Y ). Subsequently, this analysis is extended to the output of the next

gate until we rea
h the output of the 
omponent and this pro
ess is repeated until the

output of the system. In this way, we obtain the 
hain of gates and 
omponents that


ause the top-event of the system. For ea
h Monte Carlo trial, the 
omponents 
ausing

the top-event's failure o

urren
e are re
orded and after a total of N Monte Carlo trials,

the relation between: (1) the total number of times the output event o

urs due to the

failure of an input event and (2) the total number of output event failure o

urren
es is


al
ulated.

There exist two alternatives for 
onsidering the system failures 
aused by event/
ompo-

nent i :

� Last event that 
aused the system to fail - triggering event.

� Minimal 
ut-set.

In our implementation, we have 
onsidered the triggering event implementation. As

noted by [Hilber05℄, the rationale under this de
ision relies on the fa
t that the index

be
omes non-ambiguous and it is not ne
essary to 
al
ulate minimal 
ut-sets.

It is assumed that an input event 
auses the o

urren
e of the output event when the

input event's o

urren
e time (uptime) mat
hes with the output event's o

urren
e time

(uptime) (
f. Figure 4.4). With the OR gate logi
, it is ne
essary to take into a

ount

top event's downtime: if the event that 
aused the top event o

urren
e (uptime) is no

longer failed but the top event 
ontinues to be failed top event's downtime needs to be


he
ked (
f. Figure 4.4 dashed line event).

Therefore, when analysing 
omplex systems, the system CDFT will have a set of inter-


onne
ted gates and ea
h of them will has its own failure 
riti
ality index values with

respe
t to its input events.

Algorithm 1 determines for a CDFT model the failure 
riti
ality index of any of its
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onstituent 
omponents or events. To this end the algorithm requires:

� The event whose failure 
riti
ality index needs to be evaluated (represented by its

name, e.g., BE2 failed).

� The Top Event (TE) gate whose failure 
riti
ality index needs to be evaluated.

The gate is represented by the following information: the output event's name and

a list of input events that are used to evaluate the TE output.

� A ve
tor with the information for all the gates of the CDFT model. Ea
h gate has

its output event's name and the list of input events that are used to evaluate its

outputs.

The output name of a gate will be referen
ed by gate.Output_Name in the algo-

rithm. The list of input events will be referen
ed by gate.Input(j), where j goes from

1 to the number of inputs of the gate. Finally, ea
h gate.Input(j) 
ontains its name

(gate.Input(j).Input_Name), and the FCI of this input event with respe
t to the out-

put event of this gate (gate.Input(j).FCI_V alue), i.e., the per
entage that this input

was the 
ause of the output failure.

The Algorithm 1 traverses the CDFT's stru
ture in a top-down manner �nding the

failure 
riti
ality index value of the event variable 
ompositionally: the 
ontribution of

ea
h intermediate event (or a basi
 event) is weighted a

ording to the 
ontribution of

the gate they belong to (see Figure 4.5 and its explanations).

The system example in Figure 4.5 shows the appli
ation of the Algorithm 1 to the

hypotheti
al system shown in Figure 4.3 and in Appendix C.

System's failure event TE is 
aused by %IE1, %IE2 and %IE3; a

ordingly, ea
h of them
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Algorithm 1 Criti
ality Analysis

1: fun
tion system_fci = FCI(event, TE, subtree)
2: system_fci = 0;
3: i = 0;
4: done = 0;
5: // for ea
h bran
h of the tree starting from the TE

6: while (i <= length(TE.Input)) AND (!done) do
7: fci = 1; // init for ea
h bran
h

8: IE = TE.Input(i);
9: fci = fci ∗ IE.FCI_V alue; // FCI of the 
orresponding input

10: if strcmp(IE.Input_Name, event) then // is this the analysed event?

11: done = 1;
12: else// not mat
hing with the 1st level, try inner subtree

13: j = 0;
14: inner = 0;
15: while (!inner) AND (j < length(subtree)) do
16: j = j + 1;
17: if strcmp(subtree(j).Output_Name, IE.Input_Name) then
18: inner = 1; // there is an inner event

19: if (inner) then
20: branch = subtree(j); // new TE to be found

21: branch_fci = FCI(event, branch, subtree(:)); // re
ursive 
all

22: fci = fci ∗ branch_fci; // update bran
h FCI 
ontribution to TE

23: if (inner) OR (done) then
24: system_fci = system_fci+ fci; // sum bran
h to system FCI

25: i = i+ 1;
return system_fci

will be 
aused also by its underlying intermediate events (e.g., %IE1 is 
aused by %IE4

and %IE5) until rea
hing the basi
 event level (e.g., %IE4 is 
aused by %BE1, %BE2

and %BE3). Therefore, the failure 
riti
ality index for the BE2 is 
al
ulated as follows:

IFCI
BE2

= (%IE1).(%IE4).(%BE2) + (%IE1).(%IE5).(%BE2) + (%IE2).(%IE7).(%BE2) + (%IE3).(%IE8).(%BE2)
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IE4 IE5 IE6 IE7 IE8

IE3IE2IE1

TE

Figure 4.5: Failure Criti
ality Index Cal
ulation Example

4.4 Un
ertainty Analysis

The inability to obtain statisti
al failure 
hara
teristi
s of 
ertain 
omponents hampers

the appli
ability of the Dependability Evaluation Modelling approa
h. In order to deal

with un
ertain failure data of 
omponents, un
ertainty analyses have been integrated

within the D3H2 methodology.

It has been demonstrated that software failure rates are di�
ult to determine (e.g.,

see [Littlewood00b; Go²eva-Popstojanova01; Lyu07℄ ). This un
ertainty in parameter

estimation 
an lead to very di�erent dependability analysis results.

There exist di�erent sour
es of un
ertainty [Oberkampf04℄:

� Epistemi
 Un
ertainty: la
k of knowledge or information in any phase or a
tivity

of the modelling pro
ess.
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� Aleatory Un
ertainty: inherent variation asso
iated with the physi
al system or

environment under 
onsideration.

In this dissertation we are 
on
erned with the epistemi
 un
ertainty, whi
h deals with

the la
k of knowledge of the exa
t behaviour of the system. The epistemi
 un
ertainty

will be addressed/
onsidered as the in�uen
e of un
ertain 
omponent parameter values

(failure rate) on system's unreliability value.

In order to deal with the la
k of exa
t knowledge of the failure rate data, se
ond-order

probabilities (i.e., statisti
 distribution of failure o

urren
e probabilities) have been

implemented in the MatCarloRE tool [Manno12b℄, allowing to 
al
ulate se
ond-order

probability mass fun
tions of: system failure probabilities and importan
e (sensitivity)

measurements.

Ea
h basi
 event is modelled with its 
orresponding random variable a

ording to its

failure distribution and parameters. When integrating un
ertainty in the DEM the im-

plemented approa
h allows the designer to spe
ify interval failure rates: (1) the random

number 
orresponding to every variables' failure rate interval is sampled randomly, (2)

then the 
orresponding probability of interest is 
al
ulated, and (3) �nally out
ome

probabilities are distributed among histogram bins (where relative number of samples

per bin indi
ates the probability of the bin's asso
iated probability interval) resulting

in a probabilisti
 distribution of probability values [Forster09℄ - se
ond order probabil-

ities (
f. Figure 4.6). For simpli
ity and due to the la
k of knowledge of real failure

data values, the sto
hasti
 distribution of variable probability intervals is 
hosen to be

uniform.

The following main a
tivities are involved in the un
ertainty analysis pro
ess:

1. Monte Carlo sampling of the un
ertain variables: from the failure rates of the

un
ertain variables - spe
i�ed as interval values - a single failure rate value is


hosen randomly within the spe
i�ed failure rate interval a

ording to the uniform

distribution. The out
ome of this a
tivity is a randomly sampled failure rate.

2. Monte Carlo sampling of the time to failure (o

urren
e) of both un
ertain vari-

ables and known variables based on their failure rate values. The out
ome of this

pro
ess are a set of randomly sampled time to failures.

3. With the updated numeri
al values of data variables, the Component Dynami
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Figure 4.6: Overview of the Un
ertainty Analysis

Fault Tree model is solved getting as an out
ome 
ounters of top-event failure

o

urren
es and 
riti
al event failure o

urren
es gathered in a system's mission

time (lifetime) ve
tor.

4. If the threshold of N Monte Carlo trials is rea
hed, a

umulated Component

Dynami
 Fault Tree model's statisti
al results are gathered in a histogram whi
h


ounts and 
lassi�es the (probabilisti
) frequen
y of o

urren
e of the top event.

5. If the threshold of M Monte Carlo trials is rea
hed, the overall pro
ess ends up

and the histogram is normalized. Otherwise, the pro
ess is restarted again by

sampling failure rate values randomly and time to failure of the basi
 events.

The main drawba
k of this approa
h is the time needed for the 
omputation of Monte

121



Carlo simulations (M×N iterations in Figure 4.6). While there exist analyti
 te
hniques

for the redu
tion of this time (e.g., dynami
 stopping 
riterion [Meedeniya11℄), we have

opted for using Matlab's parallel toolbox in order to perform parallel tasks in several


omputers at a time.

4.5 Cost Analysis

The 
ost assessment is 
arried out by adding up the 
ost of hardware and software

resour
es (see Appendix E for the spe
i�
 values).

Software 
osts: the 
ost of software 
omponents is quanti�ed by 
onsidering their

development 
ost assuming that it will be paid o� in X

6

years. We 
lassify 4 types

of software 
omponents: fault dete
tion software (SW_FD), re
on�guration software

(SW_R), re
on�guration's fault dete
tion software (SW_FD_R) and Control/Dete
tor

software (SW_Det).

The development 
osts for ea
h of these 4 SW 
omponents is 
onsidered on
e for di�er-

ent subfun
tion implementations of the same main fun
tion: on
e developed, they are

adapted for the related SF implementations. This assumption is adopted be
ause the

grouped subfun
tion implementations are 
losely related and they do not need a signi�-


ant development 
ost (as demonstrated in [Kanoun01℄ through an empiri
al 
ase study,

the 
ost of N variants (in design diversity) is not N times the 
ost of a single software

variant): (1) fault dete
tion implementations adapt to di�erent subfun
tions modifying

subfun
tion-spe
i�
 time/value thresholds; (2) re
on�guration implementations' devel-

opment 
ost does not di�er for di�erent subfun
tions, alternative implementations will

have allo
ated di�erent re
on�guration tables for di�erent subfun
tions, but rea
tiva-

tion logi
 holds the same for di�erent subfun
tion's re
on�guration implementations; (3)

re
on�guration's fault dete
tion implementations development 
ost for di�erent subfun
-

tions di�er only in the keepalive timeout, but their development is independent of any

subfun
tion; and (4) all the 
onsidered 
ontrol/dete
tor software implementations have

a 
losely related logi
.

Hardware 
ost: the 
ost estimation of sensors, 
ontrollers and a
tuators 
an be ob-

6

Let us assume X=4 years for 
al
ulation purposes.
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tained from their suppliers. Human 
ost related with mounting and testing tasks is


onsidered for sensors and a
tuators assuming 10 minutes per sensor (a
tuator) at a

rate of 60 e/hour.

4.6 Results

Taking the extended HW/SW ar
hite
tures of the safety-
riti
al Door Status Control and

Fire Prote
tion Control main fun
tions as a starting point (see Table 3.10 and Table

3.14 for the extended HW/SW ar
hite
tures of the Fire Prote
tion Control and the Door

Status Control main fun
tions respe
tively), the Dependability Evaluation Algorithm

is applied to both main fun
tions. Furthermore, 
riti
ality analysis to evaluate the

robustness of di�erent redundan
ies and un
ertainty analysis to manage the la
k of

failure data information of software and 
ommuni
ation resour
es are implemented as

well. Resultantly, in Subse
tion 4.6.1 and Subse
tion 4.6.2 the Dependability Evaluation

Models for the Fire Prote
tion Control and Door Status Control main fun
tions are

presented respe
tively. The failure rates and 
ost values of the di�erent resour
es are

presented in Appendix E.

4.6.1 Fire Prote
tion Control

In this subse
tion di�erent design strategies are analysed with respe
t to dependability

and 
ost for the Fire Prote
tion Control main fun
tion [Aizpurua14℄. By means of the

dependability evaluation model, simulations are performed to evaluate: (1) redundan
y

strategies; (2) re
on�guration strategies; and (3) validity of the hypothesis of the ideal

behaviour of fault dete
tion, re
on�guration and 
ommuni
ation.

Dependability Evaluation Model

A

ording to the DEM approa
h, subfun
tion's implementations are 
hara
terized with

the failure rates of its 
onstituent resour
es. For the Fire Dete
tion subfun
tion (
f.

Table 3.10, implementations #2 and #3), its implementation failures are spe
i�ed as
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follows

7

(see Equation 4.1 for more information about the λ notation):

F
FireDete
tion

1

= OR(λ
PU

FP

, λ
FireDete
tor

)

F
FireDete
tion

2

= OR(λ
PU

ACC_A

, λ
TemperatureSensor

, λ
SW

FireDete
tion

, λ
Comm

)

The same equation holds for the failure 
hara
terizations of the omission failures of:

fault dete
tion of the �re dete
tion (F
FD_FireDete
tion

1

O

- #4), re
on�guration of the �re

dete
tion (F
R_FireDete
tion

1

O

- #5, F
R_FireDete
tion

2

O

- #6), and fault dete
tion of the �re

dete
tion's re
on�guration (F
FD_R_FireDete
tion

1

O

- #7, F
FD_R_FireDete
tion

2

O

- #8) subfun
-

tions implementations:

F
FD_FireDete
tion

1

O

= OR(λ
PU

FP

, λ
SW

FD_FireDete
tion

, λ
Comm

)

F
R_FireDete
tion

1

O

= OR(λ
PU

FP

, λ
SW

R_FireDete
tion

)

F
R_FireDete
tion

2

O

= OR(λ
PU

ACC_A

, λ
SW

R_FireDete
tion

, λ
Comm

)

F
FD_R_FireDete
tion

1

O

= OR(λ
PU

ACC_A

, λ
SW

FD_R_FireDete
tion

, λ
Comm

)

F
FD_R_FireDete
tion

2

O

= OR(λ
PU

FP

, λ
SW

FD_R_FireDete
tion

, λ
Comm

)

A

ordingly, the false positive failures will be 
hara
terized with their 
hara
terizing

failure distribution and 
orresponding parameters: F
FD_FireDete
tion FP

= λ
FD_FireDete
tion FP

;

F
FD_R_FireDete
tion

1

FP

= λ
FD_R_FireDete
tion

1

FP

; F
FD_R_FireDete
tion

2

FP

= λ
FD_R_FireDete
tion

2

FP

.

The failure of the �re dete
tion subfun
tion will be 
hara
terized a

ording to the fol-

lowing equation:

F
FireDete
tion

= OR(F
All Impl._FireDete
tion

, F
Unresolved_FireDete
tion

, F
Dependen
ies_FireDete
tion

)

The F
All Impl._FireDete
tion

event will happen when ea
h implementation fails or is dete
ted

as failed:

F
All Impl._FireDete
tion

= AND(F
FireDete
tion

1

FP

, F
FireDete
tion

2

FP

)

where F
FireDete
tion

i

FP

= OR(F
FireDete
tion

i

, λ
FD_FireDete
tion FP

); i = {1, 2}.

7

For the sake of simpli�
ation we will in
lude in λComm failure rates of all the 
ommuni
ation

networks and inter
onne
ting gateway devi
e.
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Sin
e the �re dete
tion subfun
tion has 2 implementations, the failure unresolved event

will take into a

ount the failure unresolved situation of the �rst implementation:

F
Unr. Imp

1

_FireDete
tion

= OR(F
R Seq.

1

_FireDete
tion

, F
FD Seq.

1

_FireDete
tion

)

The re
on�guration sequen
e failure and fault dete
tion sequen
e failure for the �rst

implementation of the �re dete
tion subfun
tion are de�ned as follows:

F
R Seq.

1

_FireDete
tion

= PAND(F
R_FireDete
tion

, F
FireDete
tion

1

FP

)

The re
on�guration failure F
R_FireDete
tion

is developed as follows:

F
R_FireDete
tion

= OR(F
All R Impl._FireDete
tion

, F
R Unresolved_FireDete
tion

)

where,

F
All R Impl._FireDete
tion

= AND(F
R_FireDete
tion

1

O/FP

, F
R_FireDete
tion

2

O/FP

)

F
R_FireDete
tion

i

O/FP

= OR(F
R_FireDete
tion

i

O

, λ
R_FireDete
tion

i

FP

); i={1,2}

F
R Unresolved_FireDete
tion

= AND(F
FD_R

1

O

, F
FD_R

2

O

)

The fault dete
tion sequen
e failure for the �re dete
tion subfun
tion is de�ned as

follows:

F
FD Seq._FireDete
tion

1

= PAND(F
FD_FireDete
tion

, F
FireDete
tion

1

)

The fault dete
tion failure of the �re dete
tion F
FD_FireDete
tion

depends on the operation

of the destination subfun
tion (SF

DEST

), be
ause the FD implementation is lo
ated at

the same PU:

F
FD_FireDete
tion

= F
FD_Dest

1

The destination subfun
tion is the Fire Control Algorithm (FCA) subfun
tion (imple-

mentation #9 in Table 3.10):
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F
FD_Dest

1

= OR(F
FireControlAlgorithm

1

, F
FD_FireDete
tion

1

O

)

where,

F
FireControlAlgorithm

1

= OR(λ
PU

FP

, λ
SW

FireControl

, λ
Comm

)

Note that we have avoided in
luding �re 
ontrol algorithm subfun
tion's dependen
ies at

this level (i.e., user emergen
y signal and �re dete
tion subfun
tions) be
ause it would


reate a logi
al loop. Dependen
ies are taken into a

ount at a higher level (see �re


ontrol algorithm subfun
tion failure's 
hara
terization - F
FireControlAlgorithm

).

There is no input dependen
y for the �re dete
tion subfun
tion (F
Dependen
ies_FireDet

=

0): it is an input subfun
tion and therefore, it does not re
eive data from another

subfun
tion.

The user emergen
y signal input subfun
tion (
f. Table 3.10 #1) does not have redun-

dan
ies. Therefore, its failure 
hara
terization is dire
tly obtained through the failure


hara
terization of the implementation's 
onstituent resour
es:

F
UserEmergen
ySignal

= F
UserEmergen
ySignal

1

= OR(λ
Emergen
yButton, PU

FP

)

As for the �re 
ontrol algorithm, there are no implementation redundan
ies, but there

exist input dependen
ies. Therefore, its failure expression is as follows:

F
FireControlAlgorithm

= OR(F
All Impl._FireControlAlgorithm

, F
Dependen
ies_FireControlAlgorithm

)

where,

F
All Impl._FireControlAlgorithm

= F
FireControlAlgorithm

1

F
Dependen
ies_FireControlAlgorithm

= F
Dep. C_CL

F
Dep. C_CL

= AND(W
C_CL

, F
I_CL

)

W
C_CL

=NOT(F
FireControlAlgorithm

1

)

F
I_CL

= OR(F
UserEmergen
ySignal

, F
FireDete
tion

)
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Therefore, after simpli�
ation

8

, the �re 
ontrol algorithm subfun
tion's failure is spe
i-

�ed as follows:

F
FireControlAlgorithm

= OR(F
FireControlAlgorithm

1

, F
UserEmergen
ySignal

, F
FireDete
tion

)

Finally, the failure of the �re extin
tion subfun
tion (F
FireExtin
tion

) and a

ordingly, the

failure of the Fire Prote
tion Control main fun
tion is spe
i�ed as follows:

F
FireExtin
tion

= OR(F
All Impl._FireExtin
tion

, F
Unresolved_FireExtin
tion

, F
Dependen
ies_FireExtin
tion

)

Note that the �re extin
tion subfun
tion has one implementation (#10), therefore:

F
All Impl._FireExtin
tion

= F
FireExtin
tion

1

and F
Unresolved_FireExtin
tion

= 0.

F
FireExtin
tion

= OR(F
FireExtin
tion

1

, F
FireControlAlgorithm

)

F
FireExtin
tion

1

= OR(λ
PU

FP

, λ
Sprinkler

)

Redundan
y Strategies

To evaluate the failure probability of the Fire Prote
tion Control main fun
tion's

ar
hite
ture 
ombinations, the ar
hite
ture 
on�gurations displayed in Table 4.4 have

been tested.

Table 4.4: Fire Prote
tion Control Con�gurations with Alternative Redundan
y Strategies

ID
Con�guration

#1
No redundan
ies (
f. Table 3.8)

#2
1 Heterogeneous redundan
y (
f. Table 3.10)

#3 1 Homogeneous redundan
y 
onne
ted to the same PU

FP

#4 1 Homogeneous redundan
y 
onne
ted to a di�erent PU

Figure 4.7 depi
ts Fire Prote
tion Control 
on�gurations' relative failure probability

8A+A.B = A+B
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and relative 
ost normalized with respe
t to the 
on�guration without redundan
ies.

Alternative extended HW/SW ar
hite
tures are analysed adding a homogeneous or

heterogeneous redundan
y to the �re dete
tion subfun
tion. With homogeneous redun-

dan
ies, the �re dete
tion sensor has been repli
ated with two alternative 
on�gurations:


onne
t both �re dete
tion sensors to the PU

FP

(#3) or 
onne
t ea
h �re dete
tion sen-

sor to a di�erent PU (#4). All these 
on�gurations in
lude the same fault dete
tion

and re
on�guration implementations (
f. Table 3.10).
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y: Same PU; Relative Cost=1.532

Homogeneous Redundan
y: Di�erent PU; Relative Cost=1.616

Heterogeneous Redundan
y; Relative Cost=1.448

Figure 4.7: Relative Failure Probability & Cost of Fire Prote
tion Control Con�gurations

(10

6

iterations)

As Figure 4.7 depi
ts, heterogeneous redundan
y 
on�guration's failure prob-

ability is higher than homogeneous redundan
y 
on�guration when the extra

homogeneous redundan
y sensor is implemented in the same PU. However, when the

homogeneous redundan
y sensor is implemented in a additional PU, the failure prob-

ability of the ar
hite
ture with homogeneous redundan
y is higher. This happens be-


ause both 
on�gurations (the homogeneous redundan
y implemented in a additional

PU and the heterogeneous redundan
y) add extra resour
es to the extended HW/SW

ar
hite
ture, they be
ome more sensitive to the 
ommuni
ation failures, and a

ord-

ingly the failure probability in
reases. The di�eren
e between them relies on the used

resour
es: while the heterogeneous redundan
y implementation adds another PU and

relies on the existing temperature sensor and the 
orresponding SW resour
e to deter-

mine the presen
e of �re; the homogeneous redundan
y implementation adds another
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PU and another �re dete
tion sensor. The failure rate of both PUs is the same and

the failure rate of the SW resour
es is small 
ompared with the remainder resour
es

(λSWFireDet
= 1 × 10−2), however, the failure rate of the smoke sensor (λF ireSensor =

3.77× 10−2) is higher than the temperature sensor (λTempSensor = 1.49× 10−2).

As for the 
ost analysis, heterogeneous redundan
ies are more e
onomi
al than homo-

geneous redundan
ies be
ause this 
on�guration reuses already existing resour
es in the

system ar
hite
ture (i.e., temperature sensor, PU).

Clearly the reliability gain is something that should be evaluated in 
ase-by-
ase basis.

For example, in two years time the failure probability is only redu
ed approximately

by 10% while the 
ost is in
reased by 44% in the heterogeneous redundan
ies 
ase and

it is even more expensive in the other 
ases. In the Fire Prote
tion Control 
ase, the

minimum number of dete
tors per area unit is limited by law and the addition of extra

dete
tors would not be bene�
ial.

Re
on�guration Strategies

To analyse further the di�eren
es between homogeneous and heterogeneous redundan-


ies while 
onsidering the in�uen
e of re
on�guration strategies, failure 
riti
ality index

evaluations have been performed on the Fire Prote
tion Control main fun
tion's dif-

ferent ar
hite
tures. Namely, the re
on�guration subfun
tion implementations of �re

dete
tion have been dupli
ated: in one 
on�guration they have been distributed in two

di�erent PUs and in another 
on�guration they have been 
entralised in the same PU

(
f. Table 3.10).

Table 4.5 displays the impa
t of the failure of redundan
y and re
on�guration strategies

on the system failure o

urren
e. The shown values are the in�uen
e of (1) �re dete
tion

subfun
tion's redundan
y (FF ireDetection2
) and (2) its re
on�guration strategies (FR Seq.)

on the Fire Prote
tion main fun
tion's failure .

Failure 
riti
ality index values provide indi
ators about bottlene
k in�uen
es on system

reliability: heterogeneous and homogeneous redundan
ies implemented in di�erent PUs

perform better than homogeneous redundan
ies lo
ated on the same PU due to the

bottlene
k in�uen
e on 
ausing the top event. That is, PU

FP

performs as a 
ommon


ause failure and its failure in
urs the simultaneous failure of other subfun
tion im-
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Table 4.5: Failure Criti
ality Index Values of the Fire Prote
tion Control (10

6

iterations)

Re
on�guration

Strategy

Centralised Distributed

Redundan
y

Strategy

Homogeneous

Same PU

Homogeneous

Di�erent

PU

Heterogeneous

Homogeneous

Same PU

Homogeneous

Di�erent

PU

Heterogeneous

FCIFFireDetection2
0.339027 0.174606 0.179927 0.276643 0.154960 0.170669

FCIFR Seq.
0.177554 0.171728 0.174496 0.114232 0.107315 0.106994

plementations. The same logi
 applies to the re
on�guration strategies: distributed

re
on�guration implementations perform better than 
entralised implementations due

to the bottlene
k in�uen
e on system failure probability.

In�uen
e of Health Management Implementations

Taking the heterogeneous redundan
y 
on�guration (#2) as a starting point (
f. Table

3.10), Figure 4.8 depi
ts normalized system's failure probability values (with respe
t

to the ar
hite
ture without assumptions) for di�erent 
on�gurations under di�erent

assumptions regarding ideal fault dete
tion, re
on�guration and 
ommuni
ation imple-

mentations.

As Figure 4.8 shows there is a 2.5% maximum di�eren
e in relative failure probabil-

ity between the real 
on�guration and ideal 
on�gurations in whi
h the fault dete
tion,

re
on�guration and 
ommuni
ation are assumed to be ideal in all possible 
ombinations.

Among the ideal implementations, the 
on�guration with the ideal 
ommuni
ation (
f.


yan line) deviates the most from their real values. Indeed, assumptions about the ideal

behaviour of the fault dete
tion and re
on�guration implementations in�uen
e only the

�re dete
tion subfun
tion's performan
e, be
ause �re dete
tion is the only subfun
tion

with redundan
ies within the Fire Prote
tion Control main fun
tion. The 
ommuni-


ation in�uen
es many di�erent subfun
tions and their implementations and therefore,

the assumption about the ideal behaviour of the 
ommuni
ation plays a more impor-

tant role 
ompared with the ideal performan
e of the fault dete
tion and re
on�guration

implementations.

Among health management implementations, fault dete
tion implementation has a 
on-
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2 Centralised Re
on�guration Implementations; Heterogeneous Redundan
y Con�guration

Ideal: FD, R, Comm

Ideal: FD, R

Ideal: R, Comm

Ideal: FD, Comm

Ideal: FD

Ideal: R

Ideal: Comm

Figure 4.8: Failure Probability of Fire Prote
tion Control Con�gurations under Di�erent

Assumptions (10

6

iterations)

siderable e�e
t on the system failure probability 
ompared with the re
on�guration im-

plementation's in�uen
e (
f. magenta line). While the re
on�guration implementation

has redundant implementations, the fault dete
tion implementation is a single point of

failure and it a�e
ts dire
tly to the �re dete
tion subfun
tion failure.

As Table 4.6 displays, we 
al
ulate the failure 
riti
ality index to (1) 
he
k the 
oheren
y

of the results showed in the Figure 4.8 and (2) see the e�e
t of the failure of di�erent

events on the Fire Prote
tion Control main fun
tion failure. Namely, failure 
riti
ality

index values of the �re 
ontrol algorithm subfun
tion (FCIFFCA
), �re dete
tion sub-

fun
tion (FCIFFireDet
), fault dete
tion sequen
e of the �re dete
tion (FCIFFD_FireDet Seq.

)

and re
on�guration sequen
e of the fault dete
tion subfun
tions (FCIFR_FireDet Seq.
) have

been 
al
ulated. Besides, as a further referen
e to the previous results, the system failure

probability at the time instant T = 5 is also displayed (Fire Extin
tion (FE) subfun
tion

failure FFE � T = 5) in the Table 4.6.

As Table 4.6 
on�rms, the in�uen
e of the 
ommuni
ation's performan
e is 
onsiderable

in 
onjun
tion with the �re dete
tion's fault dete
tion. Let us 
onsider the FCIFFCA

ol-

umn: while assuming ideal re
on�guration implementations deviates only by %0.38 from
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Table 4.6: Unreliability and FCI values for Fire Prote
tion Control Con�gurations under

Di�erent Assumptions (10

6

iterations)

Con�g.

FFireExtinction

� T = 5

FCIFFCA
FCIFFireDet

FCIFFD_FireDet Seq.
FCIFR_FireDet Seq.

Ideal:

FD, R,

Comm

0.6497 0.3851 0.1442 0 0

Ideal:

Comm,

FD

0.6499 0.3869 0.2597 0 0.1725

Ideal:

Comm, R

0.6547 0.3975 0.279 0.1862 0

Ideal:

Comm.

0.6549 0.3995 0.2815 0.1838 0.167

Ideal:

FD, R

0.6584 0.3988 0.1418 0 0

Ideal: FD
0.6585 0.4003 0.257 0 0.1725

Ideal: R
0.6634 0.4106 0.2765 0.1884 0

Real 0.6634 0.4122 0.2788 0.187 0.1744

the failure 
riti
ality index values of the real 
on�guration, there is a %6.53 deviation

if we 
onsider the 
on�guration asso
iated with the ideal 
ommuni
ation performan
e

and ideal fault dete
tion performan
e.

If we 
ompare the failure 
riti
ality index values of the �re dete
tion (FCIFFireDet
) and

�re prote
tion 
ontrol algorithm (FCIFFCA
) subfun
tions, we 
an see that the 
ontri-

bution of the �re dete
tion subfun
tion failure to the top event's failure o

urren
e is

redu
ed be
ause: (1) other subfun
tions (user emergen
y signal subfun
tion and �re pro-

te
tion 
ontrol algorithm subfun
tion) also do in�uen
e to the system failure o

urren
e;

and (2) there are repeated resour
es whi
h 
ause the failure of di�erent subfun
tions

simultaneously (e.g., PU

FP

), 
ontributing to their failure 
riti
ality index values alto-

gether. This is why despite having a di�eren
e of 0.1 or greater between FCIFFireDet

values for di�erent 
on�gurations, the top event's failure probability does not have 
on-

siderable 
hanges (if any).

Figure 4.9 shows the se
ond order failure probability of the heterogeneous redundan
y
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on�guration with 2 redundan
y implementations (
f. Table 3.10) at the time instant

T = 5 for di�erent 
ommuni
ation's failure rate intervals. That is, how the 
ommuni-


ation's failure rate impa
ts on the system's failure probability distribution.
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Figure 4.9: Fire Prote
tion Control Failure Probability Distribution: Communi
ation's Fail-

ure Rate In�uen
e (10

4×5.103 iterations)

As Figure 4.9 shows, the mean of the failure probability of the Fire Prote
tion Control

main fun
tion in
reases with an in
rement in the range of values of the 
ommuni
ation's

failure rate. These probability density fun
tion graphi
s show whi
h is the impa
t of

the 
ommuni
ation resour
e's possible failure rates on the system's failure probability.

4.6.2 Door Status Control

In this subse
tion di�erent analyses for the Door Status Control main fun
tion are

performed to evaluate di�erent design de
isions and their in�uen
e on dependability

and 
ost. By means of the dependability evaluation model, simulations are performed to

evaluate: (1) redundan
y strategies; (2) re
on�guration strategies; and (3) validity of the

hypothesis of the ideal behaviour of fault dete
tion, re
on�guration and 
ommuni
ation.
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Dependability Evaluation Model

A

ording to the Dependability Evaluation Modelling approa
h, subfun
tion's imple-

mentations are 
hara
terized with its 
onstituent resour
es' failure rates. For the Door

Open Dete
tion (DOD) subfun
tion (
f. Table 3.14, implementations #7 and #8), its

implementation failures are spe
i�ed as follows

9

(see Equation 4.1 for more information

about the λ notation):

F
DoorOpenDete
tion

1

= OR(λ
PU

DSC_A

, λ
OpenSensor

)

F
DoorOpenDete
tion

2

= OR(λ
PU

Cam

, λ
Camera

, λ
SW

OpenDet

, λ
Comm

)

The same equation holds for the failure 
hara
terizations of the omission failures of:

fault dete
tion of the door open dete
tion (F
FD_DoorOpenDete
tion

1

O

- #9), re
on�guration

of the door open dete
tion (F
R_DoorOpenDete
tion

1

O

- #10, F
R_DoorOpenDete
tion

2

O

- #11), and

fault dete
tion of the door open dete
tion's re
on�guration (F
FD_R_DoorOpenDete
tion

1

O

-

#12; F
FD_R_DoorOpenDete
tion

2

O

- #13) subfun
tions implementations:

F
FD_DoorOpenDete
tion

1

O

= OR(λ
PU

DSC_A

, λ
SW

FD_DOD

, λ
Comm

)

F
R_DoorOpenDete
tion

1

O

= OR(λ
PU

DSC_A

, λ
SW

R_DOD

)

F
R_DoorOpenDete
tion

2

O

= OR(λ
PU

Cam

, λ
SW

R_DOD

, λ
Comm

)

F
FD_R_DoorOpenDete
tion

1

O

= OR(λ
PU

Cam

, λ
SW

FD_R_DOD

, λ
Comm

)

F
FD_R_DoorOpenDete
tion

2

O

= OR(λ
PU

DSC_A

, λ
SW

FD_R_DOD

, λ
Comm

)

A

ordingly, the false positive failures will be 
hara
terized with their 
hara
terizing

failure distribution and 
orresponding parameters: F
FD_DoorOpenDete
tion FP

= λ
FD_DOD FP

,

F
FD_R_DoorOpenDete
tion

i

FP

= λ
FD_R_DoorOpenDete
tion

i

FP

i={1,2}.

The failure of the door open dete
tion subfun
tion will be 
hara
terized a

ording to

the following equation:

F
DoorOpenDete
tion

= OR(F
All Impl._DOD

, F
Unresolved_DOD

, F
Dependen
ies_DOD

)

The F
All Impl._DOD

event will happen when ea
h implementation fails or is dete
ted as

9

For the sake of simpli�
ation we will in
lude in λComm failure rates of all the 
ommuni
ation

networks and inter
onne
ting gateway devi
e.

134



failed:

F
All Impl._DOD

= AND(F
DoorOpenDete
tion

1

FP

, F
DoorOpenDete
tion

2

FP

)

where F
DoorOpenDete
tion

i

FP

= OR(F
DoorOpenDete
tion

i

, λ
FD_DoorOpenDete
tion FP

); i = {1, 2}.

Sin
e the door open dete
tion subfun
tion has 2 implementations, the failure unresolved

event will take into a

ount the failure unresolved situation of the �rst implementation:

F
Unr. Imp

1

_DOD

= OR(F
R Seq.

1

_DoorOpenDete
tion

, F
FD Seq.

1

_DoorOpenDete
tion

)

The re
on�guration sequen
e failure and fault dete
tion sequen
e failure for the �rst

implementation of the door open dete
tion subfun
tion are de�ned as follows:

F
R Seq.

1

_DoorOpenDete
tion

= PAND(F
R_DoorOpenDete
tion

, F
DoorOpenDete
tion

1

FP

)

The re
on�guration failure F
R_DOD

is developed as follows:

F
R_DOD

= OR(F
All R Impl._DoorOpenDete
tion

, F
R Unresolved_DoorOpenDete
tion

)

where,

F
All R Impl._DoorOpenDete
tion

= AND(F
R_DoorOpenDete
tion

1

O/FP

, F
R_DoorOpenDete
tion

2

O/FP

)

F
R_DoorOpenDete
tion

i

O/FP

= OR(F
R_DoorOpenDete
tion

i

O

, λ
R_DOD

i

FP

)

F
R Unresolved_DoorOpenDete
tion

= AND(F
FD_R_DoorOpenDete
tion

1

O

, F
FD_R_DoorOpenDete
tion

2

O

)

The fault dete
tion sequen
e failure for the door open dete
tion subfun
tion is de�ned

as follows:

F
FD Seq._DoorOpenDete
tion

1

= PAND(F
FD_DoorOpenDete
tion

, F
DoorOpenDete
tion

1

)

The fault dete
tion failure of the door open dete
tion F
FD_DoorOpenDete
tion

depends on

the operation of the destination subfun
tion (SF

DEST

), be
ause the FD implementation

is lo
ated at the same PU:
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F
FD_DoorOpenDete
tion

= F
FD_Dest

1

The destination subfun
tion is the Door Control Algorithm (DCA) subfun
tion (imple-

mentation #23 in Table 3.14):

F
FD_Dest

1

= OR(F
DoorControlAlgorithm

1

, F
FD_DoorOpenDete
tion

1

O

)

where,

F
DoorControlAlgorithm

1

= OR(λ
PU

DSC_A

, λ
SW_CL

, λ
Comm

)

Note that door 
ontrol subfun
tion's dependen
ies are not taken into a

ount deliber-

ately to avoid 
reating logi
al loops. At this level, we 
onsider only the implementa-

tion failure itself, and when 
hara
terizing the failure of the door 
ontrol subfun
tion

(F
DoorControlAlgorithm

) its dependen
ies will be 
onsidered.

There is no input dependen
y for the door open dete
tion subfun
tion, be
ause it is

an input subfun
tion and therefore, it does not require to re
eive data from another

subfun
tion (F
Dependen
ies_DOD

= 0).

The failure 
hara
terization of the Door Closed Dete
tion (DCD) subfun
tion failure

(F
DCD

) follows exa
tly the same pro
ess a

ounting for its respe
tive resour
es' failures.

The remainder of input subfun
tions (Enable Door Passenger - EDP #3, Door Close

Command - DCC #4, Door Open Command - DOC #5, #6, Door Velo
ity - DV

#21 and Obsta
le Dete
tion - OD #22) do not have redundan
ies and therefore, their

failure 
hara
terization is dire
tly obtained through the failure 
hara
terization of the

implementation's 
onstituent resour
es:

F
EnableDoorPassenger

= F
EnableDoorPassenger

1

= OR(λ
EDD, PU

Driver

, λ
EnableButton

Driver

, λ
Comm

)

F
DoorCloseCommand

= F
DoorCloseCommand

1

= OR(λ
PU

Driver

, λ
CloseButton

Driver

)

F
DoorVelo
ity

= F
DoorVelo
ity

1

= OR(λ
PU

DSC_A

, λ
Velo
itySensor

)

F
Obsta
leDete
tion

= F
Obsta
leDete
tion

1

= OR(λ
PU

DSC_A

, λ
Obsta
leSensor

)

However, note that door open 
ommand has two 2 implementations whi
h operate as
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a
tive redundan
ies:

F
DoorOpenCommand

1

= OR(λ
PU

Driver

, λ
OpenButton

Driver

)

F
DoorOpenCommand

2

= OR(λ
PU

DSC_A

, λ
OpenButton

Passenger

)

F
DoorOpenCommand

= AND(F
DoorOpenCommand

1

, F
DoorOpenCommand

2

)

As for the door 
ontrol algorithm, there are no implementation redundan
ies, but there

exist input dependen
ies. Therefore, its failure expression is as follows:

F
DoorControlAlgorithm

= OR(F
All Impl._DoorControlAlgorithm

, F
Dependen
ies_DoorControlAlgorithm

)

where,

F
All Impl._DoorControlAlgorithm

= F
DoorControlAlgorithm

1

F
Dependen
ies_DoorControlAlgorithm

= F
Dep. C_CL

F
Dep. C_CL

= AND(W
C_CL

, F
I_CL

)

W
C_CL

=NOT(F
DoorControlAlgorithm

1

)

F
I_CL

= OR(F
EDP

, F
DCC

, F
DOC

, F
DoorOpenDete
tion

, F
DCD

, F
DV

, F
OD

)

Therefore, after simpli�
ation

10

, the door 
ontrol algorithm subfun
tion's failure is spe
-

i�ed as follows:

F
DCA

= OR(F
DCA

1

, F
EDP

, F
DCC

, F
DOC

, F
DOD

, F
DCD

, F
DV

, F
OD

)

Finally, the failure of the door manipulation (DM) subfun
tion (F
DoorManipulation

) and

a

ordingly, the failure of the Door Status Control main fun
tion is spe
i�ed as follows:

F
DoorManipulation

= OR(F
All Impl._DM

, F
Unresolved_DM

, F
Dependen
ies_DM

)

Note that the door manipulation subfun
tion has one implementation (#24), therefore:

F
All Impl._DoorManipulation

= F
DoorManipulation

1

and F
Unresolved_DoorManipulation

= 0.

10A+A.B = A+B
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F
DoorManipulation

= OR(F
DoorManipulation

1

, F
DoorControlAlgorithm

)

F
DoorManipulation

1

= OR(λ
PU

DSC_A

, λ
Motor

)

Redundan
y Strategies

For simpli
ity, 2 heterogeneous redundan
ies have been 
onsidered in the extended

HW/SW ar
hite
ture displayed in Table 3.14 (door open dete
tion, door 
losed dete
-

tion). In order to add further optimization possibilities (and ar
hite
ture 
ombinations)

to the extended HW/SW ar
hite
ture all possible heterogeneous redundan
ies have been

in
luded. Therefore, within the design 
onsiderations we will in
lude homogeneous and

heterogeneous redundan
ies for obsta
le dete
tion and door velo
ity subfun
tions, apart

from the previously 
onsidered door open dete
tion and door 
losed dete
tion subfun
-

tions' heterogeneous redundan
ies.

Figure 4.10 shows relative 
ost and failure probability of Door Status Control main fun
-

tion's alternative 
on�gurations with respe
t to the Door Status Control 
on�guration

without redundan
ies des
ribed in the fun
tional model at Table 3.12. Among the 4 in-

put subfun
tions with heterogeneous redundan
ies (Door Open Dete
tion - DOD, Door

Closed Dete
tion - DCD, Obsta
le Dete
tion - OD, and Door Velo
ity - DV), as Table

4.7 displays, alternative extended HW/SW ar
hite
tures are analysed adding one addi-

tional heterogeneous redundan
y and/or homogeneous redundan
y to ea
h subfun
tion

using the re
on�guration strategy 2R Centralised des
ribed in Table 4.8.

Table 4.7: Door Status Control Con�gurations with Alternative Redundan
y Strategies

ID Con�guration

#1
No redundan
ies (
f. Table 3.12)

#2 4 Heterogeneous redundan
ies

#3 4 Homogeneous redundan
ies

#4 3 Heterogeneous redundan
ies: DCD, DOD, DV; 1 homogeneous redundan
y: OD

#5 2 Heterogeneous redundan
ies: DCD, DOD; 2 homogeneous redundan
ies: OD, DV

#6 1 Heterogeneous redundan
y: DCD; 3 homogeneous redundan
ies: OD, DV, DOD

138



In all the 
on�gurations displayed in Table 4.7, homogeneous redundan
ies are 
reated

by repli
ating the 
orrespondent subfun
tion implementation's sensor and 
onne
ting

them to the existing PU

DSC_A

operating as a
tive redundan
y.
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Figure 4.10: Relative Failure Probability & Cost of Alternative Door Status Control Main

Fun
tion's Con�gurations for the Train.Car

1

.Zone

A

.Door (10

6

iterations)

As Figure 4.10 depi
ts, heterogeneous redundan
ies are more e
onomi
al than homoge-

neous redundan
ies, nevertheless, their drawba
k is that it is ne
essary to add further

me
hanisms (SW) to make implementations 
ompatible, whi
h leads to having slightly

worse reliability than homogeneous redundan
ies due to the in
reased failure sour
es.

To analyse further di�eren
es between homogeneous redundan
ies and heterogeneous

redundan
ies, we 
al
ulate the 
ontribution of the door open dete
tion subfun
tion

failure on the main fun
tion failure (failure 
riti
ality index - 
f. Se
tion 4.3). At the

same time, the un
ertainty of the failure rate data (
f. Se
tion 4.4) of the open dete
tion

subfun
tion software (SW_Det) has been taken into a

ount. Figure 4.11 and Figure

4.12 show the distribution of the failure 
riti
ality index values of door open dete
tion

subfun
tion's redundan
y 
omponents with λ
SW_Det

= [0.001-0.1℄.

From Figure 4.11 and Figure 4.12 it is 
lear that the reuse of hardware 
omponents

adds bottlene
ks to the system design resulting in a worse FCI value than distributing

tasks among di�erent 
omponents: in the heterogeneous redundan
y 
on�guration the


amera is 
onne
ted to one PU and the original sensor is in another PU (
f. Figure 4.11),

while in the homogeneous redundan
y 
on�guration redundant sensors are 
onne
ted to
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Figure 4.11: FCIDOD - Heterogeneous

Redundan
y (10
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iterations)

5 · 10−2 0.1 0.15
0

0.1

0.2

0.3

0.4

mean=0.1506 std dev=0.0089

P

r

o

b

a

b

i

l

i

t

y

Figure 4.12: FCIDOD - Homogeneous

Redundan
y (10

6

iterations)

the same PU (
f. Figure 4.12), whi
h explains why heterogeneous implementations are

less 
riti
al in this 
ase.

Re
on�guration Strategies

To analyse the in�uen
e of the number and distribution of re
on�guration implemen-

tations on system dependability, this nomen
lature is adopted: SF

i

refers to the i -th

implementation of the subfun
tion (e.g., R_DOD

1

designates the �rst implementation

of the door open dete
tion's re
on�guration subfun
tion) and 1R, 2R and 3R identify

the number of re
on�guration implementations.

Based on the system ar
hite
ture 
omprised of 4 heterogeneous redundan
ies, alter-

native re
on�guration strategies have been tested with di�erent failure rate values of

health management SW 
omponents (λ
SW_HM

): SW_FD, SW_R and SW_FD_R. The

failure rates of these software resour
es have been modi�ed altogether to highlight the

in�uen
e of re
on�guration implementations on system unreliability at the T = 10 years

time instant with 10

6

Monte Carlo trials.

From Table 4.8 two main patterns are identi�ed: the greater the λ
SW_HM

and number of

re
on�guration redundan
ies, the better the reliability of distributed re
on�gurations.

The unreliability of 
entralised re
on�gurations 
on�rms that the introdu
tion of addi-
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Table 4.8: Door Status Control Failure Probability for Re
on�guration Distribution Strategies

(T=10 years)

Con�guration Re
on�guration Implementation Distributions

DSC Fail. Prob.

λ
SW_HM

=0.05

λ
SW_HM

=0.15

λ
SW_HM

=0.25

1R Centralised PU

1

(R_DOD

1

, R_DCD

1

, R_OD

1

, R_DV

1

) 0.856 0.887 0.902

1R Distributed

PU

1

(R_DOD

1

); PU

2

(R_DCD

1

); PU

3

(R_OD

1

);

PU

4

(R_DV

1

)

0.867 0.892 0.904

2R Centralised

PU

1

(R_DOD

1

, R_DCD

1

,R_OD

1

, R_DV

1

);

PU

2

(R_DOD

2

, R_DCD

2

, R_OD

2

, R_DV

2

)

0.850 0.888 0.905

2R Distributed

PU

1

(R_DOD

1

, R_DCD

2

); PU

2

(R_DOD

2

, R_DCD

1

);

PU

3

(R_OD

1

, R_DV

2

); PU

4

(R_OD

2

, R_DV

1

)

0.853 0.888 0.905

3R Centralised

PU

1

(R_DOD

1

, R_DCD

1

, R_OD

1

, R_DV

1

);

PU

2

(R_DOD

2

, R_DCD

2

, R_OD

2

, R_DV

2

);

PU

3

(R_DOD

3

, R_DCD

3

, R_OD

3

, R_DV

3

)

0.838 0.874 0.897

3R Distributed

PU

1

(R_DOD

1

,R_DCD

2

,R_OD

3

);

PU

2

(R_DOD

2

,R_DCD

1

,R_DV

3

);

PU

3

(R_DOD

3

,R_OD

1

,R_DV

2

);

PU

4

(R_DCD

3

,R_OD

2

,R_DV

1

)

0.839 0.875 0.897

tional 
omponents in
rease system failure sour
es. However, with the in
rease of the

failure rate values and re
on�guration's redundan
ies, system's 
ommon 
ause failures

gain importan
e and distributed implementations perform better than 
on�gurations

with system bottlene
ks.

Interestingly, we 
ome up with a �threshold� failure probability, where from that point

on, the distribution of re
on�guration strategies have no impa
t on the reliability of

the system ar
hite
ture. The �threshold� failure probability de
reases as the number

of re
on�guration's redundan
y implementations in
reases (see grey 
ells in Table 4.8).

This should be studied further, but it seems logi
al that the higher the unreliability of the

re
on�guration implementations, the impa
t of the re
on�guration strategies be
omes

less important.
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In�uen
e of Health Management Implementations

To validate the feasibility of the assumption of the ideal (non-faulty) behaviour of fault

dete
tion, re
on�guration and 
ommuni
ation implementations, we evaluate their in�u-

en
e on system's dependability under di�erent assumptions.

Taking the 
on�guration (2) of Figure 4.10 as the referen
e 
on�guration, Figure 4.13

depi
ts the results of di�erent ar
hite
tures to test the feasibility of the hypotheses about

the ideal behaviour of fault dete
tion, re
on�guration and 
ommuni
ation implementa-

tions. The out
ome failure probability of di�erent 
on�gurations has been normalized

with respe
t to the referen
e 
on�guration, in whi
h the behaviour of the fault dete
-

tion, re
on�guration and 
ommuni
ation implementations have been 
onsidered with

their respe
tive failure 
hara
terization.
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2R - Centralised; 4 Heterogeneous Redundan
ies

Ideal: FD, R, Comm

Ideal: FD, R

Ideal: R, Comm

Ideal: FD, Comm

Ideal: FD

Ideal: R

Ideal: Comm

Figure 4.13: Door Status Control: Ideal Con�gurations Relative Failure Probabilities w.r.t.

Referen
e Con�guration (10

6

iterations)

As Figure 4.13 depi
ts, there is a 7% maximum di�eren
e between the ideal and the

referen
e 
on�gurations in whi
h the fault dete
tion, re
on�guration and 
ommuni
ation

implementations are assumed perfe
tly reliable (
f. yellow line). Besides, the in�uen
e

of the failure behaviour of the fault dete
tion is also noti
eable (dashed purple line). In

this spe
i�
 
ase, this issue is 
aused by the la
k of redundan
y implementations for the

fault dete
tion subfun
tion.
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To further evaluate the in�uen
e of the fault dete
tion and re
on�guration subfun
-

tion failures on system unreliability, failure 
riti
ality index evaluations have been per-

formed for the 
on�gurations depi
ted in Figure 4.10: 4 heterogeneous redundan
y

and 4 homogeneous redundan
y 
on�gurations. For the homogeneous redundan
y


on�guration (
on�guration #3 in Table 4.7), 2 alternative arrangements have been

tested: 
onne
t expli
it homogeneous sensors to the same PU or 
onne
t expli
it homo-

geneous sensors to di�erent PUs. Table 4.9 displays the in�uen
e of the failure of fault

dete
tion and re
on�guration subfun
tions on di�erent Redundan
y Strategies (RS).

Table 4.9: FCIFFD_SF
and FCIFR_SF

using Di�erent Redundan
y Strategies (10

6

iterations)

RS
FCIFFD_DOD

FCIFR_DOD
FCIFFD_DCD

FCIFR_DCD
FCIFFD_OD

FCIFR_OD
FCIFFD_DV

FCIFR_DV

A
0.1520 0.1367 0.1524 0.1374 0.1520 0.1372 0.1563 0.1416

B 0.2265 0.1949 0.2267 0.1956 0.2265 0.1954 0.2362 0.1999

C 0.1826 0.1623 0.1832 0.1632 0.1825 0.1627 0.1863 0.1674

A: 4 Homogeneous Redundan
ies 
onne
ted to di�erent expli
itly added 4 PUs

B: 4 Homogeneous Redundan
ies 
onne
ted to the same existing PU

DSC

C: 4 Heterogeneous Redundan
ies

Supporting the statements from Figure 4.13, Table 4.9 displays that the FCI values

of fault dete
tion subfun
tion failures have higher 
riti
ality than re
on�guration sub-

fun
tion failures. With respe
t to the in�uen
e of alternative redundan
y arrangements

on system's failure o

urren
e, Table 4.9 also des
ribes how the in�uen
e on the top

event's failure o

urren
e of fault dete
tion and re
on�guration subfun
tions in
reases

when 
on
entrating redundan
ies in the same PU.

To 
he
k the 
onsisten
y of the data depi
ted in Figure 4.13, Table 4.10 displays the

failure 
riti
ality index values of alternative subfun
tion failures under di�erent assump-

tions: door 
ontrol algorithm (FCIFDCA
) and door open dete
tion (FCIFDOD

) as an ex-

ample of input subfun
tion's failure in�uen
e. Besides, the failure in�uen
es of the fault

dete
tion sequen
e of the door open dete
tion (FCIFFD_DOD Seq.
) and re
on�guration

sequen
e of the door open dete
tion (FCIFR_DOD Seq.
) on the system failure o

urren
e

are also analysed.

Figure 4.13 and Table 4.10 agree on the results, so that the less 
riti
al (more reliable)

ar
hite
ture is the ideal 
on�guration and the more unreliable the 
on�guration with
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Table 4.10: Failure Probabilities and FCI Values for Con�gurations under Di�erent Assump-

tions (10

6

iterations)

Con�g. FDM � T = 5 FCIFDCA
FCIFDOD

FCIFFD_DOD Seq.
FCIFR_DOD Seq.

Ideal:

FD, R,

Comm

0.8724 0.9222 0.0953 0 0

Ideal:

Comm,

FD

0.873 0.9221 0.1016 0 0.0522

Ideal:

FD, R

0.878 0.9236 0.0931 0 0

Ideal: FD 0.879 0.9237 0.0994 0 0.0542

Ideal:

Comm, R

0.9007 0.9278 0.2123 0.1461 0

Ideal:

Comm.

0.9011 0.9279 0.2119 0.1456 0.0798

Ideal: R 0.878 0.9278 0.2121 0.146 0

Referen
e 0.906 0.9291 0.2085 0.1456 0.0851

the real referen
e model. Furthermore, we see that the in�uen
e of the fault dete
tion

is the most 
onsiderable 
ompared with fault dete
tion and 
ommuni
ation. Let us

fo
us on the 
olumn FCIFDCA
: while assuming ideal re
on�guration and 
ommuni
ation

implementations di�ers in 0.14% and 0.129% from the referen
e 
on�guration's failure


riti
ality index value respe
tively, assuming ideal fault dete
tion implementation does

make a 0.584% di�eren
e between ideal fault dete
tion and referen
e 
on�guration.

Let us now fo
us on the 
olumn FCIFDOD
: we 
an see that the 
on�guration whi
h as-

sumes ideal fault dete
tion (and 
ombinations thereof with ideal re
on�guration and/or

ideal 
ommuni
ation) implementation has the biggest di�eren
e with respe
t to the

referen
e 
on�guration. Note that the door open dete
tion subfun
tion is one of the


ontributors to the top event o

urren
e, but not the only one, the remainder of input

subfun
tions, door 
ontrol algorithm subfun
tion and the door manipulation implemen-

tation's resour
es also do in�uen
e to the top-event failure o

urren
e.

As for the analysis of the in�uen
e of the 
ommuni
ation on the system failure prob-

ability, un
ertainty analyses have been implemented. To this end, di�erent interval
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values have been assigned to the 
ommuni
ation's failure rate and we have analysed

its in�uen
e on the distribution of the top-event failure frequen
y at the time instant

T = 5 (
f. Figure 4.14). The analyses have been performed on the 
on�guration with 4

heterogeneous redundan
ies and 2 
entralised re
on�guration implementations.
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0.00
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0.15

lambda = [0.1-0.2℄; mean= 0.831; std dev= 0.0244

Figure 4.14: Failure Probability Distribution: 2R Centralised Heterogeneous Con�guration -

Communi
ation's Failure Rate Intervals (10

4×5.103 iterations)

As Figure 4.14 
on�rms, an in
rease in the failure rate of the 
ommuni
ation results

in a worse system's failure probability. The shape of the system's failure probability

distribution depends on the sele
ted 
ommuni
ation's failure rate interval.

4.7 Con
lusions

In this 
hapter the algorithm and its implementation for the reliability assessment of

the extended HW/SW ar
hite
ture have been des
ribed. This approa
h makes possi-

ble the systemati
 evaluation of the in�uen
e on dependability and 
ost of redundan
y

strategies, re
on�guration strategies and the in�uen
e of health management and 
om-

muni
ation implementations on system failure probability. The probabilisti
 evaluation

of the dependability evaluation model has been performed using the 
ombination of
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Dynami
 Fault Tree and Component Fault Tree paradigms: Component Dynami
 Fault

Trees.

Besides, the outlined approa
h makes possible the evaluation of the in�uen
e of

ideal/non-ideal fault dete
tion, re
on�guration and 
ommuni
ation implementations on

system failure probability. To this end, the in�uen
e of these implementations on system

failure probability has been taken into a

ount and their 
ontribution to the system fail-

ure o

urren
e has been evaluated using importan
e measurements.

Furthermore, in order to deal with the la
k of exa
t failure data information of software

resour
es as well as 
ommuni
ation implementations, un
ertainty analysis algorithms

have been implemented within the Dependability Evaluation Modelling approa
h. The

implementation enables the spe
i�
ation of interval failure rates (instead of single value

data) and 
al
ulation of the failure probability distributions of top events failure prob-

ability o

urren
es.

As for the 
ost assessment of extended HW/SW ar
hite
tures whi
h use homogeneous or

heterogeneous redundan
ies, the main di�eren
e remains in the software development


ost. While homogeneous redundan
ies add an expli
it hardware 
omponent to make

possible the system re
on�guration, heterogeneous redundan
ies require additional (�t

for purpose) software to reuse 
ompatible implementations for further subfun
tions.

The 
ost of hardware resour
es is 
omputed dire
tly, but software implementations 
ost

needs 
onsidering additional fa
tors. Software 
ost 
an be divided into development

and maintenan
e 
ost. Development of 2 di�erent software implementations with sim-

ilar 
hara
teristi
s is not quanti�ed intuitively. In this dissertation we have grouped

the development 
ost of similar SW resour
es 
onsidering their development 
ost on
e.

Besides, we have also 
onsidered that the SW development 
osts will be paid o� in X

11

years (see Appendix E for the used failure rate and 
ost values).

All in all, the evaluation of whi
h redundan
y strategy is 
heaper does not have

only one answer. Depending on the type of heterogeneous redundan
y strategy

their 
osts also will be di�erent. Generally speaking heterogeneous redundan
ies

arising from natural 
ompatibilities require less additional resour
es than heteroge-

neous redundan
ies arising from for
ed 
ompatibilities. Therefore, depending on the

type of heterogeneous redundan
y strategy the 
omparison between homogeneous and

11

X=4 years for 
al
ulation purposes.
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heterogeneous redundan
y strategies will be di�erent.

In the 
ase of infotainment fun
tions, their failure o

urren
e does not pose 
riti
al issues

for the system design. However, when 
onsidering safety-
riti
al fun
tion failures their

inability to perform 
an lead to the unavailability of the whole system. For instan
e, if

a door of a train 
ar fails (e.g., it is not possible to determine whether it is opened or


losed) it is possible that the system requires stopping 
ompletely and the asso
iated


osts will in
rease 
onsiderably. In these 
ases, the use of heterogeneous redundan
ies

to provide a 
ompatible (and possibly degraded) fun
tionality allows saving 
osts by

exploiting already existing hardware resour
es.

The dependability analysis formalism presented in this 
hapter (Component Dynami


Fault Tree) is not able to evaluate the failure probability of the D3H2s 
ompliant re-

pairable HW/SW ar
hite
tures. Although the extension of Component Dynami
 Fault

Trees to repairable systems is straightforward (i.e., 
onsidering repairable basi
 events),

the CDFT approa
h in general and the priority-AND gate in parti
ular are not able to

handle 
omplex repair poli
ies. A

ording to the priority-based re
on�guration pro
ess

of the D3H2 methodology, when the failure of a subfun
tion's implementation is to be

repaired, the implementation with the highest priority should be a
tivated among the

available redundan
ies for the failed subfun
tion. Therefore, the repair pro
ess may not

be sequential as determined by the logi
 of the priority-AND gate. In order to grasp


omplex repair situations, more powerful formalisms needs to be 
onsidered as des
ribed

in Chapter 5.

Furthermore, the 
ost 
al
ulation in this Chapter has been fo
used on the hardware,

software, and 
ommuni
ations 
ost. However, as it we will show in Chapter 5, the most

penalizing 
ost is the one asso
iated with system unavailability (downtime 
osts).
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Chapter 5

Dependability & Cost Analysis of

Repairable Systems

In the D3H2 methodology, the dependability evaluation of the extended HW/SW

ar
hite
tures 
onstituted by repairable resour
es sets new 
hallenges. While in Chapter

4 only the order of failure was important, in this 
hapter the order of failure and the

order of repair are addressed.

This 
hapter is organised as follows:

� Se
tion 5.1 introdu
es the problem addressed in this 
hapter.

� Se
tion 5.2 presents the Dependability Evaluation Modelling approa
h for re-

pairable systems fo
using on the evaluation algorithm and its implementation

through the Sto
hasti
 A
tivity Networks (SAN) formalism.

� Se
tion 5.4 applies the Dependability EvaluationModelling approa
h for repairable

systems to the running example of this dissertation.

� Se
tion 5.5 
loses this 
hapter with 
on
lusions and prospe
ts.

5.1 Introdu
tion

In Chapter 4 we have 
onstrained the Dependability Evaluation Modelling approa
h

(DEM) (and the extended HW/SW ar
hite
ture) with system implementations whi
h use

non-repairable resour
es. However, many of the 
urrent industrial systems are no longer


hara
terized with non-repairable implementations. There exist me
hanisms whi
h make
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possible the repair of system resour
es (either on-line or o�-line) and improve the avail-

ability of the system. Shifting from non-repairable systems towards repairable systems

introdu
es new 
hallenges that the repairable DEM approa
h and its analysis paradigm

must meet.

Namely, the 
hara
terization of the system's repair pro
ess governed by the priorities of

the implementations is not trivial. In the D3H2 methodology, the repair behaviour of

a system is 
hara
terized a

ording to the re
on�guration table (see Chapter 3). The

re
on�guration table determines alternative implementations (either homogeneous or

heterogeneous) for the same subfun
tion and their 
orresponding priorities. Sin
e im-

plementations are assumed to be repairable, subfun
tion's repair pro
ess will be 
hara
-

terized a

ording to the implementations priority. That is, the re
on�guration me
ha-

nism of the subfun
tion's implementation have to a
tivate the implementation with the

highest priority among the available spare implementations of the subfun
tion. This

means that it does not ne
essarily have to follow a �xed sequen
e, e.g., assume that

we have a subfun
tion with 4 implementations and 
urrently the 3rd implementation

is operative while �rst and se
ond implementations are failed. If the �rst or the se
-

ond implementation are repaired prior to the failure of the 3rd implementation, when

the 3rd implementation fails the subfun
tion will be re
on�gured to the 1st or the 2nd

implementation instead of re
on�guring to the 4th implementation (
f. Figure 5.1 (a)).

Figure 5.1: Challenges Emerging from Repairable Systems (a) Possible Re
on�guration Se-

quen
es (b) System Modelling through Dynami
 Fault Tree's Spare Gates and Components

Although the manageability and ease of use of Component Dynami
 Fault Tree formal-

ism for non-repairable systems makes this paradigm suitable for the analysis of the DEM
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approa
h, its appli
ation is limited to non-repairable extended HW/SW ar
hite
tures.

The repair pro
ess in the D3H2 methodology 
annot be modelled using only sequential

logi
 - as determined by the logi
 of the PAND gate. More powerful formalisms are re-

quired in order to manage the stated repair strategies. While it is possible to use Markov

Chains to model su
h 
omplex situations, in reality the use of pure Markov models is

not feasible: the size and 
omplexity of the resulting Markov model hampers under-

standability and maintainability of the system. The required size (number of states) to

model su
h a 
omplex (user de�ned) repair strategies would result in a unmanageable

model.

The analysis of the extended HW/SW ar
hite
ture whi
h uses repairable resour
es opens

the way to explore new system properties su
h as system availability and asso
iated

downtime 
osts. The downtime 
ost will provide the designer with an additional design

indi
ator asso
iated with the unavailability of the system. As we will see in the results

(
f. Se
tion 5.4), this 
ost will penalize more the less reliable ar
hite
ture due to the

in
reased downtime.

In order to deal with the stated properties and implement the 
ompositional Depend-

ability Evaluation Modelling approa
h for repairable systems, we have analysed existing

formalisms looking for the following 
hara
teristi
s:

� Capability to model user-de�ned repair pro
esses.

� Dynami
 gates: 
apture the system failure logi
 a

ounting for time-ordered

events.

� Capability to model repeated events and repeated 
omponents or subsystems.

� Component-based 
hara
terization.

� Support for any probability density fun
tion.

Figure 5.1 (b) shows an example of the systems that we analyse in this 
hapter using the


on
ept of Dynami
 Fault Tree's spare gates (see Subse
tion 2.3.1). Namely, systems

with: (1) prioritized and repairable subsystems (S1, S2, S3, S4 ); (2) shared subsystems

(S2 ); (3) repeated 
omponents among di�erent subsystems (C1 ); and (4) repeated (BE3,

BE8 ) and repairable basi
 events (BE1, BE2, ..., BE10 ).

Furthermore, in addition to the assumptions adopted in Chapter 4 with respe
t to the
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�xed ar
hite
tural design de
isions, throughout this 
hapter we 
onsider that:

� The proa
tive/preventive maintenan
e is not applied and we will fo
us only on

the rea
tive maintenan
e, i.e., the repair pro
ess starts only when a resour
e fails.

� We will deal with situations in whi
h the repaired resour
es will be as good as new

ones after the repair pro
ess without 
onsidering further degraded states.

5.2 Dependability Evaluation Modelling Approa
h for

Repairable Systems

The 
ompositional Dependability Evaluation Modelling approa
h for repairable systems

enables to analyse the dependability of extended HW/SW ar
hite
tures systemati
ally.

5.2.1 Con
epts and Notation

The obje
tive of the DEM approa
h for repairable systems is the generi
, systemati
 and


omplete failure and repair modelling of the extended HW/SW ar
hite
ture to evaluate

the dependability of alternative extended HW/SW ar
hite
tures. The failure model for

the DEM approa
h for repairable systems is the same as for the DEM approa
h for

non-repairable systems (see Subse
tion 4.2.1).

With non-repairable resour
es (
f. Chapter 4) it is enough to assume that the im-

plementations are re
on�gured sequentially so that we know whi
h implementation is

a
tive (working, operative) based on whi
h implementations are failed. With repairable

resour
es and implementations, it is ne
essary to 
he
k the status of all subfun
tion's

implementations to know whi
h implementation is a
tive and a

ordingly determine

system's failure situations (
f. Figure 5.1 (a)).

Let us de�ne when the implementation i will be a
tive: the implementation i will be

a
tive if (1) at the start of the system operation the implementation i has the highest

priority among the implementations for the same subfun
tion; or (2) when a failure

of the a
tive implementation o

urs (whi
h is not the i -th implementation) and the

152



implementation i has the highest priority among the available implementations of the

same subfun
tion.

Apart from the notation introdu
ed in Table 4.1, we will also use additional notations

to support the modelling of repairable systems as des
ribed in Table 5.1.

Table 5.1: Notation of Failure and Working Events II

Notation Failure Logi


F
SF

i

| A
tive

[SF℄.[Impl

i

℄ fail while a
tive

F
SF

i

FP | A
tive

[SF℄.[Impl

i

℄ fail or FP while a
tive = OR(F
SF

i

| A
tive

, F
FD FP

)

F
SF_Dest

i

| A
tive

[SF_Dest℄.[Impl

i

℄ fail while a
tive

F
FD

i

O | A
tive

[FD_SF℄.[Impl

i

℄ omission while a
tive

The sto
hasti
 failure 
hara
terization of ea
h resour
e is 
hara
terized by randomly

sampling the failure and repair times a

ording to their Cumulative Probability Dis-

tribution Fun
tions (CDFs) along the system lifetime. The methodology supports any

CDFs, but for the sake of simpli
ity without losing the generality of the approa
h, in

subsequent probabilisti
 
hara
terizations exponential failure distributions are assumed.

Hen
e, the failure 
hara
terization of system resour
es (F
Res

) is de�ned a

ording to

their failure rates (λ
Res

) and repair rates (µ
Res

). Assuming exponential failure and repair

distributions, the failure 
hara
terization of system resour
es 
an be seen as Continuous

Time Markov Chains with working and failed states. The transitions between these

states are determined by failure rate (λ
Res

) and repair rate (µ
Res

).

The failure 
hara
terization of a SF's i -th implementation ([SF℄.[Imp

i

℄ Failure) 
om-

prised of N resour
es is spe
i�ed as follows:

F
SF

i

= OR(F
Res

1

, F
Res

2

, . . . , F
Res

N

) (5.1)

The same equation holds for the 
hara
terizations of the omission failures of: fault dete
-

tion subfun
tion (FD_SF - F
FD

i

O

), re
on�guration subfun
tion (R_SF - F
R

i

O

), and

fault dete
tion of the re
on�guration subfun
tion (FD_R_SF - F
FD_R

i

O

) implementa-

tions. A

ordingly, the false positive failures of fault dete
tion implementations (F
FD FP
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and F
FD_R

i

FP

) will be 
hara
terized with their 
hara
terizing failure and repair distribu-

tions and 
orresponding parameters (e.g., exponential distribution with λ
FD FP

; µ
FD FP

and λ
FD_R

i

FP

µ
FD_R

i

FP

values). See Appendix E for failure and repair rate data values

used in this dissertation.

5.2.2 Analysis Algorithm

The DEM approa
h for repairable systems determines the dependability evaluation al-

gorithm. It de�nes the dynami
 failure behaviour of systems whi
h use fault dete
tion

and re
on�guration implementations 
overing all possible failure situations for the spe
-

i�ed extended HW/SW ar
hite
tures. It allows to evaluate the 
onsequen
e of design

de
isions on system dependability systemati
ally. Resulting equations 
hara
terize the

failure of su
h systems 
ompositionally so that the failure logi
 is kept 
lear for 
omplex

systems.

To this end, the DEM approa
h for repairable systems 
hara
terizes 
ombinations of

SF's implementation failures that prevent the extended HW/SW ar
hite
ture from per-

forming its intended SF

12

. The SF will fail (F
SF

) when all implementations have failed

(F
All Impl.

), an implementation fails and re
on�guration does not happen (failure unre-

solved, F
Unresolved

), or its input dependen
ies have failed (F
Dependen
ies

):

F
SF

= OR(F
All Impl.

, F
Unresolved

, F
Dependen
ies

) (5.2)

Assuming that we have N

SF

implementations of the subfun
tion, the F
All Impl.

event

happens when ea
h implementation fails or is dete
ted as failed:

F
All Impl.

= AND(F
SF

1

FP

, . . . , F
SF

N

SF

FP

) (5.3)

The failure unresolved (F
Unresolved

) o

urs when the a
tive implementation fails and

either the fault is not dete
ted (failure undete
ted event) or the re
on�guration itself

fails (re
on�guration failed event). For ea
h implementation there are di�erent failure

12

The failure of any subfun
tion ne
essary for a main fun
tion provokes the immediate failure of a

main fun
tion. Hen
e, from this point onwards, we will only 
onsider the failure of a subfun
tion.
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unresolved events (F
Unr. Imp

i

) be
ause ea
h implementation may have di�erent failure

probabilities:

F
Unresolved

= OR(F
Unr. Imp

1

, . . . , F
Unr. Imp

N

SF

) (5.4)

To de�ne the failure unresolved event (F
Unr.Imp

i

) let us introdu
e two new events. The

�rst event o

urs when �rst the re
on�guration subfun
tion fails and then the i -th im-

plementation of the subfun
tion fails when it is a
tive (re
on�guration sequen
e failure,

F
R Seq.

i

):

FR Seq.
i

= PAND(F
R

, F
SF

i

FP | A
tive

) (5.5)

The se
ond event o

urs when �rst the fault dete
tion of the SF fails and then the

i -th implementation of the SF fails when it is a
tive (fault dete
tion sequen
e failure,

F
FD Seq.

i

):

F
FD Seq.

i

= PAND(F
FD

, F
SF

i

| A
tive

) (5.6)

A

ordingly, the failure unresolved event of the i -th implementation (F
Unr. Imp

i

) o

urs

when either the fault dete
tion sequen
e (F
FD Seq.

i

) fails or the re
on�guration sequen
e

(F
R Seq.

i

) fails:

F
Unr. Imp

i

= OR(F
FD Seq.

i

, F
R Seq.

i

) (5.7)

Dependen
ies address Input (I) and Control (C) subfun
tions in�uen
e on 
ontrol and

Output (O) subfun
tions respe
tively. Control SF failure impa
ts dire
tly the output

subfun
tion failure (C→O); and the in�uen
e of input subfun
tion on 
ontrol subfun
-

tion depends if the system's 
ontrol 
on�guration is operating in Closed Loop (C_CL)

or Open Loop (C_OL):

F
Dependen
ies

= OR(F
Dep. C_CL

, F
Dep. C_OL

) (5.8)

155



Assuming thatW
C_X

=OR(W
C_X

1

,. . . , W
C_X

NW
) means that any of the NW implemen-

tations of the C_X subfun
tion are working (where X = {CL,OL}), Equations in 5.9

des
ribe the di�erent input SFs that a�e
t ea
h 
ontrol 
on�guration (I_CL→C_CL,

I_OL→C_OL). F
Dep. C_OL

may not happen be
ause the OL 
ontrol generally does not

have input dependen
ies:

F
Dep. C_CL

= AND(W
C_CL

, F
I_CL

) F
Dep. C_OL

= AND(W
C_OL

, F
I_OL

) (5.9)

The re
on�guration failure is a spe
ial subfun
tion and therefore F
R

is developed like

Equation 5.2, ex
ept that there are no additional dependen
ies:

F
R

= OR(F
All R Impl.

, F
R Unresolved

) (5.10)

F
All R Impl.

indi
ates the failure of all re
on�guration implementations, and F
R Unresolved

designates the re
on�guration's failure unresolved 
ondition. Assuming M

re
on�guration implementations:

F
All R Impl.

= AND(F
R

1

O/FP

, . . . , F
R

M

O/FP

) (5.11)

F
R Unresolved

happens when M implementations of the FD_R_SF fail simultaneously

and it is a dire
t 
onsequen
e to our design 
hoi
e: all re
on�guration's fault dete
tion

implementations (FD_R_SF) are a
tive and homogeneous redundan
ies (heartbeat im-

plementations):

F
R Unresolved

= AND(F
FD_R

1

, . . . , F
FD_R

M

) (5.12)

A

ordingly, the false positive of the re
on�guration's fault dete
tion o

urs when all

FD_R_SF implementations raise the false positive 
ondition simultaneously. Although

the system may operate 
orre
tly when a false positive o

urs, it has to assume that the

information provided by the fault dete
tion is 
orre
t, sin
e there is no me
hanism to
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dete
t the in
orre
t operation of fault dete
tion.

The fault dete
tion failure F
FD

depends on the operation of the destination subfun
tion

(SF

DEST

), be
ause the FD implementation is lo
ated at the same PU. Hen
e, F
SF_DEST

in�uen
es dire
tly F
FD

.

When the FD implementation fails, the 
hange of SF

DEST

's implementation determines

its re
on�guration. We assume that the 
hange of destination SF's implementation

a
tivates the 
orresponding FD implementation and the previous one is dea
tivated.

Equation 5.13 des
ribes the FD_SF failure 
ase when FD_SF has K implementations:

F
FD

= OR(F
FD_Dest

1

| A
tive

, . . . , F
FD_Dest

K

| A
tive

) (5.13)

The i -th fault dete
tion implementation's failure while it is a
tive (F
FD_Dest

i

| A
tive

),

expresses the following event: either i -th destination subfun
tion or the i -th fault dete
-

tion implementation fail while they are a
tive (remember that the i -th fault dete
tion

is lo
ated at the same PU as the SF_DEST

i

implementation - see ar
hite
tural design

de
isions and hypotheses at Se
tion 4.1):

F
FD_Dest

i

| A
tive

= OR(F
SF_DEST

i

| A
tive

, F
FD

i

O | A
tive

) (5.14)

To avoid 
reating loops when evaluating system's dependability, we have 
onsidered that

fault dete
tion implementation's failure is determined by the destination subfun
tion's

implementations failure without 
onsidering destination subfun
tion's input dependen-


ies (
f. Equation 5.14). If dependen
ies are taken into a

ount, they will 
reate logi
al

loops. Therefore, the in�uen
e of dependen
ies is taken into a

ount at the �top� sub-

fun
tion's failure level (
f. Equation 5.2). At this level, if any dependent subfun
tion

fails, it leads dire
tly to the failure o

urren
e of the subfun
tion.

5.2.3 Implementation

Sto
hasti
 A
tivity Networks (SAN) formalism meets all the design requirements (
f.

Se
tion 5.1) needed to model extended HW/SW ar
hite
tures e�e
tively and intuitively

[Sanders02a℄. Namely, SAN enables to model:
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(1) User de�ned repair priorities using input and output gates.

(2) The behaviour of dynami
 gates using pla
es, a
tivities and input and output gates.

(3) Repeated events and 
omponents through the repli
ate/join formalism.

(4) Any probability density fun
tion through simulations.

Sto
hasti
 A
tivity Networks

SAN formalism [Sanders02a℄ extends Petri Nets model by generalizing the sto
hasti


relationships and introdu
ing me
hanisms to 
onstru
t hierar
hi
al models. SAN mod-

elling primitives in
lude pla
es, a
tivities, input gates, and output gates [Sanders12℄ (see

Figure 5.2).

Standard PlaceStandard Place Extended PlaceExtended Place Input GateInput Gate Timed ActivityTimed ActivityOutput GateOutput Gate Instantaneous ActivityInstantaneous Activity

Figure 5.2: Graphi
al Notation of SAN Elements

Pla
es represent the state of the modelled system. Ea
h pla
e 
ontains a 
ertain number

tokens de�ning the marking of the pla
e: a standard pla
e 
ontains integer number of

tokens, while extended pla
es 
ontain other data types than integers (e.g., �oats, array).

There are two types of a
tivities: (1) instantaneous a
tivities represent system a
tivities

whi
h 
omplete in negligible amount of time; and (2) timed a
tivities represent a
tivities

of the modelled system whose duration has an e�e
t on the system performan
e. With

timed a
tivities the 
ompletion time 
an be a 
onstant value or a random value. When

the 
ompletion time is random its value has to be ruled by a probability distribution

de�ning the time to �re the a
tivity. Parameters of a
tivities may be marking (token)

dependant.

A
tivities �re based on the 
onditions de�ned over the marking of the net and their

e�e
t is to modify the marking of the pla
es. The 
ompletion of an a
tivity of any

kind is enabled by a parti
ular marking of a set of pla
es. Assuming that there are

neither input nor output gates, ea
h a
tivity has input and output ar
s linked with its
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input and output pla
es respe
tively. The presen
e of at least one token in ea
h input

pla
e enables the �ring of the a
tivity and removing the token from its input pla
es and

pla
ing them in the output gates.

Asso
iated with ea
h a
tivity is a rea
tivation fun
tion. This fun
tion de�nes the mark-

ing dependent 
onditions under whi
h an a
tivity is rea
tivated, that is, the a
tivity is

aborted and a new a
tivity time is immediately obtained from the a
tivity time distri-

bution. The rea
tivation fun
tion 
onsists of an a
tivation predi
ate and rea
tivation

predi
ate. An a
tivity is rea
tivated at the moment of a marking 
hange if (1) the

rea
tivation predi
ate holds for the new marking; (2) the a
tivity remains enabled; and

(3) the a
tivation predi
ate holds for the marking in whi
h the a
tivity was originally

a
tivated.

Ea
h a
tivity may have more than one 
ase asso
iated to it, whi
h stands for a possible

out
ome of the a
tivity. Ea
h 
ase 
orresponds to a 
ertain e�e
t of the 
ompletion of

an a
tivity and has a predetermined probability.

Another way to enable a 
ertain a
tivity 
onsists of input and output gates. I/O gates

make SAN formalism general and powerful enough to model 
omplex real situations.

They determine the marking of the net based on user-de�ned rules, whi
h determine

when an a
tivity �res and its e�e
t on the marking of the net.

Input gates 
ontrol the enabling of a
tivities and de�ne the marking 
hanges that will

o

ur when an a
tivity 
ompletes. A set of pla
es are 
onne
ted to the input gate and

and the input gate is 
onne
ted to an a
tivity 
hara
terizing the marking of the net

based on two expressions:

� Enabling predi
ate: a boolean 
ondition expressed in terms of the marking of the

pla
es 
onne
ted to the gate; if su
h 
ondition holds, then the a
tivity 
onne
ted

to the gate is enabled.

� Input Fun
tion: the e�e
t of the a
tivity 
ompletion on the marking of the pla
es


onne
ted to the gate.

An output gate is 
onne
ted to an a
tivity and a set of pla
es and it de�nes the marking


hanges that will o

ur when an a
tivity 
ompletes. It spe
i�es the e�e
t of a
tivity


ompletion on the marking of the pla
es 
onne
ted to the output gate. Output gates

are de�ned only with an output fun
tion. The fun
tion de�nes the marking 
hanges

159



that o

ur when the a
tivity 
ompletes.

The repli
ate/join operators allow to model through a 
ompositional tree stru
ture

di�erent atomi
 SAN models linked in a unique 
omponent-based 
omposed model. In

the tree stru
ture, atomi
 SAN models are linked together through join operators using

the shared pla
es between SAN models. The repli
ate operator 
onstru
ts a number

of identi
al 
opies of the SAN model through the repli
ate operator (same 
on
ept as

Parametri
 Fault Trees [Codetta-Raiteri05℄).

Therefore, the analyst 
an fo
us on spe
i�
 
hara
teristi
s of the system behaviour

through �t-for-purpose atomi
 models and later join independently validated atomi


models to obtain a more 
omplex 
omposed system model.

The performan
e measures are 
arried out through reward variables by 
hoosing a spe-


i�
 solver to generate the solution. Reward fun
tions are de�ned in order to retrieve

a performan
e measurement over the spe
i�ed model. There are two kind of reward

fun
tions (1) state reward fun
tions, whi
h are based on the marking of the net; and

(2) impulse reward fun
tions, whi
h are based on the 
ompletion of the a
tivities. The

performan
e measurement is evaluated as the expe
ted value of the reward fun
tion.

The modelling and analysis of SAN models is performed through the Möbius tool

[Courtney04; Illinois14℄. Please refer to [Sanders02a; Sanders12℄ for more information

and formal de�nition of SAN formalism.

5.3 Cost Analysis

Apart from the hardware and software 
ost des
ribed in Se
tion 4.5, downtime 
osts

are also in
luded when studying repairable systems to re�e
t the penalization in
urred

due to the system's unavailability.

In the spe
i�
 
ase of railway systems, downtime 
ost is a 
riti
al fa
tor whi
h impa
ts

negatively the overall e
onomi
 budget. The downtime 
ost will be measured as the


ombination of: (1) number of travels lost while the train was stopped (travels_lost);

(2) number of people in ea
h travel (people_travel); and (3) average 
ost of a ti
ket per

person (ti
ket_
ost):
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downtime_cost = travels_lost× people_travel × ticket_cost

travels_lost =
travels

hour
× downtime

downtime = unavailability×mission time

We will assume that we do not have to stop the whole train in order to �x a failure

in a single 
ar. Besides, for 
al
ulation purposes let us assume the following values

(
ommon values for a short-distan
e (< 50 km) train):

travels
hour

= 2; people_travel =

20; and ti
ket_
ost = 1 e. The mission time will be 
onsidered 30 years and we will

evaluate the unavailability at T = 30 years time instant.

5.4 Results

Sin
e the detailed dependability analysis of repairable Door Status Control and Fire

Prote
tion Control main fun
tions require 
onsidering similar underlying 
on
epts, in

Subse
tion 5.4.1 we introdu
e the key 
on
epts and models for the dependability analysis

of extended HW/SW ar
hite
tures using a simple example. Applying the 
on
epts and

models explained in Subse
tion 5.4.1, dependability and 
ost evaluations of the Fire

Prote
tion Control and Door Status Control main fun
tions are examined in Subse
tion

5.4.2 and Subse
tion 5.4.3 respe
tively.

5.4.1 SAN Generi
 Models

Consider the hypotheti
al system displayed in Table 5.2 
omprised of prioritized im-

plementations ea
h of them 
hara
terized by their 
onstituting resour
es, in turn 
har-

a
terized with their 
orresponding failure and repair rates. This model is simple but

representative enough to des
ribe the main dependability modelling 
hara
teristi
s that

are used to analyse more 
omplex extended HW/SW ar
hite
tures.

In the remainder of this subse
tion, we apply the equations des
ribed in the Depend-

ability Evaluation Modelling approa
h for repairable systems (
f. Se
tion 5.2) to the

hypotheti
al extended HW/SW ar
hite
ture displayed in Table 5.2 in a bottom-up man-

ner. System's failure probability 
al
ulation is performed using the SAN formalism by
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Table 5.2: Repairable HW/SW Ar
hite
ture Example

MF SF Subfun
tion Type Implementation Resour
es Priority #

MF SF

SF I Impl1 Res1, Res2, Res3 1 1

SF I Impl2 Res2, Res4, Res5 2 2

FD_SF FD FD_Impl1 Res2, Res6, Res7 1 3

R_SF R R_Impl1 Res2, Res7, Res8 1 4

R_SF R R_Impl2 Res7, Res9, Res10 2 5

FD_R_SF FD_R FD_R_Impl1 Res2, Res10, Res11 1 6

FD_R_SF FD_R FD_R_Impl2 Res7, Res10, Res12 1 7

ControlSF C C_Impl1 Res1, Res12, Res13 1 8

OutputSF O O_Impl1 Res1, Res14, Res15 1 9

means of the Möbius tool.

Resour
es

Resour
es are the most basi
 models in the DEM approa
h. The failure 
hara
terization

of resour
es (FRes) is de�ned a

ording to their failure and repair rates.

In the SAN notation, we model resour
es with atomi
 models 
hara
terizing their failure

and repair rates through a
tivities. Figure 5.3 des
ribes the 
hara
terization of the

resour
e Res1 : pla
es Res1_OK and Res1_KO model working and failed states and

a
tivities Res1_Fail and Res1_Repair model failure and repair a
tivities with their


orresponding probabilisti
 distribution and parameters.

Figure 5.3: Atomi
 Model of Resour
es (R01_Res1 )

In order to use a 
onsistent nomen
lature throughout this 
hapter, the models
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of resour
es are denoted as RX_Resour
e where X identi�es the resour
e X =

{1, 2, . . . , 15} (
f. Table 5.2).

Implementations

The failure of ea
h implementation is 
hara
terized a

ording to the working or failure

states of its 
onstituting resour
es (
f. Equation 5.1).

There are two kind of implementations: implementations without redundan
ies and

implementations with redundan
ies. In both 
ases, the implementations will be 
hara
-

terized with two inter
onne
ted models: an atomi
 model des
ribing implementation's

failure/repair logi
; and a 
omposed model whi
h links: (1) the models of the imple-

mentation's resour
es des
ribing their failure/repair logi
 (
f. Figure 5.3); with (2) the

model of the implementation whi
h des
ribes its failure/repair logi
 (
f. Figure 5.4,

Figure 5.6).

The implementation's models are named as I#_Implementation and their 
omposed

models are named as top_I#_Implementation where # identi�es the implementation

# = {1, 2, . . . , 9}.

Implementations without redundan
ies are modelled with failed and repair events

without the need to a
tivate redundant implementations. Figure 5.4 presents the SAN

model of the implementation #3 from Table 5.2. Implementations without redundan
ies

are 
hara
terized with the following pla
es:

� I_FD_Impl1_A
tive: implementation a
tive pla
e. The initial marking of this

pla
e will be 1.

� I_FD_Impl1_KO : implementation failed pla
e. The input gate Fail_FD_Impl1

sets the marking of this pla
e to 1 if any of its 
onstituting resour
es (Res2, Res6,

Res7) is failed, otherwise if all the resour
es are working the marking of this pla
e

will be zero.

� Res2_KO, Res6_KO, Res7_KO : these pla
es indi
ate the failure of the imple-

mentation's 
onstituent resour
es (see Figure 5.3).

Table 5.3 displays the failure and repair a
tivities behaviour modelled through
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Figure 5.4: Atomi
 Model of Implementations

without Redundan
ies (I03_FD_Impl1, #3)

Figure 5.5: Composed Model of Im-

plementations without Redundan
ies

(top_I03_FD_Impl1 )

Table 5.3: A
tivities in I03_FD_Impl1

A
tivity:
FD_Impl1_Fail

Time to


omplete:

Immediate

Input

gate:

Fail_FD_Impl1

Input gate

predi
ate:

(m(I_FD_Impl1_KO)==0 &&

(m(Res2_KO)==1||m(Res6_KO)==1

|| m(Res7_KO)==1))

Input gate

fun
tion:

m(I_FD_Impl1_A
tive)=0;

m(I_FD_Impl1_KO)=1;

A
tivity: FD_Impl1_Repair

Time to


omplete:

Immediate

Input

gate:

Repair_FD_Impl1

Input gate

predi
ate:

(m(I_FD_Impl1_KO)==1

&& m(Res2_KO)==0 &&

m(Res6_KO)==0 &&

m(Res7_KO)==0)

Input gate

fun
tion:

m(I_FD_Impl1_A
tive)=1;

m(I_FD_Impl1_KO)=0;

Fail_FD_Impl1 and Repair_FD_Impl1 input gates

13

and Figure 5.5 displays the 
om-

posed model, whi
h links the models of resour
es (
f. Figure 5.3) and implementation

(
f. Figure 5.4) using the join operator and shared pla
es. Using the join operator se-

le
ted pla
es are shared among the models that 
ontain this pla
e. By means of shared

pla
es, repeated resour
es and repeated 
omponents are modelled.

Again for reading purposes, we will simplify the information shown in the following

input gate tables. Spe
i�
ally we will omit the linked a
tivity whi
h 
an be seen in the


orresponding �gure and we will also omit the time to 
omplete be
ause in all the


ases studied throughout this 
hapter it is always immediate.

Implementations with redundan
ies require to (de)a
tivate (or re
on�gure) redun-

dant implementations a

ording to the implementations' states and priorities. Figure

13

The fun
tion m(x) denotes the marking of the pla
e x.
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5.6 depi
ts the SAN model of the implementation #1 from Table 5.2.

Figure 5.6: Atomi
 Model of the Implementa-

tions with Redundan
ies (I01_Impl1, #1)

Figure 5.7: Composed Model of Implementa-

tions with Redundan
ies (top_I01_Impl1 )

Table 5.4: A
tivities in I01_Impl1

Input

gate:

Fail_Impl1

Input gate

predi
ate:

((m(Res1_KO)==1 ||

m(Res2_KO)==1||m(Res3_KO)==1)

&& m(I_Impl1_KO)==0)

Input gate

fun
tion:

if(m(I_Impl1_A
tive)==1)

m(I_Impl1_A
tive)=0;

if(m(I_Impl1_StandBy)==1)

m(I_Impl1_StandBy)=0;

m(I_Impl1_KO)=1;

Input

gate:

Repair_Impl1

Input gate

predi
ate:

(m(I_Impl1_KO)==1 &&

m(I_Impl1_StandBy)==0

&& m(Res1_KO)==0 &&

m(Res2_KO)==0 &&

m(Res3_KO)==0)

Input gate

fun
tion:

m(I_Impl1_KO)=0;

m(I_Impl1_StandBy)=1;

Repli
ated subfun
tion's implementations are 
hara
terized with the following pla
es:

� I_Impl1_A
tive: implementation a
tive pla
e. If the implementation's priority is

the highest, then the initial marking of this pla
e will be 1, otherwise the initial

marking of this pla
e will be zero.

� I_Impl1_KO : implementation failed pla
e. The input gate Fail_Impl1 sets the

marking of this pla
e to 1 if any of its 
onstituting resour
es fails (Res1, Res2,

Res3). If all resour
es are operative the marking of this pla
e will be zero.

� I_Impl1_StandBy : implementation standby pla
e. If the priority of the imple-

mentation is the highest among the subfun
tion's implementations, the marking

of this pla
e will be zero. Otherwise, if the priority of the implementation is not

the highest or if the implementation has been repaired after a failure the marking

of this pla
e will be 1.

� I_Impl1_Re
on�gure: re
on�guration pla
e. This pla
e will be a
tivated through

the re
on�guration implementation model (see Figure 5.8). The marking of this
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pla
e is zero until the re
on�guration implementation logi
 de
ides to re
on�gure

an implementation and sets its marking to 1. Therefore, when this pla
e is set to 1

and the marking of the StandBy pla
e is one, the implementation will be a
tivated

immediately setting again the marking of the pla
e I_Impl1_A
tive to one.

� Res1_KO, Res2_KO, Res3_KO : these pla
es indi
ate the failure of the imple-

mentations 
onstituent resour
es a

ording to the logi
 des
ribed in Figure 5.3.

Note that an implementation may fail either when it is in a
tive operation or in standby

operation. Table 5.4 displays failure and repair 
hara
terizations of input gates for

implementations with redundan
ies. The 
omposed model of the implementation with

redundan
ies is depi
ted in Figure 5.7. The di�eren
e with the implementation without

redundan
ies is on higher levels when 
onne
ting 
omposed models of implementations

with their re
on�guration logi
 and failure logi
.

The shared resour
es among implementations a
t as 
ommon 
ause failures for all the

implementations whi
h use the pla
es of the resour
es as a part of the implementations

failure 
hara
terization.

Re
on�guration's fun
tional operation

When a implementation fails, the re
on�guration implementation has to a
tivate an

available redundant implementation taking into a

ount implementation's priorities. In

order to manage the marking of the re
on�guration pla
es in the models of the imple-

mentations with redundan
ies (tagged with the su�x Re
on�gure in the Figure 5.6, i.e.,

I_Impl1_Re
on�gure) the model of the re
on�guration logi
 is 
reated (
f. Figure 5.8).

The re
on�guration logi
 in Table 5.5 enables the priority-based re
on�guration. The

Re
on�gure input gate re
on�gures subfun
tions' implementations via shared pla
es

I_Impl1_Re
on�gure (see Figure 5.6) and I_Impl2_Re
on�gure. If the re
on�guration

logi
 determines that an implementation should be re
on�gured, it sets a token in

its respe
tive Re
on�gure pla
e. When there is a token in I_Impl1_Re
on�gure or

I_Impl2_Re
on�gure pla
e, the 
orresponding implementation (a

ording to the model

of the implementation with redundan
ies - see Figure 5.6) moves the token from the

StandBy pla
e to the A
tive pla
e and it starts operating immediately. Table 5.5 dis-

plays the logi
 of the Re
on�gure input gate.
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Figure 5.8: Atomi
 Model of the Re
on�gura-

tion Logi
 (Re
on�gurationLogi
_SF )

Table 5.5: A
tivities in Re
on�gura-

tionLogi
_SF

Input

gate:

Re
on�gure

Input gate

predi
ate:

((m(I_Impl1_KO)==1 &&

m(I_Impl2_StandBy)==1)

|| (m(I_Impl2_KO)==1 &&

m(I_Impl1_StandBy)==1)))

Input gate

fun
tion:

if(m(I_Impl1_StandBy)==1)

m(I_Impl1_Re
on�gure)=1;

else if (m(I_Impl2_StandBy)==1)

m(I_Impl2_Re
on�gure)=1;

The input gate fun
tion in the Re
on�gure input gate enables to re
on�gure the sub-

fun
tion's implementation to the available highest priority implementation. The mod-

els whi
h 
hara
terize the re
on�guration logi
 are named as Re
on�gurationLogi
_XX

where XX identi�es the spe
i�
 subfun
tion (XX={SF, R_SF, FD_R_SF}).

Implementation fails while a
tive

With non-repairable resour
es it is enough to assume that implementations are re
on-

�gured sequentially and the logi
 for the system operation 
an be de�ned based on the

failed implementations. However, with repairable resour
es it is ne
essary to keep tra
k

of whi
h implementation is a
tive to de�ne the failure logi
 of system events (
f. Figure

5.1 (a)).

To determine whi
h implementation is a
tive, it is ne
essary to 
he
k the status of all

subfun
tion's implementations. In the hypotheti
al example displayed in Table 5.2 there

are two implementations for the subfun
tion SF : Impl1 (#1) and Impl2 (#2). Impl1

fails while it is a
tive when the �rst implementation fails (m(I_Impl1_KO)=1 ) and the

se
ond implementation is not a
tive (m(I_Impl2_A
tive)=0 ).

The input gates Impl1_FailA
tive and Impl1_NoFailA
tive in Figure 5.9 implement

the logi
 displayed in Table 5.6. The 
omposed model depi
ted in Figure 5.10 links (1)


omposed models of the subfun
tion implementations (top_I01_Impl1, top_I02_Impl2

- see Figure 5.6), (2) the re
on�guration logi
 to swit
h from one implementation to

other (Re
on�gurationLogi
_SF - see Figure 5.8) and (3) fail while a
tive failure logi


167



(F01_Impl1_FailA
tive - see Figure 5.9).

Figure 5.9: Atomi
 Model of the Fail while

A
tive Logi
 (F01_Impl1_FailA
tive)

Figure 5.10: Composed Model of the Fail while

A
tive Logi
 (top_F01_Impl1_FailA
tive)

Table 5.6: A
tivities in F01_Impl1_FailA
tive

Input

gate:

Impl1_FailA
tive

Input gate

predi
ate:

(m(I_Impl1_KO)==1 &&

m(I_Impl2_A
tive)==0 &&

m(Fail_A
tive)==0)

Input gate

fun
tion:

m(Fail_A
tive)=1;

Input

gate:

Impl1_NoFailA
tive

Input gate

predi
ate:

(m(Fail_A
tive)==1 &&

(m(I_Impl1_KO)==0 ||

m(I_Impl2_A
tive)==1))

Input gate

fun
tion:

m(Fail_A
tive)=0;

The models of the failure events are named as Fnn_SF_FM where nn identi-

�es the failure number, SF names the subfun
tion SF={SF, R_SF, Impl1, Impl2,

FD_R_SF, ControlSF, OutputSF} and FM identi�es the failure mode of the subfun
-

tion FM={FailA
tive, AllFail, AllRFailed, RUnresolved, Failure, RF1, RF2, RF, FU1,

FU2, FU}; where FU stands for failure undete
ted event (equivalent to the fault de-

te
tion sequen
e failure event FFD Seq); and RF stands for re
on�guration failed event

(equivalent to the re
on�guration sequen
e failure event FR Seq) see Table 5.7.

Table 5.7: Fault Dete
tion and Re
on�guration Failure Events and Assigned Names

Event Pla
e name Event Pla
e name

F
FD Seq

FU F
R Seq

RF

F
FD Seq.

i

FUi F
R Seq.

i

RFi
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All implementations failed

All implementations failed event (
f. Equation 5.3) des
ribes the situation in whi
h all

the implementations of a subfun
tion are failed at the same time (
f. Figure 5.11). The

pla
e AllImplFailed indi
ates the all implementations failed event and the failure logi


is determined by the input gates AllFailed and AllNoFailed (
f. Table 5.8).

Figure 5.11: Atomi
 Model of the All Fail

Event (F07_SF_AllFail)

Figure 5.12: Composed Model of the All Fail

Event (top_F07_SF_AllFail)

Table 5.8: A
tivities in F07_SF_AllFail

Input

gate:

AllFailed

Input gate

predi
ate:

(((m(I_Impl1_KO)==1 &&

m(I_Impl2_KO)==1) ||

m(FD_FalsePositive)==1) &&

m(AllImplFailed)==0)

Input gate

fun
tion:

m(AllImplFailed)=1;

Input

gate:

AllNoFailed

Input gate

predi
ate:

((m(I_Impl1_KO)==0 ||

m(I_Impl2_KO)==0) &&

m(FD_FalsePositive)==0 &&

m(AllImplFailed)==1)

Input gate

fun
tion:

m(AllImplFailed)=0;

Figure 5.12 shows the 
omposed model for all implementations failed event, linking

implementations (top_I01_Impl1, top_I02_Impl2 ) - see Figure 5.7 (Impl2 is the same

with its 
orresponding resour
es), their re
on�guration logi
 (Re
on�gurationLogi
_SF )

- see Figure 5.8, the failure logi
 (F07_SF_AllFail) - see Figure 5.12 and false positive

failure event (R15_SW_SF_SF_FP) - whi
h is the same as resour
e models (see Figure

5.3) with its 
orresponding failure and repair rate.

Re
on�guration subfun
tion failure

The re
on�guration subfun
tion's failure will o

ur when (
f. Equation 5.10): (1) all

re
on�guration implementations fail (AllRFailed event); or (2) re
on�guration imple-

mentation's failure is unresolved (RUnresolved event).
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All re
on�guration implementations failed: AllRFailed event o

urs when all the

re
on�guration implementation fail simultaneously or re
on�guration's fault dete
tion

raises a false positive signal. In the model displayed in the Table 5.2, the AllRFailed

event is de�ned as follows (
f. Equation 5.11):

F
R

1

O/FP

= OR(F
R_Impl1

, F
FD_R FP

)

F
R

2

O/FP

= OR(F
R_Impl2

, F
FD_R FP

)

F
All R Impl.

= AND(F
R

1

O/FP

, F
R

2

O/FP

)

(5.15)

The event F
All R Impl.

is des
ribed in Figure 5.13. The pla
es I_R_Impl1_KO and

I_R_Impl2_KO indi
ate the state of the re
on�guration subfun
tion's implementa-

tions, FD_R_FalsePositive indi
ates the presen
e of false positive signals and AllRe-


on�gFailed pla
e denotes the event F
All R Impl.

. The failure logi
 is implemented using

the input gates AllR_Failed and AllR_Working (
f. Table 5.9).

Figure 5.13: Atomi
 Model of AllRFailed

Event (F03_R_SF_AllRFailed)

Table 5.9: A
tivities in

F03_R_SF_AllRFailed

Input

gate:

AllR_Failed

Input gate

predi
ate:

(((m(I_R_Impl1_KO)==1 &&

m(I_R_Impl2_KO)==1) ||

m(FD_R_FalsePositive)==1) &&

m(AllRe
on�gFailed)==0)

Input gate

fun
tion:

m(AllRe
on�gFailed)=1;

Input

gate:

AllR_Working

Input gate

predi
ate:

(((m(I_R_Impl1_KO)==0 ||

m(I_R_Impl2_KO)==0) &&

m(FD_R_FalsePositive)==0) &&

m(AllRe
on�gFailed)==1)

Input gate

fun
tion:

m(AllRe
on�gFailed)=0;

The logi
 to re
on�gure R_SF implementations is in Figure 5.14. The input gate

R_SF_Re
on�gure de�nes the order of the re
on�guration for the re
on�guration im-

plementations a

ording to their priorities in Table 5.2.

As de�ned in the R_SF_Re
on�gure input gate (
f. Table 5.10), the implementation on
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Figure 5.14: Atomi
 Model of Re
on�guration

Implementation's Re
on�guration Logi
 (Re
on-

�gurationLogi
_R_SF )

Table 5.10: A
tivities in Re
on�gura-

tionLogi
_R_SF

Input

gate:

R_SF_Re
on�gure

Input gate

predi
ate:

(((m(I_R_Impl1_KO)==1 &&

m(I_R_Impl2_StandBy)==1)

|| (m(I_R_Impl2_KO)==1 &&

m(I_R_Impl1_StandBy)==1)))

Input gate

fun
tion:

if(m(I_R_Impl1_StandBy)==1)

m(I_R_Impl1_Re
on�gure)=1;

else if(m(I_R_Impl2_StandBy)==1)

m(I_R_Impl2_Re
on�gure)=1;

standby with the highest priority is sele
ted for re
on�guration. Whi
h is implemented

a

ording to their position in the "if-else" 
lauses.

Figure 5.15: Composed Model of the All Re
on�guration Implementation Fail Event

(top_F03_R_SF_AllRFailed)

The top-level 
omposed model in Figure 5.15 links the following 
omposed

models: re
on�guration implementations 
omposed models (top_I04_R_Impl1,

top_I05_R_Impl2 ); false positive failure model (R16_SW_FD_R_FP); the 
or-

responding failure logi
 model F03_R_SF_AllRFailed (
f. Figure 5.13); and

re
on�guration logi
 model Re
on�gurationLogi
_R_SF (
f. Figure 5.14).

Re
on�guration Unresolved Event: the same modelling pro
ess applies to the

re
on�guration unresolved failure event. Applying Equation 5.12 to the Table 5.2:

F
RUnresolved

= AND(F
FD_R

1

, F
FD_R

2

) (5.16)

Figure 5.16 displays the re
on�guration unresolved event model. The operation of the

implementations FD_R_Impl1 and FD_R_Impl2 together with the input gates Unre-

solved and NotUnresolved (
f. table 5.11) determine if the re
on�guration is unresolved.
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Figure 5.16: Atomi
 Model of the

Re
on�guration Unresolved Event

(F04_R_SF_RUnresolved)

Table 5.11: A
tivities in

F04_R_SF_RUnresolved

Input

gate:

Unresolved

Input gate

predi
ate:

(m(I_FD_R_Impl1_KO)==1 &&

m(I_FD_R_Impl2_KO)==1 &&

m(Re
on�gUnresolved)==0)

Input gate

fun
tion:

m(Re
on�gUnresolved)=1;

Input

gate:

NotUnresolved

Input gate

predi
ate:

((m(I_FD_R_Impl1_KO)==0 ||

m(I_FD_R_Impl2_KO)==0) &&

m(Re
on�gUnresolved)==1)

Input gate

fun
tion:

m(Re
on�gUnresolved)=0;

The implementations of the fault dete
tion of the re
on�guration (FD_R_SF) operate

in heartbeat/keepalive 
on�guration: all implementations are operating and there are

no priorities between them (
f. Figure 5.17, Table 5.12). FD_R_SF_Re
on�gure input

gate re
on�gures all fault dete
tion implementations that go on standby.

I_FD_R_Impl1_StandBy

I_FD_R_Impl1_KO

I_FD_R_Impl1_Reconfigure

I_FD_R_Impl2_StandBy

I_FD_R_Impl2_ReconfigureI_FD_R_Impl2_KO

FD_R_SF_Reconfigure ReconfigurationLogic_FD_R_SF

I_FD_R_Impl1_StandBy

I_FD_R_Impl1_KO

I_FD_R_Impl1_Reconfigure

I_FD_R_Impl2_StandBy

I_FD_R_Impl2_ReconfigureI_FD_R_Impl2_KO

FD_R_SF_Reconfigure ReconfigurationLogic_FD_R_SF

Figure 5.17: Re
on�guration Logi
 FD_R

(Re
on�gurationLogi
_FD_R_SF )

Table 5.12: Re
on�gurationLogi
_FD_R_SF

A
tivity Chara
terization

Input

gate:

FD_R_SF_Re
on�gure

Input gate

predi
ate:

((m(I_FD_R_Impl1_KO)==1 &&

m(I_FD_R_Impl2_StandBy)==1)

|| (m(I_FD_R_Impl2_KO)==1 &&

m(I_FD_R_Impl1_StandBy)==1))

Input gate

fun
tion:

if(m(I_FD_R_Impl1_StandBy)==1)

m(I_FD_R_Impl1_Re
on�gure)=1;

if(m(I_FD_R_Impl2_StandBy)==1)

m(I_FD_R_Impl2_Re
on�gure)=1;

The 
omposed model of F
RUnresolved

(
f. Figure 5.18) links the following mod-

els: 
omposed models of the fault dete
tion of the re
on�guration (FD_R_SF) im-

plementations (top_I06_FD_R_Impl1, top_I07_FD_R_Impl2 ); failure unresolved

logi
 model (F04_R_SF_RUnresolved); and re
on�guration logi
 model (Re
on�gu-

rationLogi
_FD_R_SF ).
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Figure 5.18: Composed Model of Re
on�guration Unresolved Event

(top_F04_R_SF_RUnresolved)

Re
on�guration Subfun
tion Failure: Figure 5.19 models the re
on�guration sub-

fun
tion failure event (
f. Equation 5.10). The pla
e SF_R_Failed indi
ates that the

re
on�guration subfun
tion has failed. This event will be based on the marking of the

pla
es AllRe
on�gFailed (shared with the pla
es in Figure 5.13) and Re
on�gUnresolved

(shared with the pla
es in Figure 5.16). The behaviour of the model is des
ribed by the

input gates SF_Re
on�g_Fail and SF_Re
on�g_NotFail (
f. Table 5.13).

Figure 5.19: Atomi
 Model of the Re
on�gu-

ration SF Fail Event (F05_R_SF_Failure)

Figure 5.20: Composed Model of

the Re
on�guration SF Fail Event

(top_F05_R_SF_Failure)

Table 5.13: A
tivities in F05_R_SF_Failure

Input

gate:

SF_Re
on�g_Failed

Input gate

predi
ate:

((m(AllRe
on�gFailed)==1 ||

m(Re
on�gUnresolved)==1) &&

(m(SF_R_Failed)==0))

Input gate

fun
tion:

m(SF_R_Failed)=1;

Input

gate:

SF_Re
on�g_NotFailed

Input gate

predi
ate:

(m(AllRe
on�gFailed)==0 &&

m(Re
on�gUnresolved)==0 &&

m(SF_R_Failed)==1)

Input gate

fun
tion:

m(SF_R_Failed)=0;

The 
omposed model (
f. Figure 5.20) is used to determine the failure probability of the

re
on�guration subfun
tion. A

ordingly, it links implementations, resour
es and their

failure logi
 via shared pla
es: all re
on�guration implementations failed event model:

top_F03_R_SF_AllRFailed (
f. Figure 5.13); re
on�guration unresolved event model:

top_F04_R_SF_RUnresolved (
f. Figure 5.16); and re
on�guration subfun
tion failure
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logi
 model: F_05_R_SF_Failure (
f. Figure 5.19).

Fault dete
tion subfun
tion failure

The fault dete
tion subfun
tion failure is de�ned in terms of the failure of the fault

dete
tion implementation or failure of the fun
tion implemented at the destination PU

of the monitored fun
tion (
f. Equation 5.14). Analysing the implementation #3 in

Table 5.2, the fault dete
tion subfun
tion failure (F
FD_SF

) will be determined either by

the failure of the fault dete
tion fun
tion itself or failure of the 
ontrol subfun
tion.

Figures 5.4 and Figure 5.21 show the models of the fault dete
tion and 
ontrol sub-

fun
tion implementation failures respe
tively. In this example neither implementations

have redundan
ies (
f. Table 5.2) and therefore, they are modelled following the same


hara
terization as des
ribed in Figure 5.4.

Control subfun
tion failure: the I09_ControlSF_NoDependen
ies model (
f. Figure

5.21) indi
ates that the 
ontrol subfun
tion implementation has failed when any of its

resour
es is down (Res1, Res12, Res13). In order to avoid 
reating logi
al loops, it is

assumed that the failure of the 
ontrol implementation will be provoked only through

its implementations - if dependen
ies are 
onsidered there will be logi
al loops. Table

5.14 displays the failure logi
 implemented in the input gates and Figure 5.22 depi
ts

the 
omposed model whi
h links the implementation's failure logi
 with its 
onstituting

resour
es.

Fault dete
tion subfun
tion failure: the model whi
h des
ribes the

fault dete
tion subfun
tion failure event (
f. Figure 5.23) uses the pla
es

I_FD_SF_KO and I_SF_Control_KO from the models I08_FD_SF_Failure,

I09_ControlSF_NoDependen
ies respe
tively.

Table 5.15 des
ribes the logi
 implemented in the input gates FD_Failure and

FD_NoFail and Figure 5.24 shows the 
omposed model of the fault dete
tion subfun
tion

failure. The pla
es between the 
omposed models of the 
ontrol subfun
tion failure (
f.

Figure 5.22), fault dete
tion failure (
f. Figure 5.5) and the fault dete
tion subfun
tion

failure (
f. Figure 5.23) are shared.
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I_SF_Control_Active

Res12_KO

Res1_KO

I_SF_Control_KO

Repair_SF_Control

SFControl_Fail

SFControl_Repair

Res13_KO

Fail_SFControl

Figure 5.21: Atomi
 Model of

the Control Subfun
tion Fail Event

(I09_ControlSF_NoDependen
ies)

Join1

R13_Res13

R01_Res1

I09_ControlSF_NoDependencies

R12_Res12

Join

Submodel

Submodel

Submodel

Submodel

Figure 5.22: Composed Model of the Control

Subfun
tion Fail Event (top_I09_ControlSF )

Table 5.14: A
tivities in

I09_ControlSF_NoDependen
ies

Input

gate:

Fail_SFControl

Input gate

predi
ate:

(m(I_SF_Control_KO)==0

&& (m(Res1_KO)==1

|| m(Res12_KO)==1 ||

m(Res13_KO)==1))

Input gate

fun
tion:

m(I_SF_Control_A
tive)=0;

m(I_SF_Control_KO)=1;

Input

gate:

Repair_SF_Control

Input gate

predi
ate:

(m(I_SF_Control_KO)==1

&& m(Res1_KO)==0 &&

m(Res12_KO)==0 &&

m(Res13_KO)==0)

Input gate

fun
tion:

m(I_SF_Control_A
tive)=1;

m(I_SF_Control_KO)=0;

Re
on�guration sequen
e failure

The re
on�guration sequen
e failure event of the hypotheti
al system displayed in Table

5.2 is expressed as follows (see also Equation 5.5):

F
R Seq.

1

_SF

= PAND(F
R_SF

, F
SF

1

| A
tive

)

F
R Seq

2

_SF

= PAND(F
R_SF

, F
SF

2

| A
tive

)

F
R Seq_SF

= OR(F
R Seq

1

_SF

, F
R Seq

2

_SF

)

(5.17)

Table 5.7 displays nomen
lature equivalen
es between the re
on�guration-related fail-

ure equations and the SAN model's events. To 
reate this model previously de�ned

models will be linked using shared pla
es (
f. Figure 5.25): top_F01_Impl1_FailA
tive

(
f. Figure 5.9), top_F05_R_SF_Failure (
f. Figure 5.20) and PAND gate's model

14

(PAND(A,B)). PAND gate's A and B events are 
onne
ted with the SF_R_Failed

14

A SAN 
omponent has been designed whi
h implements the PAND gate's logi
 for repairable

systems. Interested readers please refer to Appendix F to see implementation details and validation.
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Figure 5.23: Atomi
 Model of the

Fault Dete
tion Subfun
tion Failure

(F08_FD_SF_Failure)

Join1

F08_FD_SF_Failure

top_I03_FD_Impl1
top_I09_ControlSF

Join1

F08_FD_SF_Failure

top_I03_FD_Impl1
top_I09_ControlSF

Join

Submodel

Submodel
Submodel

Figure 5.24: Composed Model of

the Fault Dete
tion Subfun
tion Failure

(top_F08_FD_SF_Failure)

Table 5.15: A
tivities in F08_FD_SF_Failure

Input

gate:

FD_Failure

Input gate

predi
ate:

(m(FD_SF_Fail)==0 &&

(m(I_FD_SF_KO)==1 ||

m(I_SF_Control_KO)==1))

Input gate

fun
tion:

m(FD_SF_Fail)=1;

Input

gate:

FD_NoFailure

Input gate

predi
ate:

(m(FD_SF_Fail)==1 &&

m(I_FD_SF_KO)==0 &&

m(I_SF_Control_KO)==0)

Input gate

fun
tion:

m(FD_SF_Fail)=0;

pla
e of the model top_F05_R_SF_Failure and FailA
tive pla
e of the model

top_F01_Impl1_FailA
tive respe
tively (see Equation 5.17). The output pla
e of the

PAND gate's model is named PAND_RF1.

Join1top_F01_Impl1_FailActive top_F05_R_SF_Failure

A_PAND_B

Join1top_F01_Impl1_FailActive top_F05_R_SF_Failure

A_PAND_B

JoinSubmodel Submodel

Submodel

Figure 5.25: Composed Model of the F
R Seq.

1

Event (top_F06_Impl1_RF1 )

The re
on�guration sequen
e failure event model for the se
ond imple-

mentation (F
R Seq.

2

_SF

) is 
reated following the same logi
 by 
onne
ting:

top_F02_Impl2_FailA
tive, top_F05_R_SF_Failure (
f. Figure 5.20) and PAND

gate (see Equation 5.17). The output pla
e of the PAND gate's model is named

PAND_RF2.

Finally, in Figure 5.26, both re
on�guration sequen
e failure models (F
R Seq.

1

_SF

and

F
R Seq.

2

_SF

) are linked using the pla
es PAND_RF1 and PAND_RF2 respe
tively. The
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output of the equation F
R Seq._SF

(
f. Equation 5.17) is in
luded in the pla
e RF.

Figure 5.26: Atomi
 Model of the F
R Seq._SF

Event (F06_SF_RF )

Figure 5.27: Composed Model of the

F
R Seq._SF

Event (top_F06_SF_RF )

Table 5.16: A
tivities in F06_SF_RF

Input

gate:

OR

Input gate

predi
ate:

(m(RF)==0&&(m(PAND_RF1)==1

|| m(PAND_RF2)==1))

Input gate

fun
tion:

m(RF)=1;

Input

gate:

no_RF

Input gate

predi
ate:

(m(RF)==1 && m(PAND_RF1)==0

&& m(PAND_RF2)==0)

Input gate

fun
tion:

m(RF)=0;

Figure 5.27 des
ribes the 
omposed model whi
h links re
on�guration sequen
e fail-

ure events (F
R Seq.

1

_SF

, F
R Seq.

2

_SF

) and the re
on�guration sequen
e failure logi


(F
R Seq._SF

), see Equation 5.17.

Fault dete
tion sequen
e failure

This development is very similar to the re
on�guration sequen
e failure model. The

fault dete
tion sequen
e failure equations of the 
on�guration displayed in Table 5.2 are

expressed as follows (see Equation 5.6):

F
FD Seq.

1

_SF

= PAND(F
FD_SF

, F
SF

1

| A
tive

)

F
FD Seq.

2

_SF

= PAND(F
FD_SF

, F
SF

2

| A
tive

)

F
FD Seq_SF

= OR(F
FD Seq

1

_SF

, F
FD Seq

2

_SF

)

(5.18)

Table 5.7 displays nomen
lature equivalen
es between the fault dete
tion re-

lated failure equations and the SAN model's events. To 
hara
terize the event

F
FD Seq.

1

_SF

a 
omposed model is 
reated linking the following 
omposed models:

top_F01_Impl1_FailA
tive (
f. Figure 5.9); top_F08_FD_SF_Failure (
f. Figure

5.23); and PAND gate model (PAND(A,B)), where event A is shared with the event
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FD_SF_Fail and event B is shared with the event FailA
tive (see Equation 5.18). The

output pla
e of the PAND gate's model is named PAND_FU1.

Join1

top_F01_Impl1_FailActive top_F08_FD_SF_Failure

A_PAND_B

Join1

JoinSubmodel Submodel

Submodel

Figure 5.28: Composed Model of the F
FD Seq.

1

Event

Similarly, the event F
FD Seq.

2

_SF

is 
reated by linking its 
orresponding fail a
tive

event model (top_F02_Impl2_FailA
tive); fault dete
tion subfun
tion failure model

(top_F08_FD_SF_Failure) and PAND gate's failure logi
 model (see Equation 5.18).

The output pla
e of the PAND gate's model is named PAND_FU2.

The model in Figure 5.29 links both F
FD Seq.

1

_SF

and F
FD Seq.

2

_SF

in order to 
hara
terize

the F
FD Seq.

event (
f. Equation 5.18). Table 5.17 displays the logi
 of the input gates

FailUndete
ted and FailDete
ted, whi
h determine the F
FD Seq._SF

event in Figure 5.29.

Figure 5.29: Atomi
 Model of the F
FD Seq._SF

Event (F09_FD_SF_FU )

Figure 5.30: Composed Model of the F
FD Seq.

Event (top_F09_FD_SF_FU )

Table 5.17: A
tivities in F09_FD_SF_FU

Input

gate:

FailUndete
ted

Input gate

predi
ate:

(m(FU)==0&&(m(PAND_FU1)==1

|| m(PAND_FU2)==1))

Input gate

fun
tion:

m(FU)=1;

Input

gate:

FailDete
ted

Input gate

predi
ate:

(m(FU)==1&&m(PAND_FU1)==0

&& m(PAND_FU2)==0)

Input gate

fun
tion:

m(FU)=0;

In order to evaluate the failure probability of the F
FD Seq._SF

event, the model

in Figure 5.30 links 
omposed models top_F09_Impl1_FU1 (F
FD Seq.

1

_SF

) and

top_F09_Impl2_FU2 (F
FD Seq.

2

_SF

) with the model F09_FD_SF_FU whi
h deter-

mines the event F
FD Seq._SF

. The pla
es PAND_FU1 and PAND_FU2 are shared with
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the pla
es of the PAND models of the F
FD Seq.

1

_SF

and F
FD Seq.

2

_SF

events respe
tively.

The pla
e FU models the event F
FD Seq._SF

.

Input Subfun
tion Failure

The subfun
tion failure is de�ned a

ording to the Equation 5.2. In the 
ase of the input

subfun
tion SF there is no need to 
onsider the in�uen
e of dependen
ies. Therefore,

the input subfun
tion failure is determined by the events F
All Impl

and F
Unresolved

where

F
Unresolved

= OR(F
R Seq._SF

, F
FD Seq._SF

). Figure 5.31 des
ribes the failure logi
 of the

subfun
tion SF failure event F
SF

.

Table 5.18 displays the failure logi
 of the input gates Fail_SF and OK_SF. The

marking of the FU, RF and AllImplFailed pla
es are determined by linking the

model of Figure 5.31 with the previously de�ned top_F06_SF_RF (
f. Figure 5.27);

top_F09_SF_FU (
f. Figure 5.29); and top_F07_SF_AllFail (
f. Figure 5.12) mod-

els. Figure 5.32 depi
ts the 
omposed model whi
h determines the o

urren
e of the

F
SF

event.

Figure 5.31: Atomi
 Model of the F
SF

Event

(F10_SF_Failure)

Figure 5.32: Composed Model of the F
SF

Event (top_F10_SF_Failure)

Table 5.18: A
tivities in F10_SF_Failure

Input

gate:

Fail_SF

Input gate

predi
ate:

((m(FU)==1 || m(RF)==1

|| m(AllImplFailed)==1) &&

m(SF_Failure)==0)

Input gate

fun
tion:

m(SF_Failure)=1;

Input

gate:

OK_SF

Input gate

predi
ate:

(m(FU)==0 && m(RF)==0

&& m(AllImplFailed)==0 &&

m(SF_Failure)==1)

Input gate

fun
tion:

m(SF_Failure)=0;
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Control Subfun
tion Failure

The 
ontrol subfun
tion failure is de�ned a

ording to the Equation 5.2 determined

by the events F
All Impl

, F
Unresolved

and F
Dependen
ies

. Sin
e the 
ontrol subfun
tion has

only one implementation (
f. Table 5.2), the failure of the 
ontrol subfun
tion will

be determined by the failure of the implementation itself or the F
Dependen
ies

event.

There is no F
Unresolved

event be
ause there are no alternate implementations. Figure

5.33 des
ribes the failure logi
 of the 
ontrolSF failure event (F
ControlSF

). The event

is determined by the failure of its resour
es (Res1, Res12, Res13) or the failure of the

input subfun
tion SF_Failure pla
e.

Table 5.19 displays the failure logi
 of the input gates Fail_ControlSF and

OK_ControlSF. The marking of the Res1_KO, Res12_KO, Res13_KO and SF_Failure

pla
es are determined by linking the model of Figure 5.33 with the previously de�ned

resour
es failure/repair models (
f. Figure 5.3) and input subfun
tion's failure model

top_F10_SF_Failure (
f. Figure 5.32). Figure 5.34 depi
ts the 
omposed model whi
h

determines the o

urren
e of the F
ControlSF

event.

Note that we have previously modelled the 
ontrol subfun
tion failure without input

dependen
ies to avoid 
reating logi
al loops with the modelling of the input subfun
tion's

fault dete
tion performan
e (
f. Figure 5.21). In Figure 5.34 the pla
es of the same

resour
es will be shared a

ounting for the failure/repair of the resour
e existing in

both models.

Output Subfun
tion Failure

The output subfun
tion failure is de�ned a

ording to the Equation 5.2 determined by

the events F
All Impl

, F
Unresolved

and F
Dependen
ies

. The output subfun
tion also has only

one implementation (
f. Table 5.2) and therefore, the output subfun
tion failure will

be determined by the failure of the implementation itself or the F
Dependen
ies

event.

Figure 5.35 des
ribes the failure logi
 of the OutputSF failure event (F
OutputSF

) that

is determined by the failure of its resour
es (Res1, Res14, Res15) or the failure of the


ontrol subfun
tion I_ControlSF_KO pla
e.

Table 5.20 displays the failure logi
 of the input gates Fail_OutputSF and
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I_ControlSF_KO

Res12_KORes13_KO

SF_Failure
Res1_KOI_ControlSF_Active

Fail_ControlSF

OK_ControlSF

ControlSF_Fail

ControlSF_OK

Figure 5.33: Atomi
 Model of the F
ControlSF

Event (I09_ControlSF )

Join1

I09_ControlSF

Res1
Res12 Res13

JoinSubmodel

Submodel
Submodel Submodel

top_F10_SF_Failure

Submodel

Figure 5.34: Composed Model of the

F
ControlSF

Event (top_I09_ControlSF )

Table 5.19: A
tivities in

I09_Control_SF_Failure

Input

gate:

Fail_ControlSF

Input gate

predi
ate:

((m(Res1_KO)==1 ||

m(Res12_KO)==1 ||

m(Res13_KO)==1 ||

m(SF_Failure)==1) &&

m(I_ControlSF_KO)==0)

Input gate

fun
tion:

m(I_ControlSF_A
tive)=0;

m(I_ControlSF_KO)=1;

Input

gate:

OK_ControlSF

Input gate

predi
ate:

(m(Res1_KO)==0 &&

m(Res12_KO)==0 &&

m(Res13_KO)==0 &&

m(SF_Failure)==0 &&

m(I_ControlSF_KO)==1)

Input gate

fun
tion:

m(I_ControlSF_A
tive)=1;

m(I_ControlSF_KO)=0;

OK_OutputSF. The marking of the Res1_KO, Res14_KO, Res15_KO and

I_ControlSF_KO pla
es are determined by linking the model of Figure 5.35 with the

previously de�ned resour
es failure/repair models (
f. Figure 5.3) and 
ontrol sub-

fun
tion's failure model top_I09_ControlSF (
f. Figure 5.34). Figure 5.36 depi
ts the


omposed model whi
h determines the o

urren
e of the F
OutputSF

event and a

ordingly

the failure of the main fun
tion.

To evaluate the failure probability of the output subfun
tion (and the main fun
tion),

a reward variable is de�ned 
hara
terizing the performan
e measurement whi
h will

indi
ate the failure of the output subfun
tion:

double reward=0;

i f ( I10_OutputSF−>I_OutputSF_KO−>Mark()==1)

reward+=1;

return ( reward ) ;

Whi
h in turn is used later to evaluate probabilities.
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Res1_KO

I_ControlSF_KO

Res14_KOI_OutputSF_Active

Res15_KO

Fail_OutputSF

OK_OutputSF

OutputSF_OK

I_OutputSF_KO

OutputSF_Fail

Figure 5.35: Atomi
 Model of the F
OutputSF

Event (I10_OutputSF )
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Figure 5.36: Composed Model of the

F
OutputSF

Event (top_I10_OutputSF )

Table 5.20: A
tivities in

I10_OutputSF_Failure

Input

gate:

Fail_OutputSF

Input gate

predi
ate:

((m(Res1_KO)==1 ||

m(Res14_KO)==1 ||

m(Res15_KO)==1 ||

m(I_ControlSF_KO)==1) &&

m(I_OutputSF_KO)==0)

Input gate

fun
tion:

m(I_OutputSF_A
tive)=0;

m(I_OutputSF_KO)=1;

Input

gate:

OK_OutputSF

Input gate

predi
ate:

(m(Res1_KO)==0 &&

m(Res14_KO)==0 &&

m(Res15_KO)==0 &&

m(I_ControlSF_KO)==0 &&

m(I_OutputSF_KO)==1)

Input gate

fun
tion:

m(I_OutputSF_A
tive)=1;

m(I_OutputSF_KO)=0;

5.4.2 Fire Prote
tion Control

Based on the generi
 SAN modelling pro
ess des
ribed in subse
tion 5.4.1, we have

evaluated the unavailability of the Fire Prote
tion Control main fun
tion implemented

using alternative 
on�gurations for the physi
al lo
ation Train.Car

1

.Zone

A

. Namely,

alternative redundan
y and re
on�guration strategies have been tested, as well as the

in�uen
e of fault dete
tion, re
on�guration and 
ommuni
ation implementations on the

system failure probability.

The di�eren
e from the analysed 
on�gurations in Chapter 4 is that the ar
hite
tures

analysed in this 
hapter are 
omprised of repairable resour
es instead of non-repairable

resour
es. A

ordingly, we 
an evaluate the downtime 
osts taking into a

ount the

downtime of the ar
hite
ture.
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Redundan
y Strategies

Alternative ar
hite
ture 
on�gurations have been analysed ea
h of them organised with

di�erent redundan
y strategies (
f. Table 4.4) and same re
on�guration strategy im-

plemented with 2 re
on�guration implementations lo
ated in di�erent pro
essing units

(Table 5.22 2R distributed 
on�guration). Figure 5.37 displays the relative failure prob-

abilities of these 
on�gurations normalized with the ar
hite
ture without redundan
ies.

All simulations have been 
arried out with a 
on�den
e level of 0.99 and absolute 
on-

�den
e interval of 0.001.
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Figure 5.37: Normalized Failure Probability of Fire Prote
tion Control Con�gurations

Figure 5.37 shows how the use of alternative redundan
y strategies improve system's

failure probability with respe
t to the 
on�guration without redundan
ies. The following

improvements have been observed at T=20 year time instant with respe
t to the 
on-

�guration without redundan
ies: heterogeneous redundan
y 8% better; homogeneous

redundan
y 
onne
ted at a di�erent PU 9.4% better; and homogeneous redundan
y


onne
ted at the same PU 10.2% better.

The 
on�guration with the lowest failure probability is the homogeneous redundan
y


on�guration 
onne
ted at the same PU (as in Chapter 4). However, with repairable
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systems, the failure probability of the heterogeneous redundan
y 
on�guration is slightly

higher than the homogeneous 
on�gurations. This is a 
onsequen
e of the added extra

resour
es to make implementations 
ompatible (temperature sensor, SW to dete
t �re,


ommuni
ation). Therefore, we 
an see that the addition of extra resour
es worsens the

failure probability.

Table 5.21 displays the 
ost of alternative 
on�gurations normalized with respe
t to the


ost of the 
on�guration without redundan
ies.

Table 5.21: Normalized Cost of Alternative Fire Prote
tion Control Con�gurations

Con�guration
Relative HW/SW/Comm. Cost Relative Downtime Cost

1 Heterogeneous Redundan
y 1.4482 0.89794

1 Homogeneous Redundan
y - Same PU

FP

1.5322 0.94155

1 Homogeneous Redundan
y - Di�erent PU 1.6162 0.94956

Due to the lower hardware/software/
ommuni
ation 
ost of the

heterogeneous redundan
y 
on�guration and thanks to the small di�eren
es be-

tween the failure probabilities of di�erent 
on�gurations, the 
heapest solution is

the heterogeneous redundan
y 
on�guration. Note that these result are obtained for

the values in Appendix E and assumptions in Se
tion 5.3. Therefore, there may be

variations in the results. An analysis of the sensitivity of the 
ost 
al
ulation parameters

should be performed here (see Se
tion 5.5).

Re
on�guration Strategies

Table 5.22 displays the in�uen
e of alternative re
on�guration strategies on system

availability at the time instant T=10 for the heterogeneous redundan
y 
on�guration.

We 
arry out di�erent simulations with a 
on�den
e level=0.99 and 
on�den
e in-

terval=0.0009. In these simulations we 
onsider di�erent failure rate values of

health management SW 
omponents (λ
SW_HM

): SW_FD, SW_R and SW_FD_R. The

failure rates of these software resour
es have been modi�ed to highlight the in�uen
e of

re
on�guration implementations on system unavailability.

From Table 5.22 the following patterns have been identi�ed:
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Table 5.22: Fire Prote
tion Control (FPC) Unavailability for Re
on�guration Distribution

Strategies (T=10 years)

Con�guration Re
on�guration Implementation Distributions

FPC Unavailability

λ
SW_HM

=0.05

λ
SW_HM

=0.15

λ
SW_HM

=0.25

1R Centralised PU

1

(R_FireDet

1

) 0.365 0.366 0.366

2R Centralised PU

1

(R_FireDet

1

, R_FireDet

2

) 0.569 0.569 0.570

2R Distributed PU

1

(R_FireDet

1

); PU

2

(R_FireDet

2

) 0.366 0.366 0.366

3R Centralised PU

1

(R_FireDet

1

, R_FireDet

2

, R_FireDet

3

) 0.568 0.569 0.569

3R Distributed PU

1

(R_FireDet

1

); PU

2

(R_FireDet

2

); PU

3

(R_FireDet

3

) 0.366 0.366 0.366

� The in�uen
e of the failure rate of the health management implementations on

the main fun
tion failure is negligible.

� Centralised 
on�gurations perform worse than distributed implementations due to

the unique pro
essing unit a
ting as a 
ommon 
ause failure.

� The number of redundan
y implementations within the 
on�gurations of the same

group (
entralised, distributed) does not have an e�e
t on the main fun
tion fail-

ure. There is really no need of redundan
ies in this 
ase for re
on�gurations.

The failure probability of the �re 
ontrol algorithm subfun
tion does not show variations

by 
hanging system 
on�gurations. However, if we fo
us on the �re dete
tion subfun
tion

and its underlying failure events there are some 
hara
teristi
s worth mentioning. Table

5.23 shows the failure probability of the �re dete
tion subfun
tion failure (F
FireDet

), �re

dete
tion subfun
tion's re
on�guration sequen
e failure event (F
R.Seq.

FireDet


f. Equa-

tion 5.17), and �re dete
tion subfun
tion's re
on�guration failure event (F
R_FireDet

)

for di�erent failure rates of health management implementations (λHM) and di�erent

re
on�guration strategies. All the simulations have been performed with a 
on�den
e

level = 0.99 and 
on�den
e interval = 0.0009.

The performan
e of the �re dete
tion subfun
tion shows the in�uen
e of the failure rate

of the health management implementations and the in�uen
e of the distribution of the

re
on�guration implementations. Table 5.23 points out the following 
hara
teristi
s:
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Table 5.23: Failure Probability of the Fire Dete
tion and its Underlying Events (T=10 years)

Events

λHM = 0.05 λHM = 0.15 λHM = 0.25

1R 2RC 2RD 3RC 3RD 1R 2RC 2RD 3RC 3RD 1R 2RC 2RD 3RC 3RD

F
FireDet

0.052 0.355 0.052 0.355 0.05 0.052 0.355 0.052 0.356 0.052 0.052 0.355 0.052 0.356 0.052

F
RSeq

FireDet

0.008 0.04 0.005 0.038 0.004 0.011 0.082 0.01 0.073 0.008 0.013 0.115 0.013 0.101 0.011

F
R_FireDet

0.319 0.365 0.276 0.353 0.247 0.578 0.679 0.428 0.623 0.282 0.767 0.925 0.571 0.835 0.391

x-R-Conf : x number of re
on�guration implementations in Conf 
on�guration, where C = 
entralised

and D = distributed; e.g., 3RD = 3 re
on�guration implementations in distributed 
on�guration

� The failure probability of the 
entralised 
on�gurations is signi�
antly higher than

the distributed 
on�gurations.

� In
reasing the failure rate of the health management implementations with the

values shown in Table 5.23 slightly in�uen
es the failure probability of the F
FireDet

in 3RC and 3RD 
on�gurations.

� In
reasing the failure rate of the health management implementations also in-


reases the failure probability of the F
R.Seq.

FireDet

and F
R_FireDet

events.

� The greater the number of re
on�guration redundan
ies, the lower the failure prob-

ability of F
R.Seq.

FireDet

and F
R_FireDet

events of the same 
on�guration (
entralised,

distributed) saving the 1R 
on�guration.

Despite an in
rease in the failure rate of the health management implementations im-

pa
ts dire
tly on the re
on�guration subfun
tion failure (F
R_FireDet

), its in�uen
e on

the main fun
tion is dependent on a sequen
e of events (
f. Equation 5.5). Hen
e, for

the event F
FireDet

to happen, F
RSeq._FireDet

must fail a

ording to the sequen
e depen-

dent 
onstraint. As a result, its in�uen
e on the subfun
tion failure, and a

ordingly,

on the main fun
tion failure is attenuated. Therefore, as we 
an see in Table 5.23, its


ontribution to the main fun
tion failure is not as important as its 
ontribution to the

failure of the re
on�guration subfun
tion itself.
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In�uen
e of Health Management Implementations

Taking the heterogeneous redundan
y 
on�guration #2 as a starting point (
f. Table

4.4), the in�uen
e of the fault dete
tion, re
on�guration and 
ommuni
ation implemen-

tations have been analysed assuming real and ideal behaviour of ea
h of these imple-

mentations.

Figure 5.38 depi
ts the failure probability values of these 
on�gurations in whi
h all

the simulations have been performed with 
on�den
e level=0.99 and 
on�den
e inter-

val=0.001.
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Figure 5.38: Fire Prote
tion Control Failure Probability with Ideal Assumptions

In Figure 5.38 we 
an see that the in�uen
e of the 
ommuni
ation is more important than

the in�uen
e of the re
on�guration and fault dete
tion implementations. For instan
e

at the time instant T=15 the following failure probability values hold:

� real 
on�guration = 0.334 ± 0.001;

� ideal re
on�guration = 0.333 ± 0.001;

� ideal fault dete
tion = 0.331 ± 0.001;

� ideal 
ommuni
ation = 0.326 ± 0.001;
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We 
an see that (1) the in�uen
e of the health management implementations is almost

negligible and (2) the fault dete
tion implementation has a higher in�uen
e than the

re
on�guration implementation be
ause the fault dete
tion subfun
tion does not have

redundan
ies. The impa
t of the 
ommuni
ation implementation on the top-event is

even more important be
ause the health management implementations only in�uen
e

the �re dete
tion input subfun
tion, whereas 
ommuni
ation a�e
ts most of the Fire

Prote
tion Control main fun
tion's subfun
tions.

5.4.3 Door Status Control

Based on the generi
 SAN modelling pro
ess des
ribed in subse
tion 5.4.1, we have eval-

uated the unavailability of the Door Status Control (DSC) main fun
tion implemented

using alternative 
on�gurations for the physi
al lo
ation Train.Car

1

.Zone

A

.Door.

Namely, alternative redundan
y and re
on�guration strategies have been tested, as well

as the in�uen
e of fault dete
tion, re
on�guration and 
ommuni
ation implementations

on the system failure probability.

The di�eren
e from the analysed DSC 
on�gurations in Chapter 4 is that the

ar
hite
tures analysed in this 
hapter are 
omprised of repairable resour
es instead of

non-repairable resour
es. A

ordingly, we 
an evaluate the downtime 
osts taking into

a

ount the downtime of the ar
hite
ture.

Redundan
y Strategies

Alternative ar
hite
ture 
on�gurations have been analysed, ea
h of them organized with

di�erent redundan
y strategies using a dupli
ated re
on�guration implementation lo-


ated in di�erent pro
essing units for ea
h subfun
tion with redundan
ies (Table 5.25

2R 
entralised 
on�guration). Figure 5.39 depi
ts the relative failure probabilities of

the 
on�gurations displayed in the Table 4.7 normalized with the ar
hite
ture without

redundan
ies #1. All simulations have been 
arried out with a 
on�den
e level of 0.99

and absolute 
on�den
e interval of 0.001.

Figure 5.39 shows how the use of alternative redundan
y strategies improve system's

failure probability with respe
t to the 
on�guration without redundan
ies. The follow-
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ies

1 Homogeneous Redundan
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ies
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3 Homogeneous Redundan
ies; 1 Heterogeneous Redundan
y

4 Homogeneous Redundan
ies

Figure 5.39: Normalized Door Status Control Con�gurations Failure Probability

ing improvements have been observed at T=20 year time instant with respe
t to the


on�guration without redundan
ies: 4 heterogeneous redundan
ies 42% better; 3 hetero-

geneous redundan
ies and 1 homogeneous redundan
y 42.57% better; 2 heterogeneous

redundan
ies and 2 homogeneous redundan
ies 43.23% better; 1 heterogeneous redun-

dan
y and 3 homogeneous redundan
ies 44.07% better; 4 homogeneous redundan
ies

44.74% better.

Table 5.24 displays the relative 
osts of alternative 
on�gurations normalized with re-

spe
t to the 
on�guration without redundan
ies. The 
ost assessment has been 
ar-

ried out a

ording to the Se
tion 5.3 and using the values shown in Appendix E.

When 
onsidering the 
ost of the hardware, software and 
ommuni
ation implemen-

tations, the 
ost of the 
on�gurations with heterogeneous redundan
ies is 
heaper than

homogeneous redundan
y 
on�gurations. However, when downtime 
osts are taken into

a

ount, the less reliable the ar
hite
ture, the higher its 
ost. Therefore, when in
lud-

ing downtime 
osts, the 
ost of the 
on�gurations with heterogeneous redundan
ies are

greater than the 
on�gurations with homogeneous redundan
ies. Compared with the
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Fire Prote
tion Control 
on�gurations (see Subse
tion 5.4.2) the failure probability dif-

feren
es between 
on�gurations are greater and therefore homogeneous redundan
ies

obtain the better redu
tion in 
ost.

Table 5.24: Normalized Cost of Alternative Door Status Control Con�gurations

Con�guration Relative HW/SW/Comm Cost Relative Downtime Cost

4 Heterogeneous Redundan
ies 1.2212 0.58301

3 Heterogeneous Redundan
ies;

1 Homogeneous Redundan
y

1.2488 0.57689

2 Heterogeneous Redundan
ies;

2 Homogeneous Redundan
ies

1.2811 0.57097

1 Heterogeneous Redundan
y;

3 Homogeneous Redundan
ies

1.3088 0.56237

4 Homogeneous Redundan
ies
1.2903 0.55697

Re
on�guration Strategies

Table 5.25 displays the in�uen
e of alternative re
on�guration strategies on system

availability at the time instant T=10 using a heterogeneous redundan
y for ea
h sub-

fun
tion. We 
arry out di�erent simulations with a 
on�den
e level=0.99 and 
on�-

den
e interval=0.0009. In these simulations we 
onsider di�erent failure rate values of

health management SW 
omponents (λ
SW_HM

): SW_FD, SW_R and SW_FD_R. The

failure rates of these software resour
es have been modi�ed to highlight the in�uen
e of

re
on�guration implementations on system unavailability.

Table 5.25 displays that the distribution of the sele
ted re
on�guration implementa-

tions for the Door Status Control main fun
tion does not have any in�uen
e on the

�nal system's failure probability. However, note that these results 
annot be 
ompared

with the values displayed in Table 5.22. This is be
ause there is only one subfun
-

tion with redundan
ies in the Fire Prote
tion Control 
ase and we named 
entralised

re
on�gurations those strategies whi
h 
entralize redundant re
on�guration implemen-

tations in the same PU. In the Door Status Control 
ase 
entralised re
on�gurations

group all the subfun
tion's redundan
ies with the same priority in the same PU.
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Table 5.25: Door Status Control (DSC) Unavailability for Re
on�guration Distribution

Strategies (T=10 years)

Con�guration Re
on�guration Implementation Distributions

DSC Unavailability

λ
SW_HM

=0.05

λ
SW_HM

=0.15

λ
SW_HM

=0.25

1R Centralised PU

1

(R_DOD

1

, R_DCD

1

, R_OD

1

, R_DV

1

) 0.346 0.347 0.347

1R Distributed

PU

1

(R_DOD

1

); PU

2

(R_DCD

1

); PU

3

(R_OD

1

);

PU

4

(R_DV

1

)

0.347 0.347 0.347

2R Centralised

PU

1

(R_DOD

1

, R_DCD

1

,R_OD

1

, R_DV

1

);

PU

2

(R_DOD

2

, R_DCD

2

, R_OD

2

, R_DV

2

)

0.347 0.347 0.347

2R Distributed

PU

1

(R_DOD

1

, R_DCD

2

); PU

2

(R_DOD

2

, R_DCD

1

);

PU

3

(R_OD

1

, R_DV

2

); PU

4

(R_OD

2

, R_DV

1

)

0.347 0.347 0.347

3R Centralised

PU

1

(R_DOD

1

, R_DCD

1

, R_OD

1

, R_DV

1

);

PU

2

(R_DOD

2

, R_DCD

2

, R_OD

2

, R_DV

2

);

PU

3

(R_DOD

3

, R_DCD

3

, R_OD

3

, R_DV

3

)

0.347 0.347 0.347

3R Distributed

PU

1

(R_DOD

1

,R_DCD

2

,R_OD

3

);

PU

2

(R_DOD

2

,R_DCD

1

,R_DV

3

);

PU

3

(R_DOD

3

,R_OD

1

,R_DV

2

);

PU

4

(R_DCD

3

,R_OD

2

,R_DV

1

)

0.347 0.347 0.347

The failure probability of the door 
ontrol algorithm subfun
tion does not show vari-

ations 
hanging system 
on�gurations. However, if we fo
us on the input subfun
-

tions and their underlying failure events there are some 
hara
teristi
s worth mention-

ing. Table 5.26 shows the failure probability of the door 
losed dete
tion failure event

(F
DCD

), its 
orresponding re
on�guration sequen
e failure event (F
R.Seq.

DCD

), and the

re
on�guration subfun
tion failure event (F
R_DCD

). These events have been analysed

for di�erent 
on�gurations and alternative values of the health management implemen-

tation's failure rates. We do not have in
luded the remainder of input subfun
tions

(door open dete
tion, obsta
le dete
tion and door velo
ity) and their 
orresponding

failure events be
ause all the input subfun
tions are 
hara
terized equally (i.e., same

number and distribution of redundan
y, re
on�guration and fault dete
tion implemen-

tations). Besides note that we do not have in
luded the 1R distributed 
on�guration

for simpli�
ation (see Table 5.25 for the 
on�gurations).

From Table 5.26 the following 
hara
teristi
s have been identi�ed:

� As the number of re
on�guration's redundan
y implementations in
rease, the fail-
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Table 5.26: Failure Probability of the Underlying Events of the Door Status Control Main

Fun
tion (T=10 years)

Events

λHM = 0.05 λHM = 0.15 λHM = 0.25

1RC 2RD 2RC 3RD 3RC 1RC 2RD 2RC 3RD 3RC 1RC 2RD 2RC 3RD 3RC

F
DCD

0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043

F
R.Seq.

DCD

0.013 0.005 0.005 0.003 0.004 0.014 0.008 0.009 0.007 0.007 0.016 0.011 0.011 0.009 0.009

F
R_DCD

0.312 0.138 0.140 0.124 0.127 0.571 0.313 0.316 0.274 0.275 0.761 0.466 0.466 0.390 0.391

ure probability of the re
on�guration sequen
e failure event (FR.Seq._SF ) as well

as the re
on�guration subfun
tion's failure probability (FR_SF ) de
reases.

� Despite the e�e
t on the failure probability of the re
on�guration subfun
tion

failure (FR_SF ) is signi�
ant for all the 
on�gurations, when this event is 
ombined

with other events (FR.Seq._SF ) the di�eren
e between alternative 
on�gurations

be
omes lower due to the sequen
e dependent 
onstraint (see Equation 5.5).

� As the failure rate of the health management implementations in
reases, the failure

probability of re
on�guration sequen
e (FR.Seq._SF ) and re
on�guration subfun
-

tion failure events (FR_SF ) also in
rease.

� The failure probability of the subfun
tion failures (FSF ) are not in�uen
ed neither

by the number of redundan
ies nor in
reased failure rate of health management

implementations, i.e., the 
on
lusions from Table 5.25 are also seen here.

In�uen
e of Health Management Implementations

Taking the 
on�guration with 4 heterogeneous redundan
ies as a starting point (
f.

Table 4.7, 
on�guration #2), the in�uen
e of the fault dete
tion, re
on�guration and


ommuni
ation implementations have been analysed assuming ideal and real behaviour

of ea
h of these implementations.

Figure 5.40 displays the failure probability values of these 
on�gurations with the 
on-

�den
e level=0.99 and the 
on�den
e interval=0.001.

In Figure 5.40 the in�uen
e of the 
ommuni
ation is more important than
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Figure 5.40: Door Status Control Failure Probability with Ideal Assumptions

health management implementations. Again this is be
ause the 
ommuni
ation in�u-

en
es many subfun
tions and implementations at the same time and health management

implementations do not. For instan
e, at T=15 the following failure probability values

hold:

1. real 
on�guration = 0.348 ± 0.001;

2. ideal 
ommuni
ation = 0.342 ± 0.001;

3. ideal re
on�guration = 0.347 ± 0.001;

4. ideal fault dete
tion = 0.347 ± 0.001;

In this 
ase, there is no di�eren
e in the in�uen
e of fault dete
tion and re
on�guration

implementations and their in�uen
e 
an be 
onsidered negligible.

5.5 Con
lusions

Throughout this 
hapter we have assumed that the repair pro
ess of resour
es starts as

soon as a resour
e fails and we also have assumed that the repaired resour
e is as good
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as a new one. In this dire
tion there may be some poins worth analysing:

� It may be possible to implement preventive maintenan
e strategies so that a 
om-

ponent is repaired/repla
ed before its failure.

� The degradation of the resour
e after reparation 
an be 
onsidered by worsening

the failure rate after ea
h reparation.

� The in�uen
e of alternative SW implementations have been analysed by 
hang-

ing their failure rates. One 
an also evaluate the in�uen
e of the repair rates

of elements on system's failure probability to optimize repair and maintenan
e

parameters.

Depending on the design-spe
i�
 de
isions for ea
h main fun
tion, the in�uen
e on

dependability and 
ost varies. As 
on�rmed in this 
hapter (and in Chapter 4), opti-

misation of design de
isions with respe
t to the type and number of redundan
y and

re
on�guration strategies are feasible to maximize dependability and minimize the 
ost.

The in�uen
e of redundan
ies on system dependability and 
ost depend on the anal-

ysed main fun
tion and its 
on�guration. There are di�erent fa
tors that in�uen
e

dependability and 
ost. Con
erning the dependability:

� Number of redundan
y implementations: the greater the number of redundan
ies,

the lower the failure probability of the subfun
tion.

� Type of redundan
y implementations: generally speaking the failure probability

of the heterogeneous redundan
ies is higher than homogeneous redundan
ies due

to the added extra resour
es in order to make implementations 
ompatible (e.g.,

SW implementations, 
ommuni
ation).

� Number of re
on�guration's redundan
ies: while it 
ontributes dire
tly to the

improvement of the re
on�guration subfun
tion's performan
e, its e�e
t on the

main fun
tion is attenuated by intermediate sequen
e of events and it is usually

negligible.

� Type of redundan
y strategy: distributed re
on�guration redundan
ies have

shown a lower failure probability of the re
on�guration subfun
tion than the 
en-

tralised re
on�guration redundan
ies whi
h 
on
entrate in a single pro
essing unit

all the redundan
y implementations (see Table 5.22);
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Depending on the 
on�guration of the main fun
tion, the in�uen
e of the type and

number of redundan
y and re
on�guration me
hanism varies. When a subfun
tion does

not have redundan
ies (i.e., it is a single point of failure), its 
ontribution to the main

fun
tion failure is more important than in�uen
e of the alternative design de
isions for

another subfun
tion of the main fun
tion that has redundan
ies (type of redundan
ies;

number and type of re
on�guration strategies).

As for the 
ost in�uen
es:

� Downtime 
ost: the in�uen
e of the downtime 
ost is higher with less reliable

ar
hite
tures and it is more penalising than the 
ost in
urred by HW, SW or


ommuni
ation resour
es.

� Type of redundan
ies: the ar
hite
ture 
ost (HW, SW and 
ommuni
ations re-

sour
e 
ost) of heterogeneous redundan
ies are 
heaper than homogeneous re-

dundan
ies, however, when downtime 
osts are in
luded the 
ost depends on the

system's unavailability (whi
h is better for homogeneous redundan
ies);

� Type of heterogeneous redundan
ies: heterogeneous redundan
ies arising from

natural 
ompatibility does not need a spe
i�
 software, whereas heterogeneous

redundan
ies arising from for
ed 
ompatibility requires �t-for-purpose software

whi
h in
reases it 
ost.

� Number of heterogeneous redundan
ies: if there are similar heteroge-

neous redundan
ies arising from for
ed 
ompatibilities, the 
ost of ea
h

heterogeneous redundan
y is lower. This happens be
ause the software devel-

opment 
ost of one software resour
e (whi
h is assumed to be valid for all re-

dundan
ies with slight modi�
ations) is divided among the similar heterogeneous

redundan
ies. Therefore, the 
ost per ea
h heterogeneous redundan
y is not as

high as for a single (independent) heterogeneous redundan
y.

The sensitivity of the DEM approa
h to the 
ost 
al
ulation parameters should also be

addressed to obtain a higher degree of 
on�den
e in the obtained results.

For the analysed 
on�gurations in Subse
tion 5.4.2 and Subse
tion 5.4.3, the follow-

ing 
on
lusions are extra
ted: the in�uen
e of the 
ommuni
ation implementations

on system dependability is not negligible and 
annot be 
onsidered ideal (see Figure

5.38, and Figure 5.40). Depending on the number of input, 
ontrol or output subfun
-
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tion's redundan
ies, the in�uen
e of health management implementations gains signif-

i
an
e. In the developed examples the failure of the fault dete
tion is more in�uential

be
ause it does not have redundan
ies. The higher the number of redundan
ies of

health management implementations, the lower their failure probability and higher the

system 
ost, but their failure probability improvement is very small (see Table 5.23 and

Table 5.26).

The DEM approa
h would bene�t from the automati
 extra
tion of the dependability

evaluation model so that the designer is not exposed to error-prone tasks. Besides, the

automation would allow us to implement optimization algorithms so that it is possible

to explore the design spa
e with alternative ar
hite
ture 
on�gurations (with variations

in the number and type of re
on�guration and redundan
y strategies) and 
hoose the

best ar
hite
ture a

ording to the given dependability and 
ost requirements.

The time needed to 
arry out the simulation of the dependability evaluation model

is 
onsiderable. This issue originates from the level of (detail and) 
omplexity of the

dependability evaluation model and the required a

ura
y of the results.
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Chapter 6

D3H2 Methodology: Experimental

Evaluation

To proof the feasibility of the D3H2 methodology in real appli
ations, a key appli
ation


on
ept in our methodology has been validated: we have added re
on�guration 
apabil-

ities to existing hardware train network 
omponents to re
over the system from failures

at runtime using heterogeneous redundan
ies.

In this 
hapter we present details about the performed experiments [Aizpurua14℄. The


hapter is organised as follows:

� Se
tion 6.1 introdu
es the motivation of this 
hapter.

� Se
tion 6.2 overviews 
urrent industrial railway 
ommuni
ation ar
hite
tures and

devi
es.

� Se
tion 6.3 des
ribes the developed appli
ation s
enarios in order to validate the


on
epts treated throughout this dissertation.

� Se
tion 6.4 sets the 
on
lusion of this 
hapter.

6.1 Introdu
tion

The ar
hite
ture of the train 
ommuni
ation systems is designed with respe
t to the

system fun
tions and their 
riti
ality. The data is transmitted from di�erent 
ommuni-


ation networks a

ording to the 
riti
ality of the fun
tion.

The reuse of resour
es emerged from over-dimensioned design de
isions is a 
hallenge

in the railway domain. Namely, when designing safety-
riti
al fun
tions, the reuse of
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resour
es may pose hazardous 
onsequen
es that prevent the system from using hetero-

geneous redundan
ies. However, the reuse of elements with information, entertainment,

or 
omfort related fun
tions is feasible be
ause they do not pose hazardous 
onsequen
es,

e.g., the failure of Air Conditioning Control or Light Control main fun
tions.

A

ording to the D3H2 methodology, the reuse of resour
es requires modi�
ations in the

system HW/SW ar
hite
ture, namely: (1) �t the system's PUs with fault dete
tion and

re
on�guration me
hanisms; (2) design the system with a 
ommuni
ation proto
ol whi
h

enables the runtime addition or removal of 
ommuni
ation 
hannels; and (3) allo
ate

the re
on�guration table to the re
on�guration de
ision PU(s) whi
h will indi
ate the

implementation to be re
on�gured.

6.2 Industrial Railway Communi
ation Ar
hite
tures

In Subse
tion 6.2.1 we des
ribe the main 
ommuni
ation networks and in Subse
tion

6.2.2 we present the 
ommuni
ation/pro
essing devi
es whi
h 
onstitute the train 
om-

muni
ation ar
hite
ture.

6.2.1 Communi
ation Networks

Trains have a standard form of data 
ommuni
ation spe
i�ed in the

Train Communi
ation Network (TCN) standard IEC 61375 [IEC07℄. TCN is a

real-time data network 
omprised of an ar
hite
ture inter-
onne
ting train vehi
les and

equipments within a vehi
le. The TCN standard spe
i�es Wire Train Bus (WTB) for

the inter-
onne
tion of vehi
les and Multi-fun
tion Vehi
le Bus (MVB) for intra-vehi
le

devi
e 
ommuni
ation (
f. Figure 6.1). In this work we fo
us on the 
ommuni
ation

within a vehi
le using MVB.

MVB operates in master-slave 
on�guration of the devi
es in a vehi
le. In this evalu-

ation, the following types of devi
es are 
onsidered: intelligent devi
es parti
ipating in

the message 
ommuni
ation with administration 
apabilities or 
onne
ted I/O elements.

The master guarantees deterministi
 medium a

ess managing periodi
 and sporadi
 a
-


ess to the bus. The 
ommuni
ation in MVB follows the publisher/subs
riber paradigm:
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MVBMVBMVB

WTB

Figure 6.1: TCN Con�guration Example [IEC07℄

a publisher broad
asts variables and this information is distributed to the subs
ribers.

To this end, a tra�
 store is implemented; ea
h devi
e holds the variables it produ
es/-


onsumes in a shared memory that is a partial 
opy of the whole network's distributed

database.

6.2.2 Communi
ation Devi
es

All the used devi
es have been designed and produ
ed by CAF Power & Automation

to operate on trains, meeting the rail standards in e�e
t. Thanks to the modularity

and �exibility of ea
h module, the needs of ea
h spe
i�
 appli
ation 
an be a
hieved by


hanging the settings of the modules.

The explanation of the 
hara
teristi
s of the devi
es are limited be
ause they are part

of the Intelle
tual Property of CAF Power & Automation. All devi
es provide total

immunity to ele
tromagneti
 interferen
es in 
omplian
e with the standard EN50121-3-

2: Railway Appli
ations - Ele
tromagneti
 Compatibility.

Every system developed in CAF Power & Automation has three basi
 fun
tions:

1. Control of 
ommuni
ations between the equipment of a train 
ar: the system

provides a TCN 
ommuni
ation 
hannel for all the train equipment and 
ontrols

all the information transmitted at the vehi
le bus level.

2. Interfa
e with the train via its I/O 
hannels and exe
ution of the train logi
: the

system is equipped with RS485 series digital and 
ommuni
ation modules arranged

along the whole train to diagnose and 
he
k the train status and to operate in

a

ordan
e.
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3. Supervision, monitoring and re
ording of the train performan
e: from the driver

terminal various train settings and parameters 
an be entered as well as the 
on-

dition of every train system 
an be seen.

We fo
us on two generi
 devi
es to 
onstru
t the HW/SW ar
hite
ture so as to test

some 
on
epts treated in this dissertation: (1) Communi
ation Interfa
e Card (TICO)

and (2) Ethernet 
ommuni
ation swit
h.

The Communi
ation Interfa
e Card (TICO) board (
f. Figure 6.2) has a CPU and a

FPGA separating 
ommuni
ation 
ontrollers and appli
ation/
ontrol/supervision tasks.

It has uClinux operating system and its RTAI real-time extension. Therefore, it is

possible to 
ombine both real-time and non real-time tasks.

Figure 6.2: TICO Board Figure 6.3: CCU/BA Module

The TICO generi
 board is expanded into the following

appli
ation-spe
i�
 modules: Multi Interfa
e board Module (MIM) and

Control and Communi
ation Unit - Bus Administrator (CCU/BA) module.
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The main fun
tion of the CCU/BA module (
f. Figure 6.3) is to 
arry out the logi


of the 
ontrol of the train and to administrate the MVB bus (master) in the train 
ar

for whi
h it has been devised (BA). The CCU part de
ides whi
h signals must be used

and the BA part 
ontrols all information ex
hange among all the equipment 
onne
ted

to the MVB. Ea
h CCU/BA devi
e periodi
ally exe
utes the information transmission


ommands via MVB and it is able to 
ommuni
ate through MVB and RS485 physi
al

buses.

There shall always be a single CCU/BA with a
tive 
ontrol 
ondition, while other

CCU/BA devi
es shall be in passive 
ontrol 
ondition waiting for an intervention request

(on standby).

MIM module (
f. Figure 6.4): it is 
onstituted by a TICO board in 
onjun
tion with

other I/O boards integrated within a ba
kplane. It provides multiple I/O interfa
es and


ontrol/pro
essing 
apability with very low power 
onsumption. It is able to 
ommu-

ni
ate through Ethernet, Controller Area Network (CAN), MVB and RS485 physi
al

buses and it 
an implement any user appli
ation with supervisory or 
ontrol logi
.

Figure 6.4: MIM Module

TheMIMmodule 
ontains di�erent numbers of digital and analogue I/O signal 
hannels.

Ethernet 
ommuni
ation swit
h (
f. Figure 6.5): it permits the 
ommuni
ation of dif-

ferent devi
es 
onne
ted through an Ethernet 
ommuni
ation bus.

The buses and variable movement between buses is supported by the proprietary

CSTools tool (
f. Figure 6.6). This tool 
reates the software framework a

ording

to the designed 
ommuni
ation buses and the user has to add the logi
 inside the frame-

work (a

ording to the a

ess fun
tions). Uploading the appli
ation into the board is
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Figure 6.5: Ethernet Swit
h

done through an Ethernet 
onne
tion and any File Transfer Proto
ol (FTP) 
lient.

Figure 6.6: Snapshot of the CSTools Con�guration Software

Basi
 Con�guration: Figure 6.7 shows the basi
 
on�guration from whi
h alternative

s
enarios have been 
reated to test alternative s
enarios (as explained in Se
tion 6.3).

Figure 6.8 presents the s
hemati
 
on�guration of the Figure 6.7.

Two TICO boards (TICO

1

, TICO

2

) are 
onne
ted to both Ethernet and MVB 
om-

muni
ation networks. The CCU/BA board manages the 
ommuni
ation through the

MVB network and the Ethernet swit
h enables the 
ommuni
ation of the TICO boards

through Ethernet. Furthermore, a laptop is used for diagnosti
 purposes so that it man-

ages the data that �ows through the CCU/BA module (MVB) and the data that �ows

through Ethernet.
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Figure 6.7: Tested Real Con�guration

Figure 6.8: S
hemati
 Con�guration of the Figure 6.7

6.3 Appli
ation Ar
hite
ture

For the implementation of the re
on�guration pro
ess, we identify two phases:

1. Constru
tion of the re
on�guration table: design-time or run-time determined

re
on�guration strategies;

2. A
tivation/dea
tivation of 
on�gurations: re
on�guration te
hniques.

Run-time 
onstru
tion of the re
on�guration table allows higher �exibility, but requires

exploring the ar
hite
ture dynami
ally. For safety and predi
tability purposes, design-

time determined re
on�guration strategies are adopted in this study. Regarding the a
-

tivation or dea
tivation of 
on�gurations, while re
on�guration 
hannels �xed at design-

time redu
e design 
omplexity, re
on�guration 
hannels established at run-time redu
e

pro
essing 
ost and bandwidth by 
reating redundant 
ommuni
ation 
hannels ex
lu-

sively when their need arises.
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In a train there are safety-
riti
al fun
tions whi
h must meet hard real-time 
onstraints

(e.g., Door Status Control) and these fun
tions are transmitted through MVB. Besides,

other 
ommuni
ation proto
ols 
oexist in the train; for instan
e, Ethernet 
ommuni
a-

tion proto
ol transports non-
riti
al information, entertainment or 
omfort related data.

Ethernet provides more �exibility to perform ar
hite
tural modi�
ations at runtime at

the expenses of losing predi
tability with respe
t to MVB. There exist other 
ommuni-


ation networks in a train (e.g., CAN), but this proof of 
on
ept has been fo
used on

MVB and Ethernet.

Therefore, the following design de
isions have been adopted: MVB has been used for

re
on�guration 
hannels �xed at design-time and Ethernet for re
on�guration 
hannels

established at run-time. On one hand, 
ommuni
ation 
hannels using MVB are ob-

tained by assigning re
on�guration routes at design-time and a
tivating them from the

outset. The bandwidth 
onsumption of these redundant 
ommuni
ations is 
onstant

but their pro
essing is a
tivated solely when their need rise up. On the other hand,

in Ethernet, run-time modi�
ations are e�e
tuated using UDP 
ommuni
ation threads

in 
lient/server like 
on�gurations. Communi
ation threads are 
reated and deleted as

their need arises, so that the bandwidth and pro
essing needs 
hange ex
lusively in 
ase

of re
on�guration.

The following re
on�guration s
enarios (SC) have been tested:

� SC1: sensor re
on�guration: 
ommuni
ation route 
hanges to handle sensor fail-

ures using heterogeneous redundan
ies.

� SC2: 
ommuni
ation re
on�guration: swit
hing the 
ommuni
ation proto
ol to

handle 
ommuni
ation failures using heterogeneous redundan
ies.

� SC3: pro
essing unit re
on�guration: repla
ing the pro
essing unit and 
ommuni-


ation routes to handle pro
essing unit failures using homogeneous redundan
ies.

Three re
on�guration attributes de�ne the re
on�guration spa
e of these s
enarios:

� Re
on�guration granularity 
omprehends task or node level re
on�gurations. Task

level re
on�guration is performed by 
hanging a single task, and node level

re
on�guration is performed by 
hanging the whole node (PU and 
orrespond-

ing tasks).
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� Re
on�guration obje
t addresses SW, HW and 
ommuni
ation (Comm.) level

re
on�gurations: SW re
on�gurations modify the SW implementation 
hanging

its parameters or stru
ture; HW re
on�gurations involve 
hanging the 
omplete

HW devi
e; and 
ommuni
ation re
on�guration modi�es nominal 
ommuni
ation

routes with alternative ones.

� Re
on�guration 
hannel a
tivation time 
omprehends design-time or run-time a
-

tivation of 
ommuni
ation 
hannels. Note that design-time a
tivation of 
ommu-

ni
ation 
hannels really a
tivate at system start-up.

Figure 6.9 des
ribes the re
on�guration spa
e of the tested s
enarios. For instan
e, all

the s
enarios perform task-level and 
ommuni
ation-level re
on�gurations, but only SC3

addresses node-level and 
ommuni
ation-level re
on�gurations.

Activation

Time

Object

Granularity

S
W

H
W

C
o
m
m

Design-Time Runtime

Ta
sk

No
de

SC1, SC2, SC3

(MVB)

SC3

(MVB)

SC1, SC3 (MVB)

SC3

(MVB)

SC1, SC2, SC3 

(MVB)

SC1, SC2, SC3

(ETH)

SC3

(ETH)

SC1, SC3 (ETH)

SC3

(ETH)

SC1, SC2, SC3

(ETH)

SC1, S
C2, S

C3

SC1, S
C3

SC3

SC3

SC3

SC3

Figure 6.9: Re
on�guration Spa
e of the Tested S
enarios

6.3.1 S
enario I: Sensor-Level Re
on�guration

Without losing the appli
ability of the s
enario, SC1 fo
uses on the example presented

in [Aizpurua12a℄ and des
ribed in Se
tion 2.1 (see the fun
tional model in Table 3.4).

205



A train 
ar vehi
le may have di�erent 
ompartments (
f. Figure 6.10 Zone

A

, Zone

B

)

and independent Air Conditioning Control main fun
tion implementations at ea
h 
om-

partment. Assume that 2 PUs are 
onne
ted to perform Air Conditioning Control in

ea
h vehi
le's 
ompartment: one PU (PU

1

or PU

3

) measures the temperature (SF1:

temperature measurement) using a sensor (S

1

or S

2

) and gets the referen
e temperature

(SF2: user referen
e temperature) using a referen
e knob (R

1

or R

2

), and the se
ond PU

(PU

2

or PU

4

) a
ts as a 
ontroller (SF3: air 
onditioning 
ontrol algorithm) and gives

the output to the 
onne
ted heater (SF4: Heating, resour
es: H

1

or H

2

).

PU1

H1S1 R1

SC2.A

SC2.B

MVB

ETH

SC3

PU2 PU3 PU4

PUR

RT-Linux

T1.ETH T1.MVB

Car1.ZoneA Car1.ZoneB

H2S2 R2SC1

Figure 6.10: Re
on�guration S
enarios

Let us fo
us on the re
on�guration of temperature measurement subfun
tion at

Car

1

.Zone

A

. The nominal 
ommuni
ation Route of the temperature measurement sub-

fun
tion in ea
h 
ompartment is as follows:

Route

1

: S

1

→PU

1

→ETH→PU

2

→H

1

;

Route

2

: S

2

→PU

3

→ETH→PU

4

→H

2

.

Given that one sensor of any 
ompartment fails, we reuse the already existing one in

the same 
ar, but in a di�erent 
ompartment. To re
on�gure the temperature mea-

surement implementation in Car

1

.Zone

A

its value-based fault dete
tion is lo
ated in

the destination pro
essing unit PU

2

. When sensor S

1

fails, in
orre
t or missing val-

ues are dete
ted at PU

2

by the fault dete
tion, and the re
on�guration implementation

orders the faulty 
omponent to stop sending data. It also 
he
ks the IP address and

the User Datagram Proto
ol (UDP) port of the next standby implementation of tem-
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perature measurement subfun
tion in its re
on�guration table, and it establishes the


ommuni
ation with S

2

. This pro
ess 
hanges the 
ommuni
ation route from Route

1

to

Route

12

:

Route

12

: S

2

→PU

3

→ETH→PU

2

→H

1

.

The design of the devi
es identi�ed as heterogeneous redundan
ies enables them to redi-

re
t their information to di�erent information sinks dynami
ally when a re
on�guration

signal is re
eived. During the re
on�guration, sour
e and sink PUs syn
hronize and S

2


ontinues sending data towards PU

2

until S

1

is repaired and re
on�gured. Implemented

re
on�guration me
hanisms are appli
able to input subfun
tion implementations oper-

ating with heterogeneous redundan
ies (e.g., Fire Prote
tion Control example 
f. Table

3.8). MVB re
on�gurations apply the same pro
ess, with the di�eren
e that Route

12

is

a
tivated from the outset.

6.3.2 S
enario II: PU-Level Re
on�guration

Sin
e a train in
orporates di�erent 
ommuni
ation proto
ols, there is room to bene�t

from heterogeneous redundant 
ommuni
ations. Despite bidire
tional 
ommuni
ations

have been implemented between PU

1

and PU

2

, for simpli
ity the following unidire
tional

Routes are 
onsidered:

Route

1

: T

1

.MVB→PU

1

→MVB→PU

2

;

Route

2

: T

1

.ETH→PU

1

→ETH→PU

2

.

Where T

1

.MVB and T

1

.ETH identify MVB and Ethernet tasks respe
tively (
f. Fig-

ure 6.10). When a 
ommuni
ation link is down, the general 
ommuni
ation-level

re
on�guration pro
ess is as follows:

1. The appli
ation lo
ated in the destination PU dete
ts the 
ommuni
ation failure

(time-based fault dete
tion).

2. Subsequently, it re
on�gures itself 
reating a server to 
ontinue re
eiving data

using the operating 
ommuni
ation proto
ol.

3. It informs the sour
e PU about the 
ommuni
ation failure.
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4. Finally, the sour
e PU is also re
on�gured swit
hing from the faulty to the oper-

ating 
ommuni
ation

Hen
e, when MVB is dis
onne
ted (SC2.A, 
f. Figure 6.10), UDP 
ommuni
ation

threads are 
reated dynami
ally to 
ontinue sending MVB data via Ethernet 
hang-

ing 
ommuni
ation routes from Route

1

to Route

12

where,

Route

12

: T

1

.MVB→PU

1

→ETH→PU

2

.

And vi
e versa, when Ethernet is dis
onne
ted (SC2.B, 
f. Figure 6.10) the 
ommuni-


ation route is 
hanged from Route

2

to Route

22

where,

Route

22

: T

1

.ETH→PU

1

→MVB→PU

2

.

6.3.3 S
enario III: Communi
ation-Level Re
on�guration

Point to point unidire
tional 
ommuni
ation from PU

1

to PU

2

is 
onsidered with the

next 
ommuni
ation routes:

Route

1

: T

1

.MVB→PU

1

→MVB→PU

2

;

Route

2

: T

1

.ETH→PU

1

→ETH→PU

2

.

The tasks that PU

1

is performing are rearranged in another 
ompatible PU to deal

with the failure of PU

1

. A higher level re
on�guration implementation (PU

R

) has been

added to redire
t all the data that the failed PU was sending from its 
ommuni
ation

interfa
es. PU

R

monitors the performan
e of both PUs (PU

1

, PU

2

) and when it dete
ts

that any of them is down (time-based fault dete
tion); it is re
on�gured sending the

data that it was sending before through MVB and Ethernet. Consequently, Route

1

is

repla
ed by Route

12

and Route

2

swit
hes to Route

22

where,

Route

12

: T

1

.ETH→PU

R

→ETH→PU

2

;

Route

22

: T

1

.MVB→PU

R

→MVB→PU

2

.
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6.4 Con
lusions

In this 
hapter we have presented a real HW/SW ar
hite
ture, that based on industrial

railway 
ommuni
ation devi
es implements the ideas treated throughout this disserta-

tion.

The ar
hite
ture have been tested on di�erent s
enarios to validate the system's

fault toleran
e 
apabilities under di�erent failure situations. Namely, we have analysed

the ar
hite
ture with respe
t to sensor, 
ommuni
ation and PUs failures by reusing

already existing elements.

The main limitation of the experiments 
arried out in this 
hapter is that the s
enarios

have been tested isolated from the other fun
tions 
omprising a real train. Hen
e, we do

not have to deal with possible memory and bandwidth issues. A more a

urate approa
h

would require taking into a

ount these requirements as well as performing 
al
ulations

so that the system meets all its requirements.
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Chapter 7

Con
lusions and Future Work

In this 
hapter we present the main results and limitations of this dissertation. The


hapter is organised as follows:

� Se
tion 7.1 summarizes the work performed during the 
ompletion of the resear
h

work.

� Se
tion 7.2 points out the out
omes obtained from this dissertation.

� Se
tion 7.3 identi�es the limitations of the resear
h work and future resear
h areas

whi
h deserve attention to further improve this work.

7.1 Con
lusions

This dissertation 
omprehends multiple engineering �elds in
luding systems engineering,

software engineering and reliability engineering. The main 
ontributions of this disser-

tation are 
on�ned in the design of re
on�gurable systems 
onsidering optimization of

design de
isions with respe
t to dependability and 
ost.

During this resear
h period a 
omprehensive review and 
lassi�
ation of dependability

analysis, veri�
ation and design approa
hes has been performed [Aizpurua12b℄

[Aizpurua13b℄. These papers review the state of the art approa
hes in the �eld of

model-based dependable design in
luding dependability analysis and veri�
ation ap-

proa
hes. They point out advantages and disadvantages of the well known event-based

and state-based approa
hes and a

ordingly, the approa
hes from the s
ienti�
 literature

are 
lassi�ed based on the addressed limitations.

We have designed the D3H2 (aDaptive Dependable Design for systems with Homoge-
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neous and Heterogeneous redundan
ies) methodology with the goal of optimising design

de
isions in massively networked s
enarios. The methodology enables the evaluation of

the in�uen
e of the di�erent design de
isions on dependability and 
ost, in
luding the

reuse of existing resour
es. It also aids the designer to 
hoose between redundan
y and

re
on�guration strategies. Chapter 3 overviews the D3H2 methodology and 
hara
ter-

izes the key modelling and analysis a
tivities to design a HW/SW ar
hite
ture taking

into a

ount its 
ost [Aizpurua13a℄. Namely, the Fun
tional Modelling Approa
h (
f.

Subse
tion 3.3.1) and the Compatibility Analysis (
f. Subse
tion 3.3.2) enable the sys-

temati
 identi�
ation of redundan
ies and single points of failure [Aizpurua12a℄. The

Extended Fun
tional Modelling Approa
h (
f. Subse
tion 3.3.4) enables the system-

ati
 extension of the initial HW/SW ar
hite
ture and allows the designer to 
reate the

extended HW/SW ar
hite
ture whi
h a

ounts for design de
isions with respe
t to the

distribution and implementation of fault dete
tion, re
on�guration and 
ommuni
ation

fun
tions.

Chapter 4 presents the Dependability Evaluation Modelling approa
h for non-repairable

systems. This approa
h is used to perform a 
omplete and systemati
 assessment of the

extended HW/SW ar
hite
tures and evaluate the in�uen
e of alternative ar
hite
tural

design de
isions on dependability. The 
omponent-based nature of the dependability

evaluation algorithm enables to perform the probabilisti
 analysis of the Dependability

Evaluation Model using the 
ombination of Dynami
 Fault Tree and Component Fault

Tree approa
hes, that is, Component Dynami
 Fault Trees [Aizpurua14℄.

The outlined approa
h makes it possible to evaluate the e�e
t of ideal/non-ideal

health management and 
ommuni
ation implementations on the system failure prob-

ability using importan
e measurements. This approa
h 
an be exploited to analyse the


ontribution of these implementations to the system's failure probability. Furthermore,

in order to deal with the la
k of exa
t failure data information of some resour
es (e.g.,

software resour
es), un
ertainty analyses have been implemented. Therefore, it is po-

ssible to spe
ify interval failure rates (instead of single value data) of system resour
es

and 
al
ulate the failure probability distribution of the top event's failure probability,

i.e., se
ond order failure probabilities.

When analysing non-repairable systems, the evaluation of whi
h redundan
y strat-

egy is 
heaper does not have only one answer. Depending on the type of the

heterogeneous redundan
y strategy their 
osts are di�erent. Generally speaking, het-
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erogeneous redundan
ies arising from natural 
ompatibilities require less additional

resour
es than heterogeneous redundan
ies arising from for
ed 
ompatibilities and they

are usually more 
ost-e�e
tive.

Chapter 5 de�nes the Dependability Evaluation Modelling approa
h for repairable

systems. It gives methods to assess exhaustively and systemati
ally the in�uen
e of alter-

native ar
hite
tural design de
isions on dependability. Compared with non-repairable

systems, the Dependability Evaluation Modelling approa
h for repairable systems re-

quires more powerful formalisms for 
onsidering random failure and repair sequen
es.

Based on the Sto
hasti
 A
tivity Networks formalism, we have implemented the Depend-

ability Evaluation Modelling approa
h that takes into a

ount 
omplex repair strategies.

Depending on the design-spe
i�
 de
isions for ea
h main fun
tion, the in�uen
e on

system's dependability and 
ost varies. As 
on�rmed in Chapter 4 and Chapter 5,

optimisation of design de
isions with respe
t to the type and number of redundan
y

and re
on�guration strategies to maximize dependability and minimize the 
ost are

feasible.

The in�uen
e of redundan
ies on system dependability and 
ost depend on the anal-

ysed main fun
tion and its 
on�guration. There are di�erent variables that in�uen
e

dependability and 
ost. Con
erning the dependability we identify the next fa
tors:

� Number of redundan
y implementations: the greater the number of redundan
ies,

the lower the failure probability of the subfun
tion.

� Type of redundan
y implementations: generally speaking the failure probability

of the heterogeneous redundan
ies is greater than homogeneous redundan
ies due

to the added extra resour
es in order to make implementations 
ompatible (e.g.,

SW resour
es, 
ommuni
ation).

� Number of re
on�guration's redundan
ies: its in
rease 
ontributes dire
tly to the

improvement of the re
on�guration subfun
tion's performan
e. However, its 
on-

tribution to the redu
tion of the failure probability of the main fun
tion is almost

negligible be
ause is attenuated by sequen
e-dependent intermediate failure events.

� Type of re
on�guration strategy: distributed re
on�guration redundan
ies have

shown a lower failure probability of the re
on�guration subfun
tion than the 
en-

tralised re
on�guration redundan
ies whi
h 
on
entrate in a single pro
essing unit
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all the fun
tion redundan
ies.

� Communi
ation: if the whole system is 
onne
ted using the same 
ommuni
ation

network it be
omes a 
riti
al fa
tor. In these 
ases it 
annot be assumed as ideal

and its 
ontribution to the top-event failure should be evaluated.

Generally heterogeneous redundan
ies obtained from natural 
ompatibilities require less

resour
es to make implementations 
ompatible. In these 
on�gurations the failure prob-

ability di�eren
e between homogeneous and heterogeneous redundan
ies is lower 
om-

pared with heterogeneous redundan
ies obtained from for
ed 
ompatibilities.

In a main fun
tion, the failure 
ontribution of a subfun
tion without redundan
ies is

more important than the 
ontribution of a subfun
tion with redundan
ies. That is, the

number of redundan
ies and the number and type of re
on�guration redundan
ies of a

subfun
tion be
ome less e�e
tive when the same main fun
tion has another subfun
tion

whi
h has a single implementation (i.e., a single point of failure).

The following are the main fa
tors that in�uen
e system 
ost:

� Downtime 
ost: the in�uen
e of the downtime 
ost is higher with less reliable

ar
hite
tures and it is more penalising than the 
ost in
urred by HW, SW or


ommuni
ation resour
es.

� Type of redundan
ies: the ar
hite
ture 
ost (HW, SW and 
ommuni
ations

resour
e 
ost) of heterogeneous redundan
ies are 
heaper than homogeneous re-

dundan
ies, however, when downtime 
osts are in
luded, the 
ost depends on the

system's unavailability - whi
h is 
ommonly better for homogeneous redundan
ies.

� Type of heterogeneous redundan
ies: heterogeneous redundan
ies arising from

natural 
ompatibility does not need a spe
i�
 software, whereas heterogeneous

redundan
ies arising from for
ed 
ompatibility requires �t-for-purpose software.

� Number of heterogeneous redundan
ies: if there are similar heteroge-

neous redundan
ies arising from for
ed 
ompatibilities, the 
ost of ea
h

heterogeneous redundan
y is lower. This happens be
ause the software devel-

opment 
ost of one software resour
e (whi
h is assumed to be valid for all re-

dundan
ies with slight modi�
ations) is divided among the similar heterogeneous

redundan
ies. Therefore, the 
ost per ea
h heterogeneous redundan
y is not as

214



high as for a single (independent) heterogeneous redundan
y (related to SW de-

velopment 
ost attribution).

Note that our analysis have been performed for the values shown in Appendix E. In

order to 
ontrast the validity of the obtained results a 
ost sensitivity analysis should

be performed.

The reuse of system resour
es (i.e., heterogeneous redundan
y) redu
es system 
ost


ompared with the addition of an additional hardware 
omponents. However, this is only

true when the unavailability in
urred by the heterogeneous redundan
y is not greater

(or is slightly greater) than the homogeneous redundan
y.

Depending on the system 
on�guration, the in�uen
e of health management and 
om-

muni
ation implementations on system dependability may be negligible or not. In the

following some deliberations about health management implementations:

� Depending on the number of input, 
ontrol or output subfun
tion's redundan
ies,

the in�uen
e of health management implementations gains signi�
an
e. The less

subfun
tions, the higher its weight (e.g., a single input subfun
tion with redun-

dan
ies).

� The higher the number of redundan
ies of health management implementations,

the lower the failure probability of the re
on�guration and fault dete
tion imple-

mentations and higher the system 
ost. However, its e�e
t on the main fun
tion

is attenuated due to the sequen
e-dependent 
onstraint (health management im-

plementations must fail prior to the subfun
tion's implementation).

� If the implementations of the same subfun
tion are 
on
entrated in a single PU,

the system be
omes more sensitive to 
ommuni
ation failures.

The feasibility of the use of heterogeneous redundan
ies for safety-
riti
al fun
tions is

an issue worth mentioning. In some 
ases, the 
ost in
urred in obtaining eviden
es of

the reliability of the heterogeneous redundan
y 
an in
rease the 
ost more than using

an homogeneous redundan
y.
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7.2 Contributions

The followings are the main 
ontributions of this dissertation:

� A 
omprehensive review of the model-based dependability analysis, veri�
ation

and design approa
hes has been developed.

� We have developed a methodology that enables the systemati
 
hara
terization

and evaluation of HW/SW ar
hite
tures whi
h in
ludes:

� Systemati
 identi�
ation of heterogeneous redundan
ies.

� Systemati
 evaluation of the in�uen
e of design de
isions on system

dependability for non-repairable systems. In this 
ontext, an analysis

paradigm that allows the transformation of the design model to the dy-

nami
 dependability analysis model has been used (Component Dynami


Fault Trees).

� Systemati
 evaluation of the in�uen
e of design de
isions on system

dependability for repairable systems. This approa
h enables the analysis

of the failure probability of the system taking into a

ount prioritized repair

strategies and in
luding 
omponents with 
omplex logi
 and repeated events.

� So far, the resear
h 
ommunity has 
onsidered health management implementa-

tions as ideal when using heterogeneous redundan
ies. Our methodology in
ludes

health management me
hanisms (and their failure model) as well as homogeneous

and heterogeneous redundan
ies when designing adaptive dependable systems.

� Hitherto, heterogeneous redundan
ies have not been integrated in a design

methodology that starts from their identi�
ation, moves through the 
onstru
-

tion of the HW/SW ar
hite
ture to use them in massively networked s
enarios,

and quanti�es their e�e
t on system's dependability and 
ost.

� Validation of the 
on
epts treated throughout the dissertation using industrial

railway 
ommuni
ation devi
es.
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7.3 Future Work

The goals of this work have been fo
used on the stated resear
h obje
tives. However,

there exist some interesting areas that have not been 
ompleted during this time and they

deserve to be mentioned in order to progress in the use of heterogeneous redundan
ies

in real systems. Subsequently, we list some points that determine how this thesis 
an

be further developed.

The presented modelling approa
hes (Fun
tional Modelling Approa
h and Extended

Fun
tional Modelling Approa
h) enable an straightforward 
hara
terization of the

system and its subsequent exploitation for redundan
y identi�
ation and further anal-

yses. However, this pro
ess requires studying all the system fun
tions, resour
es, and

their physi
al lo
ations early at the design time. In order to alleviate the burden of anno-

tations it may be possible to 
ome up with an approa
h that enables the auto-annotation

(suggestion) of implementations based on the 
omponents name.

When using heterogeneous redundan
ies, the designer needs to be aware of the quality

degradation and evaluate whether it is a

eptable or not. To further re�ne the 
ompat-

ibility analysis, heterogeneous redundan
ies should be validated exhaustively. To this

end, di�erent ar
hite
ture-spe
i�
 requirements subje
t to real system operation need

to be taken into a

ount, su
h as a

eptable error margins, timeliness, memory and

pro
essing 
apa
ity 
onstraints of the pro
essing units.

Another issue worth addressing is the 
onstru
tion of the re
on�guration table at run-

time. Run-time updates to the re
on�guration table would fa
ilitate the system main-

tenan
e and it would re�e
t the real system status.

The approa
h would bene�t from the automati
 extra
tion of the dependability eval-

uation models so that the designer is not exposed to error-prone tasks. Besides, the

automation would help to implement optimization algorithms in order to sear
h for the

best ar
hite
ture a

ording to prede�ned dependability and 
ost requirements.

The time needed to 
arry out the simulations of the dependability analysis models is


onsiderable: this issue originates from the level of 
omplexity of the dependability

evaluation model and the required a

ura
y of the results. In this dire
tion, te
hniques

su
h as dynami
 simulation stopping 
riterion 
an be de�ned: de
iding whether to
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ontinue simulating the model based on simulation parameters (e.g., a

eptable standard

deviation of the probability 
al
ulations).

In the analysed 
ase studies the evaluations have been 
arried out at the fun
tion level.

However, it 
ould be interesting to 
onsider the train 
ar as a whole. In this way, an

overall evaluation of the train's performan
e 
ould be evaluated while 
onsidering all

the performed fun
tions simultaneously.

As for the 
ost assessment, undertaking a 
ost sensitivity analysis would 
onsolidate the


on
lusions that we have obtained in this dissertation.

When validating the 
on
epts treated throughout the dissertation using industrial 
om-

muni
ation elements, the main limitation has been that the s
enarios have been tested

isolated from the other fun
tions 
omprising a real train. Hen
e, we do not have to deal

with possible memory and bandwidth issues. A more a

urate approa
h would require

taking into a

ount these requirements as well as performing 
al
ulations so that the

system meets all its requirements.

In Chapter 5, we assumed that (1) the repair pro
ess of resour
es starts as soon as a

resour
e fails and (2) the repaired resour
e is as good as a new one. In this dire
tion,

there may be some points worth analysing:

� It may be possible to implement preventive maintenan
e strategies so that a 
om-

ponent is repaired/repla
ed before its failure.

� The degradation of the resour
e after reparation 
an be taken into a

ount, e.g.,

in
reasing the failure rate after ea
h reparation.

� It would be interesting to evaluate the in�uen
e of repair rates on system's failure

probability to optimize repair and maintenan
e parameters.
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Appendix A

Overview of the Basi
 Dependability

Analysis Approa
hes

A.1 Event-Based (Combinatorial, Stati
) Approa
hes

Event-based approa
hes 
hara
terize the system failure behaviour through the 
ombina-

tion of its 
onstituent 
omponents failure events. This 
hara
terization re�e
ts system's

stru
tural properties (e.g., redundan
ies), but it is unable to 
apture 
omplex events and

dependen
ies. The main advantage of these approa
hes is their simpli
ity whi
h has re-

sulted in their widespread use in di�erent industry �elds su
h as railway, avioni
s or

nu
lear industries. In 
ontrast, among their disadvantages it should be highlighted that

they are unable to grasp system's dynami
s su
h as load-sharing, standby redundan
ies

or dependen
ies. Their underlying (limiting) assumptions are the followings:

1. Events are 
hara
terized as sto
hasti
ally independent events.

2. Events are 
hara
terized as binary events: working or failed.

3. Non-repairable events: when events fail for the �rst time, they are assumed to be

failed forever.

4. Chara
terization of a single failure/fun
tioning event at a time.

5. Relations between events expressed by (stati
) boolean operators.

In the s
ienti�
 literature there has been proposed many approa
hes to over
ome the

limitations of these approa
hes (see [Aizpurua13b℄ for an overview of limitations and

solutions). Some of them are addressed in the Subse
tion 2.3.1.
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Event-based approa
hes 
hara
terize the failure or fun
tioning logi
 of the system

through the stru
ture fun
tion of the system [Rausand03℄:

A.1.1 Stru
ture Fun
tion

Consider a system 
omposed of n 
omponents, where the state of the 
omponent i (x

i

),

i=1, 2, . . . , n 
an be fun
tioning or failed:

xi =











1, if 
omponent i is fun
tioning

0, if 
omponent i is in a failed state

x = (x1, x2, . . . , xn) is 
alled the state ve
tor. The state of a system 
an be des
ribed by

a binary fun
tion:

Φ(x) = Φ(x1, x2, . . . , xn) (A.1)

where

Φ(x) =











1, if the system is fun
tioning

0, if the system is in a failed state

and Φ(x) is 
alled the stru
ture fun
tion of the system. Series, parallel, and K out

of N stru
ture are the 
lassi
al arrangements of systems with the following stru
ture

fun
tions:

Series Stru
ture: a system that is fun
tioning if all of its n 
omponents are fun
tion-

ing:

Φ(x) = x1 · x2 . . . xn =
n
∏

i=1

xi (A.2)

Parallel Stru
ture: a system that is fun
tioning if at least one of its n 
omponents is

fun
tioning:
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Φ(x) = 1− (1− x1) · (1− x2) . . . (1− xn) = 1−
n
∏

i=1

(1− xi) (A.3)

K out of N Stru
ture: a system that is fun
tioning if at least k of the n 
omponents

are fun
tioning:

Φ(x) =











1, if

∑n
i=1 xi ≥ k

0, if

∑n
i=1 xi < k

(A.4)

Making use of the stru
ture fun
tion, we will de�ne two well known event-based de-

pendability analysis approa
hes: Fault Tree Analysis and Reliability Blo
k Diagrams.

A.1.2 Fault Tree Analysis

The 
on
ept of Fault Tree Analysis (FTA) was developed by Bell Telephone Laboratories

as a te
hnique with whi
h to perform a safety evaluation of the Minuteman Laun
h

Control in 1961. Later Boeing

15


ompany modi�ed it for 
omputer utilization and now

it is widely used in many �elds su
h as aviation, railway or nu
lear [O�
e02℄.

FTA is a top-down dedu
tive analysis te
hnique aimed at �nding all the ways in whi
h

a failure 
an o

ur. Starting from an undesirable system-level failure, i.e., top-event, its

immediate 
auses to o

ur are identi�ed until rea
hing the lowest-level 
omponent, i.e.,

basi
-event. The top-event is broken down into intermediate and basi
-events linked

with logi
 gates organised in a tree-like stru
ture. The resulting FT, is a model in the

form of 
ombinations of events whi
h are ne
essary to the top-event to o

ur. The


ombination of events are spe
i�ed using boolean logi
 gates denoting the relationship

between the di�erent events (see Figure C.1 for a FT model example). Formally,

De�nition A.1. Fault Tree (FT): A fault tree model, ft, is de�ned by a 4-tuple:

ft =< TE,BE,BG,R >

where:

� TE is the top-event of the FT (failure of the modelled system)

15

www.boeing.
om
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� BE is the set of basi
 events

� BG={AND, OR, KooN} is the set of boolean gates

� R ⊆ (BE x BG) ∪ (BG x BG) ∪ (BG x TE) is the set of relations.

Often the output of a gate whi
h is then 
onne
ted to another gate is named Intermediate

Event (IE). Boolean Gates (BG) are de�ned as follows:

� AND: Y= AND (E

1

, E

2

,...,E

N

); Y is true i� all events {E

1

, E

2

,...,E

N

} are true;

otherwise is false (
f. Figure A.1 (b)).

� OR: Y= OR (E

1

, E

2

,...,E

N

); Y is true i� any event {E

1

, E

2

,...,E

N

} is true;

otherwise is false (
f. Figure A.1 (
)).

� KooN: Y= KooN (E

1

, E

2

,...,E

N

); Y is true i� at least k (1 < k < n) among the

set of N input events {E

1

, E

2

,...,E

N

} is true; otherwise is false (
f. Figure A.1

(d)).

Figure A.1: Fault Tree Symbols

Qualitative Analysis: the prin
ipal qualitative results are the (minimal) 
ut-sets,

whi
h re�e
t the (smallest) 
ombination of basi
 events whose simultaneous o

urren
e

results in the top-event o

urren
e. The number of possible 
ut-sets grows exponentially

with the size of the fault tree.

Quantitative Analysis: A FT model 
an be quanti�ed by as
ribing probabilities to

the basi
 events and 
ombining them to evaluate the probability of the top-event:

� Stru
ture Fun
tion: repla
e system variables with the 
orresponding failure prob-

ability.
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� Computation based on Minimal Cut-Sets (MCS): determine all the minimal 
ut-

sets MCS

1

, MCS

2

,. . . ,MCS

k

, and rewrite the stru
ture fun
tion as follows:

Φ(x) =
k
∏

j=1

∐

i∈MCSj

xi (A.5)

From the resulting stru
ture fun
tion, on
e system variables are repla
ed with

the 
orresponding probabilities, the in
lusion-ex
lusion formula should be applied

to determine the system unreliability and avoid taking into a

ount probabilisti


dependen
y between events.

Importan
e Measurements: Importan
e measurements 
an be 
arried out to quan-

tify the 
ontribution of the BE (or IE) o

urren
es to the TE failure. There exist

di�erent importan
e measurement methods based on the in�uen
e of the (1) BE's (or

IE) reliability and (2) stru
tural lo
ation of the BE (or IE) in the system. Di�erent

importan
e measurements have been de�ned based on these properties, refer to Se
tion

4.3 for further details and referen
es.

Binary De
ision Diagram (BDD) based Analysis [Bryant86℄: BDD en
odes the

boolean formula underlying a FT model. It allows the redu
tion of the fault tree by

providing advantages from 
omputational point of view. Working dire
tly in the logi
al

expression level it allows to obtain minimal 
ut-sets and system level unreliabilities.

The BDD approa
h is based on the Shannon de
omposition formula [Shannon38℄ and

its equivalent if-then-else (ite) stru
ture:

F = x1 ∧ F1 ∨ x1 ∧ F0 = ite(x1, F1, F0) (A.6)

That is, if x1 is true then F1 else F0. For instan
e, if we 
onsider the next boolean for-

mula, whi
h expresses the failure logi
 of a simple system: TE = x∧y∨z; the TE failure

logi
 
an be expressed as follows: TE = ite(x, ite(y, 1, ite(z, 1, 0)), ite(z, 1, 0)). A

ord-

ingly, the 
orresponding BDD whi
h en
odes the boolean formula into ite notation is

shown in Figure A.2.

There exist many algorithms and tools for the synthesis, optimization, veri�
ation and

testing of BDDs [Doyle95℄.

225



Figure A.2: The BDD of the formula y = x ∧ y ∨ z

A.1.3 Reliability Blo
k Diagrams

A Reliability Blo
k Diagram (RBD) is a su

ess-oriented network des
ribing the non-

repairable fun
tion of the system [Rausand03℄. It shows the logi
al 
onne
tions of the


omponents needed to ful�l a spe
i�ed system fun
tion answering the following question:

whi
h elements of the item under 
onsideration are ne
essary for the ful�lment of the

required fun
tion and whi
h 
an fail without a�e
ting it? [Alessandro06℄

Ea
h 
omponent is illustrated by a blo
k (reliability blo
k) and ea
h of them has its spe-


i�
 failure 
hara
teristi
s. Blo
ks are 
ombined as series stru
ture, parallel stru
ture or

K-out-of-N stru
ture to ful�l the spe
i�ed system fun
tion a

ording to the redundan
y

s
heme (see Figure A.3 for some example 
on�gurations). Formally,

De�nition A.2. Reliability Blo
k Diagram (RBD): A reliability blo
k diagram

model, rbd, is de�ned by a 4-tuple: rbd =< B,C,N, J >

where:

� B is the set of blo
ks

� C is the set of 
onne
tions between the blo
ks

� N is the set of nodes

� J ⊆ (N x C x B) ∪ (B x C x N) ∪ (B x C x B) is the 
onne
tion relation with

respe
t to the input node, output node; and the 
onne
tion relation between blo
ks

respe
tively.

Qualitative Analysis: the prin
ipal qualitative results are the (minimal) path-sets,
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whi
h re�e
t the (smallest) 
ombination of blo
ks whose simultaneous o

urren
e result

in the 
orre
t operation of the system.

Quantitative Analysis: A RBD model 
an be quanti�ed by as
ribing probabilities to

the blo
ks and 
ombining them to evaluate the probability of the system fun
tioning or

failing:

� Stru
ture Fun
tion: in the stru
ture fun
tion repla
e the system variables with

the 
orresponding working probability.

� Computation based on Minimal Path-Sets (MPS): determine all the minimal path-

sets MPS

1

, MPS

2

,. . . ,MPS

k

, and rewrite the stru
ture fun
tion as follows:

Φ(x) =
k
∐

j=1

∏

i∈MPSj

xi (A.7)

From the resulting stru
ture fun
tion, on
e system variables are repla
ed with the


orresponding probabilities, the in
lusion-ex
lusion formula should be applied to

determine the system reliability and avoid taking into a

ount overlapping events.

A.2 State-Based (Dynami
) Approa
hes

State-based approa
hes make use of state-spa
e models to quantify RAMS properties

of the system under study. They 
hara
terize the o

urren
e of a failure as a transition

from fun
tional state to a failed state. That transition 
an be provoked either by another

event whi
h triggers the state 
hange or due to the elapsed time in a state. State-based

analysis te
hniques mainly di�er in their abstra
tion levels and 
onsidered probabilisti


distributions.

The advantages of the state-based approa
hes over event-based approa
hes are that

they a

ount for the reliability of system's dynami
s. However, their disadvantage are

the 
omplexity to analyse a

urately system's dependability properties and the state-

explosion problem.

The following paragraphs introdu
e some relevant de�nitions to 
hara
terize state-based

approa
hes:
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Figure A.3: Reliability Blo
k Diagram Stru
tures and Asso
iated Reliability Fun
tions

[Alessandro06℄

Let S be the possible out
omes of a random experiment. The set S is 
alled sample

spa
e of the experiment. A random variable is the mapping from s ∈ S a out
ome to a

real number.

De�nition A.3. Sto
hasti
 Pro
ess: family of random variables {X(t) | t ∈ T}

de�ned on a given probability spa
e.

The values of the random variable X(t) denote system states and T is 
alled the pa-
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rameter set. If T is not 
ountable the pro
ess is said to have a 
ontinuous parameter ;

otherwise it is 
alled dis
rete parameter pro
ess.

De�nition A.4. State Spa
e: the state spa
e Ω of the pro
ess {X(t)} is determined

by the set of all possible values that random variables 
an take. Depending if T is


ontinuous or dis
rete, the state spa
e is 
alled 
ontinuous state spa
e or dis
rete state

spa
e respe
tively.

Two events (A, B ∈ F ) are said to be independent if: P (A∩B) = P (A)P (B). Thus,

an independent sto
hasti
 pro
ess is de�ned as follows:

De�nition A.5. Independent Sto
hasti
 Pro
ess: assuming that Fn(x1, x2, . . . , xn)

denotes the �nite dimensional joint distribution of a sto
hasti
 pro
ess {X(t) | t ∈ T},

the sto
hasti
 pro
ess is independent if:

Fn(x1, . . . , xn) = P{X(t1) ≤ x1, . . . , X(tn) ≤ xn} =
n
∏

i=1

P{X(ti) ≤ xi} (A.8)

Among the state-based approa
hes, we will fo
us on two well known basi
 approa
hes

from whi
h di�erent approa
hes have 
ome up: Markov Chains and Petri Nets.

A.2.1 Markov Chains

Markov Chain based analysis te
hniques des
ribe states of a system at su

essive times

[Haverkort01; Trivedi02℄. The Markov property states that the system depends only on

the 
urrent state and not on the history of the states:

De�nition A.6. Markov Property: if for any t0 < t1 < t2 < . . . < tn < t, the


onditional distribution of X(t) for given values of X(t0), X(t1), X(t2), . . . , X(tn), X(t)

depends only on X(tn):

P{X(t) ≤ x | X(tn) = xn, . . . , X(t1) = x1, X(t0) = x0}

= P{X(t) ≤ x | X(tn)}
(A.9)

The Markovian property is also known as memoryless property and a sto
hasti
 pro
ess
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whi
h possesses the Markov property is 
alled a Markov pro
ess. A Markov pro
ess with

a dis
rete state spa
e is referred to as a Markov Chain.

In most Markov pro
esses it is normal to assume that they are time invariant or time

homogeneous

16

(also known as stationary Markov Chains) satisfying:

P{X(t) ≤ x | X(tn)} = P{X(t− tn) ≤ x | X(0) = xn} (A.10)

The probability that the pro
ess stays in state i at time t > tn given it was in state

i at time tn only depends on state i, but does not depend on how mu
h time it has

spent in state i (no state age memory). This property implies that the lifetimes be-

tween subsequent events should also have the memoryless property, i.e., sojourn time

is exponentially distributed for 
ontinuous pro
esses and geometri
ally distributed for

dis
rete pro
esses.

Depending on 
ontinuous or dis
rete transition times between states, Markov 
hains

are 
lassi�ed as Continuous Time Markov Chain (CTMC) (
f. Figure A.4) or Dis
rete

Time Markov Chain (DTMC) (
f. Figure A.5) respe
tively:

De�nition A.7. Continuous Time Markov Chain (CTMC): A Continuous Time

Markov Chain model, 
tm
, is a 3-tuple: ctmc =< S, s0, R >

where:

� S = {s0, s1, s2, . . . , sp} is a �nite set of states;

� s0 ∈ S is the initial state;

� R : SxS → ℜ≥0 is the transition rate matrix.

The transition time (sojourn time or delay) is 
hara
terized a

ording to the exponential

distribution. The transitions in DTMCs are labelled with probabilities instead of rates:

De�nition A.8. Dis
rete Time Markov Chain (DTMC): A Dis
rete Time

Markov Chain model, dtm
, is a 3-tuple: dtmc =< S, s0, R >

where:

� S = {s0, s1, s2, . . . , sp} is a �nite set of states;

16

In the following we 
onsider only time-homogeneous Markov 
hains
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Figure A.4: Continuous Time Markov Chain Example

� s0 ∈ S is the initial state;

� R : SxS → [0, 1] is the transition probability matrix.

Figure A.5: Dis
rete Time Markov Chain Example

With homogeneous 
ontinuous Markov Chains, the sojourn time is exponentially dis-

tributed, but in some 
ases this is not enough to des
ribe system's properties adequately.

Besides, Markov Chains are modelled as �at networks, thus, when dealing with 
omplex

systems, the readability and 
orre
t 
onstru
tion of the Markov models is 
ompli
ated

and in many 
ases it su�ers from the state explosion problem. In this way, sto
hasti


extensions were introdu
ed to alleviate the 
omplexity of the pure Markov Chain models

when 
hara
terizing 
omplex systems.

De�nition A.9. Renewal pro
ess: let S0 < S1 < S2 < ... be the time instants of

su

essive events to o

ur where,
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S0 = 0 and Sn = Σn
i=1Xi n = 1, 2, ... (A.11)

The sequen
e of non-negative independent and identi
ally distributed random variables

S = {Sn − Sn−1;n = 1, 2, ...} is a renewal pro
ess; i.e., the sequen
e of intero

urren
e

times between su

essive events are independent and identi
ally distributed.

The state at Sn (the epo
h that the n-th event o

urs) is given by Xn ∈ S. The 
hain

Xn now forms a pro
ess on its own (DTMC). The points Sn;n = 0, 1, 2, ... are 
alled

Markov regeneration epo
hs or Markov renewal moments. Together with the Xn they

de�ne a Markov renewal sequen
e:

De�nition A.10. Markov Renewal Sequen
e: a sequen
e of bivariate random vari-

ables {(Yn, Sn), n ≥ 0} is 
alled a Markov Renewal Sequen
e if:

P{Yn+1 = j, Sn+1 − Sn ≤ x | Yn = i, Sn, Yn−1, Sn−1 . . . , Y0, S0}

= P{Yn+1 = j, Sn+1 − Sn ≤ x | Yn = i} (Markov property)

= P{Y1 = j, T1 ≤ x | Y0 = i} (T ime Homogeneity)

(A.12)

In a Markov Renewal Sequen
e, the future evolution of the sto
hasti
 pro
ess depends

on the 
urrent state of the pro
ess at Markov renewal points, i.e., at time epo
hs Sn.

Markov Renewal Sequen
es are embedded into Markov Renewal Models. Markov Re-

newal Models 
an be 
lassi�ed into two 
ategories [Xie04℄: semi-Markov model and

Markov regenerative model.

De�nition A.11. Semi-Markov pro
ess: 
onsider a Markov renewal sequen
e

{Yn, Sn} with state spa
e I the sto
hasti
 pro
ess {Yn, Sn} is 
alled a semi-Markov pro
ess

with state spa
e I if Z(t) = Y (n) for t ∈ [Sn, Sn+1).

In Semi-Markov pro
esses the amount of time spent in ea
h state before a transi-

tion to the next state o

urs (i.e., inter-o

urren
e/sojourn time) is an arbitrary ran-

dom variable that depends on the next state the pro
ess will enter, i.e., the inter-

o

urren
e/sojourn time is not required to be exponentially distributed, instead it fol-

lows a general distribution. At transition instants a semi-Markov pro
ess behaves like a

232



Markov pro
ess: transitions at Markov renewal points from state to state are made like

a Markov pro
ess.

De�nition A.12. Markov regenerative pro
ess [Henk C.03℄: if there exists a

Markov renewal sequen
e {(Yn, Tn), n > 0} of random variables su
h that all the 
on-

ditional �nite dimensional distributions of {(Z(Sn + t), n ≥ 0} given {(Z(u), 0 ≤ u ≤

Sn), Yn = i} are the same as those of {(Z(t), t ≥ 0} given Y0 = i.

The Markov regenerative pro
ess is a generalization of the semi-Markov pro
ess: the

Markov regenerative pro
ess has state 
hanges between Si and Si+1, while semi-Markov

does not.

A.2.2 Petri Nets

Petri Net approa
h over
omes the main drawba
k of the Markov Chain analysis, i.e.,

the model does not in
rease in size as the number of 
omponents in
reases. While in

a Markov Chain it is ne
essary to de�ne all the possible 
ombinations of the system,

in Petri Nets it su�
es with spe
ifying the 
onditions when a 
omponent will be up or

down. A Petri Net models the system through the following elements [Peterson81℄:

� Pla
es whi
h model state variables and 
ontain tokens.

� Tokens whi
h model the spe
i�
 value of state variables.

� Transitions whi
h model a
tivities that 
an 
ause state 
hanges.

� Ar
s whi
h model the inter
onne
tions between pla
es and transitions.

A marking in a Petri Net is an assignment of tokens to the pla
es of a Petri Net (e.g.,

the marking of the Petri Net depi
ted Figure A.6 is: m(p1)=2, m(p2)=0, m(p3)=1,

m(p4)=1 or m=(2, 0, 1, 1)). The number and position of tokens may 
hange during

the exe
ution of a Petri Net. The tokens are used to de�ne the exe
ution of a Petri net.

Formally:

De�nition A.13. Petri Net (PN): A Petri Net model, pn, is a 5-tuple:

pn =< P, T, I, O,M(0) >

where:
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� P = {p1, p2, . . . , pp} is a �nite set of pla
es;

� T = {t1, t2, . . . , tt} is a �nite set of transitions;

� I: PxT →N is an input fun
tion that de�nes the dire
ted ar
s from pla
es to tran-

sitions, where N is the set of non-negative integer numbers.

� O: TxP →N is an output fun
tion that de�nes dire
ted ar
s from transitions to

pla
es.

� M(0)={m1(0), m2(0), . . . , mp(0)} is the initial marking, i.e., the number of tokens

within the pla
es.

Figure A.6: Petri Net Example

Transitions 
an be enabled when all its input pla
es are marked at least with as many

tokens as spe
i�ed by the input fun
tion (e.g., t1 in Figure A.6). When a transition

�res it removes the number of tokens from its input pla
es de�ned by the weight of the

input ar
 and sets to its output pla
e(s) the number of tokens spe
i�ed by the weight of

the output ar
. For instan
e after �ring t1 the resulting marking of the net would be:

m=(1, 1, 0, 1).

A Petri Net model simulates the �token game� based on the marking of pla
es. The

marking of a Petri Net determines the state of the system. They are used for analysing

the probability to rea
h some desired state.
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Originally they were 
hara
terized by either deterministi
 or exponential transition

times, whi
h 
reated the mapping between Petri Nets and Markov Chains. As o
-


urred with Markov Chains, the theory of Petri Nets was also extended introdu
ing

time dependent transitions:

� Sto
hasti
 Petri Nets (SPN): Petri Nets with exponentially timed transitions (or

�ring delays). Its underlying sto
hasti
 pro
ess is expressed as CTMC [Bause02℄.

� GSPN: Petri Nets with exponentially timed and immediate (zero timed) transi-

tions. Immediate transitions have priority over timed transitions. GSPN are also

analysed by means of CTMCs [Kartson94℄.

� DSPN: deterministi
 (�xed) and exponentially distributed timed transitions

[Lindemann98℄.

� Markov-Regenerative SPN: immediate transitions, exponentially distributed timed

transitions and generally distributed (arbitrary) timed transitions [Choi94℄.

� SAN: generalization of Sto
hasti
 Petri Nets, whi
h allows de�ning general prob-

ability distributions and 
ompositional models [Sanders02b℄ (see Chapter 5).

Petri Nets are high-level representations of the system, whi
h allows (in some 
ases)

the generation of Markov Chain based models. This is why many works analyse sys-

tems through Petri Nets-based formalisms, whi
h are 
hara
terized by their underlying

Markov pro
esses. System's states and events 
hara
terized with temporal properties

yield to a

omplish a

urate dependability attributes measurement. Most of the Petri

Nets based formalisms 
hara
terize the system model with safe-unsafe or working-failed

states, where the 
orre
tness and a

ura
y of the analysis depends on the model 
on-

stru
tion. Petri Nets 
an also be solved via dis
rete event simulations [Chiola93b℄.

Ar
hite
ture des
ription languages [Medvidovi
00℄ (e.g., UML [OMG14b℄, AADL

[Feiler07℄) have been widely adopted to alleviate the dependen
e on the 
orre
tness of

the analysis model or quality evaluation model (see Subse
tion 2.3.1). These approa
hes

in
lude ar
hite
ture des
ription information as well as dependability behaviour informa-

tion and automates state-based dependability analysis model generation. However, the

expressiveness of the state-based quality evaluation models 
omes with a 
onsiderable


omputational 
ost, whi
h is the biggest limitation for state-based approa
hes, i.e., the

state-explosion problem [Valmari98℄.
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Appendix B

Classi�
ation of the Hybrid

Approa
hes and Tool Support

The goal of this 
hapter is to 
lassify the hybrid approa
hes presented in Chapter 2

and provide information about their tool support. Interested readers please refer to

[Aizpurua13b℄ for more information.

B.1 Classi�
ation of the Hybrid Approa
hes

In order to 
lassify the 
overed hybrid approa
hes in Chapter 2, Table B.1 groups them

taking into a

ount addressed limitations (see Table 2.5).

Table B.1: Summary of Limitations Over
ome by Approa
hes

Group Approa
h Limitations

1 [Dugan92℄ [Rao09℄ [Walter08℄ [Codetta-Raiteri05℄ [Montani08℄ [Manno14
℄ L1

2 [Bouissou07℄ [Manno12b℄ [Arnold13℄ L1, L4

3 [Kaiser03℄ [Fenelon93℄ [Domis09b℄ [Paige08a℄ L2, L4

4 [Joshi07℄ [Adler10a℄ [Papadopoulos11℄ [Priesterjahn11a℄ [Gallina12℄ L2, L3, L4

5 [Kaiser07℄ [Romain07℄ [Distefano09℄ [Signoret13℄ [Niu11℄ L1, L2, L4

6 [Walker09℄ [Monte

hi11℄ [Rugina07℄ [Riedl12℄ [Cressent11℄ L1, L2, L3, L4

Approa
hes 
lassi�ed in the group 1 fo
us on dynami
 analysis issues. Di�eren
es be-

tween them rely in their failure/repair modelling 
apabilities and their 
orresponding

statisti
al distributions as noted in Subse
tion 2.3.1.
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Approa
hes within the groups 2, 3 and 5 allow the 
ompositional evaluation of the

system's dynami
s (group 3 ex
epted) addressing the manageability issues arising from

the resulting dependability evaluation model.

Approa
hes gathered within the groups 4 and 6 
ontain all ne
essary me
hanisms to

analyse dynami
 systems 
onsistently and in a manageable way. Compositional failure

annotation, dynami
 behaviour (group 6) and automati
 extra
tion of analysis models

are the key features addressed by these approa
hes. However, when dealing with the

manageability and reusability issues (L4) di�erent approa
hes arise: groups 4 and 6

address L4 by means of the 
ompositional 
hara
terization of the design model instead

of the 
ompositional 
hara
terization of the dependability analysis model. The trans-

formational 
apability of the design model allows them to 
ope with design 
omplexity

issues. However, the analysis model itself is not a 
ompositional approa
h, rather it

is a �at model whose manageability/maintenan
e may be hampered when analysing


omplex systems and dealing with the dependability analysis model dire
tly.

Utilization of failure annotation patterns promote �exibility and reuse and 
onsequently,

redu
e the error proneness. Nevertheless, as noted in [Lisagor10℄, 
hara
terization of the

failure behaviour of 
omponents depends on the 
omponent 
ontext, whi
h 
onditions


ompositional and reuse properties. Moreover, automati
 generation of the analysis

model does not 
ompletely alleviate the dependen
y on the knowledge of the analyst.

However, the management and spe
i�
ation of the failure behaviour is 
learer and more


onsistent.

B.2 Tool Support

In this se
tion we introdu
e the tool support of the approa
hes presented in Subse
tion

2.3.1. Namely, we identify the type of tool (internal, 
ommer
ial, a
ademi
, . . . ) and

the date of the latest release.

The tool support of dynami
 approa
hes, 
ompositional failure propagation approa
hes,

and model-based transformational approa
hes are presented in Subse
tion B.2.1, Sub-

se
tion B.2.2, and Subse
tion B.2.3 respe
tively.
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B.2.1 Dynami
 Approa
hes

Table B.2 displays the dynami
 approa
hes addressed in Subse
tion 2.3.1 that have tool

support for the spe
i�
ation and analysis of the dynami
 behaviour of systems.

Table B.2: Tool-Support of the Dynami
 Approa
hes

Approa
h - Work Tool Support Type of Tool

Latest

Release

DFT - [Dugan92℄ Galileo [Virginia03℄

Commer
ial,

Edu
ational

2003

DFT -

[Codetta-Raiteri05℄

DrawNET (DFT), GreatSPN(GSPN) Internal 2005

DFT - [Rao09℄ DRSIM tool Internal 2009

DFT - DFTCal


[Arnold13℄

DFTCal
 [Twente14℄ Available 2014

DFT - Radyban

[Montani08℄

Radyban [Montani08℄ Internal 2011

DFT - MatCarloRe

[Manno12b℄

MatCarloRe Tool [Manno14a℄

A
ademi


evaluation 
opy

2014

DFT - RAATSS

[Manno14
℄

RAATS Tool [Manno14b℄

A
ademi


evaluation 
opy

2014

RdP - [Signoret13℄ BStoK [Workshop℄ Comer
ial 2014

OpenSESAME -

[Walter08℄

OpenSESAME [Walter09℄ Available 2009

BDMP - [Bouissou07℄
KB3 Workben
h [EDF14℄ Available 2014

SEFT - [Kaiser07℄

ESSaRel [Steiner12℄, TimeNET

[TU Berlin07℄

Internal

*

2014

*

Available for resear
h purposes under agreement

B.2.2 Compositional Failure Propagation Approa
hes

Regarding the tool support of the Compositional Failure Propagation (CFP) approa
hes

we 
an see that all approa
hes have been turned into tool-sets. Nonetheless, the CFP

approa
hes are moving one step further, integrating dependability analysis models with

design languages in order to link the design and analysis pro
esses (
f. Subse
tion 2.3.1).
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Table B.3: Tool-Support of the CFP Approa
hes

Approa
h - Work Tool Support

Type of

Tool

Latest

Release

FPTN SSAP Toolset [Fenelon93℄ Unavailable 2006

HiP-HOPS

[Papadopoulos11℄

HiP-HOPS Tool [Hull14℄ Available 2014

CFT ESSaRel tool [TU Kaiserslautern09℄ Available 2009

SCM [Domis09b℄ ComposeR Internal 2012

FPTC Epsilon [Paige08b℄ Available 2009

[Priesterjahn11a℄ Me
hatroni
UML, Fujaba [Paderborn12℄ Available 2012

B.2.3 Transformational Approa
hes

As it is shown in Table B.4, all Ar
hite
tural Design Languages (ADL) have their own

implementation tool-sets. Namely, transformations from ADL models into 
omposi-

tional failure propagation models have been 
arried out through metamodels and pro�les

implemented as plugins.

Table B.4: Tool-Support of the Transformational Approa
hes

Approa
h - Work Tool Support

Type of

Tool

Latest

Release

Simulink Matlab [MathWorks14℄ Comer
ial 2014

UML, SysML e.g., E
lipse Papyrus [E
lipse12℄ Available 2014

AltaRi
a e.g., AltaRi
a Tools [Labri14℄ Available 2014

AADL e.g., Osate [CMU12℄ Available 2014

CHESS-ML CHESS Plugins [CHESS12℄

Partially

available

2012

FPTC Epsilon [Paige08b℄ Available 2009

Adler et al. [Adler10a℄ CFT UML Pro�le Internal 2012

HiP-HOPS

EAST-ADL2 E
lipse Plugin

[ATESST10℄

Available 2010

LARES [Riedl12℄
LARES toolset [Gouberman14℄ Available 2014

Cressent et al. [Cressent11℄ MéDISIS Framework Internal 2012
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Appendix C

Analysis of Literature Approa
hes on a

System Example

In this 
hapter we will fo
us on a hypotheti
al simple example to highlight the strengths

and drawba
ks of some of the approa
hes reviewed in Chapter 2.

This 
hapter is organised into the next se
tions:

� Se
tion C.1 applies traditional Stati
 Fault Trees [Vesely02℄ on the example system.

� Se
tion C.2 uses Component Fault Trees [Kaiser03℄ on the example system.

� Se
tion C.3 employs Hierar
hi
ally Performed Hazard Origin and Propagation

Studies (HiP-HOPS) approa
h [Papadopoulos11℄ on the example system.

� Se
tion C.4 makes use of repairable Dynami
 Fault Trees through the Reliability

Availability Adaptive Transition System Solver (RAATSS) tool [Manno14
℄ on the

dynami
 example system.

� Se
tion C.5 applies Stru
ture Fun
tion of Dynami
 Fault Trees [Merle14℄ on the

dynami
 example system.

� Se
tion C.6 uses Boolean logi
 Driven Markov Pro
esses (BDMP) [Bouissou07℄ on

the dynami
 example system.

� Se
tion C.7 models the dynami
 example system using State-Event Fault Trees

(SEFT) [Kaiser07℄.
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C.1 (Stati
) Fault Tree [Vesely02℄

As Figure C.1 shows, the simultaneous failure o

urren
e of two subsystems (IE4, IE5)


auses the system failure (IE1). These subsystems are 
hara
terized by the failure

behaviour of their inner basi
 events (IE4: BE1, BE2, BE3; IE5: BE2, BE4, BE5).

There exist other two 
ombinations that also 
ause the system failure (IE2, IE3), whi
h

are 
hara
terized a

ordingly with their underlying basi
 events.

Figure C.1: Example System: (Stati
) Fault Tree Model

Note that this model 
ontains repeated 
omponents/subsystems (IE4 ↔ IE7, IE5 ↔

IE8) and repeated basi
 events. In this example we left out the dynami
 
hara
teristi
s

that the system's failure behaviour may 
ontain, sin
e this is one of the well-known

drawba
ks of stati
 Fault Trees: inability to grasp dynami
 
hara
teristi
s of the system.

Another obsta
le worth 
onsidering is the �atness of the model. For 
omplex systems the

manageability, legibility and maintainability of the model be
omes tedious and error-

prone. However, due to the simpli
ity of the Fault Tree modelling pro
ess, still it is a

widely used 
hoi
e.
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C.2 Component Fault Tree (ESSaReL tool) [Kaiser03℄

To over
ome the inability of stati
 Fault trees to deal with 
omplex systems, Component

Fault Trees were introdu
ed. In this simple example we have en
losed IE4 and IE5


omponents/subsystems and reused them to 
onne
t to the required gates a
ross the

model (see Figure C.2).

BE1 BE2BE3 BE4 BE5 BE6

BE7IE4 IE5 &IE6

&IE1 &IE2 &IE3

TE

≤ 1 ≤ 1

≤ 1

BE2

BE4 BE5 BE6

BE7

IE4 &IE5

C1IE1 C1IE2 &IE3

TE

BE1 BE3
≤ 1

≤ 1

C1

&

≤ 1

Component grouping

Figure C.2: Example System: Component Fault Tree Model
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As Figure C.2 displays, the resulting model 
an be presented in a more intuitive manner

than the traditional (stati
) Fault Tree model.

As with stati
 Fault Trees, Component Fault Trees are unable to grasp the dynami



hara
teristi
s of the system. In their positive side, note that they are able to deal with

repeated events and more importantly with repeated 
omponents, so that the readability

and manageability of the whole model is improved.

C.3 HiP-HOPS [Papadopoulos11℄

HiP-HOPS (Hierar
hi
ally Performed Hazard Origin and Propagation Studies) enables

to deal with 
omplex systems fo
using on the 
omponent-based design 
on
ept.

Ea
h design 
omponent is annotated with their 
orresponding failure behaviour and

these 
omponents are 
onne
ted to perform the system fun
tion. By propagating the

failure annotations of ea
h 
omponent, the stati
 Fault Tree of the system is generated

automati
ally. The whole the system 
an be seen as a forest of inter
onne
ted Fault Trees

[Papadopoulos11℄. Figure C.3 depi
ts the example system using HiP-HOPS annotations.

Figure C.3: Example System: HiP-HOPS Model
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Apart from the automati
 
onstru
tion of Fault Tree models, HiP-HOPS is able to

generate FMEA models and it implements automati
 SIL de
omposition and allo
ation

te
hniques [Hull14℄.

Despite an extension to the dynami
 failure 
hara
terization of HiP-HOPS have been

done [Walker09℄, the approa
h is not able to grasp the dynami
 
hara
teristi
s of the

system 
ompletely. As with Component Fault Trees, HiP-HOPS 
an deal with repeated

events and repeated 
omponents.

C.4 Repairable Dynami
 Fault Tree (RAATSS tool)

[Manno14
℄

In order to re�ne the system's failure behaviour, let us assume that some failure o
-


urren
es are required to o

ur sequentially: IE6 have to o

ur prior to IE7 and IE8

have to o

ur prior to BE8. Previously des
ribed models are unable to 
apture this

logi
, but the Dynami
 Fault Tree (DFT) approa
h has the Priority AND (PAND) gate,

whi
h addresses this logi
 adequately. To analyse the system using the repairable DFT

approa
h we will fo
us on the RAATSS tool (see Figure C.4).

Figure C.4: Dynami
 Example System: Dynami
 Fault Tree Model
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RAATSS enables the dynami
 analysis of systems with repairable basi
 events. Besides,

it makes possible modelling any failure/repair distributions. However, its main issues

arises from the �atness of the model. As noted with stati
 Fault Trees, large-�at models

are di�
ult to maintain and understand.

C.5 Stru
ture Fun
tion of Dynami
 Fault Trees

[Merle14℄

The dynami
 system example 
an be analysed by the algebrai
 framework for non-

repairable Dynami
 Fault Trees proposed by [Merle14℄.

Assuming that two events 
annot happen at the exa
t same time we will 
hara
terize

the example system of Figure C.4 as follows

17

:

TE = IE1 + IE2 + IE3

IE1 = (BE1 +BE2 +BE3).(BE4 +BE5 +BE2) = BE2 + (BE1 +BE3).(BE4 +BE5)

IE2 = (BE5.BE6) ⊳ (BE1 +BE2 +BE3)

IE2 = (BE5) ⊳ (BE1 +BE2 +BE3).(BE6) ⊳ (BE1 +BE2 +BE3)

IE2 = (BE5 ⊳ BE1).(BE5 ⊳ BE2).(BE5 ⊳ BE3).(BE6 ⊳ BE1).(BE6 ⊳ BE2).(BE6 ⊳ BE3)

IE3 = (BE4 +BE2 +BE5) ⊳ (BE7)

IE3 = (BE4 ⊳ BE7) + (BE2 ⊳ BE7) + (BE5 ⊳ BE7)

TE = BE2 +BE1.BE4 +BE1.BE5 +BE3.BE4 +BE3.BE5

+ (BE5 ⊳ BE1).(BE5 ⊳ BE2).(BE5 ⊳ BE3).(BE6 ⊳ BE1).(BE6 ⊳ BE2).(BE6 ⊳ BE3)

+ (BE4 ⊳ BE7) + (BE2 ⊳ BE7) + (BE5 ⊳ BE7)

(C.1)

The 
anoni
al form of TE is the sum of all its Cut Sequen
e Sets (CSS) [Tang04℄. In

the 
ompa
t form it is expressed as follows:

TE =
n
∑

i=1

CSSi (C.2)

It is ne
essary to 
he
k for non-redundant CSS terms (denoted as Smin) by applying

17

Symbol ⊳ denotes the before operator
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the algorithm de�ned in [Merle10℄. Assuming that there are m (m ≤ n) non-redundant


ut sequen
e sets, the probabilisti
 value of the TE 
an be 
al
ulated applying the

in
lusion-ex
lusion prin
iple [Trivedi02℄:

Pr{TE} = Pr{CSS1 + CSS2 + . . .+ CSSM}

=
∑

1≤i≤m

Pr{CSSi}

−
∑

1≤i≤j≤m

Pr{CSSi.CSSj}

+
∑

1≤i≤j≤k≤m

Pr{CSSi.CSSj .CSSk}+ . . . +(−1)m−1Pr{CSS1.CSS2.CSSm}

(C.3)

with ∀i ∈ 1, ..., m, CSSi ∈ Smin.

After verifying that there are no redundan
ies in the CSS terms of Equation C.1, we

apply the in
lusion-ex
lusion formula to the 9 independent 
ut sequen
e sets of Equation

C.1. the resulting disjoint terms are 511

18

. Then the 
orresponding probabilisti
 formula

should be applied to ea
h term separately [Merle10℄:

Pr{a.b}(t) = Fa(t)× Fb(t)

Pr{a+ b}(t) = Fa(t) + Fb(t) + Fa(t)× Fb(t)

Pr{a ⊳ b}(t) =

∫ t

0

fa(u)(1− Fb(u))du

Pr{b(a ⊳ b)}(t) =

∫ t

0

fb(u)Fa(u)du

(C.4)

The algebrai
 framework proposed by Merle is adequate for small systems. However,

when analysing real 
omplex systems the pro
ess be
omes tedious and prone to errors.

Automated tool support to aid in the analysis pro
ess would improve its appli
ation.

C.6 BDMP [Bouissou07℄

Boolean Driven Markov Pro
ess 
an be seen as a generalization of Dynami
 Fault Trees

[Bouissou07℄. Su
h a generalization is a
hieved by the use of a trigger and triggered

18

∑N
i=1

(

i

N

)

where N=9
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Markov pro
esses.

Figure C.5 depi
ts the BDMP model of the dynami
 system example depi
ted in C.4.

Although the BDMP approa
h enables 
onne
ting the output of a gate to the input of

other multiple gates, the 
omponent-based 
on
ept is not integrated in the approa
h.

That is, it is not possible to embed user-de�ned logi
 in a 
omponent and reuse it

throughout the model. Refer to Subse
tion 2.3.1 to see other 
hara
teristi
s and limi-

tations of the BDMP approa
h.

Figure C.5: Dynami
 Example System: BDMP Model

C.7 SEFT - DSPN [Kaiser07℄

State-Event Fault Trees (SEFTs) are able to analyse the system's failure and repair

behaviour through the use of 
omponents. To this end, the approa
h models the system

failure/repair behaviour using SEFT 
on
epts and subsequently this model is trans-

formed into the TimeNET tool [Ilmenau07℄ for the analysis of its 
orresponding De-

terministi
 and Sto
hasti
 Petri Nets (DSPN) model. Therefore, the failure and repair

o

urren
e of its events will be 
hara
terized a

ording to exponential and deterministi


transitions.
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Basi
 SEFT modelling me
hanisms in
lude (
f. Figure C.6): (1) states (e.g., BE1_OK ),

(2) transitions (e.g., fault) and (3) state/event ports (e.g., BE1_F ). Besides, di�erent

gates are modelled in SEFT formalism: Priority AND (P&), OR (>=1), NOT and

more (see [Kaiser07℄ for a more detailed de�nition of all the gates). All these modelling

me
hanisms have de�ned their own 
ounterpart in the DSPN modelling: both formalisms

in
lude transitions, SEFT states are modelled through DSPN pla
es and ea
h SEFT gate

has asso
iated its 
orresponding DSPN net. Thus, so as to analyse an SEFT model its

transformation to DSPN model is ne
essary.
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Figure C.6: Dynami
 Example System: SEFT Model

On
e the SEFT model of the dynami
 example system shown in Figure C.4 is 
reated

(see Figure C.6), its transformation results in the DSPN model depi
ted in Figure C.7.

As it 
an be seen from the DSPN model (
f. Figure C.7) the resulting dependability
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Figure C.7: Dynami
 Example System: SEFT's Underlying DSPN Model

analysis model is a �at DSPN model. Therefore, for 
omplex systems, tra
ing from

the SEFT model towards the DSPN model is not straightforward and it 
an su�er

from the state-explosion problem. Another issue worth 
onsidering is the fa
t that it
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is not possible to 
onne
t CFTs with SEFT models in order to trigger SEFT model's

state 
hanges through Component Fault Tree's top-events. These 
hara
teristi
 would

make the approa
h even more expressive and open the way to analyse further 
omplex

systems. In its a
tual version it manages e�e
tively repairable basi
 events and it is able

to in
lude fun
tional-design information through 
omponent-based 
hara
terization.
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Appendix D

Automation/Implementation of the

HW/SW Ar
hite
ture Design

To implement and automate the 
onstru
tion of the extended HW/SW ar
hite
ture a

model-based design approa
h has been implemented [Aizpurua13a℄. As des
ribed in the

Figure D.1 the design pro
ess is spe
i�ed as follows:

(1) The pro
ess starts from the 
onstru
tion of the system ar
hite
ture model spe
i�ed

in Simulink. System's resour
es (sensors, 
ontrollers, a
tuators, network) are mod-

elled using Simulink's subsystem blo
ks. At the highest or top level, the system

ar
hite
ture model is 
hara
terized as a set of 
onne
ted subsystem blo
ks, whi
h

will have internally their 
orresponding fun
tionality and logi
.

(2) System's implementations (whi
h will be 
omprised of resour
es) are 
hara
terized

based on the token-based spe
i�
ation (
f. Chara
terization 3.1) a

ording to the

Fun
tional Modelling Approa
h (FMA) and Extended Fun
tional Modelling Ap-

proa
h (EFMA). To this end, Simulink model's subsystem blo
ks are annotated

by previously de�ned token-based spe
i�
ations. Thus, ea
h subsystem (resour
e)

blo
k in the model will have its own des
ription annotated in a underlying xml 
har-

a
ter string with the prede�ned �elds spe
i�ed a

ording to the FMA and EFMA

(see Subse
tion 3.3.1 and Subse
tion 3.3.4).

(3) On
e all the system resour
es are annotated with their 
hara
teristi
s, the underly-

ing xml annotations of the model's blo
ks are pro
essed. Thanks to the algorithm

de�ned for the identi�
ation of heterogeneous redundan
ies (see Algorithm 2 and

Algorithm 3), the approa
h automati
ally suggests a list of possible heterogeneous

redundan
ies.
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(4) Finally, after pro
essing the annotations of system resour
es, the re
on�guration

table is extra
ted. The re
on�guration table identi�es all the possible system im-

plementations to perform the main fun
tion. These implementations are ordered

a

ording to their implementation priority.

Figure D.1: D3H2 Metodology: Design Implementation

D.1 Annotations of the System Ar
hite
ture

The annotations of the Simulink model's subsystem blo
ks are 
hara
terized with prede-

�ned data �elds for exploitation purposes. Two main data stru
tures have been designed

to 
hara
terize ea
h system implementation: (1) fun
tional; and (2) failure data stru
-

tures.

As for the �rst stru
ture, depending on the implementations' subfun
tion type (I, C,

O), we further divide the fun
tional data stru
ture into two main groups: (1) input

and output resour
e implementations and (2) 
ontrol resour
e implementations. While

input and output resour
e implementations en
lose the 
orresponding logi
 in a single

blo
k, 
ontrol resour
es (i.e., pro
essing units) has further inner subsystems blo
ks in
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order to model the allo
ated SW tasks: 
ontrol, fault dete
tion, re
on�guration and

fault dete
tion of the re
on�guration SW implementations.

Depending on the type of resour
e implementation, we de�ne mandatory and optional

�elds. Initially, the subsystem blo
ks will not have information about the redundan
ies

that may exist in the system model. Therefore, this information �eld is not ne
essary

when annotating subsystem blo
ks, and likewise, the information 
on
erning the priority

of the implementation is not ne
essary in all the 
ases. Hen
e, ea
h subsystem blo
k

has a fun
tional data stru
ture with the following �elds:

� Main Fun
tion (MF): mandatory �eld.

� Subfun
tion Type (SFC): I, C, O, FD, R or FD_R. Mandatory �eld.

� Subfun
tion (SF): mandatory �eld.

� Physi
al Lo
ation (PL): mandatory �eld.

� Implementation: mandatory �eld.

� Priority: optional �eld for redundant implementations (priority > 1); otherwise

(priority=1) mandatory.

� Allo
ated: mandatory for PUs. Ea
h PU may has allo
ated (many) di�erent im-

plementations. This �eld en
loses all its inner SW resour
es, where ea
h resour
e

has the next mandatory �elds: (1) Identi�er, (2) MF, (3) SFC, (4) SF, (5) PL, (6)

Implementation, (7) Priority.

� Redundan
y: this data �eld is further divided into homogeneous and heteroge-

neous �elds. On
e the system model is analysed to sear
h possible redundan
ies,

possible 
andidates are 
lassi�ed as homogeneous or heterogeneous redundan
y

and they are annotated to the 
orresponding resour
e as a potential redundan
y

for the implementation at hand. Ea
h 
andidate redundan
y implementation has

the next �elds: MF, SFC, SF, PL, Implementation, Priority, and Full Name (or

identi�er).

The token (�eld) of the physi
al lo
ation may 
ontain di�erent detail (depth) levels

depending on the physi
al lo
ation. The token of the physi
al lo
ation is stored in

a variable as a array of strings with its dimension equal to the depth of the physi
al
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lo
ation. For instan
e, to store the annotation: PL=Car

1

.Zone

A

, we will use an array

of length 2.

As for the failure data annotations, the next set of data �elds have been de�ned as

mandatory for all the implementation resour
es:

� Implementation: name of the implementation.

� Des
ription: 
hara
ter string de�ning the implementations purpose.

� Distribution: probabilisti
 failure distribution of the implementation: exponential,


onstant, or Weibull.

� Failure Rate (MTTF) and shape parameter (Weibull).

� Time Unit: Billion Hours, Years, Weeks, et
.

� Cost: monetary 
ost of the implementation (Euro).

To aid the designer when �lling the ne
essary �elds, these data is loaded from a existing

database automati
ally. This is a
hieved by identifying the (possible) mat
hing imple-

mentation's name (or identi�er) in the database and a

ordingly, suggesting all possible

implementation names, failure rates, and 
ost values.

D.2 Identi�
ation of Heterogeneous Redundan
ies

In this subse
tion we will introdu
e the algorithms for the identi�
ation of heterogeneous

redundan
ies. To this end, we fo
us on a Simulink model 
onstituted of di�erent blo
ks

ea
h of them annotated with fun
tional data stru
ture �elds.

The algorithm for the identi�
ation of heterogeneous redundan
ies arising from natural


ompatibilities takes as input (Algorithm 2):

� BLOCKSsys: An array of strings with its dimension equal to the number of

implementation (subsystem) blo
ks in the model. Ea
h element of the array 
har-

a
terizes fun
tional annotations of the implementation and a

ordingly, the whole

set of strings spe
i�es the design annotations of the system.
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� BLOCKcheck: The implementation to be 
he
ked in order to �nd homogeneous or

heterogeneous redundan
ies.

Besides, the algorithm makes use of the next fun
tions:

(1) Y = xml_parse(A) fun
tion (line 2, 15) with the next input and output variables

respe
tively: A: an xml 
hara
ter string (in our 
ase it will spe
ify the underlying

xml of the system model); Y : the data stru
ture 
orresponding to the xml string,

with the attributes of the data �elds in the xml string (a

essible as Y.attribute).

(2) Y = get_SubSystemComponents(A) fun
tion (line 6, 19) with the following input

and output variables respe
tively: A: a variable spe
ifying the referen
e to a blo
k;

Y : an array of xml strings with the 
orresponding underlying annotations of ea
h

inner blo
k in A.

Basi
ally, the algorithm for the identi�
ation of heterogeneous redundan
ies arising from

natural 
ompatibilities 
he
ks whether same subfun
tions are lo
ated in 
ontiguous phys-

i
al lo
ations (
f. line 34).

This algorithm does not provide any output, instead it updates dire
tly the Simulink

model through the AnnotateRedundancy(A,B,C) fun
tion (see line 39). The input

parameters of the AnnotateRedundan
y fun
tion are:

� A: Blo
k of the Simulink model to be annotated.

� B: An xml 
hara
ter string spe
ifying the redundan
y annotations (see Se
tion

D.1).

� C: Type of redundan
y (homogeneous or heterogeneous).

The identi�
ation of heterogeneous redundan
ies arising from for
ed 
ompatibilities is

not an automati
ally performed task. However, Algorithm 3 outlines the pro
ess to


reate a list with possible heterogeneous redundan
y suggestions. It is the designer who

should have to analyse this list thoroughly to 
he
k if it is possible to use any of the

suggested implementations with additional resour
es as an heterogeneous redundan
y

for the indi
ated subfun
tion.

The outlined algorithm for the identi�
ation of heterogeneous redundan
ies arising from

for
ed 
ompatibilities (Algorithm 3) takes as input variables the same data variables as
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Algorithm 2 Heterogeneous Redundan
y Identi�
ation (Natural Compatibility)

1: fun
tion HeteRedIdentification(BLOCKSsys, BLOCKcheck)

2: xmla = xml_parse(BLOCKcheck); // parse data stru
ture

3: allocateda = 0; // variable indi
ating if the implementation is a PU

4: if (strcmp(xmla.SFC, ′C ′)) then // 
he
k subfun
tion 
omponent

5: allocateda = 1; // indi
ate that it is a PU

6: BlockLista = get_SubsystemComponents(blockc); // get SW implementations

7: for j = 1 : |xmla| do
8: if (allocateda) then // if SFC='C' get inner data

9: xmla = BlockLista(j); // get SW implementations of the PU

10: HwA = xmla.name; // name

11: SFA = xmla.SF ; // subfun
tion

12: IA = xmla.Implementation; // identi�er

13: if (xmla.P riority) then // nominal implementation? (Priority=1)

14: for k = 1 : |BLOCKS_SY S| do // parse all the system blo
ks one by one to

�nd heterogeneous redundan
ies for the nominal implementation in xml

a

15: xmlb = xml_parse(BLOCKS_SY S(k));
16: allocatedb = 0; // variable indi
ating if the implementation is a PU

17: if (strcmp(xmlb.SFC, ′C ′)) then// is it a 
ontrol implementation?

18: allocatedb = 1; // indi
ate that it is a PU

19: BlockListb = get_SubsystemComponents(xmlb);

20: for i = 1 : |xmlb| do
21: if (allocatedb) then
22: xmlb = BlockListb(i);

23: HwB = xmlb.name; // name

24: SFB = xmlb.SF ; // subfun
tion

25: IB = xmlb.Implementation; // identi�er

26: type =′′; // homogeneous or heterogeneous redundan
y

27: if (strcmp(SFA, SFB)) then // if SFs mat
h

28: if (any(strcmp(xmla.SFC, {′I ′,′O′}))) then
29: PA = xmla.PL;
30: PB = xmlb.PL;
31: sameHw = strcmp(Hwa, Hwb); // same Simulink blo
k?

32: if (strcmp(Pa(:), Pb(:))) AND (∼ sameHw) then
33: type =′ homogeneous′; // same exa
t PL

34: else if (|Pa|== |Pb|==2) AND strcmp(Pa(1), Pb(1)) then
35: type =′ heterogeneous′; // same 
ar, di�erent zone

36: else if (sameHw AND ∼strcmp(IA, IB)) OR ∼sameHw then

37: type =′ homogeneous′;

38: if (∼ isempty(type)) then
39: AnnotateRedundancy(BLOCKcheck, xmlb, type);
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the Algorithm 2: BLOCKSsys and BLOCKcheck.

Besides it makes use of an additional fun
tion checkPhysicalCompatibility(A,B) whi
h

evaluates if the physi
al lo
ation of the implementations are 
ompatible or not. The

algorithm (or rules) to evaluate possible 
ompatible physi
al lo
ations has been out-

lined in Subse
tion 3.3.2. This fun
tion was not used with the Algorithm 2 be
ause

depending on the spe
i�
 
ase of the physi
al 
ompatibility, the algorithm determines

if redundan
ies are homogeneous or heterogeneous (see Algorithm 2 lines [32-37℄).

It does not provide any output variable, instead it updates the Simulink model and

its underlying annotations dire
tly 
alling the fun
tion AnnotateSuggestion(A,B) (line

14) where its input parameters are:

� A: Blo
k of the model to be annotated

� B: Possible redundan
y annotations.

Algorithm 3 Heterogeneous Redundan
y Suggestion (For
ed Compatibility)

1: fun
tion HeteRedSuggestions(BLOCKSsys, BLOCKcheck)

2: xmla = xml_parse(BLOCKcheck);
3: if (any(strcmp(xmla.SFC, {′I ′,′O′}))) AND (xmla.P riority == 1) then
4: MFA = xmla.MF ; // Main Fun
tion

5: SFCA = xmla.SFC;// SFC={I, C, O}

6: for k = 1 : |BLOCKS_SY S| do // parse all the system blo
ks

7: xmlb = xml_parse(BLOCKS_SY S(k));
8: if ∼ strcmp(xmlb.SFC, ′C ′) then // non-
ontrol implementations

9: MFB = xmlb.MF ;
10: SFCB = xmlb.SFC;
11: compatiblePL = CheckPLCompatibility(xmla.PL, xmlb.PL);
12: if (strcmp(SFCA, SFCB)) AND
13: (∼ strcmp(MFA,MFB)) AND (compatiblePL) then
14: AnnotateSuggestion(BLOCKcheck, xmlb);

D.3 Extra
tion of the Re
on�guration Table

On
e all system implementations/
omponents has been annotated with their 
hara
ter-

isti
s, in order to extra
t the re
on�guration table it is enough to parse the xml string
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of the model and extra
t ea
h 
omponents annotations with their 
orresponding �elds.

For the identi�ed homogeneous and/or heterogeneous redundan
ies and for the imple-

mentations whi
h do not have user de�ned priority, the prioritization of the implemen-

tations whi
h 
onstitute the re
on�guration table is based on:

(1) Type of redundan
y: we assume that homogeneous redundan
ies have higher prior-

ity than heterogeneous redundan
ies.

(2) Physi
al distan
e between redundan
ies: among heterogeneous redundan
ies orig-

inating from natural 
ompatibilities we set higher priority for those implementa-

tions whi
h are 
loser to the nominal implementation. To this end, ea
h Simulink

model has its own physi
al lo
ation map. This map links qualitative physi
al lo-


ation identi�
ation tokens, e.g., Car

1

.Zone

A

, with their 
orresponding quantitative

spa
e/plane 
oordinates as depi
ted in Figure 3.3.

(3) Unreliability of the implementation.

(4) Cost of the implementation.

Among equally weighted implementations, we fo
us on the weighted sum of the unreli-

ability and 
ost to determine whi
h implementation's priority is higher. As for the fault

dete
tion and re
on�guration implementations the designer should assign priorities to

the respe
tive implementations be
ause these depend on design-spe
i�
 assumptions.

Con
erning the fault dete
tion of the re
on�guration implementation (FD_R), all these

implementations have priority=1 be
ause they operate as heartbeat (keepalive) imple-

mentations.
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Algorithm 4 Re
on�guration Table Extra
tion Algorithm

1: fun
tion ReconfigurationTable = MAIN(BLOCK_SY S)
2: SF_list = {}; // di�erent SFs list, no repetitions

3: pos = 0;
4: for (i := 1 to |BLOCKS_SY S|) do
5: xmla = xml_parse(BLOCKS_SY S(i)); // parse all the system blo
ks

6: // no FD, R or FD_R AND (list is empty OR 
urrent SF is not already in the list)

7: if (∼any(strcmp(xmla.SFC, {FD,R, FD_R}))) AND
8: ((isempty(SF_list)) OR (∼any(strcmp(SF_list{:}, xmla.SF )))) then
9: dim = dim+ 1;
10: SF_list{dim} = xmla.SF ; Add SF to the list

11: groupSF = {}; // all implementations of the same SF

12: x = 0;
13: for (j := 1 to |BLOCKS_SY S|) do // parse system blo
ks to �nd mat
hing

SF's implementations

14: xmlb = xml_parse(BLOCKS_SY S(j)); // parse all the system blo
ks

15: if strcmp(SF_list{dim}, xmlb.SF ) then // SF already exists in the list

16: x = x+ 1;
17: groupSF{x} = xmlb; // group all the implementations of the same SF

18: if x > 1 then // order implementations wrt priority

19: groupSF = AssignPriority(groupSF );

20: pos = pos+ 1;
21: table{pos} = groupSF ; // store I, C, O implementations in the table variable

22: pos = pos+ 1;
23: table{pos} = xmla; // store FD, R, FD_R implementations in the table variable

24: ReconfigurationTable = createReconfigTable(table); // map the variable to the

table

25: return ReconfigurationTable;
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Appendix E

Failure Rate & Cost Data

The goal of this 
hapter is to present the failure rate, repair rate, and 
ost values of the

di�erent hardware, software, and 
ommuni
ation resour
es.

Table E.1 displays the failure rate and 
ost values of the di�erent hardware, software

and 
ommuni
ation resour
es. Despite the applied dependability analysis formalisms

are independent from the statisti
al distribution of the failure and repair pro
ess (i.e.,

Component Dynami
 Fault Trees and Sto
hasti
 A
tivity Networks), for the sake of

simpli
ity in all the 
al
ulations exponential distributions have been assumed.

Table E.1: Failure Rates & Cost Values of HW, SW and Communi
ation Resour
es

Resour
e λ (year

-1

) µ (year

-1

) Cost (e)

SW_Det, SW_HM 1 E-2 0.5 80 ea
h

SW_FP
1 E-2 0.5 -

Fire Dete
tor [SINTEF09℄ + Mounting 3.77 E-2 0.5 20 + 60e/hour

Temperature Sensor [IAEA88℄
1.49 E-2 0.5 -

Pressure Sensor [IAEA88℄ + Mounting 1.6 E-2 0.5 20 + 60e/hour

Speed Sensor + Mounting 1.8 E-2 0.5 20 + 60e/hour

Camera[jv
℄ 9.43 E-2 0.5 -

PU [Vinod08℄ 3.87 E-2 0.5 30

Comm. & Gateway 5 E-3 0.5 200

In Table E.1, resour
es with the same 
hara
teristi
s have been grouped as follows:

� Pressure sensor 
overs open, 
losed and obsta
le dete
tion sensors.

� Pro
essing unit gathers the 
hara
teristi
s of all di�erent PUs.

� Communi
ations in
lude MVB and Ethernet 
ommuni
ation proto
ols and their

gateway.
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Regarding SW 
omponents, hypotheti
al reasonable values are assumed. As noted in

previous 
hapters (see Se
tion 4.5), the 
ost of SW 
omponents is quanti�ed assuming

that their development 
ost will be paid in 4 years.

We di�er 4 type of SW 
omponents: (1) fault dete
tion software (SW_FD); (2) re-


on�guration software (SW_R); (3) fault dete
tion of the re
on�guration software

(SW_FD_R); and (4) 
ontrol/dete
tion software (SW_Det).

The development 
osts of ea
h of these 4 SW 
omponents is 
onsidered on
e for di�erent

implementations of the same subfun
tion: on
e developed they are adapted for the

related implementations. This assumption is adopted be
ause the grouped subfun
tion

implementations are 
losely related and they do not need a signi�
ant development 
ost.

� All fault dete
tion implementations (SW_FD) adapt to di�erent subfun
tions

modifying subfun
tion-spe
i�
 time/value thresholds.

� Re
on�guration implementations' development 
ost (SW_R) does not di�er for

di�erent subfun
tions, alternative implementations will have allo
ated di�erent

re
on�guration tables for di�erent subfun
tions, but the rea
tivation logi
 holds

the same for di�erent subfun
tion's re
on�guration implementations.

� Re
on�guration's fault dete
tion implementations development 
ost (SW_FD_R)

for di�erent subfun
tions di�er only in the keepalive timeout, but their develop-

ment is independent of the subfun
tion.

� All the 
onsidered 
ontrol/dete
tor software implementations (SW_Det) have a


losely related logi
, for instan
e, for the Door Status Control main fun
tion all

dete
tion implementations are linked with the position of the door.

SW_FD, SW_R, and SW_FD_R are gathered in the 
omponent SW_HM referring

to the failure rate and 
ost values of health management software implementations.

Ea
h implementation of the SW_Det resour
e 
overs: SW

OpenDete
tion

, SW

ClosedDete
tion

,

SW

Obsta
leDete
tion

, SW

DoorVelo
ity

, SW

DoorControl

, SW

FireDete
tion

and SW

FireControl

fun
tion-

alities. Ea
h of them is 
hara
terized with the same failure rate, repair rate and 
ost

values. A

ordingly, for the 
hara
terization of the false positive events (SW_FP) we

have applied the same values as for the other software implementations.

The same repair rate values have been assumed for all the hardware, software and
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ommuni
ation resour
es.

With respe
t to the sensor's 
ost, human 
ost related with mounting and testing tasks

is 
onsidered assuming 10 minutes/sensor at a rate of 60 e/hour.

Finally, note that the 
ost of some hardware resour
es have been ex
luded deliberately

in Table E.1. The rationale under this de
ision is that they are used as heterogeneous

redundan
ies. Therefore, they already exist in the system and they are not expli
itly

added to provide fail-over 
apabilities. This is why their use does not in
ur an in
rease

in the hardware 
ost.
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Appendix F

PAND Model for Repairable Systems

The goal of this 
hapter is to explain the behaviour, implementation and validation of

the PAND gate's model for repairable systems used in Chapter 5.

When 
onsidering repairable systems, we assume that 
omponents 
an fail and repair

repeatedly during the mission time of the system. The basi
 behaviour of the PAND

gate model for repairable systems is as follows: it will trigger when the o

urren
e of

events respe
t the sequen
e determined by the gate, e.g., assuming Y = PAND(A,B);

Y = 1 if A o

urs prior to B and then B o

urs; otherwise Y = 0. However, there are

some details worth mentioning.

Our PAND gate model for repairable systems will 
onsider the last failure of ea
h of its

input 
omponent instead of 
onsidering only their �rst failure - as it is done with non-

repairable 
omponents. Furthermore, the restoration of the PAND gate for repairable

systems (from Y = 1 to Y = 0) will be performed on
e that one of its input 
omponents

is restored. The logi
 implemented in the PAND gate for repairable systems of this

dissertation agrees with the logi
 implemented in the RAATSS tool [Manno14
℄.

For the implementation of the gate using the SAN formalism we 
onsider 2 inter
on-

ne
ted 
omponents (see Figure F.1): (1) the 
omponent A_BF_B 
he
ks whether the

event A happens before the event B ; and (2) the 
omponent A_PAND_B 
he
ks that

the order is respe
ted (A before B) and that the event B o

urs. If the order is not

respe
ted or B does not happen, the PAND output will not happen as well. Note that

the implemented PAND gate is not in
lusive, i.e., simultaneous failure o

urren
es are

not in
luded be
ause they don't respe
t the sequen
e.

The model A_BF_B 
hara
terizes the situation in whi
h the event A fails prior to the

event B (
f. Figure F.2). This event is de�ned through the input gates BF and no_BF
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Figure F.1: Blo
k Diagram of the Repairable PAND Model

respe
tively (
f. Table F.1).

Figure F.2: Atomi
 Model of the Component

A_BF_B

Table F.1: A
tivities in the SAN model

A_BF_B

Input

Gate:

BF

Input

Gate

Predi
ate:

(m(A)==1 && m(B)==0 &&

m(A_BF_B)==0)

Input

Gate

Fun
tion:

m(A_BF_B)=1;

Input

Gate:

no_BF

Input

Gate

Predi
ate:

(m(A_BF_B)==1 && m(A)==0)

Input

Gate

Fun
tion:

m(A_BF_B)=0;

The se
ond model (A_PAND_B) 
hara
terizes the situation in whi
h the event A have

already failed prior to the event B (A_BF_B) and then the event B o

urs (
f. Figure

F.3).

As for the validation of the gate we have 
ompared the results for di�erent tests. For

simpli
ity here we show only the basi
 
on�guration in whi
h we have 2 basi
 events

as inputs (A and B) with exponential failure rates of 0.1 and 0.3 respe
tively and

exponential repair rate of 0.5 for both basi
 events. To this end, we have shared the
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Figure F.3: Atomi
 Model of the Component

A_PAND_B

Table F.2: A
tivities in the SAN model

A_PAND_B

Input

Gate:

PAND

Input

Gate

Predi
ate:

(m(A_BF_B)==1 && m(B)==1 &&

m(A_PAND_B)==0)

Input

Gate

Fun
tion:

m(A_PAND_B)=1;

Input

Gate:

no_PAND

Input

Gate

Predi
ate:

(m(A_PAND_B)==1 &&

(m(A_BF_B)==0 || m(B)==0))

Input

Gate

Fun
tion:

m(A_PAND_B)=0;

pla
es of the basi
 events' failed pla
es (
hara
terized as in Figure 5.3) with the events

A and B 
hara
terized in this Chapter. Figure F.4 displays the output obtained using

SAN and ATS formalisms using the Mobius and RAATSS tools respe
tively.
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Glossary

Adaptation The ability of a system to adapt itself to its environment. 3, 52, 54, 55,

57, 63

Ar
hite
ture Allo
ation of software fun
tions onto available hardware resour
es satis-

fying fun
tional and dependability requirements. 3, 6�9, 24, 27, 32, 33, 40, 43�46,

49�51, 53, 54, 56, 62, 63, 65, 66, 68, 69, 76, 77, 79, 80, 82, 83, 88, 92, 94, 96,

99�102, 104, 123, 127�130, 138, 140�143, 145�147, 149, 151, 152, 154, 157, 161,

182, 183, 188, 189, 195�198, 200, 203, 209, 212, 214, 216, 217

Con�guration a possible realization of the main fun
tion 
omprised of the ne
essary

subfun
tions and their underlying implementations (and resour
es) to perform the

main fun
tion. 71, 75, 76, 92, 127�130, 132, 133, 138, 139, 141�145, 155, 156, 172,

177, 182�196, 202, 203, 213�215

Dependability Ability to avoid failures that are more severe and more frequent than

is a

eptable. 2, 3, 5�8, 57�60, 62�66, 68, 99�102, 104, 107, 119, 123, 133, 140,

142, 145, 147, 149, 152, 154, 157, 161, 194�196, 211�213, 215�217

Design A spe
i�
ation of a system intended to a

omplish goals in a parti
ular envi-

ronment, using a set of 
omponents, satisfying a set of requirements, subje
t to


onstraints. 1�3, 6�8, 11, 18, 24, 27, 28, 30�34, 40, 41, 44�46, 48�57, 59, 60, 62�68,

72, 75, 77�80, 83, 93, 94, 96, 99�102, 104, 107, 115, 122, 123, 133, 138, 139, 147,

151, 152, 154, 156, 157, 194�198, 204, 207, 211�213, 216, 217

Fault-Toleran
e Me
hanisms to avoid system failures in the presen
e of faults. 1, 24,

26�28, 30�32, 49, 66, 76, 209

283



Fun
tion What the system is intended to do. 2�8, 12, 14, 16, 17, 21, 22, 25, 31, 32,

50, 51, 58, 60, 63, 64, 66�72, 75�83, 86, 87, 90, 92, 96, 100, 102, 111, 120, 123,

133, 137, 147, 161, 174, 181, 186, 197�199, 201, 204, 206, 209, 212�215, 217, 218

Health Management Re
on�guration and fault dete
tion implementations whi
h

make possible to manage the system's behaviour in the presen
e of failures. 3,

6, 53, 65, 66, 68, 76�79, 83, 88, 92, 100, 101, 130, 140, 145, 184�186, 188, 190�193,

196, 212, 215, 216

Heterogeneous Redundan
y Redundan
ies whi
h reuse existing hardware resour
es

and provide 
ompatible fun
tionality e.g., analyti
al redundan
y. 3, 31, 62, 76,

88, 100, 128, 130, 132, 138, 139, 143, 146, 147, 184, 187, 190, 195, 212, 214, 215

Homogeneous Redundan
y Redundan
ies whi
h repli
ate the nominal fun
tionality

making use of additional hardware 
omponents. 82, 128, 138, 139, 143, 183, 189,

215

Re
on�guration The pro
ess through whi
h a system halts operation under its 
urrent

sour
e 
on�guration and begins to operate under a di�erent target 
on�guration.

3, 6�8, 26, 31, 53�56, 59, 60, 62�66, 68, 69, 76�80, 83, 84, 86, 89, 90, 92�94, 96,

97, 100�102, 104�107, 122�125, 128�131, 133�135, 138, 140�147, 150, 153�157,

165�173, 175�177, 182�188, 190�198, 203�208, 212�215, 217

Resour
e A hardware, software or 
ommuni
ation devi
e whi
h is able to perform a

fun
tion in 
onjun
tion with other devi
es or by itself. 1�7, 12, 14, 25, 26, 29�31,

33, 49�52, 54, 56, 57, 63, 66�72, 75, 77, 79, 80, 83, 96, 101, 102, 104, 115, 122,

123, 126, 128, 129, 132, 134, 136, 140, 144, 146, 147, 149�153, 161�167, 169, 173,

174, 180�182, 184, 188, 190, 193�195, 197, 198, 212�215, 217, 218

System set of mutually related elements or parts assembled together in some spe
i�ed

order to perform an intended fun
tion. 1�3, 5�9, 11, 13, 18, 28, 29, 31, 33�36, 39,

40, 42�46, 48�60, 62�73, 75�77, 79, 83, 96, 97, 99, 104, 109, 114, 116, 129�133,

139�147, 149�158, 160, 161, 167, 175, 182, 184, 185, 188, 190, 191, 194�200, 209,

211�218
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