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Abstract

The design of dependable systems and reduction of economic costs have
been viewed as conflicting goals. Traditional dependable design approaches
replicate system resources to improve fault tolerance. However, the aggre-
gation of hardware, software or communication resources to add recovery
capabilities to a system function results in higher costs.

Instead of adding redundancies that provide recovery capabilities to a
predefined system function, in Massively Networked Scenarios (MNS) there
is room to take advantage of over-dimensioning design decisions and overlap-
ping structural functions by using heterogeneous redundancies: components
that, besides performing their primary intended design function, restore com-
patible functionalities of other components. MNS are systems characterized
by several replicas of system functions distributed throughout the physical
structure (e.g., a train has replicated functions throughout its cars; or build-
ings have replicated functions throughout its floors and rooms). Besides,
in these scenarios there are many processing units, sensors and actuators
connected to a communication network for different purposes.

We have designed a methodology named D3H2 (aDaptive Dependable
Design for systems with Homogeneous and Heterogeneous redundancies) to
design HW /SW architectures systematically applying modelling and analysis
approaches. These approaches include the systematization of the next activ-
ities: (1) identification of heterogeneous redundancies; (2) integration of re-
dundancies in the HW/SW architecture including necessary fault detection,
reconfiguration and communication implementations; and (3) dependability
and cost assessment of the designed HW/SW architectures.

Through the application of the devised modelling and analysis ap-
proaches, D3H2 enables the assessment of the effect of alternative redun-
dancy and reconfiguration strategies, fault detection and communication im-
plementations on system dependability and cost. The methodology has been
applied to non-repairable and repairable systems.

Design strategies based on heterogeneous redundancies have shown po-

tential to improve system dependability cost-effectively. However, the de-



cision of which redundancy strategy is better for a specific system function
should be evaluated case-by-case basis through the application of the D3H2
methodology.

An experimental prototype using real railway communication elements
has been developed to validate some of the concepts treated in the D3H2
methodology.



Resumen

El diseno de sistemas confiables y la reduccion de costos han sido vistos
como objetivos conflictivos. Las técnicas tradicionales para disenar sistemas
confiables replican los recursos del sistema para mejorar la tolerancia a fallos.
Sin embargo, anadir recursos de hardware, software o de comunicaciones para
proporcionar capacidad de recuperacion al sistema resultan en un incremento
de costes.

En vez de anadir redundancias que proporcionan capacidad de recu-
peraciéon a una funcion predefinida en los Escenarios Masivamente Redun-
dados (EMR) hay opcion para aprovechar las decisiones de disefio sobre-
dimensionadas y funciones que se solapan usando redundancias heterogéneas:
componentes que ademas de desarrollar su funcién principal, pueden recu-
perar las funcionalidades compatibles de otros componentes. Los EMR. son
sistemas caracterizados con varias replicas de las funciones del sistema dis-
tribuidos en toda su estructura fisica (p.e., un tren tiene funciones replicadas
en sus coches; o los edificios tienen funciones replicadas en diferentes plantas
y habitaciones). Ademas, en estos escenarios hay varias unidades de proce-
samiento, sensores y actuadores conectados a una red de comunicaciones con
diferentes objetivos.

Hemos diseniado la metodologia D3H2 (aDaptive Dependable Design for
systems with Homogeneous and Heterogeneous redundancies) para disefiar
arquitecturas HW/SW sistematicamente aplicando técnicas de modelado y
andlisis. Estas técnicas incluyen la sistematizacion de las siguientes activi-
dades: (1) identificacion de las redundancias heterogéneas; (2) integracion de
las redundancias en las arquitecturas HW/SW incluyendo las implementa-
ciones de deteccion de fallos, reconfiguracion y comunicacion; y (3) evalu-
acion de la confiabilidad y costo de las arquitecturas HW/SW disenadas.

Mediante la aplicacion de las técnicas disenadas de modelado y anélisis,
D3H2 permite la evaluacion del efecto de las estrategias alternativas de re-
dundancia y reconfiguracion, y de las implementaciones de deteccion de fallos
y comunicaciéon en la confiabilidad y el costo del sistema. La metodologia

ha sido aplicada tanto a sistemas reparables como no reparables.



Las estrategias de diseno basadas en redundancias heterogéneas han de-
mostrado potencial para mejorar la confiabilidad del sistema sin comprom-
eter el costo. Sin embargo, la decision de qué estrategia de redundancias es
mejor para una funcion especifica debe ser evaluado uno por uno mediante
la aplicacion de la metodologia D3H2.

Para evaluar algunos conceptos desarrollados en la metodologia D3H2 se
ha desarrollado un prototipo experimental usando elementos de comunica-

ciones reales de la industria ferroviaria.



Laburpena

Sistema fidagarrien diseinua eta kostu ekonomikoaren murrizketa helburu
bateraezin bezela kontsideratu izan ohi dira. Diseinu teknika tradizionalak
sistemako errekurtsoak bikoiztu izan ohi dituzte akatsekiko tolerantzia ho-
betzeko. Hala ere, hardware, software eta komunikazio errekutsoak gehitzeak
sistemaren kostua igotzea dakar.

Erredundantzia esplizituak gehitu beharrean aukeratutako funtzioei er-
rekuperazio gaitasuna emateko, Masiboki Saretutako Eszenategietan (MSE)
posible da gain-dimentsionatutako diseinu erabakiak eta errepikatutako
funtzioak aprobetxatzea erredundantzia heterogeneoak erabiliz: hauek be-
raien diseinuko helburu nagusia betetzeaz gain beste osagaien funtzio batera-
garriak errekuperatzeko gai da. MSE-ak sistemako funtzioen hainbat kopiaz
osatuta daude eta hauek sisteam osoan zehar banatuta daude (adibidez,
tren batek bere kotxeetan errepikatutako funtzioak ditu; edo eraikuntzek
errepikatutako funtzioak dituzte beraien solairu eta gelatan zehar). Gain-
era, eszenatoki horietan hainbat prozesamendu unitate, sentsore eta eragile
daude komunikazio sarera konektatuta helburu ezberdinekin.

D3H2 (aDaptive Dependable Design for systems with Homogeneous and
Heterogeneous redundancies) metodologia diseinatu dugu HW/SW egit-
urak sistematikoki diseinatzeko ereduztapen eta analisi teknikak erabiliz.
Teknika hauek, ondoko jardueren sistematizazioa egiten dute: (1) erredun-
dantzia heterogeneoen identifikazioa; (2) erredundantzia heterogeneoen tx-
ertatzea HW/SW egituran beharrezko akats detekzio, birkonfigurazio eta
komunikazio inplementazioak gehituz; eta (3) diseinatutako HW/SW egitu-
raren fidagarritasun eta kostu analisia.

Diseinatutako ereduztapen eta analisi teknikak aplikatuz, erredundantzia
eta birkonfigurazio estrategia ezberdinen, akats detektatzaile eta komu-
nikazio inplementazioen eragina aztertzen du D3H2k sistemaren fidagarrita-
sun eta kostuan. Metodologia sistema konpongarri eta konponezinei aplikatu
zaie.

Erredundantzia heterogeneotan oinarritutako diseinu estrategiak sis-

temaren fidagarritasuna kostua konpromezuan jarri gabe hobetu dezake.



Hala ere, zein erredundantzia mota den hobea funtzio espezifiko bakoitzar-
entzat kasuz kasu aztertu beharrekoa da D3H2 metodologiaren bidez.
D3H2n garatutako kontzeptu batzuk baieztatzeko prototipo esperimental

bat garatu da benetako trenen komunikazio elementuak erabiliz.
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CHAPTER 1

Introduction

This chapter describes the motivation that inspired the author to research in the field of
model-based reliability engineering so as to provide solutions to the examined problems.

The chapter is organised as follows:

e Section 1.1 describes the main motivation of this thesis.

Section 1.2 frames the scope of this research.

Section 1.3 defines the research objectives of this dissertation.

Section 1.4 sets the research hypothesis, contributions and limitations.

Section 1.5 explains the followed methodology to obtain the research objectives.

Section 1.6 describes the structure of this thesis.

1.1 Opportunity Identification

The design of dependable systems and reduction of economic costs have been viewed
as conflicting goals (e.g., see [Somani97; Elegbede03; Izosimov05]). Traditional depend-
able design approaches aim at replicating resources in order to improve fault tolerance.
For instance, the widely adopted Triple Modular Redundancy (TMR) [Avizienis85| (cf.
Figure 2.15) is one example among many other fault tolerance strategies that explicitly
add software and/or hardware components (either same or diverse) in order to improve

system dependability [Laprie92; Laprie95|.

Nevertheless, the aggregation of resources leads to more failure sources and higher costs.

Therefore, one feasible direction to construct dependable systems and reduce the eco-



nomic cost is the optimization of system resources. To do so, we focus on the design of
distributed Networked Control Systems (NCSs) [Wang08].

In distributed NCSs, remote sensors, control algorithms allocated at
Processing Units (PUs), and actuators work in cooperation to perform a system
function. The underlying characteristics of distributed NCSs (distributed nature, com-
puting capacity of the networked PUs) make NCSs suitable to adapt their behaviour
in the presence of system changes such as component failures or attachment of new

devices.

Traditionally sensors and actuators perform a single function, while PUs handle multiple
tasks. For instance, consider the air conditioning control and fire protection control
functions implemented in a room: for the air conditioning control a temperature sensor
measures the temperature of the room and a heater warms the room accordingly; while
in the case of fire protection control a smoke detector detects the presence of smoke
and a sprinkler extinguishes the fire of the room. Despite being independent control
functions, it is not strange to allocate both control functions - air conditioning control

and fire protection control - in the same PU.

In this work, we concentrate on optimising system resources to reduce system cost and
improve the dependability of system functions. To this end, the functionalities of sen-
sors and actuators are extended beyond their nominal design functions so as to perform
as many functions as possible and feasible. Retaking the previous example of the air
conditioning control and fire protection control functions and assuming that there exists
another room next to the previously described one with the same functionalities, it is
possible to reuse: (1) the temperature sensor to approximate the temperature of the con-
tiguous room or (2) the sprinkler (either in the same or in the contiguous room) to raise
an alarm when speakers are not working. All the hardware resources including sensors,
actuators and PUs, which are able to perform additional functions beside their nomi-

nal design functions are named heterogeneous redundancies [Aizpurual2a| (see Section
2.2.2).

Unfortunately, the use of heterogeneous redundancies is not a panacea. Although the
employment of heterogeneous redundancies may reduce the hardware cost and improve
the dependability level of a system design without redundancies, it also introduces some

drawbacks. When making use of system resources in further circumstances beside from



their nominal design consideration, additional costs emerge. Namely, it necessary to:

1. Identify and evaluate the potential resources which could provide additional com-
patible functionalities without incurring a considerable extra cost (i.e., identify

reusable resources).

2. Adjust the system architecture with health management functionalities and im-
plementations (i.e., fault detection and reconfiguration) to make the use of het-

erogeneous redundancies in further system contexts possible.
3. Evaluate the dependability and cost of the resulting system architecture.

Given the methodology to address these issues, there is room in NCSs and more specif-
ically in massively networked scenarios (cf. Section 1.2) to optimize the use of system

resources by means of heterogeneous redundancies.

In the literature there exist many approaches focusing on the adaptation of the system
architectures to deal with component failures, however, those which address the uti-
lization of heterogeneous redundancies or similar concepts are not many. Interestingly,
when encompassing the system design process as a whole accounting for dependability,
adaptivity, and heterogeneous redundancy-like issues, existing solutions are scarce (cf.
Chapter 2). Therefore, the contribution of this thesis proposes the generation of a
design methodology in order to evaluate the dependability and cost level of alternative

architectures which make use of heterogeneous and/or homogeneous redundancies.

1.2 Scope of the Research

In order to set the framework of this thesis and define the scope of this research we
define the application context in which this work is situated and later, we will define

the faults that the proposed approach is intended to deal with (see Chapter 2).

Massively Networked Scenarios

The application context of this dissertation is framed within NCSs operating in mas-

sively networked scenarios: systems characterized by several replicas of system functions



distributed throughout the physical structure. In these scenarios there are many PUs,

sensors and actuators connected to a communication network for different purposes.

For instance, as Figure 1.1 depicts, a train is an example of a NCS operating in massively
networked scenarios. A train has replicated functions throughout its cars, each car has
implemented its own functions and (some of) these functions are replicated throughout

the different cars of the train.

T, 11 T, T 1 T, 11

1,2 6,7 1,2 6,7 1,2 6,7

oo LL* too ool oo ocoll*l oo

Figure 1.1: Massively Networked Scenario: Railway Train Example

The functions! numbered in Figure 1.1 are defined as follows:
1. Air Conditioning Control
2. Passenger Alarm System
3. Fire Protection Control
4. Video Surveillance
5. Intelligent Light Control
6. Passenger Information System
7. Voice Communication Control
8. Door Status Control
9. Passenger Counting System

Each function enclosed within a rectangle has its own set of resources (i.e., sensors, con-
trollers and actuators). For further details about the implementation of these functions

please refer to Section 2.1.

!There exist other functions which have not been represented here, e.g., braking control or power
control.



Another example of NCSs operating in massively networked scenarios are the build-

ings. Buildings are constituted by floors and rooms, which have replicated functions

throughout its floors and rooms as Figure 1.2 shows.
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Figure 1.2: Internal Architecture of a Building: Functions and Communication Interfaces

Therefore, we concentrate on studying NCSs operating in massively networked scenarios
so as to exploit the potential heterogeneous redundancies which may exist in these

systems.

1.3 Research Objectives

The main goal of this thesis is to evaluate the impact of the reuse of system
resources on the overall system dependability and analyse whether it reduces
the system development cost. Starting from this main goal and after performing
the study of the state of the art (cf. Section 2), further underlying necessary objectives
have been defined.

Therefore, the main research goal is divided into the following research objectives of this

dissertation:

1. Systematic identification of heterogeneous redundancies.



2. Systematic  characterization —of HW/SW  architectures fitted  with
health management functions and their implementations, i.e., fault detection and

reconfiguration.

3. Systematic evaluation of the influence of the type and number of redundancy and

reconfiguration strategies on system dependability and cost.

4. Optimization of the design of control system architectures in massively networked

scenarios, maximizing dependability and minimizing the cost.

5. Definition of a guideline to decide when the reuse of system resources is beneficial
for the system (reduce costs, improve dependability) and when it is better to use

homogeneous redundancies.

1.4 Research Hypothesis, Contributions & Limita-

tions

The objective of this section is to define the research hypothesis in order to specify the

foundations of this dissertation as well as the contributions and limitations.

As a result of the performed literature study - in which we review the works related
with this thesis (cf. Chapter 2) - and linking this survey with our research objectives
(cf. Section 1.3), the research hypothesis that we are going to work with is defined as

follows:

“The systematic consideration of the effect of homogeneous and
heterogeneous redundancies, fault detection, reconfiguration
and communication functions, allows the optimization of control
system architectures in massively networked scenarios, mazrimizing

dependability and minimaizing the cost.”

Comparing this work with already existing approaches which make use of heterogeneous
redundancies for designing adaptive dependable systems, this dissertation differs in the

following aspects - contributions:

e The systematization of the identification of heterogeneous redundancies.



e The explicit consideration of the faulty behaviour of the fault detection,
reconfiguration and communication implementations when addressing heteroge-

neous redundancies.

e The systematic characterization of HW/SW architectures fitted alternative re-
dundancy and reconfiguration strategies, fault detection implementations and

reconfiguration resources.

e The systematic evaluation of the effect on dependability and cost of the de-
signed HW /SW architectures by considering both non-repairable and repairable

resources.
The following parts were left out of the scope of this work - limitations:

e The process for obtaining the failure rate data of software resources is not consid-
ered and it is assumed a known data. Nevertheless, to deal with uncertain data

we have implemented an uncertainty analysis approach in Chapter 4.
e Exact solutions are not obtained, instead we concentrate on simulation techniques.

e Analysis of low-level requirements: timing requirements that components should
meet in order to be compatible and perform a function timely; memory and pro-
cessing power requirements that the processing units should meet; and bandwidth
constraints of communication protocols that the system have to adhere will not
be addressed.

1.5 Research Methodology

The proposed methodology allows the validation of the stated research hypothesis. Our
research methodology is based on the characterization (design) of modelling and analysis
activities and their combined application to theoretical case studies in order to validate

the research hypothesis.

To this end, we have divided the research problem into smaller problems and define
solutions to each of them, so that evidence is shown for each part in particular and for

the overall problem in general:



e Systematic consideration of the implied attributes/variables in the research

hypothesis - characterization of the design model:

— Definition of a generic system model to design HW/SW architectures

systematically including the next activities:
*x Systematic identification of heterogeneous redundancies.

x Procedural consideration of fault detection, reconfiguration, and

communication functions.

e Systematic evaluation of the effect of the implied attributes/variables in the
research hypothesis on dependability and cost - characterization of the analysis

model:

— Definition of analysis models and algorithms to evaluate systemati-
cally the dependability and cost of the alternative HW /SW architectures

designed with the generic system model:

* Definition of the dependability metric/model and an algorithm to anal-
yse the dependability level of alternative HW /SW architectures system-
atically.

+ Definition of the cost metric/model and an algorithm to analyse the cost

of alternative HW /SW architectures systematically.

x Overall evaluation of the system’s dependability and cost and trade-

off analysis between these attributes.
e Automation of all the previous phases.

e Validate the feasibility of the proposed approach by using real hardware, software,

and communication elements.

All these activities have been validated case by case basis through the development of
theoretical case studies. Besides, to validate the feasibility of the proposed method-
ology, a real proof-of-concept has been developed using real hardware, software and

communication elements of the railway industry? (cf. Chapter 6).

2The author was a visiting researcher at CAF Power and Automation (www.cafpower.com) for the
last six months of 2013.



1.6 Thesis Outline

This report is divided into 7 chapters. The following points overview the organisation

of each chapter:

e Chapter 2 defines the application example used to illustrate the concepts emerg-
ing from this dissertation and it provides the needed background literature
for the development of this thesis. Through an exhaustive literature analysis of
model-based system engineering and reliability engineering fields, the opportu-

nity (motivation) is identified.

e Chapter 3 describes the main contribution of this dissertation: the aDaptive
Dependable Design for systems with Homogeneous and Heterogeneous
redundancies (D3H2) methodology. The methodology integrates all the re-
search objectives and activities identified previously. For the sake of clarity, the

explanation of the methodology is divided in two parts:
1. Modelling and analysis activities to create an extended HW /SW architecture.
2. Dependability and cost analysis of the extended HW/SW architecture.

This chapter overviews the main activities of the methodology and describes the
steps to create an extended HW/SW architecture.

e Taking the extended HW /SW architecture as a starting point, Chapter 4 defines
the dependability evaluation algorithm for non-repairable systems and its

implementation by using simulation techniques.

e Taking the extended HW /SW architecture as a starting point, Chapter 5 defines
the dependability evaluation algorithm for repairable systems and its im-

plementation.

e Chapter 6 describes the implementation of the research objectives by using real

railway hardware and communication elements.

e Chapter 7 sets the conclusions of this thesis and future research goals.
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CHAPTER 2

Literature Review

In this chapter we provide the necessary background information for the elaboration
of the thesis and we review the previous related work so as to support our research
hypothesis and set the topic of this dissertation. Besides, in order to have a consistent
ongoing example throughout the thesis, we will also specify the example case study so

that we can illustrate the emerging concepts directly.
The chapter is organised as follows:
e Section 2.1 describes the illustrative application framework.

e Section 2.2 presents the dependability framework for the development of this thesis

introducing relevant definitions and concepts.
e Section 2.3 classifies and examines the main dependability analysis techniques.

e Section 2.4 reviews the scientific literature examining those approaches which
design adaptive dependable systems by using homogeneous and/or heterogeneous

redundancies.

e Section 2.5 concludes this chapter with conclusions that will determine the orien-

tation of the forthcoming chapters of this thesis.

2.1 Application Framework

The goal of this section is to introduce the running example so that all the examples
throughout this dissertation have a unique consistent reference. The illustrative case
study has been inspired from the direct application of this thesis: a train operating in

massively networked scenarios. A train (usually) is constituted by more than one car,
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and each car in turn has a set of different functions, which are replicated for each car of

the train.

Figure 2.1 depicts some of the functions performed in a train car that will be used
throughout this thesis for illustration purposes. Different functions are connected to dif-
ferent communication networks and there is an interconnecting gateway element, which
makes possible the communication of resources connected to different communication
networks. In order to make the communication between different cars of the train possi-
ble, train switches are used. The inter-car communication and intra-car communication
are implemented according to the IEC 61375 (Train Communication Network) standard
[TECOT].

Voice Air
Door Status Light Video Comm. Conditioning
Control Control Surveillance Control Control

A A A

Passenger

Gateway Passenger| | | Passenger
MVB Counting Information Alarm
Ethernet System System System

? ¢ Multi-function

* V v y v Y Vehicle Bus (MVB)

Ethernet

Y Controller Area
Network (CAN)

Fire
Protection

Figure 2.1: Train Car Configuration: Functions and Communication Interfaces

In Figure 2.1, each function is enclosed in a box and in turn, they have their own
hardware and software resources. Consecutively we will explain the main HW/SW
features of the functions and they will be used throughout this dissertation to perform

different analyses.

Without loss of generality, henceforth we will assume that each car of the train will have
2 compartments (Zoney, Zoneg) and in each compartment there will be 2 doors located
side by side (cf. Figure 2.2).
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Figure 2.2: Train Car Configuration: Physical Distribution

Door Status Control

Each door in the train has many sensors and control buttons for the passengers and the
driver. The doors closure is controlled by the driver based on a enable signal that will
be received depending on the status of the train, e.g., while the train is running the

doors must remain closed.

In the train there is a component called Train Control Monitoring System (TCMS),
which controls and monitors several critical systems of the train such as traction and
doors. This component is homogeneously duplicated in two reliable PUs (PUrcums) for
safety purposes. The TCMS receives information about the speed of the train and it
will not allow the driver to open the doors while the train is running. To this end, it
provides an enable to the driver to inform about the safe operation of door opening or
closing (known as Enable Door Driver). The driver accordingly provides an enable to
the controller of each door (known as Enable Door Passenger) to act safely on opening
or closing the doors while taking into account if the train is moving and if there is an

obstacle in the door.

As Figure 2.3 shows, in a train car there is one opening and closing button for the driver
connected to the driver’s PU (PUgiver), while each door has: one opening button for
passengers, one door velocity sensor, one door open detection sensor, one door closed
detection sensor and one obstacle detection sensor. All these sensors, their controllers

and the door control algorithm are located in the PUp,,.

Figure 2.4 depicts the control loop including the physical system (Train Car Door).
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Figure 2.3: Hardware Model of the Door Figure 2.4: SW/Dependency Model of the
Status Control Function Door Status Control Function

The Driverconiror software resource located at PUpyer receives the status information of
the train from the TCMS component (Enable Door Driver) and based on the received
information and driver’s open, close or enable indications, it provides the Enable Door
Passenger signal to the Door Control Algorithm. Door Control Algorithm located at
PUnpoor receives the status data of the sensors of the door and passenger commands.
Then, based on driver’s enable command (Enable Door Passenger) it will actuate on
the corresponding motor to open or close the door of the corresponding compartment

of the train car.

Video Surveillance

The Video Surveillance function performs monitoring tasks on each car of the train.
Each car is equipped with a camera which focuses towards the doors in order to prevent

hazards and injuries.

The incoming images recorded by the camera are processed through an image processing
algorithm (Process Image) located in PUg,m and in the presence of a hazard in any of
the cars it raises an emergency signal using the lamps and the siren. Besides, for
security issues, all the images are stored in a server connected to the same Ethernet

communication network.

As depicted in Figure 2.6, the Process Image algorithm located in PUg,, evaluates
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Figure 2.5: Hardware Model of the Video Figure 2.6: SW/Dependency Model of the
Surveillance Function Video Surveillance Function

hazardous situations in a train car; redirects the camera images towards the storage

server; and raises the alarms when hazardous situations are detected.

Air Conditioning Control

The Air Conditioning Control (ACC) sets the temperature of a train car according to

the reference temperature defined by the driver.

The driver is responsible for (1) activating the Air Conditioning Control on the car(s)
that he/she decides - Activate ACC; and (2) set the reference temperature of the cor-
responding car. In each train car’s compartment, there are dedicated PUs to perform
the Air Conditioning Control of the car (PUscc). To this end, in each car the PUacc
receives the current temperature of the car through a temperature sensor and heats
the room by using a dedicated heater. Normally, a train car comprises of different
compartments and accordingly, there exist a temperature sensor and a heater for each

compartment of the train car (cf. Figure 2.7).

As depicted in Figure 2.8, each train car compartment has its own control loop so as to

heat the room according to the reference temperature set by the driver.
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Figure 2.7: Hardware Model of Air Condi- Figure 2.8: SW/Dependency Model of Air
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Fire Protection Control

The Fire Protection (FP) control function aims at the fire detection and extinction in
a train car compartment. The hazardous situation is detected by a fire detector, which
based on the presence of smoke raises a signal, or it is triggered by a user who pushes

the emergency button to indicate an emergency situation (cf. Figure 2.9).

Emergency Fire EmBergency
Button Detector utton

; ; Fire
—>| Protection
Sprinkler js&e—— PUpp Control |

A Fire :
Detector Sprinkler
MVB
Ethernet Train Car
Y Compartment <

Figure 2.9: Hardware Model of the Fire Pro- Figure 2.10: SW/Dependency Model of the
tection Function Fire Protection Function

As depicted in Figure 2.10, each train car compartment has its own Fire Protection
control loop so as to extinguish the possible fires. The Fire Protection Control SW

element located in PUgp activates sprinklers which are strategically located in each
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compartment of the train cars.

Passenger Information System

The Passenger Information System (PIS) informs the passenger about the position of

the train and next stops (cf. Figure 2.11).

GPS Display — 3| Process
Board .
¢ T Information ‘
Display
PUpriver PUpis GPS Board
MVB T i 1 Train
Ethernet * Car €
Compartment

Figure 2.11: Hardware Model of the Passen- Figure 2.12: SW/Dependency Model of the
ger Information System Passenger Information System

The PIS function makes use of the Global Positioning System (GPS) device located
at driver’s compartment in PUpwr. Based on the location of the train, information
displays are updated with the corresponding information at runtime through the Process

Information SW algorithm located at PUpjyer.

Light Control

Each car of the train may have an intelligent lighting control system, which switches
on/off the lights or lowers the light intensity automatically based on the presence/ab-
sence of people. To this end, there is a presence sensor which detects if anyone is in a
train car and besides, the driver has its own manual activation button for those cases

in which the sensor is not working correctly (cf. Figure 2.13).

The Light Control Algorithm located in PUypgpn, will be responsible for switching on/off

the lights in each car using a dimmer.
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Figure 2.13: Hardware Model of the Light Figure 2.14: SW/Dependency Model of the
Control Function Light Control Function

2.2 Dependability Framework

In this section we introduce the basic definitions for the development of this thesis,
discuss about the essential fault tolerant design techniques and set the failure model of

our approach, i.e., the failures that our approach is intended to deal with.

2.2.1 Dependability: Definitions and Classifications

The first fundamental definition concerns to dependability:

Definition 2.1. Dependability: the ability to avoid failures that are more severe and

more frequent than is acceptable [Avizienis0/].

What is a acceptable for a system design is defined by the dependability requirements,
which will limit its tolerable failures. Consequently, failure-related studies (also known

as science of failures) will guide dependability determination and evaluation.

Every system is exposed to threats, while different dependability mechanisms are used
to meet requirements. Dependability requirements are defined in terms of dependability

attributes. This characteristics will be introduced in the following sections.
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When designing a dependable system, the classification of fault, error and failure con-
cepts, i.e., dependability threats, are fundamental so as to specify dependability require-

ments accurately.

Definition 2.2. Fault: adjudged or hypothesized cause of an error. A fault is active if

it produces an error, otherwise it remains dormant.

Fault classification: elementary fault classes are grouped according to different view-

points [Avizienis04]:

e Phase of creation or occurrence of faults: development faults emerge during the

system development and operational faults appear during the system operation.

e System boundaries: internal faults and external faults resulting from the interac-

tion with the physical or human environment.
e Phenomenological causes: natural /hardware faults and human-made faults.
e Dimension: hardware and software faults.
e Objective: malicious faults and non-malicious faults.

e Developer’s intent: deliberate faults (bad decisions) and non-deliberate faults (mis-
takes).

e Capability: accidental faults and incompetence faults.

e Persistence of faults: permanent faults and transient faults.

Definition 2.3. Error: part of the system’s total state that may cause its subsequent
failure. Errors are the responsible for deviation between the computed value and the

correct value [Rausand03].

Error classification: a formal definition and classification of errors is given by
[Powell95] which characterizes system services by the tuple (vs;, ts;) where vs; is the

value of the service and ts; is the time or instant of observation of the service s;.

The correctness of the system service s; is specified by correct content (vs; € SV;) and
time instant (ts; € ST;) values where SV; and ST; are respectively the specified sets of

values and times for the service item s;. Accordingly, different errors are defined:
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Arbitrary value error: vs; ¢ SV;

Arbitrary timing error: ts; ¢ ST,

FEarly timing error: ts; < min(ST;)

Late timing error: ts; > max(ST;)

Omission (infinitely late) error: ts; = oo
o Impromptu error: (vs; ¢ SVi) A (ts; ¢ ST;)

Definition 2.4. Failure: an event that occurs and provokes the transition of the correct
service to incorrect service. Different forms of transitions are defined through failure

modes.

Failure classification: a service is characterized by the value and time the service is
delivered. The different ways that deviations occur are failure modes and each failure
mode is categorized by the failure severity. Failure modes are characterized according

to the following viewpoints:

e Failure domain: failures are classified according to walue and timing failures
[Bondavalli90):

— Value failures: incorrect value failures are further refined into coarse incorrect
(detectable value failures), subtle incorrect (undetectable value failures) and

omission value failures (no output when required).

— Timing failures: incorrect timing failures are classified as early, late and

infinitely late (omission) failures.
When both value and timing failures occur, failures are classified as:
— Halt failures: the service is halted.
— FErratic failures: the service is delivered but is erratic.
e Detectability of failures: signalled failures and un-signalled failures.
e Consistency of failures: consistent failures and inconsistent (random) failures.

e Consequence/Criticality of failures: the consequence of the failures are quantified
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by the failure severities to which maximum acceptable probabilities of occurrence
are associated. A common classification of failure severities include catastrophic,

critical, major and minor consequences.

Assuming that a system is constituted by a set of interacting components, the state of the
system will be determined by the state of its constituent components. The occurrence
of a fault or combination of faults on hardware and software components provoke errors
and when errors lead the system function to perform incorrectly, system failure occurs.

Table 2.1 and Table 2.2 display the classification of faults and error /failures respectively.

Table 2.1: Fault Classification
Table 2.2: Failure/Error Classification

. Physical
Phenomenological Cause
Human Made Coarse
. Internal Value Subtle
System Boundaries —
External . Omission
Devel : Domain Earl
evelopmen ar
Phase of Creation p . Y
Operational Time Late
. . Hardware Omission
Dimension -
Software . Non-Consistent
— Consistency -
L Malicious Consistent
Objective — -
Non-Malicious . Transient
- Persistence
- Accidental Permanent
Capability -
Incompetence - Signalled
Detectability -
. Permanent Un-signalled
Persistence -
Transient

So as to specify dependability requirements, let us define dependability attributes:

Definition 2.5. Reliability: ability of an item to perform a required function, under
given environmental and operational conditions for a stared period of time [Rausand03].
Statistically: assuming X represents the random variable which determines the time to
failure of the system, reliability (R(t)) is defined as the probability that the system will

be successfully operating from time 0 to time t:

R(t) = P(X > t) (2.1)

The failure probability or unreliability is then:
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F(t)=1-R(t) =P(X <) (2.2)

Assuming non-repairable components, reliability is expressed informally as the proba-
bility of the system remains operative throughout a time interval. If the assumption of
non-repairable components does not hold, reliability with repairs needs to be considered:
probability of the system experiences no failures throughout a time interval given that

it was operative at the initial time instant.

Definition 2.6. Mean Time To Failure: is defined as the expected value of the
lifetime before a failure occurs. Statistically: assuming X is the random variable that
represents the time to failure and f(t) the probability density function of the system
lifetime (f(t) = %Et)), the MTTF is defined as:

MTTF = E[X] = / LF(t)dt = / R(t)dt (2.3)
0 0

Definition 2.7. Failure Rate Function (Hazard Function): the conditional prob-
ability of a component of age t failing in (t, t + At] given that it has not failed in [0,
t[. It indicates the changing rate in the ageing behaviour over the life of a population of

components.

The probability that an item will fail in the time interval (t, t+At] when we know that

the item is functioning at time t is:

Prit< X <t+At| X >1t) = Pr(t;é{it; A _ (et 7@2)_ Ft) (2.4)

By dividing Equation 2.4 by the length of the time interval, At and letting At— 0, we
get the failure rate function (A\(t)) of the item:

L Prt< X<t AX >t FE+A)—F@1) 1 f(t)
At = fim, At = At ORI

Definition 2.8. Maintainability: ability to undergo repairs and modifications to re-

store or retain to a state in which can perform its required functions.
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Informally, maintainability is the probability of isolating and repairing a fault in a system

within a given time.

Definition 2.9. Mean Time To Repair: is the expected value of the repair time.
Statistically: let Y to be the random variable that represents the time to repair of a

system and g(t) the density function of the system repair time, we define MTTR as:

MTTR = E[Y] = /OOO tg(t)dt (2.6)

Availability comprehends both reliability and maintainability concepts:

Definition 2.10. Awvazlability: Operate correctly at a certain point in time when a
service is requested [Rausand03[. Statistically: assuming Z(t) is a Bernoulli random
variable (1: operative; 0: failed) the point availability (A(t)) is defined as:

A(t) =P{Z(t) = 1} (2.7)

Definition 2.11. Average Awvailability (A,,): is defined in [0, t] as

s At MTTF

av(t =
Aaw(?) t MTTR+ MTTF

(2.8)

Definition 2.12. Safety: absence of catastrophic consequences on the user(s) and the
environment. The aim of safety analysis techniques is to evaluate whether a system
meets its safety requirements. Safety requirements are defined as a hazard® (i.e., injury

or incidents) combined with the tolerable probability of this hazard [Leveson95].

Since security aspects are outside of the scope of this thesis, we will not consider con-
fidentiality and integrity as dependability attributes. Henceforth, throughout this dis-
sertation the term dependability will focus on Reliability, Availability, Maintainability,
and Safety (RAMS) attributes.

3Hazard is an state of the system, which may develop into an accident either through the factors
that are not under the control of the system, uncontrollable external actions or through a sequence of
normal events. It is the last decision point before an accident.
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2.2.2 Designing for Fault Tolerance and Dependability

Based on the knowledge that faults are present within the system components, devel-
opment of an appropriate system within specified constraints will be guided by the

dependability mechanisms [Kaaniche02; Avizienis04]:

e Fault Prevention: prevent the occurrence or introduction of faults, e.g., project

planning and risk assessment activities enable system’s fault prevention.

e Fault Removal: reduction of the number and severity of faults including verifica-

tion, diagnosis and modification activities.

e Fault Forecasting: estimation of the present number, future incidence and the like-
lihood of the consequence of faults. Fault forecasting activities include statement
of the dependability objectives, allocation of the objectives and qualitative and

quantitative evaluation to assess whether the system satisfies the objectives.

e Fault Tolerance: delivery of correct service in the presence of faults, e.g., selection

of the adequate fault and error handling mechanisms.

Fault prevention and fault removal techniques are aimed at reducing system faults and
both techniques are included in the fault avoidance paradigm. Fault forecasting and
fault tolerance are embodied in the concept of fault acceptance based on the assumption
that the design of a system without faults is not achievable. In order to design a de-
pendable system, each of the four mechanisms need to be considered, but not necessarily
as separate concepts. Fault tolerance concept encompasses all means by structuring the
system so as to avoid faults. When inevitable faults occur, countermeasures are adopted

in the form of redundancies to deliver correct service in the presence of faults.

Different architectural decisions influence both dependability and cost (e.g., see
[Somani97; Nord03; Cortellessa06; Gokhale07]). Hardware costs, power requirements,
processing time and weight of the added hardware elements (critical parameter for some
fields such as avionics) are some design consequences that need to be considered when
designing a system for fault tolerance. This situation leads to different design strategies
such as optimal architecture selection based on the trade-off between dependability at-
tributes, cost and complexity; or refinement of the structure until achieving an adequate

compromise solution.
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Fault tolerance mechanisms may overcome all dependability goals, but specially they
are aimed at reducing the frequency of failures and mitigating their effects (failure

avoidance). Designing a fault-tolerance strategy involves the following steps [Nelson90|:

1. Error Detection: takes place either during normal service delivery or while normal

service delivery is suspended.

2. Error Containment: prevention of the propagation of erroneous information across

defined boundaries.

3. Error Masking: dynamic correction of the error allowing the continuity of correct

service in the presence of errors.

4. FError Recovery: systematic or on-demand correction of an erroneous system state.
On-demand correction brings the system to a error-free state by applying tech-
niques like backward or forward recovery. Error compensation uses redundancy

within the erroneous state to mask errors on-demand or systematically.
5. Fault Diagnosis: identification of the module responsible for a detected error.
6. Fault Repair/Reconfiguration: exclude or replace the faulty component.

7. Verification of the effectiveness (or coverage) of the fault tolerant strategy.

Redundancy Classification

The key ingredient in fault tolerant techniques is redundancy, that is, the addition of
information, time, or resources beyond what is needed for normal system operation.
Different classes of redundancies are employed to achieve dependability requirements
[Johnson84|.

Informational redundancy is focused on providing additional information to the basic
data structure. This redundancy can be used for: error detection with the aim to
distinguish valid and invalid code words (e.g., error-detecting codes, checksums); error
correction allowing the real-time computation without interruptions (e.g., Hamming,
Reed Solomon error-correcting codes); or error recovery providing a fail-over recovery

point through the implementation of a requirement function using diverse techniques
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(analytical redundancies), e.g., calculation of the acceleration using different physical

variables (e.g., position, speed) linked with their analytical relationships.

Hardware redundancy (also known as spatial redundancy) deals with the redundancy of

physical resources and it can be classified in three forms of replication:

1. Static or passive replication masks predefined occurrence of faults to prevent their
propagation using the concept of majority voting to determine the output of the
system and do not offer detection, isolation or repair of a faulty module (e.g.,
Triple Modular Redundancy (TMR), see Figure 2.15).

> Module A
Majority
Input > Module B Voter [——> Output
> Module C

Figure 2.15: Triple Modular Redundancy Example

2. Dynamic or active replication does not mask faults, but detects and reconfigures
faults so that a spare component can be switched to replace the faulty component

(e.g., hot and cold spares).

3. Hybrid replication uses fault masking to prevent the fault from affecting the system
and fault detection and reconfiguration to allow a spare module to replace the

faulty component (e.g., N modular redundancy (NMR) with spares).

Temporal redundancy is based on redundant computations primarily used to distin-
guish between permanent and transient failures. To this end, multiple computations
are performed with the aim to observe the behaviour of an error condition. Temporal
redundancy aims to reduce the amount of extra hardware at the expenses of additional
time (e.g., see [Agrawal88; Thuel94]).

Software redundancy adds extra software to provide the system with fault tolerance ca-
pabilities. Single-version and multiple-version software fault tolerance techniques are
distinguished [Wilfredo00]. The former uses single version of a piece of software to

detect and recover from faults and includes considerations on the software structure,
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error detection and exception handling. The majority of single-version software recov-
ery mechanisms implement checkpoint and restart strategies (either dynamic or static).
The latter is characterized by the idea of building software components in different ways
from a common specification (also known as design diversity - see [Littlewood01b] and
references herein), in order to eliminate any sources of similar design faults. Examples
of multi-version software fault tolerant techniques are recovery block, N version pro-
gramming, N self-checking programming, and consensus recovery blocks techniques (see

[Pullum01] for details of alternative strategies).

How redundancy is used in order to improve the dependability of the overall system is
as important as the redundancy itself. An increase in the number of redundant elements
does not guarantee better fault tolerance, instead it increases the overall failure proba-
bility. Effectiveness of fault tolerant architecture depends on the probability of common
failures between its redundant parts |LittlewoodOla]. To this end, diversity techniques
are used by implementing alternative development /design techniques to create different
redundant elements which may fail differently and protect the system against common
cause failures (cf. Figure 2.16). While identical redundancies address random failures,
diverse redundancies address both random and common cause failures.

Diversity-Seeking Decision
Creates

/ N

Process

Constraints development, Constraints development,
producing roducin
Product P 9
i ‘diversity'
| Version A | Common Environment
- - elects demands - -
Determines which Determines which

demand will fail/ \ demand will fail
i 'Diversity' of product i

failure behaviour
Pattern of correct Pattern of correct

responses and failures responses and failures

Figure 2.16: Diverse Design [Littlewood00al|

Theoretical models have been developed to evaluate the influence of diversity-seeking
decisions and common cause failures on system reliability (e.g., see EL and LM models
[Littlewood96]). Although these models are outside the scope of this work, it is worth
mentioning that the quantitative evaluation of the influence of diversity on dependability

is not a trivial task. In the well known example developed by Knight and Leveson

27



[Knight86], they tested empirically the assumption of statistical independence in N
version programming. Their results show that there is correlation between independently

developed versions and therefore, the assumption of independent errors does not hold.

We focus on a subset of design diversity techniques: functional diversity [Burlando92].
Functional diversity is a methodology consisting of N different implementations of the
same requirement specification where each implementation uses a different input set
and different algorithms to compute the same required output. With respect to normal
diversity (e.g., N version programming), the basic differences are the followings: in
functional diversity, N teams begin to work separately having as only common point the
system requirements. The approaches to the problem and input data are different. In
normal diversity, the N teams begin to work separately only after the specification has
been written. Then each team use a similar approach: the same modelling of the process
and the same data types; the differences among them lie only in the implementation
techniques and in the details of the algorithms. In everyday systems there exist many
applications which make use of functional diversity and implement diverse redundancy
applications (i.e., deploying diverse replicas): cars have duplicated braking systems
comprised of foot brakes and handbrakes or laptops have diverse backups for electrical

power supply such as batteries.

The basic requirement to apply functional diversity is that the problem should be ap-
proached from different viewpoints, which leads to defining the major drawback of func-
tional diversity: the need of an (brainstorming-like) intellectual process to obtain di-
verse specifications with the cost that this process incurs. Therefore, an important
issue which needs to be addressed when undertaking functional diversity is whether the

fault tolerance will produce enough reliability (dependability) gain to be worth its cost.

2.2.3 Fault Hypothesis & Failure/Error Model

Fault assumptions are closely related to the fault-tolerance management decisions. Any
assumption which does not adhere to the real operation of the system will cause an over-
all decrease on the system dependability. Therefore, it is necessary to define which faults
the system is going to tolerate, i.e., fault hypothesis, and arrange them in a failure/error

model so as to characterize the possible fault recovery strategies systematically.
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Table 2.3 describes the fault hypothesis of the systems that we will deal with and Table
2.4 displays the failure/error model of the system. Examples of the faults that we
plan to address with this dissertation are: permanent software development defects or
hardware deteriorations; development faults and faults which emerge from designers
incompetences and accidents. The influence of accidental and incompetence faults will
be considered by assigning a failure rate to the human-made software resources. Thus,
the considered human-made faults will cover software development faults, but we will not
address the influence of human faults as is. External environmental influences will not
be addressed neither, we will consider only system’s internal faults such as hardware,
software or communication resources faults. Since we are not dealing with security

issues, malicious faults will not be contemplated as well.

Table 2.3: Fault Hypothesis
Table 2.4: Failure/Error Model

. Physical v
Phenomenological Cause
Human Made | X Coarse v
. Internal v Value Subtle v
System Boundaries —
External X . Omission | v/
Domain
. Development | v/ Early v
Phase of Creation - .
Operational | X Time Late v
. . Hardware v Omission | v
Dimension -
Software v . Non-Consistent | X
— Consistency -
Obecti Malicious X Consistent v
ective
) Non-Malicious | v* . Transient X
- Persistence
Canabilit Accidental v Permanent v
apabili
P Y Incompetence | v . Signalled v
Detectability -
. Permanent v Un-signalled X
Persistence -
Transient X

Fault detection techniques are necessary to detect the presence of these faults. According
to the failure/error model (cf. Table 2.4), for simplicity we will assume consistent and
permanent failures. The addressed fault detection strategies are based on time and
value thresholds either as statically predetermined or dynamically determined thresholds

(model-based fault detection, e.g., see [Isermann05] and references herein).
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Redundancy Model

Design strategies (redundancies) differ when managing different kind of failures. From
the different classes of redundancies, we focus on hardware, software, and information

redundancies implemented as follows:

e Hardware redundancy with dynamic redundancy strategies provides fail-over capa-
bilities by detecting faults and reconfiguring the system behaviour and/or system

structure to adapt the system operation.

e Software redundancy focuses on the strategical distribution of system functionality

among different PUs to repair the system functionality in the presence of failures.

e Information redundancy is used to provide compatible functionalities by reusing

and /or adapting already existing information in a system.

In order to simplify the nomenclature when dealing with hardware, software, and in-
formation redundancies, based on the possibility of reusing hardware resources through

compatible functionalities, we define two kind of redundancies:

Definition 2.13. Homogeneous redundancies: redundancies which explicitly repli-
cate the nominal functionality making use of additional explicit hardware components

(and hence, software modules and information sources), e.g., N modular redundancy.

Definition 2.14. Heterogeneous redundancies [Shelton0; Wysocki07]: redundan-
cies which reuse existing hardware resources in a system and provide a compatible func-
tionality (i.e., emerge from heterogeneous functionalities) with the information that al-

ready exists in the system, e.g., analytical redundancy.

2.2.4 Opportunity Analysis

Our design goal focuses on designing for redundancy instead of designing for failure
diversity [Strigini05]. Designing for failure diversity focuses on adding diversity-related
design approaches deliberately in order to improve fault tolerance. Our work focuses
on adding redundancies (and required fault tolerant mechanisms) where deemed nec-

essary by exploiting implicit diversity which may exist in some specific environments
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(see Section 1.2) in order to provide fault tolerance and reduce costs. We do not focus
directly on evaluating the influence of diversity-seeking decisions on dependability, but

eventually this may happen as a side-effect of our design goals.

The concept of functional diversity is generalist and directly aligned with analytic re-
dundancies in that both approaches use diverse algorithms to produce equivalent results.
Despite not following directly a diversity-seeking decision approach our method make
use of diverse functions and fault-tolerant choices that affect these systems: number of
redundancies, fault detection and reconfiguration methods, and allocation of software
modules to the hardware modules. The primary concern of the designers when adding
fault-tolerant strategies should be to manage the complexity resulted from the need to
manage additional resources and corresponding mechanisms. Therefore, it is necessary
to adopt trade-off decisions between the incurred cost and attained fault tolerance (and

dependability) level.

In the scientific literature there have been two different viewpoints towards the concept
of heterogeneous (and homogeneous) redundancies: (1) redundancy allocation problems
(e.g., see [yangLilO; Sharmall|) have considered as heterogeneous redundancies those
components which have different characteristics (e.g., memory, processing power). (2) In
[Shelton04|, Shelton and Koopman introduced the heterogeneous redundancy concept

as an approach to reduce costs through analytic redundancy like techniques.

Aligned with the idea of Shelton and Koopman, our concept of heterogeneous redun-
dancies encompass a general class of redundancies. These are: analytical redundan-
cies, redundancies which emerge from some functional diversity applications and re-
dundancies arising from overlapped system functions in massively networked scenarios
[Aizpurual3al]. Since the reuse of hardware elements can emerge in different situations

heterogeneous redundancies can take many forms:

e Alternative algorithms providing an equivalent output, e.g., analytic redundancies:
alternative equations by linking sensors/actuators in different ways so that they

can provide additional (heterogeneous) functions.

e Implementations/functions located in alternative contexts able to provide compati-
ble implementations to other implementations/functions, e.g., temperature sensors
located in contiguous compartments able to provide compatible functionalities to

each other compartments (reuse of the temperature sensor).
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e Alternative functionalities able to provide compatible implementations to other
functions, e.g., Video Surveillance function may provide a compatible function to
the Door Status Control function by adding a image processing SW to the camera

(reuse of the camera).

Our goal with the use of heterogeneous redundancies is not only to reduce hardware
costs, but also to maintain or even improve the dependability level of the system design.
Heterogeneous redundancies include overlapping system functions which may add di-
versity to the system architecture due to the inherent properties of a networked control
system operating in massively networked scenarios. The intuition of the advantages pro-
vided by the use of heterogeneous redundancies need to be demonstrated quantitatively
so that it is possible to adopt trade-off decisions between dependability and cost when

deciding to implement alternative redundancy techniques.

Motivated by these issues we outline a design approach which evaluates systematically
the influence of fault tolerance and diversity-related design decisions on system depend-
ability and cost (see Chapter 3). To do so, a dependability evaluation algorithm and
further analyses such as the sensitivity evaluation of redundancies have been imple-
mented (see Chapter 4 and Chapter 5).

2.3 Overview of the Main Dependability Analysis Ap-

proaches

Dependability analysis techniques can be organised by looking at how different system
failures are characterized with its corresponding underlying formalisms. On one hand,
event-based approaches reflect the system failure behaviour and structural relationships
through combination of events. This analysis results in either Fault Tree (FT) like
[Vesely02] or Reliability Block Diagram (RBD) like [Rausand03] structures, which em-
phasizes the reliability and safety attributes. On the other hand, state-based approaches
map the analysis models into state-based formalisms such as Markov chain or Petri nets.
These approaches analyse system changes with respect to time and mainly concentrate
on reliability and availability attributes. Interested readers refer to the Appendix A for

basic definitions of event-based and state-based formalisms.
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This section has been divided into 2 subsection: Subsection 2.3.1 overviews extensions
of event-based approaches and combinations of both event-based and state-based ap-
proaches - hybrid approaches; and Subsection 2.3.2 evaluates the utility of hybrid ap-

proaches to evaluate complex systems - opportunity analysis.

2.3.1 Hybrid Approaches
Hybrid approaches overcome the main limitations of event-based approaches and provide
mechanisms to address some of the drawbacks arising from state-based approaches.

The extended usage of event-based approaches for dependability-related tasks have lead

to the identification of their main limitations, see Table 2.5.

Table 2.5: Limitations of Event-Based Approaches [Aizpurual3b]

ID Limitation

Event-based approaches are static representations of the system, neither time infor-

L1 . . .
mation nor sequence dependencies are taken into account [Dugan92].

The orientation of the event-based approaches concentrates on the analysis of failure
L2  chain information. Consequently, their hierarchy reflects failure influences without
considering system functional architecture (design) information [Kaiser(3].

Event-based (and state-based) quality evaluation models depend on the analyst’s
skill to reflect the aspects of interest. Failure modes and undesired events must

L3 be foreseen, resulting in a process highly dependent on analyst’s knowledge of the
system [Galloway02].
Manageability and legibility of event-based (and state-based) quality evaluation mod-
L els is hampered when analysing complex systems. Model size, lack of resources to

handle interrelated failures and repeated events/components, in conjunction with
few reusability means, are its main impediments [Kaiser03| [Price02].

L1 refers to the capability of the technique to handle temporal notions. This is of
paramount importance when analysing fault tolerant systems taking into account system
dynamics such as load sharing, standby redundancy, on-demand failures, dependent

failures, cascade failures or common cause failures.

L2 emphasizes the interdisciplinary work between dependability analysis and architec-

tural design. Joining both procedures helps obtaining a design, which meets depend-
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ability requirements consistently.

L3 entails a trade-off solution between the time consuming analysis resulting from under-
standing the failure behaviour of the system and the acquired experience. A substantial
body of works have focused on the automatic generation of analysis models from design
models addressing limitations L2 and L3 (refer to groups 3, 5 in Appendix B, Table
B.1). These approaches reuse design models showing the effects of design changes in
the analysis results. However, the correctness of the analysis lies in the accuracy of the

failure annotations.

Finally, L4 underlines the capability of the dependability analysis model to handle the
component-wise nature of embedded systems. This permits obtaining a model that

better adheres to the real problem and avoids confusing results.

Many authors have developed new alternatives or extended existing ones. Three groups
are identified in order to gather the hybrid approaches with respect to the limitations

they address:
e L1 is addressed in the Subsection Dynamic Solutions for Static-Logic Approaches.

e [.2 and L4 are covered in the Subsection Compositional Failure Propagation Anal-

ysis Approaches.

e Specifically focusing on L3 and generally addressing the remainder of limitations

Model-Based Transformational Approaches are studied.

Note that some approaches cannot be limited to a specific group, hence they are classified

accordingly to its main contribution.

Dynamic Solutions for Static-Logic Approaches

The limitation concerning the lack of temporal and dependency information has been
addressed by several authors to deal with system dynamics such as redundancy or repair
strategies. Specific solutions for event-based FT and RBD approaches and solutions

which combine event-based and state-based approaches have been proposed.

Fault Tree extensions: |[Dugan92| introduced the Dynamic Fault Tree (DFT)

methodology to address the analysis of configuration changes. DFTs were conceived
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to model the reliability of systems which pose complex dependencies. New gates were
added (dynamic gates) to the traditional (static) Fault Tree definition (see Figure 2.17):

Priority AND (PAND) gate: Y = PAND(E, Es, ..., Ex); Y is true iff all
events { £, Es, ..., Ex } are true and occur in the following order: Ey<Fy<...< Ey;
otherwise is false (cf. Figure 2.17 (a)).

Functional Dependency (FDEP) gate: [F1, Es, ..., Ex| = FDEP(T); {E1, Es,
..., Ex'} are true if the trigger event T occurs or they fail by themselves; otherwise
they are false (cf. Figure 2.17 (b)).

Sequence Enforcing (SEQ) gate: SEQ(E1, Es, ..., En); {E1, Es, ..., Ex} are
true iff all events { £}, Fs, ..., Ex} are true and occur in the following order: Fj <
Ey<...< Ey; otherwise they are false (cf. Figure 2.17 (c)). Input events are forced

to fail in a particular order and different failure sequences can never take place.

Spare (SP) gate: Y = SP(Eucty, Espys Espys -y Espy); Y is true iff the active event
E s, and all spares { Egp,, Egp,, ..., Espy | have failed, otherwise is false. Spares may
be in any of the following states: stand-by, working or failed. Spares can fail in
working and stand-by states: Aa.; is the failure rate of the spare that is in working

state, aacy; Aac, is its failure rate in the dormant state (cf. Figure 2.17 (d)).

Y Y
T—)> I_
AL A AR A A
E, E, E, E, E, E\ E, E, E\ Eact1 Espt EspN
(a) PAND Gate (b) FDEP Gate (c) SEQ Gate (d) Spare Gate

Figure 2.17: Dynamic Fault Tree Symbols

DFT models can be solved analytically or via simulation [Chiacchioll]. To solve DFT

models analytically it is necessary to transform the DFT model into its equivalent

stochastic model. If basic events are characterized by the exponential distribution,
the DFT model can be mapped to a Continuous Time Markov Chain (CTMC) directly

and

solve it analytically by using differential equations. Other alternatives to solve a
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DFT model address:

e Generalized Stochastic Petri Nets (GSPN) [Bobbio04| [Codetta-Raiteri05]: Dy-
namic Repairable Parametric Fault Tree (DRPFT) approach allows a compact
representation of the system including repairable basic events. It enables folding
identical sub-trees in a single parametric sub-tree (cf. Figure 2.18). System’s unre-
liability is obtained by solving the Stochastic Well Formed Net model [Bobbio04]
or through the evaluation of GSPN models [Codetta-Raiteri05]. The approach

relies on exponential failure/repair distributions.

e Dynamic Bayesian networks [Montani08;  Portinalel0]: avoids  the
state-explosion problem by transforming the DFT model into a
Dynamic Bayesian Networks (DBN) model. DBN is a stochastic transition
model factored over a number of random variables. Discrete time is used to
cope with the high computational effort arising from exact time-continuous
calculations. It supports the analysis of repairable events and components

through repair box gates [Portinalel0].

e Input/Output interactive Markov chains [Arnold13]: provides a compact repre-
sentation of the system and it supports exponential and phase-type distributions.
The I/O interactive Markov chain is a compositional CTMC and it reduces the
final state-space. It is analysed through stochastic model checking and repairable

basic events are not addressed (cf. Figure 2.19).

e Structure function [Merlel4|: presents an algebraic framework to extract the struc-
ture function of a DFT and calculate the exact solution of systems independent of
the failure distribution. The approach requires high computational effort even for
small systems, it is not yet implemented, and it is unable to deal with repairable

basic events (see Appendix C.5 for a example).

For complex systems the traceability from the DFT model to the state-based analysis
model and vice-versa is difficult to follow due to the flat characteristics of the DFT
model and its state-based analysis model. [Bobbio04; Codetta-Raiteri05| presented the
DRPFT approach to deal with the manageability issue of representing several replicas
in a Fault Tree by taking advantage of symmetric DFT configurations. Sub-trees linked
with the same gates and same failure rates are folded and parametrized (cf. Figure 2.18).

However, its underlying analysis model (GSPN) is a flat state-space model. Furthermore,
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if the same subsystem does not fail with the same logic it is not parametrizable (e.g.,

see Figure C.4).
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Figure 2.18: Dynamic Parametric Fault Tree Example

[Arnold13] overcome the flatness of the dependability analysis model through compo-
sitional Markov chain. Although the analysis model is compositional, the DF'T model
suffers from flatness. When the size of state-space model or DFT model increases, it

becomes error prone and difficult to maintain (see Appendix C).

O
0O )
-
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A

(a) DFT (b) Transformation (c) Composition (d) Minimization (e) CTMC

Figure 2.19: Composition Aggregation Method of [Arnold13]

Other alternatives to analyse DFT models are based on simulations:

e [Rao09] and [Mannol2b] implement Monte Carlo simulations to address any dis-

tribution of basic events. To this end, multiple computations are performed over
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the DFT model characterized with the failure logic of the DFT gates and random

variables representing the failure times of basic events.

e [Mannol4c| introduced a discrete event simulation approach based on Adaptive
Transition System paradigm [Mannol2al. This promising approach is able to

capture any distribution as well as repair characterizations of basic events.

Simulation approaches have been successfully applied to address size, repair behaviour
and statistical distribution assumptions/limitations. Their drawback comes from the
required calculation time, which increases with the required accuracy of the results. See
Chapter 4, Subsection 4.2.4 for further details and implementation of Dynamic Fault

Trees using Monte Carlo simulations.

Reliability Block Diagram extensions: following the way of DFTs, an approach
emerged based on dynamic RBDs.

Dynamic RBDs (DRBDs) [Distefano07; Distefano09| model failures and repairs of com-
ponents through the specification of state machines for each component and inter-
component cause/effect dependencies. To analyse DRBD models quantitatively, these
are transformed into GSPN models and its underlying CTMC is obtained and solved
using the WebSPN tool [Puliafitol4]. Another solution to solve DRBD models was
presented in [Robidoux10| through the conversion of DRBDs into Coloured Petri Nets.
However, to the best of our knowledge, an integrated modelling and analysis toolset for
DRBDs is lacking.

[Signoret13] presented an approach called Reliability Block Diagram driven Petri nets
(RAP) which uses RBDs as an interface to build large Petri nets systematically. The
modular characterization of Petri nets enables the intuitive creation of RAP models from

predefined module libraries.

Aligned with these formalisms, the OpenSESAME modelling environment connects
RBDs and state-based formalisms [Walter08|: its input models are based on RBDs
and failure dependency diagrams, while component tables and repair tables are used to
indicate component-specific failure/repair characteristics and inter-component depen-
dencies. To perform the quantitative analysis of the system, OpenSESAME models are

transformed into SPN and Stochastic Process Algebra models.

Combination of event-based and state-based approaches: progres-
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sion in the conjoint use of event-based and state-based formalisms is re-
flected  with  Boolean logic Driven Markov Process (BDMP)  [Bouissou07] and
State-Event Fault Tree (SEFT) |Kaiser07] formalisms.

BDMP employs static FT as a structure function of the system and associates Markov
processes (or Petri nets, if necessary) to each leaf of the tree. Triggers are used to
influence the occurrences of basic events or gates with the failure occurrence of other
basic events or gates existing in the same FT. BDMP enables modelling the repair

behaviour of basic events as well as sequences of failure events.

However, the main limitations of BDMP come from the trigger event itself: (1) the failure
of the trigger event is not taken into account and (2) the trigger is able to consider only
two processes while in some cases it is necessary to use more processes to fully describe

the behaviour of the system.

SEFT formalism combines FT elements with both Statecharts [Harel87] and Markov
chains, increasing the expressiveness of the model. SEFT deals with functional and fail-
ure behaviour, accounts for repeated states and events, where the events are character-
ized as deterministic and/or exponentially distributed events, and allows the automatic
transformation of SEFT models into Deterministic and Stochastic Petri Nets (DSPN)
models for state-based analysis. Besides, the SEFT model allows modelling the system
compositionally by linking components in a FT-like structure while managing system’s

complexity (refer to Appendix C for a SEFT model example and more details).

Dynamic Fault Tree is a well-known mature approach for the evaluation of the system’s
dynamics. Tt has been widely implemented over the last years (see Appendix B Table
B.2 for the tool support) and different extensions have been performed: due to the
properties of the CTMCs, the use of Dynamic Fault Trees has been limited to model
events characterized with exponential distributions. This fact have awakened the scien-
tific community to develop alternative analysis formalisms so that it is possible to model
any failure distributions (e.g., [Rao09],[Manno12b|, [Mannol4c|, [Merlel4]). Moreover,
DFTs were originally conceived to evaluate the unreliability of systems, but there have
been many extensions in order to include repairable basic events and evaluate systems
unavailability, e.g., repairable DFT [Mannol4c|, BDMP [Bouissou07|, SEFT [Kaiser07],
Radyban [Portinale10], DRBD [Distefano09].

As a result of the combination of state-based and event-based approaches to solve Dy-
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namic Fault Tree models, specific problems of state-based approaches have emerged
among Dynamic Fault Tree solutions which use state-based models for its resolution.
The main impediments are the state-explosion problem and difficulty to understand the

analysis model intuitively.

To improve the manageability, maintainability and traceability of these models,
component-based characterizations have been suggested [Kaiser07]. Although limited
in modelling capabilities, the compositional and transformational features of the SEFT
approach, provide an adequate abstraction of the system structure and behaviour. Since
the underlying analysis model of SEFTs is based on Deterministic and Stochastic Petri
Nets, it may suffer from manageability issues (flatness) and it is limited to deterministic

and exponentially distributed events.

Although the component-based characterization have been applied to SEFT models, due
to the SEFT model’s limitations there is room to extend the compositional paradigm
towards the dynamic analysis of systems. Indeed, the component-based characterization

has not been integrated with Dynamic Fault Tree models yet (see Chapter 4).

Compositional Failure Propagation Analysis Approaches

The main objective of Compositional Failure Propagation (CFP) approaches is to avoid
unexpected consequences resulting from the failure generation, propagation, and trans-

formation of components. Common factors for CFP approaches are:
e Characterization of the system architectures by design components.
e Annotation of the failure behaviour of each of component constituting the system.
e System failure analysis based on inter-components influences.

CFP approaches characterise the system as component-wise developed FT-like mod-
els linked with a causality chain. System architectural specifications and subsequent
dependability analyses of CFP approaches rely on a hierarchical system model. This
model comprises components composed from subcomponents specifying system struc-
ture and/or behaviour. CFP approaches analyse the system failure behaviour through
characterizations of individual components, which lead to achieving a manageable failure

analysis procedure.
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Failure Propagation and Transformation Notation (FPTN) [Fenelon93|,
Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS)

[Papadopoulos1l] and Component Fault Tree (CFT) [Kaiser03| are the principal
CFP approaches. Their main difference is in the failure annotations of components,
which specify incoming, outgoing and internal failures to each component: (1) FPTN
uses logical equations, (2) HiP-HOPS makes annotations using Interface Focused
Failure Mode and Effect Analysis (FMEA) (IF-FMEA) tables and (3) CFT associates
to each component individual FTs. Subsequently, the connections between system
components determines the failure flow of the system, linking related failure annotations

of each component.

Concerning the different contributions of CFP approaches, FPTN first addressed the
integration of system-level deductive FTA (from known effects to unknown causes) with

component-level inductive FMEA (from known causes to unknown effects).

HiP-HOPS integrates design and dependability analysis concepts within a hierarchical
system model. However, instead of exclusively linking functional components with their
failure propagations like in FPTN, first the hierarchical system model is specified and
then, compositional failure annotations are added to each component by means of IF-
FMEA annotations. These annotations describe the failure propagation of component
in terms of outgoing failures specified as logical combinations of incoming and internal
failures (cf. Figure 2.20).

From the IF-FMEA annotations shown in Figure 2.20, the outgoing failures at the port

out_ 1 will be specified as follows:

omission-out_ 1 = omission-in_ 1 AND omission-in_ 2 OR Stuck at 0

Once all the outgoing failures of all the ports are characterized, a F'T synthesis algorithm
analyses the propagation of failures between connected components. Traversing the
hierarchical system model, while parsing systematically the IF-FMEA annotations of

its constituent components, allows the extraction of the system FT and FMEA models.

CF'Ts are a model-based extension of FTA models. The component FTs can be combined
and reused to systematically obtain the F'T for any failure without having to create and

annotate a FT for each failure. In order to integrate analysis and design concepts, it has
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Figure 2.20: Hierarchical Structure and CFP Annotations in HiP-HOPS

been extended in [Domis09b| resulting in the Safe Component Model approach. The
approach separates components’ functional/failure specification and realization views
and through the integration of the failure propagation and hierarchical abstraction, Safe

Component Model allows obtaining a hierarchical component based abstraction of CFTs.

They all have been extended to cope with occurrences of temporal events influenced by
the DFT approach. Temporal extensions for FPTN [Niull] and HiP-HOPS [Walker09|
concentrate on non-repairable systems by examining the order of events to identify

sequence of events leading to the system failure, i.e., minimal cut-sequence sets.

Namely, the temporal extension of HiP-HOPS is based on the Pandora approach
[Walker09]: it enables the dynamic qualitative analysis of event sequences through
cut-sequence sets. Temporal Fault Tree (TFT) gates are defined to model complex
time-dependent circumstances. For the quantitative analysis, algebraic models and
Monte Carlo simulations are used with the TFT gates: priority OR - output occurs
if: the first input occurs before the second input and the second input is not needed
to occur [Edifor12]; simultaneous AND - all input events occur at the same time; and

parametrized SAND - output occurs if two events happen within a given interval of time
[Edifor13].
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Within the approaches extended to deal with temporal events, there have been ap-
proaches which have been focused on connecting CFP approaches with state-based
approaches: integration of CFT concepts with state-based techniques resulted in the
SEFT formalism, which is able to handle availability and maintainability properties of
repairable systems. Besides, HiIP-HOPS has been connected with state machine spec-
ifications to generate (temporal) Fault Trees from state machine models [Mahmud12].
From individual state machines, Pandora failure expressions are generated transforming

component-based state machines into TFT expressions of the system failures.

Other interesting extensions include mechanisms to automate and reuse analysis con-
cepts: Failure Propagation and Transformation Calculus (FPTC) [Paige08a| approach
adds the characterization of the nominal behaviour to FPTN models and generalizes
the FPTN equations to improve the manageability and analysability. Moreover, an
algorithm is implemented to cope with cyclic dependencies of feedback structures. In
[Wolforth10], general failure logic annotation patterns were defined for HiP-HOPS. Sim-
ilarly, the CFP approach presented by [Priesterjahnlla| emphasizes the reuse of failure
propagation properties specified at the port level of components. These specifications
focus on the physical properties of different types of flows, which allow reusing failure

behaviour patterns for functional architectures.

The evolution of CFP approaches focus on reusability, automation and transformation
properties. Since the annotations of the failure behaviour of components depend upon
designers experience, reusing failure annotations leads to reducing the error proneness.
Based on the knowledge that different dependability analyses have to be performed
when designing a system, definition of a unique consistent model covering all analyses
would benefit these approaches. This is why recent publications in this field centre on
integrating existing approaches (see next Subsection). Interested readers please refer to

Appendix B Table B.3 to see the tool support of the CFP approaches.

Combinations of dynamic dependability evaluation models able to model system dy-
namics and the compositional failure propagation approaches would result in a approach
which is able to model repairable systems compositionally according to any failure distri-
bution. Thus, motivated by this issue, a component-based approach for DFTs is defined
in Chapter 4: Component Dynamic Fault Trees (CDFT).
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Model-Based Transformational Approaches

Designing a dependable system presents many challenges throughout the development
phase - from system specification to system validation and verification. This process is
further complicated due to the increasing complexity of the current systems, which use
many and different components. Model-based design approaches provide mechanisms

to manage this complexity effectively.

Model-based transformational approaches were proposed to bridge the gap between
design and analysis activities. Their main goal is to construct target dependability
analysis models (semi-)automatically from source design models. The modelling process

of transformational approaches is constituted of the following main activities:

1. The process starts from a compositional design description by using computer

science modelling techniques.

2. The failure behaviour is specified either by extending explicitly the design model
or developing a separate model, which is allocated to the design model - extended

design model.

3. Transformation rules and algorithms extract dependability analysis models from

the extended design model.

Architectural — Description  Languages (ADLs) provide an adequate ab-
straction to manage the system complexity [Medvidovic00]: Simulink
[MathWorks14], Architecture Analysis and Design Language (AADL) [Feiler07|] and
Unified Modelling Language (UML) [OMG14b| have been used for both architectural
and failure specification. UML is a widely used modelling language, which has been
extended for dependability analyses following model-driven architecture concepts
[OMGO03]. Namely, profiles allow extending and customizing modelling mechanisms to

the dependability domain [Fuentes04].

Lately, a wide variety of independently developed extensions and profiles have been
proposed for dependability analysis [Bernardil2|. However, some generally applicable
metamodel is lacking. In an effort to provide a consistent profile CHESS ML emerged
[Montecchill|. CHESS ML provides all necessary mechanisms to model dependable
systems and extract either event-based (FMECA, FPTC) or state-based (SPN) models.
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Many analysis approaches have been shifted towards the model-based transformational
paradigm. Translations from high-level architectural description languages to well es-
tablished compositional failure propagation analysis techniques, enable an early depend-

ability analysis and allow undertaking timely design decisions, e.g.:

e The toolset for FPTC approach [Paige08al relies on a generic metamodel in order

to support transformations from SysML and AADL models.

e [Adlerl0a] developed a metamodel to extract CFT models from functional
architecture models specified in UML. This process permits the generation of

reusable CF'T models consistent with the design model.

e In the same line, integration of HiP-HOPS model with EAST-ADL2 automotive
UML profile is presented in [Biehl10].

AADL captures the system architectural model in terms of components and their inter-
actions describing functional, mapping and timing properties. The core language can
be extended to meet specific requirements with annex libraries. Behaviour and error
model annexes are provided with the tool. The error annex links system architecture
components to their failure behaviour specification making possible the analysis of the
dependability attributes of the system. It has been used for event-based (FT) [Joshi07]
and state-based (GSPN) [Rugina07| analysis.

AltaRica [Arnold99; Batteux13] is a dependability language, which enables describing
the behaviour of systems when faults occur. The model is composed of several com-
ponents linked together representing an automaton of all possible behaviour scenarios,
including those cases when reconfigurations occur due to the occurrence of a failure
[Romain07]. Tt is possible to process such models by other tools for model-checking,
generation of FTs [Bieber02], Markov Chain generation, Petri Nets generation, or even

for the generation of Boolean-Driven Markov Process models [Labril4].

[Riedl12] presented a language for the specification of reconfigurable and dependable
systems called LARES. It expresses system’s fault tolerant behaviour using a generic
language in which any kind of discrete-event stochastic system can be specified. It
is based on fully automated model transformations to measure systems dependability.
Namely, transformations into TimeNET [TU Berlin07] and CASPA [Riedl08] tools are

carried out in order to solve state-based stochastic Petri nets and stochastic process
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algebra models respectively.

[Cressent11] defined a method for RAMS analysis centred on SysML [OMG14a] from
where a FMEA model is deduced. SysML diagrams define a functional model connected
to a dysfunctional database enabling the identification of failure modes. This database
contains the link between system architecture and failure behaviour giving the key for
FMEA extraction. Further, the methodology for dependability assessment is extended
by using AltaRica, AADL and Simulink models. The approach addresses reliability

analysis, timing analysis, and simulation of the effects of faults respectively.

Definition of a model for the extraction of all necessary formalisms for a complete/ex-
haustive dependability analysis is the common goal for the approaches included in this
section. Interconnections between different formalisms in order to take advantage of the
strengths of each ADL, allow analysing dependability properties accurately. AltaRica
and AADL cover adequately the analysis of reliability, availability and maintainability
attributes. Extraction of the main CFP approaches from ADLs should help to analyse
comprehensively system safety properties. Moreover, Simulink model simulations allow
evaluating the effects of failure and repair events in the system. Thereby, integrations
between language specific models like in [Cressent11] helps evaluating accurately all de-
pendability aspects of a system. The acceptance of the transformational approaches
depends on the availability of tool-sets capable of performing (automatic) transforma-
tions. Interested readers refer to Appendix B Table B.4 to see the tool-support of the

transformational approaches.

These approaches lead to adopting trade-off decisions between dependability design and
analysis processes. On one hand, the automation and reuse of analysis techniques in a
manageable way makes it a worthwhile approach for design purposes. The impact of
design changes on dependability attributes are analysed systematically. On the other
hand, from purist’s point of view of classical analysis techniques, the automation process
removes the ability of these techniques to identify and analyse hazards or malfunctions

in a comprehensive and structured way.

Motivated by the lack of model-based solutions to identify heterogeneous redundancies
systematically and evaluate their influence of system’s dependability level automatically,
in [Aizpurual3a| we presented a model-based solution to evaluate the failure probability

of systems which use heterogeneous redundancies systematically.
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Interested readers refer to Appendix B Table B.1 to see a classification of the analysed

hybrid approaches based on the addressed limitations displayed in Table 2.5.

2.3.2 Opportunity Analysis

In order to classify (dynamic) Fault Tree - related approaches used in this section we
will take into account: (1) their capability to model dynamic system configurations; (2)
their possibility to characterize system’s failure behaviour using the component-based
paradigm; (3) their possibility to characterize the repair behaviour of the basic events
of the system; and (4) their possibility to model any failure/repair distributions (cf.
Table 2.6). Using a illustrative example, the model of each approach has been created

in Appendix C in order to highlight their main characteristic.

Table 2.6: Addressed Characteristics by the Analysed Approaches

Approach Dynamic Cog:s(;r(;ent Repair Dis tigﬁ tion

Static FT [Vesely02] (see Sec. C.1) X X X v
CFT [Kaiser03] (see Sec. C.2) X v X v
HzP-HO(i;S'e [;Dei?agf)gp)oulosll] X v X X
Dynamic FT [Mannol4b] (see Sec. C.4) v X v v
Structur(’zeﬁe’uslcct.zog.EEl)\/[erlelél] X v X v
BDMP [Bouissou07] (see Sec. C.6) v X v v

SEFT [Kaiser07] (see Sec. C.7) v T:v; A:X; v only

exponential

T: Top model
A: Top model’s underlying Analysis model

The approaches displayed in the Table 2.6 can be classified according to their capability
of analysing: (1) static configuration and non-repairable basic events; (2) static config-
uration and repairable basic events; (3) dynamic configuration and non-repairable basic

events; and (4) dynamic configuration and repairable basic events.
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To create an accurate and maintainable dependability evaluation model, we find neces-

sary the following characteristics:
e Component-based modelling and reuse of components.
e Repair characterization of basic events and components.
e Any failure and repair distribution of basic events and components.

From the literature analysis, there exist many different alternatives to address some of
these characteristics. However, to the best of our knowledge there is no approach which
integrates all these characteristics. Therefore the integration of the Dynamic Fault Tree
paradigm with the Component Fault Trees is deemed an interesting approach, so that it
is possible to take the best of both worlds. In Chapter 4 we will introduce the concept
of Component Dynamic Fault Trees addressing all the aforementioned characteristics.
In Chapter 5 we will add complex repair strategies so that we need to rely on more

powerful formalisms.

2.4 Design of Dependable Systems: Trade-Off Be-
tween Dependability & Cost

Generally, dependability design decisions and objectives are related to trade-off decisions
between system dependability attributes and cost. Dependability requirements often
conflict with one another, e.g., safety-availability compromise when a faults leads the
system to a safe shut-down in order to prevent it from propagating. The time at which

design decisions are taken determines the cost that the design process can incur.

Designing a dependable system within considered requirements requires a process to
match and tune combination of architectural components so as to find an optimal solu-
tion satisfying design constraints. There are other approaches concentrated on the design
of dependable systems under the correct-by-construction paradigm. For instance, the
approach presented in [Lopatkinll] creates a formal system specification preserving the
correctness through gradual refinements of the system design model. However, instead
of addressing formal correct-by-construction design approaches, we will overview those

approaches which are aimed at characterizing at design time the implications of design
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decisions on dependability and cost.

More specifically, we group dependable design approaches by looking at how system
recovery strategies are implemented. For the design of dependable systems, there exist
alternative recovery strategies that add redundancies to the system design in order to
avoid single points of failure and thus, provide fault tolerance (cf. Subsection 2.2.1).
So far, the explicit replication of hardware and software resources has been successfully
applied and it is a feasible solution to recover from failures. Interestingly, in some
cases, there exist cost-effective solutions that make the repair possible by reusing already
existing hardware resources. Accordingly, we group in Subsection 2.4.1 those approaches
that replicate the nominal functionality by aggregating additional hardware resources,
i.e., homogeneous redundancies and on the other side, in Subsection 2.4.2, we group those
approaches which are aimed at reusing hardware components to provide a compatible

functionality and reduce hardware costs, i.e., heterogeneous redundancies.

2.4.1 Design Approaches using Homogeneous Redundancies

The principal issue addressed by the approaches grouped in this subsection is the eval-
uation of the effect of design choices (e.g., robustness level of components, redundancy

configurations) on dependability and cost.

Methodology for designing distributed control systems by [Cauffriez04]

[Cauffriez13] and [Clarhaut09] focused on designing a dependable system based on a
design methodology presented in [Cauffriez04]. The main focus of this methodology
relies on the early and systematic characterization of dependability criteria during the

system design activities (cf. Figure 2.21).

The approach comprehends three types of architectures: functional, equipment, and op-
erational architectures. As Figure 2.21 describes, the design process is characterized as
follows: (1) it starts from the characterization of functional and equipment architectures
by addressing functional and dependability criteria; (2) the allocation of the functional
architecture onto the equipment architecture is evaluated in relation to dependability;

(3) as a result, the operational architecture is produced, which could require reconsid-
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Figure 2.21: Methodology for Designing Distributed Control Systems [Cauffriez04]

ering functional and/or equipment decisions in order to obtain a validated operational

architecture with respect to dependability requirements.

Safe-SADT methodology by [Cauffriez13]

The Safe-SADT (Structured Analysis and Design Technique) methodology concentrates
on the analysis of repairable architectures by evaluating how the use of alternative hard-
ware components affects system functionality and dependability [Cauffriez13]| . To do so,
they characterize system-level functions in a top-down manner until lowest level subfunc-
tions are reached. At the bottom layer, failure and repair rates of hardware components
permit analysing the performance of the system’s top layer (reliability and availabil-
ity) using Monte Carlo simulations. In this way, a structural function is characterized,
which links functions with hardware resources and allows evaluating alternative opera-
tional modes by associating different subfunctions to perform the system-level function.
The overall design methodology for modelling and analysing alternative architectural

design choices has been integrated within a design tool.

Dependable design methodology by [Clarhaut09]

[Clarhaut09] described a design approach overcoming the static-logic limitation of event-
based analysis techniques by identifying sequential component-wise contributions to

system-level failures. During the design process, a functional hierarchical tree model
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characterizes dependencies between functions and hardware resources. This model ac-
counts for alternative architectures to perform the modelled control functions. Subse-
quently, the Improved Multi Fault Tree (IFT) is constructed characterizing sequential
failure relationships between Failure Modes (FM) of components and system functions

designated as dreaded events.

As Figure 2.22 shows, the structure of the design methodology revolves around the char-
acterization, analysis, and optimization of system architectures so as to adopt optimal
design decisions regarding dependability and cost. The IFT determines the dependabil-
ity level of the overall architecture by weighting the contribution of each component to
the system-level failures. Architectural design choices cover active and passive redundan-
cies. The cost associated with each hardware component enables progressing between
alternative architectures toward an optimal architecture maximizing dependability and
minimizing the cost.

- Functional Requirements
- Functional Alternatives

Functional

Model
- Improved Multi
= Fault Tree
- Dreaded Events, FMs
- Sequential Failure Relationships V
V Design Methodology Set of Equipment
Equipment - Modelling Architectures
Architecture - Evaluation
- Optimization
-Available Components - Dependability Level
- Components Organization _Cost

Figure 2.22: Design Approach of [Clarhaut09]

Optimal dependable design architectures by [Adachill]

[Adachill] extended the HiP-HOPS approach with recovery strategies to design opti-
mal architectures reducing cost and increasing dependability. The recovery strategies
are formally represented using patterns. These patterns characterize the potential to
detect, mitigate, and block affecting component failures which are previously identi-
fied with HiP-HOPS and analysed by means of Fault Tree Analysis (FTA) and FMEA.
Finally, starting from an abstract architecture, recovery strategies are introduced with-
out violating user constraints and an optimization algorithm allows converging through

dependability and cost requirements.
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Adaptive dependable system design by [Perez14]

More recent approaches continue assessing the influence of homogeneous redundancies
from different but closely related points of view. For instance, the work presented
in [Perez14|, evaluates the influence of the use of adaptive components in the system

availability and cost, calculating the availability through GSPN.

All the covered approaches in this subsection aim at increasing system dependability
through the explicit replication of nominal components. This design decision implies a
cost increase. Consequently, this decision needs to be justified through an exhaustive
and adequate analysis of how the system design meets functional and dependability

requirements.

2.4.2 Design Approaches using Heterogeneous Redundancies

One of the key properties of the systems which exercise heterogeneous redundancies is the
ability to successfully accommodate changes in case of failure occurrences. Consequently,
the approaches covered in this subsection address dependability issues and adaptation

capabilities. Accordingly, they are grouped as adaptive dependable design approaches.

Functional alternatives by [Shelton04]

Robust Self-Configuring Embedded Systems (RoSES)* project revolved around the idea
to build robust and adaptive embedded systems. [Shelton04] first worked on the con-
cept of heterogeneous redundancies by means of functional alternative strategies. These
strategies allow to compensate for component failures by changing the system function-
ality. The approach models alternative system configurations and assigns them a relative
utility value weighing their contribution to the system performance and dependability.
From this model, the overall utility value of the system is calculated which enables the
evaluation and comparison of design choices as to where allocate resources for functional

alternatives or redundancy.

*http:/ /www.ece.cmu.edu/~koopman /roses,/
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Based on each configuration’s assigned utility values and system’s utility function, al-
ternative configurations are compared. Although this characterization makes it possible
to evaluate how component failures affect system utility, the approach has assumption-
s/limitations to be addressed: (1) there is no calculation of the system’s failure probabil-
ity (dependability analysis techniques are not used); (2) there is no consideration of the
influence of health management (fault detection, reconfiguration) and communication
mechanisms on the system operation and dependability; and (3) the identification of

heterogeneous redundancies is performed case-by-case basis.

Shared redundancy by [WysockiO4]

[Wysocki04] addressed the same design strategy under the shared redundancy concept.
They concentrated on the reuse of processing units through the strategic distribution of
software modules. Consequently, given the failure occurrence of a software component,
it is possible to still continue operating through the reconfiguration of communication
routes. To evaluate the reliability and safety of the alternative architectures, first a FTA
is carried out. This analysis permits extracting minimal combination of events which
leads the system to failure (minimal cut-sets). Additionally, this information is used
as input for further analysis through Design of Experiments (DOE) to calculate system
cost and failure probabilities. Based on the same design concept [Galdun08| analysed

the reliability of a networked control system structure using Petri Nets (PN).

The approach concentrates on the reuse of processing units through strategical distri-
bution of software modules among processing units. However, there exist some points
worth considering: (1) there is no consideration of the possible compatible functional-
ities emerging from sensors, actuators and even communication mechanisms; (2) fault
detection and reconfiguration mechanisms are assumed ideal; and (3) the dependabil-
ity analysis models are FTA (without dynamic properties) and Petri nets (flat models

limited to exponential failure rates).

ARDEA framework by [Rawashdeh06]

[Rawashdeh06] presented the ARDEA (Automatically Reconfigurable Distributed Em-

bedded Architectures) reconfiguration framework with the goal of designing reconfig-
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urable architectures for fault tolerant embedded systems. The approach is based on
reconfigurations of processing units to achieve graceful degradation and cope with hard-
ware failures. A gracefully degrading system tolerates system failures by providing the
same or equivalent functionality with the remaining system components. Dependency
graphs are used to model the functional information flow by considering alternative im-
plementations. A centralized system manager uses dependency graphs and a hardware
resource list to find a viable mapping of software on the available processing units. It
decides when to (un-)schedule software modules by moving object code among available

processing units without exceeding processor time and bandwidth.

ARDEA provides an adequate framework for the partial implementation our research
ideas. However, (1) they do not perform dependability analysis of the alternative design
decisions; (2) heterogeneous redundancies are limited to processing units; (3) hetero-
geneous redundancies are identified in a ad-hoc manner; and (4) they focus only on

centralised reconfiguration implementations.

Implicit redundancies by [Trapp07]

In the MARS project, [Trapp07]| proposed a component based modelling and analysis
method to exploit implicit redundancies so as to react to system failures by reusing
hardware resources. They provide methodological support for modelling and gathering
system configurations. Moreover, reasonable system configurations are elicited from a
set, of possible candidates. The adaptive behaviour of the system is modelled based on

quality types, which drive system’s graceful degradation possibilities.

Each system component operates under different configurations and this is determined
by quality attributes which are attached to each component’s every 1/0 port. Config-
uration activation rules are defined over these ports based on the needed and provided

quality attributes (cf. Figure 2.23).

For each component in the system its possible configuration variants are defined. Each
port has its own constraints defined as activation preconditions and propagation post-
conditions. This characterization determines compatible components, based on quality
attributes. As a result, system configurations are extracted based on a explicitly defined

adaptation behaviour.
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Figure 2.23: Example of an Adaptation Specification View [Adler10b]

From this modelling paradigm (MARS modelling), different analyses have been carried
out. In [Adler08], transformations from MARS models into hybrid-Component Fault
Trees (hybrid-CFTs) were performed in order to calculate configuration probabilities (cf.
Subsection 2.3.1). Hybrid-CFTs extend CFTs by using Markov chains models (enclosed
in a component) so that it is possible to characterize the repair behaviour of the system.
In order to ensure the causality of the reconfiguration sequences and safety-related prop-
erties, verification activities have been carried out in [Adler10b]. Last but not least,
methodological support for identifying an adaptation model meeting availability-cost
trade-off is addressed in [Adler10c].

Despite addressing our similar design goals, this approach has assumptions and there are
differences with respect to our methodology: (1) all the approaches within MARS assume
fault-free software (ideal fault detection and ideal reconfiguration implementations) and
there is no consideration of the influence of the communication on system dependability;
(2) the model of adaptation is implemented by a central runtime framework without
evaluating the feasibility of distributed reconfiguration implementations; (3) despite
considering the use of heterogeneous redundancies, the identification of heterogeneous
redundancies is performed in an ad-hoc manner; (4) as for the dependability analysis,
the failure/repair characterization of hybrid-CFTs models are limited to exponential

distributions and its Markov models are limited to characterize basic events.

In the D3H2 methodology (cf. Chapter 3) we focus on addressing all these limitations

with connected modelling and analysis activities.
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Integrated Modular Avionics

Similar design concepts are addressed in the avionics field. Namely, the Integrated
Modular Avionics (IMA) design paradigm defines robust partitioning in on-board avionic
systems so that one computing module (line replaceable unit) is able to execute one or
more applications of different criticality levels independently. The standardised generic
hardware modules forming a network leads to looser coupling between hardware and

software applications [Moore01].

SCARLETT project |[Bieber09] aims at designing reconfigurable Integrated Modular
Avionics architectures in order to mitigate the effect of failures of functional, fault de-
tection and reconfiguration implementations. Once a permanent failure is detected, the
reconfiguration supervisor proceeds with the following key activities. Firstly, it man-
ages the modifications given the current configurations and failed module. Secondly,
it checks the correctness of the system configuration and the loaded data in the line
replaceable unit. The centralized supervisor determines a suitable configuration based
on a reconfiguration graph, which contains all possible configurations. Reconfiguration
policies and real-time and resource constraints, define the set of reachable safe transi-
tions and states. In order to analyse the reconfiguration behaviour when failures occur,

a safety model leads to finding the combinations of functional failures [Bieber10].

Based on the same concepts, DIANA project [Engel10] aims at distributing these func-
tionalities. This approach improves the availability of the reconfiguration mechanisms

at the expense of relying on a complex, resource consuming communication protocol.

The safety assessment of the reconfigurable Integrated Modular Avionics architectures
does consider the influence of the failure of fault detection and reconfiguration imple-
mentations on system operation. However, their goal is not to exploit heterogeneous
redundancies emerged in massively networked scenarios, instead they are aimed at ex-
ploiting replaceable processing units and allocated SW units to perform reconfigurations

effectively.
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Semantic techniques for dynamic reconfigurations by [Hoftberger13]

Recently, the use of semantic techniques for dynamic reconfigurations in embedded
real-time systems has been explored in [Hoftbergerl3| by means of an ontology and
algorithms that enable the runtime adaptation of these systems. The ontology defines
expert knowledge about the system structure, relations and interactions between subsys-
tems. When a failure occurs, semantically equivalent services are searched through the
ontology. The algorithm determines if a service can be substituted by other services in
the system by exploring the ontology to find the required property concepts. Data type,

accuracy, and temporal behaviour are compared to check the compatibility of services.

Despite not addressing our target approach for the design process - selection of compo-
nents, evaluation of its influences on dependability and cost - it does address possible
implementation framework for the design concepts treated throughout this dissertation.
The performance of the approach relies on the proposed search algorithm, which directly
depends on the size of the ontology. For run-time determined reconfigurations this is a

critical issue to be addressed.

Fault-tolerant control & fault diagnosis approaches

There have been approaches in the fault-tolerant control and fault diagnosis community
aligned with the idea of reusing elements to provide additional functionalities (e.g., see
[Blankell| and references herein). Namely, they focus on identifying analytic redun-
dancies systematically. Proposed approaches in this area evaluate if it is possible to
provide the same service with a combination of remaining sensors, i.e., if there exists an
alternative analytic equation, which uses different set of variables (resources) to provide

the same (or equivalent) service.

The identification of analytic redundancies is based on the structural analysis: relying on
detailed mathematical models of the plant (system), system equations, and known and
unknown variables are related. If there exists redundant information about the system
structure, i.e., if there are more constraints (equations) than variables to be determined,
there may exist alternative ways to define a variable (analytical redundancy relations)
[Staroswiecki89; Krysander08]. When dealing with complex systems, detailed models

are difficult to obtain. Thus, structural analysis and graph-based analysis emerged to
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solve large complex sets of equations [Staroswiecki99]. Analytical redundancy relations
are generated from unmatched constraints. Besides, analytical redundancy relations are

used as fault detection functions, also known as residuals (e.g., see [Anal0; Svard10]).

Exhaustive characterization and mathematical formulation of complex systems is not
trivial and in some cases unfeasible: detailed knowledge about the system is needed to
get analytical redundancy relations and therefore, fault-tolerant control of the system.
The identification of analytic redundancies through analytical redundancy relations is
feasible at subsystem level, but when considering the system as a whole, the complexity
of the mathematical formulation increases due to the size of the system and its inner
complexity. This is the rationale that led us to adopt a function-based viewpoint with

qualitative attributes, instead of the formal mathematical viewpoint (see Chapter 3).

Heterogeneous redundancies are not limited to analytic redundancies. Heterogeneous
redundancies include cases in which system variables are not related directly, but they
can be derived using system equations and constraints. In massively networked sce-
narios, systems are comprised of further subsystems - a train is comprised of cars and
compartments; or a building is comprised of floors and rooms - which are interconnected

using a communication network.

Instead of analysing the consequences on dependability of using alternative configura-
tions, the focus of the fault-tolerant control community has been placed on finding (1)
control algorithms able to continue operating in the presence of failures and (2) equations

to detect and diagnose failed components.

Diverse redundancies and sensor fusion by [Flamminill]

[Flamminill] introduced a railway security approach which makes use of heterogeneous
redundancies. To this end, railway surveillance systems are exploited addressing hetero-
geneous data sources making use of diverse redundancies and reasoning about hetero-

geneous data (sensor fusion).

Architecture details are presented integrating the DETECT (DEcision Triggering
Event Composer and Tracker) [Flammini09] and SMS (Security Management, System)
[Flamminil0] frameworks. SMS enables to collect the heterogeneous multi-sensor data

and store it in a database and DETECT is an scenario-based threat detection approach
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(expert system), which provides event correlation mechanisms making possible the gen-
eration of alerts based on received inputs, i.e., it is a centralised application of data
fusion. Alternative (diverse) sensors and intelligent cameras are used to improve the
detection of hazards/attacks, e.g., to identify a contaminated place, Infra-red radiation

sensors or Ton Mobility spectroscopy detectors are suggested (analytic redundancy).

Their viewpoint is close to ours, but there are some differences worth mentioning: (1)
the use of heterogeneous redundancies is performed in ad-hoc manner providing spe-
cific (diverse) solutions to specific problems; (2) the main focus of the approach is on
increasing the probability of detection of threat occurrences using diverse implementa-
tions; and (3) there is no overall calculation of the failure probability of the system (due

to its inner components and their influence).

Safe Software Product Lines by [Jean-Pascall3]

In the project called Safe ReSA (Safe Reusable Safety Analysis and Arguments)
[Jean-Pascal13] introduced an approach combining safety engineering and product line
engineering disciplines. Software product line engineering focuses on maximizing the
reuse through mechanisms to model commonalities and variabilities (feature modelling)
[Clements01]. The goal of this approach is to apply safety engineering methods to
reusable artefacts emerged from product line engineering. To this end, a model-based
approach is used to extract safety cases (evidences) covering all the phases: starting
from the definition of safety goals until their verification. CFTs are used as a reusable
mechanism to analyse cause-effect relations and Safety Concept Trees [Domis09a| to
describe how a top-event is refined into a set of safety requirements using combinatorial

gates.

Our approach can be linked with software product lines paradigm because we do share
the idea of reusing elements: the reuse in software product lines concentrates on creating
different systems (product lines) benefiting from the shared properties among systems;
we are focused on the reuse of system elements (sensors, controllers, actuators) which
already exist in the system. However, our focus relies on reliability engineering: we use
redundancies to accommodate changes in case of system failure occurrences and evalu-
ate the influence of alternative design decisions on system dependability and cost (e.g.,

centralised /distributed reconfiguration implementations or homogeneous/heterogeneous
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redundancies). Making an analogy between reliability engineering and software product
lines: we analyse system characteristics to find inner variabilities (heterogeneous redun-
dancies) or we add explicit variabilities when necessary (homogeneous redundancies)
depending on the dependability and cost constraints. Besides, our approach is limited

to networked control systems operating in massively networked scenarios.

2.4.3 Opportunity Analysis

In order to characterize the reviewed approaches within this section, the following design

properties have been described in the Table 2.7:
1. Type of recovery strategy.
2. Dependability analysis approach.
3. Cost evaluation.

4. Consideration of the dependability of fault detection (FD), reconfiguration (R)

and communication functions.
5. Other tasks, e.g., optimization, verification.

Since the use of heterogeneous redundancies requires considering system dynamics, the
dependability analysis approaches described so far address the temporal behaviour
of systems either by linking event-based static-logic approaches with state-based for-
malisms (e.g., Hybrid-CFT) or by evaluating through approaches which integrate the
temporal behaviour explicitly (e.g., Monte Carlo simulations, Dynamic Fault Tree, Petri
Nets, Dynamic Bayesian Networks). Moreover, given the eztra design complexity of the
systems which use heterogeneous redundancies, the mechanisms which help structuring
the analysis and reusing the models are necessary such as hierarchical abstractions or

component-based design/analysis paradigms.

To obtain a predictable system design and avoid unexpected failure occurrences, all
the approaches assume design-time determined reconfigurations. Nonetheless, it is
necessary to go beyond and overcome their underlying assumptions concerning the
system’s critical functionalities to perform reconfigurations effectively. Namely, among

all the reviewed approaches only [Bieber10] and [Adachill] consider the failure be-
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Table 2.7: Approaches and Addressed Design Properties

Works 1 2 3 4 5
. Homogeneous Monte Carlo Not
|Cauffriez13] Redundancies simulations HW cost Not Addressed Addressed
Homogeneous Imp.roved N
[Clarhaut09] Redundancies multi-fault HW cost | Not Addressed | Optimization
tree
FD, R;
achi . 1P- ommunication ptimization
i) | Homesmen | o | B S| oo Opinia
not addressed
Homogeneous Not Not
[Perez14] Redundancies GSPN Addressed Not Addressed Addressed
[Shelton04] Heterogeneous Utility Values Not Assumed Ideal | Optimization
Redundancies Addressed
Fault Tree, Communication
[Wysocki04]; Shared Design of Maintenance FD. R Not
aldun edundancies experiments; cost resse
Galdun08 Redundanci i Assume,d Ideal Add d
Petri nets
Graceful Not Not
[Rawashdeh06] Degradation Not Addressed Addressed Not Addressed Addressed
Reconfigurable Not Not
[Hoftberger13| Ontology Not Addressed Addressed Assumed Ideal Addressed
) Implicit . HW & SW Optimization,
[Trapp07] Redundancy Hybrid-CFT cost Not Addressed Verification
[Bieber09] Reconfigurable aizlfff?ifs Not Comb;]l)linli(;ation Not
[Engel10] IMA AltaRica Addressed ot addressed Addressed
. Residuals,
[Blankel1] Analytic Not Addressed Not Not Addressed fault
Redundancy Addressed . .
diagnosis
. Dynamic)
.. Diverse ( . Not Not
[Flammini11] Redundancy g:gvifﬁi Addressed Not Addressed Addressed
Sofware Component, Not Not
[Jean-Pascal13] Product Lines Fault Trees Addressed Not Addressed Addressed
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haviour of the fault detection and reconfiguration implementations and [Galdun08| ad-
dresses the failure the communication network. The evaluation of the possible faulty
behaviour of these implementations leads to obtaining an approach which better adheres
to real implementations and consequently, more reliable results. Despite not address-
ing heterogeneous redundancy like concepts directly, in [Forsterl0] an approach called
component logic models is presented which does address the faulty behaviour of fault

detection implementations.

Shifting from problem specific solutions towards generic fault tolerant design approaches
requires systematizing identification, modelling and analysis steps. From our perspec-
tive, it is necessary cover the following design activities in order to progress in the design
of systems which use heterogeneous redundancies and refine the dependability analysis

of these systems:

e Systematic identification of heterogeneous redundancies and extraction of system

configurations to react in the presence of failures.

e Design of the system architecture to make the use of heterogeneous redundancies

possible, i.e., fault detection and reconfiguration implementations.

e Evaluation of the system dependability with respect to dependability, adaptivity

and cost constraints.

The systematic identification of heterogeneous redundancies and extraction of system
configurations calls for an approach which allows identifying systematically existing
hardware components able to provide a compatible functionality. To the best of our
knowledge, only the work we presented in [Aizpurual2a] works towards this goal. In
[Adler10b], authors worked on the systematic extraction of system configurations an-
notating component by component their adaptive behaviour. During this process they
evaluate in a ad-hoc manner if it is possible to provide another configuration variant
using alternative hardware components and finally extract system configurations based
on inter-component influences. In [Blankell| a mathematical approach for the system-
atic identification of analytical redundancies is outlined. It is a sound and consistent
approach, but it suffers from scalability issues. The use of this approach within NCSs
operating in massively networked scenarios would require too much details concerning

the exact mathematical formulation of the system.
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The design of the system architecture to make use of heterogeneous redundancies re-
quires addressing design decisions regarding the organization of fault detection and
reconfiguration implementations, i.e., their distribution and replication. On one hand,
when implementing the fault detection function within a networked control system, it is
possible to allocate it either on the source PU where the information is produced (e.g.,
sensor, controller) or in the destination PU, which is the target PU of the source informa-
tion (e.g., controller, actuator) or in both PUs. On the other hand, when dealing with
reconfiguration implementations, its distribution influences the overall dependability
and cost of the system (cf. Table 2.8).

Table 2.8: Design Decisions and Influenced Attributes

Design Fault Detection Reconfiguration
Attribute Source Destination Centralised Distributed
Detection at origin, | Detection of'w?ong Failure Multiple
- unable to manage value & omission. . .
Dependability . proneness: single | reconfiguration
communication Prone to common . . .
. . point of failure redundancies
failures cause failures
Single .
tl . High t:
HW/SW . . COS. Y reconfiguration 1gheT €8
. . identification of all . multiple
Cost implementation . . implementa- .
failures: failure L reconfiguration
costs . tion’s HW/SW | . .
transformation implementations
costs
Less Complex
. Direct failure Further failure .. communication
Complexity . communication
handling sources and resource
overhead
management,

Additionally, when adopting design decisions within the second activity, it is necessary
to address adaptivity constraints which also has influence on dependability, e.g., time-
liness constraints: maximal duration in which the adaptation of one component can
be performed [Priesterjahnllb|, dependency constraints: dependencies between system
components, where adapting one component requires further adaptation on other com-
ponents [Adler10b| or hardware resource constraints: limit the use of hardware resources,

e.g., processing power, memory [Rawashdeh06|.
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2.5 Conclusions

Heterogeneous redundancies (or more generally reuse of sensors, controllers and actua-
tors) can take many forms: analytical redundancy, design diversity or fail-safe control
algorithms are some well-known examples. To the best of our knowledge, so far this task
have been focused on the creative ability of the designer. Furthermore, these approaches
have assumed failure-free behaviour of fault detection and/or reconfiguration and/or
communication implementations. Besides, previously there have not been an attempt
to profit from the physical organization of massively networked scenarios: replicated
functions distributed throughout the physical structure of the system. Therefore, so as
to integrate these tasks, overcome previous limitations, and evaluate the influence of
alternative design decisions on dependability and cost, we have designed a methodology
entitled: aDaptive Dependable Design for systems with Homogeneous and Heteroge-

neous redundancies (D3H2).

Focusing on the dependability analysis of these systems, we have identified the need of an
approach which comprehends the characteristics outlined in Subsection 2.3.2. Given that
such an approach exists, the analysis of complex, dynamic and repairable systems will
become manageable and easier to maintain. In Chapter 4, we will introduce Component
Dynamic Fault Tree concept in order to address these characteristics within the D3H2
methodology and in Chapter 5 we will describe a process to model complex repairable

systems.
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CHAPTER 3

D3H2 Methodology

In order to design adaptive dependable systems systematically and cost-effectively, we
propose a design methodology named aDaptive Dependable Design for Systems with
Homogeneous and Heterogeneous redundancies (D3H2). The methodology integrates
the variables implied in the research hypothesis of this thesis: homogeneous/heteroge-

neous redundancies, fault detection, reconfiguration, and communication.
This chapter is organised as follows:

e As a result of the literature review done in Chapter 2, Section 3.1 introduces the

motivation of this chapter.
e Section 3.2 overviews the D3H2 methodology and its main activities.

e Section 3.3 describes in detail the main activities and models for designing a hard-
ware/software architecture systematically including health management strate-

gies.

e Section 3.4 applies the main activities to the running example so as to construct

a hardware/software architecture.

e Section 3.5 closes this chapter with a discussion of the limitations of the D3H2

methodology.

3.1 Introduction

The design of adaptive dependable systems requires a process to match and tune the

adequate combinations of components according to the functional and dependability
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requirements. As stated in Chapter 2, the D3H2 methodology emerges from the goal of
systematizing all the design steps needed to design complex dependable systems cost-

effectively.

Heterogeneous redundancies may exist in diverse systems. However, usually the cost and
effort involved in identifying and exploiting which implementations are able to perform

further compatible functions is not feasible.

Assuming that potential heterogeneous redundancies have been identified, it is necessary
to evaluate quantitatively whether integrating this redundancy is more beneficial - in
terms of dependability and cost - than using homogeneous redundancies instead. To
evaluate its benefits, firstly it is necessary to create an architecture which makes their
use possible. To this end, health management (fault tolerance) mechanisms are required:

fault detection and reconfiguration.

When combining all the previous design concepts, the issues that a designer may
be interested on covering address: (1) the implementation and distribution of the
health management mechanisms; (2) the use of homogeneous or heterogeneous redun-
dancies; (3) trade-off analysis between dependability and cost when selecting alternative
architectures (comprised of different interacting elements with their corresponding fail-

ure/repair rate and cost).

Repeating this process for different combinations of components (i.e., architectures) can
be cumbersome and costly. In consequence, the proposed methodology performs all

these tasks systematically.

3.2 Overview of the D3H2 Methodology

The D3H2 methodology focuses on modelling and analysis activities shown in Figure
3.1. The methodology characterizes a system of interest as a set of interacting hardware,
software, and communication resources, taking into account their interfaces and provided

functionality.

The methodology starts from the characterization of system functions, required resources

and the physical location in which these functions are performed. These concepts are
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formalised in the functional model (cf. Figure 3.1 and Subsection 3.3.1). To this end,
the designer has to specify:

e System functions.
e List of resources in order to meet the system functions.

e Physical location in which the system functions are performed within the system

Physlcal Resource
Locations List

Functional Model

Compatibility Analysis/
E——
Allocation/ Aggregation

physical structure.

HI Functions

Reconfiguration
Strategies

Preliminary

-
“HW/SW Architecture

Extension '4
-

Extended
Functional Model

( Allocation/Aggregation )

Extended
HW/SWV Architecture
Dependability Cost
Analysis Analysis

False: Option B False: Option A

Dependability
Regs.

True
Solution
II Architectures

Figure 3.1: D3H2 Methodology [Aizpurual3a]

The functional model is obtained from the projection of functions onto system resources
while considering their physical location. This model addresses initial design require-
ments. To systematize its construction, the Functional Modelling Approach (FMA) has
been created (cf. Subsection 3.3.1).

Homogeneous and heterogeneous redundancies are identified as a result of the compatibil-
ity analysis (cf. Subsection 3.3.2). This activity evaluates if there exist compatibilities
in the functional model. To take into account these compatibilities, it may be necessary
to aggregate additional resources and subfunctions and perform the allocation activity

for the new elements.
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Subsequently, system’s reconfiguration strategies and the preliminary HW/SW

architecture are extracted (cf. Subsection 3.3.3).

Before considering this preliminary HW/SW architecture for further characterizations
and possible implementation, it is necessary to extend it with health management
functions, i.e., fault detection and reconfiguration, which make the use of redundan-
cies possible (cf. Subsection 3.3.4). From the extension of the preliminary HW/SW

architecture, the extended functional model is constructed.

The aggregation and allocation activities allow the designer to create an ex-
tended HW/SW architecture from the extended functional model. Subsequently, the
dependability analysis evaluates the dependability level of the extended HW/SW
architecture (see Chapter 4 and Chapter 5). Moreover, the cost analysis allows adopting
trade-off decisions between the used redundancies and incurred cost. Finally, the ez-
tended HW/SW architecture needs to be evaluated with respect to system requirements

to wverify if the initial requirements are met.

If system requirements are not satisfied there are two options: Option A jumps back to a
previous activity and repeats the process from there (compatibility analysis, extension,
allocation, aggregation). Option B drives the design process to the starting point of the

design methodology so that design requirements are reconsidered.

The identification of heterogeneous redundancies requires studying all the system
functions, resources, and their physical locations early at the design time. Nevertheless,
at the expense of relying on a more costly design methodology - rather than simply
adding explicit redundant resources where they are necessary - it is expected that the
cost savings obtained with heterogeneous redundancies reward the design efforts. The
hardware cost savings emerge from limiting the addition of hardware resources (homo-
geneous redundancies) by exploiting already existing hardware resources (heterogeneous

redundancies). This is something that will be evaluated in Chapter 4 and Chapter 5.

3.3 HW/SW Architecture Design

In Subsection 3.3.1 the Functional Modelling Approach (FMA) is presented. The FMA

allows the systematic identification of homogeneous and heterogeneous redundancies
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[Aizpurual2al. Making use of the constructed functional model, in Subsection 3.3.2 and
Subsection 3.3.3 the compatibility analysis and reconfiguration strategies are presented.
Finally, the Extended Functional Modelling Approach (EFMA) is introduced in Sub-
section 3.3.4. The EFMA adds fault detection and reconfiguration implementations to
the preliminary HW/SW architecture.

3.3.1 Functional Modelling Approach

The overall goal of defining the Functional Modelling Approach (FMA) is the procedural
consideration of system functions, resources and the relations between them. The FMA
has been designed deliberately to enable the systematic identification of heterogeneous

redundancies and the extraction of reconfiguration strategies.

The Functional Modelling Approach is characterized in a top-down manner, starting
from a set of high-level functions tracing down to the necessary resources to perform

these functions (cf. Figure 3.2).

I High-Level Functionq | I High-Level Functiono |

~

/ Main Functionq Main Function2 \
1 Physical Locationa | Physical Locationpg | e Physical Locationc
I l Subfunctlon1 I Subfunctlonz | | Subfunctlon3 | -+ | Subfunctiong ||
' T |
1 mpl.qa mP 1B mP 2A mP ZB mP 3A | |mP| 3B I Impl.35 |

N) V (FS) |
I mplya |
| 7 (D) 1% | ReszA | | ResQB | | Res. 3A] | Res 3B | |
\| Res.1A | Res.1B y,

~ -

Figure 3.2: Functional Modelling Approach

A high level function (e.g., different train operations: train operating properly, train
stopped) is comprised by a set of Main Functions (MFs), e.g., train operating properly
— {traction system OK, signalling system OK, braking system OK,...}. These main
functions are performed in possibly different Physical Locations (PLs), e.g., a single Air
Conditioning Control implementation may span a whole train car or each car compart-

ment in a train car may have its own Air Conditioning Control. In the same way, a
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main function consists of a set of Subfunctions (SFs), e.g., input, control and output
subfunctions. A subfunction may have multiple implementations and each implementa-
tion requires a set of resources that may be shared with other implementations of other

subfunctions (e.g., processing units).

Our model focuses on main functions and its sub-levels to limit the scope of the analysis
without losing its generality (see the end of this subsection for further discussion). The
full characterization of a subfunction’s implementation of a generic main function is

specified as follows:

Main Function.Physical Location.Subfunction.Implementation (3.1)

This characterization is comprised of tokens which describe the particular Main Func-
tion, Physical Location, Subfunction and Implementation. These tokens are separated
by dots. However, for those tokens which also have dots we surround them with square

brackets, e.g., considering the Physical Location — Train.Car.Zone:

MainFunction.[Train.Car.Zone].Sub function.Implementation.

As a result, different tokens are identified straightforwardly (see Example 3.3.1).

To define the physical location of system functions consistently, a physical location map

is defined for the physical structure. Figure 3.3 shows the physical location map of

an hypothetical train, where each car is comprised of different compartments (Zoney,

Zoneg).

['Door |[ Reof |[ Window [ - ] [[Deor |[ Reof |[ Window || ~ |
et okt ot

Figure 3.3: Example of a Train Physical Location Map
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The physical location of each main function specifies the scope of the main func-
tion and its subfunctions, e.g., zone - level: [Train.Car;.Zoney[; or specific - level:
[Train. Cars. Zoneg. Door/.

 Example 3.3.1: 3
iThe characterization of the Air Conditioning Control main function’s temperature |
measurement subfunction, which is performed within a train car in a specific compart- i
ment, will be specified as follows (cf. Section 2.1):

Where the implementation Sensor, is comprised of the next set of resources:

N

|
|
1 AirConditioningControl.[Train.Car; . Zonea |. Temperature Measurement.Sensor s
|
|
|
|
|

ensor,={Temperature sensor A, PUrcc A, SWremp}-

A system configuration is defined as follows: a possible realization of the main function

comprised of the necessary subfunctions and their underlying implementations (and

resources) to perform the main function (cf. Example 3.3.2).

3 Example 3.3.2:

Considering the Air Conditioning Control main function introduced in Section 2.1 an
assuming the train configuration described in Figure 3.3, the nominal configuratio
for the Train.Car;.Zone, will be comprised of the following implementations:

= e

i AirConditioningControl.[Train.Car;.Zonea |. TempMeasurement.Sensor p

1 AirConditioningControl.[Train.Car;.Zonea . RefTemp.RefButton

i AirConditioningControl.[Train.Car;.Zonea . TempControlAlgorithm.PID _ Control
: AirConditioningControl.[Train.Car;.Zone |. Heating.Heater

where,

Sensory = {Temperature Sensor A, PUxcc_A};
RefButtons = { Re ference Temperature Button A, PUxcc A}
PID_ Control = {PUacc_a, SWpm, TempM easurement, Re fTemp};
Heatery = {Heater A, PUxcc_a, TempControl Algorithm}

The high-level functions modelled in Figure 3.2 describe the high-level operation of the
system. These functions have their own set of main functions and the main functions are
comprised of a set of subfunctions. Consequently, if the whole functional model is taken
into account, the complexity of the analysis grows up. Accordingly, its manageability
is worse and the utility of the Functional Modelling Approach is affected. It is for that

reason that we model starting from main functions.
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Among the alternative implementations to perform the same subfunction, based on the
implemenation’s resources and provided functionality, we classify nominal, degraded
and fail-safe implementations (cf. Figure 3.2). Nominal (N) implementations perform
the same functions as intended by the initial functional design characteristics. When
the nominal implementations are lost due to the failure of some resource, there may be
implementations which provide a Degraded (D) but acceptable service. Fail-Safe (FS)
implementations emerge from the need to cope with the severe failure of resources, which
could result in hazard situations. In safety-critical systems, fail-safe implementations

must be defined to avoid these situations.

Despite the described design methodology concentrates on the design of new systems,
it may be customized for the design of already existing systems. Both methodologies
differ in the orientation of the construction of the functional model. However, for design
purposes, once the functional model is created the same steps apply for both design

strategies.

When designing a new system, the orientation of the Functional Modelling Approach
focuses from system main functions toward resources (top-down). This design strategy
requires planning and understanding completely the system so that an overall picture of
the system is obtained. Nonetheless, the drawback of this perspective is that it increases
the development time and sometimes not everything is known at the beginning of a

project (e.g., physical layout of the system).

On the contrary, when addressing the redesign of an already existing system, a bottom-
up fist step is needed to obtain a functional model. As it is shown in Figure 3.4, the
functional model is constructed by grouping system resources to perform subfunctions

and linking them with the main functions they carry out (synthesis).

Implemented Implemented Phvsical Utilized
Main Functions| | Subfunctions Locﬁilgis Resources
(MF) (SF) (R)
( Synthesis )

Y

Functional Model

Figure 3.4: Functional Modelling Approach for Existing Systems
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When redesigning an existing system, the synthesis of previously designed implementa-
tions and functionalities is a troublesome task: taking into account all implementations,

subfunctions, and main functions becomes time consuming and prone to errors.

3.3.2 Compatibility Analysis

The objective of the compatibility analysis is the systematic identification of heteroge-

neous redundancies.

The compatibility analysis allows gathering compatible implementations and identify-
ing heterogeneous redundancies. Two implementations are compatible if they provide
the same or similar (but acceptable) result. However, the acceptable results need to be
confirmed in a case-by-case basis by the designer. Heterogeneous redundancies are iden-
tified based on the tokens of the main function: matching subfunctions and compatible

physical locations.
There exist two compatibility cases:

e Natural compatibility emerges automatically from compatible implementations car-
rying out the same subfunction in compatible physical locations (cf. Example
3.3.3);

e Forced compatibility identifies available I/O implementations located at compatible
physical locations, and then evaluates if they may fulfil additional subfunctions

with compatible implementations (cf. Example 3.3.5).
Possible compatible physical locations are defined as Table 3.1 displays.

Table 3.1: Possible Compatible Physical Locations

Case | Description Example
1 Subfunctions located at the same physical location | [Cari].Zonea «> [Cari].Zonea
2 Subfunctions located at adjacent physical locations | [Cari].Zonea <> [Cari].Zonep

Subfunctions located at a physical location that
3 span other subfunction located at more specific | [Cary].[Zonea] — [Cary].[Zonea].Door
physical locations
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In the natural compatibility case, the compatibility of the physical location depends upon
the type of the examined subfunction. For input subfunction implementations performed
within compatible physical locations and depending on the input subfunction type itself,

the produced outcomes of the implementations are acceptable (cf. Example 3.3.3).

Example 3.3.3:
Considering the temperature measurements in two adjacent compartments:
AirConditioningControl.[Train.Car; . Zonea |. Temperature Measurement.Sensor 4

AirConditioningControl.[Train. Car; . Zoneg|. Temperature Measurement.Sensorp

We identify that the same subfunction’s implementations are located at a adjacent

physical locations ([Train.Car;.Zone,|, [Train.Car;.Zoneg|), and the temperature mea- -

surements carried out by Sensor, and Sensorg could be interchanged in a degraded 3

However, specific physical locations limit the compatibility. Generally, this is the case

of output subfunctions due to their specific actuation space (see Example 3.3.4).

. Example 3.3.4:
' Considering the specific actuation space of the door manipulation subfunctions’ motors

DoorStatusControl.[Train. Car;.Zone . Door[. Door Manipulation. Motor 4
DoorStatusControl.[Train. Car; . Zoneg. Door|. Door Manipulation. Motorp

Forced compatibility case is analyses available I/O implementations and their physical

locations and evaluates if they may fulfil additional subfunctions (cf. Example 3.3.5).

3 Example 3.3.5:

' Consider a train car with the following functionalities (cf. Section 2.1):
1 DoorStatusControl.[Train. Car;.Zone s .Door]. DoorClosedDetection. ClosedSensor

VideoSurveillance.[Train. Cary . Zonea [. VideoInput. Camera

3 the camera (e.g., ClosedCamera implementation), we consider these implementations
' compatible:

i DoorStatusControl.[Train. Car;.Zone s .Door]. DoorClosedDetection. ClosedSensor

| DoorStatusControl.[Train. Car;.Zoney .Door[.DoorClosedDetection. ClosedCamera

. Given that we could add a software functionality to detect the closure of the doors using 3



Using the tokenized characterization of system functionalities (cf. Characterization 3.1),
the identification of redundancies is simplified. This is performed in a straightforward

way by comparing the corresponding tokens of subfunctions and physical locations.

Based on the equivalences between system functions, physical locations and resources,
Table 3.2 displays a comparison between the nominal main function configuration and

those which use homogeneous and heterogeneous redundancies.

Table 3.2: Comparison of Redundancies with respect to the Nominal Configuration

Redundancy Subfunction Physical Location Resources Configuration

Homogeneous = = = =

Heterogenous = =, = =, =

same(=); compatible(=)

Diverse redundancies (see Subsection 2.2.2) provide the same functionality using an al-
ternative configuration. The difference between diverse and heterogeneous redundancies
lies on the design purpose: while heterogeneous redundancies already exist in the system
configuration, diverse redundancies are added explicitly to provide the system with im-
plementations which fail in different failure modes and avoid common cause failures.
As for the comparison between homogeneous and diverse redundancies, both exercise
additional resources, but homogeneous redundancies provide the same function within
the same physical location under the same configuration, whereas diverse redundancies

provide the same function with a compatible configuration.

The control subfunctions are a special case because they do not depend upon the phys-
ical location. They are able to perform the control subfunction provided it receives
the corresponding input values of the specific physical location. There may also exist
alternative fault-tolerant control subfunction implementations, which are able to cope

with input subfunction implementation failures, e.g., open-loop control algorithms.

The implementations identified in the compatibility analysis may be degraded imple-
mentations. They are created from a implementation which is a nominal implementation
for another main function by reusing resources. We assume that their functionality is
acceptable, but they may influence the quality of the provided main function. Accord-

ingly, the validation of the identified heterogeneous redundancies is an activity which will
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determine whether the quality of the heterogeneous redundancy implementation is ac-
ceptable, e.g., timing requirements of an implementation. These are some challenges to
be addressed in our future work to further refine the compatibility analysis (cf. Section
3.5).

3.3.3 Reconfiguration Strategies

To integrate the functional model with heterogeneous and homogeneous redundancies in
the D3H2 methodology, reconfiguration strategies are defined. Reconfiguration strategies
consist of possible system configurations and they describe fault tolerance strategies of

the system to recover from system implementation failures.

The existence of compatible implementations lead us to define alternative configurations.
These are annotated in a reconfiguration table defining all implementations and assigning

priorities to each of them (see Example 3.3).

. Example 3.3.6: 3
i Table 3.3 displays a hypothetical Air Conditioning Control main function (see Example i
3 3.3.2) with three configuration examples (C;, Cy, C3), where C; refers to the nominal |
i configuration ; C, shows a degraded operation reusing a sensor; and the Cj indicates
i another degraded operation reusing the reference button.

i The hypothetical Air Conditioning Control for Train.Car;.Zone, is comprised of 2

. heterogeneous redundancy implementations: #1 <> #2 and #3 <> #4.

The prioritization process for alternative implementations is founded on a metric based
on the weighted sum of: (1) level of the degradation of the functionality; (2) fail-
ure probability of the implementation; and (3) cost of the configuration. The level of
the degradation depends on the relative physical distance (applicable for heterogeneous
redundancies emerging from natural compatibilities). This metric does not indicate
the final failure probability of the system since it is necessary to extend the system
architecture with the necessary health management functions and implementations (cf.
Subsection 3.3.4). Besides, in some cases, it is necessary the designer’s knowledge, e.g.,
when there exist multiple heterogeneous redundancies raised from forced compatibilities.
However, it provides an initial idea of the priority of each implementation to perform

the subfunction.
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Table 3.3: Reconfiguration Table Example

Implementation Prio| C; Co Cs #
AirConditioningControl.[Train.Cari .Zone s |.MeasureTemp.Sensor o 1 w F W 1
AirConditioningControl.[Train.Cari .Zonea |. MeasureTemp.Sensorg 2 W 2
AirConditioningControl.[Train.Car; .Zonea . RefTemp.RefButton o 1 W W F 3
AirConditioningControl.[Train.Cari .Zone |.RefTemp.RefButtong 2 W 4

AirConditioningControl.[Train.Car; .Zone |. TempControl Algorithm.PTD 1 W W W 5
AirConditioningControl.[Train.Cari .Zone |.Heating.Heater o 1 w W W 6

W: Working; F: Failed; Prio: Priority.

Moreover, the reconfiguration strategies enable the direct identification of single points
of failure. A single implementation of a subfunction in the reconfiguration table indicates

that the subfunction is a single point of failure (e.g., #6 in Table 3.3).

One of the limitations of the studied reconfiguration strategies is the process needed to
extract the reconfiguration strategies. That is, the characterization of all the system

functions, resources and their physical locations is a laborious task.

3.3.4 Extended Functional Modelling Approach

The main goal of the FEztended Functional Modelling Approach (EFMA) is to add
health management functions and corresponding implementations to the preliminary

HW /SW architecture. Namely, it is necessary to add:

e Fault Detection (FD) mechanisms to detect the incorrect operation of an imple-

mentation;
e Reconfiguration (R) mechanisms to recover from implementation failures.

The EFMA has been designed with the goal of making it general enough to allow the sys-
tematic design and analysis of alternative extended HW /SW architectures. Since fault
detection and reconfiguration subfunctions are subfunctions of a given main function,

they are also modelled using tokens (cf. Characterization 3.1).
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The following design assumptions are adopted when characterizing the

health management subfunctions and their implementations [Aizpurual3al:
e Fault detection:
— Each subfunction has an associated fault detection subfunction (FD_SF);

— All the fault detection implementations of the same subfunction use replicas

of the same fault detection algorithm;

— The fault detection subfunction is located at the destination processing unit
where the information of the source processing unit is used. This decision en-

ables to detect communication (timing and value) failures straightforwardly.
e Reconfiguration:

— Each subfunction will have its own reconfiguration subfunction (R_SF),
which receives fault detection subfunction’s signals and sends reconfiguration

signals to subfunction implementations.
e Fault detection of the reconfiguration:

— Each reconfiguration implementation will have its own fault detection
mechanism (FD_R_SF) implemented in keepalive configuration. FEach
reconfiguration subfunction implementation sends keepalive signals to all
their fault detection function implementations (FD_R_ SF) to indicate that
it is operating (i.e., it is alive). In the absence of a keepalive signal during
a predetermined time slot, the reconfiguration implementation of R_ SF is
assumed to be failed. When this happens, the reconfiguration’s fault detec-
tion implementation (FD_R_ SF) sends an activation signal to the available

reconfiguration implementation (R_SF) with the highest priority.

Instead of including communication function as part of the Fxtended Functional Mod-

elling Approach, it is considered as a resource to carry out the characterized subfunctions.

Although we have assumed that the implementation of the fault detection function is
allocated on the destination PU, it is possible to allocate it on the (1) source PUs
where the original subfunction is carried out, (2) destination PUs where the original

subfunction’s results is being used, or (3) both. On the one hand, if the fault detection
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is allocated on the source PU, it is also necessary to have a mechanism which detects
its performance omission (see Subsection 2.2.1) in the destination PU where it is used.
On the other hand, the allocation of the fault detection function on the destination PU
enables implementing a single fault detection function for the different implementations
of the same subfunction (e.g., based on time and value thresholds). The latter case
requires taking into account at design-time all possible destination PUs and supplying

them with fault detection functionalities.

Concerning the implementation of the reconfiguration function we assume that: (1) all
subfunction’s PUs have a reconfiguration mechanism which enables them to send/re-
ceive data to/from different destinations/sources and (2) additionally, there is one (or
multiple) decision PU(s) to manage the reconfigurations according to the subfunction’s
status. If all reconfiguration decision functions are allocated to the same PU, we end up
with a centralised decision PU and it becomes highly sensitive to communication fail-
ures. On the other end, if reconfiguration decision functions are distributed throughout
the system resources, the management of the reconfiguration decision functions becomes

much more complex, but less sensitive to common cause failures (cf. Table 2.8).

Figure 3.5 describes an abstract architecture of the main function ¢ and the
health management mechanism of the main function’s output subfunction. In this figure

overlapped rectangles describe alternative implementations for the same subfunction.

Fault Detection SF
Output 3 Output Subfunction F—————— | of the Output SF
|_

Subfunction Data of the T
I i~th Implemementation |
| of the output SF

Switch Faulty data of the
Control implementation / i-th Implemementatior
Subfunction of the output SF of the output SF
System

Reconfiguration SF
of the output SF e

Switch Keepalive

implementation / of
Input ) . Data
Subfunction the Reconfiguration SF v vv
Fault Detection of the
Reconfiguration SF
|
1

Figure 3.5: Abstract Architecture of the Main Function 7 and the Health Management Im-
plementation of its Output Subfunction
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There is no unique valid solution when allocating resources to fault detection and
reconfiguration functions. For instance, when considering the reconfiguration function,
alternative HW /SW architectures emerge depending on its distribution. This model is
general enough to allow for the systematic analysis of alternative HW /SW architectures
by means of the Dependability Evaluation Modelling approach (cf. Chapter 4 and Chap-
ter 5).

When considering the implementation of the reconfiguration strategies, we assume
design-time distribution of alternative configurations. Once reconfiguration strategies
are characterized and completed with network addresses of different implementations,
the reconfiguration table will be allocated partially in different decision PUs or totally

in a unique decision PU to enable the runtime reconfiguration of implementations.

To make the reconfiguration possible, the following needs to be implemented in each
PU which has implementations to be reconfigured: a wrapper that ensures the inter-
changeability between compatible implementations; and a reconfiguration mechanism to
redirect its information to different destinations dynamically. Furthermore, the PUs in
which the fault detection of the reconfiguration subfunction implementations are allo-
cated require monitoring keepalive signals to control the correct operation of the active

reconfiguration implementation.

For these architectures the communication paradigm plays an important role: the com-
munication protocol needs to be able to support the creation/removal of communica-
tions dynamically while considering the synchronization of the implementation’s states
and adjudication of the results. Message oriented publisher/subscriber communication
protocols (e.g., Data Distribution Service [Pardo-Castellote03]) address these character-
istics: alternative source implementations publish data in a network location and the
destination implementations subscribe or unsubscribe to a publisher according to the
reconfiguration table. Please refer to the Chapter 6 to read about practical implemen-

tation details.
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3.4 Results

In order to illustrate how to use the modelling and analysis approaches presented in this
chapter, we will apply the D3H2 methodology to the train example described in Section
2.1. From the functions performed in a train car, we will concentrate on three main
function examples so as to characterize the different compatibility cases: natural com-
patibility (Air Conditioning Control) and forced compatibility (Fire Protection Control
and Door Status Control).

Natural Compatibility example: Air Conditioning Control

Despite not being a critical function for the safe operation of the train, the Air Con-
ditioning Control function offers a simple, but yet an interesting and intuitive example
to demonstrate the possibilities for using heterogeneous redundancies emerging from

natural compatibilities (cf. Example 3.3.1).

Functional Model

Let us consider a train with different numbered cars (Cary, Cary) and each car consti-
tuted by 2 compartments (Zone,, Zoneg) according to the physical location map of the
train depicted in Figure 3.3. We assume that independent Air Conditioning Control

functions are implemented in each compartment of the train.

As displayed in Table 3.4, the Air Conditioning Control main function implementation
for each compartment consists of two input subfunctions: temperature measurement and
user reference temperature; one control subfunction: air conditioning control algorithm
and one output subfunction: heating. User reference temperature subfunction is consti-
tuted by two alternative implementations: reference temperature button (#2, #8) and
software defined reference temperature (#3, #9); and also the air conditioning control
algorithm contains two different implementations: closed-loop PID control algorithm

(#4, #10) and open-loop control algorithm, which only requires temperature reference
set-point (#5, #11).
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Table 3.4: Functional Model for Air Conditioning Control in Train.Cary

MF PL SF Type| Implementation Resources #
Temperature I Sensor Temperature Sensor A, PU 1
Measurement A P ’ ACC_A
User Reference I RefButton s Reference Temperature Button A, 9
Temperature PUacc_a
User Reference
Temperature I RefTempSW 4 SWrefTemps PUAcc_a 3
Train.
garl. Air Conditioning Temperature Measurement, User
onea Control C PIDA Reference Temperature, PUacc A, 4
Algorithm SWpip
Air Conditioning User Reference Temperature,
Control C OLA PU SW 5
Algorithm ACC_A> oL
. Air Conditioning Control
H H .
Air eating o eatera Algorithm, PUpcc_a, Heater A 6
Conditioning
Control Temperature
Measurement 1 Sensorg Temperature Sensor B, PUacc_B 7
User Reference I RefButtonp Reference Temperature Button B, 3
Temperature PUacc_B
User Reference
Temperature I RefTempSWpg SWRefremp> PUAcc_B 9
Train.
anrl' Air Conditioning Temperature Measurement, User
ones Control C PIDg Reference Temperature, PUacc_B» 10
Algorithm SWpin
Air Conditioning User Reference Temperature,
Control C OLp PU W 11
Algorithm ACC_Bs oL
Heating o Heaterp Air Conditioning Control 12

Algorithm, PUACC_B, Heater B

Legend: I: Input; C: Control; O: Output; Impl.: implementation

The single implementations of the heating subfunction (#6, #12) indicate that it is

a single point of failure for the Air Conditioning Control main function.

In these

cases, if the main function’s requirements are stringent, the functional model points

out the need to add an homogeneous redundancy. Since in this case we are not deal-

ing with a safety-critical function, we will assume that it is not necessary to add an

homogeneous redundancy (designer’s architecture-specific decision).
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Compatibility Analysis

Automatically identified heterogeneous redundancies according to the natural compati-

bility case are:

e [t is possible to use the temperature sensor located in contiguous compartments

for temperature measurement: #1 <> #7.

e [t is possible to use the reference temperature button located contiguous compart-
ments for the user reference temperature: [#2, #3|«> [#8, #9].

e It is possible to reuse the system PUs (PUacc a, PUacc B) to perform the control
functions for both compartments: [#4, #5] <> [#10, #11|.

All these implementations are considered compatible because the same subfunction is
performed in another compatible physical location (cf. Table 3.1). Therefore, alternative
implementations provide a degraded (but acceptable) functionality - see coloured cells in
Table 3.5. Possible compatible implementations #9 and #11 were left out for simplicity
(cf. Table 3.4).

Extended Functional Model

Once the potential heterogeneous redundancies are selected (cf. Table 3.5 coloured
cells), the extended HW/SW architecture is created for the Air Conditioning Control
main function. To this end, the functional model is extended with health management
functions and implementations, and then we allocate resources to the aggregated sub-
functions (see Table 3.6).

For the extended HW/SW architecture example displayed in Table 3.6, we assumed
a centralised reconfiguration decision PU co-allocated with fault detection imple-
mentations. This design decision improves the fault containment properties of the

health management mechanisms, but also adds a single point of failure.

Please notice how the communication influence is taken into account in the destination
implementation. For instance, for the temperature measurement subfunction: (1) im-

plementation #2 requires an activation signal from the reconfiguration implementation
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Table 3.5: Preliminary HW/SW Architecture for Air Conditioning Control in
Train.Car;.Zonep
MF PL SF Type | Implementation Resources #
Temperature I Sensor Temperature Sensor A, PU 1
Measurement Al p ’ ACC_A
Temperature I Sensor s Temperature Sensor B, PUacc_ B, 9
Measurement Comm
User Reference I RefButton s Reference Temperature Button A, 3
Temperature PUacc_a
User Reference Reference Temperature Button B,
Temperature I e Lo PUacc_B» Comm E
User Reference
Air Train. Temperature I RefTempSWa SWrefTemp, PUaco_a 5
Conditioning | Cary.
Control Zonea | Ajr Conditioning Temperature Measurement, User
Control C PIDA1 Reference Temperature, PUacc A, 6
Algorithm SWpip, Comm
Air Conditioning Temperature Measurement, User
Control C PIDA> Reference Temperature, PUscc_B, 7
Algorithm SWpip, Comm
Air Conditioning User Reference Temperature,
Control C OLA PU SW 8
Algorithm ACC_A> oL
Heating o Heater s Air Conditioning Control 9

Algorithm, PUACC_A: Heater A

#4 which is allocated in a different PU (i.e., PUarcc &

and PUxcc A respectively); (2)

the fault detection implementation #3 needs to monitor the correct performance of im-
plementations #1 and #2, from which the implementation #2 is in a different PU. The

same logic applies to the remainder of subfunctions and implementations of the main

function.

Reconfiguration Table

Table 3.7 displays the reconfiguration table for the Air Conditioning Control main func-

tion implemented in the Train.Car,.Zoney.

For simplicity, in Table 3.7 only nominal subfunctions with redundancies are included.
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Table 3.6: Extended HW/SW Architecture for the Air Conditioning Control Main Function
in Train.Cary.Zonep

MF PL SF Type | Implementation Resources #
Temperature I Sensor Temperature Sensor A, PUpc 1
Measurement Al p ’ ACC_A
Temperature I Sensor A Temperature Sensor B, PUacc_B, 9
Measurement Comm
FD_ Temp.Meas. FD FD_ Sensora PUACOfA, SWFDiTM, Comm 3
R_Temp.Meas. R R_Sensorp PUacc_a; SWR_TM 4
User Reference I RefButton o, Reference Temperature Button A, 5
Temperature PUacc_a
User Reference Reference Temperature Button B,
Temperature I RefButtonas PUacc_B, Comm 6
User Reference
Temperature I RefTempSW 5 SWrefremps PUAcc_A 7
Air Train.
. FD Ref.Temp. FD FD Re{TempA PUAOC A, SWFD RT, Comm 8
Conditioning | Cary. - - _ _
Control Zonep
R_Ref.Temp.a R R RefTempp PUacc_a; SWR_RT 9
Air Conditioning Temperature Measurement, User
Control C PIDA; Reference Temperature, 10
Algorithm PUACCfA, SWpip, Comm
Air Conditioning Temperature Measurement, User
Control C PID o Reference Temperature, 11
Algorithm PUAOCfo SWpip, Comm
Air Conditioning User Reference Temperature,
Control C OLA PU ) SW 12
Algorithm ACC_A, oL
FD ACCA FD FD_TempControla| PUacc_a, SWrp_Tca, Comm 13
R_ACCA R R_TempControla PUacc_a, SWRr_TcA 14
. Air Conditioning Control
Heating o Heatery Algorithm, PUaco_a, Heater A | 7

Legend: FD_X: Fault Detection of the subfunction X; R_ X: Reconfiguration of the subfunction X;
Temp.Meas.: Temperature Measurement (TM); Ref. Temp.: user Reference Temperature; ACCA: Air
Conditioning Control Algorithm
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Table 3.7: Reconfiguration Table for the Air Conditioning Control Main Function in
Train.Car;.Zonep

Implementation Priority #
AirConditioningControl.[Train.Car .Zoney |. TemperatureMeasurement.Sensor o 1 1
AirConditioningControl.[Train.Cari .Zonea |. TemperatureMeasurement.Sensorg 2 2

AirConditioningControl.[Train.Cari .Zonea |.UserRefTemp.RefButton o 1 5
AirConditioningControl.[Train.Car .Zoney |. UserRefTemp.RefButtong 2 6
AirConditioningControl.[Train.Cary .Zoney |. UserRefTemp.RefButton  SW s 3 7
AirConditioningControl.[Train.Car; .Zonea . TempControl Algorithm. TCA PIDp 1 10
AirConditioningControl.[Train.Car .Zonea |. TempControlAlgorithm. TCA PIDg 2 11
AirConditioningControl.[Train.Car; .Zonea |. TempControlAlgorithm. TCA OLa 3 12

The reconfiguration decision PU needs to know the address of the implementations in
the reconfiguration table in order to be signalled for (de)activation purposes and make

effective the reconfigurations.

In this case, there is no need to distribute the reconfiguration table to different PUs
because all subfunction’s reconfiguration implementations are located in the same PU.

Therefore, this reconfiguration table will be located at the PUxcc 4.

Forced Compatibility example: Fire Protection Control

In order to illustrate the process for the forced compatibility case, in this subsection we

analyse the Fire Protection Control main function (cf. Figure 2.9 and Figure 2.10).

Functional Model

In order to construct the functional model, we will limit the physical location to the
Train. Car;. Zoney. According to the physical location, we model the functions located
at the Zoney, in the train Cary: Fire Protection Control and Air Conditioning Control.

There are other functions located at the same physical level (e.g., Light Control), but
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for the sake of clarity we limit the functional models displayed in Table 3.8 to these

functions.

As described in the Section 2.1, the Fire Protection Control main function detects
the presence of fire using a dedicated fire detector and additionally, passengers signal
emergency situations directly using a emergency button located in each compartment
of the train. In the presence of fire, the Fire Protection Control algorithm activates the

sprinklers located at each compartment of the train car.

Table 3.8: Functional Model for the Functions in Train.Cary.Zonea

MF PL SF Type | Implementation Resources #
User Emergency I EmergButton EmergencyButton, PU 1
Signal (UES) & A gency » DUFP
Fire Fire Detection I FireDeta Fire Detector, PUpp 2
Protection
Control Fire Control . UserEmergencySignal,
Algorithm © FireControla | g eDetection, SWrirecontrols PUpp |
Fire Extinction O Sprinkler p FlreControlAlgorlthm, PUrp, 4
Sprinkler
Temperature
Measurement I Sensora Temperature Sensor A, PUacc_ A 5
Train.
Car1 .
Zonex U;E;Reference I RefButton Reference T;mperature Button A, 6
perature Uacc_a
User Reference
Temperature I RefTempSW 5 SWReFTempy PUACC_A 7
Alr . Air Conditioning Temperature Measurement, User
Conditioning Control C PID A Reference Temperature, PUscc A, 8
Control Algorithm SWpip -
Air Conditioning UserReferenceTemperature,
Control C OLA PU W 9
Algorithm ACC_A> oL
. AirConditioningControlAlgorithm,
Heating O Heatera PUacc. A, Heater 10

Compatibility Analysis

Based on the functional model, the compatibility analysis is performed in order to find

compatible implementations existing in the Train.Car;.Zone,.
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Automatically identified heterogeneous redundancies arising from natural compatibil-
ities are possible: we can use the fire detector located in the contiguous compart-
ment (Train.Car;.Zoneg) to detect fire in the Train.Car;.Zone,. However, we will
assume that it is not feasible to replace the fire detection subfunction using the fire
detector located in the contiguous compartment due to the degraded quality of the
heterogeneous redundancy: the time needed to detect a fire using the contiguous com-

partment’s smoke sensor is assumed to be too high.

Semi-automatically identified heterogeneous redundancies emerging from forced com-
patibilities are feasible: it is possible to use a temperature sensor to detect the presence
of fire using temperature value thresholds: #5 — #2.

Table 3.9: Preliminary HW/SW Architecture for the Fire Protection Control in
Train.Car;.Zonep

MF PL SF Type| Implementation Resources #
User Emergency I EmergButton EmergencyButton, PU 1

Signal (UES) & A gency » TUFP
Fire Detection I FireDet o Fire Detector, PUpp 2

Temperature Sensor A, PUacc_a,

Fire Train. Ay 1P
Protection Cary. Fire Detection 1 Sensora SWF“&%;’&Z?;Z;?SLCE#)&I CAN, 3
Control Zonep s

GatewayETH-CAN

Fire Control . UserEmergencySignal
. F 1 . . ’
Algorithm © ireControla FireDetection, SWgireControl, PUFP

Fire Extinction O Sprinkler s FireControl, PUgp, Sprinkler 5

Note that the Fire Protection Control and Air Conditioning Control main functions are
connected to different communication networks, i.e., CAN and Ethernet respectively
(cf. Figure 2.1). Therefore, a gateway device is necessary in order to use alternative

communication protocol’s data.

Extended Functional Model

To use these redundancies in massively networked scenarios, it is necessary to com-
plete the extended HW/SW architecture with health management and communication

mechanisms as Table 3.10 displays.
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Table 3.10:

Extended HW/SW Architecture for the

Train.Car;.Zonep

Fire Protection Control

n

MF

PL

SF

Type

Implementation

Resources

Fire
Protection
Control

Train.
Car1 .
Zonep

User Emergency
Signal (UES)

EmergButton s

EmergencyButton, PUpp

Fire Detection

FireDet

Fire Detector, PUpp

Fire Detection

Sensora

Temperature Sensor A,
PUacc_A; SWrireDets
Communication CAN,
Communication ETH,

GatewayETH-CAN

FD_ FireDetection

FD

FD_FireDeta

SWED_FireDet, PUrP,
Communication CAN,
Communication ETH,

GatewayETH-CAN

R_ FireDetection

R_FireDetay

SWR_ FireDet, PUFP

R_ FireDetections

R_FireDeta»

SWR_FireDet; PUAcc A,
Communication CAN,
Communication ETH,

GatewayETH-CAN

FD_R_ FireDetection

FD R

FD_R_FireDeta;

SWED R_FireDet; PUACC A,
Communication CAN,
Communication ETH,

GatewayETH-CAN

FD R _FireDetection

FD R

FD R_FireDetas

SWeD_R_FireDets PUrp,
Communication CAN,
Communication ETH,

GatewayETH-CAN

Fire Control
Algorithm

FireControl o

UserEmergencySignal,
FireDetection, SWpireControl s
PUpp, Communication CAN,

Communication ETH,

GatewayETH-CAN

Fire Extinction

Sprinkler p

FireControlAlgorithm, PUpp,
Sprinkler

10

Reconfiguration Table

Table 3.11 displays the reconfiguration table for the Fire Protection Control main func-

tion implemented in the Train.Car;.Zones. The reconfiguration table includes the line

number (#) of each implementation; and priority of each implementation to perform a

determined subfuction in a defined physical location.
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Table 3.11: Reconfiguration Table of the Fire Protection Main Function in the
Train.Car;.Zonep

Implementation Priority #
FireProtectionControl.[Train.Car; .Zonea |.FireDetection.FireDet o 1 2
FireProtectionControl.[Train.Cari .Zoney |.FireDetection.Sensor o 2 3

For simplicity, in Table 3.11 only nominal subfunctions with redundancies are included.
In this case, reconfiguration implementation is located in PUpp (#5) and PUxcc a
(#6). Therefore, this reconfiguration table will be pre-allocated in both PUs for the

reconfiguration of the fire detection subfunction.

Forced Compatibility example: Door Status Control

In this subsection we analyse the Door Status Control main function (cf. Figure 2.3 and
Figure 2.4).

Functional Model

In order to construct the functional model, we will limit the physical location to Train.
Car;.Zoney.Door. According to the physical location, we model those functions located
at the door of the train car: Door Status Control and Video Surveillance. There exist
other functions located at the same physical level (e.g., Passenger Counting System),
but for the sake of clarity we limit the functional models displayed in Table 3.12 to these

functions.

As described in the Section 2.1, the Door Status Control main function (cf. Figure 2.3
and Figure 2.4) requires different input subfunctions to assure the safe operation of door
opening/closing: enable subfunctions (enable door driver, enable door passenger), mon-
itoring subfunctions (door open detection, door closed detection, door velocity, obstacle
detection) and command subfunctions (door open command and door close command).
These input subfunctions are directed toward the door control algorithm subfunction

which determines when and how to close the doors through the door manipulation sub-
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function. Video Surveillance main function (cf. Figure 2.5 and Figure 2.6) receives
video images (video input subfunction), processes them through the process image con-
trol subfunction and finally, if it is the case, it raises an alarm using the lamps and sirens

connected to the PUcym.

Table 3.12: Functional Model for the Functions in the Train.Car;.Zonea .Door

MF PL SF Type | Implementation Resources #
Enable Door I EnableDrivA1 SWTCMS, PUTOM81 (Simpliﬁed) 1
Driver
I EnableDrivA2 SWTOMS; PUTCMSZ (Simpliﬁed) 2
Enable Door Enable Door Driver, PUpiver,
Passenger I EnablePass s EnableButtonpiyer, Comm. 3
Door Close
Command I CloseCommand p PUbpriver, CloseButtonpyiver 4
Door Open I OpenButtonpyiv.a PUDrivers OpenButtonpyiver 5
Command
1 OpenButtonpass. A PUpsc_ A OpenButtonpagsenger 6
Train. Door Open 1 OpenSensor PUpsc a, OpenSensor 7
Detection -
Door Status Cary.
Control Zonep .
Door Door Closed
Detection I CloseSensor p PUpsc_ A, CloseSensor 8
Door Velocity 1 VelocitySensor z PUpsc_a, VelocitySensor 9
Obstacle
Detection 1 ObstacleSensor a PUpsc_ A ObstacleSensor 10
Enable Door Passenger, Door Close
Command, Door Open Command,
Door Control Door Closed Detection, Door Open
Algorithm © DoorControl Detection, Door Velocity, Obstacle H
Detection, PUpsc_a, SW_CL,
Comm
Door Door Control Algorithm, PUpgc A,
Manipulation o Motora Motor - 12
. Video Input I Videolna Camera, PUcam 13
Train.
Video Cari.
Surveillance Zonep . Process Image C Surveillance o Video Input, SWgyurveillances PUCam 14
Door
Alarm O Sirena Process Image, PUcam, Lamp, Siren | 15
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Compatibility Analysis

Based on the functional model, the compatibility analysis is performed in order to find

compatible implementations existing in the Door Status Control function.

Automatically identified heterogeneous redundancies arising from natural compatibili-
ties are not feasible because the Door Status Control function is not directly replaceable
by other functions located in other places. For instance, it is not feasible to control the
status of a door located in Car; using the status of the Cary door, neither it is feasible

to use the status of the door located in a contiguous compartment.
The compatibility analysis points out the following heterogeneous redundancies:

e [t is possible to use the camera and its PUc,y, with the corresponding intelligent
software to identify the position of the doors: door open detection (#7) or door
closed detection (#8).

e [t is possible to use the camera and its PUc,y, with the corresponding intelligent
software to calculate the speed of the door (#9).

e [t is possible to use the camera and its PU¢,, with the corresponding intelligent
software to detect obstacles in the door (#10).

After the extraction of all the input and output implementations located at compatible
physical locations, it is the designer’s work to check if among the suggested list of

implementations there exist a feasible compatible implementation.

For the sake of readability we will include heterogeneous redundancies solely for the
detection of the door open and close positions as displays the preliminary HW/SW
architecture in the Table 3.13 (in Chapter 4 and Chapter 5 when analysing alternative

architecture configurations, all possible heterogeneous redundancies are considered).

Extended Functional Model

To use these redundancies in massively networked scenarios, it is necessary to complete

the functional model with health management (fault detection and reconfiguration) and
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Table 3.13:

Preliminary HW/SW Architecture for the Door Status Control in the
Train.Carj.Zonep .Door

MF PL SF Type | Implementation Resources #
Enable Door 1 EnableDrivay SWrcms, PUrcmg, (simplified) 1
Driver ) )
1 EnableDriv o SWrcms, PUrcms, (simplified) 2
Enable Door Enable Door Driver, PUpriver,
Passenger I EnablePass EnableButtonpjyer, Comm 3
Door Close
Command I CloseCommand a PUbpriver, CloseButtonpyiver 4
Door Open I OpenBUttonDriv.A PUDriver: OpenBUttonDriver 5
Command
I OpenButtonpass.a| PUpsc_a, OpenButtonpassenger 6
Door Open
. Detection I OpenSensory PUpsc_a, OpenSensor 7
Train.
Door Status Cari.
Control Zonea. Door Open I OpeEn e Camera, PUgam, SWopenDets 8
Door Detection Comm
Door Closed
Detection I ClosedSensora PUpsc_a, CloseSensor 9
Door Cl.osed I ClosedCamera Camera, PUgam, SWciloseDet s 10
Detection Comm
Door Velocity 1 VelocitySensor z PUpsc_a, VelocitySensor 11
Obstacle
Detection I ObstacleSensorz PUDSC_A, ObstacleSensor 12
Door Control EDP, DCC, DOC, DCD, DOD, DV,
Algorithm © DoorControl s OD, PUpsc_a, SW_CL, Comm | >
Door 0 Moto DCA, PU,, Moto 14
Manipulation A ’ Ao r

Legend: EDP: Enable Door Passenger; DCC: Door Closed Command; DOC: Door Open Com-
mand; DCD: Door Closed Detection; DOD: Door Open Detection; DV': Door Velocity; OD: Obstacle
Detection; DCA: Door Control Algorithm

communication mechanisms and adopt design decisions with respect to the use of het-
Due to the size of the Table 3.14,
subsequently we introduce the acronyms used in this table: FD X: fault detection of
the subfunction X; R X: reconfiguration of the subfunction X; FD R _X: fault de-
tection of the reconfiguration of the subfunction X; EDD: Enable Door Driver; EDP:
Enable Door Passenger; DCC: Door Close Command; DOC: Door Open Command;

erogeneous redundancies as Table 3.14 displays.
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DOD: Door Open Detection; DCD: Door Closed Detection; DV: Door Velocity; OD:
Obstacle Detection; DCA: Door Control Algorithm; and DM: Door Manipulation.

As for the reconfiguration decisions, we will assume a duplicated reconfiguration
architecture which is initially centralised, but its replicas are located (distributed) in an-
other PU (PUcap ). This design decision requires monitoring whether the reconfiguration
implementations are performing correctly or not. To this end, reconfiguration’s fault
detection implementations are deployed (#12, #13 - FD_R_DOD; #19, #20 -
FD R_DCD;) so as to monitor the (in)correct performance of the reconfiguration im-
plementations (#10, #11 - R_DOD; #17, #18 - R_DCD) and switch them if necessary.

As for the communication influence we check whether dependent subfunctions are im-
plemented in different PUs. For instance in the door open detection subfunction case
(#7) (cf. Table 3.14):

e It has an alternative implementation which requires communication for its activa-

tion (#8).

e Since the fault detection of this subfunction (#9) is required to monitor the correct
performance of the implementations #7 and #8, and implementation #8 is located

in a different PU, implementation #9 will also be influenced by the communication.

e as for the reconfiguration implementation (e.g., R_DOD #10, #11), the im-
plementation #11 will also be influenced by the communication in order to be

(re)activated to perform its reconfiguration tasks.

e Reconfiguration’s fault detection implementations (e.g., FD_R_DOD #12, #13)
will be actively monitoring the correct performance of all the reconfiguration im-
plementations (#10, #11). Therefore, it will be directly influenced by the com-

munication.

Reconfiguration Table

Table 3.15 displays the reconfiguration table for the Door Status Control main function

implemented in the Train.Car;.Zone,.Door.

For simplicity, in Table 3.15 only nominal subfunction with redundancies are included.
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Table 3.14: Extended HW/SW Architecture for the Door Status Control in the
Train.Carj.Zoney .Door
MF PL SF Type Implementation Resources #
I EnableDrivay SWrcms, PUrcmg, (simplified) 1
EDD
I EnableDriv o SWrcms, PUrcms, (simplified) 2
EDP I EnablePass 5 EDD, PUpyiver, EnableButtonpyiver, 3
Comm
DCC I CloseCommand p PUbpriver, CloseButtonpyiver 4
I OpenButtonpyriv. A PUpriver, OpenButtonpyiver 5
DOC
I OpenButtonpags. A PUDSCiA: OpenBUttonPassenger 6
1 OpenSensor PUpsc A, OpenSensor 7
DOD —
1 OpenCamerap Camera, PUcam, SWopenDet, Comm 8
FD_ DOD FD FD_OpenDeta PUpsc_a, SWFD_DOD, Comm 9
R _DOD R R_OpenDeta; PUDSC_A, SWR_DOD 10
Trai R _DOD R R_OpenDetas PUcam, SWR_DOD, Comm 11
Door C:rm.
1.
Status Zones.| FD_R_DOD | FD_R | FD_R_OpenDeta1 PUcam, SWrDp R DOD, Comm 12
Control - - - - - - =
Door
FD_R_DOD FD_R FD_R_OpenDetA2 PUDSOfA: SWFDiRiDODa Comm 13
I ClosedSensor A PUpsc A, CloseSensor 14
DCD —
I ClosedCamerap Camera, PUcam, SWcioseDet, COmm 15
FD_ DCD FD FD_CloseDeta PUpsc_a, SWFD_DCD, Comm 16
R _DCD R R _CloseDeta; PUDSC_A, SWR_DCD 17
R _DCD R R _CloseDetps PUcam; SWr_pcp, Comm 18
FD R DCD| FD R | FD R CloseDeta1 PUcam, SWrp_Rr_pCD, Comm 19
FD R DCD| FD R | FD R _ CloseDetas PUpsc_a, SWFD_R_DCD, Comm 20
DV I VelocitySensor o PUpsc_ A, VelocitySensor 21
OD I ObstacleSensor A PUpsc_ A, ObstacleSensor 22
EDP, DCC, DOC, DCD, DOD, DV, OD,
DCA C DoorControl p PUpsc A, SW_CL, Comm 23
DM O Motora DCA, PUDSC_A, Motor 24
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Table 3.15: Reconfiguration Table of the Door Status Control Main Function in the
Train.Carj.Zonep .Door

Implementation Priority #

DoorStatusControl.[Train.Car; .Zone 5 .Door].DoorOpenDetection.OpenSensor o 1 7
DoorStatusControl.[Train.Car; .Zone o .Door|.DoorOpenDetection.OpenCam a 2 8
DoorStatusControl.|Train.Car; .Zone a .Door|.DoorClosed Detection.ClosedSensor 1 14
DoorStatusControl.[Train.Cary .Zone 5 .Door].DoorClosed Detection.Closed Cam o 2 15

In this case, reconfiguration implementations are located in different PUs. Therefore,

this reconfiguration table will be located at PUpgc A and PUgam.

3.5 Conclusions

In this chapter we have introduced the methodology to design HW/SW architectures
systematically. This methodology enables the systematic identification of redundan-
cies and single points of failure. An straightforward extension of the initial HW /SW
architecture allows the designer to create the completed extended HW/SW architecture
which account for designer’s decisions with respect to the distribution and implementa-

tion of fault detection, reconfiguration and communication functions.

The presented modelling approaches (Functional Modelling Approach and Extended
Functional Modelling Approach) enable an straightforward characterization of the
system and its subsequent exploitation for redundancy identification and further analy-
ses. However, this process requires studying all the system functions, resources, and their
physical locations early at the design-time. At the expenses of relying on a more costly
design methodology it is expected that the cost savings obtained with heterogeneous

redundancies reward the design efforts (cf. Chapter 4 and Chapter 5).

When using heterogeneous redundancies, the designer needs to be aware of the quality
degradation and evaluate whether it is acceptable or not. Validation of the heterogeneous
redundancies is not a trivial task. Different architecture-specific requirements subject

to real system operation need to be taken into account, such as timeliness, memory and
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processing capacity constraints of the processing units. These are some challenges to be

addressed in our future work to refine the compatibility analysis (see Chapter 7).

Another limitation of the D3H2 approach is the static nature of reconfiguration table.
Although the reconfiguration table can be updated directly to reflect system changes,

dynamically updating the reconfiguration table would facilitate its maintenance.
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CHAPTER 4

Dependability & Cost Analysis of
Non-Repairable Systems

This

chapter defines the dependability evaluation algorithm to assess the extended

HW/SW architecture defined in Chapter 3. This algorithm makes possible the sys-

tematic/automatic analysis of the influence of alternative architectural design decisions

on dependability.

The chapter is organised into the next sections:

Section 4.1 introduces the analysis paradigm, states the hypotheses that this chap-

ter assumes and sets the motivation and goals of the chapter.

Section 4.2 presents the Dependability Evaluation Modelling (DEM) approach for
non-repairable systems. The analysis algorithm and adopted implementation tech-

niques are presented.

Section 4.3 describes the implementation of the simulation-based sensitivity anal-

ysis within the Dependability Evaluation Modelling approach.

Section 4.4 explains the implementation of the uncertainty analysis in order to

deal with the lack of exact failure-related data information.

Section 4.5 defines the assumptions and decisions adopted to perform the cost

analysis of the system.

Section 4.6 applies the Dependability Evaluation Modelling approach and sensi-

tivity, uncertainty and cost analyses to the running example of this dissertation.

Finally, Section 4.7 sums up the conclusions of this chapter.
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4.1 Introduction

The extended HW/SW architecture is comprised of many different design decisions: (1)
selection of the type and number of redundancy strategies (homogeneous, heteroge-
neous); (2) selection of the most adequate reconfiguration scheme (centralised, dis-
tributed); (3) selection of the number and type of PUs (with respect to their reliability

and cost parameters); or (4) allocation of software functions into the different PUs.

The combination of different design decisions produces different results with respect to
dependability and cost. Therefore, there is room to optimize design decisions so as to
improve dependability and reduce system cost. The goal of the DEM is to analyse the
dependability level of the extended HW/SW architecture - which contains any of the

previously mentioned design decisions.

In the scientific literature (cf. Chapter 2) there have been approaches implementing the
systematic/automatic transformation from design models to dependability analysis mod-
els (see Subsection 2.3.1 - Model-based Transformational Approaches). Besides, there
exists dependability-specific solutions which directly evaluate the influence of architec-
tural design decisions on system’s dependability and cost (see Subsection 2.4.1). How-
ever, to the best of our knowledge, there are no approaches which analyse the influence
of heterogeneous redundancy schemes including the failure behaviour of fault detection,

communication and alternative reconfiguration strategies (see Subsection 2.4.2).

To perform the systematic dependability assessment of the eztended HW/SW

architecture, the following assumptions are adopted:

e Fixed architectural design decisions with respect to health management imple-

mentations and their allocations (cf. Chapter 3):
— Fault detection located at the destination implementation.

— Fault detection of the reconfiguration subfunction implemented as heartbeat

or keepalive implementation.

— Each system subfunction has its own reconfiguration subfunction, which may

be centralised or distributed.

e Resource failures are non-repairable.
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IMlustration of the Problem Addressed by the Chapter

Extended HW/SW architectures are characterized by different design characteristics and
failure influences: different reconfiguration sequences, priorities, functional dependencies
or common cause failures are some examples of these characteristics. The systematic
dependability assessment of the extended HW/SW architecture requires taking into ac-
count all the possible situations in which the (complex) system is unable to continue

performing its design function.

The complexity that emerges from dependencies and influencing hardware, software
and communication resources leads to compromising the maintainability (readability,
traceability) of the dependability analysis model of the extended HW/SW architecture.
Therefore, component-based modelling mechanisms [Crnkovic03] are deemed a neces-
sary design instrument to deal with the size and complexities of the extended HW/SW

architecture.
The design-related research questions that this chapter aims to answer are:

e Which is the influence on dependability and cost of using different reconfiguration

and redundancy strategies?
e Which is the contribution of a given component on the system failure?

e Can we assume the ideal performance of health management and communication

implementations?

The analysis of centralised and distributed reconfiguration strategies in itself does not
pose new challenges. However, the combination of alternative reconfiguration strategies
with homogeneous and/or heterogeneous redundancies (redundancy strategies) sets new

issues to be analysed:

e When using heterogeneous redundancies, which is the best trade-off in
reconfiguration strategy with respect to the cost of the system and its

dependability?

Linked with the previous design issue, we will perform importance measurements so as
to evaluate quantitatively the influence of homogeneous and heterogeneous redundancies

(and related design decisions) on system failure.
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So far, design approaches which have considered the use of heterogeneous redundancies
have assumed the ideal performance of fault detection and reconfiguration functions (cf.
Chapter 2). In this chapter, we aim to evaluate the validity of this assumption through
different dependability analyses.

4.2 Dependability Evaluation Modelling Approach

To evaluate the dependability of the extended HW/SW architectures systematically and
intuitively, we have defined a Dependability Evaluation Modelling (DEM) approach
[Aizpurual4].

4.2.1 Concepts and Notation

The objective of the DEM approach is the generic, systematic and complete failure
modelling of extended HW/SW architectures to evaluate their dependability.

The failure model of the extended HW/SW architecture includes the following failure
modes: fault detection implementations fail (FD_SF, FD R _SF) in Omission (O)
when it does not detect a failure when it occurs and fail in False Positive (FP) when
it detects a failure when it does not exist; the reconfiguration implementation fails in
omission when it fails to reconfigure a faulty implementation; and failure of subfunction’s

implementations cover value and timing failures. Figure 4.1 shows the failure model of
the extended HW/SW architecture.

All possible failures of all system subfunction implementations (SF, FD SF, R_SF,
FD R_SF) are defined at the implementation level ([M F).[PL].[SF].[Impl] Failure)
according to the failure characteristics of the implementation’s resources. Based on
the combination of implementation-level failures, subfunction-level failures are defined
systematically ([M F].[PL].[SF| Failure).

Table 4.1 defines the notations of the failure events and working events according to

their subfunction and failure modes. For clarity, in subsequent characterizations we
omit the common part (/MF].[PL]).
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Implementation - False Positive

Failures - Omission
FD_Subfunctionj
Subfunctionj (SFj) (FD_SFj)
{l,Coro} — T

- Omission
R_Subfunctionij
T (R_SFj) <—

A

- False Positive
- Omission

FD_R_Subfunctioni
(FD_R_SFj)

Figure 4.1: Extended HW/SW Architecture’s Failure Model

Table 4.1: Notation of Failure and Working Events

Notation Failure Logic Notation Failure/Working Logic
Fx X failure Wx X working
FsF [SF] failure Wsr,; [SF].[Impl;] working = NOT(Fsr,)
FsF,; [SF].[Impl;] failure Fr [R__SF] failure
FFD [FD _SF] failure FR; O [R_SF].[Impl;] omission
FFD FP [FD _SF] false positive FFD_R; FP [FD_{[rR_sF].[Impl;]}] false positive
FFD; [FD _SF].[Impl;] failure FFD_R; O [FD_ {[R_SF].[Impl;]}] omission
FFD; O [FD _SF].[Impl;] omission

[R_SF].[Impl;] omission or FP =
OR(FR; 0, FFD_R; FP)

FR; O/FP

FsF, FP [SF].[Impl;] failure or FP = OR(FsF;, FFD FP)

The stochastic  failure  characterization of each  resource is charac-
terized by sampling randomly the failure times according to their
Cumulative probability Distribution Functions (CDFs) along the system lifetime.
The methodology supports any CDFs, but for the sake of simplicity without losing the
generality of the approach, in subsequent probabilistic characterizations exponential

failure distributions are assumed.
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Therefore, the failure characterization of system resources is defined according to their
failure rates (Ares). The failure characterization of a SF’s i-th implementation (/SF].

[Imp;] Failure) comprised of N resources is specified as follows:

]:SFZ' = OR(/\Resu )\Resm ) /\ResN) (4]—)

The same equation holds for the failure characterizations of the omission failures of:
FD_SF (Frn,0), R_SF (Fr,0), and FD_R_SF (Fpp g, 0) implementations. Ac-
cordingly, the false positive failures of fault detection implementations (Fgppp and
FFD_R; rp) will be characterized with their characterizing failure distribution and corre-

sponding parameters (e.g., exponential distribution with A\gpp pp and AFD_R; FP values).

4.2.2 Analysis Algorithm

The DEM approach defines an algorithm that evaluates the dynamic failure behaviour
of systems which use fault detection and reconfiguration implementations while covering
all possible failure situations for the specified extended HW/SW architectures. Tt allows
to evaluate systematically the consequence of design decisions on system dependability
(see Section 4.1). Resulting equations characterize the failure of such systems composi-

tionally so that the failure logic is kept clear for complex systems.

To this end, the DEM approach characterizes combinations of subfunction’s imple-
mentation failures that prevent the extended HW/SW architecture from performing its
intended subfunction®. The SF will fail (Fsr) when all implementations have failed
(F Al tmpl.), an implementation fails and reconfiguration does not happen (failure unre-

solved, Funresolved), OF its input dependencies have failed (Fpependencies):

FSF = OR(-FAII Impl.) JrUnresolveda FDependencies) (42)

Assuming that we have Ngp implementations of the subfunction, the Fanmp. event

happens when each implementation fails or is detected as failed:

5Since the failure of any subfunction necessary for a main function provokes the immediate failure
of a main function, from this point onwards we will only consider the failure of a subfunction.
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F Al tmpt. = AND(Fsp, pp; -5 Fsry,, FP) (4.3)

The failure unresolved (Funresolveda) Occurs when the working implementation fails and
either the fault is not detected (failure undetected) or the reconfiguration itself fails
(reconfiguration failed). For each implementation there are different failure unresolved
events (Funr. mp,) because each implementation may have different failure probabilities,
however, note that the last implementation’s failure cannot be solved (non-repairability

assumption):

FUnresolved = OR(-FUnr. Impyy - -> FUnr. ImpNSF_1> (44)

To define the failure unresolved event of the ¢-th implementation of the generic sub-
function SF' (Funr.imp; ), let us introduce two new events. The first event occurs when
the i-th implementation of the subfunction fails and the reconfiguration has failed but
after successfully reconfiguring previous i-1 implementations (reconfiguration sequence
failure, Fg seq,). Assuming Fgsp, ., vp = AND(Fgp, rp, ..., Fsr,, rp) indicates the

failure or false positive from 1 to ¢-1 implementations:
FRSeq;, = PAND(Fsp, ., vp, Fr, FSF, FP) (4.5)

The second event occurs when the i-th implementation of the SF fails and the fault
detection of the SF has failed but after detecting correctly previous i-1 implementation
failures (fault detection sequence failure, Fppseq,). Note that fault detection’s false
positive and omission failures are mutually exclusive and therefore the false positive

does not influence Fpp seq.,:
F¥D seq; = PAND(Fsp, .., Frp, Fsr,) (4.6)

Due to the characterization of time-ordered failures, Equations 4.5 and 4.6 cannot be fur-
ther simplified. Accordingly, i-th implementation’s failure unresolved event (Fuynr. mmp, )
occurs when either the fault detection sequence (Fpp seq.,) fails or the reconfiguration

sequence (FR seq.,) fails:
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-FUnr. Imp; — OR(-FFD Seq.; s FR Seq.i) (47)

Dependencies address Input (I) and Control (C) subfunctions influence on control and
Output (O) subfunctions respectively. Control subfunction failure impacts directly the
output subfunction failure (C—O); and the influence of input subfunction on control

subfunction depends if the system’s control configuration is operating in closed loop
(C_CL) or open loop (C_OL):

JTDependencies = OR(fDep. C CL, fDep. CioL) (48)

Assuming that We x = OR(Wec x,, ..., We xy,,) means that any Ny, implementa-
tions of the C_X subfunction are working (where X = {CL, OL}), Equations in 4.9
describe the different input subfunctions that affect each control configuration (I _CL—
C_CL,I_OL — C_OL). Fpep.c or, may not happen because the open loop control

generally does not have input dependencies:

Fpep.c c. = ANDWec crn, Fi c.)  Fpep.c oo = ANDWc on, F1 on) (4.9)

The reconfiguration failure is a special case among subfunctions and therefore Fg is

developed like Equation 4.2, except that there are no additional dependencies:
Fr = OR(FAuR tmpl; FR Unresolved) (4.10)

Fanr mpl. indicates the failure of all reconfiguration implementations and Fr unresolved
designates the reconfiguration’s failure unresolved condition. Assuming M

reconfiguration implementations:
Faurimp. = AND(Fr, o/pp; -5 FRy 0/FP) (4.11)

Although the system may operate correctly when a false positive occurs, it has to as-
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sume that the information provided by the fault detection is correct, since there is no

mechanism to detect the incorrect operation of fault detection.

FR Unresolved Nappens when all M implementations of FD_R_SF fail in omission si-
multaneously and it is a direct consequence of our design choice: all reconfiguration’s
fault detection implementations (FD_R_ SF) are active and homogeneous redundancies

(heartbeat implementations):

-FR Unresolved — AND(-FFD_Rl Oy ) FFD_RM O) (412)

The fault detection failure Fpp is also a special case among subfunctions. It depends on
the operation of the destination subfunction (SFpggst), because the FD implementation
is located at the same PU. Hence, Fsr prgr influences directly Fpp. We assume that
the change of destination SF’s implementation activates the corresponding FD imple-
mentation and the previous one is deactivated. Equation 4.13 describes the FD _SF

failure case when FD_SF has K implementations:

-FFD == OR(JT_.FDiDest Seqiy fFDiDest Squ) (413)

As for the i-th fault detection implementation’s failure sequence (.FFD_Dest Seq; ), 1t ex-
presses the following event: from 1 to i-1 destination SF’s implementations have failed
and reconfigured correctly (Fsp prsr,. ,,), and then either the i-th fault detection or

destination SF’s implementation fails:

FFD_Dest Seq; = PAND(Fsr prst, ., OR(Fsr_pest,; FFp, 0)) (4.14)

To avoid creating loops when evaluating system’s dependability, we have considered that
the fault detection implementation’s failure is governed by the destination subfunction’s
implementations failure without considering its input dependencies (cf. Equation 4.14).
If destination subfunction’s dependencies are taken into account they will create logical
loops. Therefore, the influence of dependencies is taken into account at the “top” sub-
function’s failure level (cf. Equation 4.2). At this level, if any dependent subfunction

fails, it leads directly to the failure occurrence of the subfunction.
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4.2.3 Analysis of the State of the Art Approaches

In order to implement the equations of the DEM approach, existing dynamic and com-
positional fault-tree-like paradigms have been analysed (cf. Table 4.2) looking for the

following characteristic:

(1) Component based characterization: embed the failure logic of a set of related events
or components and (re)use it where needed instead of characterizing the system

failure behaviour in a single flat model.
(2) Dynamic gates: capture the system failure logic accounting for time-ordered events.
(3) Support for any probability density function.
(4) Possibility of modelling repeated basic events.
(5) Possibility of modelling repeated subsystems or components.
(6) NOT gates: address the influence of functional events.

Table 4.2: Approach and Characteristics

Approach (1) (2) (3) (4) (5) (6)

Static FT [Vesely02] X X v v X v
Component FT [Kaiser03] v X v v X v
DFT - Galileo [Dugan92] X v X v X X
DFT - RAATS [Manno14b] X v v v X X
DFT - DFTCalc [Arnold13] T:X; A: v v X v X X
DFT - Radyban [MontaniO§] T:X; A v v v v X X
DFT - GFT [Raiterill] T: v; A: X v v v v X
BDMP [Bouissou07] X v X v v X
SEFT [Kaiser(7] T: v; A X v X v v v
HiP-HOPS [Papadopoulos11] v X X v v v

T: Top model
A: Top model’s underlying Analysis model
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The integration of static fault trees and compositional characterization is not new
[Kaiser03; TU Kaiserslautern09; Adler08|: Component Fault Trees addressed this con-
cept prominently. Among the DFT approaches there exist alternatives to model systems
with any failure probability. To this end, simulation-based approaches are used (e.g.,
RAATSS [Mannol4c|, Radyban [Montani08]) due to their possibility of approximating

such characteristics.

As for the compositional characterization, the Generalized Fault Tree (GFT) (integra-
tion of parametric and repairable dynamic fault trees [Bobbio04; Codetta-Raiteri05])
approach is the only one which has worked towards this goal [Raiterill]. There exist
some approaches which model the failure behaviour of a system with a user friendly
(compositional) formalisms (top model), but they perform the statistical calculation
using a less intuitive (flat) underlying formalism (analysis model). The drawback of
the GFT approach relies in the analysis of its underlying formalism (Stochastic Well-
Formed nets [Chiola93a|) which is a flat state-based system model which also suffers
from state-explosion issues. Besides, the compositional (parametric) viewpoint for this
approach is in folding repeated events and symmetric subsystems (see Figure 2.18), but
not embedding the same logic in a component and reusing in the same model where
deemed necessary as done in Component Fault Trees (see Figure C.2). HiP-HOPS also
accounts for the concept of Component Fault Trees using annotations [Papadopoulos11].
Annotated components (which can be seen as Component Fault Trees) are parsed to
create the Fault Tree of the system. Despite it has been extended for the extraction of
the cut sequence sets, the quantitative solution of dynamic models is not an integrated
approach within HiP-HOPS.

To the best of our knowledge, there is no approach which addresses explicitly the integra-
tion of Dynamic Fault Trees and component oriented characterization while addressing
any failure distributions. To address these characteristics, simulation-based analysis
techniques provide adequate analysis mechanisms at the expenses of relying on a in-

creased computation time.

4.2.4 Implementation: Component Dynamic Fault Trees

Addressing all these characteristics, the concept of

Component Dynamic Fault Tree (CDFT) is defined borrowing the definition of
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original Component Fault Trees introduced in [Kaiser03]:

A A
A A A Out; A Out,
Out1 Out2 Out1
C, # PAND
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N A N
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Figure 4.2: Component Dynamic Fault Tree Overview

Definition 4.1. Component Dynamic Fault Tree: the component dynamic fault
tree model, cdft, is a 4-tuple < N, G, SC, E >

where:

e N is the set of Nodes, which are partitioned into a set of: internal events Nipiern,
input ports Ny, and oulput ports Now; N = {Nitern, Nin, Now}. For in-
stance, for the CDFT model depicted in Figure 4.2, considering Ci: Niptern =
{C1.BE1, C1.BE2}, Ny, = {C1.iny, Ci.ing, Ch.ing, Ci.ing}, Ny = {C1.0uty,
C1.0uty}.

e G is the set of Gates, where each gate g € G is described by: one output port g.out;
one or more input ports g.in; /i € N; a dynamic function which links inputs with
outputs according to static (AND, OR, KooN) and/or dynamic (PAND) Fault Tree
gates. As displayed in Table 4.3, the behaviour of the CDF'T gates are characterized

according to its input events (A,B), which can be extended to an arbitrary number
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of input events.

o A set SC of Sub-Components, where each subcomponent sc € SC' is described by:
one or more output ports sc.out;; one or more input ports sc.in;; and a mapping to
another CDFT component’s failure logic. For instance, for the CDFT model de-
picted in Figure 4.2, SC=Cy: Ny, = {Cs.iny, Cy.ing, Cy.ing}, Noy = {Cs.0uty};
mapping: Cy.ing — Cy.ing; Ch.ing — Chy.ing; Crang — Cay.ing; Cs.out; — O R.ane;
Cs.out; — AN D.iny;

e A set of directed Edges E C ((Niptern U Nip U G.OUT U SC.OUT) x (N U
G.IN U SC.IN)) where: G.OUT is set of all outputs of all gates; G.IN is set of all
inputs of all gates; SC.OUT is the set of all outputs of all sub-components; and
SC.IN is the set of all inputs of all sub-components.

Table 4.3: Component Dynamic Fault Tree Gates

Gate Notation (Gate Behaviour)
Y=AND(A,B) If A fails and B fails, then Y fails
Y=0R(A,B) If A fails or B fails, then Y fails

Y=PAND(A,B) | If A fails before the failure of B or at the same time, then Y fails

Y=NOT(A) If A doesn’t fail, then Y fails

CDFT components describe the failure logic of a component through temporal and/or
boolean functions, determining the occurrence of the output events depending on the

input event occurrences and its corresponding occurrence time.

While a basic event characterizes self-contained simple failure logic, a component en-
closes any-complexity failure logic (with possibly multiple I/O dependencies) specified
using BEs, gates, and further sub-components. Therefore, the CDFT paradigm makes
it possible to embed in a component the dynamic failure logic of a (sub)system and

(re)use it where needed addressing repeated components and repeated basic events.

Figure 4.2 characterizes a hypothetical CDFT model with repeated components (Cs)
and CDFT gates. Each component (C;, Cy) may have gates, basic events and/or other
components as inputs. Each basic event (BE;, BE,, ..., BEg) is characterized according

to its probability density function and its failure rates. The failure rates may be specified

111



as a single value or interval of possible failure rate values allowing to understand their

influence on system failure behaviour (see Section 4.4).

The failure evaluation algorithm for the model in Figure 4.2 is:

Cy.0ut, = AND(OR(BE3, BE4), OR(BE4, BE5))
C1.0ut; = OR(BE(\y, 'exponential’), Cs)
C1.0uty = PAND(OR(BE()\, 'exponential’), C3), AND(Cy, BE6, BE(\z, 'exponential’)))

where the function BE(parameters, distribution) generates the corresponding failure data of
basic events. Note: C5.Out; is simplified to (5 in the previous equations because Cs

has a single output.

This approach (as with the Component Fault Tree approach) enables the system refine-
ment through architectural components until reaching a indivisible component, instead

of the classical top-down approach adopted in most of the Fault Tree implementations.

To implement the CDFT paradigm, Monte Carlo simulations are performed on the
system’s failure evaluation algorithm in order to estimate the failure probability. To
this end, it is executed a large number of times, each execution comprising of a set of
random variables corresponding to the failure occurrences of the basic events. From the
law of big numbers, in the long run the failure probabilities of the system are calculated
throughout its lifetime [Ziol3]. For each execution: (1) the random time to failure
of basic events are calculated according to their cumulative probability distribution
function; (2) connected gates and/or components use this information to determine
their outcome (functional or failed state); (3) When a failure at the output of a gate or
component occurs, the failure time information is passed to the next gate/component
so that the system’s dynamic failure logic is tracked from basic events to system-level

top-event.

In the Component Fault Tree approach it is possible to reuse a component throughout
the model. With Component Dynamic Fault Trees the same concept is applied through
the reuse of the outcomes of system gates/subcomponents and their inner CDFT failure
logic and basic events. While for the implementation of CFTs combinatorial logic and

algorithms for the evaluation of binary decision diagrams are applied (see Subsection
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2.3.1), in order to solve CDFT models Monte Carlo simulations are used accounting for

the temporal occurrence of events and components.

Figure 4.3 depicts an example model that shows how the CDFT is implemented using
repeated components (IE4, IE5) and repeated events (BE2, BE5). The CDEFT model
improves the readability and manageability of the dynamic model. See Appendix C to

see how to model the same example using other formalisms.
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Figure 4.3: Component Dynamic Fault Tree Example

To analyse CDFTs, MatCarloRe tool [Mannol2b| has been extended with NOT gates,

importance measurements (cf. Section 4.3) and uncertainty analyses (cf. Section 4.4).
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4.3 Sensitivity Analysis

The goal of the sensitivity analysis (importance measurement) is to weigh the contri-
bution of components (or basic events) to the top-event failure occurrence based on the
structure of a system and component reliability. In the next subsections we explain
simulation-based methods to estimate importance measurement indices and then how

we implemented the chosen method.

There exist analytical importance measurement indices [vanderBorst01] and they have
been applied successfully by [Fricks03] and [Ou00]. However, since Component Dynamic
Fault Trees are analysed through Monte Carlo simulations, in this dissertation only

simulation-based importance measurement index values have been considered.

4.3.1 Simulation-based Importance Measurement Indices

Owing to the increasing complexity of current systems, in some cases analytical calcu-
lations of important measurements are not feasible. To overcome this issue, simulation-

based importance measurements were introduced [Wang04].

Failure Criticality Index (FCI): FCI value indicates the contribution (percentage) of the

i-th component’s failure to the system overall failure:

F

n;

where,

e ZFCI: failure criticality index of the i-th component.

F

e n;: number of system failures caused by component i.

e NT: total number of system failures.

To evaluate the frequency of the ¢-th component failure causing a system failure, we

F

record the number of system failures caused by the component i (n;

) with respect to

the total number of system failures (NT).
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Other simulation-based measurements focus on repair characteristics and component’s

uptime/downtime values:

Restore Criticality Index (RCI): RCI value indicates the contribution (percentage) of

the ¢-th component’s repair to the system’s overall repair:
R
rcr _ 1Y
" = N—ZR (4.16)

where,

e ZFECT: yestore criticality index of the component i.

e nf*: number of system repairs caused by component i.

e N total number of system repairs.

Operational Criticality Index (OCI): OCI value is defined as the percentage of the i-th

component’s downtime over the system downtime:

gocr _ _downi_ (4.17)
downsys

where,

e 79CI: operational criticality index of the i-th component.
e down;: downtime of the component .
o downyy,: system downtime.

Due to the architectural design assumptions (non-repairable resources) importance mea-
surements which consider repair characteristics are not considered (restore criticality in-
dex). The operational criticality index measures downtime values of the system and of
a component, but it does not consider the contribution of the component to the system
failure. Therefore, we focus on the Failure Criticality Index (ZF¢T) due to its direct
application with CDF'Ts and the significance of its measurements. The main goal of the

FCI measurement is to identify weaknesses of the system design.
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4.3.2 Implementation of the Sensitivity Analysis

To implement the failure criticality index evaluation, we resort to the gates of the CDFT
model. For each input event (Ey, Fs, ..., Ey), their failure criticality index values are
calculated by examining when the input event E; has caused the occurrence of a gate’s
output event (Y'). Subsequently, this analysis is extended to the output of the next
gate until we reach the output of the component and this process is repeated until the
output of the system. In this way, we obtain the chain of gates and components that
cause the top-event of the system. For each Monte Carlo trial, the components causing
the top-event’s failure occurrence are recorded and after a total of N Monte Carlo trials,
the relation between: (1) the total number of times the output event occurs due to the
failure of an input event and (2) the total number of output event failure occurrences is

calculated.

There exist two alternatives for considering the system failures caused by event/compo-

nent i:
e Last event that caused the system to fail - triggering event.
e Minimal cut-set.

In our implementation, we have considered the triggering event implementation. As
noted by [Hilber05], the rationale under this decision relies on the fact that the index

becomes non-ambiguous and it is not necessary to calculate minimal cut-sets.

It is assumed that an input event causes the occurrence of the output event when the
input event’s occurrence time (uptime) matches with the output event’s occurrence time
(uptime) (cf. Figure 4.4). With the OR gate logic, it is necessary to take into account
top event’s downtime: if the event that caused the top event occurrence (uptime) is no
longer failed but the top event continues to be failed top event’s downtime needs to be
checked (cf. Figure 4.4 dashed line event).

Therefore, when analysing complex systems, the system CDFT will have a set of inter-
connected gates and each of them will has its own failure criticality index values with

respect to its input events.

Algorithm 1 determines for a CDFT model the failure criticality index of any of its
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Figure 4.4: FCI Example Time-Diagrams

constituent components or events. To this end the algorithm requires:

e The event whose failure criticality index needs to be evaluated (represented by its
name, e.g., BE2 failed).

e The Top Event (TE) gate whose failure criticality index needs to be evaluated.
The gate is represented by the following information: the output event’s name and

a list of input events that are used to evaluate the T'E output.

e A vector with the information for all the gates of the CDFT model. Each gate has
its output event’s name and the list of input events that are used to evaluate its

outputs.

The output name of a gate will be referenced by gate.Output Name in the algo-
rithm. The list of input events will be referenced by gate.Input(j), where j goes from
1 to the number of inputs of the gate. Finally, each gate.Input(j) contains its name
(gate.Input(j).Input _Name), and the FCI of this input event with respect to the out-
put event of this gate (gate.Input(j).FCI_Value), i.e., the percentage that this input

was the cause of the output failure.

The Algorithm 1 traverses the CDFT’s structure in a top-down manner finding the
failure criticality index value of the event variable compositionally: the contribution of
each intermediate event (or a basic event) is weighted according to the contribution of

the gate they belong to (see Figure 4.5 and its explanations).

The system example in Figure 4.5 shows the application of the Algorithm 1 to the
hypothetical system shown in Figure 4.3 and in Appendix C.

System’s failure event TE is caused by %IE1, %IE2 and %IE3; accordingly, each of them
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Algorithm 1 Criticality Analysis

1: function system_ fci = FCI(event, TE, subtree)

2: system__ fci = 0;

3 1 =0;

4: done = 0;

5: // for each branch of the tree starting from the TE

6 while (i <= length(TE.Input)) AND (!done) do

7 fci =1; // init for each branch

8 IE = TE. Input(i);

9 fei= fcix IE.FCI_Value; // FCI of the corresponding input

10: if stremp(IE.Input_Name,event) then // is this the analysed event?
11: done = 1;

12: else// not matching with the 1st level, try inner subtree

13: 7 =0;

14: mner = 0;

15: while (linner) AND (5 < length(subtree)) do

16: J=J+1

17: if stremp(subtree(j).Output  Name, [ E.Input _Name) then
18: mner = 1; // there is an inner event

19: if (inner) then

20: branch = subtree(j); // new TE to be found

21: branch__fci = FCI(event, branch, subtree(:)); // recursive call
22: fei = fcixbranch_ fci; // update branch FCI contribution to TE
23: if (inner) OR (done) then

24: system__ fci = system__ fci+ fei; // sum branch to system FCT

25: 1=1+1;

return system_ fci

will be caused also by its underlying intermediate events (e.g., %IE1 is caused by %IE4
and %IE5) until reaching the basic event level (e.g., %IE4 is caused by %BE1, %BE2
and %BE3). Therefore, the failure criticality index for the BE2 is calculated as follows:

TECT — (%IE1).(%I E4).(%BE2) + (%1 E1).(%1E5).(%BE2) + (%1 E2).(%I ET).(%BE2) + (%1 E3).(%I E8).(%BE2)
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Figure 4.5: Failure Criticality Index Calculation Example

4.4 Uncertainty Analysis

The inability to obtain statistical failure characteristics of certain components hampers
the applicability of the Dependability Evaluation Modelling approach. In order to deal
with uncertain failure data of components, uncertainty analyses have been integrated
within the D3H2 methodology.

It has been demonstrated that software failure rates are difficult to determine (e.g.,
see |Littlewood00b; Goseva-Popstojanova0l; Lyu07| ). This uncertainty in parameter

estimation can lead to very different dependability analysis results.
There exist different sources of uncertainty [Oberkampf04]:

e Epistemic Uncertainty: lack of knowledge or information in any phase or activity

of the modelling process.
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e Aleatory Uncertainty: inherent variation associated with the physical system or

environment under consideration.

In this dissertation we are concerned with the epistemic uncertainty, which deals with
the lack of knowledge of the exact behaviour of the system. The epistemic uncertainty
will be addressed/considered as the influence of uncertain component parameter values

(failure rate) on system’s unreliability value.

In order to deal with the lack of exact knowledge of the failure rate data, second-order
probabilities (i.e., statistic distribution of failure occurrence probabilities) have been
implemented in the MatCarloRE tool [Mannol2b|, allowing to calculate second-order
probability mass functions of: system failure probabilities and importance (sensitivity)

measurements.

Each basic event is modelled with its corresponding random variable according to its
failure distribution and parameters. When integrating uncertainty in the DEM the im-
plemented approach allows the designer to specify interval failure rates: (1) the random
number corresponding to every variables’ failure rate interval is sampled randomly, (2)
then the corresponding probability of interest is calculated, and (3) finally outcome
probabilities are distributed among histogram bins (where relative number of samples
per bin indicates the probability of the bin’s associated probability interval) resulting
in a probabilistic distribution of probability values [Forster09| - second order probabil-
ities (cf. Figure 4.6). For simplicity and due to the lack of knowledge of real failure
data values, the stochastic distribution of variable probability intervals is chosen to be

uniform.
The following main activities are involved in the uncertainty analysis process:

1. Monte Carlo sampling of the uncertain variables: from the failure rates of the
uncertain variables - specified as interval values - a single failure rate value is
chosen randomly within the specified failure rate interval according to the uniform

distribution. The outcome of this activity is a randomly sampled failure rate.

2. Monte Carlo sampling of the time to failure (occurrence) of both uncertain vari-
ables and known variables based on their failure rate values. The outcome of this

process are a set of randomly sampled time to failures.

3. With the updated numerical values of data variables, the Component Dynamic
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Figure 4.6: Overview of the Uncertainty Analysis

time (lifetime) vector.

Dynamic Fault Tree model’s statistical results are gathered in a histogram which

If the threshold of N Monte Carlo trials is reached, accumulated Component

counts and classifies the (probabilistic) frequency of occurrence of the top event.

and the histogram is normalized. Otherwise, the process is restarted again by

If the threshold of M Monte Carlo trials is reached, the overall process ends up

sampling failure rate values randomly and time to failure of the basic events.

The main drawback of this approach is the time needed for the computation of Monte
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Carlo simulations (M x N iterations in Figure 4.6). While there exist analytic techniques
for the reduction of this time (e.g., dynamic stopping criterion [Meedeniyall|), we have
opted for using Matlab’s parallel toolbox in order to perform parallel tasks in several

computers at a time.

4.5 Cost Analysis

The cost assessment is carried out by adding up the cost of hardware and software

resources (see Appendix E for the specific values).

Software costs: the cost of software components is quantified by considering their
development cost assuming that it will be paid off in X% years. We classify 4 types
of software components: fault detection software (SW_FD), reconfiguration software
(SW__R), reconfiguration’s fault detection software (SW_FD_R) and Control /Detector
software (SW_ Det).

The development costs for each of these 4 SW components is considered once for differ-
ent subfunction implementations of the same main function: once developed, they are
adapted for the related SF implementations. This assumption is adopted because the
grouped subfunction implementations are closely related and they do not need a signifi-
cant development cost (as demonstrated in [Kanoun01] through an empirical case study,
the cost of N variants (in design diversity) is not N times the cost of a single software
variant): (1) fault detection implementations adapt to different subfunctions modifying
subfunction-specific time/value thresholds; (2) reconfiguration implementations’ devel-
opment cost does not differ for different subfunctions, alternative implementations will
have allocated different reconfiguration tables for different subfunctions, but reactiva-
tion logic holds the same for different subfunction’s reconfiguration implementations; (3)
reconfiguration’s fault detection implementations development cost for different subfunc-
tions differ only in the keepalive timeout, but their development is independent of any
subfunction; and (4) all the considered control/detector software implementations have

a closely related logic.

Hardware cost: the cost estimation of sensors, controllers and actuators can be ob-

6Let us assume X—4 years for calculation purposes.
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tained from their suppliers. Human cost related with mounting and testing tasks is
considered for sensors and actuators assuming 10 minutes per sensor (actuator) at a
rate of 60 €/hour.

4.6 Results

Taking the extended HW/SW architectures of the safety-critical Door Status Control and
Fire Protection Control main functions as a starting point (see Table 3.10 and Table
3.14 for the extended HW/SW architectures of the Fire Protection Control and the Door
Status Control main functions respectively), the Dependability Evaluation Algorithm
is applied to both main functions. Furthermore, criticality analysis to evaluate the
robustness of different redundancies and uncertainty analysis to manage the lack of
failure data information of software and communication resources are implemented as
well. Resultantly, in Subsection 4.6.1 and Subsection 4.6.2 the Dependability Evaluation
Models for the Fire Protection Control and Door Status Control main functions are
presented respectively. The failure rates and cost values of the different resources are

presented in Appendix E.

4.6.1 Fire Protection Control

In this subsection different design strategies are analysed with respect to dependability
and cost for the Fire Protection Control main function [Aizpuruald]. By means of the
dependability evaluation model, simulations are performed to evaluate: (1) redundancy
strategies; (2) reconfiguration strategies; and (3) validity of the hypothesis of the ideal

behaviour of fault detection, reconfiguration and communication.

Dependability Evaluation Model
According to the DEM approach, subfunction’s implementations are characterized with

the failure rates of its constituent resources. For the Fire Detection subfunction (cf.

Table 3.10, implementations #2 and #3), its implementation failures are specified as
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follows” (see Equation 4.1 for more information about the A notation):

}—FireDetectiom = OR()\PUFP; )\FireDetector)

]:FireDetectiong = OR()\PUACC_Aa )\TemperatureSensora )\SWF;reDetect;On; )\Comm)

The same equation holds for the failure characterizations of the omission failures of:
fault detection of the fire detection (Frp_Firepetection; 0 - #4), reconfiguration of the fire
detection (Fr_rirepetection; 0 = #D, FR_FireDetections 0 - 76), and fault detection of the fire
detection’s reconfiguration (Frp R FireDetection; 0 = 7# 75 FFD R _FireDetections 0 = #8) subfunc-

tions implementations:

]:FD_FireDetection1 o= OR"()\PUFP’ )\SWFD_FireDetection’ )\Comm)
]:R_FireDetectioIn o= OR()\PUFP’ )\SWR_FireDetection)
FR_FireDetections 0 = OR(APULcc ar ASWR rirepetcetions AComm)
-FFDiRiFireDetectiom o = OR(APUA007A7 ASWFDiRiFireDetection’ ACOmm)

FFD_R_FireDetections 0 = OR(APUpp, ASWrp n_mirepetccsions AComm)

Accordingly, the false positive failures will be characterized with their characterizing
failure distribution and corresponding parameters: Fgp_FireDetection FP = AFD_FireDetection FP;

FFD_R_FireDetection; FP = AFD_R_FireDetection; FP; FFD R _FireDetection, FP = AFD R _FireDetections FP-

The failure of the fire detection subfunction will be characterized according to the fol-

lowing equation:

FFireDetection = OR(-FAII Impl. FireDetection, ]:Unresolved7FireDetecti0n; -FDependencies7FireDetection)

The F All tmpl._FireDetection €vent will happen when each implementation fails or is detected

as failed:

F AllTmpl. FireDetection = AND(FFireDetection; FP, F FireDetections FP)

where Frirepetection; FP = OR(FFireDetection;; AFD_FireDetection FP); & = {1,2}.

"For the sake of simplification we will include in Acomm failure rates of all the communication
networks and interconnecting gateway device.
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Since the fire detection subfunction has 2 implementations, the failure unresolved event,

will take into account the failure unresolved situation of the first implementation:

Funr. Imp; _FireDetection = OR(]:R Seq.1_FireDetection; FFD Seq.1_FireDetecti0n)

The reconfiguration sequence failure and fault detection sequence failure for the first

implementation of the fire detection subfunction are defined as follows:

‘FR Seq.; FireDetection — PAND(]:RiFireDetectionv ]:FireDetectionl FP)

The reconfiguration failure Fr_rirenetection 15 developed as follows:

FR_FireDetection = OR(F Al R Impl. FireDetections R Unresolved FireDetection)

where,

FAIR Impl._FireDetection = AND(FR _FireDetection; O/FP» FR_FireDetections O/FP)
}—RiFireDetection; O/FP — OR(]:R_FireDetection; O, )\R_FireDetection; FP); i:{1,2}

FR Unresolved FireDetection = AND(FFp R, 0, FFD R, 0)

The fault detection sequence failure for the fire detection subfunction is defined as

follows:

]:FD Seq._ FireDetection; — PAND(]:FD_FireDetection; ]:FireDetectionl)

The fault detection failure of the fire detection Frp_pireDetection depends on the operation
of the destination subfunction (SFpgst), because the FD implementation is located at
the same PU:

FFD FireDetection = F FD Dest;

The destination subfunction is the Fire Control Algorithm (FCA) subfunction (imple-
mentation #9 in Table 3.10):
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]:FD_Destl - 0R(]:FireControlAlgorithml; ]:FD_FireDetectionl O)

where,

fFireControlAlgorithml = OR()\PUFP; )\SWFireControl’ )\Comm)

Note that we have avoided including fire control algorithm subfunction’s dependencies at
this level (i.e., user emergency signal and fire detection subfunctions) because it would
create a logical loop. Dependencies are taken into account at a higher level (see fire

control algorithm subfunction failure’s characterization - Fgirecontrol Algorithm).

There is no input dependency for the fire detection subfunction (F Dependencies FireDet =
0): it is an input subfunction and therefore, it does not receive data from another

subfunction.

The user emergency signal input subfunction (cf. Table 3.10 #1) does not have redun-
dancies. Therefore, its failure characterization is directly obtained through the failure

characterization of the implementation’s constituent resources:

]:UserEmergencySignal = sterEmergencySignall = OR(/\EmergencyButton, PUFp)

As for the fire control algorithm, there are no implementation redundancies, but there

exist input dependencies. Therefore, its failure expression is as follows:

]:FireControlAlgorithm = OR(]:AII Impl._FireControlAlgorithm, ]:Dependencies_FireControlAlgorithm)

where,

FAll Impl.  FireControlAlgorithm = 7 FireControlAlgorithm,
]:Dependencies_FireControlAlgorithm = ]:Dep. C_CL
Fpep.c_cr, = ANDWc_cr, F1_cL)
Wea oL = NOT(FFireControlAlgorithm; )

fIfCL = OR(]:UserEmergencySignal; fFireDetection)
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Therefore, after simplification®, the fire control algorithm subfunction’s failure is speci-

fied as follows:

fFireControlAlgorithm = OR(]:FireCOntrolAlgorithm1a ]:UserEmergencySignala ]:FireDetection)

Finally, the failure of the fire extinction subfunction (FrireExtinction) and accordingly, the

failure of the Fire Protection Control main function is specified as follows:

]:FireExtinction = OR(}—AII Impl. _FireExtinction, ]:Unresolved_FireExtinctiona ]:Dependencies_FireExtinction)

Note that the fire extinction subfunction has one implementation (#10), therefore:

]:All Impl. _FireExtinction = ]:FireExtinctionl and ]:Unresolved_FireExtinction =0.

FrireExtinction = OR(FFireExtinctions,  FireControlAlgorithm )

FrireExtinction; = OR(APUpp s ASprinkler)

Redundancy Strategies

To evaluate the failure probability of the Fire Protection Control main function’s
architecture combinations, the architecture configurations displayed in Table 4.4 have
been tested.

Table 4.4: Fire Protection Control Configurations with Alternative Redundancy Strategies

ID Configuration
#1 No redundancies (cf. Table 3.8)
#2 1 Heterogeneous redundancy (cf. Table 3.10)

#3 1 Homogeneous redundancy connected to the same PUpp

#4 1 Homogeneous redundancy connected to a different PU

Figure 4.7 depicts Fire Protection Control configurations’ relative failure probability

8A+AB=A+B
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and relative cost normalized with respect to the configuration without redundancies.
Alternative extended HW/SW architectures are analysed adding a homogeneous or
heterogeneous redundancy to the fire detection subfunction. With homogeneous redun-
dancies, the fire detection sensor has been replicated with two alternative configurations:
connect both fire detection sensors to the PUgp (#3) or connect each fire detection sen-
sor to a different PU (#4). All these configurations include the same fault detection

and reconfiguration implementations (cf. Table 3.10).

1
0.98 - |
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Figure 4.7: Relative Failure Probability & Cost of Fire Protection Control Configurations
(108 iterations)

As Figure 4.7 depicts, heterogeneous redundancy configuration’s failure prob-
ability is higher than homogeneous redundancy configuration when the extra
homogeneous redundancy sensor is implemented in the same PU. However, when the
homogeneous redundancy sensor is implemented in a additional PU, the failure prob-
ability of the architecture with homogeneous redundancy is higher. This happens be-
cause both configurations (the homogeneous redundancy implemented in a additional
PU and the heterogeneous redundancy) add extra resources to the extended HW/SW
architecture, they become more sensitive to the communication failures, and accord-
ingly the failure probability increases. The difference between them relies on the used
resources: while the heterogeneous redundancy implementation adds another PU and
relies on the existing temperature sensor and the corresponding SW resource to deter-

mine the presence of fire; the homogeneous redundancy implementation adds another
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PU and another fire detection sensor. The failure rate of both PUs is the same and
the failure rate of the SW resources is small compared with the remainder resources
(AsWpiopy = 1 x 1072), however, the failure rate of the smoke sensor (Apiresensor =

3.77 x 1072) is higher than the temperature sensor (Arempsensor = 1.49 x 1072).

As for the cost analysis, heterogeneous redundancies are more economical than homo-
geneous redundancies because this configuration reuses already existing resources in the

system architecture (i.e., temperature sensor, PU).

Clearly the reliability gain is something that should be evaluated in case-by-case basis.
For example, in two years time the failure probability is only reduced approximately
by 10% while the cost is increased by 44% in the heterogeneous redundancies case and
it is even more expensive in the other cases. In the Fire Protection Control case, the
minimum number of detectors per area unit is limited by law and the addition of extra

detectors would not be beneficial.

Reconfiguration Strategies

To analyse further the differences between homogeneous and heterogeneous redundan-
cies while considering the influence of reconfiguration strategies, failure criticality index
evaluations have been performed on the Fire Protection Control main function’s dif-
ferent architectures. Namely, the reconfiguration subfunction implementations of fire
detection have been duplicated: in one configuration they have been distributed in two
different PUs and in another configuration they have been centralised in the same PU
(cf. Table 3.10).

Table 4.5 displays the impact of the failure of redundancy and reconfiguration strategies
on the system failure occurrence. The shown values are the influence of (1) fire detection
subfunction’s redundancy (Frirepetection,) and (2) its reconfiguration strategies (Fg seq.)

on the Fire Protection main function’s failure .

Failure criticality index values provide indicators about bottleneck influences on system
reliability: heterogeneous and homogeneous redundancies implemented in different PUs
perform better than homogeneous redundancies located on the same PU due to the
bottleneck influence on causing the top event. That is, PUpp performs as a common

cause failure and its failure incurs the simultaneous failure of other subfunction im-
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Table 4.5: Failure Criticality Index Values of the Fire Protection Control (108 iterations)

Reconfiguration Centralised Distributed
Strategy
Homogeneous Homogeneous
Redundancy Homogeneous Different Heterogeneous Homogeneous Different Heterogeneous
Strategy Same PU Same PU
PU PU
FCLFpreperectiony | 0-339027 0.174606 0.179927 0.276643 0.154960 0.170669
FCLry Seq. 0.177554 0.171728 0.174496 0.114232 0.107315 0.106994
plementations. The same logic applies to the reconfiguration strategies: distributed

reconfiguration implementations perform better than centralised implementations due

to the bottleneck influence on system failure probability.

Influence of Health Management Implementations

Taking the heterogeneous redundancy configuration (#2) as a starting point (cf. Table
3.10), Figure 4.8 depicts normalized system’s failure probability values (with respect
to the architecture without assumptions) for different configurations under different
assumptions regarding ideal fault detection, reconfiguration and communication imple-

mentations.

As Figure 4.8 shows there is a 2.5% maximum difference in relative failure probabil-
ity between the real configuration and ideal configurations in which the fault detection,
reconfiguration and communication are assumed to be ideal in all possible combinations.
Among the ideal implementations, the configuration with the ideal communication (cf.
cyan line) deviates the most from their real values. Indeed, assumptions about the ideal
behaviour of the fault detection and reconfiguration implementations influence only the
fire detection subfunction’s performance, because fire detection is the only subfunction
with redundancies within the Fire Protection Control main function. The communi-
cation influences many different subfunctions and their implementations and therefore,
the assumption about the ideal behaviour of the communication plays a more impor-
tant role compared with the ideal performance of the fault detection and reconfiguration

implementations.

Among health management implementations, fault detection implementation has a con-
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2 Centralised Reconfiguration Implementations; Heterogeneous Redundancy Configuration
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Figure 4.8: Failure Probability of Fire Protection Control Configurations under Different
Assumptions (10° iterations)

siderable effect on the system failure probability compared with the reconfiguration im-
plementation’s influence (cf. magenta line). While the reconfiguration implementation
has redundant implementations, the fault detection implementation is a single point of

failure and it affects directly to the fire detection subfunction failure.

As Table 4.6 displays, we calculate the failure criticality index to (1) check the coherency
of the results showed in the Figure 4.8 and (2) see the effect of the failure of different
events on the Fire Protection Control main function failure. Namely, failure criticality
index values of the fire control algorithm subfunction (FCZgz,.,), fire detection sub-
function (FCZz,,,.,.,), fault detection sequence of the fire detection (FCZ7,,, pireper seq)
and reconfiguration sequence of the fault detection subfunctions (FCZr, r..p.. s., ) have
been calculated. Besides, as a further reference to the previous results, th_e system failure
probability at the time instant 7' = 5 is also displayed (Fire Extinction (FE) subfunction
failure Frp @ T = 5) in the Table 4.6.

As Table 4.6 confirms, the influence of the communication’s performance is considerable
in conjunction with the fire detection’s fault detection. Let us consider the FCZ r, ., col-

umn: while assuming ideal reconfiguration implementations deviates only by %0.38 from
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Table 4.6: Unreliability and FCI values for Fire Protection Control Configurations under
Different Assumptions (10° iterations)

Config. Fl(gETzingtwn ‘FCI]:FC’A ‘FCI]:FireDet ‘FCI]:FD_FireDet Seq. ‘FCI]:R_FireDet Segq.

Ideal:

FD, R, 0.6497 0.3851 0.1442 0 0

Comm

Ideal:

Comm, 0.6499 0.3869 0.2597 0 0.1725

FD

Ideal:

Comm, R 0.6547 0.3975 0.279 0.1862 0

Ideal: 0.6549 0.3995 0.2815 0.1838 0.167
Comm.

Ideal:

FD, R 0.6584 0.3988 0.1418 0 0
Ideal: FD 0.6585 0.4003 0.257 0 0.1725
Ideal: R 0.6634 0.4106 0.2765 0.1884 0

Real 0.6634 0.4122 0.2788 0.187 0.1744

the failure criticality index values of the real configuration, there is a %6.53 deviation
if we consider the configuration associated with the ideal communication performance

and ideal fault detection performance.

If we compare the failure criticality index values of the fire detection (FCZ£,,,,,.,) and
fire protection control algorithm (FCZz,.,) subfunctions, we can see that the contri-
bution of the fire detection subfunction failure to the top event’s failure occurrence is
reduced because: (1) other subfunctions (user emergency signal subfunction and fire pro-
tection control algorithm subfunction) also do influence to the system failure occurrence;
and (2) there are repeated resources which cause the failure of different subfunctions
simultaneously (e.g., PUpp), contributing to their failure criticality index values alto-
gether. This is why despite having a difference of 0.1 or greater between FCIx,. ..,
values for different configurations, the top event’s failure probability does not have con-

siderable changes (if any).

Figure 4.9 shows the second order failure probability of the heterogeneous redundancy
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configuration with 2 redundancy implementations (cf. Table 3.10) at the time instant
T = 5 for different communication’s failure rate intervals. That is, how the communi-

cation’s failure rate impacts on the system’s failure probability distribution.

lambda = [.0001-.001]; mean= 0.653; std dev= 0.005  lambda = [0.001-0.1]; mean= 0.7283; std dev= 0.0396
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Figure 4.9: Fire Protection Control Failure Probability Distribution: Communication’s Fail-
ure Rate Influence (10*x5.10% iterations)

As Figure 4.9 shows, the mean of the failure probability of the Fire Protection Control
main function increases with an increment in the range of values of the communication’s
failure rate. These probability density function graphics show which is the impact of

the communication resource’s possible failure rates on the system’s failure probability.

4.6.2 Door Status Control

In this subsection different analyses for the Door Status Control main function are
performed to evaluate different design decisions and their influence on dependability
and cost. By means of the dependability evaluation model, simulations are performed to
evaluate: (1) redundancy strategies; (2) reconfiguration strategies; and (3) validity of the

hypothesis of the ideal behaviour of fault detection, reconfiguration and communication.
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Dependability Evaluation Model

According to the Dependability Evaluation Modelling approach, subfunction’s imple-
mentations are characterized with its constituent resources’ failure rates. For the Door
Open Detection (DOD) subfunction (cf. Table 3.14, implementations #7 and #8), its
implementation failures are specified as follows? (see Equation 4.1 for more information
about the A notation):

]:DoorOpenDetectiom = OR()\PUDSC_Aa )\OpenSensor)

-FDoorOpenDetectionz = OR(APUCam7 /\Camerm /\SWOpenDew >\Comm)

The same equation holds for the failure characterizations of the omission failures of:
fault detection of the door open detection (Frp pooropenbetection; 0 = #9), reconfiguration
of the door open detection (Fr_pooropenDetection; 0 - #10, FR_DoorOpenDetections 0 = 7 11), and
fault detection of the door open detection’s reconfiguration (Frp Rr_DooropenDetections O -

#12; Frb R DoorOpenDetections 0 - 7 13) subfunctions implementations:

}—FD_DoorOpenDetectionl o= OR()\PUDSC_A) )\SWFD_DOD’ )\Comm)
}—R_DoorOpenDetectiom o = OR()\PUDSC_A’ )\SWR_DOD)
fRiDoorOpenDetectiong o= OR(APUCRmv ASWR7D0D5 AComm)
fFD_R_DoorOpenDetectionl o= OR()‘PUcama )\SWFD_R_DOD’ )\Comm)

fFD_R_DoorOpenDetectiong o = OR()\PUDSC_A; )\SWFD_R_DOD’ )\Comm)

Accordingly, the false positive failures will be characterized with their characterizing
failure distribution and corresponding parameters: Fep DoorOpenDetection FP = AFD_DOD FP,

]:FD_R_DoorOpenDetection; FP = )\FD_R_DoorOpenDetection; FP i:{l,Q}.

The failure of the door open detection subfunction will be characterized according to

the following equation:

-FDoorOpenDetection = OR(‘FAII Impl._DOD; fUnresolvediDODv ]:DependenciesiDOD)

The Fanmpl. pop event will happen when each implementation fails or is detected as

9For the sake of simplification we will include in Acomm failure rates of all the communication
networks and interconnecting gateway device.
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failed:

]:All Impl. DOD = AND(-FDoorOpenDetectionl FP, fDoorOpenDetectiong FP)

Where fDoorOpenDetection; FP — OR(]:DoorOpenDetectionn /\FDiDoorOpenDetection FP); 1= {17 2}

Since the door open detection subfunction has 2 implementations, the failure unresolved

event will take into account the failure unresolved situation of the first implementation:

]:Unr. Imp;_DOD = OR(}—R Seq.1_DoorOpenDetection, ]:FD Seq.l_DoorOpenDetection)

The reconfiguration sequence failure and fault detection sequence failure for the first

implementation of the door open detection subfunction are defined as follows:

-FR Seq.1 DoorOpenDetection = PAND(-FRiDoorOpenDetection; -FDoorOpenDetectionl FP)

The reconfiguration failure /g pop is developed as follows:

‘FRiDOD = OR(‘FAII R Impl. DoorOpenDetection; Fr UnresolvediDoorOpenDetection)

where,

]:All R Impl._DoorOpenDetection = AND(]:RiDoorOpenDetectionl O/FP; }—RiDoorOpenDetectionz O/FP)
-FR_DoorOpenDetection; O/FP — OR(]:RiDoorOpenDetection; [oX) /\RiDOD; FP)

Fr Unresolved DoorOpenDetection — AND(-FFD7R7D00r0penDetection1 [oF) ]:FDiRiDoorOpenDetectionz O)

The fault detection sequence failure for the door open detection subfunction is defined

as follows:

fFD Seq. DoorOpenDetection; — PAND(]:FDiDoorOpenDetection; -FDoorOpenDetectionl)

The fault detection failure of the door open detection Frp pooropenDetection depends on
the operation of the destination subfunction (SFpggt), because the FD implementation
is located at the same PU:
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fFD_DoorOpenDetection = ]:FD_Dest1

The destination subfunction is the Door Control Algorithm (DCA) subfunction (imple-
mentation #23 in Table 3.14):

]:FD_Dest1 = OR(]:DoorControlAlgorithm1; ]:FD_DoorOpenDetectiom O)

where,

FDoorControlAlgorithm; = OR(APUpse x5 Asw_cL, Acomm)

Note that door control subfunction’s dependencies are not taken into account deliber-
ately to avoid creating logical loops. At this level, we consider only the implementa-
tion failure itself, and when characterizing the failure of the door control subfunction

(F DoorControlAlgorithm ) its dependencies will be considered.

There is no input dependency for the door open detection subfunction, because it is
an input subfunction and therefore, it does not require to receive data from another

subfunction (Fpependencies non = 0).

The failure characterization of the Door Closed Detection (DCD) subfunction failure

(Fpep) follows exactly the same process accounting for its respective resources’ failures.

The remainder of input subfunctions (Enable Door Passenger - EDP #3, Door Close
Command - DCC #4, Door Open Command - DOC #5, #6, Door Velocity - DV
#21 and Obstacle Detection - OD #22) do not have redundancies and therefore, their
failure characterization is directly obtained through the failure characterization of the

implementation’s constituent resources:

]:DoorVelocity = ]:DoorVelocityl = OR(APUDsciA; AVelocitySensor)

}—ObstacleDetection = }—ObstacleDetectionl = OR()\PUDSC_A; )\ObstacleSensor)

However, note that door open command has two 2 implementations which operate as
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active redundancies:

fDoorOpenCommandl = OR()\PUDr;ver; )\OpenButtonDr;ver)
]:DoorOpenCommandg = OR()\PUDsc_Aa )\OpenButtonpassenger)

]:DoorOpenCOmmand = AND(]:DoorOpenCOmmandu ]:DoorOpenCommandg)

As for the door control algorithm, there are no implementation redundancies, but there

exist input dependencies. Therefore, its failure expression is as follows:

]:DoorControlAlgorithm = OR(]:AII Impl. _DoorControlAlgorithm; ]:Dependencies_DoorControlAlgorithm)

where,

-FAII Impl. DoorControlAlgorithm = fDoorControlAlgorithml
]:Dependencies7D00rCOntr01A1g0rithm = -FDep. C CL
Fpep.c_cr. = ANDWc_cr, F1_cL)
WC_CL = NOT(fDoorCOntrolAlgorithml)

F1 cL = OR(FeppP, FpCC; FDOC, FDoorOpenDetections + DCDs F DV, FOD)
Therefore, after simplification'’, the door control algorithm subfunction’s failure is spec-

ified as follows:

Fpca = OR(Fpca,, Feop, Fpce, Fpoc, Fpop, Foep, Fov, Fob)

Finally, the failure of the door manipulation (DM) subfunction (FpeorManipulation) and
accordingly, the failure of the Door Status Control main function is specified as follows:
FDoorManipulation = OR(FAll Impl. DM, FUnresolved DM F Dependencies DM)

Note that the door manipulation subfunction has one implementation (#24), therefore:

]:All Impl. _DoorManipulation = }—DoorManipulationl and }—Unresolved_DoorManipulation = 0.

WA+ AB=A+B
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}—DoorManipulation = OR(}—DoorManipulationla ]:DoorCOntrolAlgorithm)

FDoorManipulation; = OR(APUpsc > AMotor)

Redundancy Strategies

For simplicity, 2 heterogeneous redundancies have been considered in the extended
HW/SW architecture displayed in Table 3.14 (door open detection, door closed detec-
tion). In order to add further optimization possibilities (and architecture combinations)
to the extended HW/SW architecture all possible heterogeneous redundancies have been
included. Therefore, within the design considerations we will include homogeneous and
heterogeneous redundancies for obstacle detection and door velocity subfunctions, apart
from the previously considered door open detection and door closed detection subfunc-

tions’ heterogeneous redundancies.

Figure 4.10 shows relative cost and failure probability of Door Status Control main func-
tion’s alternative configurations with respect to the Door Status Control configuration
without redundancies described in the functional model at Table 3.12. Among the 4 in-
put subfunctions with heterogeneous redundancies (Door Open Detection - DOD, Door
Closed Detection - DCD, Obstacle Detection - OD, and Door Velocity - DV), as Table
4.7 displays, alternative extended HW/SW architectures are analysed adding one addi-
tional heterogeneous redundancy and/or homogeneous redundancy to each subfunction

using the reconfiguration strategy 2R Centralised described in Table 4.8.

Table 4.7: Door Status Control Configurations with Alternative Redundancy Strategies

ID Configuration

#1 No redundancies (cf. Table 3.12)
#2 4 Heterogeneous redundancies
#3 4 Homogeneous redundancies

#4 3 Heterogeneous redundancies: DCD, DOD, DV; 1 homogeneous redundancy: OD

#5 | 2 Heterogeneous redundancies: DCD, DOD; 2 homogeneous redundancies: OD, DV

#6 1 Heterogeneous redundancy: DCD; 3 homogeneous redundancies: OD, DV, DOD
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In all the configurations displayed in Table 4.7, homogeneous redundancies are created
by replicating the correspondent subfunction implementation’s sensor and connecting

them to the existing PUpgc A operating as active redundancy.

20

10

Time (years)

i 0 0.95
0.85

. 0.75
Relative Cost 0.7 Relative Fail. Prob.

Figure 4.10: Relative Failure Probability & Cost of Alternative Door Status Control Main
Function’s Configurations for the Train.Cary.Zones.Door (108 iterations)

As Figure 4.10 depicts, heterogeneous redundancies are more economical than homoge-
neous redundancies, nevertheless, their drawback is that it is necessary to add further
mechanisms (SW) to make implementations compatible, which leads to having slightly

worse reliability than homogeneous redundancies due to the increased failure sources.

To analyse further differences between homogeneous redundancies and heterogeneous
redundancies, we calculate the contribution of the door open detection subfunction
failure on the main function failure (failure criticality index - cf. Section 4.3). At the
same time, the uncertainty of the failure rate data (cf. Section 4.4) of the open detection
subfunction software (SW_Det) has been taken into account. Figure 4.11 and Figure
4.12 show the distribution of the failure criticality index values of door open detection

subfunction’s redundancy components with Agsw pe; = [0.001-0.1].

From Figure 4.11 and Figure 4.12 it is clear that the reuse of hardware components
adds bottlenecks to the system design resulting in a worse FCZ value than distributing
tasks among different components: in the heterogeneous redundancy configuration the
camera is connected to one PU and the original sensor is in another PU (cf. Figure 4.11),

while in the homogeneous redundancy configuration redundant sensors are connected to
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the same PU (cf. Figure 4.12), which explains why heterogeneous implementations are

less critical in this case.

Reconfiguration Strategies

To analyse the influence of the number and distribution of reconfiguration implemen-
tations on system dependability, this nomenclature is adopted: SF; refers to the ¢-th
implementation of the subfunction (e.g., R_DOD; designates the first implementation
of the door open detection’s reconfiguration subfunction) and 1R, 2R and 3R identify

the number of reconfiguration implementations.

Based on the system architecture comprised of 4 heterogeneous redundancies, alter-
native reconfiguration strategies have been tested with different failure rate values of
health management SW components (Asw_mum): SW_FD, SW_R and SW_FD_R. The
failure rates of these software resources have been modified altogether to highlight the
influence of reconfiguration implementations on system unreliability at the T" = 10 years

time instant with 10 Monte Carlo trials.

From Table 4.8 two main patterns are identified: the greater the Agw nuy and number of
reconfiguration redundancies, the better the reliability of distributed reconfigurations.

The unreliability of centralised reconfigurations confirms that the introduction of addi-
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Table 4.8: Door Status Control Failure Probability for Reconfiguration Distribution Strategies
(T=10 years)

DSC Fail. Prob.

Configuration Reconfiguration Implementation Distributions

Asw_mM | Asw_mMm | Asw_aMm

1R Centralised PU;(R DOD;, R _DCD;, R OD;, R _DV)y)

PU;, (RiDODl); PUg(RiDCDl); PUj; (RioDl);

1R Distributed PU4(R_DV1)

PU, (RiDODl, R DCD;,R_ODy, RiDvl);

2R Centralised PU>(R_DOD,, R_DCD», R_0ODy, R_DV3)

PU;(R_DOD;, R_DCD,); PU3(R_DODy, R_DCD;);

2R Distributed PU3(R_OD;, R_DVs); PUs(R_ODs, R_DV))

PU, (RiDODl, R DCDi, R_ODy, RiDvl);
3R Centralised PU2(R_DOD;y, R_DCD3, R_OD3, R_DV>);
PU3(R7DOD3, R _DCD3, R _OD3, RiDVS)

)

PU;(R_DOD;,R DCDy,R OD3);

PU2(R_DODy,R DCD;,R DV3)
PU3(R_DOD3,R_OD;,R_DVy);
PU4(R_DCD3,R_OD>,R DVy)

3R Distributed

tional components increase system failure sources. However, with the increase of the
failure rate values and reconfiguration’s redundancies, system’s common cause failures
gain importance and distributed implementations perform better than configurations

with system bottlenecks.

Interestingly, we come up with a “threshold” failure probability, where from that point
on, the distribution of reconfiguration strategies have no impact on the reliability of
the system architecture. The “threshold” failure probability decreases as the number
of reconfiguration’s redundancy implementations increases (see grey cells in Table 4.8).
This should be studied further, but it seems logical that the higher the unreliability of the
reconfiguration implementations, the impact of the reconfiguration strategies becomes

less important.
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Influence of Health Management Implementations

To validate the feasibility of the assumption of the ideal (non-faulty) behaviour of fault
detection, reconfiguration and communication implementations, we evaluate their influ-

ence on system’s dependability under different assumptions.

Taking the configuration (2) of Figure 4.10 as the reference configuration, Figure 4.13
depicts the results of different architectures to test the feasibility of the hypotheses about
the ideal behaviour of fault detection, reconfiguration and communication implementa-
tions. The outcome failure probability of different configurations has been normalized
with respect to the reference configuration, in which the behaviour of the fault detec-
tion, reconfiguration and communication implementations have been considered with

their respective failure characterization.

2R - Centralised; 4 Heterogeneous Redundancies
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Ideal: FD, R, Comm
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Figure 4.13: Door Status Control: Ideal Configurations Relative Failure Probabilities w.r.t.
Reference Configuration (10° iterations)

As Figure 4.13 depicts, there is a 7% maximum difference between the ideal and the
reference configurations in which the fault detection, reconfiguration and communication
implementations are assumed perfectly reliable (cf. yellow line). Besides, the influence
of the failure behaviour of the fault detection is also noticeable (dashed purple line). In
this specific case, this issue is caused by the lack of redundancy implementations for the

fault detection subfunction.

142



To further evaluate the influence of the fault detection and reconfiguration subfunc-
tion failures on system unreliability, failure criticality index evaluations have been per-
formed for the configurations depicted in Figure 4.10: 4 heterogeneous redundancy
and 4 homogeneous redundancy configurations. For the homogeneous redundancy
configuration (configuration #3 in Table 4.7), 2 alternative arrangements have been
tested: connect explicit homogeneous sensors to the same PU or connect explicit homo-
geneous sensors to different PUs. Table 4.9 displays the influence of the failure of fault

detection and reconfiguration subfunctions on different Redundancy Strategies (RS).

Table 4.9: FCZr,, .. and FCZx, ., using Different Redundancy Strategies (10 iterations)

RS FCTrpp pop FCTFr pon| FTFep pep FCTFr ped FCTFrp op FCTFr op FCTFpp pv| FCTFR p
A 0.1520 0.1367 0.1524 0.1374 0.1520 0.1372 0.1563 0.1416
B 0.2265 0.1949 0.2267 0.1956 0.2265 0.1954 0.2362 0.1999
C 0.1826 0.1623 0.1832 0.1632 0.1825 0.1627 0.1863 0.1674

A: 4 Homogeneous Redundancies connected to different explicitly added 4 PUs
B: 4 Homogeneous Redundancies connected to the same existing PUpgc
C: 4 Heterogeneous Redundancies

Supporting the statements from Figure 4.13, Table 4.9 displays that the FCI values
of fault detection subfunction failures have higher criticality than reconfiguration sub-
function failures. With respect to the influence of alternative redundancy arrangements
on system’s failure occurrence, Table 4.9 also describes how the influence on the top
event’s failure occurrence of fault detection and reconfiguration subfunctions increases

when concentrating redundancies in the same PU.

To check the consistency of the data depicted in Figure 4.13, Table 4.10 displays the
failure criticality index values of alternative subfunction failures under different assump-
tions: door control algorithm (FCZ £, ,) and door open detection (FCZx,,,,,) as an ex-
ample of input subfunction’s failure influence. Besides, the failure influences of the fault
detection sequence of the door open detection (FCZr,, pops., ) and reconfiguration
sequence of the door open detection (FCZz, ,op s.,.) O the system failure occurrence

are also analysed.

Figure 4.13 and Table 4.10 agree on the results, so that the less critical (more reliable)

architecture is the ideal configuration and the more unreliable the configuration with
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Table 4.10: Failure Probabilities and FCI Values for Configurations under Different Assump-
tions (105 iterations)

Conﬁg. ,/—‘DJVI @ T=5 ‘FCI]:DC’A ‘FCI]:DOD ‘FCI]:FD_DOD Seq. ‘FCI]:R_DOD Seq.
Ideal:
FD, R, 0.8724 0.9222 0.0953 0 0
Comm
Ideal:
Comm, 0.873 0.9221 0.1016 0 0.0522
FD
Ideal:
FD, R 0.878 0.9236 0.0931 0 0
Ideal: FD 0.879 0.9237 0.0994 0 0.0542
Ideal:
Comm, R 0.9007 0.9278 0.2123 0.1461 0
Ideal: 0.9011 0.9279 0.2119 0.1456 0.0798
Comm.
Ideal: R 0.878 0.9278 0.2121 0.146 0
Reference 0.906 0.9291 0.2085 0.1456 0.0851

the real reference model. Furthermore, we see that the influence of the fault detection
is the most considerable compared with fault detection and communication. Let us
focus on the column FCZx, . ,: while assuming ideal reconfiguration and communication
implementations differs in 0.14% and 0.129% from the reference configuration’s failure
criticality index value respectively, assuming ideal fault detection implementation does

make a 0.584% difference between ideal fault detection and reference configuration.

Let us now focus on the column FCZx,,,: we can see that the configuration which as-
sumes ideal fault detection (and combinations thereof with ideal reconfiguration and/or
ideal communication) implementation has the biggest difference with respect to the
reference configuration. Note that the door open detection subfunction is one of the
contributors to the top event occurrence, but not the only one, the remainder of input
subfunctions, door control algorithm subfunction and the door manipulation implemen-

tation’s resources also do influence to the top-event failure occurrence.

As for the analysis of the influence of the communication on the system failure prob-

ability, uncertainty analyses have been implemented. To this end, different interval
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values have been assigned to the communication’s failure rate and we have analysed
its influence on the distribution of the top-event failure frequency at the time instant
T =5 (cf. Figure 4.14). The analyses have been performed on the configuration with 4

heterogeneous redundancies and 2 centralised reconfiguration implementations.
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Figure 4.14: Failure Probability Distribution: 2R Centralised Heterogeneous Configuration -
Communication’s Failure Rate Intervals (10%x5.10? iterations)

As Figure 4.14 confirms, an increase in the failure rate of the communication results
in a worse system’s failure probability. The shape of the system’s failure probability

distribution depends on the selected communication’s failure rate interval.

4.7 Conclusions

In this chapter the algorithm and its implementation for the reliability assessment of
the extended HW/SW architecture have been described. This approach makes possi-
ble the systematic evaluation of the influence on dependability and cost of redundancy
strategies, reconfiguration strategies and the influence of health management and com-
munication implementations on system failure probability. The probabilistic evaluation

of the dependability evaluation model has been performed using the combination of
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Dynamic Fault Tree and Component Fault Tree paradigms: Component Dynamic Fault
Trees.

Besides, the outlined approach makes possible the evaluation of the influence of
ideal /non-ideal fault detection, reconfiguration and communication implementations on
system failure probability. To this end, the influence of these implementations on system
failure probability has been taken into account and their contribution to the system fail-

ure occurrence has been evaluated using importance measurements.

Furthermore, in order to deal with the lack of exact failure data information of software
resources as well as communication implementations, uncertainty analysis algorithms
have been implemented within the Dependability Evaluation Modelling approach. The
implementation enables the specification of interval failure rates (instead of single value
data) and calculation of the failure probability distributions of top events failure prob-

ability occurrences.

As for the cost assessment of extended HW /SW architectures which use homogeneous or
heterogeneous redundancies, the main difference remains in the software development
cost. While homogeneous redundancies add an explicit hardware component to make
possible the system reconfiguration, heterogeneous redundancies require additional (fit
for purpose) software to reuse compatible implementations for further subfunctions.
The cost of hardware resources is computed directly, but software implementations cost
needs considering additional factors. Software cost can be divided into development
and maintenance cost. Development of 2 different software implementations with sim-
ilar characteristics is not quantified intuitively. In this dissertation we have grouped
the development cost of similar SW resources considering their development cost once.
Besides, we have also considered that the SW development costs will be paid off in X'!

years (see Appendix E for the used failure rate and cost values).

All in all, the evaluation of which redundancy strategy is cheaper does not have
only one answer. Depending on the type of heterogeneous redundancy strategy
their costs also will be different. Generally speaking heterogeneous redundancies
arising from natural compatibilities require less additional resources than heteroge-
neous redundancies arising from forced compatibilities. Therefore, depending on the

type of heterogeneous redundancy strategy the comparison between homogeneous and

11X —4 years for calculation purposes.
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heterogeneous redundancy strategies will be different.

In the case of infotainment functions, their failure occurrence does not pose critical issues
for the system design. However, when considering safety-critical function failures their
inability to perform can lead to the unavailability of the whole system. For instance, if
a door of a train car fails (e.g., it is not possible to determine whether it is opened or
closed) it is possible that the system requires stopping completely and the associated
costs will increase considerably. In these cases, the use of heterogeneous redundancies
to provide a compatible (and possibly degraded) functionality allows saving costs by

exploiting already existing hardware resources.

The dependability analysis formalism presented in this chapter (Component Dynamic
Fault Tree) is not able to evaluate the failure probability of the D3H2s compliant re-
pairable HW /SW architectures. Although the extension of Component Dynamic Fault
Trees to repairable systems is straightforward (i.e., considering repairable basic events),
the CDF'T approach in general and the priority-AND gate in particular are not able to
handle complex repair policies. According to the priority-based reconfiguration process
of the D3H2 methodology, when the failure of a subfunction’s implementation is to be
repaired, the implementation with the highest priority should be activated among the
available redundancies for the failed subfunction. Therefore, the repair process may not
be sequential as determined by the logic of the priority-AND gate. In order to grasp
complex repair situations, more powerful formalisms needs to be considered as described
in Chapter 5.

Furthermore, the cost calculation in this Chapter has been focused on the hardware,
software, and communications cost. However, as it we will show in Chapter 5, the most

penalizing cost is the one associated with system unavailability (downtime costs).
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CHAPTER 5

Dependability & Cost Analysis of
Repairable Systems

In the D3H2 methodology, the dependability evaluation of the eztended HW/SW
architectures constituted by repairable resources sets new challenges. While in Chapter
4 only the order of failure was important, in this chapter the order of failure and the

order of repair are addressed.
This chapter is organised as follows:
e Section 5.1 introduces the problem addressed in this chapter.

e Section 5.2 presents the Dependability Evaluation Modelling approach for re-
pairable systems focusing on the evaluation algorithm and its implementation
through the Stochastic Activity Networks (SAN) formalism.

e Section 5.4 applies the Dependability Evaluation Modelling approach for repairable

systems to the running example of this dissertation.

e Section 5.5 closes this chapter with conclusions and prospects.

5.1 Introduction

In Chapter 4 we have constrained the Dependability Evaluation Modelling approach
(DEM) (and the extended HW/SW architecture) with system implementations which use
non-repairable resources. However, many of the current industrial systems are no longer

characterized with non-repairable implementations. There exist mechanisms which make
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possible the repair of system resources (either on-line or off-line) and improve the avail-
ability of the system. Shifting from non-repairable systems towards repairable systems
introduces new challenges that the repairable DEM approach and its analysis paradigm

must meet.

Namely, the characterization of the system’s repair process governed by the priorities of
the implementations is not trivial. In the D3H2 methodology, the repair behaviour of
a system is characterized according to the reconfiguration table (see Chapter 3). The
reconfiguration table determines alternative implementations (either homogeneous or
heterogeneous) for the same subfunction and their corresponding priorities. Since im-
plementations are assumed to be repairable, subfunction’s repair process will be charac-
terized according to the implementations priority. That is, the reconfiguration mecha-
nism of the subfunction’s implementation have to activate the implementation with the
highest priority among the available spare implementations of the subfunction. This
means that it does not necessarily have to follow a fixed sequence, e.g., assume that
we have a subfunction with 4 implementations and currently the 3rd implementation
is operative while first and second implementations are failed. If the first or the sec-
ond implementation are repaired prior to the failure of the 3rd implementation, when
the 3rd implementation fails the subfunction will be reconfigured to the 1st or the 2nd

implementation instead of reconfiguring to the 4th implementation (cf. Figure 5.1 (a)).

(a) (b) TE
Impl, Impl, Impl; Impl, T T

Prio, Prio, Prios Prio, 1 |
Spare1 Spare2
1 2 1 2 3
i — R
S1 S2 S3 S4

Alternative Reconfiguration Processes:
Imply — Impl, — Impl; —> Impl; — --- é éé

BE1 BE2 BE3 BE4 BES BE6 BE7 BES8 BES BE10

Impl; — Impl, —> Impl; —> Impl; —> ---
Imply — Impl, — Imply —> Impl, — ---

Imply — -

Figure 5.1: Challenges Emerging from Repairable Systems (a) Possible Reconfiguration Se-
quences (b) System Modelling through Dynamic Fault Tree’s Spare Gates and Components

Although the manageability and ease of use of Component Dynamic Fault Tree formal-

ism for non-repairable systems makes this paradigm suitable for the analysis of the DEM
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approach, its application is limited to non-repairable extended HW/SW architectures.
The repair process in the D3H2 methodology cannot be modelled using only sequential
logic - as determined by the logic of the PAND gate. More powerful formalisms are re-
quired in order to manage the stated repair strategies. While it is possible to use Markov
Chains to model such complex situations, in reality the use of pure Markov models is
not feasible: the size and complexity of the resulting Markov model hampers under-
standability and maintainability of the system. The required size (number of states) to
model such a complex (user defined) repair strategies would result in a unmanageable

model.

The analysis of the extended HW/SW architecture which uses repairable resources opens
the way to explore new system properties such as system availability and associated
downtime costs. The downtime cost will provide the designer with an additional design
indicator associated with the unavailability of the system. As we will see in the results
(cf. Section 5.4), this cost will penalize more the less reliable architecture due to the

increased downtime.

In order to deal with the stated properties and implement the compositional Depend-
ability Evaluation Modelling approach for repairable systems, we have analysed existing

formalisms looking for the following characteristics:
e Capability to model user-defined repair processes.

e Dynamic gates: capture the system failure logic accounting for time-ordered

events.
e Capability to model repeated events and repeated components or subsystems.
e Component-based characterization.
e Support for any probability density function.

Figure 5.1 (b) shows an example of the systems that we analyse in this chapter using the
concept of Dynamic Fault Tree’s spare gates (see Subsection 2.3.1). Namely, systems
with: (1) prioritized and repairable subsystems (51, S2, S3, S/); (2) shared subsystems
(52); (3) repeated components among different subsystems (C1); and (4) repeated (BES3,
BE8) and repairable basic events (BEI, BE2, ..., BE10).

Furthermore, in addition to the assumptions adopted in Chapter 4 with respect to the
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fixed architectural design decisions, throughout this chapter we consider that:

e The proactive/preventive maintenance is not applied and we will focus only on

the reactive maintenance, i.e., the repair process starts only when a resource fails.

e We will deal with situations in which the repaired resources will be as good as new

ones after the repair process without considering further degraded states.

5.2 Dependability Evaluation Modelling Approach for
Repairable Systems

The compositional Dependability Evaluation Modelling approach for repairable systems

enables to analyse the dependability of extended HW/SW architectures systematically.

5.2.1 Concepts and Notation

The objective of the DEM approach for repairable systems is the generic, systematic and
complete failure and repair modelling of the extended HW/SW architecture to evaluate
the dependability of alternative extended HW/SW architectures. The failure model for
the DEM approach for repairable systems is the same as for the DEM approach for

non-repairable systems (see Subsection 4.2.1).

With non-repairable resources (cf. Chapter 4) it is enough to assume that the im-
plementations are reconfigured sequentially so that we know which implementation is
active (working, operative) based on which implementations are failed. With repairable
resources and implementations, it is necessary to check the status of all subfunction’s
implementations to know which implementation is active and accordingly determine

system’s failure situations (cf. Figure 5.1 (a)).

Let us define when the implementation 7 will be active: the implementation ¢ will be
active if (1) at the start of the system operation the implementation ¢ has the highest
priority among the implementations for the same subfunction; or (2) when a failure

of the active implementation occurs (which is not the i-th implementation) and the
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implementation ¢ has the highest priority among the available implementations of the

same subfunction.

Apart from the notation introduced in Table 4.1, we will also use additional notations

to support the modelling of repairable systems as described in Table 5.1.

Table 5.1: Notation of Failure and Working Events 11

Notation Failure Logic
FSF; | Active [SF].[Impl;] fail while active
FSF; FP | Active [SF].[Impl;] fail or FP while active = OR(FgF; | Actives FFD FP)
FSF_Dest; | Active [SF_Dest|.[Impl;] fail while active
FFD; O | Active [FD_SF].[Impl;] omission while active

The stochastic failure characterization of each resource is characterized by randomly
sampling the failure and repair times according to their Cumulative Probability Dis-
tribution Functions (CDFs) along the system lifetime. The methodology supports any
CDFs, but for the sake of simplicity without losing the generality of the approach, in

subsequent probabilistic characterizations exponential failure distributions are assumed.

Hence, the failure characterization of system resources (Fres) is defined according to
their failure rates (Ares) and repair rates ((gres). Assuming exponential failure and repair
distributions, the failure characterization of system resources can be seen as Continuous
Time Markov Chains with working and failed states. The transitions between these

states are determined by failure rate (Ages) and repair rate (figes)-

The failure characterization of a SF’s i-th implementation ([SF|.[Imp;| Failure) com-

prised of N resources is specified as follows:

-FSFi = OR(-FResU -FResm SRR FResN) (51)

The same equation holds for the characterizations of the omission failures of: fault detec-
tion subfunction (FD_SF - Fpp. o), reconfiguration subfunction (R_SF - Fg. o), and
fault detection of the reconfiguration subfunction (FD_R _SF - FFD_R; o) implementa-

tions. Accordingly, the false positive failures of fault detection implementations (Frp pp
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and Frp g, rp) will be characterized with their characterizing failure and repair distribu-
tions and corresponding parameters (e.g., exponential distribution with A\gp pp; frp Fp
and A\rp R, FP UFD R, FP values). See Appendix E for failure and repair rate data values

used in this dissertation.

5.2.2 Analysis Algorithm

The DEM approach for repairable systems determines the dependability evaluation al-
gorithm. It defines the dynamic failure behaviour of systems which use fault detection
and reconfiguration implementations covering all possible failure situations for the spec-
ified extended HW/SW architectures. It allows to evaluate the consequence of design
decisions on system dependability systematically. Resulting equations characterize the
failure of such systems compositionally so that the failure logic is kept clear for complex

systems.

To this end, the DEM approach for repairable systems characterizes combinations of
SF’s implementation failures that prevent the extended HW/SW architecture from per-
forming its intended SF'2. The SF will fail (Fsr) when all implementations have failed
(F A mpl.), an implementation fails and reconfiguration does not happen (failure unre-

solved, Funresolved), OF its input dependencies have failed (Fpependencies):

JTSF - OR(-FAII Impl. ) fUnresolveda -FDependencies) (52)

Assuming that we have Ngp implementations of the subfunction, the Fajmp. event

happens when each implementation fails or is detected as failed:

Fantmpl. = AND(Fsk, pp, -, Fspy,, rP) (5.3)

The failure unresolved (Funresolved) OCcurs when the active implementation fails and
either the fault is not detected (failure undetected event) or the reconfiguration itself

fails (reconfiguration failed event). For each implementation there are different failure

I2The failure of any subfunction necessary for a main function provokes the immediate failure of a
main function. Hence, from this point onwards, we will only consider the failure of a subfunction.
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unresolved events (Fuynr. imp;) because each implementation may have different failure

probabilities:
F Unresolved = OR(-FUnr. Impys -« -« Funr. ImpNSF) (54)

To define the failure unresolved event (Fuynr.imp;) let us introduce two new events. The
first event occurs when first the reconfiguration subfunction fails and then the i-th im-

plementation of the subfunction fails when it is active (reconfiguration sequence failure,
FR Seq.; )3

Fr seq; = PAND(FR, FsF, Fp | Active) (5.5)

The second event occurs when first the fault detection of the SF fails and then the

i-th implementation of the SF fails when it is active (fault detection sequence failure,

FFD Seq., )

FFD seq.. = PAND(Frp, Fsr, | Active) (5.6)

Accordingly, the failure unresolved event of the i-th implementation (Fuynr. tmp;) OCCUrs
when either the fault detection sequence (Frp seq,) fails or the reconfiguration sequence
(fR Seq.i) fails:

-FUnr. Imp; — OR(-FFD Seq.; s FR Seq.i) (57)

Dependencies address Input (I) and Control (C) subfunctions influence on control and
Output (O) subfunctions respectively. Control SF failure impacts directly the output
subfunction failure (C—0); and the influence of input subfunction on control subfunc-
tion depends if the system’s control configuration is operating in Closed Loop (C_CL)
or Open Loop (C_OL):

FDependencies = OR(-FDep. C_CL, JrDep. C_OL) (58)
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Assuming that We x=OR(W¢ x,,..., WC,XNW) means that any of the Ny, implemen-
tations of the C_ X subfunction are working (where X = {C'L,OL}), Equations in 5.9
describe the different input SFs that affect each control configuration (I _CL—C _CL,
I_OL—C_OL). Fpep.c_or may not happen because the OL control generally does not

have input dependencies:

Fpep.c_c. = ANDW¢ cr, Fi cr)  Fpep.c_or. = ANDWc on, Fr o) (5.9)

The reconfiguration failure is a special subfunction and therefore Fg is developed like

Equation 5.2, except that there are no additional dependencies:
Fr = OR(FAai R impl.; FR Unresolved) (5.10)

F Al r mpl. indicates the failure of all reconfiguration implementations, and Fr unresolved
designates the reconfiguration’s failure unresolved condition. Assuming M

reconfiguration implementations:

FAIIRImpl. = AND(-FRl O/FPy - -+ -FRM O/FP) (511)

FR Unresolveda happens when M implementations of the FD R_ SF fail simultaneously
and it is a direct consequence to our design choice: all reconfiguration’s fault detection
implementations (FD_R_SF) are active and homogeneous redundancies (heartbeat im-

plementations):
FR Unresolved = AND(Frp Ry, -+, FFD Ru) (5.12)

Accordingly, the false positive of the reconfiguration’s fault detection occurs when all
FD_R_ SF implementations raise the false positive condition simultaneously. Although
the system may operate correctly when a false positive occurs, it has to assume that the

information provided by the fault detection is correct, since there is no mechanism to
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detect the incorrect operation of fault detection.

The fault detection failure Frp depends on the operation of the destination subfunction
(SFpgst), because the FD implementation is located at the same PU. Hence, Fsr prsr

influences directly Fgp.

When the FD implementation fails, the change of SFpggr’s implementation determines
its reconfiguration. We assume that the change of destination SF’s implementation
activates the corresponding FD implementation and the previous one is deactivated.
Equation 5.13 describes the FD__SF failure case when FD _SF has K implementations:

FFD = OR(-FFD_Destl | Actives « -+ -FFD_DestK | Active) (513)

The i-th fault detection implementation’s failure while it is active (FFDiDesti | Active)s
expresses the following event: either i-th destination subfunction or the i-th fault detec-
tion implementation fail while they are active (remember that the i-th fault detection
is located at the same PU as the SF__DEST; implementation - see architectural design

decisions and hypotheses at Section 4.1):

-FFD_Desti | Active — OR(FSF_DESTi | Active) fFDi O | Active) (514)

To avoid creating loops when evaluating system’s dependability, we have considered that
fault detection implementation’s failure is determined by the destination subfunction’s
implementations failure without considering destination subfunction’s input dependen-
cies (cf. Equation 5.14). If dependencies are taken into account, they will create logical
loops. Therefore, the influence of dependencies is taken into account at the “top” sub-
function’s failure level (cf. Equation 5.2). At this level, if any dependent subfunction

fails, it leads directly to the failure occurrence of the subfunction.

5.2.3 Implementation
Stochastic Activity Networks (SAN) formalism meets all the design requirements (cf.

Section 5.1) needed to model extended HW/SW architectures effectively and intuitively
[Sanders02al. Namely, SAN enables to model:
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(1) User defined repair priorities using input and output gates.
(2) The behaviour of dynamic gates using places, activities and input and output gates.
(3) Repeated events and components through the replicate/join formalism.

(4) Any probability density function through simulations.

Stochastic Activity Networks

SAN formalism [Sanders02a] extends Petri Nets model by generalizing the stochastic
relationships and introducing mechanisms to construct hierarchical models. SAN mod-
elling primitives include places, activities, input gates, and output gates [Sanders12| (see
Figure 5.2).

Standard Place | Extended Place | Input Gate | Output Gate | Instantaneous Activity | Timed Activity

O < > [

Figure 5.2: Graphical Notation of SAN Elements

Places represent the state of the modelled system. Each place contains a certain number
tokens defining the marking of the place: a standard place contains integer number of

tokens, while eztended places contain other data types than integers (e.g., floats, array).

There are two types of activities: (1) instantaneous activities represent system activities
which complete in negligible amount of time; and (2) timed activities represent activities
of the modelled system whose duration has an effect on the system performance. With
timed activities the completion time can be a constant value or a random value. When
the completion time is random its value has to be ruled by a probability distribution
defining the time to fire the activity. Parameters of activities may be marking (token)

dependant.

Activities fire based on the conditions defined over the marking of the net and their
effect is to modify the marking of the places. The completion of an activity of any
kind is enabled by a particular marking of a set of places. Assuming that there are

neither input nor output gates, each activity has input and output arcs linked with its
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input and output places respectively. The presence of at least one token in each input
place enables the firing of the activity and removing the token from its input places and

placing them in the output gates.

Associated with each activity is a reactivation function. This function defines the mark-
ing dependent conditions under which an activity is reactivated, that is, the activity is
aborted and a new activity time is immediately obtained from the activity time distri-
bution. The reactivation function consists of an activation predicate and reactivation
predicate. An activity is reactivated at the moment of a marking change if (1) the
reactivation predicate holds for the new marking; (2) the activity remains enabled; and
(3) the activation predicate holds for the marking in which the activity was originally

activated.

Each activity may have more than one case associated to it, which stands for a possible
outcome of the activity. Each case corresponds to a certain effect of the completion of

an activity and has a predetermined probability.

Another way to enable a certain activity consists of input and output gates. 1/O gates
make SAN formalism general and powerful enough to model complex real situations.
They determine the marking of the net based on user-defined rules, which determine

when an activity fires and its effect on the marking of the net.

Input gates control the enabling of activities and define the marking changes that will
occur when an activity completes. A set of places are connected to the input gate and
and the input gate is connected to an activity characterizing the marking of the net

based on two expressions:

e FEnabling predicate: a boolean condition expressed in terms of the marking of the
places connected to the gate; if such condition holds, then the activity connected

to the gate is enabled.

e Input Function: the effect of the activity completion on the marking of the places

connected to the gate.

An output gate is connected to an activity and a set of places and it defines the marking
changes that will occur when an activity completes. It specifies the effect of activity
completion on the marking of the places connected to the output gate. Output gates

are defined only with an output function. The function defines the marking changes
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that occur when the activity completes.

The replicate/join operators allow to model through a compositional tree structure
different atomic SAN models linked in a unique component-based composed model. In
the tree structure, atomic SAN models are linked together through join operators using
the shared places between SAN models. The replicate operator constructs a number
of identical copies of the SAN model through the replicate operator (same concept as
Parametric Fault Trees [Codetta-Raiteri05]).

Therefore, the analyst can focus on specific characteristics of the system behaviour
through fit-for-purpose atomic models and later join independently validated atomic

models to obtain a more complex composed system model.

The performance measures are carried out through reward variables by choosing a spe-
cific solver to generate the solution. Reward functions are defined in order to retrieve
a performance measurement over the specified model. There are two kind of reward
functions (1) state reward functions, which are based on the marking of the net; and
(2) impulse reward functions, which are based on the completion of the activities. The

performance measurement is evaluated as the expected value of the reward function.

The modelling and analysis of SAN models is performed through the Mdbius tool
[Courtney04; Tllinois14]. Please refer to [Sanders02a; Sanders12| for more information

and formal definition of SAN formalism.

5.3 Cost Analysis

Apart from the hardware and software cost described in Section 4.5, downtime costs
are also included when studying repairable systems to reflect the penalization incurred

due to the system’s unavailability.

In the specific case of railway systems, downtime cost is a critical factor which impacts
negatively the overall economic budget. The downtime cost will be measured as the
combination of: (1) number of travels lost while the train was stopped (travels lost);
(2) number of people in each travel (people_travel); and (3) average cost of a ticket per

person (ticket cost):

160



downtime __cost = travels _lost X people travel x ticket cost

travels .
x downtime

travels lost =
our

downtime = unavatlability X mission time

We will assume that we do not have to stop the whole train in order to fix a failure

in a single car. Besides, for calculation purposes let us assume the following values

travels
hour

(common values for a short-distance (< 50 km) train): = 2; people_travel =
20; and ticket cost = 1 €. The mission time will be considered 30 years and we will

evaluate the unavailability at T — 30 years time instant.

5.4 Results

Since the detailed dependability analysis of repairable Door Status Control and Fire
Protection Control main functions require considering similar underlying concepts, in
Subsection 5.4.1 we introduce the key concepts and models for the dependability analysis
of extended HW/SW architectures using a simple example. Applying the concepts and
models explained in Subsection 5.4.1, dependability and cost evaluations of the Fire
Protection Control and Door Status Control main functions are examined in Subsection

5.4.2 and Subsection 5.4.3 respectively.

5.4.1 SAN Generic Models

Consider the hypothetical system displayed in Table 5.2 comprised of prioritized im-
plementations each of them characterized by their constituting resources, in turn char-
acterized with their corresponding failure and repair rates. This model is simple but
representative enough to describe the main dependability modelling characteristics that

are used to analyse more complex extended HW/SW architectures.

In the remainder of this subsection, we apply the equations described in the Depend-
ability Evaluation Modelling approach for repairable systems (cf. Section 5.2) to the
hypothetical extended HW/SW architecture displayed in Table 5.2 in a bottom-up man-

ner. System’s failure probability calculation is performed using the SAN formalism by

161



Table 5.2: Repairable HW/SW Architecture Example

MF | SF | Subfunction Type Implementation Resources Priority | #
SF I Impll Resl, Res2, Res3 1 1

SF I Impl2 Res2, Res4, Resb 2 2

FD_ SF FD FD_TImpll Res2, Res6, Res7 1 3

R_SF R R_Impll Res2, Res7, Res8 1 4

MF | SF R_SF R R_Impl2 Res7, Res9, Res10 2 5
FD R _SF FD_R FD R Impll Res2, Res10, Resl1 1 6

FD R _SF FD R FD R _Impl2 Res7, Res10, Res12 1 7

ControlSF C C_Impll Resl, Resl2, Res13 1 8

OutputSF O O TImpll Resl, Resl4, Reslb 1 9

means of the Mobius tool.

Resources

Resources are the most basic models in the DEM approach. The failure characterization

of resources (Fres) is defined according to their failure and repair rates.

In the SAN notation, we model resources with atomic models characterizing their failure
and repair rates through activities. Figure 5.3 describes the characterization of the
resource Resl: places Resl OK and Resl KO model working and failed states and
activities Res! Fail and Resl Repair model failure and repair activities with their

corresponding probabilistic distribution and parameters.

Res{_OK Res1|_Fail

Res1_Repair Res1_KO

Figure 5.3: Atomic Model of Resources (R01_Resl)

In order to use a consistent nomenclature throughout this chapter, the models
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of resources are denoted as RX Resource where X identifies the resource X =
{1,2,...,15} (cf. Table 5.2).

Implementations

The failure of each implementation is characterized according to the working or failure

states of its constituting resources (cf. Equation 5.1).

There are two kind of implementations: implementations without redundancies and
implementations with redundancies. In both cases, the implementations will be charac-
terized with two interconnected models: an atomic model describing implementation’s
failure/repair logic; and a composed model which links: (1) the models of the imple-
mentation’s resources describing their failure/repair logic (cf. Figure 5.3); with (2) the
model of the implementation which describes its failure/repair logic (cf. Figure 5.4,
Figure 5.6).

The implementation’s models are named as [# Implementation and their composed

models are named as top I# Implementation where # identifies the implementation

#={1,2,...,9}.

Implementations without redundancies are modelled with failed and repair events
without the need to activate redundant implementations. Figure 5.4 presents the SAN
model of the implementation #3 from Table 5.2. Implementations without redundancies

are characterized with the following places:

e [ FD Impll_ Active: implementation active place. The initial marking of this

place will be 1.

e | FD Impli KO:implementation failed place. The input gate Fail FD_ Impll
sets the marking of this place to 1 if any of its constituting resources (Res2, Res6,
ResT) is failed, otherwise if all the resources are working the marking of this place

will be zero.

e Res?2 KO, Res6 KO, Res7 KO: these places indicate the failure of the imple-

mentation’s constituent resources (see Figure 5.3).

Table 5.3 displays the failure and repair activities behaviour modelled through
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Table 5.3: Activities in 103 FD Impll

Activity: FD Impll Fail
Fail_FD_Impl1 - -
FD_Impl1_Fail Time to [ = iiate
complete:
I_FD_Impl1_Active
Input

TFD_Imp_KO | gate: Fail FD Impll

m(I_FD Tmpll KO)== &&
Repair_FD_Impl1 FD_Impl1_Repair (

m(Res2_ KO)==1||m(Res6 KO)==1

| m(Res7 KO)==1))

Input gate E
predicate: |

Figure 5.4: Atomic Model of Implementations

without Redundancies (I03_FD_Impll, #3) fhput gate ngggfggﬁfﬁg;g%m

Activity: FD TImpll Repair

Submodel

103_FD_Impl1 .
Time = to Immediate
complete:
Submodel
Submodel
R02_Res2 RO7_Res? Input Repair FD Impll
gate: - =
Submodel
R06_Res6
(m(I_FD TImpll KO)==
Figure 5.5: Composed Model of [Im- | Input gate && m(Res2_KO)==0 &&
I tati hout Redund . predicate:  m(Res6 KO)==0 &&
piementations withou eaunaancles m(Res?iKO)::0)

(top_ 108 _FD_Impll)
Input gate m(I_FD Impll Active)=1;
function: m(I_FD_TImpll KO)=0;

Fail_FD_Impll and Repair_FD_Impll input gates'® and Figure 5.5 displays the com-
posed model, which links the models of resources (cf. Figure 5.3) and implementation
(cf. Figure 5.4) using the join operator and shared places. Using the join operator se-
lected places are shared among the models that contain this place. By means of shared

places, repeated resources and repeated components are modelled.

Again for reading purposes, we will simplify the information shown in the following
input gate tables. Specifically we will omit the linked activity which can be seen in the
corresponding figure and we will also omit the time to complete because in all the

cases studied throughout this chapter it is always immediate.

Implementations with redundancies require to (de)activate (or reconfigure) redun-

dant implementations according to the implementations’ states and priorities. Figure

13The function m(z) denotes the marking of the place x.

164



5.6 depicts the SAN model of the implementation #1 from Table 5.2.

Table 5.4: Activities in 101 Impl1

Y < |

|
Impl1_Fail

Input Fail Impll
Timpl1_Kko gate: -
. ((m(Resl_KO)== [l
Impl1_Repair —
PR Tnput gate ) (Resa KO)==1[m(Res3_KO)==1)
I Impi1_Reconfigure I_Impl1_StandBy p ’ && m(I_Impll KO)==0)

Figure 5.6: Atomic Model of the Implementa- if(m(I_Impll_ Active)==1)

; ; ; m(I_Impll Active)=0;
tions with Redundancies (101 _Impll, #1) Input gate it(m(I_Tmal1~Standiy)o—1)
m(I_Impll StandBy)=0;

m(I_Tmpll KO)=1;

function:

Submodel

101_Impl1 Input .
gate: Repair_Impll
Submodel Submodel (m(I_Impll_KO)==1 &&
R03_Res3 m(I_ Impll StandBy)==0
RO1_Res1 Ir;gz;:cfs‘:.e L& m(Resl_KO)==0 ok
Submodel P : m(Res2 KO)——0 i

R02_Res2 m(Res3_KO)==0)

F_igure_ 5.7: Compos_ed Model of Implementa- Input gate m(I_Tmpll_KO)=0;
tions with Redundancies (top 101 _Impll) function: m(T_Tmpll_StandBy)—1;

Replicated subfunction’s implementations are characterized with the following places:

e [ Impll Active: implementation active place. If the implementation’s priority is
the highest, then the initial marking of this place will be 1, otherwise the initial

marking of this place will be zero.

e [ Impll KO: implementation failed place. The input gate Fail Impll sets the
marking of this place to 1 if any of its constituting resources fails (Resl, Res2,

Res3). If all resources are operative the marking of this place will be zero.

e [ Impll StandBy: implementation standby place. If the priority of the imple-
mentation is the highest among the subfunction’s implementations, the marking
of this place will be zero. Otherwise, if the priority of the implementation is not
the highest or if the implementation has been repaired after a failure the marking

of this place will be 1.

e [ Impll Reconfigure: reconfiguration place. This place will be activated through

the reconfiguration implementation model (see Figure 5.8). The marking of this
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place is zero until the reconfiguration implementation logic decides to reconfigure
an implementation and sets its marking to 1. Therefore, when this place is set to 1
and the marking of the StandBy place is one, the implementation will be activated

immediately setting again the marking of the place I Impll Active to one.

e Resi KO, Res2 KO, Res3 KO: these places indicate the failure of the imple-

mentations constituent resources according to the logic described in Figure 5.3.

Note that an implementation may fail either when it is in active operation or in standby
operation. Table 5.4 displays failure and repair characterizations of input gates for
implementations with redundancies. The composed model of the implementation with
redundancies is depicted in Figure 5.7. The difference with the implementation without
redundancies is on higher levels when connecting composed models of implementations

with their reconfiguration logic and failure logic.

The shared resources among implementations act as common cause failures for all the
implementations which use the places of the resources as a part of the implementations

failure characterization.

Reconfiguration’s functional operation

When a implementation fails, the reconfiguration implementation has to activate an
available redundant implementation taking into account implementation’s priorities. In
order to manage the marking of the reconfiguration places in the models of the imple-
mentations with redundancies (tagged with the suffix Reconfigure in the Figure 5.6, i.e.,

I Impll Reconfigure) the model of the reconfiguration logic is created (cf. Figure 5.8).

The reconfiguration logic in Table 5.5 enables the priority-based reconfiguration. The
Reconfigure input gate reconfigures subfunctions’ implementations via shared places
I Impll Reconfigure (see Figure 5.6) and I Impl2 Reconfigure. If the reconfiguration
logic determines that an implementation should be reconfigured, it sets a token in
its respective Reconfigure place. When there is a token in I Impll Reconfigure or
I Impl2 Reconfigure place, the corresponding implementation (according to the model
of the implementation with redundancies - see Figure 5.6) moves the token from the
StandBy place to the Active place and it starts operating immediately. Table 5.5 dis-
plays the logic of the Reconfigure input gate.
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Table 5.5: Activities in  Reconfigura-

I_Impl1_|StandBy . .
tionLogic_ SF
2 Input Reconfigur
I_Impl1_Reconfigu gate: econfigure
ffigure ReconfigurationLogic
((m(I_Impll KO)==1 &&
I_Impl2_Reconfigure Input gate m(I Impl2 StandBy)==1)
predicate: [l (m(I_Impl2 KO)==1 &&
m(I Impll StandBy)==1)))
I_Impl2_KO
IImpl2_StandBy if(m(I_Tmpl1_StandBy)==1)
. . Input gate m(I_ Impll Reconfigure)=1;
Figure 5.8: Atomic Model of the Reconfigura- | function: else if (m(I_Impl2_StandBy)==1)
tion Logic (ReconfigurationLogic SF) m(I_Impl2_Reconfigure)=1;

The input gate function in the Reconfigure input gate enables to reconfigure the sub-
function’s implementation to the available highest priority implementation. The mod-
els which characterize the reconfiguration logic are named as ReconfigurationLogic_ XX
where XX identifies the specific subfunction (XX={SF, R_SF, FD_R_SF}).

Implementation fails while active

With non-repairable resources it is enough to assume that implementations are recon-
figured sequentially and the logic for the system operation can be defined based on the
failed implementations. However, with repairable resources it is necessary to keep track

of which implementation is active to define the failure logic of system events (cf. Figure

5.1 (a)).

To determine which implementation is active, it is necessary to check the status of all
subfunction’s implementations. In the hypothetical example displayed in Table 5.2 there
are two implementations for the subfunction SF: Impll (#1) and Impl2 (#2). Impll
fails while it is active when the first implementation fails (m(I_Impli_ KO)=1) and the

second implementation is not active (m(I_Impl2_Active)=0).

The input gates Impll FailActive and Impll _NoFailActive in Figure 5.9 implement
the logic displayed in Table 5.6. The composed model depicted in Figure 5.10 links (1)
composed models of the subfunction implementations (top 101 Impll, top 102 Impl2
- see Figure 5.6), (2) the reconfiguration logic to switch from one implementation to

other (ReconfigurationLogic_SF - see Figure 5.8) and (3) fail while active failure logic
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(F01_Impll FailActive - see Figure 5.9).

A_Fail_Active

I_Impl1_KO
Impl1_FailActive

Fail_Active

Impl1_NoFailActive
|_Impl2_Active

A_NoFailActive

Figure 5.9: Atomic Model of the Fail while
Active Logic (F01_Impll_FailActive)

Submodel
ReconfigurationLogic_SF

Submodel
top_101_Impl1

Submodel
FO1_Impl1_FailActive

Submodel
top_102_Impl2

Figure 5.10: Composed Model of the Fail while
Active Logic (top_ F01_Impll_FailActive)

Table 5.6: Activities in FO01 Impll FailActive

Input Impll FailActive
gate: -

(m(T_Tmpll KO)==1 &&
I[:_z;;;cf:;e m(I_Impl2 Active)==0 &&
p " m(Fail Active)==0)
Input gate . pil Active)=1;
function: -
Input Impll NoFailActive
gate: -

(m(Fail _Active)==1 &&
I‘;E;‘itcffie (m(I_Impll KO)==0 I
p " m(I_Tmpl2 Active)==1))
Input gate . R
function: m(Fail Active)=0;

The models of the failure events are named as Fnn_SF_FM where nn identi-
fies the failure number, SF names the subfunction SF={SF, R_SF, Impll, Impl2,
FD_R_SF, ControlSF, OutputSF} and FM identifies the failure mode of the subfunc-
tion FM—={FailActive, AllFail, AlIRFailed, RUnresolved, Failure, RF1, RF2, RF, FUI,
FU2, FU}; where FU stands for failure undetected event (equivalent to the fault de-

tection sequence failure event Frp geq); and

RF stands for reconfiguration failed event

(equivalent to the reconfiguration sequence failure event Fpg g.,) see Table 5.7.

Table 5.7: Fault Detection and Reconfiguration Failure Events and Assigned Names

Event Place name Event Place name
FFD Seq FU Fr Seq RF
FFD Seq.; FU: FR Seq.; RF1
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All implementations failed

All implementations failed event (cf. Equation 5.3) describes the situation in which all
the implementations of a subfunction are failed at the same time (cf. Figure 5.11). The

place AlllmplFailed indicates the all implementations failed event and the failure logic
is determined by the input gates AllFailed and AllNoFuailed (cf. Table 5.8).

Table 5.8: Activities in F07 SF _AllFail

Input AllFailed
gate:
(((m(I_Impll KO)==1 &&
1_Impi2_KO AlNoFailed Input gate m(I_TImpl2 KO)==1) [l
predicate: m(FD_FalsePositive)==1) &&
AllnFall m(AlllmplFailed)==0)
Figure 5.11: Atomic Model of the All Fail | 1,50t gate Al Failed
. . m mplFailed)=1;
Event (F07_SF_ AllFail) function: (AllimplFailed)
Input AllNoFailed
gate:
Submodel R15_F_FP
top_101_Impl1 ((m(IilmplliKO)::O ‘ ‘
e Input gate m(I_Impl2 KO)==0) &&
tol|2 F07_SF_AlFail predicate: m(FD _FalsePositive)==0 &&
o Submodel m(AllImplFailed)::l)
ReconfigurationLogic_SF
s . . Input gate RN
Figure 5.12: Composed Model of the All Fail | ¢ .. = m(AlllmplFailed)=0;

Event (top_F07 SF_AllFail)

Figure 5.12 shows the composed model for all implementations failed event, linking
implementations (top 101 Impll, top 102 Impl2) - see Figure 5.7 (Impl2 is the same
with its corresponding resources), their reconfiguration logic (ReconfigurationLogic_ SF)
- see Figure 5.8, the failure logic (F07 SF _AllFail) - see Figure 5.12 and false positive
failure event (R15 SW_SF SF FP) - which is the same as resource models (see Figure

5.3) with its corresponding failure and repair rate.

Reconfiguration subfunction failure
The reconfiguration subfunction’s failure will occur when (cf. Equation 5.10): (1) all

reconfiguration implementations fail (AllRFailed event); or (2) reconfiguration imple-

mentation’s failure is unresolved (RUnresolved event).
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All reconfiguration implementations failed: AllRFuiled event occurs when all the
reconfiguration implementation fail simultaneously or reconfiguration’s fault detection
raises a false positive signal. In the model displayed in the Table 5.2, the AlIRFailed
event is defined as follows (cf. Equation 5.11):

Fr, o/Fp = OR(FR_1mpit, FFD_RFP)
Fr, 0/pp = OR(FR tmpi2, FFD R FP) (5.15)
Fanr tmpl. = AND(FR, o/rp; Frs 0/FP)

The event Fajr mpl. is described in Figure 5.13. The places I_R_Impli KO and
I R Impl2 KO indicate the state of the reconfiguration subfunction’s implementa-
tions, F'D_R_ FalsePositive indicates the presence of false positive signals and AllRe-

configFailed place denotes the event Fay g mmpi.- The failure logic is implemented using
the input gates AIIR_ Failed and AlIR_ Working (cf. Table 5.9).

Table 5.9: Activities in
F03 R _SF AllRFailed

Input AIIR_Failed
gate: -

AliRfailed (((m(I_R_Impll KO)==1 &&
Input gate R Impl2 KO)==1) Il

m(I
predicate: m(FD_R_FalsePositive)==1) &&
m(AllReconfigFailed)==0)

I_R_Impl1 ' (
FD_R_FalsePositive .

AllReconfigFailed

Input gate RN
T function: m(AllReconfigFailed)=1;
I_R_Impl2_KO AIIR_Working
Input AIIR._ Working
gate: —
AlRWorking ((m(I_R_Impll KO)==0 ||

Input gate m(I_R TImpl2 KO)==0) &&
Figure 5.13: Atomic Model of AllRFailed | predicate: m(lA?D_R_l;lalse?OSitive)::0) &&
Event (F03 R_SF_AllRFuiled) m(AlReconfigailed)==1)

Input gate

function: m(AllReconfigFailed)=0;

The logic to reconfigure R_SF implementations is in Figure 5.14. The input gate
R_SF_Reconfigure defines the order of the reconfiguration for the reconfiguration im-

plementations according to their priorities in Table 5.2.

As defined in the R_ SF_ Reconfigure input gate (cf. Table 5.10), the implementation on

170



Table 5.10: Activities in  Reconfigura-
tionLogic_ R_SF

y I_R_Impl1_Reconfigure

Input

I_R_Impl1_KO
—-mer gate:

R_SF_Reconfigure
R_SF”Reconfigure - ReconfigurationLogic R_SF
(((m(T_R_Tmpll KO)== &&

Input gate m(I_R_Impl2_ StandBy)==1)
predicate: | (m(I_R Impl2 KO)==1 &&

I_R_Impl2_StandBy

I_R_Impl2_Reconfigure

I_R_Impl2_KO m(I_R_Impll StandBy)==1)))
Figure 5.14: Atomic Model of Reconfiguration if(m(I_R_Impll_StandBy)==1)
Implementation’s Reconfiguration Logic (Recon- | Input gate  m(I_R_Impll_Reconfigure)=1;
function: else if(m(I_R_Impl2 StandBy)==1)

figurationLogic_ R_ SF) m(I_R_ Tmpl2 Reconfigure)=1;

standby with the highest priority is selected for reconfiguration. Which is implemented

according to their position in the "if-else" clauses.

Submodel
ReconfigurationLogic_R_SF

Submodel
top_l104_R_Impl1

Submodel
F03_R_SF_AlIRFailed

Submodel

top_l05_R_Impl2 Submodel

R16_SW_FD_R_FP

Figure 5.15: Composed Model of the All Reconfiguration Implementation Fail Event
(top_ F03_R_SF _AllRFuiled)

The top-level composed model in Figure 5.15 links the following composed
models:  reconfiguration implementations composed models (top 104 R_Impll,
top_I05 R_Impl2); false positive failure model (R16 SW_FD_ R _FP); the cor-
responding failure logic model F03 R_SF AllRFailed (cf.  Figure 5.13); and
reconfiguration logic model ReconfigurationLogic_ R_SF (cf. Figure 5.14).

Reconfiguration Unresolved Event: the same modelling process applies to the

reconfiguration unresolved failure event. Applying Equation 5.12 to the Table 5.2:

FRUnresolved = AND(-FFD_RN FFD_R2) (516)

Figure 5.16 displays the reconfiguration unresolved event model. The operation of the
implementations F'D _R_ Impll and FD_R_ Impl2 together with the input gates Unre-

solved and NotUnresolved (cf. table 5.11) determine if the reconfiguration is unresolved.
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Table 5.11: Activities in
F04 R _SF RUnresolved

Input

Unresolved
gate:
|_FD_R_Imp! dnresolved (m(I FD R Impll KO)==1 &&
u Input gate 1 pp R Tmpl2 KO)==1 &&

predicate:
. ReconfigUnresolved m(ReconfigUnresolved)==0)
I_FD_R_Impl2_KO :‘:E:tt iogna-te m(ReconfigUnresolved)=1;
NotUnresolved )

g;l;:t NotUnresolved
Reconfiguration_Resolved Input gate ((I(n(liFDiRilmplliK)O)::)O &&L'
. _ vsate (1 FD_R_Impl2_ KO)==0
Figure 5.16: Atomic Model of the | predicate: m(ReconfigUnresolved)==1)
Reconfiguration Unresolved Event
(F04_R_SF_RUnresolved) :‘:[[::;iogna-te m(ReconfigUnresolved)=0;

The implementations of the fault detection of the reconfiguration (FD_R_SF) operate
in heartbeat/keepalive configuration: all implementations are operating and there are
no priorities between them (cf. Figure 5.17, Table 5.12). FD_R_SF Reconfigure input

gate reconfigures all fault detection implementations that go on standby.

Table 5.12: ReconfigurationLogic_ FD R_SF
Activity Characterization

|_FD_R_Impl1_StandBy |_FD_R_Impl{_Reconfigure

Input

FD R _SF_Reconfigure
gate: - = -

|_FD_R_Impl1_KO

poonfigure  ReconfigurationLogic_FD_R_SF ((m(I_FD_R_TImpll KO)==1 &&
I_FD_R_Impl2_StandBy Input gate m(I_FD R Impl2 StandBy)==1)

predicate: [| (m(T _FD R TImpl2 KO)==1 &&
(

m(I_FD R Impll StandBy)==1))

|_FD_R_Impl2_KO |_FD_R_Impl2_Reconfigure
if(m(I_FD R_Impll StandBy)==1)
Figure 5.17: Reconfiguration Logic FD R | Input gate m(I_FD_R_Impll_Reconfigure)=1;

. . function: iflm(I_FD R TImpl2 StandBy)==1)
(ReconfigurationLogic_ FD_R_ SF') m(I_FD_R_Impl2 Reconfigure)—1;

The composed model of Frunresolvea (cf-  Figure 5.18) links the following mod-
els: composed models of the fault detection of the reconfiguration (FD_R_SF) im-
plementations (top 106 FD R _Impll, top 107 FD R_Impl2); failure unresolved
logic model (F04 R _SF _RUnresolved); and reconfiguration logic model (Reconfigu-
rationLogic_ FD _R_SF).
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Submodel
ReconfigurationLogic_FD_R_SF

Submodel
F04_R_SF_RUnresolved

Submodel Submodel
top_l06_FD_R_Impl1 top_l07_FD_R_Impl2

Figure 5.18: Composed  Model of Reconfiguration  Unresolved  Event
(top_ F04_R_SF _RUnresolved)

Reconfiguration Subfunction Failure: Figure 5.19 models the reconfiguration sub-
function failure event (cf. Equation 5.10). The place SF_R_ Failed indicates that the
reconfiguration subfunction has failed. This event will be based on the marking of the
places AllReconfigFailed (shared with the places in Figure 5.13) and ReconfigUnresolved
(shared with the places in Figure 5.16). The behaviour of the model is described by the
input gates SF_ Reconfig Fail and SF_Reconfig NotFail (cf. Table 5.13).

SF_R_Fail
Table 5.13: Activities in F05 R_SF Fuailure
AIIReconﬁnﬁg_Faile I S, _
_Failed
A Toput SF_Reconfig_Failed
ReconfigUnresolved SF_Reconfig_NotFailed & ’
((m(AllReconfigFailed)==1 Il
Ir:_gzitcffie m(ReconfigUnresolved)==1) &&
p * (m(SF_R_ Failed)==0))
SF_R_NotFail
. . Input gate RN
Figure 5.19: Atomic Model of the Reconfigu- | finction: ~ ™(SF_R_Failed)=1;
ration SF Fail Event (F05_R_SF _Failure)
Input SF_Reconfig NotFailed
gate: - -
Submodel Submodel
top_F03_R_SF_AlIRFailed F05_R_SF_Failure Input sate (m(AllReconfigFailed)==0 &&
rzdicfte m(ReconfigUnresolved)==0 &&
p *  m(SF_R_Failed)==1)
Submodel
top_F04_R_SF_RUnresolved Input eate
i ot® m(SF_R_Failed)=0;
Figure 5.20: Composed Model of '

the Reconfiguration SF Fail Event
(top_ F0O5_R_SF _Failure)

The composed model (cf. Figure 5.20) is used to determine the failure probability of the
reconfiguration subfunction. Accordingly, it links implementations, resources and their
failure logic via shared places: all reconfiguration implementations failed event model:
top_ FO3 _R_SF AllRFuailed (cf. Figure 5.13); reconfiguration unresolved event model:
top_ F04 R _SF RUnresolved (cf. Figure 5.16); and reconfiguration subfunction failure
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logic model: F 05 R_SF Failure (cf. Figure 5.19).

Fault detection subfunction failure

The fault detection subfunction failure is defined in terms of the failure of the fault
detection implementation or failure of the function implemented at the destination PU
of the monitored function (cf. Equation 5.14). Analysing the implementation #3 in
Table 5.2, the fault detection subfunction failure (.FFD_SF) will be determined either by

the failure of the fault detection function itself or failure of the control subfunction.

Figures 5.4 and Figure 5.21 show the models of the fault detection and control sub-
function implementation failures respectively. In this example neither implementations
have redundancies (cf. Table 5.2) and therefore, they are modelled following the same

characterization as described in Figure 5.4.

Control subfunction failure: the 109 ControlSF _NoDependencies model (cf. Figure
5.21) indicates that the control subfunction implementation has failed when any of its
resources is down (Resl, Res12, Res13). In order to avoid creating logical loops, it is
assumed that the failure of the control implementation will be provoked only through
its implementations - if dependencies are considered there will be logical loops. Table
5.14 displays the failure logic implemented in the input gates and Figure 5.22 depicts

the composed model which links the implementation’s failure logic with its constituting

resources.
Fault detection subfunction failure: the model which describes the
fault detection subfunction failure event (cf. Figure 5.23) uses the places

I FD SF KO and I SF Control KO from the models 108 FD SF Fuailure,
109 ControlSF _NoDependencies respectively.

Table 5.15 describes the logic implemented in the input gates FD_Failure and
FD _NoFuail and Figure 5.24 shows the composed model of the fault detection subfunction
failure. The places between the composed models of the control subfunction failure (cf.
Figure 5.22), fault detection failure (cf. Figure 5.5) and the fault detection subfunction
failure (cf. Figure 5.23) are shared.
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SFControl_Fail

Table 5.14: Activities in
109 ControlSF _NoDependencies

Fail_SFControl

Input Fail SFControl
) gate: -
|_SF_Control_Active |_SF_Control_KO
(m(I_SF_Control KO)==0
Input gate && (m(Resl_KO)==1
Repair_SF_Control predicate: [l m(Res12 KO)==1 [l
m(Res13 KO)==1))
SFControl_Repair -
. . Input gate m(I_SF_Control Active)=0;
Figure 5.21: Atomic  Model  of | function: m(I_SF_Control  KO)=1;
the  Control Subfunction  Fail = Event
(109 _ControlSF _NoDependencies) Ig':t’:_t Repair_SF_ Control
Submodel
109_ControlSF_NoDependencies (m(I_SF_COHtI‘Ol_KO)::l
Submodel Input gate && m(Resl KO)== &&
RO1_Res1 predicate: m(Res12 KO)==0 &&
m(Resl13 KO)==0)
Submodel —
Submodel R13_Res13
R12 Res12 Input gate m(I_SF_Control Active)=1;
. function: m(I SF Control KO)=0;
Figure 5.22: Composed Model of the Control (1_SF_ ~KO)=0;

Subfunction Fail Event (top 109 ControlSF)

Reconfiguration sequence failure

The reconfiguration sequence failure event of the hypothetical system displayed in Table

5.2 is expressed as follows (see also Equation 5.5):

Frseq. sv = PAND(Fr s, Fsp, | Active)
FRseqs sF = PAND(Fr s, Fsrs | Active) (5.17)
Frseq sF = OR(FRrseq srs FRSeqs SF)

Table 5.7 displays nomenclature equivalences between the reconfiguration-related fail-
ure equations and the SAN model’s events. To create this model previously defined
models will be linked using shared places (cf. Figure 5.25): top  F01 Impll FailActive
(cf. Figure 5.9), top F05 R_SF Fuilure (cf. Figure 5.20) and PAND gate’s model'*
(PAND(A,B)). PAND gate’s A and B events are connected with the SF_R_ Failed

A SAN component has been designed which implements the PAND gate’s logic for repairable
systems. Interested readers please refer to Appendix F to see implementation details and validation.

175



Table 5.15: Activitiesin F08 FD_SF Failure

I_FD_S
A D_SF_Fail Inout
npu FD_Failure

I_SF_Control_KO OR_NgFailure gate:
(m(FD_SF_Fail)==0 &&
Ir:-z;:cf:;e (m(I_FD_SF_KO)==1 I
FD_noFail P ’ m(I_SF_Control KO)==1))
Figure 5.23: Atomic Model of the | 544 gate (D S Fail)—1.
Fault Detection Subfunction Failure | function: —or =TT
(F08_FD_SF_ Failure)
Input FD_NoFailure
gate: -
Submodel
F08_FD_SF_Failure Input eate (m(FD_SF_Fail)==1 &&
e ® m(I_FD_SF_KO)==0 &&
p * m(I_SF_Control _KO)==0)
Submodel
Submodel Input gate .
top_{03_FD_Implt top_109_ControlSF fur[:ctiogn: m(FD_SF _Fail)=0;

Figure 5.24: Composed Model of
the Fault Detection Subfunction Failure
(top_ F0O8 FD_SF _Failure)

place of the model top F05 R_SF Fuailure and FuailActive place of the model
top_ FO1_Impll_FailActive respectively (see Equation 5.17). The output place of the
PAND gate’s model is named PAND_RF1.

Submodel
top_FO01_Impl1_FailActive

Submodel
top_F05_R_SF_Failure

Submodel
A _PAND_B

Figure 5.25: Composed Model of the Fg seq., Event (top_ F06_Impll _RF1I)

The reconfiguration sequence failure event model for the second imple-
mentation (Fgrgeq. sp) is created following the same logic by connecting:
top_ F02_Impl2_FailActive, top  F05 R _SF Failure (cf. Figure 5.20) and PAND
gate (see Equation 5.17). The output place of the PAND gate’s model is named
PAND_RF2.

Finally, in Figure 5.26, both reconfiguration sequence failure models (Fg seq., sr and
FRseqo sr) are linked using the places PAND_RF1 and PAND_ RF2 respectively. The
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output of the equation Fggeq. sr (cf. Equation 5.17) is included in the place RF.

| Table 5.16: Activities in F06 SF RF
PAND_RI RF1 - -

RF | Input

gate: OR

PAND_RF2 no_RF no IRF1
Input gate (m(RF)==0&&(m(PAND_ RF1)==1
Figure 5.26: Atomic Model of the FRseq. sp | predicate: || m(PAND_RF2)==1))

Event (F06 SF_RF) Input gat
nput gate

function: m(RF)=1;
Submodel Input
FO6_SF_RF gate: no_RF

Submodel Submodel Input gate (m(RF)==1&& m(PAND RF1)==
top_F06_Impl1_RF1 top_FO06_Impl2_RF2 predicate: && m(PAND RF2)==0)

Figure 5.27: Composed Model of the :‘nputt. ga-te (RF)=0;
FRSeq. st Event (top_ F06_SF_RF) unction:

Figure 5.27 describes the composed model which links reconfiguration sequence fail-
ure events (}"RSeq,l_sp, FRSeq,2_SF) and the reconfiguration sequence failure logic

(FRseq._sv), see Equation 5.17.

Fault detection sequence failure

This development is very similar to the reconfiguration sequence failure model. The
fault detection sequence failure equations of the configuration displayed in Table 5.2 are

expressed as follows (see Equation 5.6):

FrD Seq. _sF = PAND(Frp_sr, FsF, | Active)
F¥D seqs sF = PAND(Frp sr, Fsr, | Active) (5.18)

FED seq_sF = OR(FFD seq; _SF» FFD Seqs SF)

Table 5.7 displays nomenclature equivalences between the fault detection re-
lated failure equations and the SAN model’s events. To characterize the event
FFDseq, sk a composed model is created linking the following composed models:
top_ FO1_Impll_FailActive (cf. Figure 5.9); top  FO8 FD_SF Failure (cf. Figure
5.23); and PAND gate model (PAND(A,B)), where event A is shared with the event
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FD_SF_Fail and event B is shared with the event FailActive (see Equation 5.18). The
output place of the PAND gate’s model is named PAND FUI.

Join1

Submodel
top_F08_FD_SF_Failure

Submodel
top_FO01_Impl1_FailActive

Submodel
A_PAND_B

Figure 5.28: Composed Model of the Frp seq., Event

Similarly, the event Fgpgeq, sr is created by linking its corresponding fail active
event model (top F02 Impl2 FuailActive); fault detection subfunction failure model
(top_ FO8 FD_SF Failure) and PAND gate’s failure logic model (see Equation 5.18).
The output place of the PAND gate’s model is named PAND _FU2.

The model in Figure 5.29 links both Fpp geq.; sr and Fpp seq., sr in order to characterize
the Frp seq. event (cf. Equation 5.18). Table 5.17 displays the logic of the input gates
FailUndetected and FailDetected, which determine the Fpp seq. sk event in Figure 5.29.

FailUndet

Table 5.17: Activities in F09 FD SF FU

PAND_detecte
A FU Input FailUndetected

gate:

PAND_FU2 FailDetected
Input gate (m(FU)==0&&(m(PAND FUl)==1
FallDet predicate: || m(PAND FU2)==1))
Figure 5.29: Atomic Model of the Fpp geq. s | Input gate m(FU)=1;

Event (FOQ_ FD_ SF_ FU) function:

Input
gate:

FailDetected

Submodel Input gate (m(FU)==1&&m(PAND FUl)==
F09_FD_SF_FU predicate: && m(PAND FU2)==0)

Submodel
top_FO09_Impl1_FU1

Submodel I ¢ ¢
top_F09_Impl2_FU2 nput gate

function: m(FU)=0;

Figure 5.30: Composed Model of the Fgp geq.
Event (top_ F09 FD_SF FU)

In order to evaluate the failure probability of the Fppgeq sp event, the model
in Figure 5.30 links composed models top_F09_Impll_FUl (Fpp seq, sr) and
top_F09_Impl2_FU2 (Frp Seq., sv) With the model F09_FD_SF_FU which deter-
mines the event Frp seq. sr- The places PAND _FU1 and PAND_FU2 are shared with
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the places of the PAND models of the Frp geq.; sr and Frpgeq., s events respectively.

The place FU models the event Frp seq. sF-

Input Subfunction Failure

The subfunction failure is defined according to the Equation 5.2. In the case of the input
subfunction SF' there is no need to consider the influence of dependencies. Therefore,
the input subfunction failure is determined by the events F aj1mpi and Funresolvea Where
Funresotved = OR(FR seq._sF, FFD seq._sr)- Figure 5.31 describes the failure logic of the

subfunction SF failure event Fgp.

Table 5.18 displays the failure logic of the input gates Fail SF and OK _SF. The
marking of the FU, RF and AlllmplFailed places are determined by linking the
model of Figure 5.31 with the previously defined top F06 SF RF (cf. Figure 5.27);
top_ F09 _SF FU (cf. Figure 5.29); and top  F07 SF _AllFail (cf. Figure 5.12) mod-
els. Figure 5.32 depicts the composed model which determines the occurrence of the

Fsr event.

Table 5.18: Activities in F'10_ SF_Failure

SF_Failure
- Input Fail SF
gate: -
AlllmplFailed OK|SF ((m(FU):: || m(RF)::l
Input gate . o
predicate: [l m(AlllmplFailed)==1) &&

m(SF_Failure)==0)
SF_OK

. . Input gate . .
Figure 5.31: Atomic Model of the Fsr Event | function:  ™(SF_Failure)=1;

(F10_SF_ Failure)
Input

OK_SF
gate: —
Shlyitedtd] (m(FU)==0 && m(RF)==0
Submodel top_FO7_SF_AlFail Input gate o ¢ i (AlImplFailed)=—0  &&
F10_SF_Fail : . .
-rrele predicate: | SF Failure)==1)
Submodel Submodel
top_F06_SF_RF top_F09_SF_FU :npllt. gate m(SF_Failure)=0;
unction:

Figure 5.32: Composed Model of the Fgp
Event (top_ F10_SF _Failure)
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Control Subfunction Failure

The control subfunction failure is defined according to the Equation 5.2 determined
by the events F aitmpl; F Unresolved 30d F Dependencies- Since the control subfunction has
only one implementation (cf. Table 5.2), the failure of the control subfunction will
be determined by the failure of the implementation itself or the Fpependencies €vent.
There is 10 Fuynresolveda €vent because there are no alternate implementations. Figure
5.33 describes the failure logic of the controlSF failure event (Fcongrolsr). The event
is determined by the failure of its resources (Resl, Res12, Res13) or the failure of the

input subfunction SF_ Failure place.

Table 5.19 displays the failure logic of the input gates Fail ControlSF and
OK _ControlSF. The marking of the Res!1 KO, Res12 KO, Res13 KO and SF_ Failure
places are determined by linking the model of Figure 5.33 with the previously defined
resources failure/repair models (cf. Figure 5.3) and input subfunction’s failure model
top_ F10_SF _Failure (cf. Figure 5.32). Figure 5.34 depicts the composed model which

determines the occurrence of the Foontrolsp €vent.

Note that we have previously modelled the control subfunction failure without input
dependencies to avoid creating logical loops with the modelling of the input subfunction’s
fault detection performance (cf. Figure 5.21). In Figure 5.34 the places of the same
resources will be shared accounting for the failure/repair of the resource existing in
both models.

Output Subfunction Failure

The output subfunction failure is defined according to the Equation 5.2 determined by
the events JF anmpl, F Unresolved @0d FDependencies- 1 he output subfunction also has only
one implementation (cf. Table 5.2) and therefore, the output subfunction failure will
be determined by the failure of the implementation itself or the Fpependencies €vent.
Figure 5.35 describes the failure logic of the OutputSF failure event (Fousputse) that
is determined by the failure of its resources (Resl, Resl4, Resl5) or the failure of the
control subfunction I ControlSF KO place.

Table 5.20 displays the failure logic of the input gates Fail OutputSF and
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ControlSF_Fail

Fail_ControlSF Table 5.19: Activities in
109 Control SF _Failure
|_ControlSF_Active |_ControlSF_KO
Input Fail _ControlSF
gate: —
((r(n(Resl_KO))::l H
m(Resl2 KO)==
Input gate  (Res13_KO)==1 I
OK_ControlSF p ’ m(SF_Failure)==1) &&
m(I_ControlSF_ KO)==0)
ControlSF_OK Input gate m(I_ControlSF_ Active)=0;
function: m(I_ControlSF_KO)=1;
Figure 5.33: Atomic Model of the FcontrolSF out
npu
Event (109 _ ControlSF') galt)e: OK _ControlSF
(m(Resl_KO)==0 &&
Join1 I ¢ eat m(Res12 KO)==0 &&
Submodel Submodel npu. gate m(Res13 KO)::O &&
109_ControlSF top_F10_SF_Failure predicate: m(SF FaTilure)::O &&
m(I_ControlSF_KO)==1)
Submodel Submodel Submodel Input gate m(I_ControlSF_Active)=1;
Rest Res12 Res13 function: m(I_ControlSF_KO)=0;

Figure 5.34: Composed Model of the
Fcontroisk Event (top 109 ControlSF)

OK OQutputSF. The marking of the Resi KO, Resi4 KO, Resl5 KO and
I ControlSF KO places are determined by linking the model of Figure 5.35 with the
previously defined resources failure/repair models (cf. Figure 5.3) and control sub-
function’s failure model top 109 ControlSF (cf. Figure 5.34). Figure 5.36 depicts the
composed model which determines the occurrence of the Foyutputsr event and accordingly

the failure of the main function.

To evaluate the failure probability of the output subfunction (and the main function),
a reward variable is defined characterizing the performance measurement which will

indicate the failure of the output subfunction:

double reward=0;
if (I10_OutputSF—I_OutputSF_KO—Mark()==1)
reward+=1;

return (reward);

Which in turn is used later to evaluate probabilities.

181



OutputSF_Fail

Table

Fail_OutputSF

5.20: Activities

I10 _ OutputSF _Failure

in

| OutputSF_Acti |_OutputSF_KO
e Input Fail _OutputSF
Res15_KO gate: —
((m(Resl_KO)==1 I
m(Resl4 KO)——1 I
I?-Z;:cf:;e m(Res15_KO)==1 I
OK_OutputsF P " m(I_ControlSF_KO)==1) &&
m(I_OutputSF_KO)==0)
QUIpuISF_OK Input gate m(I_OutputSF_Active)=0;
. . function: m(I OutputSF KO)=1;
Figure 5.35: Atomic Model of the Foutputsk (_ _KO)=1;
Event (110 OQutputSF
(H0_Outp ) Input OK OutputSF
gate: —
BN Submodel Tl Res_15 (m(Resl _KO)==0 &&
Input gate m(Res147KO)::O &&
Join1 Submodel pericfte: m(Res15_KO)==0 &&
top_I09_ControlSF m(I_ControlSF_KO)==0 &&
m(I_OutputSF_KO)==1)
S S
I10F dl Input gate m(I_OutputSF _Active)=1;
function: m(I_OutputSF_KO)=0;

Figure 5.36: Composed Model of the
Foutputsr Event (top_I110_ OutputSF)

5.4.2 Fire Protection Control

Based on the generic SAN modelling process described in subsection 5.4.1, we have
evaluated the unavailability of the Fire Protection Control main function implemented
using alternative configurations for the physical location Train.Car;.Zones. Namely,
alternative redundancy and reconfiguration strategies have been tested, as well as the

influence of fault detection, reconfiguration and communication implementations on the

system failure probability.

The difference from the analysed configurations in Chapter 4 is that the architectures
analysed in this chapter are comprised of repairable resources instead of non-repairable

resources. Accordingly, we can evaluate the downtime costs taking into account the

downtime of the architecture.
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Redundancy Strategies

Alternative architecture configurations have been analysed each of them organised with
different redundancy strategies (cf. Table 4.4) and same reconfiguration strategy im-
plemented with 2 reconfiguration implementations located in different processing units
(Table 5.22 2R distributed configuration). Figure 5.37 displays the relative failure prob-
abilities of these configurations normalized with the architecture without redundancies.
All simulations have been carried out with a confidence level of 0.99 and absolute con-
fidence interval of 0.001.
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Figure 5.37: Normalized Failure Probability of Fire Protection Control Configurations

Figure 5.37 shows how the use of alternative redundancy strategies improve system’s
failure probability with respect to the configuration without redundancies. The following
improvements have been observed at T—20 year time instant with respect to the con-
figuration without redundancies: heterogeneous redundancy 8% better; homogeneous
redundancy connected at a different PU 9.4% better; and homogeneous redundancy
connected at the same PU 10.2% better.

The configuration with the lowest failure probability is the homogeneous redundancy

configuration connected at the same PU (as in Chapter 4). However, with repairable
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systems, the failure probability of the heterogeneous redundancy configuration is slightly
higher than the homogeneous configurations. This is a consequence of the added extra
resources to make implementations compatible (temperature sensor, SW to detect fire,
communication). Therefore, we can see that the addition of extra resources worsens the

failure probability.

Table 5.21 displays the cost of alternative configurations normalized with respect to the

cost of the configuration without redundancies.

Table 5.21: Normalized Cost of Alternative Fire Protection Control Configurations

Configuration Relative HW/SW /Comm. Cost Relative Downtime Cost
1 Heterogeneous Redundancy 1.4482 0.89794
1 Homogeneous Redundancy - Same PUrp 1.5322 0.94155
1 Homogeneous Redundancy - Different PU 1.6162 0.94956

Due to  the lower  hardware/software/communication  cost  of  the
heterogeneous redundancy configuration and thanks to the small differences be-
tween the failure probabilities of different configurations, the cheapest solution is
the heterogeneous redundancy configuration. Note that these result are obtained for
the values in Appendix E and assumptions in Section 5.3. Therefore, there may be
variations in the results. An analysis of the sensitivity of the cost calculation parameters

should be performed here (see Section 5.5).

Reconfiguration Strategies

Table 5.22 displays the influence of alternative reconfiguration strategies on system
availability at the time instant T—10 for the heterogeneous redundancy configuration.
We carry out different simulations with a confidence level=0.99 and confidence in-
terval=0.0009. In these simulations we consider different failure rate values of
health management SW components (Asw_mm): SW_FD, SW_R and SW_FD_R. The
failure rates of these software resources have been modified to highlight the influence of

reconfiguration implementations on system unavailability.

From Table 5.22 the following patterns have been identified:
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Table 5.22: Fire Protection Control (FPC) Unavailability for Reconfiguration Distribution
Strategies (T—=10 years)

FPC Unavailability

Configuration Reconfiguration Implementation Distributions

Asw_mM | Asw_mMm | Asw_HMm

=0.05 =0.15 =0.25
1R Centralised PU;(R_FireDety) 0.365 0.366 0.366
2R Centralised PU;(R_FireDet;, R_FireDety) 0.569 0.569 0.570
2R Distributed PU;(R_FireDet;); PU2(R_FireDets) 0.366 0.366 0.366
3R Centralised PU;(R_FireDet;, R_FireDety, R_FireDet3) 0.568 0.569 0.569
3R Distributed PU;(R_FireDet;); PU2(R_FireDets); PUg(R_ FireDet3) 0.366 0.366 0.366

e The influence of the failure rate of the health management implementations on

the main function failure is negligible.

e Centralised configurations perform worse than distributed implementations due to

the unique processing unit acting as a common cause failure.

e The number of redundancy implementations within the configurations of the same
group (centralised, distributed) does not have an effect on the main function fail-

ure. There is really no need of redundancies in this case for reconfigurations.

The failure probability of the fire control algorithm subfunction does not show variations
by changing system configurations. However, if we focus on the fire detection subfunction
and its underlying failure events there are some characteristics worth mentioning. Table
5.23 shows the failure probability of the fire detection subfunction failure (Fpirepet ), fire
detection subfunction’s reconfiguration sequence failure event (FRr seqpiepe, Cf- Equa-
tion 5.17), and fire detection subfunction’s reconfiguration failure event (Fgr pirenet)
for different failure rates of health management implementations (Ayjys) and different
reconfiguration strategies. All the simulations have been performed with a confidence
level = 0.99 and confidence interval = 0.00009.

The performance of the fire detection subfunction shows the influence of the failure rate
of the health management implementations and the influence of the distribution of the

reconfiguration implementations. Table 5.23 points out the following characteristics:
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Table 5.23: Failure Probability of the Fire Detection and its Underlying Events (T=10 years)

Ay = 0.05 Ay = 0.15 Agym = 0.25
Events
1R | 2RC| 2RD| 3RC| 3RD| 1R | 2RC| 2RD| 3RC| 3RD| 1R | 2RC| 2RD| 3RC| 3RD
FFireDet 0.052 0.355| 0.052| 0.355| 0.05 | 0.052 0.355| 0.052| 0.356| 0.052| 0.052 0.355| 0.052| 0.356| 0.052

0.008 0.04 | 0.005| 0.038| 0.004| 0.011f 0.082| 0.01 | 0.073| 0.008 0.013 0.115| 0.013| 0.101| 0.011

FRSeapireDet

Fr_riremet | 0.319 0.365| 0.276] 0.353| 0.247| 0.578 0.679| 0.428] 0.623| 0.282| 0.767 0.925| 0.571| 0.835| 0.391

x-R-Conf: z number of reconfiguration implementations in Conf configuration, where C' = centralised
and D = distributed; e.g., 3RD = 3 reconfiguration implementations in distributed configuration

e The failure probability of the centralised configurations is significantly higher than

the distributed configurations.

e Increasing the failure rate of the health management implementations with the
values shown in Table 5.23 slightly influences the failure probability of the Frirepet
in 3RC and 3RD configurations.

e Increasing the failure rate of the health management implementations also in-

creases the failure probability of the Fr seq.piene: @A FR FireDer €Vents.

e The greater the number of reconfiguration redundancies, the lower the failure prob-
ability of Fr .Seq.riene: 20 FR_Firenet €vents of the same configuration (centralised,

distributed) saving the 1R configuration.

Despite an increase in the failure rate of the health management implementations im-
pacts directly on the reconfiguration subfunction failure (Fr_rirenet), its influence on
the main function is dependent on a sequence of events (cf. Equation 5.5). Hence, for
the event Frirene; t0 happen, Frseq. rirener must fail according to the sequence depen-
dent constraint. As a result, its influence on the subfunction failure, and accordingly,
on the main function failure is attenuated. Therefore, as we can see in Table 5.23, its
contribution to the main function failure is not as important as its contribution to the

failure of the reconfiguration subfunction itself.
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Influence of Health Management Implementations

Taking the heterogeneous redundancy configuration #2 as a starting point (cf. Table
4.4), the influence of the fault detection, reconfiguration and communication implemen-
tations have been analysed assuming real and ideal behaviour of each of these imple-

mentations.

Figure 5.38 depicts the failure probability values of these configurations in which all
the simulations have been performed with confidence level=0.99 and confidence inter-
val=0.001.
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Figure 5.38: Fire Protection Control Failure Probability with Ideal Assumptions

In Figure 5.38 we can see that the influence of the communication is more important than
the influence of the reconfiguration and fault detection implementations. For instance

at the time instant T=15 the following failure probability values hold:
e real configuration = 0.334 £ 0.001;
e ideal reconfiguration — 0.333 £ 0.001;
e ideal fault detection = 0.331 =+ 0.001;

e ideal communication — 0.326 + 0.001;
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We can see that (1) the influence of the health management implementations is almost
negligible and (2) the fault detection implementation has a higher influence than the
reconfiguration implementation because the fault detection subfunction does not have
redundancies. The impact of the communication implementation on the top-event is
even more important because the health management implementations only influence
the fire detection input subfunction, whereas communication affects most of the Fire

Protection Control main function’s subfunctions.

5.4.3 Door Status Control

Based on the generic SAN modelling process described in subsection 5.4.1, we have eval-
uated the unavailability of the Door Status Control (DSC) main function implemented
using alternative configurations for the physical location Train.Car;.Zones.Door.
Namely, alternative redundancy and reconfiguration strategies have been tested, as well
as the influence of fault detection, reconfiguration and communication implementations

on the system failure probability.

The difference from the analysed DSC configurations in Chapter 4 is that the
architectures analysed in this chapter are comprised of repairable resources instead of
non-repairable resources. Accordingly, we can evaluate the downtime costs taking into

account the downtime of the architecture.

Redundancy Strategies

Alternative architecture configurations have been analysed, each of them organized with
different redundancy strategies using a duplicated reconfiguration implementation lo-
cated in different processing units for each subfunction with redundancies (Table 5.25
2R centralised configuration). Figure 5.39 depicts the relative failure probabilities of
the configurations displayed in the Table 4.7 normalized with the architecture without
redundancies #1. All simulations have been carried out with a confidence level of 0.99

and absolute confidence interval of 0.001.

Figure 5.39 shows how the use of alternative redundancy strategies improve system’s

failure probability with respect to the configuration without redundancies. The follow-
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Figure 5.39: Normalized Door Status Control Configurations Failure Probability

ing improvements have been observed at T=20 year time instant with respect to the
configuration without redundancies: 4 heterogeneous redundancies 42% better; 3 hetero-
geneous redundancies and 1 homogeneous redundancy 42.57% better; 2 heterogeneous
redundancies and 2 homogeneous redundancies 43.23% better; 1 heterogeneous redun-
dancy and 3 homogeneous redundancies 44.07% better; 4 homogeneous redundancies
44.74% better.

Table 5.24 displays the relative costs of alternative configurations normalized with re-
spect to the configuration without redundancies. The cost assessment has been car-
ried out according to the Section 5.3 and using the values shown in Appendix E.
When considering the cost of the hardware, software and communication implemen-
tations, the cost of the configurations with heterogeneous redundancies is cheaper than
homogeneous redundancy configurations. However, when downtime costs are taken into
account, the less reliable the architecture, the higher its cost. Therefore, when includ-
ing downtime costs, the cost of the configurations with heterogeneous redundancies are

greater than the configurations with homogeneous redundancies. Compared with the
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Fire Protection Control configurations (see Subsection 5.4.2) the failure probability dif-
ferences between configurations are greater and therefore homogeneous redundancies

obtain the better reduction in cost.

Table 5.24: Normalized Cost of Alternative Door Status Control Configurations

Configuration Relative HW /SW /Comm Cost Relative Downtime Cost
4 Heterogeneous Redundancies 1.2212 0.58301
3 Heterogeneous Redundancies; 1.2488 0.57689

1 Homogeneous Redundancy

2 Heterogeneous Redundancies;

2 Homogeneous Redundancies 1.2811 0.57097
1 Heterogeneous Redundancy;

3 Homogeneous Redundancies 1.3088 0.56237
4 Homogeneous Redundancies 1.2903 0.55697

Reconfiguration Strategies

Table 5.25 displays the influence of alternative reconfiguration strategies on system
availability at the time instant T—10 using a heterogeneous redundancy for each sub-
function. We carry out different simulations with a confidence level=0.99 and confi-
dence interval=0.0009. In these simulations we consider different failure rate values of
health management SW components (Asw pm): SW_FD, SW_Rand SW_FD_R. The
failure rates of these software resources have been modified to highlight the influence of

reconfiguration implementations on system unavailability.

Table 5.25 displays that the distribution of the selected reconfiguration implementa-
tions for the Door Status Control main function does not have any influence on the
final system’s failure probability. However, note that these results cannot be compared
with the values displayed in Table 5.22. This is because there is only one subfunc-
tion with redundancies in the Fire Protection Control case and we named centralised
reconfigurations those strategies which centralize redundant reconfiguration implemen-
tations in the same PU. In the Door Status Control case centralised reconfigurations

group all the subfunction’s redundancies with the same priority in the same PU.
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Table 5.25: Door Status Control (DSC) Unavailability for Reconfiguration Distribution
Strategies (T—=10 years)

DSC Unavailability

Configuration Reconfiguration Implementation Distributions
>\SW_HM )\SW_HM >\SW_HM
=0.05 =0.15 =0.25
1R Centralised PU;(R_DOD;, R_DCD;, R_OD;, R_DVj) 0.346 0.347 0.347

PU;, (RiDODl); PU2(R7DCD1); PUj; (RioDl);

1R Distributed PU4(R_DV1)

0.347 0.347 0.347

PU, (RiDODl, R DCD;,R_ODy, RiDvl);

2R Centralised PU>(R_DOD,, R_DCD», R_0ODy, R_DV3)

0.347 0.347 0.347

PU;(R_DOD;, R_DCD,); PU3(R_DODy, R_DCD;);

2R Distributed PU3(R_OD;, R_DVs); PUs(R_ODs, R_DV))

0.347 0.347 0.347

PU, (RiDODl, R DCDi, R_ODy, RiDvl);
3R Centralised PU2(R_DOD;y, R_DCD3, R_OD3, R_DV>); 0.347 0.347 0.347
PU3(R7DOD3, R _DCD3, R _OD3, RiDV:;)

PU;(R_DOD;,R_DCDy,R OD3);
)i 0.347 0.347 0.347

PU2(R_DODy,R_DCD;,R_DV3
PU3(R_DOD3,R_OD;,R_DVs);
PU4 (RiDCDg R _OD> ,RiDvl)

3R Distributed

The failure probability of the door control algorithm subfunction does not show vari-
ations changing system configurations. However, if we focus on the input subfunc-
tions and their underlying failure events there are some characteristics worth mention-
ing. Table 5.26 shows the failure probability of the door closed detection failure event
(Fpen), its corresponding reconfiguration sequence failure event (Fr.seq.pep), and the
reconfiguration subfunction failure event (FR_DCD). These events have been analysed
for different configurations and alternative values of the health management implemen-
tation’s failure rates. We do not have included the remainder of input subfunctions
(door open detection, obstacle detection and door velocity) and their corresponding
failure events because all the input subfunctions are characterized equally (i.e., same
number and distribution of redundancy, reconfiguration and fault detection implemen-
tations). Besides note that we do not have included the 1R distributed configuration

for simplification (see Table 5.25 for the configurations).
From Table 5.26 the following characteristics have been identified:

e As the number of reconfiguration’s redundancy implementations increase, the fail-
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Table 5.26: Failure Probability of the Underlying Events of the

Function (T=10 years)

Door Status Control Main

A = 0.05 A = 0.15 A = 0.25
Events
1RC| 2RD| 2RC| 3RD| 3RC| 1RC| 2RD| 2RC| 3RD| 3RC| 1RC| 2RD| 2RC| 3RD| 3RC
Fpeo 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043| 0.043
Fr.seancn | 0:013| 0.005| 0.005| 0.003| 0.004 0.014| 0.008| 0.009| 0.007| 0.007| 0.016| 0.011| 0.011| 0.009| 0.009
Fr_pop | 0.312 0.138] 0.140| 0.124| 0.127 0.571| 0.313| 0.316| 0.274| 0.275| 0.761| 0.466| 0.466| 0.390| 0.391
ure probability of the reconfiguration sequence failure event (Fr.geq sr) as well

as the reconfiguration subfunction’s failure probability (Fr sr) decreases.

e Despite the effect on the failure probability of the reconfiguration subfunction
failure (Fr_gr) is significant for all the configurations, when this event is combined
with other events (fR_Seq_isF) the difference between alternative configurations

becomes lower due to the sequence dependent constraint (see Equation 5.5).

As the failure rate of the health management implementations increases, the failure
probability of reconfiguration sequence (F, R.Seq.isF) and reconfiguration subfunc-

tion failure events (Fg sr) also increase.

The failure probability of the subfunction failures (Fsg) are not influenced neither
by the number of redundancies nor increased failure rate of health management

implementations, i.e., the conclusions from Table 5.25 are also seen here.

Influence of Health Management Implementations

Taking the configuration with 4 heterogeneous redundancies as a starting point (cf.

Table 4.7, configuration #2), the influence of the fault detection, reconfiguration and

communication implementations have been analysed assuming ideal and real behaviour

of each of these implementations.

Figure 5.40 displays the failure probability values of these configurations with the con-
fidence level=0.99 and the confidence interval=0.001.

In Figure 5.40 the influence of the communication is more important than
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Figure 5.40: Door Status Control Failure Probability with Ideal Assumptions

health management implementations. Again this is because the communication influ-
ences many subfunctions and implementations at the same time and health management
implementations do not. For instance, at T—15 the following failure probability values
hold:

1. real configuration = 0.348 £ 0.001;

2. ideal communication = 0.342 + 0.001;
3. ideal reconfiguration — 0.347 + 0.001;
4. ideal fault detection = 0.347 + 0.001;

In this case, there is no difference in the influence of fault detection and reconfiguration

implementations and their influence can be considered negligible.

5.5 Conclusions

Throughout this chapter we have assumed that the repair process of resources starts as

soon as a resource fails and we also have assumed that the repaired resource is as good
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as a new one. In this direction there may be some poins worth analysing:

e [t may be possible to implement preventive maintenance strategies so that a com-

ponent is repaired /replaced before its failure.

e The degradation of the resource after reparation can be considered by worsening

the failure rate after each reparation.

e The influence of alternative SW implementations have been analysed by chang-
ing their failure rates. Omne can also evaluate the influence of the repair rates
of elements on system’s failure probability to optimize repair and maintenance

parameters.

Depending on the design-specific decisions for each main function, the influence on
dependability and cost varies. As confirmed in this chapter (and in Chapter 4), opti-
misation of design decisions with respect to the type and number of redundancy and

reconfiguration strategies are feasible to maximize dependability and minimize the cost.

The influence of redundancies on system dependability and cost depend on the anal-
ysed main function and its configuration. There are different factors that influence

dependability and cost. Concerning the dependability:

e Number of redundancy implementations: the greater the number of redundancies,

the lower the failure probability of the subfunction.

e Type of redundancy implementations: generally speaking the failure probability
of the heterogeneous redundancies is higher than homogeneous redundancies due
to the added extra resources in order to make implementations compatible (e.g.,

SW implementations, communication).

e Number of reconfiguration’s redundancies: while it contributes directly to the
improvement of the reconfiguration subfunction’s performance, its effect on the
main function is attenuated by intermediate sequence of events and it is usually

negligible.

e Type of redundancy strategy: distributed reconfiguration redundancies have
shown a lower failure probability of the reconfiguration subfunction than the cen-
tralised reconfiguration redundancies which concentrate in a single processing unit

all the redundancy implementations (see Table 5.22);
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Depending on the configuration of the main function, the influence of the type and
number of redundancy and reconfiguration mechanism varies. When a subfunction does
not have redundancies (i.e., it is a single point of failure), its contribution to the main
function failure is more important than influence of the alternative design decisions for
another subfunction of the main function that has redundancies (type of redundancies;

number and type of reconfiguration strategies).
As for the cost influences:

e Downtime cost: the influence of the downtime cost is higher with less reliable
architectures and it is more penalising than the cost incurred by HW, SW or

communication resources.

e Type of redundancies: the architecture cost (HW, SW and communications re-
source cost) of heterogeneous redundancies are cheaper than homogeneous re-
dundancies, however, when downtime costs are included the cost depends on the

system’s unavailability (which is better for homogeneous redundancies);

e Type of heterogeneous redundancies: heterogeneous redundancies arising from
natural compatibility does not need a specific software, whereas heterogeneous
redundancies arising from forced compatibility requires fit-for-purpose software

which increases it cost.

e Number of heterogeneous redundancies: if there are similar heteroge-
neous redundancies arising from forced compatibilities, the cost of each
heterogeneous redundancy is lower. This happens because the software devel-
opment cost of one software resource (which is assumed to be valid for all re-
dundancies with slight modifications) is divided among the similar heterogeneous
redundancies. Therefore, the cost per each heterogeneous redundancy is not as

high as for a single (independent) heterogeneous redundancy.

The sensitivity of the DEM approach to the cost calculation parameters should also be

addressed to obtain a higher degree of confidence in the obtained results.

For the analysed configurations in Subsection 5.4.2 and Subsection 5.4.3, the follow-
ing conclusions are extracted: the influence of the communication implementations
on system dependability is not negligible and cannot be considered ideal (see Figure

5.38, and Figure 5.40). Depending on the number of input, control or output subfunc-
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tion’s redundancies, the influence of health management implementations gains signif-
icance. In the developed examples the failure of the fault detection is more influential
because it does not have redundancies. The higher the number of redundancies of
health management implementations, the lower their failure probability and higher the
system cost, but their failure probability improvement is very small (see Table 5.23 and
Table 5.26).

The DEM approach would benefit from the automatic extraction of the dependability
evaluation model so that the designer is not exposed to error-prone tasks. Besides, the
automation would allow us to implement optimization algorithms so that it is possible
to explore the design space with alternative architecture configurations (with variations
in the number and type of reconfiguration and redundancy strategies) and choose the

best architecture according to the given dependability and cost requirements.

The time needed to carry out the simulation of the dependability evaluation model
is considerable. This issue originates from the level of (detail and) complexity of the

dependability evaluation model and the required accuracy of the results.
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CHAPTER 6

D3H2 Methodology: Experimental

Evaluation

To proof the feasibility of the D3H2 methodology in real applications, a key application
concept in our methodology has been validated: we have added reconfiguration capabil-
ities to existing hardware train network components to recover the system from failures

at runtime using heterogeneous redundancies.

In this chapter we present details about the performed experiments [Aizpurual4|. The

chapter is organised as follows:
e Section 6.1 introduces the motivation of this chapter.

e Section 6.2 overviews current industrial railway communication architectures and

devices.

e Section 6.3 describes the developed application scenarios in order to validate the

concepts treated throughout this dissertation.

e Section 6.4 sets the conclusion of this chapter.

6.1 Introduction

The architecture of the train communication systems is designed with respect to the
system functions and their criticality. The data is transmitted from different communi-

cation networks according to the criticality of the function.

The reuse of resources emerged from over-dimensioned design decisions is a challenge

in the railway domain. Namely, when designing safety-critical functions, the reuse of
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resources may pose hazardous consequences that prevent the system from using hetero-
geneous redundancies. However, the reuse of elements with information, entertainment,
or comfort related functions is feasible because they do not pose hazardous consequences,

e.g., the failure of Air Conditioning Control or Light Control main functions.

According to the D3H2 methodology, the reuse of resources requires modifications in the
system HW /SW architecture, namely: (1) fit the system’s PUs with fault detection and
reconfiguration mechanisms; (2) design the system with a communication protocol which
enables the runtime addition or removal of communication channels; and (3) allocate
the reconfiguration table to the reconfiguration decision PU(s) which will indicate the

implementation to be reconfigured.

6.2 Industrial Railway Communication Architectures

In Subsection 6.2.1 we describe the main communication networks and in Subsection
6.2.2 we present the communication /processing devices which constitute the train com-

munication architecture.

6.2.1 Communication Networks

Trains have a standard form of data communication specified in the
Train Communication Network (TCN) standard IEC 61375 [[EC07]. TCN is a
real-time data network comprised of an architecture inter-connecting train vehicles and
equipments within a vehicle. The TCN standard specifies Wire Train Bus (WTB) for
the inter-connection of vehicles and Multi-function Vehicle Bus (MVB) for intra-vehicle
device communication (cf. Figure 6.1). In this work we focus on the communication

within a vehicle using MVB.

MVB operates in master-slave configuration of the devices in a vehicle. In this evalu-
ation, the following types of devices are considered: intelligent devices participating in
the message communication with administration capabilities or connected I1/O elements.
The master guarantees deterministic medium access managing periodic and sporadic ac-

cess to the bus. The communication in MVB follows the publisher/subscriber paradigm:
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Figure 6.1: TCN Configuration Example [TEC07]

a publisher broadcasts variables and this information is distributed to the subscribers.
To this end, a traffic store is implemented; each device holds the variables it produces/-
consumes in a shared memory that is a partial copy of the whole network’s distributed

database.

6.2.2 Communication Devices

All the used devices have been designed and produced by CAF Power & Automation
to operate on trains, meeting the rail standards in effect. Thanks to the modularity
and flexibility of each module, the needs of each specific application can be achieved by

changing the settings of the modules.

The explanation of the characteristics of the devices are limited because they are part
of the Intellectual Property of CAF Power & Automation. All devices provide total
immunity to electromagnetic interferences in compliance with the standard EN50121-3-

2: Railway Applications - Electromagnetic Compatibility.
Every system developed in CAF Power & Automation has three basic functions:

1. Control of communications between the equipment of a train car: the system
provides a TCN communication channel for all the train equipment and controls

all the information transmitted at the vehicle bus level.

2. Interface with the train via its I/O channels and execution of the train logic: the
system is equipped with RS485 series digital and communication modules arranged
along the whole train to diagnose and check the train status and to operate in

accordance.
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3. Supervision, monitoring and recording of the train performance: from the driver
terminal various train settings and parameters can be entered as well as the con-

dition of every train system can be seen.

We focus on two generic devices to construct the HW/SW architecture so as to test
some concepts treated in this dissertation: (1) Communication Interface Card (TICO)

and (2) Ethernet communication switch.

The Communication Interface Card (TICO) board (cf. Figure 6.2) has a CPU and a
FPGA separating communication controllers and application/control /supervision tasks.
It has uClinux operating system and its RTAI real-time extension. Therefore, it is

possible to combine both real-time and non real-time tasks.

P

Figure 6.2: TICO Board Figure 6.3: CCU/BA Module

The TICO generic board is expanded into the following
application-specific modules: Multi Interface board Module (MIM) and
Control and Communication Unit - Bus Administrator (CCU/BA) module.
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The main function of the CCU/BA module (cf. Figure 6.3) is to carry out the logic
of the control of the train and to administrate the MVB bus (master) in the train car
for which it has been devised (BA). The CCU part decides which signals must be used
and the BA part controls all information exchange among all the equipment connected
to the MVB. Each CCU/BA device periodically executes the information transmission
commands via MVB and it is able to communicate through MVB and RS485 physical

buses.

There shall always be a single CCU/BA with active control condition, while other
CCU/BA devices shall be in passive control condition waiting for an intervention request
(on standby).

MIM module (cf. Figure 6.4): it is constituted by a TICO board in conjunction with
other I/O boards integrated within a backplane. It provides multiple I/O interfaces and
control /processing capability with very low power consumption. It is able to commu-
nicate through Ethernet, Controller Area Network (CAN), MVB and RS485 physical

buses and it can implement any user application with supervisory or control logic.

Figure 6.4: MIM Module

The MIM module contains different numbers of digital and analogue I/O signal channels.

FEthernet communication switch (cf. Figure 6.5): it permits the communication of dif-

ferent devices connected through an Ethernet communication bus.

The buses and variable movement between buses is supported by the proprietary
CSTools tool (cf. Figure 6.6). This tool creates the software framework according
to the designed communication buses and the user has to add the logic inside the frame-

work (according to the access functions). Uploading the application into the board is
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Figure 6.5: Ethernet Switch

done through an Ethernet connection and any File Transfer Protocol (FTP) client.

% Example.cpf
(P Edt vew Compler
D@ &mE ¢ rd s

Transistor CodeGen Redadancy Helb
(28

F | el e

&)

NE

+ i Eonoe

S Systern [ Dovices | G vrinbies | <] »

Raady

Syslsn
System rame: [N

0O ax I
#  Ea 1
0

Figure 6.6: Snapshot of the CSTools Configuration Software

Basic Configuration: Figure 6.7 shows the basic configuration from which alternative

scenarios have been created to test alternative scenarios (as explained in Section 6.3).

Figure 6.8 presents the schematic configuration of the Figure 6.7.

Two TICO boards (TICO,, TICO2) are connected to both Ethernet and MVB com-
munication networks. The CCU/BA board manages the communication through the
MVB network and the Ethernet switch enables the communication of the TICO boards
through Ethernet. Furthermore, a laptop is used for diagnostic purposes so that it man-
ages the data that flows through the CCU/BA module (MVB) and the data that flows

through Ethernet.
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CCU/BA Switch TICO, TICO, PC

Ethernet

Figure 6.8: Schematic Configuration of the Figure 6.7

6.3 Application Architecture

For the implementation of the reconfiguration process, we identify two phases:

1. Construction of the reconfiguration table: design-time or run-time determined

reconfiguration strategies;
2. Activation/deactivation of configurations: reconfiguration techniques.

Run-time construction of the reconfiguration table allows higher flexibility, but requires
exploring the architecture dynamically. For safety and predictability purposes, design-
time determined reconfiguration strategies are adopted in this study. Regarding the ac-
tivation or deactivation of configurations, while reconfiguration channels fixed at design-
time reduce design complexity, reconfiguration channels established at run-time reduce
processing cost and bandwidth by creating redundant communication channels exclu-

sively when their need arises.
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In a train there are safety-critical functions which must meet hard real-time constraints
(e.g., Door Status Control) and these functions are transmitted through MVB. Besides,
other communication protocols coexist in the train; for instance, Ethernet communica-
tion protocol transports non-critical information, entertainment or comfort related data.
Ethernet provides more flexibility to perform architectural modifications at runtime at
the expenses of losing predictability with respect to MVB. There exist other communi-
cation networks in a train (e.g., CAN), but this proof of concept has been focused on
MVB and Ethernet.

Therefore, the following design decisions have been adopted: MVB has been used for
reconfiguration channels fixed at design-time and Ethernet for reconfiguration channels
established at run-time. On one hand, communication channels using MVB are ob-
tained by assigning reconfiguration routes at design-time and activating them from the
outset. The bandwidth consumption of these redundant communications is constant
but their processing is activated solely when their need rise up. On the other hand,
in Ethernet, run-time modifications are effectuated using UDP communication threads
in client/server like configurations. Communication threads are created and deleted as
their need arises, so that the bandwidth and processing needs change exclusively in case

of reconfiguration.
The following reconfiguration scenarios (SC) have been tested:

e SCI1: sensor reconfiguration: communication route changes to handle sensor fail-

ures using heterogeneous redundancies.

e SC2: communication reconfiguration: switching the communication protocol to

handle communication failures using heterogeneous redundancies.

e SC3: processing unit reconfiguration: replacing the processing unit and communi-

cation routes to handle processing unit failures using homogeneous redundancies.
Three reconfiguration attributes define the reconfiguration space of these scenarios:

e Reconfiguration granularity comprehends task or node level reconfigurations. Task
level reconfiguration is performed by changing a single task, and node level
reconfiguration is performed by changing the whole node (PU and correspond-

ing tasks).
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e Reconfiguration object addresses SW, HW and communication (Comm.) level
reconfigurations: SW reconfigurations modify the SW implementation changing
its parameters or structure; HW reconfigurations involve changing the complete
HW device; and communication reconfiguration modifies nominal communication

routes with alternative ones.

e Reconfiguration channel activation time comprehends design-time or run-time ac-
tivation of communication channels. Note that design-time activation of commu-

nication channels really activate at system start-up.

Figure 6.9 describes the reconfiguration space of the tested scenarios. For instance, all
the scenarios perform task-level and communication-level reconfigurations, but only SC3

addresses node-level and communication-level reconfigurations.

Object
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Figure 6.9: Reconfiguration Space of the Tested Scenarios

6.3.1 Scenario I: Sensor-Level Reconfiguration

Without losing the applicability of the scenario, SCI focuses on the example presented

in [Aizpurual2a| and described in Section 2.1 (see the functional model in Table 3.4).
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A train car vehicle may have different compartments (cf. Figure 6.10 Zonea, Zoneg)
and independent Air Conditioning Control main function implementations at each com-
partment. Assume that 2 PUs are connected to perform Air Conditioning Control in
each vehicle’s compartment: one PU (PU; or PU;) measures the temperature (SF1:
temperature measurement) using a sensor (S; or Sy) and gets the reference temperature
(SF2: user reference temperature) using a reference knob (R; or Ry), and the second PU
(PU;y or PUy) acts as a controller (SF3: air conditioning control algorithm) and gives

the output to the connected heater (SF4: Heating, resources: H; or Hy).

T 2 N N

Vb Al by by

T,.ETH|T,.MVB|<<—1- 2 PU3 4

RT-Linux
N v K & !

sc1 R1 Hq S2 || R2 H2

Car,.Zone, Car,.Zoneg

<< >

Figure 6.10: Reconfiguration Scenarios

>

Let us focus on the reconfiguration of temperature measurement subfunction at
Car;.Zone,. The nominal communication Route of the temperature measurement sub-

function in each compartment is as follows:

Route;: Sl—>PU1 —)ETH—)PUQ—)Hl,
ROUtGgI SQ—>PU3—)ETH—>PU4—)H2

Given that one sensor of any compartment fails, we reuse the already existing one in
the same car, but in a different compartment. To reconfigure the temperature mea-
surement implementation in Car;.Zone, its value-based fault detection is located in
the destination processing unit PUy. When sensor S; fails, incorrect or missing val-
ues are detected at PUy by the fault detection, and the reconfiguration implementation
orders the faulty component to stop sending data. It also checks the IP address and
the User Datagram Protocol (UDP) port of the next standby implementation of tem-
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perature measurement subfunction in its reconfiguration table, and it establishes the
communication with Sy. This process changes the communication route from Route; to

Route;s:
ROUt612: SQ—>PU3—>ETH—>PU2%H1 .

The design of the devices identified as heterogeneous redundancies enables them to redi-
rect their information to different information sinks dynamically when a reconfiguration
signal is received. During the reconfiguration, source and sink PUs synchronize and S,
continues sending data towards PUs, until S; is repaired and reconfigured. Implemented
reconfiguration mechanisms are applicable to input subfunction implementations oper-
ating with heterogeneous redundancies (e.g., Fire Protection Control example cf. Table
3.8). MVB reconfigurations apply the same process, with the difference that Route;s is

activated from the outset.

6.3.2 Scenario II: PU-Level Reconfiguration

Since a train incorporates different communication protocols, there is room to benefit
from heterogeneous redundant communications. Despite bidirectional communications
have been implemented between PU; and PU,, for simplicity the following unidirectional

Routes are considered:

Route;: T{.MVB—PU;—-MVB—PU,;
Route,: T,.ETH—PU,—-ETH—PU,.

Where T;.MVB and T;.ETH identify MVB and Ethernet tasks respectively (cf. Fig-
ure 6.10). When a communication link is down, the general communication-level

reconfiguration process is as follows:

1. The application located in the destination PU detects the communication failure
(time-based fault detection).

2. Subsequently, it reconfigures itself creating a server to continue receiving data

using the operating communication protocol.

3. It informs the source PU about the communication failure.
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4. Finally, the source PU is also reconfigured switching from the faulty to the oper-

ating communication

Hence, when MVB is disconnected (SC2.A, c¢f. Figure 6.10), UDP communication
threads are created dynamically to continue sending MVB data via Ethernet chang-

ing communication routes from Route; to Route;s where,
ROUtelgl TlMVB%PUl—)ETH—)PUQ

And vice versa, when Ethernet is disconnected (SC2.B, cf. Figure 6.10) the communi-

cation route is changed from Routes to Routess where,

ROUt@ggl T1 ETH—)PUl —>MVB—>PU2

6.3.3 Scenario III: Communication-Level Reconfiguration

Point to point unidirectional communication from PU; to PU, is considered with the

next communication routes:

Route;: T MVB—PU; -MVB—PUy;
Routey: T . ETH—-PU; -ETH—PU,.

The tasks that PU; is performing are rearranged in another compatible PU to deal
with the failure of PU;. A higher level reconfiguration implementation (PUg) has been
added to redirect all the data that the failed PU was sending from its communication
interfaces. PUg monitors the performance of both PUs (PUy, PUs,) and when it detects
that any of them is down (time-based fault detection); it is reconfigured sending the
data that it was sending before through MVB and Ethernet. Consequently, Route; is

replaced by Route;s and Route, switches to Routegs where,

ROUtelgl T1 ETH—)PUR—)ETH%PUQ,
Routegy: T1.MVB—PUr—MVB—PU,.
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6.4 Conclusions

In this chapter we have presented a real HW /SW architecture, that based on industrial
railway communication devices implements the ideas treated throughout this disserta-

tion.

The architecture have been tested on different scenarios to validate the system’s
fault tolerance capabilities under different failure situations. Namely, we have analysed
the architecture with respect to sensor, communication and PUs failures by reusing

already existing elements.

The main limitation of the experiments carried out in this chapter is that the scenarios
have been tested isolated from the other functions comprising a real train. Hence, we do
not have to deal with possible memory and bandwidth issues. A more accurate approach
would require taking into account these requirements as well as performing calculations

so that the system meets all its requirements.
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CHAPTER 7

Conclusions and Future Work

In this chapter we present the main results and limitations of this dissertation. The

chapter is organised as follows:

e Section 7.1 summarizes the work performed during the completion of the research

work.
e Section 7.2 points out the outcomes obtained from this dissertation.

e Section 7.3 identifies the limitations of the research work and future research areas

which deserve attention to further improve this work.

7.1 Conclusions

This dissertation comprehends multiple engineering fields including systems engineering,
software engineering and reliability engineering. The main contributions of this disser-
tation are confined in the design of reconfigurable systems considering optimization of

design decisions with respect to dependability and cost.

During this research period a comprehensive review and classification of dependability
analysis, verification and design approaches has been performed [Aizpurual2b]
[Aizpurual3b|. These papers review the state of the art approaches in the field of
model-based dependable design including dependability analysis and verification ap-
proaches. They point out advantages and disadvantages of the well known event-based
and state-based approaches and accordingly, the approaches from the scientific literature

are classified based on the addressed limitations.

We have designed the D3H2 (aDaptive Dependable Design for systems with Homoge-
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neous and Heterogeneous redundancies) methodology with the goal of optimising design
decisions in massively networked scenarios. The methodology enables the evaluation of
the influence of the different design decisions on dependability and cost, including the
reuse of existing resources. It also aids the designer to choose between redundancy and
reconfiguration strategies. Chapter 3 overviews the D3H2 methodology and character-
izes the key modelling and analysis activities to design a HW/SW architecture taking
into account its cost [Aizpurual3a]. Namely, the Functional Modelling Approach (cf.
Subsection 3.3.1) and the Compatibility Analysis (cf. Subsection 3.3.2) enable the sys-
tematic identification of redundancies and single points of failure [Aizpurual2al. The
Extended Functional Modelling Approach (cf. Subsection 3.3.4) enables the system-
atic extension of the initial HW /SW architecture and allows the designer to create the
extended HW/SW architecture which accounts for design decisions with respect to the
distribution and implementation of fault detection, reconfiguration and communication

functions.

Chapter 4 presents the Dependability Evaluation Modelling approach for non-repairable
systems. This approach is used to perform a complete and systematic assessment of the
extended HW/SW architectures and evaluate the influence of alternative architectural
design decisions on dependability. The component-based nature of the dependability
evaluation algorithm enables to perform the probabilistic analysis of the Dependability
Evaluation Model using the combination of Dynamic Fault Tree and Component Fault

Tree approaches, that is, Component Dynamic Fault Trees |Aizpurual4.

The outlined approach makes it possible to evaluate the effect of ideal /non-ideal
health management and communication implementations on the system failure prob-
ability using importance measurements. This approach can be exploited to analyse the
contribution of these implementations to the system’s failure probability. Furthermore,
in order to deal with the lack of exact failure data information of some resources (e.g.,
software resources), uncertainty analyses have been implemented. Therefore, it is po-
ssible to specify interval failure rates (instead of single value data) of system resources
and calculate the failure probability distribution of the top event’s failure probability,

i.e., second order failure probabilities.

When analysing non-repairable systems, the evaluation of which redundancy strat-
egy is cheaper does not have only one answer. Depending on the type of the

heterogeneous redundancy strategy their costs are different. Generally speaking, het-
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erogeneous redundancies arising from natural compatibilities require less additional
resources than heterogeneous redundancies arising from forced compatibilities and they

are usually more cost-effective.

Chapter 5 defines the Dependability Evaluation Modelling approach for repairable
systems. It gives methods to assess exhaustively and systematically the influence of alter-
native architectural design decisions on dependability. Compared with non-repairable
systems, the Dependability Evaluation Modelling approach for repairable systems re-
quires more powerful formalisms for considering random failure and repair sequences.
Based on the Stochastic Activity Networks formalism, we have implemented the Depend-

ability Evaluation Modelling approach that takes into account complex repair strategies.

Depending on the design-specific decisions for each main function, the influence on
system’s dependability and cost varies. As confirmed in Chapter 4 and Chapter 5,
optimisation of design decisions with respect to the type and number of redundancy
and reconfiguration strategies to maximize dependability and minimize the cost are

feasible.

The influence of redundancies on system dependability and cost depend on the anal-
ysed main function and its configuration. There are different variables that influence

dependability and cost. Concerning the dependability we identify the next factors:

e Number of redundancy implementations: the greater the number of redundancies,

the lower the failure probability of the subfunction.

e Type of redundancy implementations: generally speaking the failure probability
of the heterogeneous redundancies is greater than homogeneous redundancies due
to the added extra resources in order to make implementations compatible (e.g.,

SW resources, communication).

e Number of reconfiguration’s redundancies: its increase contributes directly to the
improvement of the reconfiguration subfunction’s performance. However, its con-
tribution to the reduction of the failure probability of the main function is almost

negligible because is attenuated by sequence-dependent intermediate failure events.

e Type of reconfiguration strategy: distributed reconfiguration redundancies have
shown a lower failure probability of the reconfiguration subfunction than the cen-

tralised reconfiguration redundancies which concentrate in a single processing unit

213



all the function redundancies.

e Communication: if the whole system is connected using the same communication
network it becomes a critical factor. In these cases it cannot be assumed as ideal

and its contribution to the top-event failure should be evaluated.

Generally heterogeneous redundancies obtained from natural compatibilities require less
resources to make implementations compatible. In these configurations the failure prob-
ability difference between homogeneous and heterogeneous redundancies is lower com-

pared with heterogeneous redundancies obtained from forced compatibilities.

In a main function, the failure contribution of a subfunction without redundancies is
more important than the contribution of a subfunction with redundancies. That is, the
number of redundancies and the number and type of reconfiguration redundancies of a
subfunction become less effective when the same main function has another subfunction

which has a single implementation (i.e., a single point of failure).
The following are the main factors that influence system cost:

e Downtime cost: the influence of the downtime cost is higher with less reliable
architectures and it is more penalising than the cost incurred by HW, SW or

communication resources.

e Type of redundancies: the architecture cost (HW, SW and communications
resource cost) of heterogeneous redundancies are cheaper than homogeneous re-
dundancies, however, when downtime costs are included, the cost depends on the

system’s unavailability - which is commonly better for homogeneous redundancies.

e Type of heterogeneous redundancies: heterogeneous redundancies arising from
natural compatibility does not need a specific software, whereas heterogeneous

redundancies arising from forced compatibility requires fit-for-purpose software.

e Number of heterogeneous redundancies: if there are similar heteroge-
neous redundancies arising from forced compatibilities, the cost of each
heterogeneous redundancy is lower. This happens because the software devel-
opment cost of one software resource (which is assumed to be valid for all re-
dundancies with slight modifications) is divided among the similar heterogeneous

redundancies. Therefore, the cost per each heterogeneous redundancy is not as
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high as for a single (independent) heterogeneous redundancy (related to SW de-

velopment cost attribution).

Note that our analysis have been performed for the values shown in Appendix E. In
order to contrast the validity of the obtained results a cost sensitivity analysis should

be performed.

The reuse of system resources (i.e., heterogeneous redundancy) reduces system cost
compared with the addition of an additional hardware components. However, this is only
true when the unavailability incurred by the heterogeneous redundancy is not greater

(or is slightly greater) than the homogeneous redundancy.

Depending on the system configuration, the influence of health management and com-
munication implementations on system dependability may be negligible or not. In the

following some deliberations about health management implementations:

e Depending on the number of input, control or output subfunction’s redundancies,
the influence of health management implementations gains significance. The less
subfunctions, the higher its weight (e.g., a single input subfunction with redun-

dancies).

e The higher the number of redundancies of health management implementations,
the lower the failure probability of the reconfiguration and fault detection imple-
mentations and higher the system cost. However, its effect on the main function
is attenuated due to the sequence-dependent constraint (health management im-

plementations must fail prior to the subfunction’s implementation).

e If the implementations of the same subfunction are concentrated in a single PU,

the system becomes more sensitive to communication failures.

The feasibility of the use of heterogeneous redundancies for safety-critical functions is
an issue worth mentioning. In some cases, the cost incurred in obtaining evidences of
the reliability of the heterogeneous redundancy can increase the cost more than using

an homogeneous redundancy.
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7.2 Contributions

The followings are the main contributions of this dissertation:

e A comprehensive review of the model-based dependability analysis, verification

and design approaches has been developed.

e We have developed a methodology that enables the systematic characterization

and evaluation of HW /SW architectures which includes:
— Systematic identification of heterogeneous redundancies.

— Systematic evaluation of the influence of design decisions on system
dependability for non-repairable systems. In this context, an analysis
paradigm that allows the transformation of the design model to the dy-
namic dependability analysis model has been used (Component Dynamic
Fault Trees).

— Systematic evaluation of the influence of design decisions on system
dependability for repairable systems. This approach enables the analysis
of the failure probability of the system taking into account prioritized repair

strategies and including components with complex logic and repeated events.

e So far, the research community has considered health management implementa-
tions as ideal when using heterogeneous redundancies. Our methodology includes
health management mechanisms (and their failure model) as well as homogeneous

and heterogeneous redundancies when designing adaptive dependable systems.

e Hitherto, heterogeneous redundancies have not been integrated in a design
methodology that starts from their identification, moves through the construc-
tion of the HW/SW architecture to use them in massively networked scenarios,

and quantifies their effect on system’s dependability and cost.

e Validation of the concepts treated throughout the dissertation using industrial

railway communication devices.
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7.3 Future Work

The goals of this work have been focused on the stated research objectives. However,
there exist some interesting areas that have not been completed during this time and they
deserve to be mentioned in order to progress in the use of heterogeneous redundancies
in real systems. Subsequently, we list some points that determine how this thesis can

be further developed.

The presented modelling approaches (Functional Modelling Approach and Extended
Functional Modelling Approach) enable an straightforward characterization of the
system and its subsequent exploitation for redundancy identification and further anal-
yses. However, this process requires studying all the system functions, resources, and
their physical locations early at the design time. In order to alleviate the burden of anno-
tations it may be possible to come up with an approach that enables the auto-annotation

(suggestion) of implementations based on the components name.

When using heterogeneous redundancies, the designer needs to be aware of the quality
degradation and evaluate whether it is acceptable or not. To further refine the compat-
ibility analysis, heterogeneous redundancies should be validated exhaustively. To this
end, different architecture-specific requirements subject to real system operation need
to be taken into account, such as acceptable error margins, timeliness, memory and

processing capacity constraints of the processing units.

Another issue worth addressing is the construction of the reconfiguration table at run-
time. Run-time updates to the reconfiguration table would facilitate the system main-

tenance and it would reflect the real system status.

The approach would benefit from the automatic extraction of the dependability eval-
uation models so that the designer is not exposed to error-prone tasks. Besides, the
automation would help to implement optimization algorithms in order to search for the

best architecture according to predefined dependability and cost requirements.

The time needed to carry out the simulations of the dependability analysis models is
considerable: this issue originates from the level of complexity of the dependability
evaluation model and the required accuracy of the results. In this direction, techniques

such as dynamic simulation stopping criterion can be defined: deciding whether to
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continue simulating the model based on simulation parameters (e.g., acceptable standard

deviation of the probability calculations).

In the analysed case studies the evaluations have been carried out at the function level.
However, it could be interesting to consider the train car as a whole. In this way, an
overall evaluation of the train’s performance could be evaluated while considering all

the performed functions simultaneously.

As for the cost assessment, undertaking a cost sensitivity analysis would consolidate the

conclusions that we have obtained in this dissertation.

When validating the concepts treated throughout the dissertation using industrial com-
munication elements, the main limitation has been that the scenarios have been tested
isolated from the other functions comprising a real train. Hence, we do not have to deal
with possible memory and bandwidth issues. A more accurate approach would require
taking into account these requirements as well as performing calculations so that the

system meets all its requirements.

In Chapter 5, we assumed that (1) the repair process of resources starts as soon as a
resource fails and (2) the repaired resource is as good as a new one. In this direction,

there may be some points worth analysing:

e It may be possible to implement preventive maintenance strategies so that a com-

ponent is repaired /replaced before its failure.

e The degradation of the resource after reparation can be taken into account, e.g.,

increasing the failure rate after each reparation.

e It would be interesting to evaluate the influence of repair rates on system'’s failure

probability to optimize repair and maintenance parameters.

218



Appendices

219






APPENDIX A

Overview of the Basic Dependability
Analysis Approaches

A.1 Event-Based (Combinatorial, Static) Approaches

Event-based approaches characterize the system failure behaviour through the combina-
tion of its constituent components failure events. This characterization reflects system’s
structural properties (e.g., redundancies), but it is unable to capture complex events and
dependencies. The main advantage of these approaches is their simplicity which has re-
sulted in their widespread use in different industry fields such as railway, avionics or
nuclear industries. In contrast, among their disadvantages it should be highlighted that
they are unable to grasp system’s dynamics such as load-sharing, standby redundancies

or dependencies. Their underlying (limiting) assumptions are the followings:
1. Events are characterized as stochastically independent events.
2. Events are characterized as binary events: working or failed.

3. Non-repairable events: when events fail for the first time, they are assumed to be

failed forever.
4. Characterization of a single failure/functioning event at a time.
5. Relations between events expressed by (static) boolean operators.

In the scientific literature there has been proposed many approaches to overcome the
limitations of these approaches (see [Aizpurual3b] for an overview of limitations and

solutions). Some of them are addressed in the Subsection 2.3.1.
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Event-based approaches characterize the failure or functioning logic of the system

through the structure function of the system |[Rausand03]:

A.1.1 Structure Function

Consider a system composed of n components, where the state of the component i (x;),

1=1, 2, ..., n can be functioning or failed:
1, if component i is functioning
€Tr; =
0, if component i is in a failed state
x = (21,9, ...,2,) is called the state vector. The state of a system can be described by
a binary function:
(P(X) :¢(£L‘1,l’2,...,xn) (A]‘)
where
1, if the system is functioning
d(x) =

0, if the system is in a failed state

and ®(x) is called the structure function of the system. Series, parallel, and K out
of N structure are the classical arrangements of systems with the following structure

functions:

Series Structure: a system that is functioning if all of its n components are function-

ing:

D(x)=a1-22... 2y = [[ i (A.2)
i=1

Parallel Structure: a system that is functioning if at least one of its n components is

functioning:
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d(x) = 1—(1—x1)~(1—x2)...(1—xn):1—H(1—a:i) (A.3)
i=1
K out of N Structure: a system that is functioning if at least k of the n components

are functioning:

LAY, @ >k
px)= 4 T (A.4)
0, if Yoy x < k

Making use of the structure function, we will define two well known event-based de-

pendability analysis approaches: Fault Tree Analysis and Reliability Block Diagrams.

A.1.2 Fault Tree Analysis

The concept of Fault Tree Analysis (FTA) was developed by Bell Telephone Laboratories
as a technique with which to perform a safety evaluation of the Minuteman Launch
Control in 1961. Later Boeing'® company modified it for computer utilization and now

it is widely used in many fields such as aviation, railway or nuclear [Office02].

FTA is a top-down deductive analysis technique aimed at finding all the ways in which
a failure can occur. Starting from an undesirable system-level failure, i.e., top-event, its
immediate causes to occur are identified until reaching the lowest-level component, i.e.,
basic-event. The top-event is broken down into intermediate and basic-events linked
with logic gates organised in a tree-like structure. The resulting F'T, is a model in the
form of combinations of events which are necessary to the top-event to occur. The
combination of events are specified using boolean logic gates denoting the relationship

between the different events (see Figure C.1 for a FT model example). Formally,

Definition A.1. Fault Tree (FT): A fault tree model, ft, is defined by a 4-tuple:
ft=<TE,BE,BG,R >

where:

e TE is the top-event of the FT (failure of the modelled system)

5 www.boeing.com
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e BE is the set of basic events
e BG={AND, OR, KooN} is the set of boolean gates
e R C (BEz BG)U (BG z BG)U (BG z TE) is the set of relations.

Often the output of a gate which is then connected to another gate is named Intermediate
Event (IE). Boolean Gates (BG) are defined as follows:

e AND: Y= AND (E,, Es,...,Ey); Y is true iff all events {E;, Es,...,Ex} are true;
otherwise is false (cf. Figure A.1 (b)).

e OR: Y= OR (E;, E,,....Eyx); Y is true iff any event {E;, E,,...,Ex} is true;
otherwise is false (cf. Figure A.1 (c)).

e KooN: Y= KooN (E;, Es,...,Ex); Y is true iff at least k (1 < k < n) among the
set of N input events {E;, E,...,Ex} is true; otherwise is false (cf. Figure A.1

(d))-

o 0@ &

E, EszN Ei E; Ey Ei E; En
(a) Basic Event (b) AND Gate (c) OR Gate (d) K out of N Gate
Figure A.1: Fault Tree Symbols

Qualitative Analysis: the principal qualitative results are the (minimal) cut-sets,
which reflect the (smallest) combination of basic events whose simultaneous occurrence
results in the top-event occurrence. The number of possible cut-sets grows exponentially
with the size of the fault tree.

Quantitative Analysis: A FT model can be quantified by ascribing probabilities to

the basic events and combining them to evaluate the probability of the top-event:

e Structure Function: replace system variables with the corresponding failure prob-

ability.
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e Computation based on Minimal Cut-Sets (MCS): determine all the minimal cut-
sets MCS;, MCS,,. .. ,MCSy, and rewrite the structure function as follows:

k
ox)=1] TI = (A.5)
7=1 ieMCSj
From the resulting structure function, once system variables are replaced with
the corresponding probabilities, the inclusion-exclusion formula should be applied
to determine the system unreliability and avoid taking into account probabilistic

dependency between events.

Importance Measurements: Importance measurements can be carried out to quan-
tify the contribution of the BE (or IE) occurrences to the TE failure. There exist
different importance measurement methods based on the influence of the (1) BE’s (or
IE) reliability and (2) structural location of the BE (or IE) in the system. Different
importance measurements have been defined based on these properties, refer to Section

4.3 for further details and references.

Binary Decision Diagram (BDD) based Analysis [Bryant86]: BDD encodes the
boolean formula underlying a FT model. It allows the reduction of the fault tree by
providing advantages from computational point of view. Working directly in the logical

expression level it allows to obtain minimal cut-sets and system level unreliabilities.

The BDD approach is based on the Shannon decomposition formula [Shannon38| and

its equivalent if-then-else (ite) structure:

F:l‘l/\Fl VZE_l/\FOZ’itG(Zfl,Fl,FQ) (A6)

That is, if 27 is true then F} else Fy. For instance, if we consider the next boolean for-
mula, which expresses the failure logic of a simple system: TF = zAyV z; the TE failure
logic can be expressed as follows: T'E = ite(x, ite(y, 1,ite(z, 1,0)),ite(z,1,0)). Accord-
ingly, the corresponding BDD which encodes the boolean formula into ite notation is

shown in Figure A.2.

There exist many algorithms and tools for the synthesis, optimization, verification and
testing of BDDs [Doyle95].
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1 0

Figure A.2: The BDD of the formula y =x Ay V z

A.1.3 Reliability Block Diagrams

A Reliability Block Diagram (RBD) is a success-oriented network describing the non-
repairable function of the system [Rausand03|. It shows the logical connections of the
components needed to fulfil a specified system function answering the following question:
which elements of the item under consideration are necessary for the fulfilment of the

required function and which can fail without affecting it? [Alessandro06|

Each component is illustrated by a block (reliability block) and each of them has its spe-
cific failure characteristics. Blocks are combined as series structure, parallel structure or
K-out-of-N structure to fulfil the specified system function according to the redundancy

scheme (see Figure A.3 for some example configurations). Formally,

Definition A.2. Reliability Block Diagram (RBD): A reliability block diagram
model, rbd, is defined by a 4-tuple: rbd =< B,C, N, J >

where:
e B is the set of blocks
o C is the set of connections between the blocks
e N is the set of nodes

e JC (NzCuzxB)U (BxCua N)U (BxC x B) is the connection relation with
respect to the input node, output node; and the connection relation between blocks

respectively.

Qualitative Analysis: the principal qualitative results are the (minimal) path-sets,
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which reflect the (smallest) combination of blocks whose simultaneous occurrence result

in the correct operation of the system.

Quantitative Analysis: A RBD model can be quantified by ascribing probabilities to
the blocks and combining them to evaluate the probability of the system functioning or

failing:

e Structure Function: in the structure function replace the system variables with

the corresponding working probability.

e Computation based on Minimal Path-Sets (MPS): determine all the minimal path-
sets MPS;, MPS,,... ,MPSy, and rewrite the structure function as follows:

k
ox)=1 II = (A7)
j=1i€M PS;
From the resulting structure function, once system variables are replaced with the
corresponding probabilities, the inclusion-exclusion formula should be applied to

determine the system reliability and avoid taking into account overlapping events.

A.2 State-Based (Dynamic) Approaches

State-based approaches make use of state-space models to quantify RAMS properties
of the system under study. They characterize the occurrence of a failure as a transition
from functional state to a failed state. That transition can be provoked either by another
event which triggers the state change or due to the elapsed time in a state. State-based
analysis techniques mainly differ in their abstraction levels and considered probabilistic

distributions.

The advantages of the state-based approaches over event-based approaches are that
they account for the reliability of system’s dynamics. However, their disadvantage are
the complexity to analyse accurately system’s dependability properties and the state-

explosion problem.

The following paragraphs introduce some relevant definitions to characterize state-based

approaches:
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Y
v

n
>_ g, H & — -« —| E _> Rs=i|:|1Ri "Series Structure”
— E1
n .
R.=Z (})R'(1-R)™ "K out of N redundancy”
- E, i=k
p— R,=R,=..=R,=R
— En
B 1 & 1 & Rs = (R{R,R; + RyR; -
EE H E —} R,R;R;R,R5)R4R;
E, Es "Series-parallel structure”
E,
E, —‘ Ey _> Rs = (3R2-2R%*R,  "Triple Modular Redundancy"
J R,=R,=R;=R
E;
E1 E3
T Rs = R5(R1#R2-R1R;)(Ry+R,-R;3R, )+
(1-Rs)(R1R;+R:R4-R1R;R;3R,)
Es
"Bridge Structure"
E, l E,

Figure A.3: Reliability Block Diagram Structures and Associated Reliability Functions
[Alessandro06]

Let S be the possible outcomes of a random experiment. The set S is called sample
space of the experiment. A random variable is the mapping from s € S a outcome to a

real number.

Definition A.3. Stochastic Process: family of random variables {X(t) |t € T}

defined on a given probability space.

The values of the random variable X (¢) denote system states and T is called the pa-
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rameter set. If T is not countable the process is said to have a continuous parameter;

otherwise it is called discrete parameter process.

Definition A.4. State Space: the state space Q2 of the process {X(t)} is determined
by the set of all possible values that random variables can take. Depending if T is
continuous or discrete, the state space is called continuous state space or discrete state

space respectively.

Two events (A, B € F) are said to be independent if: P(ANB) = P(A)P(B). Thus,

an independent stochastic process is defined as follows:

Definition A.5. Independent Stochastic Process: assuming that F,(x1,xo,. .., x,)
denotes the finite dimensional joint distribution of a stochastic process {X (t) |t € T},

the stochastic process is independent if:

Fo(xy,...;z,) = P{X(t1) <a1,...,X(tn) <2} = f{P{X(ti) <} (A.8)

Among the state-based approaches, we will focus on two well known basic approaches

from which different approaches have come up: Markov Chains and Petri Nets.

A.2.1 Markov Chains

Markov Chain based analysis techniques describe states of a system at successive times
[HaverkortO1; Trivedi02]. The Markov property states that the system depends only on

the current state and not on the history of the states:

Definition A.6. Markov Property: if for any tg < t1 < to < ... < t, < t, the
conditional distribution of X (t) for given values of X (to), X (t1), X (ta), ..., X(t,), X (1)
depends only on X (t,):

PIX(t) <2 | X(tn) = @y .., X(t) =21, X(to) = 20}

(A.9)
=P{X(t) <z |X(t.)}

The Markovian property is also known as memoryless property and a stochastic process
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which possesses the Markov property is called a Markov process. A Markov process with

a discrete state space is referred to as a Markov Chain.

In most Markov processes it is normal to assume that they are time invariant or time

homogeneous'® (also known as stationary Markov Chains) satisfying:

P{X(t) < x| X(tn)} = P{X(t—t,) < x| X(0) = 2} (A.10)

The probability that the process stays in state 7 at time t > ¢, given it was in state
¢ at time ¢, only depends on state i, but does not depend on how much time it has
spent in state i (no state age memory). This property implies that the lifetimes be-
tween subsequent events should also have the memoryless property, i.e., sojourn time
is exponentially distributed for continuous processes and geometrically distributed for

discrete processes.

Depending on continuous or discrete transition times between states, Markov chains
are classified as Continuous Time Markov Chain (CTMC) (cf. Figure A.4) or Discrete
Time Markov Chain (DTMC) (cf. Figure A.5) respectively:

Definition A.7. Continuous Time Markov Chain (CTMC): A Continuous Time
Markov Chain model, ctme, is a 3-tuple: ctmec =< S, sg, R >

where:
o S ={s0,51, S2,...,Sp} s a finite set of states;
o sq € S is the initial state;

e R:5xS — Ry is the transition rate matriz.

The transition time (sojourn time or delay) is characterized according to the exponential

distribution. The transitions in DTMCs are labelled with probabilities instead of rates:

Definition A.8. Discrete Time Markov Chain (DTMC): A Discrete Time
Markov Chain model, dtmc, is a 3-tuple: dtmc =< S, so, R >

where:

e S={s0,51, S2,...,8p} is a finite set of states;

16Tn the following we consider only time-homogeneous Markov chains
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S={W, F}
So=W

(3 3)

M
Figure A.4: Continuous Time Markov Chain Example

o 59 € S is the initial state;

o R:SxS — [0,1] is the transition probability matriz.

S={W,D,F}
So=W

0.7 0.2 0.1
R={03 05 0.2
0.1 0.3 0.6

0.2

Figure A.5: Discrete Time Markov Chain Example

With homogeneous continuous Markov Chains, the sojourn time is exponentially dis-
tributed, but in some cases this is not enough to describe system’s properties adequately.
Besides, Markov Chains are modelled as flat networks, thus, when dealing with complex
systems, the readability and correct construction of the Markov models is complicated
and in many cases it suffers from the state explosion problem. In this way, stochastic
extensions were introduced to alleviate the complexity of the pure Markov Chain models

when characterizing complex systems.

Definition A.9. Renewal process: let Sy < S < Sy < ... be the time instants of

successive events to occur where,
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So=0and S, =% X;n=12, .. (A.11)

The sequence of non-negative independent and identically distributed random variables
S ={S,— Sp_1;n=1,2,...} is a renewal process; i.e., the sequence of interoccurrence

times between successive events are independent and identically distributed.

The state at S,, (the epoch that the n-th event occurs) is given by X,, € S. The chain
X, now forms a process on its own (DTMC). The points S,;n = 0, 1,2, ... are called
Markov regeneration epochs or Markov renewal moments. Together with the X, they

define a Markov renewal sequence:

Definition A.10. Markov Renewal Sequence: a sequence of bivariate random vari-
ables {(Yy, Sn),n > 0} is called a Markov Renewal Sequence if:

P{Yn+1 = j, Sn+1 — Sn S X | Yn = i, Sn, Ynfl, Sn,1 e ,YE), So}
= P{Y,11=7,541— S, <z |Y, =i} (Markov property) (A.12)
= P{Y1 =311 <z |Yy =1} (Time Homogeneitly)

In a Markov Renewal Sequence, the future evolution of the stochastic process depends
on the current state of the process at Markov renewal points, i.e., at time epochs S,,.
Markov Renewal Sequences are embedded into Markov Renewal Models. Markov Re-
newal Models can be classified into two categories [Xie04]: semi-Markov model and

Markov regenerative model.

Definition A.11. Semi-Markov process: consider a Markov renewal sequence
{Y,, Sn} with state space I the stochastic process {Y,,, Sy} is called a semi-Markov process
with state space I if Z(t) =Y (n) for t € [Syn, Sni1)-

In Semi-Markov processes the amount of time spent in each state before a transi-
tion to the next state occurs (i.e., inter-occurrence/sojourn time) is an arbitrary ran-
dom variable that depends on the next state the process will enter, i.e., the inter-
occurrence/sojourn time is not required to be exponentially distributed, instead it fol-

lows a general distribution. At transition instants a semi-Markov process behaves like a
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Markov process: transitions at Markov renewal points from state to state are made like

a Markov process.

Definition A.12. Markov regenerative process [Henk C.03]: if there exists a
Markov renewal sequence {(Y,,T,),n > 0} of random variables such that all the con-
ditional finite dimensional distributions of {(Z(S, +t),n > 0} given {(Z(u),0 < u <
Sn), Y, =i} are the same as those of {(Z(t),t > 0} given Yy = .

The Markov regenerative process is a generalization of the semi-Markov process: the
Markov regenerative process has state changes between S; and S;, 1, while semi-Markov

does not.

A.2.2 Petri Nets

Petri Net approach overcomes the main drawback of the Markov Chain analysis, i.e.,
the model does not increase in size as the number of components increases. While in
a Markov Chain it is necessary to define all the possible combinations of the system,
in Petri Nets it suffices with specifying the conditions when a component will be up or

down. A Petri Net models the system through the following elements [Peterson81]:
e Places which model state variables and contain tokens.
e Tokens which model the specific value of state variables.
e Transitions which model activities that can cause state changes.
e Arcs which model the interconnections between places and transitions.

A marking in a Petri Net is an assignment of tokens to the places of a Petri Net (e.g.,
the marking of the Petri Net depicted Figure A.6 is: m(pl)=2, m(p2)=0, m(p3)—1,
m(p4)=1 or m—(2, 0, 1, 1)). The number and position of tokens may change during
the execution of a Petri Net. The tokens are used to define the execution of a Petri net.

Formally:

Definition A.13. Petri Net (PN): A Petri Net model, pn, is a 5-tuple:
pn=<P,T,1,0,M(0) >

where:
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P ={p1, p2,...,pp} is a finite set of places;

T =A{ty, to,...,t;} is a finite set of transitions;

I: PxT — N 1is an input function that defines the directed arcs from places to tran-

sitions, where N is the set of non-negative integer numbers.

O: TzP — N s an output function that defines directed arcs from transitions to

places.

M(0)={m,(0),ms(0),...,m,(0)} is the initial marking, i.e., the number of tokens

within the places.

t1

p1 b2

t3

t2

p4

p3
Figure A.6: Petri Net Example

Transitions can be enabled when all its input places are marked at least with as many
tokens as specified by the input function (e.g., ¢/ in Figure A.6). When a transition
fires it removes the number of tokens from its input places defined by the weight of the
input arc and sets to its output place(s) the number of tokens specified by the weight of
the output arc. For instance after firing ¢1 the resulting marking of the net would be:
m=(1, 1, 0, 1).

A Petri Net model simulates the “token game” based on the marking of places. The
marking of a Petri Net determines the state of the system. They are used for analysing

the probability to reach some desired state.
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Originally they were characterized by either deterministic or exponential transition
times, which created the mapping between Petri Nets and Markov Chains. As oc-
curred with Markov Chains, the theory of Petri Nets was also extended introducing

time dependent transitions:

e Stochastic Petri Nets (SPN): Petri Nets with exponentially timed transitions (or
firing delays). Its underlying stochastic process is expressed as CTMC [Bause02].

e GSPN: Petri Nets with exponentially timed and immediate (zero timed) transi-
tions. Immediate transitions have priority over timed transitions. GSPN are also
analysed by means of CTMCs [Kartson94].

e DSPN: deterministic (fixed) and exponentially distributed timed transitions
[Lindemann98].

e Markov-Regenerative SPN: immediate transitions, exponentially distributed timed

transitions and generally distributed (arbitrary) timed transitions [Choi94].

e SAN: generalization of Stochastic Petri Nets, which allows defining general prob-
ability distributions and compositional models [Sanders02b]| (see Chapter 5).

Petri Nets are high-level representations of the system, which allows (in some cases)
the generation of Markov Chain based models. This is why many works analyse sys-
tems through Petri Nets-based formalisms, which are characterized by their underlying
Markov processes. System’s states and events characterized with temporal properties
yield to accomplish accurate dependability attributes measurement. Most of the Petri
Nets based formalisms characterize the system model with safe-unsafe or working-failed
states, where the correctness and accuracy of the analysis depends on the model con-

struction. Petri Nets can also be solved via discrete event simulations [Chiola93b].

Architecture description languages [Medvidovic00| (e.g., UML [OMG14b], AADL
[Feiler07]) have been widely adopted to alleviate the dependence on the correctness of
the analysis model or quality evaluation model (see Subsection 2.3.1). These approaches
include architecture description information as well as dependability behaviour informa-
tion and automates state-based dependability analysis model generation. However, the
expressiveness of the state-based quality evaluation models comes with a considerable
computational cost, which is the biggest limitation for state-based approaches, i.e., the

state-explosion problem [Valmari9g|.
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APPENDIX B

Classification of the Hybrid

Approaches and Tool Support

The goal of this chapter is to classify the hybrid approaches presented in Chapter 2

and provide information about their tool support.

[Aizpurual3b| for more information.

B.1

Classification of the Hybrid Approaches

Interested readers please refer to

In order to classify the covered hybrid approaches in Chapter 2, Table B.1 groups them

taking into account addressed limitations (see Table 2.5).

Table B.1: Summary of Limitations Overcome by Approaches

Group Approach Limitations
1 [Dugan92] [Rao09] [Walter08] [Codetta-Raiteri05] [MontaniO8] [Mannol4c] L1
2 [Bouissou07] [Mannol2b] [Arnold13] L1, 14
3 [Kaiser03] [Fenelon93] [Domis09b] [Paige08al L2, 14
4 [JoshiOT7] [Adler10a] [Papadopoulos11] [Priesterjahnlla] [Gallinal2] L2, L3, L4
5 [Kaiser07] [Romain07] [Distefano09] [Signoret13] [Niull] L1,L2,14
6 [Walker09] [Montecchill] [Rugina07] [Riedl12] [Cressent11] L1, L2,L3, L4

Approaches classified in the group 1 focus on dynamic analysis issues. Differences be-

tween them rely in their failure/repair modelling capabilities and their corresponding

statistical distributions as noted in Subsection 2.3.1.
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Approaches within the groups 2, 3 and 5 allow the compositional evaluation of the
system’s dynamics (group 3 excepted) addressing the manageability issues arising from

the resulting dependability evaluation model.

Approaches gathered within the groups 4 and 6 contain all necessary mechanisms to
analyse dynamic systems consistently and in a manageable way. Compositional failure
annotation, dynamic behaviour (group 6) and automatic extraction of analysis models
are the key features addressed by these approaches. However, when dealing with the
manageability and reusability issues (L.4) different approaches arise: groups 4 and 6
address 1.4 by means of the compositional characterization of the design model instead
of the compositional characterization of the dependability analysis model. The trans-
formational capability of the design model allows them to cope with design complexity
issues. However, the analysis model itself is not a compositional approach, rather it
is a flat model whose manageability/maintenance may be hampered when analysing

complex systems and dealing with the dependability analysis model directly.

Utilization of failure annotation patterns promote flexibility and reuse and consequently,
reduce the error proneness. Nevertheless, as noted in [Lisagor10|, characterization of the
failure behaviour of components depends on the component context, which conditions
compositional and reuse properties. Moreover, automatic generation of the analysis
model does not completely alleviate the dependency on the knowledge of the analyst.
However, the management and specification of the failure behaviour is clearer and more

consistent.

B.2 Tool Support

In this section we introduce the tool support of the approaches presented in Subsection
2.3.1. Namely, we identify the type of tool (internal, commercial, academic, ...) and
the date of the latest release.

The tool support of dynamic approaches, compositional failure propagation approaches,
and model-based transformational approaches are presented in Subsection B.2.1, Sub-

section B.2.2, and Subsection B.2.3 respectively.
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B.2.1 Dynamic Approaches

Table B.2 displays the dynamic approaches addressed in Subsection 2.3.1 that have tool

support for the specification and analysis of the dynamic behaviour of systems.

Table B.2: Tool-Support of the Dynamic Approaches

Approach - Work Tool Support Type of Tool ];I{";t:::;e
DFT - [Dugan92] Galileo [Virginia03] %Zilégggﬁ’ 2003
DFT -
[Codetta-Raiteri03)] DrawNET (DFT), GreatSPN(GSPN) Internal 2005
DFT - [Rao09] DRSIM tool Internal 2009
DFT - DFTCalc .
[Arnold13] DFTCalc [Twentel4] Available 2014
DFT - Radyban .
[Montani0§] Radyban [Montani08] Internal 2011
DFT - MatCarloRe MatCarloRe Tool [Mannol4a] Acac‘lemlc 2014
[Mannol2b] evaluation copy
DFT - RAATSS RAATS Tool [Mannol4b| Academic 2014
[Mannol4c] evaluation copy
RdAP - [Signoret13] BStoK [Workshop] Comercial 2014
OpenSESAME - . .
[Walter0s] OpenSESAME [Walter(9] Available 2009
BDMP - [Bouissou07] KB3 Workbench [EDF14] Available 2014
SEFT - [Kaiser07] ESSaRel [[Tsiflgz_ﬁ]é% imeNET Internal* 2014

* Available for research purposes under agreement

B.2.2 Compositional Failure Propagation Approaches

Regarding the tool support of the Compositional Failure Propagation (CFP) approaches

we can see that all approaches have been turned into tool-sets. Nonetheless, the CFP

approaches are moving one step further, integrating dependability analysis models with

design languages in order to link the design and analysis processes (cf. Subsection 2.3.1).
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Table B.3: Tool-Support of the CFP Approaches

Approach - Work Tool Support TyTI()f)IOf I%:l:;s:e

FPTN SSAP Toolset [Fenelon93] Unavailable 2006

HiP-HOPS HiP-HOPS Tool [Hull14] Available 2014
[Papadopoulos11]

CFT ESSaRel tool [TU Kaiserslautern09) Available 2009

SCM [Domis09b] ComposeR Internal 2012

FPTC Epsilon [Paige08b] Available 2009

[Priesterjahn1la] MechatronicUML, Fujaba [Paderborn12] Available 2012

B.2.3 Transformational Approaches

As it is shown in Table B.4, all Architectural Design Languages (ADL) have their own

implementation tool-sets.

Namely, transformations from ADL models into composi-

tional failure propagation models have been carried out through metamodels and profiles

implemented as plugins.

Table B.4: Tool-Support of the Transformational Approaches

Approach - Work Tool Support TyTI()f)IOf ]?%th(ee;ste
Simulink Matlab [MathWorks14] Comercial 2014
UML, SysML e.g., Eclipse Papyrus [Eclipsel2] Available 2014
AltaRica e.g., AltaRica Tools [Labril4] Available 2014
AADL e.g., Osate [CMU12] Available 2014
CHESS-ML CHESS Plugins [CHESS12] Partially | o5

available

FPTC Epsilon [Paige08b] Available 2009
Adler et al. [Adler10a] CFT UML Profile Internal 2012
HiP-HOPS EAST'ITAD%ES]ESCTIIfgf Plugin Available | 2010
LARES [Riedl12] LARES toolset [Gouberman14] Available 2014
Cressent et al. [Cressent11] MeéDISIS Framework Internal 2012
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APPENDIX C

Analysis of Literature Approaches on a

System Example

In this chapter we will focus on a hypothetical simple example to highlight the strengths

and drawbacks of some of the approaches reviewed in Chapter 2.

This chapter is organised into the next sections:

Section C.1 applies traditional Static Fault Trees [Vesely02] on the example system.
Section C.2 uses Component Fault Trees [Kaiser03| on the example system.

Section C.3 employs Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS) approach [Papadopoulosl1| on the example system.

Section C.4 makes use of repairable Dynamic Fault Trees through the Reliability
Availability Adaptive Transition System Solver (RAATSS) tool [Mannol4c| on the

dynamic example system.

Section C.5 applies Structure Function of Dynamic Fault Trees [Merle14] on the

dynamic example system.

Section C.6 uses Boolean logic Driven Markov Processes (BDMP) [Bouissou07] on

the dynamic example system.

Section C.7 models the dynamic example system using State-Event Fault Trees
(SEFT) [Kaiser07].
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C.1 (Static) Fault Tree [Vesely02]

As Figure C.1 shows, the simultaneous failure occurrence of two subsystems (IE4, IE5)
causes the system failure (IE1). These subsystems are characterized by the failure
behaviour of their inner basic events (IE4: BE1, BE2, BE3; IE5: BE2, BE4, BE5).
There exist other two combinations that also cause the system failure (IE2, IE3), which

are characterized accordingly with their underlying basic events.

TE

IE1 IE2 IE3

IE4 IES IE6 IE7 IE8(::> BES

A

BES BE7

Figure C.1: Example System: (Static) Fault Tree Model

Note that this model contains repeated components/subsystems (IE4 «» TE7, TE5 <>
[E8) and repeated basic events. In this example we left out the dynamic characteristics
that the system’s failure behaviour may contain, since this is one of the well-known
drawbacks of static Fault Trees: inability to grasp dynamic characteristics of the system.
Another obstacle worth considering is the flatness of the model. For complex systems the
manageability, legibility and maintainability of the model becomes tedious and error-
prone. However, due to the simplicity of the Fault Tree modelling process, still it is a

widely used choice.
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C.2 Component Fault Tree (ESSaReL tool) [Kaiser03]

To overcome the inability of static Fault trees to deal with complex systems, Component
Fault Trees were introduced. In this simple example we have enclosed TE4 and IE5
components/subsystems and reused them to connect to the required gates across the

model (see Figure C.2).

BE1

BE4 BE5 BE6

Figure C.2: Example System: Component Fault Tree Model
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As Figure C.2 displays, the resulting model can be presented in a more intuitive manner
than the traditional (static) Fault Tree model.

As with static Fault Trees, Component Fault Trees are unable to grasp the dynamic
characteristics of the system. In their positive side, note that they are able to deal with
repeated events and more importantly with repeated components, so that the readability

and manageability of the whole model is improved.

C.3 HiP-HOPS [Papadopoulos11]

HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies) enables

to deal with complex systems focusing on the component-based design concept.

Each design component is annotated with their corresponding failure behaviour and
these components are connected to perform the system function. By propagating the
failure annotations of each component, the static Fault Tree of the system is generated
automatically. The whole the system can be seen as a forest of interconnected Fault Trees

[Papadopoulosl1]. Figure C.3 depicts the example system using HiP-HOPS annotations.

Ou_t pyt Causes
Deviation
O-IE4 O-BE1 OR 0-BE2 OR 0-BE3
/ Output
Causes
0-BE1 ati
B 1| Deviation
O-IE1 O-IE4 AND O-IE5
BE1 B IE4
S IE1
BEZ E5
o-BE3
o
N
BE3 IE4
O-BE4 IE2 >
56 TE
BE4
0-BE5S
0—- e
BES
= IE5
0-BE6
&Ed IE3 Output Causes
556 7 Deviation
O-TE O-IE1 OR O-IE2 OR O-IE3

Figure C.3: Example System: HiP-HOPS Model
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Apart from the automatic construction of Fault Tree models, HiP-HOPS is able to
generate FMEA models and it implements automatic SIL decomposition and allocation
techniques [Hull14].

Despite an extension to the dynamic failure characterization of HiP-HOPS have been
done [Walker(09], the approach is not able to grasp the dynamic characteristics of the
system completely. As with Component Fault Trees, HIP-HOPS can deal with repeated

events and repeated components.

C.4 Repairable Dynamic Fault Tree (RAATSS tool)
[Mannol4c]

In order to refine the system’s failure behaviour, let us assume that some failure oc-
currences are required to occur sequentially: TE6 have to occur prior to IE7 and TE8
have to occur prior to BE8. Previously described models are unable to capture this
logic, but the Dynamic Fault Tree (DFT) approach has the Priority AND (PAND) gate,
which addresses this logic adequately. To analyse the system using the repairable DE'T
approach we will focus on the RAATSS tool (see Figure C.4).

QTE

IE4 IES IE6 IE7 IESO BE7

Bes () BEs
éBHéBEZ éBEC” bsmésm éBES
OresOmee Qs Qe s

Figure C.4: Dynamic Example System: Dynamic Fault Tree Model
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RAATSS enables the dynamic analysis of systems with repairable basic events. Besides,
it makes possible modelling any failure/repair distributions. However, its main issues
arises from the flatness of the model. As noted with static Fault Trees, large-flat models

are difficult to maintain and understand.

C.5 Structure Function of Dynamic Fault Trees
[Merle14]

The dynamic system example can be analysed by the algebraic framework for non-

repairable Dynamic Fault Trees proposed by [Merlel4].

Assuming that two events cannot happen at the exact same time we will characterize

the example system of Figure C.4 as follows'":

TE=IE1+IE2+1E3
IE1 = (BE1 + BE2 + BE3).(BEA + BE5 + BE2) = BE2 + (BE1 + BE3).(BEA + BE5)
IE2 = (BE5.BE6) < (BE1 + BE2 + BE3)
IE2 = (BE5) < (BE1 + BE2 + BE3).(BE6) <« (BE1 + BE2 + BE3)
1E2 = (BE5 < BE1).(BE5 < BE2).(BE5 <« BE3).(BEG < BE1).(BE6 <« BE2).(BE6 < BE3)
IE3 = (BEA+ BE2 + BE5) < (BET)
IE3 = (BE4 < BET) + (BE2 <« BET) + (BE5 < BET)
TE = BE2+ BE1.BEA + BE1.BE5 + BE3.BE4 + BE3.BE5
+ (BE5 < BE1).(BE5 <« BE2).(BE5 < BE3).(BE6 <« BE1).(BE6 < BE2).(BEG < BE3)
+ (BE4<BET) + (BE2 < BET) + (BE5 <« BET)

(C.1)

The canonical form of TE is the sum of all its Cut Sequence Sets (CSS) [Tang04]. In

the compact form it is expressed as follows:

TE =) CSS; (C.2)

i=1

It is necessary to check for non-redundant CSS terms (denoted as S,,;,) by applying

17Symbol <« denotes the before operator
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the algorithm defined in [Merlel10]. Assuming that there are m (m < n) non-redundant
cut sequence sets, the probabilistic value of the TE can be calculated applying the

inclusion-exclusion principle [Trivedi02]:

Pr{TE} = Pr{CS8S, + CS8Sy+ ...+ CSSu}
= Y Pr{CSS}

1<i<m

- Y Pr{CS88.CSS;} (C.3)

1<i<j<m

+ Y Pr{CSS.0S5,.C0S5:} +... +(~1)""'Pr{C551.055:.C55m}

1<i<j<k<m

with Vi € 1,...,m, CSS; € S,in.

After verifying that there are no redundancies in the CSS terms of Equation C.1, we
apply the inclusion-exclusion formula to the 9 independent cut sequence sets of Equation
C.1. the resulting disjoint terms are 511 '®. Then the corresponding probabilistic formula

should be applied to each term separately [Merlel0]:

Priab}(t) = Fu(t) x Byt
Pria+b}(t) = Fa(t) + Fy(t) + Fa(t) x Fy(t)

~—

Pr{a<b}(t) /fa (1= Fp(u))du (C.4)
Pr{b(a<b)} / fo(u

The algebraic framework proposed by Merle is adequate for small systems. However,
when analysing real complex systems the process becomes tedious and prone to errors.

Automated tool support to aid in the analysis process would improve its application.

C.6 BDMP [Bouissou07]

Boolean Driven Markov Process can be seen as a generalization of Dynamic Fault Trees

[Bouissou07]. Such a generalization is achieved by the use of a trigger and triggered

185N (};) where N=9

247



Markov processes.

Figure C.5 depicts the BDMP model of the dynamic system example depicted in C.4.
Although the BDMP approach enables connecting the output of a gate to the input of
other multiple gates, the component-based concept is not integrated in the approach.
That is, it is not possible to embed user-defined logic in a component and reuse it
throughout the model. Refer to Subsection 2.3.1 to see other characteristics and limi-

tations of the BDMP approach.

AND) 15 IE2 IE3

AN Nl
@ 1E4 @ IES , & i

\I!/ \I!/ \I!/ \I!/ \I!/ \I!/
Za Za o N Za N
BE1 BE2 BE3 BE4 BE5 BE6

Figure C.5: Dynamic Example System: BDMP Model

C.7 SEFT - DSPN [Kaiser07]

State-Event Fault Trees (SEFTs) are able to analyse the system’s failure and repair
behaviour through the use of components. To this end, the approach models the system
failure /repair behaviour using SEFT concepts and subsequently this model is trans-
formed into the TimeNET tool [[lmenau07] for the analysis of its corresponding De-
terministic and Stochastic Petri Nets (DSPN) model. Therefore, the failure and repair
occurrence of its events will be characterized according to exponential and deterministic

transitions.
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Basic SEFT modelling mechanisms include (cf. Figure C.6): (1) states (e.g., BEl_OK),
(2) transitions (e.g., fault) and (3) state/event ports (e.g., BE1_F'). Besides, different
gates are modelled in SEFT formalism: Priority AND (P&), OR (>=1), NOT and
more (see [Kaiser07] for a more detailed definition of all the gates). All these modelling
mechanisms have defined their own counterpart in the DSPN modelling: both formalisms
include transitions, SEFT states are modelled through DSPN places and each SEFT gate
has associated its corresponding DSPN net. Thus, so as to analyse an SEFT model its

transformation to DSPN model is necessary.

fault
A = 0.0045s"-1

Repair Repair
A = 0.0255"-1 A =0.0255"-1

Figure C.6: Dynamic Example System: SEFT Model

Once the SEFT model of the dynamic example system shown in Figure C.4 is created

(see Figure C.6), its transformation results in the DSPN model depicted in Figure C.7.

As it can be seen from the DSPN model (cf. Figure C.7) the resulting dependability
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TopEvent

TE=P{#TopEvent>0}

BE1 BE2

Figure C.7: Dynamic Example System: SEFT’s Underlying DSPN Model

analysis model is a flat DSPN model. Therefore, for complex systems, tracing from
the SEFT model towards the DSPN model is not straightforward and it can suffer

from the state-explosion problem. Another issue worth considering is the fact that it
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is not possible to connect CF'Ts with SEFT models in order to trigger SEFT model’s
state changes through Component Fault Tree’s top-events. These characteristic would
make the approach even more expressive and open the way to analyse further complex
systems. In its actual version it manages effectively repairable basic events and it is able

to include functional-design information through component-based characterization.
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APPENDIX D

Automation /Implementation of the
HW /SW Architecture Design

To implement and automate the construction of the extended HW/SW architecture a

model-based design approach has been implemented [Aizpurual3al. As described in the

Figure D.1 the design process is specified as follows:

(1)

The process starts from the construction of the system architecture model specified
in Simulink. System’s resources (sensors, controllers, actuators, network) are mod-
elled using Simulink’s subsystem blocks. At the highest or top level, the system
architecture model is characterized as a set of connected subsystem blocks, which

will have internally their corresponding functionality and logic.

System’s implementations (which will be comprised of resources) are characterized
based on the token-based specification (cf. Characterization 3.1) according to the
Functional Modelling Approach (FMA) and Extended Functional Modelling Ap-
proach (EFMA). To this end, Simulink model’s subsystem blocks are annotated
by previously defined token-based specifications. Thus, each subsystem (resource)
block in the model will have its own description annotated in a underlying xml char-
acter string with the predefined fields specified according to the FMA and EFMA
(see Subsection 3.3.1 and Subsection 3.3.4).

Once all the system resources are annotated with their characteristics, the underly-
ing xml annotations of the model’s blocks are processed. Thanks to the algorithm
defined for the identification of heterogeneous redundancies (see Algorithm 2 and
Algorithm 3), the approach automatically suggests a list of possible heterogeneous

redundancies.
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(4) Finally, after processing the annotations of system resources, the reconfiguration
table is extracted. The reconfiguration table identifies all the possible system im-
plementations to perform the main function. These implementations are ordered

according to their implementation priority.

(©)
Homogeneous,
Heterogeneous
Redundancies

Functional l T
Modelling
Approach |_> %) I @
Token-based Matlab Reconfiguration
Extended 7\ Annotations | Simulink Table
Functional Modelling U ' ' S-al
! ~ -
Approach A Y ~-.

! \

MF: Temperature Control [ ~~ Implementations Priority

PL: Car;.Zone,
SF: Heating

DoorControl.Car1.DoorClosedDetection.Closed Sensor 1

DoorControl.Car1.DoorClosedDetection.ClosedSensor 2

Implementation.: Heater DoorControl.Car1.DoorOnenDetection. OpenSensor 1

Fail. Rate (FIT): 5 .

Figure D.1: D3H2 Metodology: Design Implementation

D.1 Annotations of the System Architecture

The annotations of the Simulink model’s subsystem blocks are characterized with prede-
fined data fields for exploitation purposes. Two main data structures have been designed
to characterize each system implementation: (1) functional; and (2) failure data struc-

tures.

As for the first structure, depending on the implementations’ subfunction type (I, C,
O), we further divide the functional data structure into two main groups: (1) input
and output resource implementations and (2) control resource implementations. While
input and output resource implementations enclose the corresponding logic in a single

block, control resources (i.e., processing units) has further inner subsystems blocks in
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order to model the allocated SW tasks: control, fault detection, reconfiguration and

fault detection of the reconfiguration SW implementations.

Depending on the type of resource implementation, we define mandatory and optional

fields. Initially, the subsystem blocks will not have information about the redundancies

that may exist in the system model. Therefore, this information field is not necessary

when annotating subsystem blocks, and likewise, the information concerning the priority

of the implementation is not necessary in all the cases. Hence, each subsystem block

has a functional data structure with the following fields:

Main Function (MF): mandatory field.

Subfunction Type (SFC): I, C, O, FD, R or FD_R. Mandatory field.
Subfunction (SF): mandatory field.

Physical Location (PL): mandatory field.

Implementation: mandatory field.

Priority: optional field for redundant implementations (priority > 1); otherwise

(priority—1) mandatory.

Allocated: mandatory for PUs. Each PU may has allocated (many) different im-
plementations. This field encloses all its inner SW resources, where each resource
has the next mandatory fields: (1) Identifier, (2) MF, (3) SFC, (4) SF, (5) PL, (6)

Implementation, (7) Priority.

Redundancy: this data field is further divided into homogeneous and heteroge-
neous fields. Once the system model is analysed to search possible redundancies,
possible candidates are classified as homogeneous or heterogeneous redundancy
and they are annotated to the corresponding resource as a potential redundancy
for the implementation at hand. Each candidate redundancy implementation has
the next fields: MF, SFC, SF, PL, Implementation, Priority, and Full Name (or
identifier).

The token (field) of the physical location may contain different detail (depth) levels

depending on the physical location. The token of the physical location is stored in

a variable as a array of strings with its dimension equal to the depth of the physical
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location. For instance, to store the annotation: PL=Car;.Zone,, we will use an array
of length 2.

As for the failure data annotations, the next set of data fields have been defined as

mandatory for all the implementation resources:

e Implementation: name of the implementation.

Description: character string defining the implementations purpose.

Distribution: probabilistic failure distribution of the implementation: exponential,

constant, or Weibull.

Failure Rate (MTTF) and shape parameter (Weibull).

Time Unit: Billion Hours, Years, Weeks, etc.
e Cost: monetary cost of the implementation (Euro).

To aid the designer when filling the necessary fields, these data is loaded from a existing
database automatically. This is achieved by identifying the (possible) matching imple-
mentation’s name (or identifier) in the database and accordingly, suggesting all possible

implementation names, failure rates, and cost values.

D.2 Identification of Heterogeneous Redundancies

In this subsection we will introduce the algorithms for the identification of heterogeneous
redundancies. To this end, we focus on a Simulink model constituted of different blocks

each of them annotated with functional data structure fields.

The algorithm for the identification of heterogeneous redundancies arising from natural

compatibilities takes as input (Algorithm 2):

e BLOCKS,,,: An array of strings with its dimension equal to the number of
implementation (subsystem) blocks in the model. Each element of the array char-
acterizes functional annotations of the implementation and accordingly, the whole

set of strings specifies the design annotations of the system.
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e BLOCK ecr: The implementation to be checked in order to find homogeneous or

heterogeneous redundancies.
Besides, the algorithm makes use of the next functions:

(1) Y =aml_parse(A) function (line 2, 15) with the next input and output variables
respectively: A: an zml character string (in our case it will specify the underlying
zml of the system model); Y: the data structure corresponding to the zml string,
with the attributes of the data fields in the zml string (accessible as Y.attribute).

(2) Y =get SubSystemComponents(A) function (line 6, 19) with the following input
and output variables respectively: A: a variable specifying the reference to a block;
Y: an array of zml strings with the corresponding underlying annotations of each

inner block in A.

Basically, the algorithm for the identification of heterogeneous redundancies arising from
natural compatibilities checks whether same subfunctions are located in contiguous phys-

ical locations (cf. line 34).

This algorithm does not provide any output, instead it updates directly the Simulink
model through the AnnotateRedundancy(A, B,C) function (see line 39). The input

parameters of the AnnotateRedundancy function are:
e A: Block of the Simulink model to be annotated.

e B: An zml character string specifying the redundancy annotations (see Section
D.1).

e C: Type of redundancy (homogeneous or heterogeneous).

The identification of heterogeneous redundancies arising from forced compatibilities is
not an automatically performed task. However, Algorithm 3 outlines the process to
create a list with possible heterogeneous redundancy suggestions. It is the designer who
should have to analyse this list thoroughly to check if it is possible to use any of the
suggested implementations with additional resources as an heterogeneous redundancy

for the indicated subfunction.

The outlined algorithm for the identification of heterogeneous redundancies arising from

forced compatibilities (Algorithm 3) takes as input variables the same data variables as
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Algorithm 2 Heterogeneous Redundancy Identification (Natural Compatibility)

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:

20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

36:
37:
38:
39:

function HeteRedIdentification(BLOCK Ssys, BLOCK checr,)

xml, = xml_parse(BLOCK ipeer); /] parse data structure
allocated, = 0; // variable indicating if the implementation is a PU
if (stremp(xml, SFC, 'C")) then // check subfunction component

allocated, = 1; // indicate that it is a PU

BlockList, = get__SubsystemComponents(block.); // get SW implementations
for j =1:|xml,| do

if (allocated,) then // if SFC="C" get inner data

xml, = BlockList,(j); // get SW implementations of the PU

Hwy = xml,.name; // name
SFy=xml,.SF; // subfunction
I = xml,.Implementation; // identifier
if (xml,.Priority) then // nominal implementation? (Priority—1)
for k=1:|BLOCKS SYS| do // parse all the system blocks one by one to
find heterogeneous redundancies for the nominal implementation in zml,
xmly, = xml_parse(BLOCKS _SY S(k));
allocated, = 0; // variable indicating if the implementation is a PU
if (StTcmp(:Emlb.SFC, 'C')) then// is it a control implementation?
allocated, = 1; // indicate that it is a PU
BlockList, = get SubsystemComponents(zmly);
for i = 1:|zml,| do
if (allocated,) then
xml, = Block Listy(i);

Hwg = xmly.name; // name
SFg = xml,.SF; // subfunction
I = xmly. Implementation; // identifier
type =" // homogeneous or heterogeneous redundancy
if (stremp(SFa, SFp)) then // if SFs match
if (any(stremp(zml, SFC,{'I'/ O'}))) then
Py =axml,.PL;
Pg =axmly,.PL;
sameHw = stremp(Hw,, Hwy); // same Simulink block?
if (stremp(P,(:), Py(:))) AND (~ sameHw) then
type =" homogeneous’; // same exact PL
else if (|P,|==|P,|==2) AND stremp(P,(1), P,(1)) then
type =" heterogeneous'; // same car, different zone
else if (sameHw AND ~ stremp(I4, Ig)) OR ~sameHw then
type =" homogeneous’;
if (~ isempty(type)) then
Annotate Redundancy(BLOC K ek, tmly, type);
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the Algorithm 2: BLOCKS;,s and BLOCK peck.

Besides it makes use of an additional function check PhysicalCompatibility(A, B) which
evaluates if the physical location of the implementations are compatible or not. The
algorithm (or rules) to evaluate possible compatible physical locations has been out-
lined in Subsection 3.3.2. This function was not used with the Algorithm 2 because
depending on the specific case of the physical compatibility, the algorithm determines

if redundancies are homogeneous or heterogeneous (see Algorithm 2 lines [32-37]).

It does not provide any output variable, instead it updates the Simulink model and
its underlying annotations directly calling the function AnnotateSuggestion(A, B) (line

14) where its input parameters are:
e A: Block of the model to be annotated

e B: Possible redundancy annotations.

Algorithm 3 Heterogeneous Redundancy Suggestion (Forced Compatibility)

1: function HeteRedSuggestions(BLOCK Ssys, BLOCK cpecr;)

2 xml, = xml_parse(BLOCK qpect);

3 if (any(stremp(zml, SFC,{'I'/ O'}))) AND (zml,.Priority == 1) then
4: MFy =axml,.MF; // Main Function

5: SFCy = xml,.SFC;// SFC={I, C, O}
6
7
8
9

for k =1:|BLOCKS SYS| do // parse all the system blocks
xmly, = xml_parse(BLOCKS _SY S(k));
if ~ strcmp(l‘mlb.SFC, /C/) then // non-control implementations
: MFBIZL’mleF,
10: SFCpg = xml,.SFC,

11: compatible PL = Check P LCompatibility(xml,.PL, xml,.PL);
12: if (stremp(SFC4, SFCg)) AND

13: (~ stremp(M Fa, M Fg)) AND (compatible PL) then

14: AnnotateSuggestion( BLOC K cpecr, xmly);

D.3 Extraction of the Reconfiguration Table

Once all system implementations/components has been annotated with their character-

istics, in order to extract the reconfiguration table it is enough to parse the zml string
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of the model and extract each components annotations with their corresponding fields.

For the identified homogeneous and/or heterogeneous redundancies and for the imple-
mentations which do not have user defined priority, the prioritization of the implemen-

tations which constitute the reconfiguration table is based on:

(1) Type of redundancy: we assume that homogeneous redundancies have higher prior-

ity than heterogeneous redundancies.

(2) Physical distance between redundancies: among heterogeneous redundancies orig-
inating from natural compatibilities we set higher priority for those implementa-
tions which are closer to the nominal implementation. To this end, each Simulink
model has its own physical location map. This map links qualitative physical lo-
cation identification tokens, e.g., Car;.Zone,, with their corresponding quantitative

space/plane coordinates as depicted in Figure 3.3.
(3) Unreliability of the implementation.
(4) Cost of the implementation.

Among equally weighted implementations, we focus on the weighted sum of the unreli-
ability and cost to determine which implementation’s priority is higher. As for the fault
detection and reconfiguration implementations the designer should assign priorities to
the respective implementations because these depend on design-specific assumptions.
Concerning the fault detection of the reconfiguration implementation (FD_R), all these
implementations have priority=1 because they operate as heartbeat (keepalive) imple-

mentations.
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Algorithm 4 Reconfiguration Table Extraction Algorithm

1: function Recon figurationTable = MAIN(BLOCK SYS)

2: SE list = {}, // different SFs list, no repetitions

3: pos = 0;

4: for (i :=1to |[BLOCKS_SYS|) do

5: xml, = xml_parse(BLOCKS SYS(i)); // parse all the system blocks

6: // no FD, R or FD_R AND (list is empty OR current SF is not already in the list)

7: if (~any(stremp(zml, .SFC,{FD,R,FD_R}))) AND

8: ((isempty(SF _list)) OR (~any(stremp(SF _list{:},xml,.SF)))) then

9: dim = dim + 1,
10: SF _list{dim} = xml,.SF; Add SF to the list
11: groupSF = {}, // all implementations of the same SF
12: xz = 0;
13: for (j =1 to ‘BLOCKS_SYSD do // parse system blocks to find matching

SF’s implementations

14: xmly, = xml_parse(BLOCKS SY S(j)); // parse all the system blocks
15: if stremp(SF _list{dim},xml,.SF) then // SF already exists in the list
16: r=z+1

17: gTOUpSF{:L’} = xmly; // group all the implementations of the same SF
18: if z > 1 then // order implementations wrt priority

19: groupSF = AssignPriority(groupSF);
20: pos = pos + 1;
21: table{pos} = groupSF // store I, C, O implementations in the table variable
22: pos = pos + 1;
23: table{pos} = xml,; // store FD, R, FD_ R implementations in the table variable
24: Recon figurationTable = createReconfigTable(table); // map the variable to the

table
25: return Recon figurationT able;
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APPENDIX K

Failure Rate & Cost Data

The goal of this chapter is to present the failure rate, repair rate, and cost values of the

different hardware, software, and communication resources.

Table E.1 displays the failure rate and cost values of the different hardware, software
and communication resources. Despite the applied dependability analysis formalisms
are independent from the statistical distribution of the failure and repair process (i.e.,
Component Dynamic Fault Trees and Stochastic Activity Networks), for the sake of

simplicity in all the calculations exponential distributions have been assumed.

Table E.1: Failure Rates & Cost Values of HW, SW and Communication Resources

Resource X\ (year?) u (year!) Cost (€)
SW_Det, SW_HM 1 E-2 0.5 80 each
SW_FP 1 E-2 0.5
Fire Detector [SINTEF09] + Mounting 3.77 E-2 0.5 20 + 60€/hour
Temperature Sensor [[AEASS] 1.49 E-2 0.5
Pressure Sensor [TAEA88] + Mounting 1.6 E-2 0.5 20 + 60€/hour
Speed Sensor + Mounting 1.8 E-2 0.5 20 + 60€/hour
Cameral[jvc] 9.43 E-2 0.5
PU [Vinod08| 3.87 E-2 0.5 30
Comm. & Gateway 5 E-3 0.5 200

In Table E.1, resources with the same characteristics have been grouped as follows:
e Pressure sensor covers open, closed and obstacle detection sensors.
e Processing unit gathers the characteristics of all different PUs.

e Communications include MVB and Ethernet communication protocols and their

gateway.
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Regarding SW components, hypothetical reasonable values are assumed. As noted in
previous chapters (see Section 4.5), the cost of SW components is quantified assuming

that their development cost will be paid in 4 years.

We differ 4 type of SW components: (1) fault detection software (SW_FD); (2) re-
configuration software (SW_R); (3) fault detection of the reconfiguration software
(SW_FD_R); and (4) control/detection software (SW_ Det).

The development costs of each of these 4 SW components is considered once for different
implementations of the same subfunction: once developed they are adapted for the
related implementations. This assumption is adopted because the grouped subfunction

implementations are closely related and they do not need a significant development cost.

e All fault detection implementations (SW_FD) adapt to different subfunctions

modifying subfunction-specific time/value thresholds.

e Reconfiguration implementations’ development cost (SW_R) does not differ for
different subfunctions, alternative implementations will have allocated different
reconfiguration tables for different subfunctions, but the reactivation logic holds

the same for different subfunction’s reconfiguration implementations.

e Reconfiguration’s fault detection implementations development cost (SW_FD_R)
for different subfunctions differ only in the keepalive timeout, but their develop-

ment is independent of the subfunction.

e All the considered control/detector software implementations (SW_Det) have a
closely related logic, for instance, for the Door Status Control main function all

detection implementations are linked with the position of the door.

SW_FD, SW_R, and SW_FD R are gathered in the component SW_HM referring
to the failure rate and cost values of health management software implementations.
Each implementation of the SW_ Det resource covers: SWopenDetection, O W ClosedDetection s
SW ObstacleDetection s SWDoorVelocity; SWhoorcontrol, S WrireDetection ad SWrirecontrol function-
alities. Fach of them is characterized with the same failure rate, repair rate and cost
values. Accordingly, for the characterization of the false positive events (SW_FP) we

have applied the same values as for the other software implementations.

The same repair rate values have been assumed for all the hardware, software and

264



communication resources.

With respect to the sensor’s cost, human cost related with mounting and testing tasks

is considered assuming 10 minutes/sensor at a rate of 60 €/hour.

Finally, note that the cost of some hardware resources have been excluded deliberately
in Table E.1. The rationale under this decision is that they are used as heterogeneous
redundancies. Therefore, they already exist in the system and they are not explicitly
added to provide fail-over capabilities. This is why their use does not incur an increase

in the hardware cost.
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APPENDIX F

PAND Model for Repairable Systems

The goal of this chapter is to explain the behaviour, implementation and validation of

the PAND gate’s model for repairable systems used in Chapter 5.

When considering repairable systems, we assume that components can fail and repair
repeatedly during the mission time of the system. The basic behaviour of the PAND
gate model for repairable systems is as follows: it will trigger when the occurrence of
events respect the sequence determined by the gate, e.g., assuming Y = PAND(A, B);
Y = 1if A occurs prior to B and then B occurs; otherwise Y = 0. However, there are

some details worth mentioning.

Our PAND gate model for repairable systems will consider the last failure of each of its
input component instead of considering only their first failure - as it is done with non-
repairable components. Furthermore, the restoration of the PAND gate for repairable
systems (from Y = 1 to Y = 0) will be performed once that one of its input components
is restored. The logic implemented in the PAND gate for repairable systems of this
dissertation agrees with the logic implemented in the RAATSS tool [Mannol4c|.

For the implementation of the gate using the SAN formalism we consider 2 intercon-
nected components (see Figure F.1): (1) the component A BF B checks whether the
event A happens before the event B; and (2) the component A PAND B checks that
the order is respected (A before B) and that the event B occurs. If the order is not
respected or B does not happen, the PAND output will not happen as well. Note that
the implemented PAND gate is not inclusive, i.e., simultaneous failure occurrences are

not included because they don’t respect the sequence.

The model A BF B characterizes the situation in which the event A fails prior to the
event B (cf. Figure F.2). This event is defined through the input gates BF and no_ BF
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Y = PAND (A, B)

A_BF_B

PAND
Figure F.1: Block Diagram of the Repairable PAND Model

respectively (cf. Table F.1).

Table F.1: Activities in the SAN model
A BF B

I Input
Gate:

BF

>@

BF Before

Input
Gate
Predicate:

(m(A)== && m(B)==0 &&
m(A_ BF_B)==0)

Input

Gate m(A BF_B)=I;

Function:

l Input
Gate:

no BF
A_BF_B no_BF noBefore -

Input
Figure F.2: Atomic Model of the Component | Gate (m(A_BF_B)==1 && m(A)==0)

A BF B Predicate:

Input

Gate m(A_ BF_ B)=0;
Function:

The second model (A PAND_B) characterizes the situation in which the event A have
already failed prior to the event B (A BF B) and then the event B occurs (cf. Figure
F.3).

As for the validation of the gate we have compared the results for different tests. For
simplicity here we show only the basic configuration in which we have 2 basic events
as inputs (A and B) with exponential failure rates of 0.1 and 0.3 respectively and

exponential repair rate of 0.5 for both basic events. To this end, we have shared the
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|
|
A_BF_] PAND  priorityAND
B
|
A_PAND_B no_PAND  nopriorityAND

Figure F.3: Atomic Model of the Component
A PAND B

Table F.2:

Activities in the SAN model

A_PAND B
Input
Gate: PAND
gle:)tl:at (m(A_BF_B)==1 && m(B)==1 &&
Predicate: m(A_PAND_B)==0)
Input
Gate m(A_ PAND B)=1;
Function:
g:;: no PAND
Input
Gate (m(A_PAND B)== L&
Predicate: (m(A_BF_B)==0 || m(B)==0))
Input
Gate m(A_ PAND_ B)=0;
Function:

places of the basic events’ failed places (characterized as in Figure 5.3) with the events

A and B characterized in this Chapter. Figure F.4 displays the output obtained using
SAN and ATS formalisms using the Mobius and RAATSS tools respectively.

1072
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Figure F.4: Repairable PAND gate using Mobius
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(Glossary

Adaptation The ability of a system to adapt itself to its environment. 3, 52, 54, 55,
57, 63

Architecture Allocation of software functions onto available hardware resources satis-
fying functional and dependability requirements. 3, 6-9, 24, 27, 32, 33, 40, 43-46,
49-51, 53, 54, 56, 62, 63, 65, 66, 68, 69, 76, 77, 79, 80, 82, 83, 88, 92, 94, 96,
99-102, 104, 123, 127-130, 138, 140-143, 145-147, 149, 151, 152, 154, 157, 161,
182, 183, 188, 189, 195-198, 200, 203, 209, 212, 214, 216, 217

Configuration a possible realization of the main function comprised of the necessary
subfunctions and their underlying implementations (and resources) to perform the
main function. 71, 75, 76, 92, 127-130, 132, 133, 138, 139, 141-145, 155, 156, 172,
177, 182-196, 202, 203, 213-215

Dependability Ability to avoid failures that are more severe and more frequent than
is acceptable. 2, 3, 5-8, 57-60, 62-66, 68, 99-102, 104, 107, 119, 123, 133, 140,
142, 145, 147, 149, 152, 154, 157, 161, 194-196, 211-213, 215217

Design A specification of a system intended to accomplish goals in a particular envi-
ronment, using a set of components, satisfying a set of requirements, subject to
constraints. 1-3, 6-8, 11, 18, 24, 27, 28, 30-34, 40, 41, 44-46, 48-57, 59, 60, 62-68,
72, 75, 77-80, 83, 93, 94, 96, 99-102, 104, 107, 115, 122, 123, 133, 138, 139, 147,
151, 152, 154, 156, 157, 194-198, 204, 207, 211-213, 216, 217

Fault-Tolerance Mechanisms to avoid system failures in the presence of faults. 1, 24,
26-28, 30-32, 49, 66, 76, 209
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Function What the system is intended to do. 2-8, 12, 14, 16, 17, 21, 22, 25, 31, 32,
50, 51, 58, 60, 63, 64, 66-72, 75-83, 86, 87, 90, 92, 96, 100, 102, 111, 120, 123,
133, 137, 147, 161, 174, 181, 186, 197-199, 201, 204, 206, 209, 212-215, 217, 218

Health Management Reconfiguration and fault detection implementations which
make possible to manage the system’s behaviour in the presence of failures. 3,
6, 53, 65, 66, 68, 76-79, 83, 88, 92, 100, 101, 130, 140, 145, 184-186, 188, 190193,
196, 212, 215, 216

Heterogeneous Redundancy Redundancies which reuse existing hardware resources
and provide compatible functionality e.g., analytical redundancy. 3, 31, 62, 76,
88, 100, 128, 130, 132, 138, 139, 143, 146, 147, 184, 187, 190, 195, 212, 214, 215

Homogeneous Redundancy Redundancies which replicate the nominal functionality
making use of additional hardware components. 82, 128, 138, 139, 143, 183, 189,
215

Reconfiguration The process through which a system halts operation under its current
source configuration and begins to operate under a different target configuration.
3, 6-8, 26, 31, 53-56, 59, 60, 62-66, 68, 69, 76-80, 83, 84, 86, 89, 90, 92-94, 96,
97, 100-102, 104-107, 122-125, 128-131, 133-135, 138, 140-147, 150, 153-157,
165-173, 175-177, 182-188, 190-198, 203-208, 212-215, 217

Resource A hardware, software or communication device which is able to perform a
function in conjunction with other devices or by itself. 1-7, 12, 14, 25, 26, 29-31,
33, 49-52, 54, 56, 57, 63, 66-72, 75, 77, 79, 80, 83, 96, 101, 102, 104, 115, 122,
123, 126, 128, 129, 132, 134, 136, 140, 144, 146, 147, 149-153, 161-167, 169, 173,
174, 180-182, 184, 188, 190, 193-195, 197, 198, 212-215, 217, 218

System set of mutually related elements or parts assembled together in some specified
order to perform an intended function. 1-3, 5-9, 11, 13, 18, 28, 29, 31, 33-36, 39,
40, 42-46, 48-60, 62-73, 75-77, 79, 83, 96, 97, 99, 104, 109, 114, 116, 129-133,
139-147, 149-158, 160, 161, 167, 175, 182, 184, 185, 188, 190, 191, 194-200, 209,
211-218
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